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Abstract

This thesis describes the physics of the Integer Quantum Hall effect, with brief references to it’s

development into related research areas. This thesis was realized with the help of the Institute

of Theoretical Physics of the University of Utrecht without which it would not have been pos-

sible. The objective of the thesis is to cover some of the knowledge needed to get introduced to

recent research topics of condensed matter physics. In a first introductory chapter I start from

a phenomenological description of the Quantum Hall Effect and the transversal conductivity.

After that I develop the computations for the Landau levels in different geometries and with

different gauges both with the ladder operators and with the solution of the radial problem. I

cover the Aharonov Bohm effect, I analyze the gauge invariance and describe the flux quanti-

zatiion condition or Dirac quantization. I describe the technique of the electromagnetic Berry

phase, introducing the Berry connection and the Berry curvature two concepts of differential

geometry. I introduce intuitively the quantization of the conductivity with the Laughlin pump

argument and describe the monopole magnetic field. I derive the TKNN formula computing the

conductivity from the Kubo formula and explain the quantization of the conductivity related to

the topological invariant numbers of Chern, both in the case of a simple magnetic field and in

the case of particles on a lattice. It is shown how the topological Chern numbers are connected

with the integral of the Berry curvature and and how there is a topological Chern number for

each band. I then briefly refer to topological insulators. Finally I derive the quantization of

conductivity with the topological Lagrantian of Chern-Simons, I explain it’s relation with the

Bery curvature and briefly refer to edge states and to an example of Lagrangian used to describe

the fractional Quantum Hall Effect.

Keywords: Integer Quantum Hall Effect, Chern-Simons theories, TKNN formula, Berry phase,

Berry Curvature, Berry connection, Aharonov Bohm effect, Landau levels
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Abstract in lingua italiana

Questo elaborato non innovativo descrive la fisica dell’effetto Hall quantistico intero, con brevi

accenni ai suoi sviluppi nei settori di ricerca correlati. Questa tesi è stata realizzata con l’aiuto

dell’istituto di Fisica Teorica dell’università di Utrecht senza il quale essa non sarebbe stata

possibile. L’obbiettivo della tesi è quello di coprire parte di quell’insieme di conoscenze neces-

sarie per avvicinarsi a settori di ricerca recenti di materia condensata. In un primo capitolo

introduttivo si parte da una descrizione della fenomenologia dell’effetto Hall quantistico e la

quantizzazione della conduttività trasversale. Successivamente si sviluppano i calcoli per il

problema dei livelli quantistici di Landau, nelle varie geometrie e nei differenti gauge, sia con

gli operatori di scala, sia con la soluzione del problema radiale. Si affronta l’effetto Aharonov

Bohm, si analizza l’invarianza di gauge e si descrive la condizione di quantizzazione del flusso o

quantizzazione di Dirac. Si descrive la tecnica della fase elettromagnetica di Berry, introducendo

la connessione di Berry e la curvatura di Berry due concetti di geometria differenziale. Si in-

troduce intuitivamente la quantizzazione della conduttività con l’argomentazione della pompa

di Laughlin, e si descrive il campo magnetico di mononopolo. Si deriva la formula TKNN cal-

colando la conduttività dalla formula di Kubo e si spiega la quantizzazione della conduttività

legata ai numeri invarianti topologici di Chern, sia nel caso di un semplice campo magnetico,

sia nel caso di particelle su un lattice. Si fa vedere come i numeri topologici sono connessi con

l’integrale della curvatura di Berry e come ci sia un numero topologico per ogni banda, e si ac-

cenna brevemente agli isolanti topologici. Infine si ri-deriva la quantizzazione della conduttività

con la Lagrangiana topologica di Chern-Simons, se ne spiega la sua relazione con la curvatura

di Berry e si accenna sia agli stati di bordo sia ad un esempio di Lagrangiana per descrivere

l’effetto Hall quantistico frazionario.

Parole chiave: Effetto Hall quantistico intero, teorie di Chern-Simons, formula TKNN, fase

di Berry, curvatura di Berry, connessione di Berry connection, effetto Aharonov Bohm, Livelli

di Landau
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1 — Phenomenology

1.1. The experimental setup of the classical Hall effect

The classical Hall effect was discovered in 1879 by Edwin Hall, typically a current is propa-

gated in a flat sample of a conducting material, with an orthogonal applied magnetic field.

Figure 1: Classical Hall Effect

A Hall voltage transversal to the current is induced by the flow of electrons. Intutively

the electrons in a magnetic field follow circular orbits orthogonal to the field. The system is

stationary with a steady current, the Hall voltage compensate for the horizontal deviation of

electrons due to the magnetic field. 1

1.2. The experimental setup of the quantum Hall effect

Historically the standard setup of the modern quantum Hall effect is to have a sample

which is a planar junction betweeen two layers of semiconductors usually implemented as a

square MOSFET, within the boundary region between of the two semiconductors electrons are

confined horizontally in the x,y plane. The sample is cooled down to temperatures of the order

of liquid helium or less and a strong vertical magnetic field of the order of 1 Tesla is applied.

Nowadays is possible to achive measurements for temperaturs of the order of milli-kelvin and

fields of the order of 10 tesla or more. Different thermodinamic properties such as the Hall

resistivity, i.e. the transversal resistivity, are measured for different strenghts of the magnetic

field.

It was possible to achieve these new experiments given the developement of a set of tech-

nologies which were commercialized and available for scientific use in the late 1970s: first the

1Most of this chapter is based on David Tong (2016b). Lectures on the Quantum Hall Effect. http :

//www.damtp.cam.ac.uk/user/tong/qhe.html. [Online; accessed 12-October-2021]

1

http://www.damtp.cam.ac.uk/user/tong/qhe.html
http://www.damtp.cam.ac.uk/user/tong/qhe.html
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MOSFET, and high quality GaAs interfaces as their alternatives, second cryogenics technolo-

gies, third the availability of high intensity magnetic fields provided again from low temperature

superconductors.

More recently the availability of graphene, which is effectively a single layer of atoms, permits

to realize the 2 dimensional confinement of electrons within a monolayer of graphene itself. It

is finally important to mention that there is an upper boundary to current available magnetic

fields which are of the order of 100 Tesla.

1.3. Hofstarder butterfly

A precursor of the discovery of the Quantum Hall Effect is in the Ph.D. work of Douglas

Hofstadter 2 in 1976. Hofstadter analyzed the Hamiltonian for a set of electrons in a square

lattice, in a strong orthogonal magnetic field and in a 2 dimensional confinement. The prob-

lem was already solved theoretically with the derivation of the Harper equation, Hofstadter

computed numerically the spectrum diagonalizing the Hamiltonian and plotted it.

Figure 2: Hofstadter Butterfly

The result was what is now called the Hofstadter butterfly. The plot reveals that the

electrons organize themselves in bands, with fractional characteristic quantities, and that the

spectrum shows a peculiar fractal structure with self repeating patterns at different scales.

This hints to the pervasive presence of fractions and of a hierarchical structure of states in the

quantum Hall setup. Given the bizarre unexpected spectrum Hofstadter proposed in the same

paper to attempt similar measurements experimentally. 3

2 Douglas R. Hofstadter (1976). “Energy levels and wavefunctions of Bloch electrons in rational and irrational
magnetic fields”. In: Physical Review B. 14.6, pp. 2239–2249

3A comprehensive introductory description of the Hofstadter butterfly is provided in Stephanie Matern (2013).
“Hall-Leitfähigkeiten im Hofstadter-Schmetterling”. MA thesis. Universität zu Köln,Institut für Theoretische
Physik
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1.4. Integer Quantum Hall Effect

The first most famous experiment that discovered the Quantum counterpart of the Hall

effect was executed by von Klitzing in 19804, for which he was awarded the nobel prize in 1985.

Figure 3: Integer Quantum Hall plateaus

The measurement focused on the Hall resistivity which in essence is increasing and consists

of a set of plateaus where is constant, the conductivity on the reverse is almost zero when there

is a plateau and it’s extremely high between the plateaus.

Given the precision of the quantization of the plateaus and the fact that this is independent

from the disorder in the sample, higher and higher precision measurements have been executed.

The precision is recently so high that is one of the most precisely measured quantities in physics,

nowadays the international standards for electrical resistivity units are based on the Integer

Quantum Hall experiments.5

1.5. Fractional Quantum Hall Effect

As the disorder of the sample is decreased, and the magnetic field is increased the Hall integer

plateaus becomes less prominent but more plateaus appear now with a fractional characteristic

number.

4 M. Pepper K. v Klitzing G. Dorda (n.d.). “New Method for High-Accuracy Determination of the Fine
Structure Constant Based on Quantized Hall Resistance”. In: Phys. Rev. Lett. 45 (), p. 494

5 B. Jeckelmann and B. Jeanneret (2001). “The quantum Hall effect as an electrical resistance standard”. In:
Rep. Prog. Phys. 64, pp. 1603–1655
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Figure 4: Fractional Quantum Hall plateaus

This was first experimentally discovered by 1982 by Tsui and Stormer6. The first theory

was laid down by Laughlin7 and this lead to the joint nobel prize of Tsui Stormer and Laughlin

in 1998.

1.6. Relevance of Quantum Hall Effect

A thorough review of the current state of the art theoretical approaches and experimental

results is given from Prof Hansson8. David J. Thouless, F. Duncan M. Haldane and J. Michael

Kosterlitz were awarded the nobel prize in 2016 for theoretical discoveries of topological phase

transitions and topological phases of matter including their pioneering work on the Quantum

Hall effect.

1.6.1. Relevance of the experiments

There are many reasons why these experiments are attractive from a scientific point of

view: the experimental setup it’s essentially very simple, it is 2 dimensional and controllable,

all the measured quantities are rather easy to measure with a high degree of accuracy, the

problem is solvable as an exact problem in quantum mechanics, the exact solutions can be

used as a benchmark for numerical simulations of more complex geometries and more complex

experimental conditions. What is even more interesting is that there is quite a complex set of

discrete quantities that are coming out of the experiments, which in essence triggers the use of

new theoretical methods.

6 H. L. Stormer D. C. Tsui and A. C. Gossard (1982). “Two-Dimensional Magnetotransport in the Extreme
Quantum Limit”. In: Phys. Rev. Lett. 48, p. 1559

7 R. B. Laughlin (1983). “The Anomalous Quantum Hall Effect: An Incompressible Quantum Fluid with
Fractionally Charged Excitations”. In: Phys. Rev. Lett. 50, p. 1395

8 T. H. Hansson et al. (2017). “Quantum Hall physics: Hierarchies and conformal field theory techniques”.
In: Reviews of modern physics 89.april–june
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1.6.2. Theoretical outline

From a theoretical standpoint the problem is rooted in the Landau levels problem which is

a well established solved system in quantum mechanics.

In the case of the integer Quantum Hall effect the major physics properties can be in essence

described as a system of free electrons, and the problem is considered essentially solved from a

theoretical perspective.

This is not the case for the Fractional quantum hall which is still considered an open research

problem, the major physics properties can now be described as a system of interacting electrons,

and this does trigger a much more complex set of experimental results and theoretical methods.

One of the underlying and unifying concepts to interpret these measurements reflects a

hierarchical structure of electron levels underneath and that is one of the leading themes of the

research in this field. A second even more fundamental underlying theme is the emergence of

topologically invariant numbers, which in itself is a novelty with respect to orthodox quantum

mechanics.

In summary there are research hints in many directions but there is no single overaching

theoretical approach that predicts all the observerved hierarchies.

It is compelling the idea to be able to derive all these topological numbers from a single

hierarchical structure, ideally from the hierarchical structure of the levels themselves. This has

been partially achieved at least for the Integer Quantum Hall effect, with the emergence of

Chern numbers which are the topological invariants of Chern classes.

1.6.3. My specific interests

Finally to conclude on what triggered my interest is the emergence of hierarchies and ex-

pecially of continued fractions, in the experimental results. 9 10 These experimental results

together with the intuition that both the integer and the fractional quantum Hall effects shall

be rooted in a single underlying explanation from Prof. Jainendra Jain leads to be looking for

some more fundamental approach.

9 F. D. M. Haldane (1983). “Fractional quantization of the Hall effect, A hierarchy of incompressible quantum
fluid states”. In: Phys. Rev. Lett. 51, pp. 605–608

10 B. I. Halperin (1984). “Statistics of quasiparticles and the hierarchy of fractional quantized Hall states”.
In: Phys. Rev. Lett. 52, pp. 1583–1586
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2.1. Historical Introduction

All the forms of magnetism in condensed matter are essentially quantum phenomena, from

a pure classical standpoint, the Bohr–Van Leeuwen theorem states that all the induced currents

in atoms will have a thermal average which is zero. What’s more the Drude model on it’s

own is not able to do predictions in regards to magnetism in materials, only the Sommerfeld

free electron model is able to do some partially correct predictions with the introduction of the

Fermi statistics.

Alkaline metals have electrons which are not tightly bound and behave as free electrons, these

have intrinsic spin which aligns to the external magnetic field and provides what is now called

Pauli paramagnetism1. Free electrons have also orbital motions, and the induced magnetic field

tends to compensate the first effect, this is what is now called Landau diamagnetism.

In order to improve on the Pauli model for Alkaline metals Landau 2 solved the Schroedinger

equation for the case of electrons in a vertical magnetic field, and discovered the degeneracy

of the electron Levels. This is what is now called the Landau problem and the levels are

called Landau Levels. In his work Landau mentioned that the case for low temperatures and

high magnetic field would deserve a different treatment, in particular there will be a non linear

dependency between the magnetization and the external field, and specifically that it will have a

strong oscillating behaviour and an effective averaged field. This leads to the Haas - van Alphen

effect, to a divergent periodic dependency in the inverse of the magnetic field, still discovered

by Landau3, and to the experimental setup of the Quantum Hall Effect.

2.2. Introduction

Once we try to solve the 2 dimensional quantum problem for Landau levels we are left to

a problem that reduces to a one dimensional quantum oscillator, one degree of freedom is not

present in the quantum numbers and the levels are degenerate. Given the degeneracy of Landau

levels and the gauge freedom we can yes build the full set of solutions as linear combinations

and as an Hilbert state, but we are left with the different basis of the Hilbert space, the

parametrization of the gauge and the mathematical structures of the wave functions within

those basis. Although they are all linearly equivalent, each of these basis actually contains

some piece of extra information. This is a bit like looking at an image behind a diffraction

1 W. Pauli (1927). “Uber Gasentartungund Paramagnetismus”. In: Z. Phys. 41, p. 81
2 L. Landau (1930). “Diamagnetismus der metalle”. In: Z. Phys. 64, p. 629
3 D. Ter Haar (1965). Men of Physics L.D. Landau, Low temperature and solid state physics p. 36

11
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grating, or one may argue at the bottom of a well, where according to each angle we can see

part of the truth, but not the full truth. The problem with this is that there is no one way,

there are too many ways, and we hope to analyze it in this section, from the different angles to

get a better insight and grip of the physics.

2.3. Problem setup

We start our journey with a constant vertical magnetic field in the z direction and therefore

orthogonal to the x, y plane. The magnetic field will be treated as positive when it is in the

same direction of the vertical axis.

B =

∣∣∣∣∣∣∣
0

0

Bz

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
0

0

B

∣∣∣∣∣∣∣ (2.1)

Too analyze this in a larger perspective it is important to notice that this field can be considered

in a first semi-classical approximation an externally imposed magnetic field that does not create

an induced field in the sample and the electrons, but from a more precise quantum field theory

point of view it is the actual result of the combination of the external field with the induced

field. This combination is also averaged with respect to multiple length scales, for example very

small (e.g much smaller than an atom) and very large length scales (e.g. macroscopic) cannot

be always significant, in other words there must also be some upper and lower cutoff scales.

2.4. Gauge invariant treatment

The most simple possible treatment of the problem is without a gauge choice that is given

here. 4 5 Let’s start from the classical Lagrangian:

L =
1

2
mẋ2 + qẋ ·A (2.2)

If we write the Euler-Lagrange equations for it we obtain the Newton equation with the Lorentz

force

mẍ = qẋ ∧B

B = ∇∧A
(2.3)

Under a generic gauge transformation the Lagrangian changes only by a total derivative

A→ A + ∇α

L→ L+ qα̇
(2.4)

4Most of this section is taken from The lecture notes David Tong (2016b). Lectures on the Quantum Hall
Effect. http://www.damtp.cam.ac.uk/user/tong/qhe.html. [Online; accessed 12-October-2021] (pp. 14-18)

5There are other resources on this treatment such as Dr. Pekka Pietiläinen Professor Tapash Chakraborty
(1995). The Quantum Hall Effects - Integral and Fractional ch. 1.2, pag 4

http://www.damtp.cam.ac.uk/user/tong/qhe.html
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Therefore the equation of motion will be invariant with respect to the gauge transformation.

We can introduce the classical canonical momentum

p =
∂L

∂ẋ
= mẋ + qA = π + qA (2.5)

where the π = mẋ is the mechanical momentum.

And shift to the Classical Hamiltonian formulation:

H = ẋ · p− L =
1

2m
(p− qA)2 =

1

2m
π2 (2.6)

This has the same structural form of the Hamiltonian in the case without magnetic field

H =
1

2m
π2 (2.7)

This structural invariance is also a statement that means that the magnetic field does not do

work, or also that the magnetic field always acts orthogonally to the direction of motion. From a

coordinate perspective x,p are now canonical variables where instead the standard coordinates

x,π are not, therefore if we introduce the Poisson brakets, these have canonical commutation

relations:

{xi, pj} = δij , {xi, xj} = 0, {pi, pj} = 0 (2.8)

Where instead the mechanical momenta are not canonical variables and do have other commu-

tation relations:

{πi, πj} = {pi − qAi, pj − qAj} = q(
∂Aj
∂xi
− ∂Ai
∂xj

) = qεijkBk (2.9)

We now want to quantize the problem reusing directly the Poisson brakets of the classical

problem, We replace the canonical momentum with the momentum operator and we have the

Quantum Hamiltonian

Ĥ =
1

2m
(p̂− qA)2 (2.10)

It is possible to solve this problem without any gauge fixing if we introduce the canonical

momentum, the benefit of this approach is that is purely algebraic and we can get to the

eigenvalues, where instead we will not have be able to deduce the wave functions in terms of

position and momentum which will also contain a wealth of relevant information.

π̂ = p̂− qA (2.11)
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Our Hamiltonian is now reduced to:

Ĥ =
1

2m
π̂2 (2.12)

In order to now quantize we need to quantize the canonical relationships of the mechanical

momentum

[π̂x, π̂y] = iq~Bz (2.13)

We have choosen a special coordinate system where the field is in the same direction of the z

axis, by comparison it’s also possible to generalize this for a generic direction of the field and

we see the direct formal correspondence with the Poisson brakets that we have seen earlier 2.9:

[π̂i, π̂j ] = iq~εijkBk (2.14)

Now we can notice that the Hamiltonian is a quadratic form, this is enough to justify to try

linear tranformations that can simplify the problem and reduce it to an harmonic oscillator type

of problem. We therefore introduce raising and lowering operators as new operators:

â =
1√

2q~B
(π̂x + iπ̂y)

â† =
1√

2q~B
(π̂x − iπ̂y)

(2.15)

and the commutation relations are now becoming:

[a, a†] = 1 (2.16)

Where we have choosen the initial linear combination in such a way to obtain the commutation

relations for the harmonic oscillator.

If we rewrite the Hamiltonian now

Ĥ =
1

2m
π̂2 = ~ωB(ââ† +

1

2
) (2.17)

where we introduced the cyclotron frequency ωB = qB
m . Seeing the Hamiltonian is now formally

equivalent to an harmonic oscillator, we can therefore state that we transformed the initial 2

dimensional problem into a one dimensional harmonic oscillator problem.

We can now construct an Hilbert space as is usual from the ladder operators we introduce

a ground state |0〉 which is defined from

â|0〉 = 0 (2.18)
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and we build the rest of the Hilbert space from the relations

â†|n〉 =
√
n+ 1|n+ 1〉 = 0

â|n〉 =
√
n− 1|n− 1〉 = 0

(2.19)

The state has now eigenvalues

En = ~ωB(n+
1

2
);n ∈ N (2.20)

These levels are called Landau levels6.

Now we moved from a two dimensional problem and two degrees of freedom to an harmonic

oscillator problem in one quantum number, and the energy becomes equally spaced, which looks

much like an harmonic oscillator in one dimension. Where the extra degree of freedom ended

up ?

As usual there should be one quantum number per degree of freedom and when the energy

does not depends on the full set of quantum it means that there is a degeneracy of the levels,

and in essence in this chapter we will describe multiple ways to describe this degeneracy.

We can notice that we achieved all of this with no information about the gauge, and ul-

timately the spectrum does not depend on the gauge, cause the gauge should not include

”physical” information, and is factored out, as is typically the case. We in fact computed the

eigenvalues, but we only formally computed the eigenfunctions, to achieve a full explicit deriva-

tion of the eigenfunctions we need to fix the Gauge. We can then also re-analyze the same

problem in different gauges so that we will have more insights on the wave functions and their

structure.

The core objective is to use this study of wave functions as foundational in regards to the

further study of other global and local invariants built from the wave functions, which play a

preminent role in the overall analysis of the quantum hall effect, given the degeneracy of the

spectrum.

2.5. Landau gauge

First we consider the problem in the full plane, later we will restrict it to subsets of the

plane, as usual there is an orthogonal and constant magnetic field across the full plane. We now

also start from a specific gauge for the vector potential, this will be linear in the coordinates so

that the first derivatives of the potential are costant. In fact we want a constant magnetic field

which is also dependent only on the first derivatives. This will help in simplifying the equations

and is called the Landau gauge:

A
(x)
L = yB

∣∣∣∣∣∣∣
1

0

0

∣∣∣∣∣∣∣ (2.21)

6 L. Landau (1930). “Diamagnetismus der metalle”. In: Z. Phys. 64, p. 629
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We write down the Schroedinger for the two dimensional problem

1

2m
[(p̂x − qyB)2 + p̂2

y]ψ(~x, t) = i~
∂

∂t
ψ(~x, t) (2.22)

And the stationary case

1

2m
[(p̂x − qyB)2 + p̂2

y]ψ(x, y) = Enψ(x, y) (2.23)

There is a plane wave solution in the x direction , i.e. there is a kx continuous quantum

number, in fact the Hamiltonian commute with the momentum operator:

[Ĥ, p̂x] = 0 (2.24)

Given they commute, there shall be a common basis of the operators, more precisely the spec-

trum in x is a set of plane waves and there can be an integral superpositions of these. i.e.

ψ(~x) =

∫
R2

a(kx)ψ(y)eikxxdkx (2.25)

And

p̂xψ(~x) = ~kxψ(~x) (2.26)

And the schroedinger simplify to:

1

2m
[(~kx − qyB)2 + p̂2

y]ψ = Enψ (2.27)

And using the first term as a potential energy we can give it an harmonic oscillator form

1

2m
p2
yψ(y) +

m

2

(qB
m

)2
(
y − ~kx
qB

)2ψ(y) = Enψ(y) (2.28)

i.e we introduce

ωB =
qB

m

y0 =
~kx
qB

(2.29)

And we obtain

1

2m
p2
yψ(y) +

1

2
mω2

B(y − y0)2ψ(y) = Enψ(y) (2.30)

This is an oscillator on y that is centered on y0, the peculiar thing here is that the coordinate

x has no role in the Hamiltonian and therefore no role in the energy spectrum that we see in

Figure 2.1. There is in fact no kinetic energy operator p̂x
2

2m in x, neither a plane wave energy



2— Landau Levels 17

Figure 2.1: Energy spectrum

component ~2k2
x

2m in the spectrum. This essentially means that for each level in ny there is an

infinite degeneracy of levels in kx. Given the sample is infinite the eigenvalue kx is continuous,

i.e. not quantized, and can take any value.

The magnetic length of the oscillator is defined as:

lB =

√
~
mω

=

√
~
qB

y0 = kxlB
2

(2.31)

The magnetic length gives the order of magnitude of the width of the level, around the central

coordinate y0.

This has eigenvalues in the discrete ny quantum number and for each ny there is a continuous

set of states in kx which is degenerate (i.e the spectrum does not depend on kx):

Eny ,kx = ~(
qB

m
)(ny +

1

2
) (2.32)

i.e. we expect a set of equally spaced states in energy like in the case of the harmonic oscillator,

that we also see in Figure 2.1.

We can solve the equation 2.30 re-using the solutions for the Harmonic oscillator which are

built from Hermite polynomials:

Ĥ =
p̂x

2

2m
+

1

2
mω2x2

ψn(x) ∼ Hn(
x

l
)e−

x2

2l2 ; l =

√
~
mω

(2.33)

If we now write down the eigenfunctions for our problem in full we then have

ψn,k(x, y) ∼ eikxxHn(y − kxlB2)e
− (y−kxlB

2)2

2lB
2 ;n ∈ N; kx ∈ R (2.34)
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Figure 2.2: Wave functions: infinite sample

In terms of the wave functions (see Figure 2.2) there is still a planar wave component in the

x direction and therefore it is possible to have for example wave packets in the x direction as

a superposition of plane wave components in x. Graphically we can see this as an harmonic

oscillator with states centered in y0.

And the full state itself we can write it as a linear combination of the eigenfunctions:

|ψ〉 =
∑
n

∫
R
an(kx)eikxx|ny〉dkx (2.35)

Where the |ny〉 are the harmonic oscillator eigenfunctions in y.

There is a second way to express the Landau gauge which is over the y coordinate:

A
(y)
L = xB

∣∣∣∣∣∣∣
0

−1

0

∣∣∣∣∣∣∣ (2.36)

It’s important to stop for a moment and notice the extra minus sign in the gauge choice, this is

introduced given the the equation is not invariant by just swapping the coordinates given there

is the magnetic field. The magnetic field itself in fact is not parity invariant and reverses the

sign with a parity transformation, in fact if we look in detail to the swap of coordinates it can

be decomposed into a proper rotation which does not change the magnetic field and a parity

transformation which does.

It is now possible to redo the same computation with this new gauge and and we obtain ex-

actly the same type of eigenvalues and eigenfunctions but this time over the opposite coordinate,

in fact we find an oscillator centered over a coordinate x0 instead of y0. Also the eigenfunctions

remains of gaussian type but this time in the x direction and are centered around the coordinate

x0, as before there are planar waves but this time along the y direction.

In this case the wave functions maintain the same form, in this case gaussian, despite the

swap of coordinates, but in general if we change to other gauges the new eigenfunctions we find
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Figure 2.3: Wave functions: Case on a Cylinder

may also have a different form. In any case the wave functions are a complete set in the Hilbert

space and therefore by infinite linear combinations can generate any other function in the same

Hilbert space and therefore any other complete set of eigenfunctions.

2.6. Case on a cylinder

We now analyze the same problem but this time on an infinite strip with periodic boundary

conditions:

ψ(0) = ψ(Lx) (2.37)

this case and geometry is also called problem on a cylinder to be precise where the term infinite

strip is for boudary conditions like the particle in a box case:

ψ(0) = 0

ψ(Lx) = 0
(2.38)

Another way to look at this difference geometrically is to imagine the infinite strip in the y

direction replicated across the full plane in the x direction, in the particle in a box case the

wave functions are exactly zero on the junction lines for any value of y, where in the case of

periodic boundary conditions case they just need to be the same on both side of the strip, but

they may have different values for each y.

Constraining the system along one direction means also that the previously continuos eigen-

values become discrete and quantized. On a finite strip along the y direction, the kx is quantized

as we see in Figure 2.3. In fact If we impose 2.37 we obtain:

kx =
2πn

Lx
(2.39)
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Figure 2.4: Geometry: finite rectangular sample

and therefore we have an infinite numerable set of levels located at coordinates

yn = − ~
qB

2πnx
Lx

=
2πnx
Lx

l2B (2.40)

where is important to notice that the spacing of the levels in the y coordinate, is comparable

if not smaller than the magnetic length and this gives the intuition that the orbitals are almost

overlapping in space. In fact lB � Lx and therefore:

∆y =
2πl2B
Lx

� lB ∼ orbital width (2.41)

Being the levels also degenerate in nx, i.e. exactly with the same energy, even with the smallest

amount of external energy (i.e. a gapless excitation) is possible to have one electron shifting

from one level to another.

2.7. Case on a rectangular finite sample

Given the same constant field along z direction, we will now analyze yet another geometry,

the case of a rectangular sample of size Lx, Ly confining the electrons (See figure 2.4) to do

this we will use the periodic boundary conditions in both x and y

ψ(x+ Lx, y) = ψ(x, y)

ψ(x, y + Ly) = ψ(x, y)
(2.42)

We want to achieve now that the wave function eikxx is periodic in x = x+Lx, the condition

on the x coordinate is is the same condition of the previous scenario and developed gives as

before:

kxLx = 2πnx;nx ∈ N (2.43)
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Figure 2.5: Wavefunctions: finite rectangular sample

We know all levels are parallel to the x axis, that the center of each level is yn = −kxlB2 and

that center must be within the sample, i.e 0 ≤ yn ≤ Ly (See figure 2.5). For y to be positive

we must have nx ≤ 0, for y = 0 we have nx = 0, and we have also a maximum value nx for

y = Ly such that:

− nx ≤ nx ≤ 0;nx ∈ N (2.44)

nx is still a periodic index that represent the degeneracy, but if before the degeneracy could

assume any natural number, now the degeneracy is bounded and we end up with a large finite

number of discrete degenerate levels. We can enforce ynx = Ly on the upper y boundary and

we replace using 2.43

ynx = −kxlB2 = Ly

Ly = −2πnx
Lx

lB
2

(2.45)

and we get the Landau Degeneracy nx i.e. the maximum number of Landau Levels that can fit

in the sample

Degeneracy = nx =
LyLx

2πlB
2 =

A

~c
qB

1

2π
=
AB
2π~c
q

(2.46)

Or summarizing:

Degeneracy =
Φ

Φ0
(2.47)

where Φ = BA is the total magnetic flux across the sample and Φ0 = 2π~c
q is the flux quantum.

The Landau degeneracy can therefore be also described as the total number of flux quanta in

the external magnetic field.
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To get the idea of the number of levels for a field of 1 Gauss (i.e. 10−4 Tesla):

Φ0 = 2 ∗ 10−7Gauss · cm2

Deg =
Φ

Φ0
=

1Gauss · cm2

2 ∗ 10−7Gauss · cm2
= 5 ∗ 106

(2.48)

Where the typical order of magnitude of fields for Quantum hall experiment is of the order of

1 Tesla.7

Finally to conclude we can also define the filling factor that is the number of filled levels

with respect to the total: 8

ν =
nx
nx
. (2.52)

2.8. Symmetric gauge

2.8.1. Problem setup

Symmetric gauge

A
(xy)
L =

1

2
A

(x)
L +

1

2
A

(y)
L =

B

2

∣∣∣∣∣∣∣
y

−x
0

∣∣∣∣∣∣∣ (2.53)

The Schroedinger

1

2m
[(p̂x −

qB

2
y)2 + (p̂y +

qB

2
x)2 + p̂2

z]ψ(~x, t) = Enψ(~x, t) (2.54)

Where now we only have the null commutator:

[Ĥ, p̂z] = 0 (2.55)

7 Barton Zwiebach (2018a). L14.4 Landau levels (continued). Finite sample. MIT 8.06 Quantum Physics III.
https://www.youtube.com/watch?v=Uux0VkKaoxY&t=318s. [Online; accessed 12-October-2021]

8 Dr. Pekka Pietiläinen Professor Tapash Chakraborty (1995). The Quantum Hall Effects - Integral and
Fractional pag 6.

Ns =
LxLy
2πl20

(2.49)

Ns =
e

2π~c
Φ =

Φ

Φ0
(2.50)

Landau degeneracy is the total number of flux quanta in the external magnetic field

ν = 2πl20n0 (2.51)

dimensionless density of electrons expressed as the filling factor of the Landau Level

https://www.youtube.com/watch?v=Uux0VkKaoxY&t=318s
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And we can solve the problem in just x and y We can reduce it to the adimensional equation

[(−i ∂
∂x
− 1

2
y)2 + (−i ∂

∂y
+

1

2
x)2]ψ(~x, t) = εnψ(~x, t) (2.56)

We introduce two complex variables

z = x+ iy

z = x− iy
(2.57)

And obtain

H = [−4
∂2

∂z∂z
+ z

∂

∂z
− z ∂

∂z
+

1

4
zz] (2.58)

2.8.2. Ladder operators

In the case of the one dimensional harmonic oscillator, we usually introduce the ladders

operators to compute the eigenvalues directly. In this case there are four ladders operators,

given there are four base operators p̂x, p̂y, x, y, four degrees of freedom, and 2 constants of

motion Ĥ, L̂.

We introduce:

b =
1√
2

(
1

2
z + 2

∂

∂z
); b† =

1√
2

(
1

2
z − 2

∂

∂z
)

a =
1√
2

(
1

2
z + 2

∂

∂z
); a† =

1√
2

(
1

2
z − 2

∂

∂z
)

(2.59)

where

[a, a†] = [b, b†] = 1

[a, b] = [a, b†] = [a†, b] = [a†, b†] = 0
(2.60)

The hamiltonian gets the form

H = a†a+
1

2
(2.61)

and the eigenstates

|n,m〉 =
b†
m+n√

(m+ n)!

a†
n

√
n!
|0, 0〉

H|n,m〉 = (n+
1

2
)|n,m〉

(2.62)
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Given

a|0, 0〉 = 0

b|0, 0〉 = 0
(2.63)

We get

|0, 0〉 =
1√
2π
e−

1
4
zz (2.64)

and for the first Landau level we have

|0,m〉 ≈ b†me−
1
4
zz ≈ (

z

2
− 2

∂

∂z
)me−

1
4
zz ≈ zme−

1
4
zz = η0m (2.65)

This is named as a hole cause J.J inverted z and z More generally we can build linear combi-

nations of these and we arrive to the general case

∑
am|0,m〉 ≈ f(z)e−

1
4
zz = η0m (2.66)

where f(z) is analytic

m is the angular momentum because

L = Lz = −i~ ∂
∂θ

= −~(z
∂

∂z
− z ∂

∂z
) = −~(b†b− aa†)

− ~(b†b− aa†)|n,m〉 = −~m|0, 0〉

m = −n,−n+ 1, ...

(2.67)

The b operators are degenerate and these two show the degeneracy of the landau levels,

there is an extra quantum number which is degenerate and is actually the angular momentum

quantum number. The angular momentum here is conserved and the total angular momentum

L is the same as the Lz componenent given the geometry.

2.8.3. Eigen values and Eigenfunctions with the radial equation

Let’s now compute wavefunctions and eigenvalues directly9

Ĥ =
1

2m∗
(p̂− qA)2 (2.68)

We remain with

Ĥ =
1

2m∗
p̂2 +

1

2
ωCL̂z +

q2B2

8m∗
(x2 + y2) (2.69)

9 Dr. Pekka Pietiläinen Professor Tapash Chakraborty (1995). The Quantum Hall Effects - Integral and
Fractional, Appendix A



2— Landau Levels 25
10 where we introduced the cyclotron frequency

ωC =
qB

m∗
(2.70)

11 in Cylindrical coordinates

− ~2

2m∗

[1

r

∂

∂r
(r
∂ψ

∂r
) +

1

r2

∂2ψ

∂φ2
+
∂2ψ

∂z2

]
− i~ωC

∂ψ

∂φ
= (E − 1

8
m∗ω2

Cr
2)ψ (2.71)

Given angular momentum, which is same as Lz, and z-momentum are conserved we substitute:

ψ =
1√
2π
f(r)e−imφeikzz (2.72)

Then we have

~2

2m∗

[d2f(r)

dr2
+

1

r

df(r)

dr
−m2 f(r)

r2

]
+ (E − 1

8
m∗ω2

Cr
2 − ~2

2m∗
k2
z +

1

2
m~ωC)f(r) = 0 (2.73)

We introduce an adimensional length and energy

x =
m∗ωC

2~
r2 =

r2

2lB
2 = [M ][T ]−1[M ]−1[L]−2[T ][L]2

βm =
1

~ωC
(E − ~2

2m∗
k2
z) +

1

2
m

(2.74)

We get

x
d2f

dx2
+
df

dx
+
[
βm −

m2

4x
− 1

4
x
]
f(x) = 0 (2.75)

We simplify with:

f = x−
1
2R(x) (2.76)

And we remain with the Whittaker equation:

d2R

dx2
+
[
− 1

4
+
βm
x

+
1−m2

4x2

]
R = 0 (2.77)

This equation has two linearly independent fundamental solutions, the Whittaker functions:

Wβ, 1
2
m(x),W−β, 1

2
m(−x) (2.78)

There are explicit formulas for these.

From a mathematical standpoint the Whittaker equation is also known as a form for the

Confluent hypergeometric equation, this equation has various equivalent forms, one of the most

10in C.G.S. the minimal coupling is p− q
c
A

11in C.G.S this is ωC = qB
mc
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well known forms is the Kummer equation.

zw′′(z) + (b− z)w′(z)− aw(z) = 0 (2.79)

that we are going to derive here.

Substituting:

R(x) = e−kxxnw(x) (2.80)

We obtain the differential equation:

xw′′ + (|m|+ 1− x)w′ + (β − |m|+ 1

2
)w = 0 (2.81)

Which is the confluent hypergeometric equation the solution of which is the confluent hyperge-

ometric function

w = F (−(β − |m|+ 1

2
), |m|+ 1, x) (2.82)

If the wavefunction is everywhere finite, β − |m|+1
2 is a positive integer n.

The energy levels are then:

E = ~ωC(n+
1

2
|m| − 1

2
m+

1

2
) +

~2kz
2

2m∗
(2.83)

The corresponding solutions are:

Rn,m(r) =
1

lB
|m|+1|m|!

[(|m|+ n)!

2|m|n!

] 1
2
e
− r2

4lB
2 r|m|F (−n, |m|+ 1,

r2

2lB
2 ) (2.84)

with

F (−n, |m|+ 1,
r2

2lB
2 ) =

Γ(n+ 1)Γ(|m|+ 1)

Γ(n+ |m|+ 1)
Ln
|m|(

r2

2lB
2 ) =

n!m!

(n+ |m|)!
Ln
|m|(

r2

2lB
2 ) (2.85)

where the Ln(x)α are the Laguerre polynomials.

The wave function:

ψn,m(r) =
[ n!

2πlB
22m(n+ |m|!)

] 1
2
e
−imφ− r2

4lB
2
( r
lB

)|m|
Ln
|m|
( r2

4lB
2

)
(2.86)

And the lowest eigenvector i.e. the Lowest Landau Level is:

ψm(z) =
[ 1

2πlB
22mm!

] 1
2
( z
lB

)m
e
− |z|

2

4lB
2 (2.87)

Given the equation is linear, it is also important to notice that we can build linear combinations

of these solutions

ψm(z) = f(z)e
− |z|

2

4lB
2 (2.88)

where f(z) is a polynomial of order m. This will form the basis of the Laughlin Ansatz.
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We refer to the literature for further properties of the different types of hypergeometric

equations.

It’s possible also to analyze more complex versions of this problem with an harmonic or

elliptic confinement potential 12

12See for example Marieke Van Beest (2015). Fock-Darwin States for an Elliptical Spin-Orbit Coupled
Quantum Well. https : / / nbi . ku . dk / english / theses / bachelor - theses / mariek - van - beest /

BachelorThesisMariekeVanBeest.pdf. [Online; accessed 12-October-2021]

https://nbi.ku.dk/english/theses/bachelor-theses/mariek-van-beest/BachelorThesisMariekeVanBeest.pdf
https://nbi.ku.dk/english/theses/bachelor-theses/mariek-van-beest/BachelorThesisMariekeVanBeest.pdf
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3 — Aharanov bohm effect

3.1. Introduction

The standard experimental setup to achieve macroscopic constant magnetic field is to use a

very long vertical solenoid, more precisely within the solenoid the field is constant and outside

is zero, and the longer the solenoid the more this approximation is correct. Outside the solenoid

the magnetic vector potential instead is not zero as we will see and this induces phase shifts on

the wave functions.

The standard assumption in classical electrodynamics is that the vector potential is purely

a mathematical artifact, without mathematical consequences, and without a physical interpre-

tation. Only the field itself can be measured directly, and can be considered a physical quantity.

This is only partially true in the quantum case, in essence the vector potential can induce phase

shifts in the wave function of an electron propagating through it. This is in parallel with the

fact that a gauge transformation induces a phase shift in the wave function. Global phase shifts

per se have no also no physical consequences to the extent of quantum mechanics but once

we consider a finite loop we end up with a discrete phase shift and this creates a measurable

quantity.

When this was discovered by Aharanov, Bohm and an earlier paper from Eherenberg Siday
1 2 3 it created a big sensation given there was for the first time a measurable effect caused by

the presence of the potentials and in absence of a magnetic field, where until then, the potentials

were considered purely a mathematical artifact. This shifted the attention from the fields to

the potentials as being more fundamental. In the treatment with the field only, given the field

is not zero only within the solenoid and radially ”far away” outside the solenoid the field is zero

the field would induce a non local effect on the wave function.

The treatement with vector potentials instead permits to safeguard the principle of locality

and that the wave function has a local effect, i.e. a local phase shift, due to a local vector

potential.

Finally another important logical consequence of this effect is for action principles, given

they are also dependent directly from the potentials, as is the case for the Schroedinger equation,

they are also as fundamental as the vector potential itself. 4

1 D Aharonov Y; Bohm (1959). “Significance of electromagnetic potentials in quantum theory”. In: Physical
Review 115 (3). doi:10.1103/PhysRev.115.485, pp. 485–491

2 D Aharonov Y; Bohm (1961). “Further Considerations on Electromagnetic Potentials in the Quantum
Theory”. In: Physical Review 123 (4). doi:10.1103/PhysRev.123.1511, pp. 1511–1524

3 RE Ehrenberg W; Siday (1949). “The Refractive Index in Electron Optics and the Principles of Dynamics”.
In: Proceedings of the Physical Society B. 62 (1). doi:10.1088/0370-1301/62/1/303, pp. 8–21

4A lot of this chapter is derived from Griffiths D.J. (2005). Introduction to quantum mechanics Ch. 10.2.3
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https://journals.aps.org/pr/abstract/10.1103/PhysRev.115.485
https://journals.aps.org/pr/abstract/10.1103/PhysRev.123.1511
https://iopscience.iop.org/article/10.1088/0370-1301/62/1/303
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3.2. Classical motion of electrons in a magnetic field

The underlying motion for electrons moving in a magnetic field is circular, without accellera-

tion and orthogonal to the magnetic field, this basic law of motion is underlying all the classical

and quantum physics of electron moving in magnetic fields including Landau levels and the

aharonov Bohm effect.

3.2.1. Geometry

Let’s consider one electron moving in a vertical constant magnetic field that is present all

across the space

B =

∣∣∣∣∣∣∣
0

0

Bz

∣∣∣∣∣∣∣ (3.1)

Simplifying notation

B = Bz = Bz (3.2)

3.2.2. Classical case with cartesian coordinates

If we write the Lorentz force in the S.I. system:

~F = q~v ∧ ~B = m
d~v

dt
; (3.3)

5

The equation in z is trivial and describes an inertial motion, the equations of motion in x, y

are:

d

dt

∣∣∣∣∣vxvy
∣∣∣∣∣ =

∣∣∣∣∣0 −ω
ω 0

∣∣∣∣∣
∣∣∣∣∣vxvy
∣∣∣∣∣ (3.4)

This can be simplified to two independent harmonic oscillators

d2

dt2
vx + ω2vx = 0

d2

dt2
vy + ω2vy = 0

(3.5)

If we introduce simple initial conditions for the vx and vy, i.e constant initial velocity and no

5in C.G.S. system q would be substituted with q
c
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accelleration:

vx

∣∣∣
t=0

= 0; v̇x

∣∣∣
t=0

= 0

vy

∣∣∣
t=0

= v0; v̇y

∣∣∣
t=0

= 0
(3.6)

We obtain:

vx = v0 sinωt

vy = v0 cosωt
(3.7)

Therefore the motion is planar and the initial angular velocity v0 is conserved, if there is an

initial velocity along the magnetic field the motion will be elicoidal in the same z direction.

3.2.3. Local non inertial ref frame

We can write the same problem in the rotating frame B together with the electron, where

Ω is the rotational speed, if we decompose the accelleration:

aA = aB + 2Ω× vB +
dΩ

dt
× xB + Ω× (Ω× xB) . (3.8)

The second term is the coriolis force and is zero if we assume an initial radial velocity zero, the

third term is the Euler force that is also zero given is a steady rotation and Ω is constant, the

last term which is the centrifugal force is instead significant, if we write the equation of motion:

F = q~v ∧ ~B = m
d~v

dt
+m[

v2
ϕ

ρ
]ρ̂; (3.9)

The treatment here becomes simple, we can assume stationary conditions (i.e. long term be-

haviour with no accelleration):

~F = −qvρBzϕ̂+ qvϕBzρ̂ (3.10)

qvϕBz = m
v2
ϕ

ρ

−qvρBz = 0

(3.11)

We introduce the cyclotron frequency

ω =
qBz
m

(3.12)

and we remain again with a constant angular velocity:

vϕ =
qBz
m

ρ = ωρ (3.13)
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Figure 3.1: Solenoid

3.3. The field source - the solenoid

We will treat the solenoid as a field generating component classically, and the empty space

surrounding it also classically, a complete treatment does need to quantize both the magnetic

field sources, i.e the moving electrons, and the empty space surrounding the solenoid as a set of

quantum harmonic oscillators.

3.3.1. Geometry

We start from an infinitely long vertical solenoid as drawn in figure 3.1

3.3.2. Magnetic Field of a solenoid

Applying the Ampere law to the solenoid∮
B · dl = µ0i (3.14)

we can compute that it creates a constant internal magnetic field as is depicted in Figure 3.1,

we will compute in sequence the circuitation to the loops a, b, c.

First of all following the right hand rule we can state that if the current is rotating anti clock

wise looking from above the field inside the solenoid is vertical and going upwards, outside the

solenoid is instead vertical and going downward.

If we apply the ampere law to a circuit a inside the solenoid there is no current through it
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Figure 3.2: Magnetic Field

and therefore the circuitation must be zero. If we compute the circuitation we will have for the

upper and lower side a contribution of zero given the field is orthogonal to the circuit, and two

opposite cancelling contributions for the left and right side for a total of zero.

Given the loop can be as big or as small as we wish as far as it does not intersect the solenoid,

the field is therefore constant for any point inside.

Considering an outer circuit c the same considerations apply and the field must be constant,

if we add the hyphothesis that the field is zero at large distances we end up concluding that the

field must be zero for any point outside the solenoid.

Considering a circuit b that intersect the boundary there is a net flowing current through

the loop given by Ni where N is the number of spirals and i is the current in the solenoid. For

the circuitation we have again an upper and lower part of the loop that do not contribute, a

right side (i.e. external part) where the field is zero and does not contribute and an internal

part which gives the only contribution. We can then apply the Ampere law:

Bl = µ0Ni (3.15)

Where l is the vertical length of the loop, this is the general law for the solenoids.

Summarizing we can argue that inside the solenoid the field is constant and going upwards

and outside is zero as we see in figure 3.2

3.3.3. Magnetic Vector potential of a solenoid

General and homogenous solution

We want now to compute the magnetic vector potential given the magnetic field of the

solenoid. We start from the definition of the vector potential which outside the solenoid is a

generic equation of an irrotational field, and inside the solenoid there is constant microscopic
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circuitation:

∇∧A = 0; ρ > a

∇∧A = Bz; ρ ≤ a
(3.16)

We choose the gauge condition

∇ ·A = 0 (3.17)

We can distinguish two spatial domains of this equation one inside the solenoid and one

outside, on the boundary between the two we expect the potential to be at least continuos but

not differentiable given the discontinuity in the magnetic field.

We notice that the equations outside of the solenoid ρ ≥ a is homogenous and reduces to the

equations of an ideal zero viscosity incompressible fluid where the vector potential takes the role

of the velocity of the fluid. This is what is called a fluid dynamics to magnetostatic analogy,

it’s actually possible to build multiple type of analogies mapping the magnetic quantities to

fluid quantities in a different way, typically magnetostatic analogies are based directly on the

magnetic field and not on the vector potential as is done here. 6

∇∧A = 0

∇ ·A = 0
(3.18)

Given the irrotational condition we can introduce a scalar potential φA and the equation can

be reduced to the Laplace equation and to classical potential theory

A = ∇φA
∇2φA = 0

(3.19)

The problem has cylindrical symmetry, we can therefore introduce cylindrical coordinates and

this equation will have cylindrical harmonics as solutions:

φA(ρ, ϕ, z) =
∑
n

∫
d |k| An(k)Pn(k, ρ)Φn(ϕ)Z(k, z) (3.20)

More precisely this is a linear combination in the coefficients An(k) with a discrete quantum

number n and a continuos one in k and where Pn(k, ρ) cylindrical Bessel and modified Bessel

functions radially. 7

Inside the solenoid ρ ≤ a the equations are linear and non homogenous, therefore the general

solution will be built from a general solution of the homogenous equation plus a particular

solution of the non homogenous equation. For the homogenous equation we again have a linear

combination cylindrical harmonics as solutions.

6see for example T.E. Faber (1995). Fluid Dynamics for Physicists Ch. 4.5
7 William R. Smythe (1989). Static and Dynamic Electricity Ch 5.29
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Figure 3.3: Vector potential for a Solenoid

Particular solution

For the particular solution we are left with:

Az = 0

ρ ≤ a : Aϕ =
Φ

2πa2
ρ; ρ > a : Aϕ =

Φ

2πρ

Aρ = 0

(3.21)

Which is depicted in figure 3.3

Conclusions

In general the Laplace equation has a set of uniqueness theorems for dirichelet and von

neumann boundary conditions which are applicable here, this domain is not simply connected,

and namely punctured, therefore the uniqueness is not trivial but it is considered to be taken

care by potential theory.

Outside the solenoid the magnetic field here is zero but the potential is not, consequence of

this is that the wave function outside the solenoid will depend locally on the potential and non

locally on the magnetic field.

Given one solution that we have found now we can generalize this with gauge transformations

and find other solutions of the irrotational equation, with other gauge conditions.

Given the linearity of the equations, the role of the cylindrical harmonics sits as a background

field, which is linearly superposed with the particular solution, more precisely the average of

the homogenous solution will be zero, and therefore this leads to an averaged field which is the

same as the particular solution.

This is the same as the infinite spindle solution (with radius a) in 2D fluid dynamics where

the core of the spindle is linear, i.e. the density of the vortex is constant (e.g tornado with
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simple core) 8 9 10

Fluid Dynamics analogy

We just solved the equations 3.18 in 2 dimensions thanks to the cylindrical symmetry, this

is the same as the case of an ideal fluid in 2 dimensional potential theory. We can also expand

on the magnetostatic to fluid dynamics analogy and we can intuitively compare the magnetic

vector potential to the averaged velocity of a fluid, where the generated fluid velocity field is

equivalent to the solutions of potential theory for a vertical line source, i.e. a spindle, spinning

with a finite core. This is also what is called a Rankine model of a vortex. To make a vivid

fluid dynamics image of these solutions they are the same as the ones for the case for example

of an ideal tornado (or an ideal vortex) with a finite core where the edge of the tornado drags

along the surrounding air.

Given the direction of the current is parallel and has the same direction of the vector

potential we can also imagine intutitively that the current in the solenoid is essentially dragging

the vector potential around the solenoid as it would be for a fluid dynamics case where the

field source (i.e. the spindle or tornado) will drag along the fluid (i.e. the surrounding air).

Historically this intepretation can be traced back to the complete drag hyphothesis of Michael

Faraday.

CPT argument

To show that this analogy is perstistent to change of charge we introduce a CPT argument:

First we reverse the charge of the carriers from positive carriers to negative electrons, then

reverse the time direction therefore reverse the direction of motions for the charge carriers, the

electrons will be moving downwards spiralling clock wise looking from above, and finally we

need to add a parity transform.

If we add the parity to the system in the mirror image the spiral is with the opposite chirality

the electrons are now moving downwards but now anticlockwise this means that if we apply

the right hand rule we can see that the magnetic field remains pointing upwards. In the mirror

image we need to substitute the right hand rule with the left hand rule the vector potential

with a left hand rule pointing upwards is then directed clock wise looking from above, i.e. still

in the same direction of the moving electrons.

If we add the parity to the coordinate reference frame one of the coordinate swap direction,

at that point we are in a left handed reference frame where the wedge product is defined with

a minus sign but then ∇ ∧ B = 0 7→ −∇ ∧B = 0 the magnetic field therefore does not reverse

direction. Again the wedge product for the definition of the vector potential has an extra minus

sign and the vector potential is instead with opposite direction B = ∇∧A 7→ B = −∇∧A and

therefore clockwise looking from above, i.e. again consistent with the electrons.

8 Richard Fitzpatrick (2018). Theoretical Fluid Mechanics
9 Richard Fitzpatrick (n.d.). Two-Dimensional Vortex Filaments. utexas.edu. [Online; accessed 2-February-

2022]
10Wikipedia Elementary flow (n.d.). Wikipedia. [Online; accessed 2-February-2022]

http://farside.ph.utexas.edu/teaching/336L/Fluidhtml/node72.html
https://en.wikipedia.org/wiki/Elementary_flow
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A Quantum field theory perspective

Starting again from the fluid dynamics analogy, from a quantum field theory perspective we

can then also interpret the vector potential as a set of gapless excitations, namely as an ideal

fluid of virtual photons in the empty space surrounding the solenoid. In this context we can

make also a parallel with the Casimir effect where these same virtual photons lead to measurable

effects.

In this model of fluid we see that there is an averaged field which corresponds to the rankine

model, on top there are also the cylindrical harmonics that we discussed previously which take

the substitute role of the quantum harmonic oscillators and these solutions have also a similar

status of being a fluid of virtual photons, and of being an additional background field.

We also introduced a concept of velocity, but we introduced it from an electrodynamics

standpoint, therefore we cannot give a global role to this velocity as it would be for a galilean

velocity, or worse a velocity with respect to an external absolute reference frame as in the case

of a newtonian velocity, we can only use local reference frames and local velocities in the sense of

special relativity, the best reference frame we actually have is the one solidal with the movement

of the charge carriers and from there we can only define local velocities and local drag nearby

to the charge carriers. This is then again consistent with the complete drag hyphothesis.

Still considering velocity, there is no movement in this case given the field function do

not depend on time, but this is the same as the case for the quantum harmonic oscillator wave

functions, which in the standard coordinate representation don’t really oscillate. By comparison

we can reintroduce a semi classical concept of oscillation with coherent states, both in the case

of harmonic oscillators and here for photonic states from the work of Glauber. Another way to

look at this from a modern perspective is to compare it with a boson or fermi liquid where also

the definition of velocity is essentially local.

It is important to distinguish drag from viscosity, a standard temperature macroscopic

experimental fluid has viscosity, namely tangential viscosity, and drag is directly associated

with viscosity. This is instead an ideal fluid which has a viscosity zero, and therefore we cannot

associate a microscopic model of tangential forces as is typically done for macroscopic solids

and liquids, a probably better intuition can be given with liquid Helium 4 which is bosonic and

has viscosity zero.

Another microscopic model of this fluid that we can immediately relate is brownian motion,

which is directly associated to the stochastic interpretation of the Laplace equation, but also

to the Feynmann Kac formula and the stochastic interpretation of path integrals, in this model

there are interactions and bumps between particles but again there is no viscosity. 11 12 13 14

11Faraday was convinced that Aether had complete drag (find ref.), this would be the reference frame of the
moving object

12Despite it was the basis for Maxwell to build the equations. All mechanicanical models of aether failed, and
were stripped off from literature

13Lorentz leaves to Aether his last mechanical property ”immobility” Albert Einstein (1920). Sidelights on
relativity. gutenberg.org. [Online; accessed 2-February-2022] and gives the role to Aether to conduct EM waves
independently from mass motion

14Einstein comments that Special relativity removes also this ”immobility” Albert Einstein (1920). Sidelights
on relativity. gutenberg.org. [Online; accessed 2-February-2022] he gives the role of aether to the geometry of

https://www.gutenberg.org/files/7333/7333-h/7333-h.htm
https://www.gutenberg.org/files/7333/7333-h/7333-h.htm
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3.4. The propagating electrons

3.4.1. Introduction

We will now treat the propagating electrons with standard quantum mechanics, a complete

treatment would require also considerations about the surrounding empty space which should

be modeled with quantum mechanical oscillators representing the field, and the interactions of

these oscillators with the electrons.

1

2m
[−i~∇− qA]2 ψ(~x, t) = i~

∂ψ

∂t
(~x, t) (3.22)

1

2m

{
− ~2∇2 + 2i~qA · ∇+ iq~ [∇ ·A] + q2A2

}
ψ(~x, t) = i~

∂ψ

∂t
(~x, t) (3.23)

using gauge ∇ ·A = 0

1

2m

{
− ~2∇2 + 2i~qA · ∇+ q2A2

}
ψ(~x, t) = i~

∂ψ

∂t
(~x, t) (3.24)

3.4.2. Wire geometry

Instead of solving the complete scattering problem of a beam of electron incidents towards

the solenoid, in order to make the computation more simple we make a simplification and

consider the electron confined to a wire and having a fixed radius as from Figure 3.4). The

complete problem would be solved by separation of variables, the radial part would be a Bessel

equation, but the angular part of the equations will remain essentially the same as the wire

geometry and this permit us to analyze the significant part of the behaviour of the electrons.

Namely the solution is composed by three parts a beam on the left and one on the right of the

solenoid plus a set of bound states around the solenoid, which are also solutions of the wire

geometry. These three sets are essentially coupled together and we can imagine electrons that

may sit for a while circling around the solenoid and interfering with the two beams.

the electron is considered confined on the wire, and the wave function also, by simmetry the

wave function now only depends on ϕ and t

Cylindrical:

∇f =
∂f

∂ρ
ρ̂+

1

ρ

∂f

∂ϕ
ϕ̂+

∂f

∂z
ẑ (3.25)

space time: ”the hypothesis of aether in itself is not in conflict with the special theory of relativity. Only we
must be on our guard against ascribing a state of motion to the Aether”

15Dirac gives the role of Aether to the ensamble of virtual particles
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Figure 3.4: Electron on a wire

∇2f =
1

ρ

∂

∂ρ

(
ρ
∂f

∂ρ

)
+

1

ρ2

∂2f

∂ϕ2
+
∂2f

∂z2
(3.26)

Here from the solutions of A before:

A = Aϕϕ̂ =
Φ

2πb
ϕ̂ (3.27)

Therefore:

1

2m

{
− ~2

b2
∂2ψ(ϕ, t)

∂ϕ2
+ 2i~qA

1

b

∂ψ(ϕ, t)

∂ϕ
+ q2A2ψ(ϕ, t))

}
= i~

∂ψ

∂t
(ϕ, t) (3.28)

And the eigenvalue equation

1

2m

{
− ~2

b2
∂2ψn(ϕ)

∂ϕ2
+ 2i~qA

1

b

∂ψn(ϕ)

∂ϕ
+ q2A2ψn(ϕ)

}
= Enψn(ϕ) (3.29)

Given A = Φ
2πb ; b > a:

1

2m

{
− ~2

b2
∂2ψn(ϕ)

∂ϕ2
+ 2i~

( qΦ
2πb

)1

b

∂ψn(ϕ)

∂ϕ
+
( qΦ

2πb

)2
ψn(ϕ)

}
= Enψn(ϕ) (3.30)

∂2ψn(ϕ)

∂ϕ2
− 2i

( qΦ
2π~

)∂ψn(ϕ)

∂ϕ
−
( qΦ

2π~

)2
ψn(ϕ) = −2mb2

~2
Enψn(ϕ) (3.31)

We introduce a first adimensional characteristic quantity which is the charge times the quantum

of flux :

β =
( qΦ

2π~

)
(3.32)
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And a second adimensional reduced energy:

εn =
2mb2

~2
En − β2 (3.33)

The equation reduces to

d2ψn(ϕ)

dϕ2
− 2iβ

dψn(ϕ)

dϕ
+ εnψn(ϕ) = 0 (3.34)

This is a fixed coefficients, 2nd order ordinary differential equation, which is solved with an

ansatz

ψn(ϕ) =
∑

anme
Cmϕ (3.35)

Where generically anm, Cm ∈ C and imposing normalization

ψn(ϕ) =
∑

anme
iλmϕ;λm ∈ R;

∑
anma

†
mk = δmk (3.36)

Where anm is unitary.

The equation becomes second order polynomial equation in λn

−λ2
n + 2βλn + εn = 0 (3.37)

The determinant is

∆ = 4β2 + 4εn (3.38)

And the solutions:

λn = β ±
√
β2 + εn (3.39)

i.e.

λn =
( qΦ

2π~

)
± b

~
√

2mEn (3.40)

We impose continuity for ψ in φ = 0 and φ = 2π and obtain

En =
~2

2mb2
(n− qΦ

2π~
)2 (3.41)

The positive n corresponds to particles travelling in the same direction as the current in the

solenoid and they have lower energy by a factor qΦ
π~ than the ones travelling in the opposite

direction of the current of the solenoid
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3.5. Schroedinger equation invariance for local Gauge transfor-

mations

Let’s assume again that our particle is outside of the solenoid where there is a non zero

vector potential but a zero magnetic field, we have again

∇∧A = 0

A = ∇φA
(3.42)

We also assume for simplicity that the magnetic potential is static. We can notice that the

equation above is written in a gauge independent manner because we have a very restrictive

external condition of the magnetic field to be zero, where by comparison 3.19 was not gauge

independent but in a more general setting of non zero magnetic fields, but ultimately the scalar

φA potential generating the vector potential is the same in both.

Given the field is irrotational We can also rewrite the potential as

g(r) =
q

~
φA(r) =

q

~

∫ r

O
A(r′) · dr′ (3.43)

Where O is starting point from which to compute the integral, this definition is only possible

on irrotational fields, in the general case of non irrotational fields the potential will depend on

the path along which the integral was computed from O to the point r

g(r, Path(r)) =
q

~

∫ r

O,Path(r)
A(r′) · dr′ (3.44)

Let’s assume now that a particle is moving in such a region of space and write down the

time dependent Schroedinger equation.[ 1

2m

(
− i~∇− qA

)2
+ V

]
Ψ = i~

∂Ψ

∂t
(3.45)

A special case of this is when the potential is actually an Electric field for example V = qϕ but

these considerations are generic for any potential.

We can simplify the Schroedinger with the substitution:

Ψ = eig(r)Ψ′

g(r) =
q

~

∫ r

O
A(r′) · dr′

(3.46)

And we obtain back again the Schroedinger but this time without magnetic field

[ 1

2m
(−i~∇)2 + V

]
Ψ′ = i~

∂Ψ′

∂t
(3.47)

Therefore if we can solve this last equation we can solve the initial one with an extra irrotational
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Figure 3.5: Aharonov bohm ideal experiment

vector potential, and this will come back useful later.

A second way to look at it is that we can interpret g(r) as a local gauge transformation

generating function ζ(x) and we invoke the fact that a gauge transformation on the field induces

a gauge transform on the wave function:

ψ(x)→ ψ(x)eiζ(x)

A(x)→ A(x) + ∂x(ζ(x))
(3.48)

we can essentially get rid of the vector potential field with a gauge transformation,

We can apply it here for the gauge transformation for this zero magnetic field and irrotational

vector potential, but this is valid in general for non zero magnetic fields.

In order to be complete we shall mention here the parallel with Yang mills theories where

a non local Gauge transformations can generate the field, and a parallel with General relativ-

ity where in the same manner the coordinate transformation by the equivalence principle are

completely equivalent to the gravitational field.

3.6. Aharonov Bohm experiment

We finally consider the combined problem of sources, fields and propagating electrons and

assemble the Aharonov Bohm ideal experiment. We imagine a beam of electrons propagating

left to right and arranged in such a way that half of the beam goes left and half goes right of

the solenoid as from figure 3.5
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We now want to compute the g for two beams one going around on the left and one on

the right of the solenoid, For the vector potential of the solenoid that we computed previously

in 3.21. The path on the right has the electron moving in the same direction of the vector

potential field and therefore the total integral is positive:

gRight =
q

~

∫
A · dr =

q

~

∫
Right

Φ

2πρ
φ̂ · rφ̂dϕ = +

qΦ

2~ (3.49)

The path on the left has the electron moving in the opposite direction than the vector

potential and the integral is negative:

gLeft =
q

~

∫
A · dr =

q

~

∫
Left

Φ

2πρ
φ̂ · rφ̂dϕ = −qΦ

2~ (3.50)

and the difference between the two is proportional to the magnetic field included between the

paths

gRight − gLeft =
qΦ

~
(3.51)

We can call this a phase shift given the same gauge transformation also induces a phase shift

in the wave function

ψ(x) 7→ eiq
Φ
~ ψ(x) (3.52)

the phenomenon is measurable and was measured first by Chambers and others later providing

better and better evidence of the complete shielding from the magnetic field. 16

To visualize a concrete experiment we depicted it in figure 3.6 we shall imagine a double slit

experiment where in the middle of the two slits just behind the screen we positioned a vertical

solenoid. Given outside of the solenoid the field is zero but the magnetic potential is not we do

have the Aharonov Bohm effect. More precisely we can imagine the wave function is combined

by two parts one passing through the right slit and one through the left slit and

|ψ〉 = |Left〉+ |Right〉 (3.53)

Once the solenoid current is switched on an additional phase shift eΦ
~ will be introduced between

the two waves and the interference pattern will change.

For further online resources to learn about the Aharanov Bohm effect one can see1718

16 R.G Chambers (1960). “Shift of an Electron Interference Pattern by Enclosed Magnetic Flux”. In: Physical
Review Letters 5 (1). doi:10.1103/PhysRevLett.5.3, pp. 3–5

17 Yakir Aharonov (2011). Nonlocal Phenomena in Quantum Mechanics. YouTube. [Online; accessed 2-
February-2022]

18 Murray Peshkin (n.d.). Things I Do and Do Not Understand About the Aharonov-Bohm Effect. YouTube.
[Online; accessed 2-February-2022]

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.5.3
https://www.youtube.com/watch?v=YJGOhl8iK3o
https://www.youtube.com/watch?v=omNxWMkocpo&t=1136s
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Figure 3.6: Aharonov Bohm experimental setup
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3.7. Flux quantization

Let’s now analyze more in detail the integral:

q

~

∫
Path

A · dr (3.54)

This quantity is a type of electromagnetic phase, i.e. phase difference of the vector potential

along a path, same as the Berry phase that we will see later. This integral needs to be analyzed

along different paths.

Let’s consider as our integration contour a closed path of the particle making a circle around

the solenoid, the region is not simply connected, we already computed the two halfs of the

integral earlier in 3.51, therefore:

q

~

∮
A · dr =

qΦ

~
(3.55)

And the wave function after one loop around the solenoid changes by a constant phase as we

have seen in 3.52

As far as we consider this integral on a closed contour this quantity is Gauge invariant, but

in somewhat of a peculiar manner. If we now introduce a Gauge transformation:

ψ(x)→ ψ(x)eiζ(x)

A(x)→ A(x) + ∂x(ζ(x))
(3.56)

we obtain:

q

~

∮
A′ · dr =

q

~

∫
A(x) · dr +

q

~

∮
∂x(ζ(x)) · dr =

q

~

∮
A(x) · dr− [ζ(xi)− ζ(xf )] (3.57)

The quantity [ζ(xi) − ζ(xf )] is called boundary term, given it is the difference between two

values on the boundary of the integration interval and it generalizes in multiple dimensions to

a generic integral on the boundary of the integration domain. Now there are two cases for the

boundary term in fact ζ can be single valued and multivalued. In the case ζ is single valued the

quantity is zero and therefore the phase is gauge invariant.

In the second case we start from the hyphotesis that the wave function is single valued:

ψ′(xi) = ψ′(xf ) (3.58)

If we introduce a Gauge transform:

ψ(xi)e
iζ(xi) = ψ(xf )e

iζ(xf ) (3.59)
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And if we use again the hyphothesis of being single valued 3.58 on ψ(x) we obtain:

ζ(xi) = ζ(xf ) + 2πn;n ∈ Z (3.60)

Therefore we can summarize the two cases in the statement

q

~

∮
A′ · dr =

q

~

∮
A · dr + 2πn;n ∈ Z (3.61)

In general the Aharonov Bohm phase is not quantized, and the above is the maximum we can

say once there is a gauge transformation.

Which is always true if the phase is quantized:

q

~

∮
A · dr = 2πn;n ∈ Z (3.62)

Rewording the computation process we can state that the single value condition of the wave

function together with the Gauge invariance induces a quantization condition on the phase.

Another even quicker way to rephrase it is also to say that the boundary term drops off (or better

becomes degenerate) when the contour is closed, and the gauge invariance is still preserved.

This is also called flux quantization because for a generic region of space we can apply stokes

theorem and transform the circuitation integral into a flux integral on the magnetic field B

q

~

∮
A · dr =

q

~

∫
(∇∧A) · ndS =

q

~

∫
B · ndS =

q

~
Φ (3.63)

And we can rewrite it as a quantization condition on the magnetic flux 19

q

~
Φ = 2πn;n ∈ Z (3.64)

We will see this same mathematics of the boundary term is happening in multiple places.

Specifically in the Berry phase and in the TKNN formula, different physics but same mathe-

matics with the boundary term which becomes quantized and drops out for closed loops.

19 Flux Quantization and the Aharonov-Bohm Effect (n.d.). fitzpatrick. [Online; accessed 2-February-2022]

https://farside.ph.utexas.edu/teaching/qm/Quantum/node36.html
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4.1. Introduction

As we have seen for the Aharonov Bohm effect, we can associate the electromagnetic vec-

tor potential to physical consequences, as far as all physical consequences are bound to be

gauge independent. The electromagnetic vector potential is therefore a vector field and a set of

transformations for which the field changes. The physical consequences of the electromagnetic

potential do not change, as far as the electromagnetic field is the same.

We are familiar to this situation for example in special relativity, where all laws of nature

are the same for all inertial reference frames and for all coordinate transformations between

them. In the same manner, we can state that the laws of electromagnetism and all physical

consequences are the same for any gauge transformations.

In this sense, we then consider the electromagnetic potential as a legitimate basic funda-

mental field. We can also state that as far the underlying group is a local U(1) transformation,

this can be parametrized with a local angle or phase, and this can be considered a local degree

of freedom.

The defining property of the vector potential actually is gauge invariance, and as we have

seen also in the Aharonov-Bohm chapter, gauge invariance directly implies a local U(1) trans-

formation on the wave function and again a local degree of freedom which is now the phase of

the wave function. Therefore the wave function is deeply interlinked with the electromagnetic

potential through the gauge transformation.

It is now possible from the wavefunctions and the eigenstates to build a path dependent

integral, which is called the Berry phase1. If the path is closed, the Berry phase will be gauge

invariant and will be an observable. The Berry phase is a a type of electromagnetic phases,

and there are others similar electromagnetic phases which are path dependent integrals of the

electromagnetic field. Those have become influential in condensed matter physics and beyond2.

It is also possible to build two geometric quantities from the wave function. Namely a first

differential 1-form which will be the Berry connection, and a second differetial 2-form which will

be the Berry curvature, from these it is then possible to build the Berry phase3. The relation

between connection and curvature is in close analogy with what is possible to do with the

electromagnetic potential and the electromagnetic field. We will see how these quantities are

1 Michael Victor Berry (Mar. 1984). “Quantal phase factors accompanying adiabatic changes”. In: 392 (1802)
2 Bouchard F. et al. Cohen E. Larocque H. (2019). “Geometric phase from Aharonov–Bohm to Pancharat-

nam–Berry and beyond”. In: Nat Rev Phys (1), pp. 437–449
3 Barton Zwiebach (2018b). L17.2 Berry’s phase and Berry’s connection. MIT 8.06 Quantum Physics III.

https://www.youtube.com/watch?v=iGG9EG3SNz0. [Online; accessed 12-October-2021]
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gauge invariant, that their integrals can be measured and that they have a complex interplay

between gauge invariance and quantization.

4.2. Adiabatic theorem

Let’s start from a Hamiltonian H(R(t)) that depends on the the parameters R which are

slowly varying in time. The definition of slow here is defined by the distance in energy by the

eigenstates. Through the uncertainty principle, we can define a timescale that shall be always

much lower than the time scale considered.

This way we clearly also identify that while slowly varying the parameters, the energy of the

eigenstates also changes, but the eigenstates remain clearly separated in energy. We will then

generalize this to the case of bands and these bands shall remain clearly separated, or in other

words, gapped. Given these bands do not interesect, the states are ordered, and together with

a robust degeneracy of the bands such as the one of Landau levels, this will lead to the concept

of topological order and to topological insulators.

We start from the instantaneous Schroedinger equation:

H(R(t))|ψm(t)〉 = Em(t)|ψm(t)〉, (4.1)

and its instantaneous eigenstates:

〈ψm(t)|ψn(t)〉 = δmn. (4.2)

A generic state can be expanded as:

|Ψ(t)〉 =
∑

an(t)|ψn(t)〉. (4.3)

When we plug |Ψ(t)〉 in the full Schroedinger we obtain

i~∂t|Ψ(t)〉 = Ĥ(R(t))|Ψ(t)〉. (4.4)
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Finally multiplying by a generic eigenvector:

〈ψm(t)|i~∂t|Ψ(t)〉 = 〈ψm(t)|H(R(t))|Ψ(t)〉. (4.5)

Expanding |Ψ(t)〉 into a linear combination of eigenstates:

ȧm +
∑
n

〈ψm(t)|∂t|ψn(t)〉an = − i
~
Em(t)am. (4.6)

If we introduce the adiabatic approximation

|〈ψm(t)|∂t|ψn(t)〉an| << |am| , ∀ m 6= n, (4.7)

we have

ȧm ' −〈ψm(t)|∂t|ψm(t)〉am −
i

~
Em(t)am (4.8)

and

am(t) = e
− i

~
∫ t
t0
Em(t′)dt′

eiγm(t)am(t0). (4.9)

From (4.9) we identify the dynamic phase as:

θm(t) = −1

~

∫ t

t0

Em(t′)dt′. (4.10)

The second phase can be expanded into:

γm(t) = i

∫ t

t0

〈ψm(t′)|∂t′ |ψm(t′)〉dt′ = i

∫ t

t0

〈ψm(R)|∂R|ψm(R)〉Ṙdt′ = i

∫
C
〈ψm(R)|∂R|ψm(R)〉dR,

(4.11)

where we removed the time integral with a change of variables in the last step. Given we

removed the dependency with time, it may take a microsecond or a million years to move along

the path but still the integral will be the same, and the integral just depends on the path. We

thus write γm[C] instead of γm(t) to emphasize it.

This phase is called Berry phase and is defined as:

γm[C] = i

∫
C
〈ψm(R)|∂R|ψm(R)〉dR, (4.12)

where C is the path (either open or closed) in the parameter space taken by R. It is important

to note that being γm[C] the argument of an exponential, the Berry phase is real.

To summarize: if a wave function starts in a eigenstate ψm(t0) it will remain in the same



58 4— Berry phase

state acquiring a set of phase factors:

ψm(t) = eiθm(t)eiγm(t)ψm(t0) (4.13)

This is the statement of the adiabatic theorem and we can phrase it in terms of the full wave

function as in (4.13) or in terms of the coefficients of the total wave function and it’s initial

state as in (4.9).

4.3. Berry Phase

4.3.1. Definition

We now want to analyze some properties of the Berry Phase, and we recall it’s general

definition:

γm[C] = i

∫ Rf

Ri,C
〈ψm(R)|∂R|ψm(R)〉dR, (4.14)

where we considered a path C and an initial point Ri and a final one Rf .

The Berry phase (4.14) in the general case is path dependent, and therefore it acts as a

geometric quantity. More precisely, the integrand, which is called the Berry connection, is a

local geometric quantity of the parameter space.

Typically, the Berry phase is analyzed for holonomic systems, where the initial state is the

same as the final state, therefore the path in the parameter space is closed:

γm[C] = i

∮
C
〈ψm(R)|∂R|ψm(R)〉dR, (4.15)

however the phase still does depend on the path.

As we will see later, the Berry connection not only is gauge invariant, it is also a physical

quantity, which can be in principle be measured along a specific path of the parameter space.

For example, in the case of optics the parameter space can be the physical space of coordinates,

and the path can be a the real physical path of the ray tracing approximation.4

4.3.2. Magnetic analogy for the Berry Phase

In the case of a space parameter of 3 dimensions, we can make an analogy between the Berry

Phase and the magnetic field5. We start from the definition of the Berry connection:

Γn(R) = i〈ψn(R)|∂R|ψn(R)〉. (4.16)

4 Bouchard F. et al. Cohen E. Larocque H. (2019). “Geometric phase from Aharonov–Bohm to Pancharat-
nam–Berry and beyond”. In: Nat Rev Phys (1), pp. 437–449

5 Griffiths D.J. (2005). Introduction to quantum mechanics pp 381
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If we associate the Berry connection to the magnetic vector potential, we will see here that we

can retrieve consistently the properties of the magnetic field, and later we will also see that this

is rooted in the gauge invariance. The formal identification is the following

Γn(R)→ A (4.17)

. We can then write an analogy with the magnetic field

∇R ∧ Γn(R)→ B (4.18)

and a second analogy with the magnetic flux :

γn[C] =

∮
C

Γn(R)dR→ Φ. (4.19)

We can see that the analogy is consistent with the definition of magnetic flux, in fact:

Φ =

∫
BdS =

∫
∇∧AdS =

∮
AdR. (4.20)

and the analogous quantities:

γn[C] =

∫
∇R ∧ Γn(R)dS =

∮
C

Γn(R)dR. (4.21)

4.4. How Aharanov relates to Berry phase

As Berry pointed out, the Aharonov Bohm effect can also be understood as an example of

a geometric phase. We can recall the setup in the Aharonov Bohm experiment and start from

a particle confined in a box around a physical point R outside the solenoid. We write down the

Schroedinger equation:

1

2m

[(
− i~∇− qA

)2
+ V (r−R)

]
ψn = Enψn. (4.22)

where R is a parameter that spans the coordinate space.

We can get rid of the vector potential with a local gauge transform g(r,R)

ψn(r,R) = eigψ′n(r−R)

g(r,R) =
q

~

∫ r

R
A(r′)dr′

, (4.23)
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where we use as the reference point to compute the integral the center of the box R. We get

1

2m

[(
− i~∇

)2
+ V (r−R)

]
ψ′n = Enψ

′
n. (4.24)

Let’s now carry the Box around the solenoid by letting the parameter R make a circle around

the solenoid, and compute the Berry phase.

First we compute:

∇Rψn = ∇R

[
eigψ′n(r−R)

]
= i[∇Rg]eigψ′n(r−R) + eig∇Rψ

′
n(r−R) =

= −i q
~

A(R)eigψ′n(r−R) + eig∇Rψ
′
n(r−R),

(4.25)

then

〈ψn|∇Rψn〉 =

∫
d3re−ig[ψ′n(r−R)]∗eig[−i q

~
A(R)ψ′n(r−R) +∇Rψ

′
n(r−R)] =

− i q
~

A(R) +

∫
d3r[ψ′n(r−R)]∗[∇Rψ

′
n(r−R)]

. (4.26)

The last integral is the average expectation value of the momentum for an eigenstate of the

Hamiltonian of (4.22). Given |ψn〉 is spatially localized,

−
∫
d3r[ψ′n(r−R)]∗[∇ψ′n(r−R)] =

i

~
〈ψn|p̂|ψn〉 = 0, (4.27)

this is actually zero. Collecting the pieces we now have:

〈ψn|∇Rψn〉 = −i q
~

A(R). (4.28)

Finally we use the Berry phase definition:

γn[C] = i

∮
C
〈ψn|∇Rψn〉 · dR, (4.29)

to compute the integral as:

γn[C] =
q

~

∮
C

A(R) · dR. (4.30)

We apply Stokes theorem

γn[C] =
q

~

∫
Σ
∇∧A(R)dS =

q

~

∫
Σ

BdS, (4.31)

where C is the border of the surface Σ. In the last step we used the definition of the magnetic

field. Now we can use the definition of flux across the boundary C which encloses the solenoid

Φ =
∫

Σ BdS, and where the non null contribution is only the one inside the solenoid. This leads
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to:

γn =
q

~
Φ (4.32)

which is the same as the result of the Aharonov Bohm calculation.

4.5. Berry connection

4.5.1. Definition

We introduced the Berry connection earlier, it is now time to analyze it better. We now

define the Berry connection or Berry vector potential:

An(R) = i〈ψn(R)|∂R|ψn(R)〉 (4.33)

where R belongs to a m-dimensional generic parameter manifold with eventually a non-trivial

topology. We can also introduce the index notation for the Berry connection:

Anν (R) = i〈ψn(R)| ∂
∂Rν
|ψn(R)〉 (4.34)

where ν is a vector index, and n is just a generic index that does not transform as a vector.

As a first property, it is important to stress that since the Berry phase is real also the Berry

connection is real.

The fact that is called a connection is a terminology from differential geometry, which means

that it transforms according to a set of rules after an underlying transformation in the parameter

space. In the current case of the Berry phase, the underlying transformation is actually a gauge

transformation.

It is not an invariant with the set of transformations as is the case for tensors, but it

still transforms consistently. A definition of a connection is usually algebraic, but is dual to

a geometric notion of parallel transport and it is also dual to a geometric notion of tangent

bundles. Sometimes for connections we use the symbol Γ to underline the relationship with the

Christoffel symbols Γµνρ of General Relativity. These are also defining algebraically a connection,

and in that case the underlying transformations are space-time coordinate transformations.

4.5.2. Gauge invariance

We informally associated the Berry connection to the vector potential in (4.17) and showed

that we can derive an analogy with the Magnetic field. This was not by chance, in fact, the

Berry connection has a gauge like freedom, and this is the sole defining property of a vector

potential. To be specific by applying a gauge transformation eiζ(R) to the wave function

ψn(R)→ ψn(R)eiζ(R), (4.35)
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the vector potential changes as:

An(R)→ An(R)− ∂R(ζ(R)). (4.36)

In fact,

An(R)′ = i〈ψn(R)eiζ(R)|∂R|ψn(R)eiζ(R)〉 = ie−iζ(R)〈ψn(R)|∂R|ψn(R)〉eiζ(R)+

ie−iζ(R)〈ψn(R)|ψn(R)〉eiζ(R)∂R(iζ(R)) = An(R)− ∂R(ζ(R))
. (4.37)

As a notation we will use Ri,Rf for the initial and final states, where we usually consider

a long time period T such that we return to the original state. Therefore the initial and final

states will be equivalent to:

Ri = R(0)

Rf = R(T )
(4.38)

We will now prove that on a closed path the Berry phase (i.e the integral of the connection)

is gauge invariant. Let’s consider how the Berry phase changes when a gauge transformation is

applied:

γ′n =

∮
C

An
′ · dR =

∮
C

An · dR−
∮
∂R(ζ(R))dR =

∮
C

An · dR− [ζ(Ri)− ζ(Rf )] (4.39)

Now on a closed path Ri = Rf and there are two cases for [ζ(Ri)− ζ(Rf )]. These are when

ζ is single-valued or multivalued. In the most simple case ζ(R) is smooth and single valued,

therefore [ζ(Ri)− ζ(Rf )] = 0 and the phase is gauge invariant.

In the second case ζ can be multivalued, given ζ is not a physical quantity this is perfectly

possible. When ζ(R) is multivalued, there can be a case where we can still maintain gauge

invariance of the eigenstates, and of the Berry phase itself. In these cases we will obtain that

the Berry phase is only defined up to 2π.

In fact if we consider the eigenstates single valued, before and after the parameter variation

we shall return to the same value:

|n(R(T))〉 = |n(R(0))〉. (4.40)

We gauge transform on both sides

|n(R(T))eiζ(R(T ))〉 = |n(R(0))eiζ(R(0))〉 (4.41)

where we can extract the exponents cause these are complex constants

eiζ(R(T ))|n(R(T))〉 = eiζ(R(0))|n(R(0))〉 (4.42)
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and we get

ζ(R(T ))− ζ(R(0)) = 2πm (4.43)

for m ∈ Z, and this confirms that ζ is multivalued.

Therefore to still have gauge invariance in these cases we need to have an extra condition

on the Berry phase. This condition is:∮
A′ndR =

∮
AndR− 2πm, (4.44)

which tells us that the Berry phase is only well defined up to modulo 2π, or that you can always

do a gauge transformation to shift the Berry phase by a constant value multiple of 2π. It is

important to distinguish this condition from a quantization condition given the phase itself can

assume any value. This is sometimes also written as:

γn[C](ψ) = γn[C](ψ′) mod 2π. (4.45)

4.6. Berry curvature

4.6.1. Definition

We consider now a closed loop in parameter space. From this loop we can evaluate the

holonomy of the connection, i.e. how much parallel transport along the loop in the parameter

space does not return to the original state. Therefore in a very long time T , we will slowly

change the parameters and we will come back to the original state. Given the loop is closed we

can use the Stokes theorem:∮
C

v · ds =

∫
A
∇∧ v · dA =

∫
A
εijk∇jvkdSi. (4.46)

when we apply it to the Berry connection, we get:

γm = i

∮
C
〈ψm(R)|∂R|ψm(R)〉 · dR = i

∫
A
∇R ∧ 〈ψm(R)|∂R|ψm(R)〉 · dS (4.47)

γm = i

∮
A
dSiεijk

∂

∂Rj
〈ψn(R)| ∂

∂Rk
|ψn(R)〉

= i

∮
A
dSiεijk[〈

∂

∂Rj
ψn(R)| ∂

∂Rk
|ψn(R)〉+ 〈ψn(R)| ∂2

∂Rj∂Rk
|ψn(R)〉].

(4.48)

Now the second term is symmetric in i and j and disappears as far as the metric of the

parameter space is flat i.e:

[
∂

∂Rj
,
∂

∂Rk
] = 0 (4.49)
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Summarizing we obtain:

γn = i

∮
A
dSiεijk〈

∂

∂Rj
ψn(R)| ∂

∂Rk
ψn(R)〉. (4.50)

We can now introduce the Berry curvature as the integrand:

Ωn
µν(R) =

∂

∂Rµ
Anν (R)− ∂

∂Rν
Anµ(R) (4.51)

in such a way that:

γn =

∫
Ω · dS (4.52)

4.6.2. Magnetic analogy

To see explicitely the relationship with magnetism, we can rewrite the integral (4.50) into:

γn = i

∮
A
〈∇Rψn(R)| ∧ |∇Rψn(R)〉dS (4.53)

where we introduced a shorthand vectorial notation for the Berry curvature:

Ωn(R) = 〈∇Rψn(R)| ∧ |∇Rψn(R)〉

Ωn
ij = 〈 ∂

∂Ri
ψn(R)| ∂

∂Rj
ψn(R)〉 − 〈 ∂

∂Rj
ψn(R)| ∂

∂Ri
ψn(R)〉

(4.54)

This notation is introduced to stress the fact that we can consider the berry curvature as

the curl of the Berry potential, or as the infinitesimal circuitation of the Berry Potential.

Another way to justify the definition (4.51) is by direct analogy with the definition of

electromagnetic field as the antisymmetric tensor built from the first order derivatives of the

potential:

Fµν = ∂µAν − ∂νAµ. (4.55)

where also in the electromagnetic case the vector potential has the role of a connection, and the

electromagnetic field has the role of curvature.

By our previous magnetic analogy in 3 dimensions the Berry curvature is equivalent to the

Magnetic field generated by the Berry potential in parameter space, in the same way that the

Magnetic field is the curl of the magnetic vector potential.
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4.6.3. Quadratic formula

There is a second way to write the expression of the Berry curvature in fact we can transform

the definition (4.54) into:

Ωn(R) = 〈∇Rψn(R)| ∧ |∇Rψn(R)〉 =
∑
m 6=n
〈∇Rn(R)|m(R)〉 ∧ 〈m(R)|∇Rn(R)〉 (4.56)

where we simplified the notation using |n(R)〉 instead of |ψn(R)〉. Starting from the

Schroedinger equation:

Ĥ(R)|n(R)〉 = En|n(R)〉 (4.57)

we can write the off diagonal elements:

〈m(R)|∇R|n(R)〉 =
〈m(R)|∇RĤ(R)|n(R)〉

En − Em
;n 6= m (4.58)

and finally

Ωn(R) = i
∑
m 6=n

〈n(R)|∇RĤ(R)|m(R)〉 ∧ 〈m(R)|∇RĤ(R)|n(R)〉
(Em(R)− En(R))2 (4.59)

or

Ωn
νµ(R) = i

∑
n 6=n′

〈n| ∂H∂Rµ |n
′〉〈n′| ∂H∂Rν |n〉 − 〈n|

∂H
∂Rν
|n′〉〈n′| ∂H∂Rµ |n〉

(εn − εn′)2 (4.60)

We will use this formula in the derivation of the TKNN formula in the upcoming chapter.

4.7. Topology

This section will give a short historical introduction to topology and mentions some impor-

tant results

4.7.1. Euler formula

Euler was the first to recognize the importance of topology, with the Königsberg bridge

problem. While solving the problem, he showed that there are properties of sets and spaces

which are not local but depends on what is connected to what. This ultimately resulted in the

Euler characteristic formula which can be written as:

V − E + F = χ (4.61)

where V is the number of vertixes, E the number of edges, and F the number of faces, χ is the

Euler characteristic. Euler studied the simple case where the geometry of the base manifold
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was simply connected such as a flat plane, a platonic solid or a sphere. In all these cases χ = 2.

It’s now possible to generalize the Euler formula to generic smooth surfaces such as the

torus and the Euler characteristic become a special number summarizing the properties of the

full manifold. The Euler characteristic is the sum of the Betti numbers.

χ =
∑
n

(−1)nbn (4.62)

In the case of a 2D-surface embedded in a 3D space the zero Betti number is the number of

disconneced parts of a the manifold and the first Betti number is the number of two dimensional

holes in the manifold.

4.7.2. Algebraic Topology

Poincaré invented the modern field of topology in the Analisis Situ. He introduced homo-

topy, homology, cohomology and proved the duality between simplicial homology and it’s dual

cohomology. The work of Poincaré was invented based on symplicial complexes (i.e. generalized

n-dimensional triangles) and was heavily anchored on geometric intuition. Again intuitively ho-

mology can be described as a way to count n-dimensional holes where the primary example for

Poincaré were the Betti numbers. 6

Emmy Noether was the first one to realize that the simplicial complexes of Poincaré, and the

algebraic geometry problems of Hilbert had something in common. They had a group theory

counterpart which are now called homology groups, and the Betti numbers were the ranks (i.e.

the number of independent generators) of these groups. The hierarchies of topological charac-

teristic numbers are representatives of the underlying topological group structure, in the same

way quantum numbers represent symmetries of linear operators. This evolved into the work

of Whitney and the definition of singular and cellular homology and their dual cohomologies

which was given a solid axiomatic footing by Eilenberg and Steenrod. Singular homology builds

upon the notion of continutity defined in point set topology and then generalizes from the case

of smooth manifolds of Poincaré into generic topological spaces. 7

4.7.3. The connection to differential Geometry

De Rham studied differential forms, and he proved an isomorphism between cohomology of

differential forms and singular cohomology. Another important piece of the puzzle was the du-

ality between the exterior derivative and integration, which culminates in the generalized stokes

theorem of Cartan, and it’s topological counterpart which is the generalized stokes theorem on

chains.8 Cohomology classes have additional product structures which are called cup and cap

products.

Chern realized that all different types of cohomology and all characteristic classes (such as

6 Allen Hatcher (2001). Algebraic Topology Ch 2.1
7 Allen Hatcher (2001). Algebraic Topology Ch 2.3
8 Loring W. Tu Raoul Bott (1982). Differential forms in algebraic topology
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Euler, pontjagrin and stiefel-whitney classes) have a similar structure. Characteristic classes are

a technique grounded in cohomology and that can generalize to different areas of mathematics9,

showing similar structures across areas such as differential geometry (differential cohomology)
10, and more recently algebraic geometry (motivic cohomology).

Chern classes are cohomology classes in the sense of de Rham cohomology, Chern and Weil

discovered an homomorphism between the C-*-algebras of principal G bundles and the De

Rham cohomology, effectively describing a duality between differential geometry and Algebraic

topology. Chern numbers are a way to catalogue Chern classes a bit in a similar way as we have

seen Betti numbers earlier.

4.7.4. The Gauss Bonnet theorem

The Gauss Bonnet theorem is a relationship in two dimensions between integrals and the

Euler characteristic: ∫
M
K dA+

∫
∂M

kg ds = 2πχ(M), (4.63)

Here K is the Gaussian curvature, i.e. the product of the minimum and maximum curvature

K = k1k2, and kg is the geodesic curvature, i.e. the curvature along the tangent in the sense

of the Frenet-Serret formulas. In the case the manifold is compact and without boundaries the

second integral is zero. The equation then reduces to:∫
M
K dA = 2πχ(M), (4.64)

As an application of Chern Classes, Chern proved a generalized form of the Gauss bonnet

theorem, this was a bridge between algebraic topology and differential geometry.

In general, for any closed C∞ orientable n-dimensional M, the Chern theorem is:

χ(M) = (e(TM), [M ]) (4.65)

where χ(M) is the Euler characteristic and the above pairing (, ) denotes the cap product with

e(TM), the Euler class of the tangent bundle of M .

In the case where M is a 2n-dimensional manifold the Euler class becomes:

e(Ω) =
1

(2π)n
Pf(Ω), (4.66)

where Pf(Ω) is the Pfaffian i.e. an invariant polynomial in the curvature Ω. The Chern theorem

can then be written as:

χ(M) =
1

(2π)n

∫
M

Pf(Ω). (4.67)

9 James D. Stasheff John W. Milnor (1974). Characteristic classes
10 Shiing-Shen Chern (1995). Complex Manifolds Without Potential Theory
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To conclude, with a topic for a more in-depth study, an important generalization of the Chern-

Gauss-Bonnet theorem is the Atiyah–Singer index theorem which has various applications in

physics.

We already cited the mathematical literature. To learn more about Chern numbers one may

look at 11. For a visual example of fibrations with special points and with physical applications

one may look at Skyrmions 12 and their magnetic version13.

11 Taylor L. Hughes B. Andrei Bernevig (2013). Topological Insulators and Topological Superconductors
12 Wikipedia (2022b). Skyrmions. https://en.wikipedia.org/wiki/Skyrmion. [Online; accessed 12-October-

2022]
13 Wikipedia (2022a). Magnetic Skyrmions. https://en.wikipedia.org/wiki/Magnetic_skyrmion. [Online;

accessed 12-October-2022]

https://en.wikipedia.org/wiki/Skyrmion
https://en.wikipedia.org/wiki/Magnetic_skyrmion
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5.1. Introduction

5.1.1. Approach

In this chapter we will derive the TKNN formula. The name is due to the names of D. J.

Thouless, M. Kohmoto, M. P. Nightingale and M. den Nijs. It’s one of the leading results in

the motivation for the Nobel prize of 2016 in physics and is a foundational result in regards

to topological insulators. The TKNN formula gives an explanation of the quantization of the

Integer Quantum Hall Effect. To achieve that we will first give a brief intuitive explanation of

what is the Integer quantum Hall with the Laughlin pump argument. Then, we will compute

the left side of the TKNN formula with the Berry curvature and the right side, i.e. the Hall

conductivity, through the Kubo formula. Finally we will assemble the formula, discuss it and

see it in different variations.

5.1.2. Historical introduction

As we have discussed the paper of Laughlin1 argued that there was a quantization in the

scope of the Integer Quantum Hall Effect, the paper of Thouless was the first one to fully

compute the presence of quantized numbers. The objective of the paper was to describe both

the integer fractions of the Integer Quantum Hall Effect and the spectrum of the Hofstadter

butterfly through the Harper equation2. Historically is important to note that the Berry phase

was published slightly later in 19843 and the link between the two through differential geometry

and the theory of Fiber Bundles was published in the same period by mathematical physicist

Barry Simon 4.

5.2. Laughlin pump argument

The basic intuition of the quantization in the integer quantum hall effect can be explained

with the Laughlin pump argument5. A simple way to explain this is through the corbino

1 Laughlin (1981). “Quantized Hall conductivity in two dimensions”. In: Physical Review Letters B 23,
p. 5632

2 D. J. Thouless et al. (1982). “Quantized Conductance in a Two-Dimensional Periodic Potential”. In:
Physical Review Letters 49, p. 405

3 Michael Victor Berry (Mar. 1984). “Quantal phase factors accompanying adiabatic changes”. In: 392 (1802)
4 Barry Simon (Dec. 1983). “Holonomy, the Quantum Adiabatic Theorem, and Berry’s Phase”. In: Phys.

Rev. Lett. (51), p. 2167
5 Laughlin (1981). “Quantized Hall conductivity in two dimensions”. In: Physical Review Letters B 23,

p. 5632

73
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Figure 5.1: Corbino disk

geometry.

Let’s start with the simple Corbino disk, which is depicted in figure (5.1) on the left. In

this case we have electrical leads attached at the two edges of the disk and through them we

push a current. When the magnetic field is switched on the Lorentz force comes into play

and introduces an effect called magnetoresistance, which is an effective resistance on the inital

current.

We analyze now the case on the right where the magnetic field is created by a vertical

magnetic flux line at the center of the disk. As in the case of the Aharonov-Bohm effect, the

magnetic field intersecting the disk is null but the potential is not null. We switch the field on

adiabatically and we would like to see what happens when we vary it slowly from Φ = 0 first

to a generic flux Φ(t) and then to one Quantum of flux Φ0. First of all, by Faraday induction

we can write that there is an induced transversal electric field:

∂Φ

∂t
= −

∫
E · dl = −Eϕ2πr (5.1)

This electric field generates a radial current density

jr = σrϕEϕ, (5.2)

where σrϕ is the transversal conductivity.

If we compute the total displaced charge:

∆Q =

∫
Irdt =

∫
2πrjrdt = −

∫
2πrσrϕEϕdt

= −
∫
∂Φ

∂t
σrϕdt = −σrϕ[Φ(t)− Φ(0)] = −σrϕΦ(t)

. (5.3)

Therefore in the case of one quantum of flux we have a directly proportional value:

∆Q = −σrϕΦ0 (5.4)
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Figure 5.2: Laughlin pump argument - image retrieved from Laughlin 1981

Now, we introduce the spectrum which is the one of Landau levels, in the case of a pure

sample this is a set of Dirac functions, in the case of a limited amount of disorder we can imagine

that these levels, gets smeared out like in figure (5.2) from the original Laughlin publication.

We can imagine a fixed number of electrons per level which are all filled up to the Fermi energy,

and the Fermi energy lying between two levels. We may now ask when we add an extra quantum

of flux what happens to the occupation numbers?

We are moving electrons from the inner side of the the disk of figure (5.1) to the outer side

given that the levels are ordered by radius. Or if one prefers from the left side of the cylinder

in figure (5.2) to the right side.

First of all, after one quantum of flux is added we can state that by gauge transformation

the Hamiltonian is the same and therefore the available levels are the same. Second we can

say that we can only move a discrete number of electrons between levels, therefore also the

displaced charge must be quantized:

∆Q = −σrϕΦ0 = −ne;n ∈ Z. (5.5)

Finally by consequence we can write that the conductivity is actually quantized:

σrϕ = n
e2

2π~
;n ∈ Z. (5.6)

While we are adding the adiabatic perturbation from zero up to one quantum of flux, the

process is continuos and the states move continuosly as in figure (5.3) situation (a). Once we

added one quantum of flux all levels are shifted as in figure (5.3) situation (b). The levels are

the same, but the situation is equivalent to having moved one electron from the lowest state to

the upper one.

This means in essence that the adding of the flux is a periodic signal that goes back to the

beginning after every quantum of flux. The parameter space in this case is then periodic where

the varying parameter is the flux.



76 5— TKNN formula

Figure 5.3: pump argument levels

5.3. Berry Curvature

5.3.1. Electrons in a Brillouin zone

We now want to use the Berry curvature in the context of the Band theory. Let’s imagine

to have electrons on a lattice and therefore also a notion of a Brillouin zone in the reciprocal

space.

To make it concrete, we take a rectangular lattice, where the lattice is periodic in x and the

reciprocal space is periodical in k, more precisely if we start from a rectangular lattice, we end

up with a rectangular Brillouin zone.

To describe the lattice we have periodic boundary coonditions both in x and k space, and

therefore we can quickly summarize this by saying that both the x and the reciprocal k space

are a tori. Let’s now introduce 3 conditions:

• The spectrum decomposes into bands parametrized by the momentum k and therefore

that we can apply the Bloch theorem. There is also a slight variation to this in the case

of the presence of a magnetic field where the Brillouin zone is modified into a magnetic

Brillouin zone but the results are still valid.

• The electrons are not interacting and the multiple particle spectrum is obtained just by

filling the single particle spectrum taking into account the Pauli exclusion principle.

• There is an energy gap between bands and the bands don’t touch, the Fermi energy value

is just within the band gap, all bands below the Fermi Energy are filled and all bands

above are empty, i.e. in a canonical band theory this will be an insulator.

As we we will see with these conditions we are able to assign a topological invariant integer to

each band which is a Chern number.

It’s important to understand that this approach can then be generically extended not only

to bands but to generic gapped systems. Most of the physics in a gapped system happens in a

precisely defined finite energy scale and it therefore happens in a precise time scale and a finite

range of values for k.

The momentum k is not a physical parameter that we can change, as we used to do with

the adiabatic theorem, k is a parameter in the sense that for every k there is a different Hilbert
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space, therefore we can do without the adiabatic theorem, and reuse the Berry phase machinery

in any case.

Finally, we can also state that a major property of the parameter space k is that it is

actually closed and bounded, or more precisely compact, which means in essence there is both

an infrared and ultraviolet limit (i.e. lower and upper meaningful energies), and that this is

also true for a non rectangular Brillouin zone.

Given we can apply the Berry phase machinery, we can compute it on finite loops into our

parameter space, and in combination, given the periodicity, we can also use the Bloch theorem.

From the Bloch theorem we can write:

ψn,k(r) = eik·run,k(r), (5.7)

where un,k are the Bloch wave functions.

Therefore we can also write the Berry connection as:

Ani (k) = i〈ψn(k)| ∂
∂ki
|ψn(k)〉 = i〈un(k)| ∂

∂ki
|un(k)〉, (5.8)

where the exponent cancels out in the first term.

We can write the Berry curvature with the quadratic formula (4.60):

Ωn
ij(k) = i

∑
n6=n′

〈n|∂Ĥ∂ki |n
′〉〈n′| ∂Ĥ∂kj |n〉 − 〈n|

∂Ĥ
∂kj
|n′〉〈n′|∂Ĥ∂ki |n〉

(εn − εn′)2
(5.9)

where our parameter space Rµ has become the k space.

Finally we can also write the Berry curvature as:

Ωn
ij(k) =

∫
ddr

∂ψ∗n(k)

∂ki

∂ψn(k)

∂kj
− ∂ψ∗n(k)

∂kj

∂ψn(k)

∂ki

=

∫
ddr

∂u∗n(k)

∂ki

∂un(k)

∂kj
− ∂u∗n(k)

∂kj

∂un(k)

∂ki

. (5.10)

Here d is the number of dimensions we are integrating upon. In the case of integer quantum

Hall Effect these will be 2, and the integral is extended to the full space.

Finally applying stokes theorem we can write for the 2 dimensional case:∫
A
dk2Ωn

ij(k) =

∮
∂A
dkj

∫
d2r
(
u∗n
∂un
∂kj
− ∂u∗n
∂kj

u∗n

)
, (5.11)

where the integral is done over a closed loop in the reciprocal space.

5.3.2. Quantization of Berry phase in a compact manifold

We would need now to prove that the integral of the Berry curvature is quantized, and this

is thanks to the fact that the integral is over a compact manifold and there is no boundary
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term. The proof of it’s similar in spirit to the proof of the Gauss Bonnet theorem.

∫
KdA = 2πχ (5.12)

Where K is the Gaussian curvature given by 1
R1R2

where R1 and R2 are the curvature radii.

The same happens for the Berry curvature, that when integrated over a closed manifold

without border is quantized. When the Berry curvature is integrated over the full space of

momenta it has a special name and is called Chern number Cn∫
d2kΩn(k) = 2πCn. (5.13)

5.4. The Hall conductivity

5.4.1. The Kubo formula

We will now derive the Hall conductivity from the Kubo formula. We start from a generic

perturbation problem:

Ĥ0 =
1

2m
(p̂− eA)2

δĤ(t) = V (~r, t)
(5.14)

The core additional assumption is that in the past(for t < t0) the system was at equilibrium,

we are describing what happens after switching on this perturbation that moves the system

slightly out of equilibrium 6.

Therefore before t0 the system was in it’s set of unperturbed eigenstates:

Ĥ0|n(t0)〉 = E0
n|n(t0)〉. (5.15)

The expectation value for a generic observable Ô at equilibrium is:

〈Ô〉 =
1

Z0

∑
n

〈n(t0)|Ô|n(t0)〉e−βE0
n

Z0 =
∑
n

e−βE
0
n

. (5.16)

We now switch on the perturbation at t0 with a heavyside step function θ(t− t0), later we

will also assume that this t0 is far away in the past with respect to t and we want to compute

6we can be actually quite far away of equilibrium, but there is a concept of smooth transitions, where there
derivatives are still meaningful, there are no jump processes and we are essentially not in a turbulent regime
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the long term state after the perturbation is applied:

Ĥ(t) = Ĥ0 + δĤ(t)

δĤ(t) = θ(t− t0)δĤ ′(t).
(5.17)

We can imagine from that moment t0 onwards, some time-based evolution of both the Hamilto-

nian and the eigenstates, somewhat in a similar manner to what happens for adiabatic processes.

Ĥ(t)|n(t)〉 = i~∂t|n(t)〉 (5.18)

To linear order in the perturbation δĤ(t) 7

Û(t, t0) ≈ 1− i

~

∫ t

t0

δĤ(t′)dt′ (5.19)

Given the perturbation will be small we will use the interaction picture, we write down here

the generic Kubo formula8 for the observable Ô in order to use it later:

〈n(t)|ÔI(t)|n(t)〉 ≈ 〈n(t0)|Ô0,I(t)|n(t0)〉

− i

~

∫ t

t0

dt′
1

Z0

∑
n

e−βEn〈n(t0)|ÔI(t)δĤI(t
′)− δĤI(t

′)ÔI(t)|n(t0)〉.
(5.20)

Introducing the notation [..., ...]− for the commutator:

〈n(t)|ÔI(t)|n(t)〉 ≈ 〈n(t0)|Ô0,I(t)|n(t0)〉 − i

~

∫ t

t0

dt′〈n(t0)|[ÔI(t), δĤI(t
′)]−|n(t0)〉0. (5.21)

A second notational aspect is that we imploded the statistical mechanics average and the

quantum mechanics one with the conventional notation:

〈...〉0 =
1

Z0

∑
n

e−βEn〈...〉 (5.22)

A key aspect of this approximation is that the observable is computed at time t where the

Hamiltonian perturbation is computed at time t′. The idea is that we can then expand the

the perturbation with respect to it’s initial value at t0. In general there are also time ordering

considerations, with respect to the different time points taken into account. These are essential

in order to maintain causality, but here we will not analyze them in detail.

In the general scenario of using the kubo formula, but also for other type of quantum statis-

tical mechanics problems, it is safer to take this statistical average (or in other words thermal

average) into account at last. This is typically done after the rest of the computations, in order

to take along thermodinamic considerations in a parametric manner, as an extra ”thermody-

namic spread” of the variables, and finalize this parametric freedom at the end.

7This is an approximated definition of the time propagator
8 Ryogo Kubo (June 1957). “Statistical-Mechanical Theory of irreversible processes I.”. In: Journal of the

physical society of japan 12.6, p. 570
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There is finally a more general way to write the kubo formula as a generic linear response

kernel, given a set of source terms φj(~x, t), which induces an Hamiltonian coupling:

Hsource(t)

∫
dd−1~xφi(~x, t)Oi(~x, t). (5.23)

The sources induce a linear response:

δ〈Oi(~x, t)〉 =

∫
dd~x′dt′χij(~x, t, ~x

′, t′)φj(~x
′, t′) (5.24)

which is now a convolution integral in the sources. The kernel of which is given by:

χij(~x, ~x
′, t− t′) = −iθ(t− t′)〈[Oi(~x, t), Oj(~x′, t′)]〉 (5.25)

Where the θ(t− t′) reflect that this is the retarded causal response after the effect at time t′

5.4.2. Kubo formula for the current

A big part of this section is derived from Tong Quantum Hall lectures9 and the Kinetic

theory lectures10.

To compute the conductivity we introduce a small extra variable electric field and we will

compute the linear part of it’s relationship with the current, another way is that we can imagine

this process also as probe electric field that generates a current, or equivalently a probe current

where we measure the resistivity (which is the inverse matrix of the conductivity), and we want

to compute it’s linear response, i.e first order perturbation.

We use the temporal gauge where the electric potential is zero A0 = φ = 0 and therefore:

E = −∂tA (5.26)

To compute the conductivity we introduce an electric AC field:

E(t) = Ee−iωt (5.27)

This is the generic case to analyze conductivity, we are ultimately interested to know what

happens in the case that we have a DC current and therefore in the limit ω → 0. We will

develop the formulas carrying over ω as a parameter and taking the limit at the end before the

thermal average. In essence there will be infinities for certain frequencies and those shall be

carefully evaluated.

9 David Tong (2016b). Lectures on the Quantum Hall Effect. http://www.damtp.cam.ac.uk/user/tong/

qhe.html. [Online; accessed 12-October-2021] 2.2.3
10 David Tong (2016a). Lectures on the Kinetic theory. http://www.damtp.cam.ac.uk/user/tong/kinetic.

html. [Online; accessed 1-March-2021] Ch. 4.4

http://www.damtp.cam.ac.uk/user/tong/qhe.html
http://www.damtp.cam.ac.uk/user/tong/qhe.html
http://www.damtp.cam.ac.uk/user/tong/kinetic.html
http://www.damtp.cam.ac.uk/user/tong/kinetic.html
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Given the choosen gauge, the potential is:

A =
1

iω
Ee−iωt (5.28)

Ultimately, we are looking for the conductivity tensor σ(ω) that will give us the first order

response based on the frequency of the probe signal.

ji = σik(ω)Ek (5.29)

As a first approximation what we actually do is that we start from a classical field and

electrons are treated quantum mechanically. This is reflected in the Langrangian density:

L = −1

4
FµνF

µν −Aµjµ (5.30)

where jµ is the current density. We consider the perturbation originated by the fact that the

probing current is small. Therefore we have an Hamiltonian density H for the perturbation

that we can write as:

δH = −j ·A. (5.31)

If we now write the kubo formula for the current density j we have:

〈n(t)|̂jI(t)|n(t)〉 ≈ 〈n(t0)|̂j0|n(t0)〉 − i

~

∫ t

t0

dt′〈n(t0)|[̂jI(t), δĤI(t
′)]−|n(t0)〉0. (5.32)

The first term is the current without electric field and we assume that this terms vanish

because this is a probe current generated by a probe electric field and there is no pre-existing

current due to other effects. In general this also means that we can do this probing in a generic

manner given an already existing background field or background current, but we will assume

that these are zero. We can now expand the interaction picture operators into

ĵiI(t) = eiĤ0t/~ĵi(t)e
−iĤ0t/~

δĤI(t) = eiĤ0t/~δĤ(t)e−iĤ0t/~.
(5.33)

Therefore we can remove the interaction picture operators and remain with

〈n(t)|ĵi(t)|n(t)〉 ≈ − i
~

∫ t

t0

dt′〈n(t0)|[ĵi(t), δĤ(t′)]−|n(t0)〉0. (5.34)

If we substitute the Hamiltonian with

δH(t′) = − 1

iω
jk(t

′)Eke−iωt
′

(5.35)
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We have:

〈n(t)|ĵi(t)|n(t)〉 ≈ 1

~ω

∫ t

t0

θ(t′ − t0)dt′〈n(t0)|[ĵi(t), ĵk(t′)]−|n(t0)〉0Eke−iωt
′
. (5.36)

We change variables in the integral with the substitution

t′′ = t− t′; dt′′ = −dt′

t′ = t0; t′′ = t− t0
t′ = t; t′′ = 0

(5.37)

We can separate out of the integral the time dependence and obtain:

〈n(t)|ĵi(t)|n(t)〉 ≈ 1

~ω

(∫ t−t0

0
dt′′eiωt

′′〈n(t0)|[ĵi(t), ĵk(t− t′′)]−|n(t0)〉0
)
Eke−iωt. (5.38)

We can then consider t0 a time that was much before the time t as if there was a large

amount of time to go at regime and as if the perturbation was almost always on, from this

condition we can impose the limit t − t0 → +∞. Therefore the conductivity in first order is

then:

σik(ω) =
1

~ω

∫ ∞
0

eiωt〈n(t0)|[ĵi(t0), ĵk(t)]−|n(t0)〉0 dt (5.39)

and the linear response equation can be written as:

〈n(t)|ĵi(t)|n(t)〉 ≈ σik(ω)Eke−iωt. (5.40)

We can here see in the formula on the right there is the electric field, and an input frequency

on the probing electric field implies the same frequency in the output computed (or measured)

current. This preservation of frequency between input and output is the essence of linear

response, and is general to linear system theory. Any non-linearity would crop in when there

are effects across multiple frequencies.

For a two dimensional system, the Hall conductivity is the off-diagonal:

σxy(ω) =
1

~ω

∫ ∞
0

dt eiωt〈n(t0)|[ĵx(t0), ĵy(t)]−|n(t0)〉0. (5.41)

We can use the fact that the operators ĵi(t) evolves in time with

ĵx(t) = eiĤ0
t
~ ĵx(t0)e−iĤ0

t
~

ĵy(t) = eiĤ0
t
~ ĵy(t0)e−iĤ0

t
~

(5.42)

We insert a complete basis |n′(t0)〉〈|n′(t0)| of H0 in the integral:

Ĥ0|n′(t0)〉 = En′ |n′(t0)〉 (5.43)



5— TKNN formula 83

and we can drop all t0 given that all operators jx(t0), jy(t0) and states |n(t0)〉, |n′(t0)〉 are

evaluated in t0. This gives us:

σxy(ω) =
1

~ω

∫ ∞
0

dt eiωt
∑
n′

[〈n|ĵx|n′〉0〈n′|ĵy|n〉0ei(En′−En) t~ − 〈n|ĵy|n′〉0〈n′|ĵx|n〉0ei(En−En′ )
t
~ ].

(5.44)

We extend the integral domain by introducing a heaviside step function:

θ(t) =
1

2πi
lim
ε→0

∫ ∞
−∞

eitx

x− iε
dx (5.45)

σxy(ω) =
1

~ω

∫ ∞
−∞

dt θ(t)eiωt
∑
n′

[〈n|ĵx|n′〉0〈n′|ĵy|n〉0ei(En′−En) t~ − 〈n|ĵy|n′〉0〈n′|ĵx|n〉0ei(En−En′ )
t
~ ]

(5.46)

We integrate first over time, then over the x variable of the θ(t), take the limit over ε and

the equation then reads:

σxy(ω) =
1

iω

∑
n′ 6=n

[
〈n|ĵy|n′〉0〈n′|ĵx|n〉0
~ω + En′ − En

− 〈n|ĵx|n
′〉0〈n′|ĵy|n〉0

~ω + En − En′
]. (5.47)

The states where n′ = n don’t contribute to the sum, given first and second term become

the same. We are now finally looking for the continuum current DC limit ω → 0 and we can

expand for small ω:

1

~ω + En′ − En
≈ 1

En′ − En
− ~ω

(En′ − En)2
+O(ω2) (5.48)

and equivalently for the other term.

For a general computation, some of these terms may diverge, and the higher order terms

O(ω2) may also contain divergences. If we write down the first term in the case for transversal

conductivity (i.e. the Hall conductivity) it cancels out.

We can then write the second term, for the Hall conductivity and remain with:

σxy ≈ i~
∑
n′ 6=n

〈n|ĵy|n′〉0〈n′|ĵx|n〉0 − 〈n|ĵx|n′〉0〈n′|ĵy|n〉0
(En − En′)2

. (5.49)

Finally after the limit in the frequency we can do the statistical mechanics average in the

temperature 〈...〉0 taking the limit in which the temperature goes to zero T → 0 and therefore

having one single state from classical statistical mechanics standpoint:

σH = σxy = i~
∑
n′ 6=n

〈n|ĵy|n′〉〈n′|ĵx|n〉 − 〈n|ĵx|n′〉〈n′|ĵy|n〉
(En − En′)2 , (5.50)
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which is the final version of the Kubo formula for the Hall conductivity.

5.5. TKNN formula

This section is derived from Haldane Nobel lecture11 which contains some further insights

about topological insulators and Tong12

5.5.1. Electrons in a Magnetic field

Instead of considering a probe electric field there is a second way to introduce the perturba-

tion, i.e. is by introducing a magnetic field as a perturbing field. This will also induce a current

and therefore we can extend our computation of conductivity given a source term which is now

a magnetic field. More precisely, we can start from the geometry of a conductor in the shape of

a torus and we can then imagine two sources of magnetic field. A first one as a solenoid with

infinitesimal radius along the z direction, and a second source which is a similar solenoid along

the angular direction of the torus, where the magnetic flux is completely embedded within the

solenoid and therefore within the torus. Again there is no magnetic field outside the solenoid,

only vector potential.

Such an ideal solenoid source is also called a flux line (or tube) and if the characteristic

lengths of the torus are Lx and Ly we can use the magnetic flux as the basic unit instead of the

magnetic field, and we can then use the quantum of flux as the unit of measurement.

We start from a Landau gauge, an unperturbed state |n0〉 and we add a perturbation with

these two extra flux tubes. If we write down these two as sources we can write:

Ax =
Φx

Lx

Ay =
Φy

Ly
+Bx

(5.51)

This means that our perturbation Hamiltonian is now

∆H = −J ·A = −
∑ Φi

Li
Ji (5.52)

where we considered only first order perturbations in the variation of the potential A. To first

order in perturbation we can write:

|n0〉′ = |n0〉+
∑
n 6=n0

〈n|∆H|n0〉
En − E0

|n〉 (5.53)

but we can write the same as a variation in the Φi:

|n0〉′ = |n0〉+
∑
i

Φi|
∂n0

∂Φi
〉 (5.54)

11https://www.nobelprize.org/uploads/2018/06/haldane-lecture-slides.pdf
12http://www.damtp.cam.ac.uk/user/tong/qhe/qhe.pdf

https://www.nobelprize.org/uploads/2018/06/haldane-lecture-slides.pdf
http://www.damtp.cam.ac.uk/user/tong/qhe/qhe.pdf
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and therefore we can write

|∂n0

∂Φi
〉 = − 1

Li

∑
n 6=n0

〈n|Ji|n0〉
En − E0

|n〉 (5.55)

Then we can use this expression as building block for the previous Hall conductivity (5.50)

which can be rewritten as:

σxy = i~LxLy
∑
n6=n0

〈n0|Jy|n〉〈n|Jx|n0〉 − 〈n0|Jx|n〉〈n|Jy|n0〉
(En − E0)2

= i~
[
〈 ∂n0

∂Φy
| ∂n0

∂Φx
〉 − 〈 ∂n0

∂Φx
| ∂n0

∂Φy
〉
]

= i~
[ ∂

∂Φy
〈n0|

∂n0

∂Φx
〉 − ∂

∂Φx
〈n0|

∂n0

∂Φy
〉
] (5.56)

5.5.2. The TKNN formula in a simple magnetic field

We start from a set of electron in a magnetic field on a toroidal geometry, we can now state

that the varying parameters of the fluxes are also here periodic as from the reasoning of the

Laughlin pump argument, therefore we can consider them periodic and we can introduce the

angles to describe the parameter space:

θi =
2πΦi

Φ0
; θi ∈ [0, 2π) (5.57)

and Φ0 = 2π~c
e is the flux quantum. At this point the parameter space is a 2 dimensional torus

T2
Φ, which is compact closed and without border. We can write the Berry curvature for the

base state n0:

Ωxy = i
[ ∂

∂θy
〈n0|

∂n0

∂θx
〉 − ∂

∂θx
〈n0|

∂n0

∂θy
〉
]

(5.58)

If we average over all fluxes we can then write:

σxy = −e
2

~

∫
T2

Φ

d2θ

(2π)2
Ωxy (5.59)

and given the integral of the Berry curvature is quantized as from (5.13) the Hall conductivity

is quantized:

σxy = −e
2

~

∫
T2

Φ

d2θ

(2π)2
Ωxy = − e2

2π~
C;C ∈ Z (5.60)

Where C is the first Chern number, this is a first simplified version of the TKNN formula, valid

for the base state n0 and this is of course the statement of the quantization for the integer

Quantum Hall Effect.
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5.5.3. TKNN formula for particles in a lattice

We want now to assemble a more general version of the TKNN formula, applying it for

particles in a lattice, and this same approach is key to understand topological insulators. For

this first part we will follow the original TKNN paper 13.

We start from a electrons in a periodic potential U(x, y) which has periods a and b in the

directions x and y, and a uniform vertical magnetic field. U(x, y) is a periodic perturbation

potential which can be then tuned to a Landau Levels model for small periodic potentials

|U | << ~ωC , and to the tight binding limit for strong periodic potentials.

Given is periodic this potential leads to a band structure and the number of bands will

depend on the filling factor φ = ab eBhc , the filling factor can be interpreted also as the number

of flux quanta per unit cell. We take φ to be a rational number p
q and we use the landau gauge

with components (0, eBx). We can then use the generalized Bloch condition:

ψk1,k2(x+ qa, y)e−2πi py
b
−ik1qa = ψk1,k2(x, y + b)e−ik2b = ψk1,k2(x, y) (5.61)

where k1 mod 2π
aq and k2 mod 2π

b are good quantum numbers. We can now define the functions

uk1,k2 = ψk1,k2e
−ik1x−ik2y which satisfy the generalized periodic boundary condtions:

uk1,k2(x+ qa, y)e−2πi py
b = uk1,k2(x, y + b) = uk1,k2(x, y) (5.62)

If we substitute in the Hamiltonian of the Landau levels with a small perturbation U we obtain:

Ĥ(k1, k2) =
1

2m
(−i~ ∂

∂x
+ ~k1)2 +

1

2m
(−i~ ∂

∂x
+ ~k2 − eBx)2 + U(x, y) (5.63)

Ultimately we can see that it is a bit like we have introduced an effective crystal momentum

~k1, ~k2, which is the effect of what is called a magnetic translation operator14.

The lattice here is given by the periodic perturbation potential, and therefore it can be

realized in different ways such as a crystal lattice or a periodic electromagnetic field. The fact

that the potential is periodic grants translation invariance, and the definition of k only makes

senses thanks to this periodicity and the fact that k is conserved. In the case of a generic

magnetic field, translation invariance will be broken, and therefore momentum is not conserved,

again in that case we would need a periodicity to achieve the same translation invariance.

If the particles are in a lattice their momentum lies again on a torus T2 which is the Brillouin

zone. One can again define a Berry connection on the Brillouin zone and the integral for each

band will be again a Chern number which determines the Hall conductivity.

13 D. J. Thouless et al. (1982). “Quantized Conductance in a Two-Dimensional Periodic Potential”. In:
Physical Review Letters 49, p. 405

14 J. Zak (1964a). “Magnetic translation Group”. In: Phys. Rev. 134 (6A), A1602 J. Zak (1964b). “Magnetic
translation Group II. Irreducible Representations”. In: Phys. Rev. 134 (6A), A1607



5— TKNN formula 87

We can then sum across all filled bands and obtain:

σxy =
e2

2π~
∑
n

Cn, (5.64)

which is again the TKNN formula for the Hall conductivity.

To prove it we start from the Hall conductivity (5.50). We are in the case where the

parameter space is the reciprocal k space and the sum (or integration) is extended over the

Brillouin zone.

Is important to remember that n corresponds to two quantum numbers n,k therefore we

can split the sum across the two quantum numbers

σxy = i~
∑
n′ 6=n

∑
k′,k

〈n,k|ĵy|n′,k′〉〈n′,k′|ĵx|n,k〉 − 〈n,k|ĵx|n′,k′〉〈n′,k′|ĵy|n,k〉
(En,k − En′,k′)2 , (5.65)

notice that k,k′ are independent because they are summed in the scope of their respective band

n, n′. We know that:

〈n,k|ĵy|n′,k′〉 = 〈n,k|ĵy|n′,k〉δkk′ (5.66)

It remains

σxy = i~
∑
n′ 6=n

∑
k

〈n,k|ĵy|n′,k〉〈n′k|ĵx|n,k〉 − 〈n,k|ĵx|n′,k〉〈n′k|ĵy|n,k〉
(En,k − En′,k′)2 , (5.67)

Due to translation invariance k is conserved and therefore:

ĵ =
e

~
∂Ĥ

∂k
, (5.68)

We can write the Hall conductivity:

σxy =
ie2

~
∑
n′ 6=n

∑
k

〈n,k| ∂Ĥ∂ky |n
′,k〉〈n′k| ∂Ĥ∂kx |n,k〉 − 〈n,k|

∂Ĥ
∂kx
|n′,k〉〈n′k| ∂Ĥ∂ky |n,k〉

(En,k − En′,k′)2
(5.69)

Where we can already recognize the sum on the left to be similar to one of the forms of

writing the Berry curvature as from (5.9).

Given for large systems k will be continuous we can write the sum as an integral:

σxy =
e2

~
∑
n′ 6=n

∫
BZ

Ωn
xy(k)

d2k

(2π)2 , (5.70)
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If we substitute the quantization condition (5.13) we obtain:

σxy =
e2

2π~
∑
n′ 6=n

Cn, (5.71)

which is the TKNN formula as expected.

To give a bit more physical intuition We can also rewrite this formula making explicit the

sum as from the original Thouless paper:

σH =
ie2

~
∑

En<EF

∑
En′>EF

( ∂Ĥ∂ky )nn′(
∂Ĥ
∂kx

)n′n − ( ∂Ĥ∂kx )nn′(
∂Ĥ
∂ky

)n′n

(En − En′)2
(5.72)

The Fermi Level EF is in the middle of two bands which are gapped, the first sum is achieved

on the set of fully occupied levels in the bands lower than EF and the second sum is on the

levels occupied in the upper bands. This is also one of the definitions of the term topological

insulators given the Fermi level is in the middle of the gapped bands.

To conclude analyzing the TKNN formula (5.71) we can again state that for each band there

is a Chern number Cn which is a topological characteristic number of the band, that each band

has a conductivity proportional to it’s chern number and that the total Hall conductivity is

quantized.



References

Kubo, Ryogo (June 1957). “Statistical-Mechanical Theory of irreversible processes I.” In: Jour-

nal of the physical society of japan 12.6, p. 570.

Laughlin (1981). “Quantized Hall conductivity in two dimensions”. In: Physical Review Letters

B 23, p. 5632.

Simon, Barry (Dec. 1983). “Holonomy, the Quantum Adiabatic Theorem, and Berry’s Phase”.

In: Phys. Rev. Lett. (51), p. 2167.

Thouless, D. J. et al. (1982). “Quantized Conductance in a Two-Dimensional Periodic Poten-

tial”. In: Physical Review Letters 49, p. 405.

Zak, J. (1964a). “Magnetic translation Group”. In: Phys. Rev. 134 (6A), A1602.

— (1964b). “Magnetic translation Group II. Irreducible Representations”. In: Phys. Rev. 134

(6A), A1607.

89





Readings and online resources

Tong, David (2016a). Lectures on the Kinetic theory. http://www.damtp.cam.ac.uk/user/

tong/kinetic.html. [Online; accessed 1-March-2021].

91

http://www.damtp.cam.ac.uk/user/tong/kinetic.html
http://www.damtp.cam.ac.uk/user/tong/kinetic.html




6 — Chern Simons theories

6.1. Introduction

This chapter gives a brief introduction to Chern-Simons theory, a form of Gauge theory.

From a field theoretic perspective this shall be studied in the context of Yang Mills theory

again a Gauge theory. Both of the two theories can be considered as extensions to Quantum

Electrodynamics. We will see how the Chern-Simons theory is interconnected with the Integer

Quantum Hall Effect and with topology.

Given the breath of the subjects and techniques involved we refer to other publications

and resources for further study. In general it’s important to mention the availabilty of other

resources online such as the lecture notes of Dan Freed1, Gregory Moore2 and Dunne 3.

6.2. Physics Introduction

All across this chapter we will adopt a field theoretic Lagrangian approach, where the

equation of motions are just a consequence of the choosen Lagrangian. Typical Lagrangian

terms encountered in field theory couple with the metric. As an example we provide here the

free field lagrangian of Electromagnetism:

LEM = −1

4
FµνFµν . (6.1)

We can quickly generalize this Lagrangian to a curved manifold by introducing the metric

gµν :

LEM = − 1

4g2

√
−ggµρgνσFµνFρσ. (6.2)

The novelty of Chern-Simons terms is that is possible to build Lagrangians which do not

couple to the metric and it that sense these Chern-Simons terms are called topological. A key

part of the behaviour of topological Lagrangian terms is driven by boundary conditions of the

derived equations and boundary integrals while expanding the Lagrangian with integration by

1 Dan Freed (2022). Lectures. https://ncatlab.org/nlab/show/Chern-Simons+theory. [Online; accessed
1-April-2022]

2 Gregory W. Moore (2022). TASI Lectures. https : / / www . physics . rutgers . edu / ~gmoore / TASI -

ChernSimons-StudentNotes.pdf. [Online; accessed 1-April-2022]
3 Dunne (1998). Lectures at the 1998 Les Houches Summer School. https://arxiv.org/pdf/hep- th/

9902115.pdf. [Online; accessed 1-April-2022]
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parts. The most simple of such terms is the Chern-Simons term:

L =
K

4π
εµνρAµ∂νAρ. (6.3)

This is also called the ”Abelian” Chern-Simons term, this is the most simple topological

term available in 3 dimensions. It is important to see how these terms generalize. In fact still

in 3 dimension there is a second ”Non-Abelian” Chern-Simons term:

LCS =
K

4π
εµνρTr[Aµ∂νAρ +

2

3
AµAνAρ]. (6.4)

One key aspect of these terms is that they are antisymmetric multi-linear forms in the

potentials and the derivatives, which is a reason why they do not couple to the metric. Given it

is possible to build Quantum Field Theories from such Lagrangians, this has led to applications

in particle physics first and then to applications in condensed matter.

The ”Non-Abelian” term link us to the mathematical motivations of these terms which are

the Chern-Simons Forms, but we will not cover it here. 4 5 6

6.3. Justification of the Chern-Simons terms

It is always possible to invent a Lagrangian term as an Ansatz, try to validate it against

a set of criterias such as symmetries, and then derive some experimental results from the field

equations. In this section we will see that Chern-Simons terms are meaningful and significant

with respect to the physics of the Quantum Hall Effect that we want to describe.

6.3.1. Parity and time reversal is violated

If we want to describe the Quantum Hall Effect, there is always a magnetic field, and

whenever there is a magnetic field both parity and time reversal are violated. The Chern-Simons

terms have this same property because they respect rotational invariance but break both parity

and time reversal. There are also other 2 dimensional systems, e.g based on graphene, where

parity is violated. In such systems time reversal may be also broken due to an external magnetic

field, a circularly polarized light, extra terms such as the Haldane next nearest neighbour

hopping term 7, or terms based on the spin. Also here Chern-Simons theory can be applied.

4 “Characteristic Forms and Geometric Invariants” (Jan. 1974). In: Annals of Mathematics, Second Series
99.1, pp. 48–69

5 Edward Witten (1988). “Topological Quantum Field Theory”. In: Commun. Math. Phys. 117, pp. 353–386
6 Albert Schwarz (2000). Topological Quantum Field Theories. https://arxiv.org/abs/hep-th/0011260
7 F. D. M. Haldane (2015–2018). “Model for a Quantum Hall Effect without Landau Levels: Condensed-

Matter Realization of the “Parity Anomaly.””. In: Physical Review Letters, 61(18)

https://arxiv.org/abs/hep-th/0011260
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6.3.2. Long distance physics

For a generic Electromagnetic field we can write the Lagrangian density as:

L =
1

2
εE2 − 1

2µ
B2 +O(E,B)4 (6.5)

where O(E,B)4 are higher order terms. A Lagrangian such as this one which is built from

the fields is automatically gauge invariant, because the fields are gauge invariants. The terms

in the fields of the Lagrangian are second order in the derivatives and second order in the

potentials. If we now compare the electromagnetic field term with a Chern-Simons term this

is instead second order in the potential and first order in the derivatives. This means that at

large distances the Chern-Simons term can be considered the lowest order, of total order 3, and

therefore the most important one. In this sense the Chern-Simons theory can be considered an

effective field theory.

6.3.3. Possible Lagrangian functions

Another way too see that the Chern-Simons Lagrangians are meaningful is to consider

all possible Lagrangian(s) terms available and their combinations, restrict this set with some

reasonable constraints and see if we obtain something similar to Chern-Simons terms.

In order to have a Lagrangian that does not couple to the metric we will need to have an

anti-symmetric term in the potentials and derivatives. Therefore we will need to rely on linear

combinations based on the Levi Civita symbol. If we then want to build a Lagrangian of third

order the last term must be a potential and we can only have combinations like:

εµνρ∂µAνAρ , εµνρ∂µ∂νAρ , εµνρAµ∂νAρ εµνρAµAνAρ. (6.6)

We are here using the Einstein summation convention. It’s clear that the first two are zero

given they are symmetric in two terms which are summed together by the Levi civita symbol.

The third one, which is the Abelian Chern-Simons one, is one actual possible term. Finally the

last one is again zero.

If we would want to do this for a order four term, adding either a ∂ξ or a Aξ we will always

have at least two symmetric terms, and this would actually lead again the cancellation with the

levi civita symbol εµνρξ of order four, the only term that may not cancel out is εµνρξ∂µAν∂ρAξ

but it is possible to prove that it still does.

In the case of order five we need to add one of the set ∂ξ, Aξ and one of ∂χ, Aχ, in total we

will obtain terms like εµνρξχAµ∂νAρ∂ξAχ, out of which some of them will be not zero.

This same reasoning can then be applied to any order to conclude the following:

• Only the odd orders have non trivial terms, and this is the case also for the Chern-Simons

terms.

• A lot of these Lagrangian terms actually ends up to have the same order in the derivatives
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and the potentials of Chern-Simons terms of higher order.

• Lagrangians are built out of linear combinations of terms, if we carefully look at higher

order Chern-Simons terms, they contain coefficients that this approach is not capable to

predict.

6.3.4. Anyons

A peculiarity of the 2 dimensional physics at play is summarized, in the special particle

statistics, which is a mix between fermionic and bosonic behaviours, these type of fields are

what we call Anyons.

Let now aµ be an emergent gauge field, not just the external electromagnetic field Aµ, the

Chern-Simons Lagrangian density, which exists only in 2+1 dimensions:

L =
K

4π
εµνρaµ∂νaρ. (6.7)

The standard quantum field theory quantization procedure leads to field operators âµ, and

to a basis of creation and annihilation operators that have peculiar particle statistics.

It’s possible to arrive to the statistics with an heuristic argument about particle exchange8

but also with a more robust argument on the topological structure of the configuration space9

More in general Chern-Simons theories are generalizations of Yang Mills gauge theories in odd

dimensions10.

6.4. Dirac quantization condition

In order to derive the quantization of the Quantum Hall current, we need to prove the fact

that the parameter k of the Chern-Simons Lagrangian is quantized. In order to do that we will

now introduce the Dirac quantization condition, which is a constraint between the quantization

of charge and the quantization of magnetic flux. This is a novelty with respect to classical

electrodynamics due to the way the quantum mechanics momentum operator couples directly

with the electromagnetic potential, as in the minimal coupling substitution p̂→ p̂− qA.

6.4.1. Introduction

In classical electrodynamics the electromagnetic potential can be always removed from the

equations, and the field equations can always be expressed in terms of the derivatives of the po-

tential. In quantum mechanics this is no longer the case, because the electromagnetic potential

is explicitely in the Schroedinger equation.

8 David Tong (2016b). Lectures on the Quantum Hall Effect. http://www.damtp.cam.ac.uk/user/tong/

qhe.html. [Online; accessed 12-October-2021], 90-91
9 Jon Magne; Myrheim Leinaas (Jan. 1977). “On the theory of identical particles”. In:

10 Ademola Adeifeoba (n.d.). Introduction to Chern-Simons Theory. https : / / osf . io / preprints /

africarxiv/am7pt/download

http://www.damtp.cam.ac.uk/user/tong/qhe.html
http://www.damtp.cam.ac.uk/user/tong/qhe.html
https://osf.io/preprints/africarxiv/am7pt/download
https://osf.io/preprints/africarxiv/am7pt/download
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If there are points, surfaces or other regions where the potential or it’s derivative does

not exist, or is multivalued, these may lead to trouble for the existence and uniqueness of the

solutions. Such points may lead to constraints and quantization conditions of the magnetic flux

and the electromagnetic charges.

In the previous chapters we have seen such cases for the Berry phase and Aharanov Bohm

effect. Considering a generic manifold covered by an atlas, and the atlas made of separate charts

for different regions of the manifold. The potential was defined differently on different charts

and made continuous with a gauge transformation on the border of the regions where multiple

charts are available.

This was analyzed by Dirac in 1931 11 and is now known as Dirac monopole argument. It

can be considered the precursor of what we have seen in the case of the Aharanov Bohm and

the Berry phase. Ultimately Dirac was asking why the electron charge is quantized, and if that

quantization can be reduced to something similar to observables of standard quantum mechanics

where the charge is some eigenvalue of some equation. In more modern terms we may ask if the

quantization of charge is attached to something more fundamental about the electromagnetic

field and potentials or it comes out for example from some geometrical or topological argument.

Dirac understood that the phase, which is what we now call the Berry phase, depends on

the path and is directly related with the introduction of the electromagnetic field and the gauge

transformations. He then achieved to describe the mechanics of gauge transformations on the

border of the charts. From there he deducted that if there is a duality between electric and

magnetic charges, then it follows that the quantization condition of one leads to the quantization

condition of the other.

6.4.2. Electro Magnetic duality

The first important consideration is that classical electrodynamics without sources is com-

pletely symmetric in the electric and magnetic fields. This is possible to see directly from the

free field Maxwell equations:

∇ ·E = 0 ∇ ·B = 0

∇∧E = −∂B

∂t
∇∧B =

∂E

∂t
.

(6.8)

Therefore a part from Lorentz invariance we have what is called Electromagnetic duality. The

free field Maxwell equations are invariant under the transformation:

(E,B)→ (B,−E) (6.9)

.

A natural way to generalize Maxwell equations is to introduce Magnetic sources µ, i.e. the

11P. A. M. Dirac, Quantised singularities in the electromagnetic field, Proc. R. Soc. A133 (1931), 60–72.
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magnetic monopoles and the monopoles currents K:

∇ ·E = ρ ∇ ·B = µ

∇∧E = K− ∂B

∂t
∇∧B = J +

∂E

∂t
.

(6.10)

We have for simplicity embedded the permittivity inside the currents, meaning that the

currents are actually effective currents including the effect of the propagating medium.

In tensor notation we can introduce the Hodge dual tensor:

?Fαβ = 1
2ε
αβγδFγδ (6.11)

Which is actually the same as the substitution (6.9). Still using tensor notation, the gener-

alization of Maxwell equations becomes:∂αFαβ = jβ

∂α
?Fαβ = 0

→

∂αFαβ = jβ

∂α
?Fαβ = kβ

. (6.12)

We have the original Maxwell equations on the left and the generalized ones on the right.

The kβ is the quad-current of the newly introduced sources i.e. the magnetic monopoles. Of

course the generalized version reduces to the standard one as far as there are no monopoles i.e

for kβ = 0 12

Introducing magnetic monopoles is actually a big logical step. It is a fully separate hyphoth-

esis and our arguments about quantization, should ideally work also without them. Another

way to look at this is that generalizing the electromagnetic field this way we are modifying

the homogenous Maxwell equations. From a tensor calculus standpoint these are the Bianchi

identities, which should come out automatically from the geometry and therefore should not be

generalized. It is to be seen then what the Bianchi identities are for the generalized equations,

how they can be interpreted, and if the generalization did not remove an essential constraint in

the Maxwell equations.

If we go for a minimalistic approach without introducing magnetic monopoles, Maxwell

equations maybe be correct as they are. We accept the asymmetry between electric and magnetic

charges or more precisely the non-existence of monopoles, since in that case the magnetic field

is just a dynamic counterpart of the electric field. This is consistent with special relativity, and

electric charges are dual then just to magnetic fluxes, which was the original spirit of Gauss.

Using the duality between electric charges and magnetic fluxes, the Dirac quantization

condition will then become that if the electric charge is quantized by consequence the flux is

quantized. This is exactly what we have seen as the flux quantization condition in the aharanov-

bohm Chapter, and whenever we use the term magnetic monopole in what follows we can also

call it a quantum of flux.

12Electromagnetic Duality for Children JM Figueroa-O’Farrill https://www.maths.ed.ac.uk/~jmf/Teaching/
Lectures/EDC.pdf

https://www.maths.ed.ac.uk/~jmf/Teaching/Lectures/EDC.pdf
https://www.maths.ed.ac.uk/~jmf/Teaching/Lectures/EDC.pdf


6— Chern Simons theories 99

6.4.3. The monopole vector potential

Let’s start to ask ourselves what is logically the most simple field for a magnetic monopole.

For an isolated point like electric charge q the field goes with a radial square law. This is a

fundamental solution of the Gauss law for the electric field. It’s then logical to expect that

the most simple possibility for a magnetic charge is again to be point alike. If we imagine a

point like static magnetic charge of intensity g we will write the generalized Gauss law of the

magnetic field as

∇ ·B(r) = g. (6.13)

The solution to this equation is again a radial field whose intesity goes with a square law. Let’s

try to write it down as:

B(r) =
g

4π

1

r2
er. (6.14)

In this conventions the magnetic charge g is the exact same as the magnetic flux

g =

∫
Σ

B · n dS. (6.15)

We want now to find a magnetic potential B = ∇ ∧A for this field. We can start from an

ansatz:

θ 6= π : A+ =
g

4πr

1− cos θ

sin θ
ϕ̂

θ 6= 0 : A− = − g

4πr

1 + cos θ

sin θ
ϕ̂

. (6.16)

This solution is not defined as a single function on R3 but is defined piece-wise on two charts:

A+ is defined on the chart that is the full R3 without the negative z-axis (i.e. θ 6= π), and A−

is defined on the full R3 without the positive z-axis (i.e. θ 6= 0). The combination of the two

charts covers the full R3 and the combination of A+ and A− is our actual function definition.

It is possible to prove that there is no single function that can be defined across the full R3 that

respects the equations, and the only type of solutions that can be built are defined piece-wise

on multiple charts as (6.16).

This half of an axis of singularity is what is now known as Dirac string. Some people

interpret this as an infinitely thin solenoid that starts at the center of the coordinate system

and continue to infinity along the negative z axis. A magnetic monopole in general can be

interpreted as the extremity of such a solenoid that lies at the center of the coordinate system.

The Dirac string can also be interpreted as a type of branch cut, i.e a path in the domain of

definition of a complex function along which the function is not properly defined, either being

multi-valued or divergent. Typically branch cuts may end on to singular points as is the case

here.
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On the countrary of what one might expect, this solution is perfectly legitimate. In fact in

the regions where both A+ and A− are defined there is always a Gauge transformation from

one to the other. With this technique we can always split the space in such a way that we can

define piece-wise a vector potential that is single valued and continuos. In fact in this case their

common region of definition is the complement of the z axis with respect to R3. It is important

to notice that this region is not simply connected. On this region the curl of the difference is

zero and there can always be a gauge transformation between the two:

∇∧ (A+ −A−) = 0

A+ −A− = ∇χ
(6.17)

for some scalar function χ. The difference of the two potentials is then irrotational, but given

the domain is not simply connected, the same difference is not a conservative field, and therefore

there is no unique function whose gradient can lead to the difference. In other words the gauge

transformation function χ cannot be unique across the full domain.

For our monopole field we can see that:

A+ −A− =
g

2πr
ϕ̂ = ∇χ =

1

r sin θ

∂χ

∂ϕ
ϕ̂. (6.18)

As an example we can choose for the border of the two charts the condition θ = π
2 which is the

x and y plane. This reduces to:

A+ −A− =
g

2πr
ϕ̂ =

1

r

∂χ

∂ϕ
ϕ̂ (6.19)

On this border we can then do a gauge transformation to match the two definitions of A+ and

A− and this will be generated by

χ =
g

2π
ϕ. (6.20)

given ϕ is an angle this is a multivalue function.

6.4.4. The Dirac quantization condition

We finally now compute an integral over a sphere Σ surrounding the monopole, where Σ±

are the upper and lower emisphere and E is the circle in between the two. We can write:

g =

∫
B · n dS =

∫
Σ+

(∇∧A+) · n dS +

∫
Σ−

(∇∧A−) · n dS =

=

∫
E

A+ · dl−
∫
E

A− · dl =

∫
E
∇χ · dl = χ(2π)− χ(0).

(6.21)
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Now we introduce the schroedinger equation:

1

2m
(−i~∇+ qA)2ψ = i~

∂ψ

∂t
. (6.22)

We are going to solve it for the vector potential of the monopole (6.16).

The equation shall be invariant by any gauge transform:

A→ A +∇χ′

ψ → e−i
q
~χ
′
ψ

. (6.23)

To maintain the wave function single valued we need then to enforce that the two phases

are the same on a common border of the two charts. The first phase is acquired by gauge

transformation as from (6.23). The second phase is due to the jump between the two different

charts as from (6.20). For the border of the chart we use again θ = π
2 . We thus require that:

e−i
q
~χ
′

= e−i
q
~
gϕ
2π , (6.24)

and therefore:

q

~
χ′ =

q

~
gϕ

2π
+ 2πn; n ∈ Z. (6.25)

Given we already computed g = χ(2π) − χ(0) with our integral, we can reduce it to the

Dirac quantization condition:

q

~
g = 2πn; n ∈ Z. (6.26)

If one prefers the version without magnetic monopoles:

q

~

∫
S2

B · n dS = 2πn; n ∈ Z. (6.27)

This does not mean that Gauss theorem for the magnetic field is not correct, and the

divergence of the field is not zero. Instead it means that there is a complex interplay between

two effects. One is the gauge transform, the other is the non uniqueness of the potential across

the full space, and the two effects compensate each other exactly to maintain the divergence

zero.

6.4.5. An aside over the existence of magnetic monopoles

Introducing magnetic monopoles is quite well accepted in the research community, because

it can be said that until we find them all the equations are still standing, and is just enough to

have one single monopole existing at the other end of the universe to justify this quantization

argument. This is a weak logical argument because what you typically do here is an integral over

a sphere including the monopole at the center and the surface of the sphere is where you locally
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measure the field, that would imply some shape of assumption of the large scale structure of

the universe such as being open, simply connected and essentially flat on the large scale, which

is far from trivial.

6.5. Chern-Simons theories

6.5.1. The Gauge transformation

Let’s now restrict our self to 2+1 dimensions. In this case is possible to introduce a Chern-

Simons Lagrangian density term which is:

LCS [A] =
K

4π
εµνρAµ∂νAρ; µ, ν, ρ = 0, 1, 2 (6.28)

As we have seen in (6.6), this term is the only significant one in 3 dimensions. In more

generality as we have seen in section 6.3.4 Chern-Simons characteristic classes are available

only in odd dimensions, and the case of 3 dimensions is the first one that leads to non trivial

physics.

Yet another way is to say the same is that these type of Lagrangians are a type of topological

quantum field theory. These were first proposed by Schwartz and further expanded by Witten.

These are theories where the topology of the manifold is important. The Lagrangian is not

dependent on the metric, and the integrals at the border are relevant for the physics.

Finally, is important to distinguish two notations available in the literature: often the Aµ

is reseved for external magnetic fields where instead aµ is reserved for quantized fields, or

dynamical degrees of freedom. The same Chern-Simons Lagrangian can be then constructed by

a combination of both of the two.

This type of term violates parity, and this is always the case when there is a magnetic field.

Let’s prove how this term behave with respect to Gauge invariance. Given it is explicitely

dependent on the vector potential Aµ, it’s not at all evident that the action is gauge invariant.

Under a Gauge transformation the field and the Lagrangian transforms as

Aµ(r, t)→ Aµ(r, t) + ∂µζ(r, t)

L′CS [A] = LCS [A] +
K

4π

∫
d2xεµνρ∂µ(ζ∂νAρ).

(6.29)

Note that there is a global derivative that plays a role here. More precisely, to evaluate

that term we need to specify on which manifold we are integrating. Given the integrand is a

total derivative we can simplify the integral through integration by parts, to an integral on the

border.

In two spatial dimensions, there are now two cases: there are manifolds with a border such

as a disk, and without border such as a sphere or torus. In regards to the time coordinate also

here there are two cases, one when the time coordinate is a circle and therefore the system is

periodic in time and a second case where the time coordinate is an open interval. Being periodic
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in time means that the system after a certain amount of time returns to the initial state. In

this case the system is holonomic, as we saw in the case of the adiabatic transformations in the

Berry phase chapter.

6.5.2. Case without a border

We will now analyze the first case where the manifold does not have a border and therefore

is compact and closed both in space and time. Examples of this can be a circle, a sphere or

a torus. Having no borders in the time direction means being holonomic and typically this is

reflected in an closed loop integral over the time coordinate.

The action functional that we build from the Lagrangian density is:

SCS [A] =
K

4π

∫
dt

∫
d2xεµνρAµ(x)∂νAρ(x) (6.30)

.

At this point, if we write down the quantum field theory partition function from this action

we have:

Z[A] =

∫
ei
SCS [A,ϕ]

~ D[ϕ]. (6.31)

Here the vector potential A is considered an external source, the fields ϕ are the dynamical

degrees of freedom, and the integral D[ϕ] is a variation over all possible fields configurations on

all space time.

A generic expectation value for a measurable quantity F is given by:

〈F 〉 =
1

Z[A]

∫
ei
SCS [A,ϕ]

~ F [A, ϕ]D[ϕ], (6.32)

where F [A, ϕ] is a generic functional in the fields ϕ, having the sources A as parameters.

The vector potential A and a generic measurable quantity F must be single valued. We

can say that even if the action SCS or the Lagrangian LCS is not single valued, the quantity

ei SCS [A]
~ must be single valued.

If we consider the gauge transformation from (6.29) we would still require that:

S′CS [A] = SCS [A] + 2πn~;n ∈ Z. (6.33)

We then get a consistency condition:

2πn~ =
K

4π

∫
dt

∫
d2xεµνρ∂µ(ζ∂νAρ);n ∈ Z. (6.34)

With a bit of differential topology it is possible to say that the second integral is quantized, and

therefore K is quantized. This is in essence due to the Chern-Gauss-Bonnet theorem and the

Atihya-Singer index theorem.
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This goes back again to the idea that the ζ is multivalued and it’s in essence the same

mathematics of the border integral of the berry phase and the flux quantization. The case

without border leads to a quantization condition of K. The case with border will lead to the

physics of edge states, i.e the quantization of the border states, that we will not cover here.

6.5.3. Quantization

It is possible to prove that from equation (6.34) we can derive the quantization of K in

general. We will instead follow David Tong and show that this is true in a very special case

with a set of limiting hyphothesis.

Let’s start to expand the Action into the potential and the fields:

SCS =
K

4π

∫
d3xεµνρAµ∂νAρ =

K

4π

∫
d3x[A0F12 +A1F20 +A2F01]. (6.35)

We now introduce a simplified assumption of a constant magnetic field. This gives the

constraints

∂tF12 = 0

∂t(∂1A2 − ∂2A1) = 0
. (6.36)

Which is always true if also the potential does not depend on time. We can therefore set

∂0A2 = 0

∂0A1 = 0
, (6.37)

which leads to the following simplifications

F12 = ∂1A2 − ∂2A1

F20 = ∂2A0 − ∂0A2 = ∂2A0

F01 = ∂0A1 − ∂1A0 = −∂1A0

. (6.38)

We now substitute (6.38) into (6.35) and then integrate by parts in the spatial derivatives

SCS =
K

4π

∫
d3x[A0F12 +A1∂2A0 −A2∂1A0] =

=
K

4π

∫
d3x[A0F12 − ∂2(A1)A0 + ∂1(A2)A0]

=
K

4π

∫
d3x[A0F12 +A0(∂1(A2)− ∂2(A1))]

=
K

2π

∫
d3xA0F12

. (6.39)

We assume a manifold which is closed without a border (such as a sphere or a torus).

Therefore the border terms of the integration by parts are zero.

Still to simplify our proof we will specify the gauge. We choose a gauge where the electric
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potential is constant, A0 = a0 and this gives

SCS = a0
K

2π

∫
d3xF12 = a0

K

2π

∫
dt

∫
d2xF12. (6.40)

As earlier we have done, we introduce the holonomy condition over time, i.e the fact that

the manifold is closed in the time coordinate, therefore the integral over time is given by the

periodicity over time: ∫
dt = β (6.41)

And we introduce the quantization condition (6.27) and obtain:

SCS = a0β
K

2π

2π~l
e

= a0β
K~l
e

; l ∈ Z (6.42)

Now we introduce a large Gauge transformation:

Aµ → Aµ + ∂µζ

ζ = τ
2π~m
eβ

;m ∈ Z

A0 → A0 +
2π~m
eβ

;m ∈ Z

(6.43)

We call this large because in essence we use a multivalue gauge transformation function ζ,

which is multivalue due to the integer m, and in patches the gauge transformation compensate

the multivaluedness and permit to achieve a single value vector potential field, in this sense the

transformation can be larger than one patch.

Together with a Gauge transformation the wave function undergoes a local U(1) transfor-

mations, i.e. it is invariant by ψ′ → ψeiζ , in the same manner a quantized field Â→ Âeiζ

The fact that the Gauge transformation is large is generic, but we used here a gauge trans-

formation function ζ that is linear in the time τ , and that is due to our simplifying assumptions.

This induces a change in the action as:

SCS = a0β
K~l
e

; l ∈ Z→

S′CS =
β~Kl
e

(a0 +
2π~m
eβ

) =

= SCS +
β~Kl
e

2π~m
eβ

= SCS +
2π~2K lm

e2
; l,m ∈ Z

(6.44)

If we now compare this result with (6.33)

S′CS = SCS +
2π~2K lm

e2
; l,m ∈ Z

S′CS [A] = SCS [A] + 2πn~;n ∈ Z
(6.45)
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we obtain a condition on n, given l and m arbitrary integers:

2π~2K lm

e2
= 2πn~; l,m ∈ Z (6.46)

Solving for n, gives us the equation:

n =
~Klm
e2

(6.47)

and the only way to guarantee that n is an integer for arbirtray l and m is if K is a multiple of
e2

~ . Note that K carries the same units as σxy, so this is finally again the quantization condition

of the integer quantum hall effect as we will see in the following section.

The fact that the Lagrangian density is not gauge invariant is not much of a problem given

it is not a physical quantity. What we are really interested in are physical quantities, and how

they behave in regards to gauge transforms.

As before, in the case of the Berry phase, the Berry connection is non physical and not gauge

invariant, but the Berry phase is gauge invariant instead. What we have seen in the case of the

Berry phase is that the gauge invariance of the Berry phase actually induces the quantization

of the Berry phase, given that the gauge generating function is multivalued.

What we saw here is that the Lagrangian density is not Gauge invariant but the Action shall

be Gauge invariant. That induces quantization of the parameters in the Lagrangian densities.

Again there is a total derivative at play within the integral as in (6.29), and the gauge generating

function is multivalued and defined differently on different charts.

6.5.4. From the Chern-Simons Lagrangian to the Hall current

From the Chern-Simons action we can compute the current

Jµ =
∂SCS [a]

∂Aµ
=
K

2π
εµνρ∂νAρ (6.48)

If we identify the physical field we get:

Ji = −K
2π
εijEi (6.49)

.

This means that we are describing a Hall conductivity

σxy =
K

2π
(6.50)

. If we identify the Chern factor as

K =
e2ν

~
(6.51)

, this is a Hall conductivity of ν filled Landau levels. Given ν is quantized, as we have seen
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from (6.47), we can identify this with the Landau levels.

6.5.5. Case with a border - edge states

In the case of a disk instead, or if we want a square sample, then the integral will have

a border and that contribution will lead to edge states, i.e quantized states that live on the

border of the manifold.

From a general perspective this can also be said that the border information is very relevant

for the physics as it carries the topological information. Most Lagrangians considered in field

theory are local, and metric dependent, and typically all the border terms on the integrations by

parts are null. In this case, since the Lagrangian is not dependent on the metric and it carries

some information on the border, the integration by parts then leads to a border contribution

that is not zero.

6.6. Chern-Simons theories applied to Fractional Quantum Hall

effects

As a brief entrée to applications and extensions of Chern-Simons theories is important to

describe how Lagrangian terms of Chern-Simons type can be put into action in real theories.

Let’s start from a Chern-Simons Lagrangian density (6.28). We can decompose the total

field into two pieces: an external field Aµ and an internal field aµ. Intuitively, the external field

is the big field that we have for example in the case of the Quantum hall effect, but this field is

taken to be constant. The internal field is instead is the oscillating field or coupling field. We

then get the following equations:

AµT = Aµ + aµ

∂νA
µ = 0

. (6.52)

We now want that the external field is not to be quantized and the internal field will be

quantized. This is also reflected in the coupling term where the currents don’t couple with the

external fixed field:

Lcoupling = aµj
µ +Aµj

µ ≈ aµjµ (6.53)

If we now expand the Lagrangian density we have:

L = −K
4π
εµνρaµ∂νaρ −

K

2π
εµνρAµ∂νaρ + aµj

µ (6.54)

Which is the Lagrangian density for the integer quantum hall effect. We can easily generalize

the above Lagrangian by making the two insertions of K different introducing an integer value

t:
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Lwz = − 1

4π
Kεµνσaµ∂νaσ −

e

2π
tAµε

µνσ∂νaσ + aµj
µ (6.55)

This Lagrangian permits to describe one or more fluids with filling fractions t2

K . For t = 1 this

describes the long range physics for the Laughlin states. The fact that t 6= K is important to

allow a description of fractionalized charges.

We can now generalize again this Lagrangian (6.55) introducing n Chern-Simons fields aαµ

the coupling constant K becomes now a matrix Kαβ where α, β = 1, ..., n, and n is also the

rank of the matrix, this to summarize the linear combination in the n fields. We introduce also

a second set of linear coupling constants tα to generalize the second term.

Lwz = − 1

4π
Kαβε

µνσaαµ∂νa
β
σ −

e

2π
tαAµε

µνσ∂νa
α
σ + aαµj

µ
α (6.56)

Intuitively we can imagine these extra coupling fields as n quasiparticles, but we did not make

any precise statement if these fields are localized or not. In the same spirit the coupling currents

are generalized from a single current jµ to a current for each extra field jµq .

It’s important to mention that Kαβ and tα is not just a set of continuous coefficients, but

they encode only topological information (i.e. they don’t couple to the local metric). More

precisely K is a symmetric matrix with only integer coefficients (odd on the diagonal and even

elsewhere). These coefficients also encode the symmetry of the modular group SL(2,Z) and

this leads theferefore to the emergence of continued fractions, in the experimental results13.

We finally introduce two extra generalizations to arrive to the Wen Zee Lagrangian 14:

Lwz = − 1

4π
Kαβε

µνσaαµ∂νa
β
σ −

e

2π
tαAµε

µνσ∂νa
α
σ −

sα
2π
ωiε

iνσ∂νa
α
σ + aαµl

q
αj
µ
q (6.57)

lqα is a generalized coupling with the currents where the case lqα = δqα is the case of minimal

coupling, an example of the more general case here is a rotation of the coupling effect with

respect to the direction of the currents.

We include n spinorial fields (one for each Chern-Simons field introduced previously) sα

and ωi as a spin connection (i.e. a linear combination or more precisely linear form) where

i = 1, 2, 3. These fields come into play and are not zero, when we solve the schroedinger

equation on a surface that is not flat such as a sphere or a torus.

This Lagrangian can now model all abelian Quantum Hall states as an effective field theory.

These Lagrangians are meanigful typically in the study of the Fractional Quantum Hall Effect.15

13 David Tong (2016b). Lectures on the Quantum Hall Effect. http://www.damtp.cam.ac.uk/user/tong/

qhe.html. [Online; accessed 12-October-2021] pp 166-167
14 Zee Wen (July 1992). “Classification of Abelian quantum hall states and matrix formulation of topological

fluids”. In: Phys Rev B 46.4 (2)
15 T. H. Hansson et al. (2017). “Quantum Hall physics: Hierarchies and conformal field theory techniques”.

In: Reviews of modern physics 89.april–june

http://www.damtp.cam.ac.uk/user/tong/qhe.html
http://www.damtp.cam.ac.uk/user/tong/qhe.html


6— Chern Simons theories 109

6.7. Chern-Simons theories in Particle physics

As yet another application it’s important to mention that there is an equivalent of the

Chern-Simons theory in the scope of particle physics: these are called Chiral anomalies. Again

there is a symmetry at play and a current that is conserved such as the massless chiral currents

of the Dirac term of the QED Lagrangian. In this case we do an adiabatic variation of the

electromagnetic potential to obtain at the end of the variation the same initial set of states.

After the adiabatic variation, we actually introduced one particle less on the left chiral

states and one particle more on the right chiral states (or also one quasi-hole state and one

quasi-particle state in condensed matter terms). If we consider this chiral currents symmetry

together with the Gauge symmetry we also again have a special boundary terms that is quantized

and that compensate the Gauge symmetry on the border so that the total Gauge symmetry is

still valid.1617

16 Hitoshi Murayama (n.d.[b]). 232B online lecture Perturbation Theory Anomalies on April 21, 2020. https:

//www.youtube.com/watch?v=IZwPr5nneEE&t=2100s
17 Hitoshi Murayama (n.d.[a]). 232B online discussion section Chern-Simons term and Quantum Hall Effect

on April 23, 2020. https://www.youtube.com/watch?v=ku0eLRDUqyE&t=1421s

https://www.youtube.com/watch?v=IZwPr5nneEE&t=2100s
https://www.youtube.com/watch?v=IZwPr5nneEE&t=2100s
https://www.youtube.com/watch?v=ku0eLRDUqyE&t=1421s
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