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A B S T R A C T

The cardiac function is the result of the concerted action of several physical phe-
nomena, ranging from the cellular scale to the organ level. Among these, an
important role is played by the coupling between the electrical activity of the
heart and its mechanical contraction. For this reason, numerical simulations of
ventricular electromechanics play nowadays a crucial role in computational car-
diology and precision medicine. Indeed, it is of outmost importance to analyze
and better address pathological conditions by means of anatomically accurate
and biophysically detailed individualized computational models that embrace
electrophysiology, mechanics and hemodynamics.

In this thesis, we develop a novel electromechanical model for the human
ventricles of patients affected by ischemic cardiomyopathy. This is made pos-
sible thanks to the introduction of a spatially heterogeneous coefficient that
accounts for the presence of scars, grey zones and non-remodeled regions of
the myocardium. We couple this 3D electromechanical model with either a 2-
element windkessel afterload model or a /0D closed-loop circulation model by
an approach that is energy preserving. Our mathematical framework keeps into
account the effects of mechano-electric feedbacks, which model how mechanical
stimuli are transduced into electrical signals. Moreover, it permits to classify the
hemodynamic nature of tachycardias. These aspects are very important for the
clinical exploitation of our electromechanical model.

We propose two segregated-intergrid-staggered (SIS) numerical schemes to
solve this 3D-/0D coupled problem. Specifically, we consider two partitioned
strategies for which different space-time resolutions are employed according to
the specific core model. In particular, numerical models for cardiac electrophys-
iology require a finer representation of the computational domain and a smaller
time step than those used for cardiac mechanics. For the first numerical scheme
(SIS1), we introduce intergrid transfer operators based on Rescaled Localized Ra-
dial Basis Functions to accurately and efficiently exchange information among
the several Partial Differential Equations (PDEs) of the electromechanical model.
Different (potentially non-nested) meshes and first-order Finite Elements can be
used for the space discretization of the PDEs. The second numerical scheme
(SIS2) that we propose employs another flexible and scalable intergrid transfer
operator, which allows to interpolate Finite Element functions between nested
meshes and, possibly, among arbitrary Finite Element spaces for the different
core models. We perform numerical simulations both in sinus rhythm and ven-
tricular tachycardia for different scenarios of clinical interest.

We also design a Machine Learning method to perform real-time numerical
simulations of cardiac electromechanics. Our method allows to derive a reduced-
order model (ROM), written as a system of Ordinary Differential Equations,
in which the right-hand side is represented by an Artificial Neural Network
(ANN), that possibly depends on a set of parameters associated with the model
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to be surrogated. This method is non-intrusive, as it only requires a collection
of pressure and volume transients obtained from the full-order model (FOM).
Once trained, the ANN-based ROM can be coupled with hemodynamic models
for the blood circulation external to the heart, in the same manner as the original
electromechanical model, but at a dramatically reduced computational cost. We
demonstrate the effectiveness of the proposed strategy on two relevant contexts
in cardiac modeling. We employ the ANN-based ROM to perform a global sen-
sitivity analysis on both the electromechanical and the hemodynamic models.
Then, we perform a Bayesian estimation of a couple of parameters starting from
noisy measurements of two scalar outputs.

By replacing the FOM of cardiac electromechanics with the ANN-based ROM,
we perform in a few hours of computational time all the numerical simulations,
which would be unaffordable, because of their overwhelming computational
cost, if carried out with the FOM. As a matter of fact, our ANN-based ROM is
able to speedup the numerical simulations by more than three orders of magni-
tude.

Keywords: cardiac electromechanics, ischemic cardiomyopathy, ventricular
tachycardia, numerical methods, intergrid transfer operators, numerical simu-
lations, machine learning, reduced-order modeling, global sensitivity analysis,
bayesian parameter estimation, uncertainty quantification.
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S O M M A R I O

La funzione cardiaca è il risultato dell’azione concertata di diversi fenomeni
fisici, che vanno dalla scala cellulare al livello dell’organo. Tra questi, un ruolo
importante è svolto dall’accoppiamento tra l’attività elettrica del cuore e la sua
contrazione meccanica. Per questo motivo, le simulazioni numeriche di elet-
tromeccanica ventricolare giocano oggi un ruolo cruciale nella cardiologia com-
putazionale e nella medicina di precisione. Infatti, risulta di massima impor-
tanza analizzare e affrontare meglio le condizioni patologiche per mezzo di
modelli computazionali personalizzati, accurati anatomicamente, e dettagliati
dal punto di vista biofisico, che coinvolgano elettrofisiologia, meccanica ed emod-
inamica.

In questa tesi, sviluppiamo un nuovo modello elettromeccanico per i ventri-
coli umani di pazienti affetti da cardiopatia ischemica. Ciò è reso possibile gra-
zie all’introduzione di un coefficiente spazialmente eterogeneo che tiene conto
della presenza di cicatrici, zone grigie e regioni non rimodellate del miocar-
dio. Accoppiamo questo modello elettromeccanico 3D con un modello wind-
kessel a 2 elementi o un modello di circolazione /0D mediante un approccio che
preserva l’energia. Teniamo conto degli effetti dei feedback meccano-elettrici, i
quali modellano il modo in cui gli stimoli meccanici vengono trasdotti in segnali
elettrici. Inoltre, il nostro approccio permette di classificare la natura emodinam-
ica delle tachicardie. Questi aspetti sono molto importanti per l’uso in ambito
clinico del nostro modello elettromeccanico.

Proponiamo due schemi numerici per risolvere questo problema accoppiato
3D-/0D. Nello specifico, consideriamo due strategie partizionate per le quali
vengono impiegate diverse risoluzioni spazio-temporali a seconda dello speci-
fico modello. In particolare, i modelli numerici per l’elettrofisiologia cardiaca
richiedono una rappresentazione più fine del dominio computazionale e un
passo temporale minore rispetto a quelli utilizzati per la meccanica cardiaca. Per
il primo schema numerico, introduciamo operatori di trasferimento basati su
funzioni a base radiale, localizzate e riscalate, al fine di scambiare informazioni
in modo accurato ed efficiente tra le diverse equazioni differenziali alle derivate
parziali del modello elettromeccanico. Griglie differenti (potenzialmente non an-
nidate) ed elementi finiti del primo ordine, possono essere usati per la discretiz-
zazione spaziale delle equazioni differenziali. Il secondo schema numerico che
proponiamo utilizza un altro operatore di trasferimento flessibile e scalabile, che
consente di interpolare funzioni agli elementi finiti tra griglie annidate e, possi-
bilmente, tra spazi agli elementi finiti arbitrari per i diversi modelli. Effettuiamo
simulazioni numeriche sia in ritmo sinusale sia in tachicardia ventricolare per
diversi scenari di interesse clinico.

Elaboriamo anche un metodo basato sull’apprendimento automatico per ef-
fettuare simulazioni numeriche di elettromeccanica cardiaca in tempo reale. Il
nostro metodo permette di derivare un modello ridotto, scritto come un sistema

III



di equazioni differenziali ordinarie, in cui il membro di destra è rappresentato
da una rete neurale, che dipende da un insieme di parametri associati con il
modello da surrogare. Questo metodo non è intrusivo, in quanto richiede solo
una raccolta di transitori per pressione e volume, ottenuti dal modello completo.
Una volta trainato, il modello ridotto basato su rete neurale può essere accop-
piato con modelli emodinamici per la circolazione sanguigna esterna al cuore,
allo stesso modo del modello elettromeccanico originale, ma ad un costo com-
putazionale notevolmente ridotto. Dimostriamo l’efficacia della strategia pro-
posta in due contesti rilevanti nella modellistica cardiaca. Utilizziamo il mod-
ello ridotto basato su rete neurale per effettuare un’analisi di sensitività globale,
sia sul modello elettromeccanico sia su quello emodinamico. Successivamente,
eseguiamo una stima bayesiana di due parametri partendo da misurazioni ru-
morose di due valori scalari.

Sostituendo il modello completo di elettromeccanica cardiaca con il modello
ridotto basato su rete neurale, effettuiamo in poche ore di tempo di calcolo
tutte le simulazioni numeriche, le quali sarebbero insostenibili, a causa del loro
enorme costo computazionale, se eseguite con il modello completo. Infatti, il
nostro modello ridotto basato su rete neurale è in grado di accelerare le simu-
lazioni numeriche di oltre tre ordini di grandezza.

Parole chiave: elettromeccanica cardiaca, cardiopatia ischemica, tachicardia
ventricolare, metodi numerici, operatori di trasferimento, simulazioni numeriche,
apprendimento automatico, riduzione di modello, analisi di sensitività globale,
stima bayesiana di parametri, quantificazione dell’incertezza.
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I N T R O D U C T I O N

The heart pumps blood into the circulatory system, delivering oxygen and nu-
trients to all the cells of the human body while assisting in the removal of
metabolic wastes [72, 83, 87]. The mechanical contraction of the heart is trig-
gered by the electrical excitation of the cardiac cells [159, 175]. This excitation-
contraction coupling, which occurs at the microscopic level and upscales to the
tissue level (the macroscopic scale), is essential to determine the electromechan-
ical activity of the heart [35, 137]. In this framework, an anatomically detailed
and biophysically accurate representation of the human heart requires multi-
physics and multiscale mathematical models of several physical processes, rang-
ing from the cellular to the organ scale [8, 138, 173].

Since cardiovascular diseases are a very common cause of death worldwide
[108], numerical simulations of cardiac electromechanics represent a promising
tool to address both physiological and pathological conditions, such as cardiac
arrhythmias, which arise from an irregular electrical activity of the human heart,
as highlighted e.g. in [55, 138, 171, 183, 192, 196]. Among them, ventricular
tachycardia (VT), which manifests as a fast heart rate (HR), is a life threatening
rhythm disorder that predisposes patients to sudden cardiac death (SCD). Clin-
ically, patients with ventricular dysfunction are more likely to develop severe
VT, which may be classified as hemodynamically stable or unstable. If stable,
antiarrhythmic drugs are generally employed, else if unstable, cardioversion is
normally needed [52]. According to the specific pathogenesis, the stability of the
VT remains the same or may change over time. Moreover, it may also degener-
ate towards ventricular fibrillation (VF), a potentially lethal condition in which
the ventricular activity is fully disorganized and chaotic [164].

Personalized computational heart models are well-suited to identify funda-
mental mechanisms of arrhythmogenesis. Biophysically detailed models of car-
diac electrophysiology are well-established and have been widely utilized for
VT identification and treatment [6, 133]. Indeed, numerical simulations circum-
vent experimental and clinical limitations by giving the possibility to test dif-
ferent hypotheses and gain insights in the cardiac function [71]. However, very
few studies have been able to create models that synthesize both electrical and
mechanical activities into a coherent form [8, 128]. Furthermore, a missing com-
ponent in the electromechanical studies is often the representation of tachycar-
dias and the effect of heart contraction in the re-entrant circuits that underlie
arrhythmias. Prior work suggests that a greater arrhythmia risk could be due
to abnormal mechano-electric feedbacks (MEFs), which define greater electrical
instability [85, 89, 177]. The cardiac mechano-electric coupling presents proar-
rhythmic effects in pathological scenarios and might induce extra stimuli, early
afterdepolarizations (EADs) or delayed afterdepolarizations (DADs) [89, 179].
However, it is unknown from a clinical perspective which is the role of MEFs
during VT, and it is difficult to dissect their mechanisms in a clinical study [162].
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In this thesis, we propose a novel electromechanical model [8, 9, 21, 55, 92,
103, 113, 147, 173] that can be employed for human ventricles with ischemic
cardiomyopathy (ICM) to study how MEFs affect the sinus rhythm (SR) be-
havior and VT arrhythmia dynamics. These aspects are indeed relevant in the
context of computational cardiology and still not fully elucidated [36, 85, 89,
177, 179, 184, 188]. This mathematical model allows us to provide non-invasive,
personalized assessments of VT circuits and the corresponding hemodynamic
consequences, which have significant clinical implications [162]. Our electrome-
chanical model results from the concerted action of several physical processes
– electrophysiology, biochemistry, mechanics – interacting at different spatial
and temporal scales [31, 43, 161, 171], ranging from nanometers to centimeters
and from nanoseconds to seconds, respectively [19, 83]. We describe all of these
phenomena by means of systems of Partial Differential Equations (PDEs) and
Ordinary Differential Equations (ODEs), which realize the coupling of electro-
physiology, ionic model, generation of active force or active deformation at the
cellular and tissue levels, passive mechanics of the myocardium, blood fluid
dynamics. For the electric part we consider the monodomain equation coupled
with the ten Tusscher-Panfilov (TTP06) ionic model [132, 158, 186]. For the me-
chanical part we use the Guccione model [69, 70] together with either Artificial
Neural Network (ANN) based active stress models [143] or a phenomenolog-
ical active strain model with transmural heterogeneous thickening of the my-
ocardium [2, 3, 13]. This 3D electromechanical model is coupled with either
a 2-element windkessel afterload model or a /0D hemodynamic model of the
whole cardiovascular system. In the latter case, we refer to a closed-loop 3D-
/0D mathematical model, where we will always consider a 3D electromechanical
description of the left ventricle only.

The 3D-/0D coupled problem is discretized by means of novel segregated
schemes, where the different electromechanical core models are sequentially
solved [45, 131, 148, 161]. These partitioned strategies often suffer from instabil-
ity issues [54, 124, 134, 146], despite being computationally more attractive than
monolithic schemes [61, 198]. Nonetheless, our numerical approaches enable to
couple the core models describing the different physics in a numerically stable
manner, yet allowing to adopt different space and time resolutions to match
their characteristic scales [21, 55, 113, 138, 148, 161, 189]. With this aim, we de-
velop flexible intergrid transfer operators [1, 62, 161] to accurately and efficiently
interpolate relevant scalar and vector fields among the core models that are de-
fined on different computational meshes. Moreover, we implement a staggered
approach by considering different time steps according to the characteristic time
scale of the different core models [45]. The computational framework presented
in this thesis achieves a very favorable trade-off between the biophysical de-
tail of the underlying mathematical models and computational efficiency of the
corresponding solver. Mathematical rigor, model accuracy and computational
efficiency are the landmarks of the proposed electromechanics solver.

Nevertheless, electromechanical simulations with sophisticated mathematical
models and accurate anatomical descriptions are known to be computationally
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demanding and time consuming [55, 138, 171, 173, 183, 192, 196]. This poses nu-
merous challenges to their effective and reliable clinical exploitation. In recent
times, Machine Learning algorithms including Gaussian Processes, ANNs, deci-
sion tree algorithms such as eXtreme Gradient Boosting and K-Nearest Neigh-
bor have been applied in the context of cardiac modeling [27, 42, 44, 47, 98] to
build suitable emulators in order to perform sensitivity analysis and parameter
estimation with simplified models, settings or geometries [40, 79, 95, 100, 103,
123, 168, 181, 205]. In this thesis, we propose a Machine Learning method to
build a reduced-order model (ROM) of cardiac electromechanical models [149].
Our approach relies on an ANN-based method that can learn a time-dependent
differential equation from a collection of input-output pairs [141]. Conversely to
existing approaches, we only surrogate the time-dependent pressure-volume re-
lationship of the studied cardiac chamber, namely the left ventricle, while we do
not reduce the model describing external circulation, whether it is a windkessel-
type preload-afterload model or a closed-loop circulation model. In other terms,
we derive a ROM for the computationally demanding components, while we
consider the full-order model (FOM) for the lightweight ones. Unlike for emu-
lators, for which the online phase consists in an evaluation of the map linking
model parameters to Quantities of Interest (QoIs), with our approach the on-
line phase consists instead in a numerical simulation, in which the ROM of the
electromechanical model is coupled with the circulation model, at a very low
computational cost. As a matter of fact, these numerical simulations can be per-
formed in real-time on a standard laptop for arbitrarily long time ranges. This
fast and reliable ROM can be exploited in numerous applications in which in-
stead the use of the FOM would be virtually unaffordable [149]. Indeed, our
ROM can be effectively employed for a quantitative evaluation on how much
each parameter affects the outputs of the model, that is global sensitivity anal-
ysis and forward uncertainty quantification. Moreover, it can be used to de-
velop fully personalized computational models, where model parameters are
calibrated on a patient-specific basis. Additionally, it can be employed to quan-
tify how uncertainty on measured data reverberates on parameter uncertainty,
that is backward uncertainty quantification.

goals and objectives

The main goal of this thesis is building a multiphysics and multiscale mathe-
matical model of cardiac electromechanics for human ventricles, with a focus on
ICM, along with proper segregated-intergrid-staggered (SIS) schemes for its nu-
merical discretization. We present a mathematical parametrization in which we
model scars, i.e. infarcted areas, grey zones, i.e. peri-infarcted areas, and healthy
regions. Furthermore, we develop suitable interpolants to transfer information
among the core models defined on different meshes of the same computational
domain, which is always represented by an idealized or realistic left ventricle.

Our mathematical approach allows to perform personalized electromechani-
cal simulations in both physiological conditions and complex pathological sce-
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narios involving arrhythmias. With respect to electrophysiological simulations,
the presence of MEFs enhances our comprehension of VT dynamics, origin
and nature, while providing further insights for treatment planning in patient-
specific cases.

Besides the development, calibration and validation of our electromechanical
model in SR and under VT, in this thesis we also aim at dramatically reduc-
ing the computational cost associated to its numerical approximation, without
compromising accuracy, by means of suitable ROMs. In particular, we develop
a Machine Learning method to construct a ROM of cardiac electromechanics in
a non-intrusive manner, which enables real-time numerical simulations of the
cardiac function. This ROM can be coupled with preload-afterload models or
closed-loop circulation models to perform global sensitivity analysis, parameter
estimation and uncertainty quantification in a fast and reliable way.

design requirements

We aim at designing a comprehensive mathematical and numerical model of
cardiac electromechanics suitable for LVs with ICM. The underlying numeri-
cal methods need to be flexible, accurate and scalable. In this manner, once
imaging with contrast enhancement techniques and (possibly) pressure-volume
measurements are available, personalized large scale electromechanical simu-
lations in patient-specific cases can be performed, both in SR and under VT.
Our numerical approach must allow for a high level of detail in both space
and time discretizations, where millions of unknowns will be determined for
each time step over several heartbeats. Our mathematical model has to encom-
pass electrophysiology and mechanics for the heart and hemodynamics for the
whole cardiovascular system. In this way, it would give novel perspectives and
relevant information to address pathological conditions involving arrhythmias.
Due to their intrinsic complexity, HPC facilities must be employed for this type
of numerical simulations. The computational costs should vary from hours to a
few days at maximum, according to the required resolution and the number of
CPUs that are employed. Indeed, our parallel framework must guarantee good
scalability properties up to tens of thousands of cores.

Once this detailed electromechanical model has been developed, there is cer-
tainly space for model order reduction, so that we can derive computational
models that run in real-time on a standard computer without compromising
accuracy. In this manner we can match the clinical time frames while providing
important indications. Indeed, ROMs are intrinsically tailored to many-query
applications. Among them, solution of inverse problems, sensitivity analysis
and uncertainty quantification are surely landmarks that must be addressed
efficiently by means of fast and reliable numerical simulations.

original contributions

The original contributions of this thesis are listed as follows.
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• We develop a novel 3D electromechanical model suitable for ICM that is
coupled with either a 2-element windkessel afterload model or a /0D closed-
loop circulation model of the whole cardiovascular system. Specifically,

– we introduce a spatially heterogeneous coefficient in the 3D mathe-
matical model to account for the presence of scars, grey zones and
non-remodeled regions of the myocardium in the left ventricle [162].

– we model MEFs [41, 73]. Among them, geometry-mediated contribu-
tions incorporate the effects of the mechanical displacement on the
cardiac tissue, while other physiological processes, such as nonselec-
tive stretch-activated channels (SACs), act at the level of single cardiac
cells [184].

– our electromechanical framework permits to classify the hemodynamic
nature of VT, which can be either stable or unstable, and to capture
mechanically relevant indications of VT, such as the incomplete relax-
ation of sarcomeres.

– we prove that our closed-loop 3D-/0D mathematical model satisfies a
balance of mechanical energy. We provide a quantitative insight in
the cardiac energy distribution by computing the different terms of
this balance during a heartbeat. We highlight the features of different
compartments during the different stages of the heartbeat, i.e. when
energy is injected, dissipated or transformed. Thanks to our mathemat-
ical model we can also assess the validity of simplified relationships
commonly used in the clinical practice to estimate the main indica-
tors of heart energy distribution [81]. We prove that the coupling be-
tween the 3D electromechanical model and the /0D circulation model
is consistent with the principles of energy conservation. Indeed, we
impose a boundary condition at the base of the LV that we denote as
energy-consistent boundary condition [143, 148]. Moreover, we apply
a boundary condition at the epicardium that keeps into account the
effect of the pericardial sac [147, 161].

• We propose two different partitioned schemes for the numerical discretiza-
tion of this 3D-/0D coupled problem. Specifically,

– space discretization is performed by means of the Finite Element Method
(FEM). A first SIS (SIS1) scheme proposed is based on Rescaled Lo-
calized Radial Basis Functions (RL-RBF) [46, 56, 57], which allow to
interpolate in a fast and accurate manner both scalar and vector fields
approximated with first-order Finite Elements among completely inde-
pendent, i.e. non-nested, tetrahedral meshes [161]. On the other hand,
the second SIS (SIS2) scheme exploits the octree structure of hexahe-
dral meshes to transfer information among nested meshes and arbi-
trary Finite Element spaces.

– we design proper implicit-explicit (IMEX) schemes [137] to minimize
the number of nonlinear systems to solve, limiting the use of implicit
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solvers only for those core models that would otherwise lead to a se-
vere restriction on the time step. In particular, our numerical scheme
allows to update the variables of the ionic and active stress models
without the need of solving any algebraic system (neither nonlinear
nor linear), and it allows to update the electrical potential and active
strain variable by solving a single linear system at each time iteration.
The nonlinear system of our mathematical model is associated with
cardiac mechanics, for which explicit or semi-implicit schemes are un-
stable, unless a very fine time step is employed, because of the strong
nonlinearities contained in the constitutive law [138].

– we couple the 3D and the /0D models [20, 76] in the segregated scheme
by means of a novel numerical approach. We reinterpret the cavity
pressure of the LV as a Lagrange multiplier to enforce a volumetric
constraint to couple the /0D circulation model and the 3D electrome-
chanical model. We end up with a saddle-point structure for the me-
chanical problem, which is numerically solved by using the Schur com-
plement reduction [18]. Our scheme is numerically stable and can be
applied to all the phases of the cardiac cycle (filling phase, ejection
phase and isovolumetric contraction and relaxation phases) without
the need of switching among different /0D models and without consid-
ering any change in the parameters of the equations [148, 162]. This
approach enables the numerical simulation of VT.

– looking towards the patient-specific customization of our electrome-
chanical model, we note that cardiac geometries are mostly acquired
in vivo with imaging techniques. In this setting, atria and ventricles
are loaded, mainly by the pressures acting on the endocardium, and
present residual internal stresses. Therefore, the stress-free configura-
tion, to which the equations for cardiac electromechanics must refer,
is not known a priori. As this is necessary to set the reference config-
uration for the mechanical model, we formulate an inverse problem
aimed at recovering such stress-free reference configuration starting
from the geometry acquired from medical imaging. We also propose
a novel and robust algorithm to solve this inverse problem. Our ref-
erence configuration recovery algorithm keeps into account the dis-
tribution of infarct zones, peri-infarct areas and non-remodeled re-
gions. Nevertheless, its numerical resolution can be computationally
demanding for highly refined meshes. For this reason, our algorithm
for the recovery of the reference configuration is supplied by a pro-
jection technique that accurately retrieves the stress-free configuration
from a coarser and independent representation of the computational
domain [147, 148].

• We develop an ANN-based ROM that enables real-time electromechanical
simulations. In the so-called offline phase, the ANN-based ROM is built
from a database of numerical simulations that are previously obtained with
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the FOM itself. Then, in the online phase, the ANN-based ROM is used
as a surrogate of the FOM, e.g. to perform global sensitivity analysis or
parameter estimation. Specifically,

– the ANN-based ROM of cardiac electromechanics is independent of
the circulation model to which is coupled.

– our ANN-based ROM allows for reliable predictions even over longer
time spans than those used during training.

– the output of the numerical simulations obtained with our ANN-based
ROM is not limited to a list of scalar values, called QoIs. Indeed, it con-
tains the transient of pressures and volumes of the heart chamber that
is surrogated and of the compartments of the circulation model.

– only the variability with respect to the 3D electromechanical model
needs to be learned by our ANN-based ROM, since the /0D circulation
model remains explicitly represented.

organization of the thesis

This thesis is organized as follows.

•• In Chap. 1 we provide an overview of basic cardiac anatomy, with a focus
on the electromechanical function of the heart. Moreover, we explain the
mechanisms of arrhythmias and the pathophysiology of ICM.

• In Chap. 2 we introduce the mathematical model of cardiac electromechan-
ics for human ventricles with ICM. We derive the balance of mechanical
energy for the 3D-/0D closed-loop model and we show the reference config-
uration recovery algorithm. Then, we propose two possible SIS numerical
schemes to perform the space and time discretizations of this 3D-/0D cou-
pled problem.

• In Chap. 3 we present some electromechanical simulations in SR on ideal-
ized and realistic LVs without ICM to show the features of our mathemati-
cal and numerical frameworks in physiological conditions.

• In Chap. 4 we present some electromechanical simulations on LVs with
ICM, both in SR and VT. We discuss the effects of MEFs and we make com-
parisons with respect to electrophysiological simulations. We also man-
ually calibrate the parameters of our electromechanical model to fit the
available clinical data for a patient-specific LV with ICM.

• Chap. 5 is devoted to Machine Learning and to ROMs. We explain the
mathematical approach behind the ANN-based ROM of cardiac electrome-
chanics that we build. Then, we address variance-based global sensitivity
analysis and Bayesian parameter estimation by means of the Markov Chain
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Monte Carlo (MCMC) method, to show the capabilities and the perfor-
mances of our ANN-based ROM.

In Conclusions, we make some final remarks and draw some perspectives for
future research.
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1
C A R D I A C A N AT O M Y A N D PAT H O P H Y S I O L O G Y

In this chapter we provide an overview of cardiac physiology. We consider the
different physics that interact in cardiac electromechanics, namely electrophysi-
ology, mechanical activation, passive mechanics and blood circulation. We start
by giving some information on the cardiac function in healthy conditions. Then,
we focus on pathological scenarios involving arrhythmias and ICM.

1.1 the cardiac function

The heart is a hollow muscular organ composed of cardiomyocytes, the cells
that constitute the cardiac muscles. Its role is to pump blood through all the
blood vessels of the circulatory system. Blood provides the body with oxygen
and all kinds of necessary nutrients. It also assists in the removal of metabolic
wastes produced by cellular reactions [87]. In humans, the heart is located in the
middle compartment of the chest, between the lungs [35, 72, 83].

The human heart is a double pump made by four chambers. In the lower
part, there are the left ventricle (LV) and the right ventricle (RV), which are also
called discharging chambers. The two ventricles are divided by the interven-
tricular septum. In the upper part, there are the left atrium (LA) and the right
atrium (RA), which are separated by the interatrial septum. We refer to the atria
as receiving chambers [35]. Atria and ventricles are separated by the atrioven-
tricular septum, which contains the mitral valve (MV) in the left heart and the
tricuspid valve in the right heart. The LV is connected to the aorta through the
aortic valve (AV), whereas the RV has a connection with the pulmonary artery
via the pulmonary valve [72]. In Fig. 1.1, we depict a schematic diagram of the
human heart.

The RA receives blood mainly from the body’s two major veins, the superior
and inferior venae cavae. A small amount of blood comes inside the RA from the
coronary circulation, through the coronary sinus, which is immediately above
and to the middle of the opening of the inferior vena cava. The RA drives the
blood towards the RV, which synchronously contracts, to push it through the
pulmonary circulation, to the lungs and then back to the heart. The LA receives
oxygenated blood back from the lungs via one of the four pulmonary veins.
Then, this blood moves towards the LV. This last cardiac chamber exerts a huge
force to pump oxygenated blood towards the aorta, and then to the entire sys-
temic circulation around the body, until even the smallest vessels are all reached
by nutrients and oxygen. All the presented cardiac functions, involving mechan-
ics and hemodynamics, are triggered and coordinated by the electrical activity
of the heart [83], which will be detailed in Sec. 1.3.
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Figure 1.1: Schematic diagram of the anatomy of the heart (image taken from [35]).

The cardiac muscle is generally called myocardium. While the atria are usually
quite thin, the thickness of the ventricles is never negligible [35]. In particular,
atria thickness ranges from 1 to 4 mm. LV wall dimension goes from 7 to 11

mm, while the mean RV thickness ranges from 4 to 7 mm [83]. Indeed, the
LV wall is known to be about two/three times thicker than the right one [83].
Atria and ventricles are differentiated into endocardium, which represents the
internal wall, and epicardium, for the external one. There is also a fibro-serous,
fluid-filled sac that surrounds the heart: this is the so called pericardium. In
Fig. 1.2, we show the heart wall structure, going from the endocardium to the
pericardial sac.

1.2 classification of cardiac cells

Cardiac cells can be categorized as [35]:

• Working cardiomyocytes: they define the atrial and ventricular tissues and
are responsible for force development. They present a tubular structure,
with a diameter of about 10-20 µm and a length of about 50-150 µm. My-
ocytes volume and shape can be complex and variable, according to the
tissue region, developmental stage and disease processes. They are cov-
ered by a lipid membrane, the sarcolemma, and contain one or more nu-
clei, mitochondria, myofibrils, the sarcoplasmic reticulum, sarcomeres, the
cytoskeleton anchoring the different organelles and an aqueous solution,
the sarcoplasm, filling the intracellular space. The sarcolemma is a semi-
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Figure 1.2: Structure of the heart wall (image taken from [200]).

permeable barrier and contains ionic channels, pumps and exchangers
that allow the inward and outward currents involved in the generation
of the action potential (see Sects. 1.3 and 1.4), as well as other proteins that
contribute to cell adhesion and signalling. Cardiomyocytes exhibit a peri-
odic structure with crossed striations formed by alternating segments of
thick and thin protein filaments. The sarcolemma envelops the so called T-
tubules, which allow quick penetration of the depolarization process to the
interior of the cell and play an important role in the excitation-contraction
coupling (see Sec. 1.5).

• Nodal cells: they are able to autonomously activate themselves thanks to
the presence of particular ionic channels. The sinoatrial node and the atri-
oventricular node are made by this kind of cells (see Sec. 1.3). Compared
with working myocytes, they are smaller, have limited contractile activ-
ity and lack T-tubules. They are also susceptible to autonomic influences
thanks to the presence of specific innervation.

• Conduction cells: they are also known as Purkinje cells and have a lot
of aspects in common with working myocytes, but with larger diameter,
reduced contractile proteins and a few T-tubules. They are distributed over
the ventricles of the human heart.

• Fibroblasts: they are mechano-electrical transducers (but also electrically
non-excitable cells) located in areas between and surrounding cardiac my-
ocytes. They constitute the major non-myocyte cell population in the ven-
tricles and are responsible for the synthesis of extracellular matrix proteins
such as different types of collagen. Fibroblasts can become myofibroblasts
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Figure 1.3: Internal structure of cardiomyocytes (image adapted from [87]).
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and both types of cells are involved in the development of fibrosis in in-
jured cardiac tissue.

• Extracellular matrix and collagen: they furnish the passive mechanical
properties of cardiac tissue. The extracellular matrix occupies an important
role in muscle development and maintainance of the functional integrity of
the myocardium. The collagen network surrounds single myocytes instead.

• Gap junctions: they are essentially ionic channels with a length of about 2-
12 nm and a diameter of about 2 nm, used to interconnect myocytes mostly
end-to-end (longitudinal gap junctions), but also laterally (transversal gap
junctions).

• Cardiac stem cells: they regulate myocytes turnover and play a role in
myocardial recovery after injury.

We depict in Fig. 1.3 the microscopic elements that constitute a single cardiomy-
ocyte.

1.3 the conduction system of the heart

At the microscopic scale, the contraction of cardiac cells, as in other muscle cells,
is initiated by an electrical activation due to an action potential (AP) [138]. The
AP is generated by the interaction of inward and outward ionic currents that
pass through the cardiac cells membrane. Indeed, depolarizing transitory cur-
rents raise the transmembrane potential of the excitable cells from its resting
value, which ranges between -90 and -60 mV, to slightly positive values [35]. Af-
ter that, repolarizing currents return the transmembrane potential to its resting
value. These ionic currents cause variations in the concentration of several ionic
species. The most important one in the initiation of cardiac contraction is given
by the intracellular calcium concentration [Ca2+]i [87].

AP propagates from one cell to its neighbors through gap junctions, i.e. inter-
cellular low-resistance ionic channels. This allows the stimulus to travel through
the whole cardiac tissue from one cell to another. Indeed, cardiomyocytes are
arranged in sheets of fibers. The gap junctions are located for the most part,
although not exclusively, in the longitudinal direction of the fibers, resulting in
preferential lines of propagation for the electric signal [35].

Differently from skeletal muscle cells, cardiac cells can activate themselves
autonomously, independently of a nervous stimulus [35]. The electrical activity
of the heart starts at the so called sinoatrial node (SAN), a group of cardiac
pacemaker cells located on the top of the RA [83]. The cells of the SAN have
the fastest spontaneous depolarization speed of the cardiac conduction system
and therefore they control the cardiac frequency in normal conditions. The au-
tonomic nervous system and the endocrine system present a connection with
the SAN cells, because they can modulate both beat-to-beat and long-term vari-
ations of the cardiac frequency [72]. In normal conditions, these cells generate
an AP that propagates throughout the RA. Then, thanks to the Bachmann’s
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Figure 1.4: Heart conduction system (image taken from [199]). 1. Sinoatrial node. 2. Atrioventric-
ular node. 3. Bundle of His. 4. Left bundle branch. 5. Left posterior fascicle. 6. Left
anterior fascicle. 7. Left ventricle 8. Ventricular septum. 9. Right ventricle. 10. Right
bundle branch.

bundle and some other preferential lines of trasmission, the AP reaches the LA.
Both atria are stimulated in such a way that they will contract in a coordinated
and physiological manner [83]. The activation front reaches the atrioventricular
node (AVN), located in the central conjunction area between atria and ventricles,
where, precisely, the interatrial septum and interventricular septum meet. The
cells of the AVN have a relatively slow conduction velocity (CV) and they are re-
sponsible for the major part of the normal conduction delays between atrial and
ventricular contractions. Such delays are properly timed to optimize the atrial
pump activity and to protect the ventricles from early stimulation [83]. The
AVN conducts the AP through the nonexcitable atrioventricular septum and ac-
tivates the specialized fibers of the bundle of His and the Purkinje network. This
network spreads as a tree-like left and right bundle branches that end on the
endocardial surface of the ventricles [165]. These Purkinje terminations transmit
the AP to the ventricular walls, which propagates throughout the ventricles and
induces ventricular contraction. The electrical activation of the LV, which is the
largest cardiac chamber among the four that are present, normally starts at the
interventricular septum. On the other hand, the RV normally contracts shortly
after the LV [35, 165]. The whole heart conduction system is depicted in Fig. 1.4.
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Figure 1.5: Example of ventricular AP with its phases: /0 (depolarization or upstroke), 1 (peak
or notch), 2 (plateau), 3 (repolarization or recovery), 4 (resting). Intracellular calcium
concentration [Ca2+]i plays a major role in heart contraction [19]. Image taken from
[24].

1.4 the action potential

As the focus of this thesis is on the ventricular part of the heart, we analyze the
main phases of a ventricular AP in normal conditions (as reported in Figure 1.5)
[35]:

• Phase /0: myocytes undergo a rapid depolarization due to the opening of
the fast Na+ channels. This causes a rapid increase in the membrane con-
ductance, and thus a rapid influx of Na+ ions into the cell, the INa current,
through sodium channels.

• Phase 1: inactivation of the fast Na+ channels. The transient net outward
current causing the small downward deflection of the AP is due to K+ and
Cl− ions carried by the Ito1 and Ito2 currents, respectively.

• Phase 2: plateau created by a balance between the inward movement of
calcium ions Ca2+, the ICa current through L-type calcium channels, and
the outward movement of potassium ions K+, contributing to the IKs cur-
rent through the slow delayed rectifier potassium channels. The sodium-
calcium exchanger current INa,Ca and the sodium/potassium pump cur-
rent INa,K also play minor roles during this phase.

• Phase 3: rapid repolarization phase of the AP, when the L-type Ca2+ chan-
nels close while the slow delayed rectifier K+ channels (IKs) are still open.
This ensures a net outward current, corresponding to negative change in
membrane potential, thus allowing more types of K+ channels to open.
These are primarily the rapid delayed rectifier K+ channels (IKr current)
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Figure 1.6: Heterogeneity of cardiac APs in different regions of the heart (image taken from
[109]).

and the inwardly rectifying K+ current IK1. This net outward, positive cur-
rent causes the cell to repolarize. The delayed rectifier K+ channels close
when the membrane potential is restored to about -84 mV, while IK1 is
maintained throughout phase 4, contributing to set the resting membrane
potential.

• Phase 4: resting phase, where the transmembrane potential remains at the
resting value of about -84 mV until it is stimulated again by an external
electrical activity.

We underline that the cardiac AP is different moving from one region of the
heart to another one, as can be seen in Fig. 1.6. Its shape, the duration of the dif-
ferent phases, and also the total AP duration (APD), change from the epicardial
to the endocardial zone, from atria to ventricles.
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Figure 1.7: Action of [Ca2+]i in the contraction process (image taken from [87]).

1.5 excitation-contraction coupling

In this section, we focus on the role of intracellular calcium concentration [Ca2+]i
in cardiac active mechanics. This ionic species influences the pacemaking at the
level of the SAN and the contraction of the whole cardiac tissue [35].

Intracellular calcium concentration increases during the first phases of the AP
because of the flux of ions coming from the extracellular space through the spe-
cialized long lasting (L-type) channels. Moreover, there is a subsequent release
of calcium from the terminal cistarnae in the sarcoplasmic reticulum, according
to the calcium induced-calcium release mechanism [87]. Crossbridge dynamics,
i.e. contraction of the cardiomyocytes, is initiated by this change of the intracel-
lular calcium concentration. At this point, [Ca2+]i ions bind to troponin-C in the
thin filaments, which leads to the detachment of troponin regulatory complex
to the binding site in actin and to the binding of the head of myosin to actin.
Consequently, thin and thick filaments of the sarcomeres, which are the smallest
functional units in cardiomyocytes (see Fig. 1.3), start to slide past each other. In
this way, the individual sarcomeres shorten, and the whole cell contracts.

The contraction of the cell continues as long as the cytosolic calcium concentra-
tion remains high enough. Intracellular calcium concentration starts to decrease
in the last part of the AP, due to the ions leak through the calcium pump, the
Na-Ca exchanger and the binding to cytosolic proteins ([Ca2+]i buffers) inside
the sarcolemma. In this phase, some of the free ions are also trapped by an
adenosine triphosphate dependent calcium pump. Calcium starts to dissociate
from the binding sites and the troponin complexes bind again to the actin fibers.
The sarcomeres return then to their initial length and the cell relaxes. The entire
process is synthesized in Fig 1.7.

1.6 wiggers diagram

The Wiggers diagram is a standard plot used in cardiac physiology to illustrate
the coordinated effects of electrophysiology, mechanics and hemodynamics in
a healthy human heart [107]. It presents time on the X-axis and the following
possible values on the Y-axis:
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Figure 1.8: Typical Wiggers diagram for the left heart (image taken from [201]).

• Blood pressure (specifically aortic pressure, ventricular pressure, atrial pres-
sure).

• Ventricular volume.

• Electrocardiogram (ECG), which is a recording of the electrical activity of
the heart over a period of time using electrodes placed on the skin.

• Phonocardiogram, which is a plot that shows all the sounds made by the
heart. It is recorded with a machine called phonocardiograph.

The Wiggers diagram clearly illustrates the coordinated variation of these val-
ues as the heart beats. Specifically, the entire cardiac cycle is divided into the
following different phases:

• Atrial contraction or ventricular filling phase: the MV is opened and the
blood flows into the LV.

• Isovolumetric contraction phase: the MV is closed. The LV pressure in-
creases while the LV volume remains approximately constant.

• Rapid and slow ventricular ejection phase: the AV is opened, whereas the
MV is closed. The LV is contracting and pumping blood towards the aorta.
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Figure 1.9: Example of PV loop. From A to B: early ventricular filling phase. From B to C: late
ventricular filling phase. From C to D: isovolumetric contraction phase. From D to E:
early ventricular ejection phase. From E to F: late ventricular ejection phase. From F
to A: isovolumetric relaxation phase. Image taken from [23].

• Isovolumetric relaxation phase: both the MV and the AV are closed. The LV
pressure decreases while the LV volume remains approximately constant.

• Rapid inflow phase: the MV opens again, the blood flows again into the
LV and the cycle repeats itself.

For the sake of simplicity, the cardiac cycle has been presented hereabove for
the left part of the heart, but the same phases holds also for the right part.

The Wiggers diagram is illustrated in Fig. 1.8. By looking at the physiological
aortic pressure over time, we notice that it is approximately equal to 80 mmHg
until the rapid ventricular ejection phase occurs. When the blood is pushed to-
wards the aorta, it rises to almost 120 mmHg. Then, it comes back to the original
value during the relaxation phase [107]. In the LV pressure diagram, there is a
significant gradient during the isovolumetric contraction phase, because when
the ventricle contracts, the pressure exterted in the blood pool builds up and ap-
proximately reaches 120 mmHg. After that, we observe a pressure drop when
the ventricle stops to contract, i.e. during the isovolumetric relaxation phase
[107]. Due to the reduced thickness and contractility properties of the atria, we
do not notice significant variations in the atrial pressure wave during the cardiac
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cycle. Indeed, this value slightly increases during the ventricular filling phase
only.

The LV volume drops during the ventricular ejection phase, because the blood
is pumped out from the LV and moves towards the aorta. The volume starts to
increase slowly when the MV opens again, so that the LV starts to receive blood
from the LA once again. Regarding the cardiac cycle, we distinguish systolic
phases, when the heart (or a part of it) is contracting, and diastolic ones, when
the heart (or a part of it) is relaxing.

As it can be seen in Fig 1.9, LV pressure and volume can be also represented
in the so called pressure-volume (PV) loop, where the time dependency is some-
how neglected [23]. Three out of four phases, namely isovolumetric contraction,
ventricular ejection and isovolumetric relaxation, are dominated by active me-
chanics and excitation-contraction coupling. Only in the latter phase, i.e. ven-
tricular filling, passive mechanics plays a significant role. Specifically, it dictates
the so called end-diastolic pressure volume relationship. Indeed, we refer to
end-diastolic volume (EDV) and end-diastolic pressure (EDP) to indicate the
maximum blood pool volume reached by the ventricle during relaxation, along
with the corresponding internal pressure [23]. On the other hand, end-systolic
volume (ESV) and end-systolic pressure (ESP) represent the minimum blood
pool volume of the ventricle, i.e. at the end of contraction, and the correspond-
ing pressure [23].

There are several indicators commonly used in the clinical setting to character-
ize the heart function. One of these is the stroke volume (SV), which quantifies
the amount of blood that is pumped every heartbeat:

SV = EDV − ESV (1.1)

Then, there is also the ejection fraction (EF), which is given by the SV normalized
by the EDV and accounts for the variability in size between patients:

EF =
SV

EDV
100 (1.2)

In humans, EF tipically ranges between 50% and 80%. Lower values are gener-
ally sign of heart failure or other pathological conditions [52]. The average SV
of a healthy adult is about 80 mL, with an EDV of 130 mL [107]. In the next
sections we detail how electrophysiology, mechanics and hemodynamics may
be altered in pathological scenarios. In particular, the focus of this thesis is on
patients with ICM.

1.7 cardiac arrhythmias

Arrhythmias are heart rhythm disorders in which the heartbeat is irregular [203].
The term bradycardia expresses the pathological condition in which the HR is
slower than normal, i.e. 60 to 100 heartbeats per minute (in adults, at rest) [104].
On the contrary, tachycardia leads to faster HRs, which can go significantly
over 100 heartbeats per minute (in adults, at rest) [104]. Arrhythmias are ini-
tiated by an abnormal AP generation/propagation. Sometimes, they manifest
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Figure 1.10: Example of reentry circuit due to slow conduction areas. Starting from SR (left), a
premature stimulus arrives while the slow pathway is still in the effective refractory
period (ERP), i.e. in the time period in which a new AP cannot be elicited (center).
The electric signal travels back once the ERP ends and initiates a circular path (right).
Image adapted from [67].

in the form of reentries, where the AP travels in a circular path under the ap-
pearance of a self-exciting wavefront [203]. Furthermore, it is easier for the AP
wavefront to deviate from the SR behavior in presence of areas of slow conduc-
tion (as in Fig. 1.10). Reentries may be dangerous, especially if they are frequent
and persistent. They may be hemodynamically stable or unstable. Especially in
the latter case, the capability of the heart to exert its pumping function might
be significantly compromised. Finally, they can also degenerate into a chaotic
state called fibrillation, where the pathways continuously change their size and
location. Severe tachycardias and fibrillations are associated with SCD [90].

Arrhythmias can be observed both in atria and ventricles, but the most dan-
gerous ones are generally associated with ventricles [90]. From the clinical per-
spective, according to the specific pathogenesis of the patient, arrhythmias are
treated by using drugs, such as beta blockers, or by surgery. In the latter case,
cardiac ablation or implantable cardioverter-defibrillators are employed, espe-
cially for patients that underwent infarction [97, 102, 169, 202].

1.8 ischemic cardiomyopathy

ICM is the most common type of dilated cardiomyopathy and it is one of the
most frequent causes of heart failure [48, 106, 121]. It mostly affects the LV and
it impairs the ability of the heart to efficiently pump blood in the circulation
system.
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Figure 1.11: Myocardial infarction in the ventricular part of the heart (A) generated by a blood
clot in the coronary artery (B). The infarcted area is no longer perfused and is
subjected to electromechanical remodeling. Indeed, the loss of myocytes due to
blood flow obstruction is generally replaced by collageneous scar tissue, which is
very stiff and non-conductive. Peri-infarct areas around the necrotic zones, which
are also called grey zones, are generally present. Grey zones own intermediate
myocardial properties between scars and non-remodelled regions. Image adapted
from [4].

Myocardial infarction (see Fig. 1.11) leads to an enlargement of the blood pool
volume, i.e. an increase of ESV, EDV and EDP. Both SV and EF significantly re-
duce, along with the mean arterial pressure (MAP). Healthy, peri-infarct and
infarct zones are liable for short-term and long-term remodeling of the electro-
physiological behavior, involving modifications in the restitution curves of CV,
APD and ERP. Ischemic regions are also known to become stiffer and thinner
than full healthy tissue, with either a low or a strong impairment in their contrac-
tility function. The LV pathophysiological remodeling has a significant impact
on flow rates across the heart valves, pressures and volumes ranges of LA, RA,
RV, systemic and pulmonary circulation. This also implies relevant metabolic
changes in the whole body [170].

Patients with ICM present different symptoms including shortness of breath,
fatigue, inability to exercise and dizziness [48, 106, 121]. Moreover, the presence
of fibrous tissue and slow conduction areas eases the generation of irregular
heart rhythms, which are generally more dangerous and more frequent than the
ones observed in non-ICM patients [169]. These electric abnormalities are called
VT and can be either hemodynamically stable or unstable. In some dangerous
cases, they may also degenerate yielding VF. These arrhythmias, if severe and
not properly treated, may induce palpitations, fainting or possibly SCD.
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2
C A R D I A C E L E C T R O M E C H A N I C A L M O D E L S

In this chapter, we introduce the mathematical models that have been used in
this thesis to study cardiac electromechanics in human ventricles [61, 131, 147,
162]. Then, we explain the numerical methods that are employed to accurately
and efficiently solve this mathematical problem [45, 131, 148, 161]. With respect
to other electromechanical models available in the literature [8, 37, 60, 65, 128,
158, 173, 187, 195], our mathematical and numerical model features several nov-
elties.

• We propose a 3D-/0D closed-loop electromechanical model suitable for LVs
with ICM. Our mathematical model accounts for space heterogeneity in
the electromechanical properties of both cardiac cells and tissue (Secs. 2.1
and 2.2).

• We derive a balance of mechanical energy for both the /0D closed-loop
cardiocirculatory model and the 3D-/0D coupled problem (Sec. 2.3).

• We introduce novel numerical schemes for the discretization of the 3D-/0D
model of cardiac electromechanics. We develop reliable and scalable inter-
grid transfer operators to capture the significant spatial-scale separation
between electrophysiology and mechanics. Moreover, our strategy allows
for numerical simulations of any type of arrhythmia (Sec. 2.4).

2.1 mathematical models

We consider a computational domain Ω0 ⊂ R3, representing the 3D region
occupied by an LV in reference (i.e. stress-free) configuration (Fig. 2.1) [147,
148]. We split the boundary of Ω0 into endocardium (Γ endo

0 ), epicardium (Γ epi
0 )

and ventricular base (Γbase
0 ), namely the artificial boundary located where the

LV geometry is cut.
We consider a multiphysics and multiscale model of cardiac electromechan-

ics made of five different blocks (henceforth denoted as core models) plus a
coupling condition. The core models are associated with the different physical
phenomena concurring – at different spatial and temporal scales – at the heart
function. They correspond to the propagation of the AP (E ) [34, 35, 132], ions
dynamics (I ) [25, 99, 186], active contraction of cardiomyocytes (A ) [142, 143,
152, 153, 155], tissue mechanics (M ) [70, 115] and blood circulation (C ) [20,
76]. Finally, the volume conservation condition (V ) enables to consistently cou-
ple (M ) and (C ) core models. In Fig. 2.2 we depict the electric analog circuit
corresponding to our /0D circulation model, along with the coupling with a 3D
electromechanical description of the LV.
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Figure 2.1: Representation of boundaries Γ epi
0 , Γbase

0 and Γ endo
0 of the domain Ω0, given by the

Zygote Solid 3D LV [80], which represents the LV of the 50
th percentile of a healthy

caucasian male in the U.S., reconstructed from a high resolution computed tomogra-
phy scan.

2.1.1 Electrophysiology (E )–(I )

We model the electrophysiological process by means of the monodomain equa-
tion, a diffusion-reaction PDE that describes the electric properties of cardiac
muscle cells, assuming the same anisotropy ratios between the intracellular and
extracellular spaces [35]. It is a homogenized continuum model, which means
that it is used to capture average properties of many cardiomyocytes, and not the
behavior of single cells. We couple the monodomain equation with the TTP06

ionic model, because we focus on the human LV [186]. This model permits to
describe the microscopic details of the single cardiomyocyte in a physiological
manner [35].

The electrophysiological model reads:

Jχm

[
Cm

∂u

∂t
+ Iion(u,w, z) + ISAC(u, F)

]
= ∇ · (JF−1DF−T∇u) + JχmIapp(t)

in Ω0 × (0, T ],

∂w

∂t
−H(u,w) = 0 in Ω0 × (0, T ],

∂z

∂t
−G(u,w, z) = 0 in Ω0 × (0, T ],(

JF−1DF−T∇u
)
·N = 0 on ∂Ω0 × (0, T ],

u = u0, w = w0, z = z0 in Ω0 × {0}.

(2.1)

Ω0 ⊂ R3 is the computational domain, T > 0 is the final time. Cm is the total
membrane capacitance and χm is the area of cell membrane per tissue volume.
u is the dimensionless transmembrane potential, vector w = {w1,w2, ...,wk}

expresses k recovery (or gating) variables, which play the role of probability
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Figure 2.2: 3D-/0D coupling between the 3D LV electromechanical model and the /0D circulation
model. The state variables corresponding to pressures and fluxes are depicted in
orange and blue, respectively. The LV geometry may possibly present ICM [162].
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Figure 2.3: Dimensionless AP (left) and intracellular calcium concentration [Ca2+]i (right) for
different values of η = η(x) (TTP06 model, epicardium). η = 1 corresponds to healthy
tissue, whereas η ∈ {0.1, 0.25, 0.5, 0.75} defines different peri-infarct zones.

density functions and model the fraction of open ionic channels across the
membrane of a single cell, and vector z = {z1, z2, ..., zm} defines m concentra-
tion variables of specific ionic species such as calcium [Ca2+]i, which plays a
major role in heart contraction and mechanical activation. Iapp(t) is an exter-
nal applied current, which simulates in our case the behavior of the Purkinje
network [151, 190]. Indeed we use it to trigger the AP in specific points of the
myocardium. Iion(u,w, z) is the feedback from the cellular scale into the tissue
one, and strictly depends on the chosen ionic model. A Neumann boundary con-
dition is applied all over the boundary and defines the condition of electrically
isolated domain. H(u,w) and G(u,w, z) keep into account the specific features
of the TTP06 ionic model [186].

The diffusion tensor is given by:

D = ησl
Ff0 ⊗ Ff0
|Ff0|2

+ ησt
Fs0 ⊗ Fs0
|Fs0|2

+ ησn
Fn0 ⊗ Fn0
|Fn0|2

, (2.2)

being f0 the vector field expressing fiber direction, s0 the vector field related
to sheet direction and n0 the vector field that indicates the sheet-normal, or
equivalently crossfiber, direction [130]. Longitudinal, transversal and normal
conductivities are expressed by σl,σt,σn ∈ R+, respectively [157]. As a novel
contribution, we introduce a parameter η = η(x) that takes into account the
effect of ischemic regions both at the macroscopic scale and at the microscopic
one. With respect to the latter point, GNa(x), GCaL(x), Gkr(x) and Gks(x) conduc-
tances of the TTP06 ionic model [186] vary in space according to the following
laws:

GNa(x) =

[
0.38+

10

9
(η(x) − 0.1)0.62

]
GNa,
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GCaL(x) =

[
0.31+

10

9
(η(x) − 0.1)0.69

]
GCaL,

Gkr(x) =

[
0.30+

10

9
(η(x) − 0.1)0.70

]
Gkr,

Gks(x) =

[
0.20+

10

9
(η(x) − 0.1)0.80

]
Gks,

where GNa, GCaL, Gkr and Gks are defined as in [186]. We can potentially con-
sider a continuum of grey zones using linear interpolation, for η(x) ∈ [0.1, 1],
going from the full healthy case (η(x) = 1) to the grey zone described in [6]
(η(x) = 0.1), where GNa, GCaL, Gkr and Gks conductances are reduced to 38%,
31%, 30% and 20% of their physiological values, respectively. We model scars
as myocardial regions where no evolution of both the transmembrane potential
and all ionic variables occur, where therefore Eq. (2.1) is not actually solved. We
report in Fig. 2.3 the evolution over time of the transmembrane potential u and
the intracellular calcium concentration [Ca2+]i for different values of the param-
eter η. Moving from η(x) = 1 to η(x) = 0.1 leads to a reduced upstroke and a
longer plateau of the AP. This parameter η will be also introduced in Secs. 2.1.2
and 2.1.3 for mechanical activation and passive mechanics, respectively.

By indicating X and x as the reference and deformed coordinates respectively,

we introduce the deformation tensor F = I +
∂d
∂X

and its determinant J = det(F),
which are needed to perform the mechano-electric coupling [183]. Indeed, we
model the so called MEFs [41, 73]. The geometry-mediated MEFs incorporate
the effects of displacement d on the cardiac tissue, while other physiological
processes act at the level of single cardiomyocytes [95, 184]. Among them, some
examples are selective (e.g. K+-permeable) or nonselective SACs and intracel-
lular calcium [Ca2+]i binding to sarcolemmal buffers, the latter requiring more
sophisticated ventricular ionic models [14, 180]. In this thesis we model nonse-
lective SACs by means of the following formulation [95]:

ISAC(u, F) = Gs(|Ff0|− 1)+(u− urev), (2.3)

where Gs and urev represent the conductance of the channels and the reversal
potential, respectively. SACs may alter the shape of the AP by lengthening or
shortening its duration (APD) and by generating higher resting potentials. This
may induce EADs or DADs and premature excitation. Both geometry-mediated
MEFs and nonselective SACs are generally known to be pro-arrhythmic in
pathological scenarios, because they increase the likelihood of having extra stim-
uli during cardiac contraction and relaxation [184].

In some of the numerical simulations that will be presented in Chap. 4, we
consider Eq. (2.1) with several degrees of complexity to assess similarities and
differences in the outcomes of the electromechanical simulations, both in SR
and during VT, for the different configurations, which are reported in Tab. 2.1.
In particular, the choice of three different mathematical models for the geometry-
mediated MEFs, namely (EgMEF-minimal), (EgMEF-enhanced) and (EgMEF-full), is mo-
tivated by the numerous formulations of this type of feedback that can be found
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Model name Equation

(E ) χm

[
Cm

∂u

∂t
+ Iion(u,w)

]
−∇ · (DI∇u) = χmIapp(t)

(EgMEF-minimal) χm

[
Cm

∂u

∂t
+ Iion(u,w)

]
−∇ · (JF−1DI F−T∇u) = χmIapp(t)

(EgMEF-enhanced) χm

[
Cm

∂u

∂t
+ Iion(u,w)

]
−∇ · (JF−1DF−T∇u) = χmIapp(t)

(EgMEF-full) Jχm

[
Cm

∂u

∂t
+ Iion(u,w)

]
−∇ · (JF−1DF−T∇u) = JχmIapp(t)

(ESAC) χm

[
Cm

∂u

∂t
+ Iion(u,w) + ISAC(u, F)

]
−∇ · (DI∇u) = χmIapp(t)

(EgMEF-full, SAC) Jχm

[
Cm

∂u

∂t
+ Iion(u,w) + ISAC(u, F)

]
−∇ · (JF−1DF−T∇u) = JχmIapp(t)

Table 2.1: Modeling choices for the monodomain equation. DI indicates the conductivity tensor
in Eq. (2.2) with F = I.

in the literature [32, 38, 95, 137]. Indeed, we range from minimal to complete
inclusion of geometry-mediated MEFs in the monodomain equation. Neverthe-
less, unless otherwise stated, we employ model (EgMEF-minimal) for cardiac elec-
trophysiology.

2.1.2 Mechanical activation (A )

Mechanical activation bridges electrophysiology and passive mechanics. There
are two approaches in literature, namely the active stress [94, 140] and the active
strain [2, 3]. With the former technique, the underlying hypothesis is that an
active force is generated by the myocardium, whereas in the latter case an active
deformation is prescribed to the cardiac tissue.

Active stress (Astress)

Heart contraction is the result of mechano-chemical interactions among the con-
tractile proteins actin and myosin, taking place at the scale of the sarcomeres,
the fundamental contractile unit of the cardiac muscle [19, 30, 83, 142]. To model
such complex mechanisms, we consider either the model proposed in [140] or
the one reported in [142], denoted as RDQ18 and RDQ20-MF, respectively.

We anticipate that these two byophysically detailed active stress models do
not foresee the use of η(x). Both RDQ18 and RDQ20-MF models receive different
intracellular calcium waves [Ca2+]i from (E )–(I ) according to the specific area
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of the myocardium (scar, grey zone or healthy) and provide physiological values
of active tension in all cases. Indeed, they can properly handle the active force
generation processes in very different physiological scenarios.

rdq18 This model is based on a biophysically detailed description of the sar-
comeric proteins with an explicit representation of the cooperative nearest neigh-
boring interactions, responsible for the high sensitivity of the cardiac contractile
apparatus to changes in calcium concentration, which is one of the ionic species
modelled by the TTP06 ionic model. Thanks to the spatially-explicit represen-
tation of the sarcomere filaments, the RDQ18 model also incorporates the feed-
back of the sarcomere shortening, resulting from the muscle contraction, on the
force generation mechanism itself. This is of outmost importance since the reg-
ulation due to the sarcomere length (SL) constitutes the microscopical basis of
the well-known Frank-Starling mechanism at the macroscale level; in practice,
higher EDVs translate into higher SVs [83].

The RDQ18 model is given by the following system of ODEs:
∂s
∂t

= K(s, [Ca2+]i,SL) in Ω0 × (0, T ],

s(0) = s0 in Ω0 × {0},
(2.4)

where the vector s collects the variables of the RDQ18 model and K is a suitable
function defined in [140] (we remark that K does not involve derivatives of s
with respect to the spatial variable). Within a multiscale framework, the RDQ18

model is ideally set at every point of the computational domain Ω0. The input
variable [Ca2+]i is provided by the TTP06 ionic model in each point of the do-
main, while SL is given by the solution of the mechanical model through the
fourth invariant I4f = Ff0 · Ff0, as we will explain in Sec. 2.1.3.

The output of the RDQ18 model is the permissivity P ∈ [0, 1], obtained as a
function of the states s (i.e. P = G(s), where G is a linear function defined in
[140]). The permissivity represents the fraction of contractile units being in the
force-generating state. Hence, the effective active tension is given by Ta = Tmax

a P,
where Tmax

a denotes the tension generated when all the contractile units are
generating forces (i.e. for P = 1).

The RDQ18 model accurately describes the microscopic force generation mech-
anisms. This accuracy results in a higher computational cost compared to phe-
nomenological models typically used for multiscale simulations (see e.g. [94,
110]). To overcome this issue, in the multiscale model of electromechanics we
take advantage of the model based on ANNs presented in [143]. This model is
a fast surrogate of the RDQ18 model, i.e. the FOM model, learned from a collec-
tion of pre-computed simulations obtained with the RDQ18 model itself, thanks
to the Machine Learning algorithm that we proposed in [141]. Such ROM is
written in the same form of Eq. (2.4). However, the state vector s of ANN-based
model only contains two variables, instead of more than 2000 variables as in the
FOM model. This significantly reduces the computational costs associated with
its numerical approximation (both in terms of CPU time and memory storage),
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at the price of only a small approximation, as the overall relative error between
the results of the FOM and of the ROM is of the order of 10−3 [143]. In this way
we obtain an excellent trade-off between computational cost and biophysical
accuracy of the results.

rdq20-mf This model denotes the mean-field version of the one proposed in
[142] and stands for an upgrade of the RDQ18 model. Similarly to RDQ18 and
unlike most of the models that have been used in the literature in the past [94,
110, 150], RDQ20-MF is not based on a phenomenological description of force
generation, but on a biophysically accurate description of regulatory and con-
tractile proteins and their dynamics. Thanks to suitable dimensionality reduc-
tion techniques, the dynamics of stochastic processes underlying both chemical
and mechanical microscale transitions are described in only 20 ODEs (that is
s(t) ∈ R20). The computational cost of this model is thus comparable to that
of phenomenological models, while providing a biophysical description that is
consistent with the level of detail and mechanistic understanding of the ionic
model to which it is coupled.

The inputs of the RDQ20-MF model are the intracellular calcium concentra-
tion [Ca2+]i coming from (E )–(I ), the sarcomere length SL and its time deriva-
tive (the latter allows to account for the so-called force-velocity relationship [84]),
which is not considered in the RDQ18 model. Variable SL is still obtained by us-
ing the fourth invariant I4f = Ff0 · Ff0, which measures the tissue stretch in the
fiber direction, as will be better explained in Sec. 2.1.3. Finally, the output of the
RDQ20-MF model is the active tension generated at the microscale, that can be
obtained as Ta(s,SL).

Active strain (Astrain)

We consider a phenomenological law that keeps into account the local short-
ening of the fibers γf at the macroscopic level [11, 61, 152, 155]. Myocardial
displacement d and concentration of intracellular calcium ions [Ca2+]i play an
important role in the time evolution of γf.

The phenomenological law reads:
∂γf

∂t
− η

ε

g([Ca2+]i)
∆γf = η

1

g([Ca2+]i)
Φ([Ca2+]i,γf, d) in Ω0 × (0, T ],

∇γf ·N = 0 on ∂Ω0 × (0, T ],

γf = 0 in Ω0 × {0},

(2.5)

where g([Ca2+]i) = µA([Ca2+]i)2, Φ([Ca2+]i,γf, d) = αH[Ca2+]i,0
([Ca2+]i)([Ca2+]i −

[Ca2+]i,0)2RFL(I4f) +

5∑
j=1

(−1)j(j+ 1)(j+ 2)I4fγ
j
f is the active force and RFL(I4f) is

a truncated Fourier series expressing the sarcomere force-length relationship
[66]. Both α and µA should be calibrated according to the specific case under
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investigation. The active deformation is computed by exploiting the following
orthotropic form [3]:

FA = I+ γff0 ⊗ f0 + γss0 ⊗ s0 + γnn0 ⊗ n0, (2.6)

where s0 and n0 represent sheets and their normal direction respectively, with
γs and γn corresponding to local shortening or elongation [13, 117]:

γn = k̄ ′
(
k̄endo

λ− λepi

λendo − λepi
+ k̄epi

λ− λendo

λepi − λendo

)(
1√
1+ γf

− 1

)
, (2.7)

γs =
1

(1+ γf)(1+ γn)
− 1. (2.8)

Here λ represents a transmural coordinate, varying from λendo at the endo-
cardium to λepi at the epicardium, which permits to have a transversely non-
homogeneous thickening of the left ventricular wall. γs set like (2.8) yields to
det(FA) = 1. Due to its phenomenological nature, here it is necessary to use
the coefficient η = η(x) to keep into account the effects of scars (η(x) = 0),
grey zones (η(x) ∈ [0.1, 1)) and healthy tissue (η(x) = 1). The reduced value of
η(x) for grey zones defines a lower peak value of γf during the cardiac cycle
and induces slower activation and deactivation with respect to the healthy case.
These outcomes are obtained by reducing the effects of the forcing term and the
diffusion term in Eq. 2.5, respectively.

2.1.3 Mechanics (M )

We describe the dynamics of the tissue displacement d by the momentum con-
servation equation (see e.g. [115]):

ρs
∂2d
∂t2

−∇ · P = 0 in Ω0 × (0, T ],

PN + Kepid + Cepi∂d
∂t

= 0 on Γ epi
0 × (0, T ],

PN = −pLV(t) JF−TN on Γ endo
0 × (0, T ],

PN = pLV(t)|JF−TN|vbase on Γbase
0 × (0, T ].

(2.9)

In the active stress framework, the Piola-Kirchhoff stress tensor P = P(d, Ta) is a
function of displacement d and active tension Ta. On the other hand, P = P(d,γf)
in the active strain approach. In both cases, the Piola-Kirchhoff stress tensor
incorporates both passive and active mechanics of the cardiac tissue.

Under the hyperelasticity assumption, once the strain energy density function
W : Lin+ → R is introduced, the passive part of the Piola-Kirchhoff stress tensor
is always obtained as ∂W(F)

∂F . Several models are available in literature to describe
the anisotropic nature of the myocardium, such as the Guccione [69, 70] or the
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Holzapfel-Ogden laws [77]. Thanks to its lower computational cost and the lim-
ited number of parameters that makes the calibration phase straightforward,
the Guccione constitutive law is nowadays more used in the context of patient-
specific electromechanical modeling [60, 173]. The strain energy function of this
model reads [69, 70]:

W = W(F) =
C

2

(
eQ − 1

)
Q = bffE

2
ff + bssE

2
ss + bnnE

2
nn

+ bfs

(
E2fs + E

2
sf

)
+ bfn

(
E2fn + E2nf

)
+ bsn

(
E2sn + E2ns

)
.

(2.10)

Eab = Ea0 · b0 for a,b ∈ {f, s,n} are the entries of E =
1

2
(C − I), i.e the Green-

Lagrange strain energy tensor. C = FTF represents the right Cauchy-Green de-
formation tensor. C is defined as follows:

C = C[η+ (1− η)4.56] η ∈ [0, 1], (2.11)

being C a coefficient fitted from experiments [70].
As in cardiac electrophysiology and mechanical activation (Secs. 2.1.1 and

2.1.2, respectively), we assign η = 1 to healthy tissue, η ∈ [0.1, 1) represents
grey zones, and η = 0 defines scar regions. In this way, we model a stiffer my-

ocardium for infarcted areas. We introduce a convex term Wvol(J) =
B

2
(J− 1) log(J)

into the energy function W, such that J = 1 is its global minimum. This term
sets a nearly-incompressible constraint, i.e. it penalizes large variations of vol-
ume [33, 49, 207]. B ∈ R+ is the bulk modulus, which has a role in the torsion
mechanism of the ventricle and enforces the incompressibility constraint [61,
161].

When (Astress) is employed, the full Piola-Kirchhoff tensor reads:

P = P(d, Ta) =
∂W(F)
∂F

+ Ta
Ff0 ⊗ f0√

I4f
, (2.12)

where the first term stands as the passive part, while the latter as the active one.
The active tension Ta is provided by the force generation model (in our case,
either RDQ18 or RDQ20-MF). I4f = Ff0 · Ff0 is a measure of the tissue stretch
along the fiber direction.

In (Astrain), in addition to the reference configuration Ω0 and the deformed
one Ω, we introduce an intermediate state Ω̂, which represents the active part
of the deformation [2, 3, 111, 152]. The 2nd order tensor FA maps Ω0 into Ω̂,
whereas the FE tensor transforms Ω̂ into Ω. We finally reach the multiplicative
decomposition of F = FEFA. The full Piola-Kirchhoff tensor P reads:

P = P(d,γf) = det(FA)PEFA
−T , PE =

∂W(CE, J)
∂FE

. (2.13)

For additional details on the final form of tensor P = P(d,γf), we refer to [61].
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To model the interaction of the LV with the pericardium [129, 174], we impose
at the epicardial boundary Γ epi

0 the generalized Robin boundary condition PN+

Kepid + Cepi ∂d
∂t = 0, by defining the following tensors:

Kepi = K
epi
⊥ (N⊗N) +K

epi
‖ (I − N⊗N),

Cepi = C
epi
⊥ (N⊗N) +C

epi
‖ (I − N⊗N),

where the constants Kepi
⊥ , Kepi

‖ , Cepi
⊥ , Cepi

‖ ∈ R+ are local values of stiffness
and viscosity of the epicardial tissue in the normal or tangential directions, re-
spectively. At the base Γbase

0 , we set the energy-consistent boundary condition
PN = pLV(t) |JF−TN|vbase, originally proposed in [143], that provides an explicit
expression for the stresses located at the artificial boundary Γbase

0 , where we have
defined the vector:

vbase =

∫
Γendo
0

JF−TNdΓ0∫
Γbase
0

|JF−TN|dΓ0
.

This formulation allows to straightforwardly couple the 3D mechanical model
with a /0D model of the whole circulatory system in an energetically consis-
tent manner [147]. At the endocardium Γ endo

0 , the boundary condition PN =
−pLV(t) JF−TN accounts for the pressure pLV(t) exerted by the blood contained
in the ventricular chamber, modeled through the /0D closed-loop circulation
model.

As anticipated, the mechanical model (M ) introduces a feedback on both
(Astress) and (Astrain) via I4f. For the two force generation models of (Astress),
d determines the local sarcomere length SL. More precisely, since sarcomeres
are aligned with the muscle fibers f0, the local sarcomere length SL is given as
SL = SL0

√
I4f, where SL0 denotes the sarcomere length at rest. To recover the

SL field, we consider solving the following differential problem [147]:−δ2SL∆SL+ SL = SL0
√

I4f in Ω0 × (0, T),

δ2SL∇SL ·N = 0 on ∂Ω0 × (0, T),
(2.14)

where δSL is a regularization parameter, whose aim is that of making the field
SL smoother across the computational domain Ω0, by preventing sharp spatial
variations across scales smaller than δSL.
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2.1.4 Blood circulation (C )

To model the hemodynamics of the whole circulatory network, we consider
a lumped parameters closed-loop model [147], inspired by previous models
available in literature [20, 76]. Systemic and pulmonary circulations are modeled
with resistance-inductance-capacitance (RLC) circuits, one for the arterial part
and the other one for the venous part. The four chambers are modeled by time-
varying elastance elements, whereas the four valves are represented as non-ideal
diodes. Our /0D closed-loop circulation model reads:

dVLA(t)

dt
= QPUL

VEN(t) −QMV(t),

dVLV(t)

dt
= QMV(t) −QAV(t),

dVRA(t)

dt
= QSYS

VEN(t) −QTV(t),

dVRV(t)

dt
= QTV(t) −QPV(t),

CSYS
AR
dpSYS

AR (t)

dt
= QAV(t) −Q

SYS
AR (t),

CSYS
VEN

dpSYS
VEN(t)

dt
= QSYS

AR (t) −QSYS
VEN(t),

CPUL
AR

dpPUL
AR (t)

dt
= QPV(t) −Q

PUL
AR (t),

CPUL
VEN

dpPUL
VEN(t)

dt
= QPUL

AR (t) −QPUL
VEN(t),

LSYS
AR

RSYS
AR

dQSYS
AR (t)

dt
= −QSYS

AR (t) −
pSYS

VEN(t) − p
SYS
AR (t)

RSYS
AR

,

LSYS
VEN

RSYS
VEN

dQSYS
VEN(t)

dt
= −QSYS

VEN(t) −
pRA(t) − p

SYS
VEN(t)

RSYS
VEN

,

LPUL
AR

RPUL
AR

dQPUL
AR (t)

dt
= −QPUL

AR (t) −
pPUL

VEN(t) − p
PUL
AR (t)

RPUL
AR

,

LPUL
VEN

RPUL
VEN

dQPUL
VEN(t)

dt
= −QPUL

VEN(t) −
pLA(t) − p

PUL
VEN(t)

RPUL
VEN

,

(2.15a)

(2.15b)

(2.15c)

(2.15d)

(2.15e)

(2.15f)

(2.15g)

(2.15h)

(2.15i)

(2.15j)

(2.15k)

(2.15l)
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being t ∈ (0, T ], where:

pLV(t) = pEX(t) + ELV(t)
(
VLV(t) − V0,LV

)
, (2.16a)

pLA(t) = pEX(t) + ELA(t)
(
VLA(t) − V0,LA

)
, (2.16b)

pRV(t) = pEX(t) + ERV(t)
(
VRV(t) − V0,RV

)
, (2.16c)

pRA(t) = pEX(t) + ERA(t)
(
VRA(t) − V0,RA

)
, (2.16d)

QMV(t) =
pLA(t) − pLV(t)

RMV(pLA(t),pLV(t))
, (2.16e)

QAV(t) =
pLV(t) − p

SYS
AR (t)

RAV(pLV(t),pSYS
AR (t))

, (2.16f)

QTV(t) =
pRA(t) − pRV(t)

RTV(pRA(t),pRV(t))
, (2.16g)

QPV(t) =
pRV(t) − p

PUL
AR (t)

RPV(pRV(t),pPUL
AR (t))

, (2.16h)

with t ∈ (0, T ]. In this model, pLA(t), pRA(t), pLV(t), pRV(t), VLA(t), VRA(t),
VLV(t) and VRV(t) refer to pressures and volumes in the cardiac chambers (LA,
RA, LV and RV, respectively). The variables QMV(t), QAV(t), QTV(t) and QPV(t)
indicate the flow rates through the valves. Moreover, pSYS

AR (t), QSYS
AR (t), pSYS

VEN(t)

and QSYS
VEN(t) express pressures and flow rates of the systemic circulation (ar-

terial and venous). Similarly, pPUL
AR (t), QPUL

AR (t), pPUL
VEN(t) and QPUL

VEN(t) define
pressures and flow rates of the pulmonary circulation (arterial and venous).
pEX(t) represents the pressure exerted outside the heart by the surrounding
organs and respiration. For the sake of simplicity, we consider pEX(t) = 0. Time
varying ELA(t), ELV(t), ERA(t), ERV(t) are the analytically prescribed elastances
of the four cardiac chambers calibrated on a physiological basis, with values
ranging from E

pass
LA , Epass

LV , Epass
RA , Epass

RV – when the chambers are at rest – to
(E

pass
LA +Eact,max

LA ), (Epass
LV +Eact,max

LV ), (Epass
RA +Eact,max

RA ), (Epass
RV +Eact,max

RV ) – when the
chambers are fully contracted. Finally, RMV(p1,p2), RAV(p1,p2), RTV(p1,p2) and
RPV(p1,p2) define the behavior of valves as diodes, according to the following
relationship:

Ri(p1,p2) =

Rmin, if p1 < p2

Rmax, if p1 > p2
for i ∈ {MV, AV, TV, PV},

where p1 and p2 denote the pressures ahead and behind the valve leaflets with
respect to the flow direction, whereas Rmin and Rmax are the minimum and max-
imum resistance of the valves. For an idealized valve, one would have Rmin = 0
and Rmax = +∞ instead. By setting Rmin > 0, one has dissipation of mechanical
energy taking place when the blood flows through the opened valve; we set
Rmax < +∞ sufficiently large so that blood leakage when the valve is closed is
negligible.
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Hereafter, for the sake of brevity, Eqs. (2.15)–(2.16) will be expressed in the
following compact form:

dc1(t)

dt
= Z(t, c1(t), c2(t)) t ∈ (0, T ],

c2(t) =W(t, c1(t)) t ∈ (0, T ],

c1(0) = c1,0,

c2(0) =W(0, c1(0)),

(2.17)

where:

c1(t) = (VLA(t),VLV(t),VRA(t),VRV(t),pSYS
AR (t),pSYS

VEN(t),p
PUL
AR (t),pPUL

VEN(t),

QSYS
AR (t),QSYS

VEN(t),Q
PUL
AR (t),QPUL

VEN(t))
T ,

c2(t) = (pLV(t),pLA(t),pRV(t),pRA(t),QMV(t),QAV(t),QTV(t),QPV(t))
T ;

Z(t, c1(t), c2(t)) collects the whole right hand side of Eq. (2.15), while c2(t) =
W(t, c1(t)) stands as a compact notation for Eq. (2.16), rewritten in explicit form
with respect to the variable c2.

2.1.5 3D-/0D coupling (V )

In Eq. (2.17) each cardiac chamber is modeled as a time-varying elastance ele-
ment, that is a /0D simplified model. In this thesis, we employ this /0D circulation
model in conjunction with the 3D LV model given by (E )–(I )–(A )–(M ). With
this goal, we remove from the circulation model the time-varying elastance el-
ement associated with the LV, and we replace it with the 3D electromechanical
model. Hence, the PV relationship between pLV and VLV is no longer prescribed
by Eq. (2.16a), but by the resolution of the 3D electromechanical model. The
resulting 3D–/0D coupled model (depicted in Fig. 2.2) must satisfy at each time
t ∈ (0, T) the coupling condition V

/0D
LV (c1(t)) = V

3D
LV (d(t)), that we denote by

(V ), where V/0DLV (c1(t)) = VLV(t) represents the LV volume in the /0D circulation
model. V3D

LV (d(t)) represents the LV volume in the 3D model and it is computed
as:

V
3D
LV (d(t)) =

∫
Γendo
0

J(t) ((h⊗ h) (x + d(t) − b)) · F−T (t)NdΓ0,

where h is a vector orthogonal to the LV centerline (i.e. lying on the LV base)
[147]. Subtracting to the space coordinate x + d(t) that of a point b, lying inside
the LV, improves the accuracy of the formula when the ventricular base changes
its orientation.

Having introduced an additional scalar constraint, i.e. (V ), we expect an addi-
tional unknown: it is in fact pLV, which is not determined by Eq. (2.16a) anymore.
Rather, it acts as a Lagrange multiplier enforcing the constraint (V ).
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Hence, we define the “reduced” vector c̃2 such that cT2 = (pLV, c̃T2 ), so that
we can rewrite Eqs. (2.16a)–(2.16h) as c̃2(t) = W̃(t, c1(t),pLV(t)). This allows to
write the “reduced” version of Eq. (2.17) as (C ), where we have defined:

Z̃(t, c1,pLV) := Z

(
t, c1,

(
pLV

W̃(t, c1,pLV)

))
.

2.1.6 Windkessel model (W )

In some cases, either to simplify the mathematical model or to ease 3D-/0D pa-
rameters tuning in patient-specific LVs, we will use a 2-element windkessel af-
terload model. This model defines the evolution in time of variables pLV(t) and
VLV(t) only, and it is extensively presented in [61, 161], along with its numerical
discretization. For the sake of completeness, we report here below its equation:

C
dpLV(t)

dt
= −

pLV(t)

R
−

dVLV(t)

dt
, (2.18)

with t ∈ (0, T ]. C,R > 0 are two parameters representing the capacitance and
the resistance of the electric circuit that mimics the blood flowing in the aorta.

2.2 reference configuration and initial displacement

In the mechanics model (M ), the stress-strain relationship is referred to the nat-
ural stress-free configuration Ω0. However, the cardiac chambers are subject to
loads during the cardiac cycle (i.e., non zero forces are applied to the boundary
at every t ∈ (0, T)).

Let us denote by Ω̃ the medical image used to generate the LV. This config-
uration surely presents residual stresses, since an internal pressure pLV 6= 0 is
acting at every stage of the heartbeat. Therefore, in the preprocessing stage, we
need to recover the reference configuration Ω0 from Ω̃.

Our strategy to initialize the numerical simulation is sketched in Fig. 2.4. As
a first step, starting from the geometry acquired from medical imaging Ω̃, we
recover the stress-free reference configuration Ω0 by virtually deflating the LV
previously subject to an internal pressure p̃. Then, as a second step, we inflate
the LV again, by applying the EDP pED at the endocardium. In the next sections
we give the mathematical details behind these two steps.

2.2.1 Recovering the reference configuration

We assume that the configuration Ω̃ occurs during diastole, where typically
the medical image is acquired: the LV is loaded by a small pressure pLV = p̃

and only a residual active tension Ta = T̃a > 0 acts. By adopting a quasi-static
assumption (motivated by the relatively slow movement of the myocardium
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1. Recover the reference
configuration

2. Find the initial
displacement

Figure 2.4: Sketch of the strategy used to initialize the simulation. The grey line represents the
so–called Klotz curve [88], that is the PV relationship of the relaxed ventricle. The
black line represents the PV loop of the LV.

during the final part of diastole), the tissue displacement is given by the solution
of the following differential problem: find d such that

∇ · P = 0 in Ω0,

PN + Kepid = 0 on Γ epi
0 ,

PN = pLV |JF−TN|vbase on Γbase
0 ,

PN = −pLV JF−TN on Γ endo
0 .

(2.19)

Eq. (2.19) is derived from (M ) by setting to zero the time-dependent terms. We
recall that P = P(d, Ta) with the active stress approach, while P = P(d,γf) with
the active strain formulation. For the sake of simplicity, the reference configura-
tion procedure will be formulated in the active stress framework by employing
Ta and T̃a, even if similar considerations hold for the active strain approach (with
γf and γ̃f). Thus, to recover the coordinate x0 of the configuration Ω0 we need
to solve the following inverse problem: find the domain Ω0 such that, if we dis-
place x0 by the solution d = deq(x0,pLV, Ta) of Eq. (2.19) obtained for pLV = p̃

and Ta = T̃a, we get the coordinate x̃ of the domain Ω̃ (i.e. x̃ = x0+d). In Sec. 2.5
we present an algorithm for its numerical solution.
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2.2.2 Finding the initial displacement

After the recovery of the reference configurationΩ0, we set pLV = pED. Then, we
solve again Eq. (2.19). In this manner, we obtain the end-diastolic configuration
of the LV, i.e. dED. Hence, we set d0 = dED in Eq. (2.9).

2.3 balance of mechanical energy

We derive a balance of the mechanical energy for the whole cardiovascular sys-
tem. In particular, we analyze how mechanical energy is injected, dissipated and
transferred in the different compartments of the heart and in both systemic and
pulmonary circulation. In Sec. 2.3.1, we consider the /0D closed-loop circulation
model (C ) introduced in Sec. 2.1.4. In Sec. 2.3.2 we focus on the coupled 3D-/0D
model (M )–(V )–(C ).

2.3.1 Energy balance for the /0D model

To define the terms associated with the work performed by the cardiac cham-
bers, we write Ei(t) = E

pass
i +Eact

i (t) (for i ∈ {LA, LV, RA, RV}), where Epass
i is the

passive elastance of the tissue (i.e. the elastance when the tissue is not activated)
and Eact

i is instead the active component of the elastance.

Definition 1. We define the total mechanical energy of the whole /0D cardiocirculatory
model as:

M(t) = ELA(t) + ELV(t) + ERA(t) + ERV(t)

+ ESYS
AR (t) + ESYS

VEN(t) + EPUL
AR (t) + EPUL

VEN(t)

+KSYS
AR (t) +KSYS

VEN(t) +KPUL
AR (t) +KPUL

VEN(t),

where, for i ∈ {LA, LV, RA, RV}, j ∈ {AR, VEN} and k ∈ {SYS, PUL}:

• Ei(t) =
1

2
E

pass
i

(
Vi(t) − V0,i

)2 is the elastic energy stored by a cardiac chamber;

• Ek
j (t) =

1

2
Ck

j

(
pk

j (t)
)2

is the elastic energy stored in the vascular network, due to
vessels compliance;

• Kk
j (t) =

1

2
Lk

j

(
Qk

j (t)
)2

is the kinetic energy related to the blood flow inertia.

We provide now a deeper explanation of the definition of Ek
j . Let us consider,

as an example, ESYS
AR . We notice that QAV(t) −Q

SYS
AR (t) is the net blood flux pass-

ing through the arterial systemic network. Hence, by denoting with VSYS
AR (t) the

blood volume stored in the arterial systemic network, we have:

dVSYS
AR (t)

dt
= QAV(t) −Q

SYS
AR (t).
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By comparing the latter equation to Eq. (2.15e) we get:

pSYS
AR (t) =

1

CSYS
AR

(
VSYS

AR (t) − VSYS
0,AR

)
,

where VSYS
0,AR is the blood volume stored within the arterial systemic network

when the pressure is null. In conclusion, we have:

ESYS
AR (t) = (2CSYS

AR )−1
(
VSYS

AR (t) − VSYS
0,AR

)2
,

where 1/CSYS
AR is the arterial systemic network elastance (the inverse of the com-

pliance), coherently with the definition of ELA.

Definition 2. We define the power generated by active contraction, due to ATP con-
sumption occurring at the cellular level, as:

Πact(t) = Πact
LA(t) +Π

act
LV(t) +Π

act
RA(t) +Π

act
RV(t),

where Πact
i (t) = −Eact

i (t)
(
Vi(t) − V0,i

) dVi
dt (t) is the power exerted by the active con-

traction of a cardiac chamber (for i ∈ {LA, LV, RA, RV}),

Definition 3. We define the power dissipated within the /0D circulation model by vis-
cous forces (e.g. the blood flows through the valves and the vascular network) as:

Πdiss(t) = ΠMV(t) +ΠAV(t) +ΠTV(t) +ΠPV(t)

+ΠSYS
AR (t) +ΠSYS

VEN(t) +Π
PUL
AR (t) +ΠPUL

VEN(t).

where:

• the power dissipated by the blood flux through the cardiac valves is given by:

ΠMV(t) = −
(pLA(t) − pLV(t))

2

RMV(pLA(t),pLV(t))
, ΠAV(t) = −

(
pLV(t) − p

SYS
AR (t)

)2
RAV(pLV(t),pSYS

AR (t))
,

ΠTV(t) = −
(pRA(t) − pRV(t))

2

RTV(pRA(t),pRV(t))
, ΠPV(t) = −

(
pRV(t) − p

PUL
AR (t)

)2
RPV(pRV(t),pPUL

AR (t))
;

(2.20)

• Πk
j (t) = −Rk

j

(
Qk

j (t)
)2

, that is the power dissipated by the arterial systemic net-
work (for j ∈ {AR, VEN} and k ∈ {SYS, PUL}).

We remark that all the terms in Eq. (2.20) are nonpositive.

Definition 4. We define the power due to the action of the external pressure pEX on the
myocardium as:

Πex(t) = Πex
LA(t) +Π

ex
LV(t) +Π

ex
RA(t) +Π

ex
RV(t),

where Πex
i (t) = −pEX(t)

dVi

dt
(t) is the power exerted by the external pressure pEX(t)

acting on a cardiac chamber (for i ∈ {LA, LV, RA, RV}).
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We have the following result.

Proposition 1. The solution of Eq. (2.17) for the whole /0D circulation model satisfies
the energy balance:

d

dt
M(t) = Πact(t) +Πdiss(t) +Πex(t), (2.21)

whose terms are introduced in Defs. 1–4.

Proof. To derive Eq. (2.21) we consider, as illustrative examples, a representative
cardiac chamber, a cardiac valve and a vascular branch. Indeed, similar compu-
tations hold for the other chambers, valves and vascular compartments.
Energy balance of the cardiac chambers. Let us consider the LA. By multiplying
Eq. (2.16b) by dVLA(t)

dt and thanks to Eq. (2.15a), we get:

pLA(t)(Q
PUL
VEN(t) −QMV(t)) =

d

dt
ELA(t) −Π

act
LA(t) −Π

ex
LA(t). (2.22)

Energy balance of the cardiac valves. From (2.16e) we obtain:

(pLA(t) − pLV(t))QMV(t) = −ΠMV(t). (2.23)

Similar considerations hold for the other valves.
Energy balance of the peripheral blood reservoirs. By multiplying the first equation
of (2.15e) by pSYS

AR (t), we get:

pSYS
AR (t)QAV(t) − p

SYS
AR (t)QSYS

AR (t) =
d

dt
ESYS

AR (t) (2.24)

Energy balance of the peripheral blood conducting system. By multiplying (2.15i) by
RSYS

AR Q
SYS
AR (t), we get:

pSYS
AR (t)QSYS

AR (t) − pSYS
VEN(t)Q

SYS
AR (t) =

d

dt
KSYS

AR (t) −ΠSYS
AR (t). (2.25)

Total balance. By proceeding as above for the other cardiac chambers, valves and
vascular branches, and summing up the resulting equations, we obtain Eq. (2.21).
This completes the proof.

Each of the four terms of Eq. (2.21) represents the result of the sum of differ-
ent contributions, associated with the four chambers, the four valves and the
different compartments of the vascular network (systemic and pulmonary, arte-
rial and venous). The total work performed in a time interval [0, T ] is obtained
by integrating the corresponding power over time, according to the following
definition.

Definition 5. Let us consider a time horizon T > 0. The total work performed by active
and dissipative forces in the time interval [0, T ] are defined as:

Wact =
∫T
0 Π

act(t)dt, Wdiss =
∫T
0 Π

diss(t)dt,

respectively.

41



When the heart rhythm has reached a periodic regime, it carries out its func-
tion alongside a cyclical path. In this case, the work balance of the following
proposition holds.

Proposition 2. Let us suppose that pEX(t) is constant in time. Then, periodic solutions
of Eq. (2.17) (i.e. with c1(0) = c1(T)) satisfy:

Wact +Wdiss = 0. (2.26)

Proof. We integrate the energy balance of Eq. (2.21) over a cardiac cycle [0, T ].
Thanks to the periodicity assumption, the contribution of the mechanical energy
term M is null. Moreover, it is easy to show that the term Πex(t) is conservative
and hence its contribution over [0, T ] is also zero.

Therefore, when the heart is functioning in a periodic regime, the work per-
formed by the contraction of the four chambers balances the energy dissipated
by the four valves and by the blood flux through the systemic and pulmonary
circulations.

2.3.2 Energy balance for the 3D-/0D coupled model

For the sake of simplicity, we derive this part of the energy balance within the
active stress approach, i.e. P = P(d, Ta).

3d lv energy balance By multiplying the first equation of (M ) by ∂d
∂t and inte-

grating over Ω0 we obtain:

∫
Ω0

ρs
∂2d
∂t2
· ∂d
∂t
dx+

∫
Ω0

P(d, Ta) : ∇
(
∂d
∂t

)
dx =

∫
∂Ω0

P(d, Ta)N ·
∂d
∂t
dΓ0. (2.27)

By substituting the boundary conditions of (M ) into (2.27), we obtain the fol-
lowing energy balance for the 3D LV model:

d

dt
KLV,3D(t) +

d

dt
ELV,3D(t) = Π

act
LV,3D(t) +Π

diss
LV,3D(t) +Π

press
LV,3D(t). (2.28)

This relation reveals the mutual balance of:

• the kinetic energy associated with the motion of the LV:

KLV,3D(t) =
1

2

∫
Ω0

ρs

∣∣∣∣∂d
∂t

∣∣∣∣2 dx;

• the elastic energy internally stored by the LV muscle and by the elastic
components of the surrounding tissues:

ELV,3D(t) =

∫
Ω0

W(F)dx +
1

2

∫
Γ

epi
0

[
K

epi
⊥ |d ·N|2 +K

epi
‖ |(I − N⊗N)d|2

]
dΓ0,

where the displacement at the epicardium is split into the normal |d ·N|

and tangent |(I − N⊗N)d| component;
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• the power exerted by the active contraction of the LV:

Πact
LV,3D(t) = −

∫
Ω0

Ta
Ff0 ⊗ f0√

I4f
: ∇
(
∂d
∂t

)
dx,

• the power dissipated by the interaction with the pericardium:

Πdiss
LV,3D(t) = −

∫
Γ

epi
0

[
C

epi
⊥

∣∣∣∣∂d
∂t
·N
∣∣∣∣2 +Cepi

‖

∣∣∣∣(I − N⊗N)
∂d
∂t

∣∣∣∣2
]
dΓ0 6 0,

which is a nonpositive term;

• the power exchanged with the blood contained in the LV cavity, by means
of the action of pressure pLV(t) on the endocardium:

Π
press
LV,3D(t) = pLV(t)

[∫
Γendo
0

JF−TN · ∂d
∂t
dΓ0 −

∫
Γbase
0

|JF−TN|
∂d
∂t
dΓ0 · vbase

]
.

As in [143], the term in square brackets corresponds to the time deriva-
tive of the LV volume, that is Πpress

LV,3D(t) = pLV(t)
d
dtV

3D
LV (d(t)). Then, in

virtue of the coupling condition (V ) and Eq. (2.15b), we obtain Πpress
LV,3D(t) =

pLV(t)(QMV(t) −QAV(t)).

total energy balance By setting pEX(t) ≡ 0, i.e. by neglecting the effect of the
pressure exerted by the surronding organs, and by replacing the energy balance
of the /0D LV model with Eq. (2.28), we obtain again Eq. (2.21), where the total
mechanical energy is now:

M(t) = ELA(t) + ELV,3D(t) + ERA(t) + ERV(t)

+ ESYS
AR (t) + ESYS

VEN(t) + EPUL
AR (t) + EPUL

VEN(t)

+KSYS
AR (t) +KSYS

VEN(t) +KPUL
AR (t) +KPUL

VEN(t) +KLV,3D(t)

(2.29)

and the power of active contraction and the total dissipated power (Πdiss(t) > 0)
are:

Πact(t) = Πact
LA(t) +Π

act
LV,3D(t) +Π

act
RA(t) +Π

act
RV(t);

Πdiss(t) = ΠMV(t) +ΠAV(t) +ΠTV(t) +ΠPV(t)

+ΠSYS
AR (t) +ΠSYS

VEN(t) +Π
PUL
AR (t) +ΠPUL

VEN(t) +Π
diss
LV,3D(t),

respectively; here Πex(t) ≡ 0. We remark that Prop. 2 applies also to this case.
Finally, we conclude that the 3D-/0D coupled model satisfies the principle of
conservation of mechanical energy. This result is achieved thanks to the energy-
consistent boundary conditions imposed at the LV base; see Eq. (2.9). If other
boundary conditions – such as homogeneous Neumann conditions – are im-
posed at the base instead, the relationship Πpress

LV,3D(t) = pLV(t)
d
dtV

3D
LV (d(t)) may

not hold and the balance of Eq. (2.21) would not be satisfied.
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We notice that, compared to the fully /0D case, the 3D electromechanical model
shows two additional terms, namely KLV,3D(t) and Πdiss

LV,3D, respectively account-
ing for the kinetic energy of the LV and for the dissipation associated with the
interaction of Γ epi

0 with surrounding tissues. Indeed, both features are not in-
cluded in the /0D circulation model, in which cardiac chambers are modeled
quasistatically.

2.3.3 Quantitative analysis of cardiac energetics

In Fig. 2.5 we report all the energy and power terms over a characteristic steady-
state cardiac cycle obtained with a numerical simulation of the /0D circulation
model. For this simulation we employ the parameters reported in [147, 148],
with Eact,max

LV = 2.75mmHgmL−1 and E
pass
LV = 0.08mmHgmL−1. Fig. 2.5 (top-

left) displays the time evolution of the terms of Eq. (2.21). We notice that, while
the energy input (Πact) occurs in a short time interval of nearly 100ms (during
systole), energy dissipation (Πdiss) takes place throughout the entire duration of
the heartbeat. As a matter of fact, mechanical energy M plays a dominant role.
Moreover, it is initially accumulated and then it is gradually dissipated as the
blood flows through systemic and pulmonary circulations.

Fig. 2.5 (top-right, bottom-left, bottom-right) illustrate the details of the three
terms M, Πact and Πdiss, showing how they split into the various subterms dur-
ing the different phases of the heartbeat. Specifically, we notice that the chamber
that contributes the most to the work generation is the LV, followed by the RV,
while the atria only contribute – albeit to a small extent – around t = 0.8 s,
during the atrial systole. The large part of mechanical energy and of dissipated
power are associated with the systemic arterial circulation, as this branch of the
circulatory network is located downstream the LV, the chamber carrying out
most of the mechanical work. We remark that a non-negligible dissipation of en-
ergy also takes place across the open valves, due to the high-speed blood flow
across the valvular orifices.

Our model allows to estimate the daily production of mechanical work of the
heart. This is obtained by multiplying the number of seconds in a day times the
average generated power, given by:

Π
act

=
1

T

∫T
0
Πact(t)dt.

Applying this formula to the results of the simulation considered in Fig. 2.5, we
obtain a daily work production of 182.5 kJ, of which 155.9 kJ attributable to the
LV, 24.8 kJ to the RV and only 1.8 kJ to the atria.

In the daily clinical practice, the work generated by the myocardium is instead
estimated through simple relationships [81, 114]. In this regard, our model offers
a tool to estimate the validity of these approaches. A commonly used formula
[81] is:

Π
act ' pSYS

AR
SV

Tbeat
, (2.30)
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Figure 2.5: Time evolution of both power and energy terms (M, E, K, Πact, Πdiss) of the /0D
circulation model. We consider a single heartbeat in a periodic regime.
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where pSYS
AR denotes the average systemic arterial pressure (corresponding to the

wrist average blood pressure), SV is the stroke volume and Tbeat is the heartbeat
period. By applying (2.30) to the results of the above simulation, we obtain a
daily work generation of 152.4 kJ. Hence (2.30) underestimates the mechanical
work by 16%. As a matter of fact, (2.30) only refers to the work done by the
LV (which is, instead, approximated up to an error of only 2%). The large part
of the error is thus attributable to the work performed by the RV, which is not
accounted for in (2.30).

In common clinical practice, then, pSYS
AR is not directly measured, but it is es-

timated as pSYS
AR = 1/3 pmax + 2/3 pmin, where pmax and pmin are the maximum

(systolic) and minimum (diastolic) arterial pressures (see e.g. [114]). With this
further approximation, we obtain an estimated daily work of 138.8 kJ, which rep-
resents 1.3% of an ideal intake of calories of an healthy adult male (i.e. 33.15 kcal
out of approximately 2500 kcal). This underestimates the LV work by 11% and
the total work of the myocardium by 24%.

2.4 numerical discretization

In this thesis, we develop two schemes for the numerical discretization of the 3D-
/0D coupled problem of cardiac electromechanics and cardiovascular circulation.
These two numerical schemes are both sketched in Figs. 2.6 and 2.7. We use
partitioned strategies that allow to separate and properly manage the space and
time scales related to cardiac electromechanics, by considering different space
and time resolutions according to the characteristic scale of each core model.
These two schemes are thus segregated (i.e. the different core models are solved
sequentially), exploit intergrid transfer operators (as different mesh sizes are
employed for the different core models) and are staggered (as different time
steps are used for the different core models) [147, 148, 161]. For these reasons,
we refer to them as SIS schemes [131].

We first update the variables of (I ) and (E ), then the variables of (A ) and fi-
nally, after updating the unknowns of (M ) or (M )–(V ), respectively, we update
the ones of (W ) or (C ), respectively.

Space discretization is based on the FEM [136]. We consider a fine represen-
tation of the computational domain for both (I ) and (E ) models, whereas a
coarser one is employed for both (A ) and (M ). This is motivated by the re-
quirement of a higher resolution for (I ) and (E ), due to the sharp wavefronts
characterizing electrophysiological solutions, whereas both (A ) and (M ) fea-
ture larger spatial scales [32, 37, 161]. Moreover, the nonlinearities of (M ) war-
rants for the use of a coarser space discretization to make the numerical solu-
tion less computationally demanding. The SIS1 scheme deals with non-nested
tetrahedral meshes among the different core models and exploits the RL-RBFs
to effectively transfer information among the different grids [161]. Non-nested
meshes are more flexible to accommodate geometrical heterogeneity and to be
tuned to different local accuracy requirements. Moreover, they can be generated
in a completely independent fashion for electrophysiology and mechanics. On
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Figure 2.6: SIS1 numerical scheme. This approach has been tested with the active strain only
and without the closed-loop circulation model.
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Figure 2.7: SIS2 numerical scheme. This approach has been tested with both the active stress
and the active strain frameworks. We also consider the windkessel model and the
whole cardiocirculatory model.

48



the other hand, the original implementation of RL-RBFs enables the use of first
order polynomials only [46]. The SIS2 scheme works with nested hexahedral
meshes only, but it has the capability to transfer scalar and vector fields with
any polynomial degree [148]. This option gives the possibility to perform high-
order electromechanical simulations [148].

Regarding time discretization, we consider Finite Difference schemes (back-
ward differentiation formulas, known as BDF) [136] and a staggered strategy
based on the Godunov splitting scheme [64]. This approach introduces a first or-
der splitting error and does not undermine the stability of the numerical scheme
[148, 161]. For electrophysiology, we employ a semi-implicit scheme, that we de-
note by (ISI)–(ESI), where SI stands for semi-implicit. Mechanical activation is
solved with an explicit method in time for the active stress framework (Astress,E),
whereas a semi-implicit time solver is in place for the active strain approach
(Astrain,SI). Mechanics (MI) is instead implicitly discretized in time, due to the
fact that the highly nonlinear (exponential) terms of the strain energy function
W would need a restriction on the time step in both the semi-implicit and ex-
plicit contexts. Finally, we employ an explicit Euler method for the circulation
model, indicated as (CE), while the windkessel model (WI) is solved by means
of the implicit Euler method. SIS1 scheme employs two different time steps,
a smaller one for electrophysiology and a bigger one for activation, mechan-
ics and the windkessel model. On the other hand, SIS2 scheme uses a shorter
time step for electrophysiology and activation and a longer one for mechanics
and circulation. Indeed, mechanical activation, which is relatively inexpensive
from the computational viewpoint, can be flexibly adapted to consider either the
same time step of electrophysiology or the one coming from mechanics without
compromising accuracy [131, 147, 148, 161].

In the SIS2 scheme, we develop a strategy to perform the 3D-/0D coupling
(V ) between (M ) and (C ), at the numerical level, within a segregated setting.
Specifically, we solve the 3D mechanical problem under a volumetric constraint
coming from the /0D circulation model. The cavity pressure acts as Lagrange
multiplier associated with this constraint. Thus, we obtain a saddle-point prob-
lem that we address, at the algebraic level, by means of a Schur complement
reduction.

2.4.1 Intergrid transfer operators

In this section, we present two intergrid transfer operators that have the capa-
bility to interpolate in a fast and accurate manner both scalar and vector fields
between different meshes defined on the same computational domain. Indeed,
we deal with systems of PDEs and ODEs whose solution components represent
different physical variables, and we want to use either non-nested or nested
grids on LVs to represent these different numerical variables. Specifically, in our
fully-coupled electromechanical model, as will be detailed in Sec. 2.4.2, we need
to transfer the scalar field [Ca2+]i from (I ) (fine scale) towards (A ) (coarse
scale) and the vector field d from (M ) (coarse scale) towards (E ) (fine scale).
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The first interpolation strategy is based on RL-RBF and has been employed for
non-nested tetrahedral meshes for piecewise linear scalar and vector fields [161].
The second intergrid transfer operator works with nested hexahedral meshes
and enables the use of different Finite Elements for different core models [148].

Non-nested meshes

Our aim is to “transfer” the values of a certain function from one mesh to
another one. For this reason, we present our intergrid transfer operator based
on RL-RBF in the most general framework. We exploit several properties of RBF
to perform the interpolation task by considering a general function f and by
following the idea developed in [46].

Let f : R3 → Rd be a scalar (d=1) or possibly a vector field (d>1) in the 3D
setting. Given a set of M nodes Ξ = {ξm}Mm=1

in R3, we define an interpolant
Πf(x) (with x ∈ R3) of the general field f by means of RBF in the following way:

Πf(x) =

M∑
m=1

γf
mπ(||x− ξm||, r), (2.31)

with {γf
m}Mm=1

representing a set of interpolation weights. RBFs are denoted by
π(·, r), which can be either globally or locally supported according to the choice
of the radius r. We use Beckert & Wendland RBF:

π(||x||, r) =
(
1−

||x||

r

)4(
1+ 4

||x||

r

)
,

which are locally supported. Other options, involving also globally supported
basis functions, are available as well [26, 51]. We introduce an interpolation
matrix Φint ∈ RM×M such that:

Φint
i, j = π(||ξi − ξj||, r) with i, j = 1, ..., M.

We call fΞ the evaluation of the field f in all the M interpolation nodes that
belong to the set Ξ. The interpolation constraint is algebraically expressed as
follows:

Φintγf = fΞ, (2.32)

with γf = {γf
m}Mm=1

solution of linear system (2.32).
Both fields f and Πf(x) assume the same value at the interpolation nodes, i.e.

Πf(ξm) = f(ξm) with m = 1, ..., M. The choice of local RBF leads to a sparse
matrix Φint. At this point, once Πf(x) is determined, we can evaluate the inter-
polant on a set Λ = {λn}

N
n=1

of N different points with respect to the interpolation
nodes contained in Ξ:

Πf(λn) =

M∑
m=1

γf
mπ(||λn − ξm||, r). (2.33)

50



In our application Ξ and Λ will be two different sets of nodes of two indepen-
dent triangulations of the computational domain Ω ⊂ R3 where the interpolant
Πf(·) is defined.

We introduce a matrix Φeval ∈ RN×M such that:

Φeval
i, j = π(||λi − ξj||, r) for i = 1, ..., N and j = 1, ..., M.

This sparse matrix is used to determine fΛ, i.e. to evaluate the RBF interpolant
Πf on Λ:

fΛ =Φevalγf =Φeval(Φint)−1fΞ. (2.34)

To obtain a smoother interpolant that is able to interpolate exactly any constant
field and that is accurate for small values of the radius r [46], we rescale Πf(x) by
the interpolant Πg(x) of the constant function g(x) = 1, which assumes a value
equal to one at each interpolation point:

Πf(x) =
Πf(x)

Πg(x)
=

∑M
m=1

γf
mπ(||x− ξm||, r)∑M

l=1
γ

g
l π(||x− ξl||, r)

. (2.35)

We formulate in this way RL-RBF. Algebraically, the interpolation problem asso-
ciated with (2.35) can be written in the following form:

Φintγf = fΞ, (2.36)

Φintγg = 1Ξ, (2.37)

where γg = {γ
g
m}Mm=1

and 1Ξ vector of ones on the interpolation nodes defined
in Ξ. Linear systems (2.36) and (2.37) are solved separately. The evaluation of
interpolant Πf at a specific point x is:

Πf(x) =
Φeval(Φint)−1fΞ

Φeval(Φint)−11Ξ
, (2.38)

where (Φeval)T ∈ RM is such that (Φeval)Tj = π(||x− ξj||, r).
To take into account the distribution of mesh points on the two tetrahedral

grids, we define an adaptive strategy to select the radius of the support for
Beckert & Wendland basis functions by means of the number of links that a
certain vertex of the mesh has with the surrounding neighborhood. In this way
we exploit the structure of the mesh to build a variable and local support of the
RBF that keeps into account the level of refinement of the mesh in each region
of the computational domain. For more details about this technique we refer
to [46]. In Fig. 2.8, we see the differences between the approach based on the
number of links and the one with a fixed radius. A number of links equal to 1

is sufficient to obtain a good interpolated solution and has been used hereafter.
In [161], we also propose a numerical test for elliptic PDEs with known exact

solution, to show the accuracy and the reliability of this operator. Both scalar
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Figure 2.8: Support of the RBF, which is chosen either according to the number of links (left) or
within a fixed radius (right), for an unstructured grid (image taken from [46]).

and vector fields are interpolated among structured, nested unstructured and
non-nested unstructured grids. We perform strong scalability tests and a conver-
gence analysis of both L2 and H1 errors. The computational time scales almost
linearly with the number of CPUs. Finally, we also recover the order of conver-
gence that we expect theoretically (i.e 1 for the H1 norm error and 2 for the L2

norm error) for each mesh combination.

Nested meshes

We implement an intergrid transfer operator between nested grids that can be
generalized to the case of locally-refined non-conforming nested grids. All the
numerical details about this strategy can be found in [1]. Briefly, we build an ef-
ficient and scalable interpolation data structure on top of the intergrid transfer
operator that enables to evaluate the feedback coming from (E ) at the quadra-
ture nodes defined on the mesh used for (M ) (and vice-versa), regardless of
the polynomial degree that is used to discretize the two different models. This
entails a high level of numerical flexibility: different Finite Element degrees, as
well as different levels of mesh refinement, can be effortlessly selected to tune
the computational efficiency on the desired accuracy.

2.4.2 Space discretization

We consider either two non-nested tetrahedral meshes (SIS1 scheme) or two
nested hexahedral meshes (SIS2 scheme) Th1

and Th2
of the computational do-

main Ω0, represented by an LV in the reference configuration. Th1
has been

generated either independently from Th2
(SIS1 scheme) or by uniformly refin-

ing Th2
according to an octree structure (SIS2 scheme) [1, 29], i.e. by recursively

splitting each parent element of Th2
into eight sub-elements for a prescribed

number of times, i.e. until the desired geometrical detail is reached. Here h1

and h2 (with h1 < h2) represent the mesh sizes, which are computed as the
mean of the maximum diameter of each element.
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We denote by Nu, Nw,z, Ns or Nγf and Nd the number of degrees of freedom
(DOFs, that is the number of variables) for the dimensionless transmembrane
potential, gating and concentration variables, mechanical activation variables
for either the active stress or the active strain, and displacement, respectively.
We denote the set of tensor-products of polynomials with degree smaller than
or equal to r over a mesh element K as either Pr(K) (SIS1 scheme) or Qr(K) (SIS2

scheme), and we introduce the finite dimensional spaces:

Xr
h1

= {v ∈ C0(Ω0) : v|K ∈ Pr(K)∨ v|K ∈ Qr(K) ∀K ∈ Th1
},

Xs
h2

= {v ∈ C0(Ω0) : v|K ∈ Ps(K)∨ v|K ∈ Qs(K) ∀K ∈ Th2
},

for r, s > 1. We remark that when the SIS1 scheme is employed, r=s=1 for all
core models, while r 6= s is allowed for the SIS2 scheme.

We adopt the following notation. We denote by, e.g., dh1
(t) ≈ d(t) the semi-

discretized Finite Element approximation of the variable d(t), defined over the
computational mesh Th1

. On the other hand, we denote by dh1

(t) the vector
collecting the DOFs associated with dh1

(t). Finally, we denote by dnh1

' dh1

(tn)
the vector collecting the DOFs of the fully discretized Finite Element problem.

Monodomain equation

The set of basis functions for Xr
h1

with Nu = dim(Xr
h1

) is given by {φi}
Nu
i=1. The

semi-discretized formulation of the monodomain equation reads: find uh1
(t) ∈

Xrh1

for all t ∈ (0, T ] such that:

χm

[∫
Ω0

CmJh1
u̇h1

(t)φi dΩ0 +

∫
Ω0

Jh1
Ĩion(uh1

(t),wh1
(t), zh1

(t))φi dΩ0

+

∫
Ω0

Jh1
ĨSAC(uh1

(t), Fh1
(dh1

(t)))φi dΩ0

]
+

∫
Ω0

(Jh1
F−1

h1

(dh1
(t))D̃F−T

h1

(dh1
(t))∇uh1

(t)) · ∇φi dΩ0

= χm

∫
Ω0

Jh1
Ĩapp(t)φi dΩ0 ∀i = 1, ...,Nu,

(2.39)

with uh1
(0) =

∑Nu
j=1(u0,φj)L2(Ω0)φj. The functionswh1

(t) and zh1
(t) are the semi-

discretized versions of the gating variables and of the concentration variables,
whereas uh1

(t) =
∑Nu

j=1 uj,h1
(t)φj is the Finite Element solution that approxi-

mates u = u(t). The tensor Fh1
is the interpolated deformation tensor, obtained

through the following procedures:

• SIS1 scheme: RL-RBF are employed for the interpolation of dh2
, which is

obtained from (M ). The interpolant Π̄d(x) is built on Th2
and it is used

to obtain dh1
on Th1

by following the procedure explained in Sec. 2.4.1
and by exploiting formula (2.35). Then, we get Fh1

= I +∇dh1
through the

adaptation of the Zienkiewicz-Zhu gradient recovery method [208, 209] to
the tensor case. This method is known to be efficient and superconvergent.
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If Fh1
is assembled without a proper gradient recovery technique, the AP

may become unstable during systole, i.e. when the deformation is higher
[161].

• SIS2 scheme: the gradient of the numerical solution dh2
to problem (M ) (i.e.

∇dh2
) is recovered on Th2

by means of an L2 projection [1]. Then, our inter-
grid transfer operator between nested meshes and arbitrary Finite Element
spaces is employed to interpolate ∇dh2

from Th2
to Th1

. This interpolant
exploits the evaluations of the basis functions on the quadrature nodes
distributed on the two grids [148]. In this way, we obtain ∇dh1

. Finally,
Fh1

= I +∇dh1
is assembled on Th1

. If dh1
is obtained from dh2

directly,
i.e. without passing from the space gradient, the AP may become unstable
during systole, i.e. when the deformation is higher [148].

We highlight that for both the numerical schemes, it is important to use gradient
recovery strategies to assemble MEFs in an accurate manner.

At this point, we rewrite Eq. (2.39) as a system of nonlinear ODEs by setting
uh1

(t) = {uj,h1
(t)}Nu

j=1:
χm
[
CmMu̇h1

(t) + Iion(uh1
(t),wh1

(t), zh1
(t)) + ISAC(uh1

(t), dh1

(t))
]

+K(dh1

(t))uh1
(t) = χmIapp(t) ∀t ∈ (0, T ],

uh1
(0) = u0,h1

,
(2.40)

where we have defined the following matrices

Mij =

∫
Ω0

Jh1
φjφi dΩ0, Kij(dh1

(t)) =

∫
Ω0

(Jh1
F−1

h1

D̃F−T
h1

∇φj) · ∇φi dΩ0,

and the following vectors(
Iion(uh1

(t),wh1
(t), zh1

(t))
)

i =

∫
Ω0

Jh1
Ĩion(uh1

(t),wh1
(t), zh1

(t))φi dΩ0,(
ISAC(uh1

(t), dh1

(t))
)

i =

∫
Ω0

Jh1
ĨSAC(uh1

(t), Fh1
(dh1

(t)))φi dΩ0,(
Iapp(t)

)
i =

∫
Ω0

Jh1
Ĩapp(t)φi dΩ0.

For the evaluation of the nonlinear term Iion(uh1
(t),wh1

(t), zh1
(t)), three strate-

gies are available [122, 125, 126]. In this thesis, we use the so-called ionic current
interpolation (ICI) approach, which yields a faster assembly of the ionic term
[91]. By denoting with {xKq }

Nq
q=1 and {ωKq }

Nq
q=1 the quadrature nodes and weights of
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a generic mesh element of K ∈ Th1
, the term Iion(uh1

(t),wh1
(t), zh1

(t)) is firstly
evaluated at the DOFs and then interpolated at the quadrature nodes:∫
Ω0

Jh1
Ĩion(uh1

(t),wh1
(t), zh1

(t))φi dΩ0

≈
∑
K∈Th1

 Nq∑
q=1

Nu∑
j=1

Jj,h1
Ĩion

(
uj,h1

(t),wj,h1
(t)zj,h1

(t)
)
φj(x

K
q )φi(x

K
q )ω

K
q

 .
(2.41)

Ionic model

The ionic model under consideration is a system of 18 ODEs (12 for the gating
variables, 6 for the concentration variables), which indirectly depends on the
space variable over the mesh Th1

through the transmembrane potential u. The
semi-discrete formulation can be written as follows:

ẇh1
(t) = H(uh1

(t),wh1
(t)) ∀t ∈ (0, T ],

żh1
(t) = G(uh1

(t),wh1
(t), zh1

(t)) ∀t ∈ (0, T ],

wh1
(0) = w0,h1

,

zh1
(0) = z0,h1

.

(2.42)

Mechanical activation

active stress The semi-discrete formulation, which is written on Th2
, reads:{

ṡh2

(t) = K(sh2

(t), ([Ca2+]i,h2

(t), SLh2

(t), ṠLh2

(t))T ) ∀t ∈ (0, T ],

sh2

(0) = s0,h2

.
(2.43)

where [Ca2+]i,h2

(t) is obtained by interpolating the intracellular calcium con-
centration of the TTP06 model from Th1

to Th2
. ṠLh2

(t) is present only in the
RDQ20-MF model. The operator K represents the element-wise application of
either the ANN associated with the RDQ18 model or the RDQ20-MF model
[140, 143]. On the other hand, SLh2

(t) is obtained by solving:
(
SLh2

(t) − SL0

√
I4f,h2

(t)
)
− δ2SL∆SLh2

(t) = 0 in Ω0 × (0, T)

δ2SL∇SLh2
(t) ·Nh2

= 0 on ∂Ω0 × (0, T)
(2.44)

where I4f,h2
(t) = Fh2

(t)f0 · Fh2
(t)f0. Finally, Ta,h2

(t) denotes the semi-discretized
active tension, obtained by evaluating the function Ta = Tmax

a G(s) at the nodes.

active strain The Galerkin formulation related to the equation for γf reads:
given dh2

(t) and the interpolated intracellular calcium concentration [Ca2+]i,h2
(t)
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of the TTP06 model from Th1
to Th2

, find γf,h2
(t) ∈ Xrh2

for all t ∈ (0, T ] such that

∫
Ω0

γ̇f,h2
(t)φidΩ0 + ε

∫
Ω0

1

g([Ca2+]i,h2
(t))
∇γf,h2

(t) · ∇φidΩ0

−

∫
Ω0

1

g([Ca2+]i,h2
(t))

Φ([Ca2+]i,h2
(t),γf,h2

(t), dh2
(t))φidΩ0 = 0 ∀i = 1, ...,Nγf ,

(2.45)

with γf,h2
(0) =

Nγf∑
j=1

(γf,0,φj)L2(Ω0)φj. By introducing the proper matrices, the

following system of ODEs is obtained:
Mγ̇

f,h2

(t) + εK([Ca2+]i,h2

(t))γ
f,h2

(t)

+Φ([Ca2+]i,h2

(t),γ
f,h2

(t), dh2

(t)) = 0 ∀t ∈ (0, T ],

γ
f,h2

(0) = γ
f,0,h2

.

(2.46)

Mechanics

We denote by [Xsh2

]3 the finite dimensional subspace of vector valued functions
and by {φi}

Nd
i=1 its basis. The semi-discretized version of (M ) reads: given Ta,h2

(t)
from active stress (equivalently, γf,h2

(t) from active strain), find dh2
= dh2

(t) ∈
[Xsh2

]3 for all t ∈ (0, T ] such that∫
Ω0

ρsd̈h2
(t) ·φi dΩ0 +

∫
Ω0

P : ∇φidΩ0

+

∫
Γ

epi
0

[
(Nh2

⊗Nh2
)
(
K

epi
⊥ dh2

(t) +C
epi
⊥ ḋh2

(t)
)

+(I − Nh2
⊗Nh2

)
(
K

epi
‖ dh2

(t) +C
epi
‖ ḋh2

(t)
)]
·φi dΓ0

= −pLV(t)

∫
Γendo
0

Jh2
F−T

h2

Nh2
·φi dΓ0 + pLV(t)

∫
Γbase
0

|Jh2
F−T

h2

Nh2
|vbase

h2

·φi dΓ0

∀i = 1, ...,Nd,
(2.47)

being P = P(dh2
(t), Ta,h2

(t)) for active stress and P = P(dh2
(t),γf,h2

(t)) for active

strain, dh2
(0) =

Nd∑
j=1

(d0,φj)[L2(Ω0)]3φj, ḋh2
(0) =

Nd∑
j=1

(ḋ0,φj)[L2(Ω0)]3φj, with

vbase
h2

=

∫
Γendo
0

Jh2
F−T

h2

Nh2
dΓ0∫

Γbase
0

|Jh2
F−T

h2

Nh2
|dΓ0

.
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The corresponding algebraic formulation reads:
ρsMd̈h2

(t) +Fḋh2

(t) + Gdh2

(t) +S = pLV(t)p(dh2

(t))

∀t ∈ (0, T ],

dh2

(0) = d0,h2

, ḋh2

(0) = ḋ0,h2

,
(2.48)

with:

Si =

∫
Ω0

P : ∇φi dΩ0,

Fij =

∫
Γ

epi
0

[
(Nh2

⊗Nh2
)C

epi
⊥ + (I − Nh2

⊗Nh2
)C

epi
‖

]
φj ·φi dΓ0,

Gij =

∫
Γ

epi
0

[
(Nh2

⊗Nh2
)K

epi
⊥ + (I − Nh2

⊗Nh2
)K

epi
‖

]
φj ·φi dΓ0,

pi(dh2

(t)) = −

∫
Γendo
0

Jh2
F−T

h2

Nh2
·φi dΓ0 +

∫
Γbase
0

|Jh2
F−T

h2

Nh2
|vbase

h2

·φi dΓ0,

where dh2

(t) = {dj,h2
(t)}

Nd
j=1. Eqs. (2.39), (2.42), (2.45) and (2.47) provide a splitted

semi-discretization of the entire electromechanical model.

2.4.3 Time discretization

With the aim of developing a staggered strategy, we introduce two time steps
∆t and τ = ∆t/Nsub, being Nsub ∈N a number of intermediate substeps that is
set a priori. For the SIS1 scheme, the longer time step ∆t is used for (Astrain,SI),
(WI) and (MI), whereas the shorter time step τ is employed for (ISI)–(ESI). For
the SIS2 scheme, we consider ∆t for (MI)/(MI)–(VI) and (WI)/(CE), while τ is
needed for (ISI)–(ESI) and (Astress,E)/(Astrain,SI) [131, 161].

Electrophysiology

For the sake of simplicity, even though we can employ high-order time schemes
for cardiac electrophysiology [130], we introduce the time discretization of prob-
lem (ISI)–(ESI) by means of the BDF1 scheme.

In particular, once we set tn+
m
Nsub = tn +mτ, for m = 1, ...,Nsub, problem

(ISI)–(ESI) from tn to tn+1 reads as follows:

• We find w
n+ m

Nsub
h1

and z
n+ m

Nsub
h1

defined on Th1
by solving:

1

τ
w
n+ m

Nsub
h1

=
1

τ
wn

h1

+H(unh1

,w
n+ m

Nsub
h1

),

1

τ
z
n+ m

Nsub
h1

=
1

τ
znh1

+G(unh1

,wn
h1

, znh1

).
(2.49)
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We adopt here the first order IMEX scheme proposed in [148]. Specifically,
we employ an explicit treatment of the ionic concentrations to avoid the so-
lution of a nonlinear system (such choice does not compromise the stability
of the scheme, thanks to the non-stiff dynamics of concentrations), and an
implicit treatment of the gating variables, because of the severe CFL condi-
tion on the time step induced by an explicit scheme. We notice that, thanks
to the linear dynamics of the gating variables, such implicit handling does
not require the solution of a system of linear or nonlinear equations.

• We interpolate dnh2

on the fine mesh Th1
once per time step ∆t, at t = tn.

We use z
n+ m

Nsub
h1

from (2.49) and dnh1

to find u
n+ m

Nsub
h1

over Th1
by solving:(

χmCm
1

τ
M+K(dnh1

) + χmI
ion
u

(
unh1

, z
n+ m

Nsub
h1

)
+ χmI

SAC
u

(
unh1

, dnh1

))
u
n+ m

Nsub
h1

=

χmCm
1

τ
Munh1

− χmĨ
ion
(
unh1

, z
n+ m

Nsub
h1

)
+ χmIapp

(
t
n+ m

Nsub

)
.

(2.50)

Iion
u is the derivative of the terms of Iion that linearly depends on uh1

, ISAC
u

is the derivative of the ISAC term that linearly depends on uh1
, Ĩion collects

all the other terms.

Mechanical activation

As already stated, the time discretization of mechanical activation for the two
SIS schemes is different. Both approaches can be used and prove to be accurate
[148, 161].

sis1 scheme Once [Ca2+]n+1i,h2

, coming from (2.49), is interpolated on the coarse
mesh Th2

, find γn+1
f,h2

by solving:(
1

τ
M+ εK([Ca2+]n+1i,h2

) +Φγf(γ
n
f,h2

, dnh2

, [Ca2+]n+1i,h2

)

)
γn+1
f,h2

=
1

τ
Mγn

f,h2

−Φs(γ
n
f,h2

, dnh2

, [Ca2+]n+1i,h2

).
(2.51)

sis2 scheme In the active stress framework, once [Ca2+]
n+ m

Nsub
i,h2

, coming from

(2.49), is interpolated on the coarse mesh Th2
, we find s

n+ m
Nsub

h2

by solving:

s
n+ m

Nsub
h2

= snh2

+ τK(snh2

, ([Ca2+]
n+ m

Nsub
i,h2

, SLnh2

, ˙SLnh2

)T ). (2.52)
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where SLnh2

is obtained by solving problem (2.44). We remark that ˙SLnh2

is ne-
glected for the RDQ18 model.

Alternatively, in the active strain framework, we find γ
n+ m

Nsub
f,h2

by solving:(
1

τ
M+ εK([Ca2+]

n+ m
Nsub

i,h2

) +Φγf(γ
n
f,h2

, dnh2

, [Ca2+]
n+ m

Nsub
i,h2

)

)
γ
n+ m

Nsub
f,h2

=
1

τ
Mγn

f,h2

−Φs(γ
n
f,h2

, dnh2

, [Ca2+]
n+ m

Nsub
i,h2

).
(2.53)

Mechanics

After having solved (2.49), (2.50), (2.51) or (2.52)/(2.53) and (2.55), we treat (MI)–
(VI) at tn+1 by updating dn+1h2

and pn+1LV with the following system:

(
ρs

1

∆t2
M+

1

∆t
F+ G

)
dn+1h2

+S

= ρs
2

∆t2
Mdnh2

− ρs
1

∆t2
Mdn−1h2

+
1

∆t
Fdnh2

+ pn+1LV p(dnh2

, dn+1h2

),

V
3D
LV (dn+1h2

) = V
/0D
LV (cn1 ).

(2.54)

Eq. (2.54) is a nonlinear saddle-point problem. In Sec. 2.4.4 we provide details
about its numerical approximation at the algebraic level.

An alternative approach for the numerical discretization of 3D cardiac elec-
tromechanics would be employing implicit monolithic schemes, which are known
to be stable and accurate, but at the same time they present constraints in the
choice of the time steps and they are characterized by high computational costs
[61, 161]. Indeed, we can only use one time step and one mesh with a mono-
lithic approach. Therefore, we are forced to choose a small time step and a fine
representation of the computational domain due to the requirements of cardiac
electrophysiology. Our approach is instead accurate and computationally effi-
cient, thanks to the flexibility in the choice of both space and time resolution
among the different core models.

Circulation

Finally, we find cn+11 with the forward Euler method:

cn+11 = cn1 + τZ̃
(
tn, cn1 ,pn+1LV

)
. (2.55)

2.4.4 Algorithm for the numerical resolution of Eq. (2.54)

We approximate the solution of Eq. (2.54) by means of a quasi-Newton strat-
egy [136], as we proposed in [143]. Specifically, in the computation of the Jaco-
bian matrix, we neglect the derivative of the nonlocal term vbase

h2

in the pressure
variable, and we update the Jacobian at each time step, but not through the
iterations of Newton’s loop. By moving all the terms in Eq. (2.54) to the left
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hand side and by rewriting its first and second line as rn+1d (dn+1h2

,pn+1LV ) = 0 and
rn+1p (dn+1h2

) = 0, respectively, the quasi-Newton algorithm reads as follows:

• We set dn+1,0h2

= dnh2

and pn+1,0LV = pnLV.

• For j = 0, 1, . . . , until a convergence criterion is not fulfilled, we solve the
following linear system:(

Jn+1d,d Jn+1d,p

Jn+1p,d 0

)(
∆dn+1,jh2

∆p
n+1,j
LV

)
= −

(
rn+1,jd

r
n+1,j
p

)
, (2.56)

where Jn+1d,d '
∂
∂drn+1d (dnh2

,pnLV) (wherein we neglected the derivative with

respect to the nonlocal term vbase
h2

), Jn+1d,p = ∂
∂prn+1d (dnh2

,pnLV), J
n+1
p,d = ∂

∂dr
n+1
p (dnh2

),

rn+1,jd = rn+1d (dn+1,jh2

,pn+1,jLV ) and rn+1,jp = rn+1p (dn+1,jh2

) .

• We update dn+1,j+1h2

= dn+1,jh2

+∆dn+1,jh2

and pn+1,j+1LV = pn+1,jLV +∆pn+1,jLV .

• When the convergence criterion is satisfied, we set dn+1h2

= dn+1,jh2

and

pn+1LV = pn+1,jLV .

From the algebraic viewpoint, we solve the saddle-point problem (2.56) via
Schur complement reduction [18]. Specifically, we solve the two linear systems:

Jn+1d,d vn+1,j = rn+1,jd , Jn+1d,d wn+1,j = Jn+1d,p

and we set:

∆p
n+1,j
LV =

r
n+1,j
p − Jn+1p,d vn+1,j

Jn+1p,d wn+1,j
, ∆dn+1,jh2

= −
(

vn+1,j + wn+1,j∆p
n+1,j
LV

)
. (2.57)

We remark that, thanks to the reuse of the Jacobian matrix throughout the New-
ton loop, wn+1,j becomes independent of j and thus it does not need to be re-
computed at each iteration. Our scheme only involves the following operations:
for each time step, we assemble the matrix Jn+1d,d and the vectors Jn+1p,d and Jn+1d,p

and we solve the linear system Jn+1d,d wn+1,0 = Jn+1d,p ; at each Newton iteration, we

only need to solve the linear system Jn+1d,d vn+1,j = rn+1,jd and perform a couple
of matrix-vector multiplications and a vector-vector sum of Eq. (2.57). We later
show, through several numerical simulations, that this approach is numerically
stable. Even more importantly, our scheme is appropriate for the whole heart-
beat, as it does not require adaptations according to the specific cardiac phase
[148, 162].

Moreover, our approach allows for a segregated solution of the 3D-/0D coupled
model, which is instead typically solved through a monolithic strategy [76]. As
a matter of fact, segregated schemes available in literature that couple a me-
chanical problem with a model describing the dynamics of a fluid (even when
described through a /0D circulation model) generally fail when the fluid domain

60



is fully enclosed by the solid structure, because the incompressibility constraint
of the fluid is no longer satisfied after the structure update [76]. This is known
as balloon dilemma and affects also cardiac chambers, when either coupled
with a 3D circulation model – within a fluid-structure interaction framework
[12, 68] – or with a /0D one. To overcome it, the 3D-/0D cardiac circulation mod-
els available in literature rely either on a monolithic solution of the two models,
where the /0D and 3D models are simultaneously discretized as a unique sys-
tem and then typically solved by a Newton method [76] or iterative methods
that progressively update the cavity pressures and the solid displacement, until
convergence is reached. For instance, in [86], the authors proposed a method
where the cavity pressure is initially estimated by extrapolating from previous
time steps. Then, the cavity compliance (i.e. ∂V/∂p, where p and V are the cav-
ity pressure and volume, respectively) is estimated by finite differences and is
used to update the pressure until the blood flux of the 3D model matches that
of the /0D model within a prescribed tolerance. Similarly, in [45, 61], during the
isovolumic phases, the cavity pressure is iteratively updated by a fixed point
scheme. However, convergence of this scheme depends upon a relaxation pa-
rameter, whose optimal value needs to be manually assessed from case to case
[61].

With our approach, instead, the mechanical 3D model (M ) and the circulation
/0D model (C ) are solved in both a segregated and a staggered manner. Indeed,
we do not solve the (M ) model simultaneously to the (C ) model, but coupled
to the volume-consistency condition (V ) instead. In this way we end up with
the saddle-point problem (2.54). Thanks to the above algorithm, finally, at each
Newton iteration, we only need to solve a linear system involving the Jacobian
matrix of the (M ) problem and to perform a couple of matrix-vector operations.

2.5 recovering the reference stress-free configuration

Here we present the algorithm for recovering the reference configuration Ω0
from the deformed configuration Ω̃, knowing that the latter is obtained from
the former by applying a pressure p̃ and an active tension T̃a. The steady state
version of the PDE for cardiac mechanics is reported in Eq. (2.19). In what fol-
lows, we denote by d = deq(x0,pLV, Ta) the equilibrium solution of Eq. (2.19)
obtained on the computational domain of coordinate x0. Hence, our aim is find-
ing a coordinate x0 such that x0 + deq(x0,pLV, Ta) = x̃.

2.5.1 Algorithm for the recovery of the reference configuration

A representation of this algorithm is shown in Fig. 2.9. We start by setting the
coordinate of the reference configuration x0 equal to the coordinate of the de-
formed one (i.e. x(0)0 = x̃). Then, we solve the elastostatic problem of Eq. (2.19),
and we get the displacement d(0) = deq(x

(0)
0 ,pLV, Ta) (Fig. 2.9, top-left). Since,

when the configuration Ω̃ is recorded the active tension T̃a is almost zero, in
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❶ ❷

❸ ❹

Figure 2.9: Representation of the basic version of the fixed-point algorithm (see Algorithm 1).

the deformed configuration x(0) = x(0)0 + d(0) the ventricle is inflated compared
to the configuration x̃. Thus, with the aim of correcting the mismatch between
x(0) and x̃, we deflate the ventricle by setting x(1)0 = x(0)0 + (x̃ − x(0)) = x̃ − d(0)

(Fig. 2.9, top-right). Then, we proceed by iterating the above steps. More pre-
cisely, for k > 1, we compute d(k) = deq(x

(k)
0 ,pLV, Ta) (Fig. 2.9, bottom-left) and

we set x(k+1)0 = x̃ − d(k) (Fig. 2.9, bottom-right), stopping when the difference
between two consecutive iterations is sufficiently small.

The procedure is reported in Algorithm 1, where SteadyStateMechanics de-
notes the function that solves problem (2.19) on the geometry with coordinates
x0. The latter function solves the nonlinear system by means of the Newton
method. In case the Newton iterations do not reach convergence (according to
a criterion based both on the residual and on the difference between two con-
secutive iterations), it returns a flag to indicate failure of the algorithm. More
precisely, the function signature reads:

(converged_SSM, d) = SteadyStateMechanics(x0,pLV, Ta)

where, if convergent, converged_SSM is true and d = deq(x0,pLV, Ta), while in
case of non convergence converged_SSM is false and d is not used.

Algorithm 1 can be interpreted as a fixed-point iteration scheme. Indeed,
the fixed-point x0 of the map defined by the Algorithm 1 iteration satisfies
x0 = x̃−deq(x0,pLV, Ta). The fixed-point iterations of Algorithm 1 are sketched in
Fig. 2.10. The solution is obtained as the intersection between the line x̃ = x0+d
and the manifold d = deq(x0,pLV, Ta). The algorithm proceeds iteratively in the
space (x0, d): the first variable is updated by the fixed-point iterations (horizon-
tal axis of Fig. 2.10), while the second variable is updated by Newton iterations
(vertical axis of Fig. 2.10).
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Algorithm 1 Reference configuration recovery (basic version)

parameters: kmax, εtol

output: converged_RCB, x0

procedure ReferenceConfigurationBase(x̃, p̃, T̃a)
x(0)0 ← x̃
for k = 0, . . . ,kmax do

(converged_SSM, d(k))← SteadyStateMechanics(x(k)0 , p̃, T̃a)

if not converged_SSM then
return (false, 0) . Newton method does not converge.

end if
x(k) ← x(k)0 + d(k)

if ‖x(k) − x̃‖ 6 εtol‖d(k)‖ then
return (true, x(k)0 ) . Fixed-point converged.

end if
x(k+1)0 ← x̃ − d(k) . Fixed-point update.

end for
return (false, 0) . Maximum number of iterations reached.

end procedure
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Figure 2.10: Representation of the basic version of the reference configuration recovery algo-
rithm (Algorithm 1).
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Figure 2.11: Representation of the enhanced version of the reference configuration recovery al-
gorithm (see Algorithms 2 and 3).

However, the implementation shown in Algorithm 1 has several limitations
when applied to realistic heart geometries and to nonlinear constitutive laws,
such as in the case of cardiac mechanics. In fact, both the Newton method
employed in SteadyStateMechanics and the fixed-point scheme employed in
ReferenceConfigurationBase do not converge if the initial guess is not “suf-
ficiently” close to the solution. In particular, our experience revealed that the
attraction basin of the fixed-point iterations scheme gets smaller and smaller as
the value of pLV grows, which makes Algorithm 1 unsuitable for realistic cardiac
geometries.

We improved Algorithm 1 by increasing its robustness from several points of
view. We propose in Algorithm 2 the enhanced version of Algorithm 1. We intro-
duced a relaxation parameter α ∈ (0, 1] in the fixed-point iteration, by rewriting
it as x(k)0 ← x(k−1)0 + α(x̃ − x(k−1)). We update α adaptively as written in Algo-
rithm 3: in case of non-convergence of the Newton iterations, we repeat the last
fixed-point iteration for a smaller value of α; in case of convergence, we increase
it in the next iteration. Moreover, the fixed-point iterations are nested inside an
outer loop, in which we progressively increase the value of pLV and Ta until the
target value p̃ and T̃a is reached (continuation method). In this outer loop, we
adaptively change the step ω(k), by decreasing it in case of failure of the inner
fixed-point loop and by increasing it in case of success.

We remark that after each failure of either SteadyStateMechanics or Fixed-
Point function, we reset the value of d to the last solution of Eq. (2.19). This
ensures the success of such continuation strategy, by which we move in the
space (x0, d,ω) staying close to the intersection of the curves d = x̃ − x0 and
d = deq(x0,ωpLV,ωTa) (see Fig. 2.11).
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Algorithm 2 Reference configuration recovery (enhanced version)

parameters: kmax, εramp
tol , εfinal

tol ,γ+ω,γ−ω,∆ωmax

output: converged_RC, x0

procedure ReferenceConfiguration(x̃, p̃, T̃a)
x(0)0 ← x̃
ω(0) ← 0

∆ω← ∆ωmax

for k = 0, . . . ,kmax do
ω(k) ← min(ω(k−1) +∆ω, 1)
if ω(k) = 1 then
εtol ← εfinal

tol
else
εtol ← ε

ramp
tol

end if
(converged_FP, x(k)0 )← FixedPoint(x̃,ω(k)p̃,ω(k)T̃ax(k−1)0 , εtol)

if converged_FP then
if ω(k) = 1 then

return (true, x(k)0 ) . Ramp converged.
end if
∆ω← min(γ+ω∆ω,∆ωmax)

else
∆ω← γ−ω∆ω

end if
end for
return (false, 0) . Maximum number of iterations reached.

end procedure
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Algorithm 3 Inner fixed-point loop of the reference configuration recovery algorithm

parameters: kmax,αmin,αmax,γ+α ,γ−α
output: converged_FP, x0

procedure FixedPoint(x̃,pLV, Ta, x0, εtol)
x(0)0 ← x0
α← αmax

(converged_SSM, d(0))← SteadyStateMechanics(x(0)0 ,pLV, Ta)

if not converged_SSM then
return (false, 0)

end if
for k = 0, . . . ,kmax do

x(k)0 ← x(k−1)0 +α(x̃ − x(k−1)) . Fixed-point update.
(converged_SSM, d(k))← SteadyStateMechanics(x(k)0 , p̃, T̃a)

if converged_SSM then
x(k) ← x(k)0 + d(k)

if ‖x(k) − x̃‖ 6 εtol‖d(k)‖ then
return (true, x(k)0 ) . Fixed-point converged.

end if
α← min(γ+αα,αmax)

else
α← max(γ−αα,αmin)

end if
end for
return (false, 0) . Maximum number of iterations reached.

end procedure
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2.5.2 Projection of the reference configuration from a coarser mesh

The procedure to recover the reference configuration (Algorithm 2) requires to
numerically solve the elastostatic problem of Eq. (2.19) multiple times, until the
fixed point algorithm converges. According to our experience, this procedure
can be very computationally demanding in cardiac applications, especially if
realistic human heart geometries and fine representations of the computational
domain need to be considered. To overcome this issue, the reference configura-
tion recovery algorithm can be run on a coarser mesh compared to the couple
of nested meshes Th2

-Th1
used for the electromechanical model with the SIS2

scheme. A natural choice can be to exploit once again the efficient hierarchical
octree structure, but starting from a coarser level h3, generating accordingly the
triad of nested meshes Th3

-Th2
-Th1

. However, a further level of coarsening would
imply a loss of geometric accuracy that is propagated also into the finer couple
of meshes Th2

-Th1
, affecting the electromechanical model.

For this reason, we propose a projection technique which enables to map to
the reference configuration Ω0 from a coarser non-nested mesh. This mesh
named Th̃3

can be independently generated with a mesh size h̃3 such that

h3 < h̃3 < h2. Such strategy provides the advantages of having more flexibil-
ity on the choice of the mesh size h̃3 and of preserving the geometric accuracy
for the electromechanical meshes Th2

-Th1
.

The complete procedure consists of the following steps:

1. generate two non-nested computational meshes Th2
and Th̃3

from the de-

formed configuration Ω̃, i.e. the one reconstructed from the medical im-
ages, such that h2 < h̃3. The former is characterized by the target mesh
size for the mechanical simulation.

2. solve the reference configuration recovery (Algorithm 2) on the coarser
mesh Th̃3

, obtaining the displacement field dh̃3

;

3. project the displacement dh̃3

on the finer mesh Th2
obtaining the field d̂h2

,
which approximates the displacement dh2

, i.e. the one that would be com-
puted if the reference configuration recovery (Algorithm 2) is applied di-
rectly on the finer mesh Th2

;

4. move each vertex of the mesh Th2
according to x0 = x̃− d̂h2

, recovering the
computational mesh Th2

that describes the reference configuration Ω0;

5. hierarchically refine Th2
to generate the fine mesh Th1

for the electrophysi-
ology.

We remark that the projection step 3 is necessary despite both Th2
and Th̃3

de-

scribe the same domain Ω̃. Indeed, in practice, their boundaries do not match,
since they are independent polygonal surfaces made of piecewise linear ele-
ments. Thus, some vertices of Th2

can lie outside Th̃3

, as illustrated in the 2D
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Figure 2.12: A sketch of the projection procedure from a coarse mesh Th̃3

(in blue) into a finer

mesh Th2
(in red): on the internal points x̃ih2

∈ Th2
we recover the value exploiting

the basis functions of the element Ki ∈ Th3
(in green); on the external points x̃jh2

∈
Th2

we project the value of the closest point x̃jh3

∈ Th̃3

evaluated on the closest

element Kj ∈ Th̃3

(in purple).

sketch of Fig. 2.12. As a consequence, to recover d̂h2
in all the vertices of the

mesh Th2
, we proceed in a different way if these vertices lie inside or outside

Th̃3

. In particular:

• for the internal vertices – denoted as x̃ih2

, i = 0, 1, 2, . . . – it is sufficient
to find the element Ki ∈ Th3

such that Ki 3 x̃ih2

and evaluate dh3
(x̃ih2

)

exploiting its Finite Element expansion on Ki (see Fig. 2.12, green element);

• conversely, for each external point – denoted as x̃jh2

, j = 0, 1, 2, . . . – more
sub-steps are necessary, (see Fig. 2.12, purple element):

1. we find the closest element Kj ∈ Th̃3

from the external point x̃jh2

;

2. on Kj we find the closest point x̃jh3

to x̃jh2

;

3. we evaluate dh3
(x̃jh3

) projecting the resulting value into the external

point x̃jh2

.

From the implementation point of view, this projection is performed by ex-
ploiting the VTK library [166]. VTK filtering utilities allow to locate all internal
points, which are the majority, in a really fast way. Moreover, the VTK library
is efficient in performing closest points interpolation, leading to a very fast pro-
jection procedure. However, we remark that the hierarchical octree structure [1,
29] still remains more effective for electromechanical simulations, where the ex-
change of information between (nested) meshes occurs at each time step. Indeed,
the projection presented here is intended to be a single pre-processing step to
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be performed before the non-stationary electromechanical simulation when the
SIS2 scheme is employed.

2.6 methods

For the implementation of the SIS1 scheme, we use LifeV [96], a C++ open-source
Finite Element library. The mathematical models and the numerical methods re-
garding the SIS2 scheme are implemented in lifex (https://lifex.gitlab.io/
lifex), a high-performance C++ library developed within the iHEART project
and based on the deal.II (https://www.dealii.org) Finite Element core [7].

For the preprocessing phase, which covers mesh generation, tagging proce-
dure and interpolation of clinical data, we exploit a recently proposed tool for
cardiac geometries [53]. This tool is based on VMTK - the Vascular Modelling
Toolkit [5, 178].

All the numerical simulations that will be presented in the next chapters are
performed on three HPC facilities available at MOX for the iHEART project. The
first cluster is endowed with 8 Intel Xeon Platinum 8160 processors, for a total
of 192 computational cores and a total amount of 1.5TB of available RAM. The
second cluster contains 160 computational cores (5 nodes endowed with Intel
Xeon E5-4610 v2, 2.3GHz) and 1.2TB of available RAM. Finally, the third cluster
is made of 100 computational cores (5 nodes endowed with Intel Xeon E5-2640

v4, 2.4GHz) and 384GB of available RAM.
To trigger the electric signal in the LV, we apply a current Ĩapp(x, t) with either

a cubic or a gaussian distribution in space and a peak value Ĩmax
app , for a duration

of tapp. Even if we do not model the Purkinje network explicitly [151, 190], the
activation pattern that we obtain from Ĩapp(x, t) is known to provide physically
acceptable results [61]. According to the specific numerical simulation, we apply
either different stimuli or a single stimulus that mimics a pacing protocol. The
former approach is normally used for SR simulations, while the latter is usually
employed to induce VT [138].

There are several rule-based techniques to generate the fiber, sheet and cross-
fiber distributions [16, 50, 130, 153] for both idealized and patient-specific LVs.
In this thesis, we use the Bayer-Blake-Plank-Trayanova algorithm [16, 130] to get
f0, s0 and n0 vector fields for our geometries. In particular, fiber direction rotates
clockwise throughout the ventricular wall from 60◦ at the endocardium to −60◦

at the epicardium, whereas transversal fiber direction varies transmurally from
−20◦ at the endocardium to 20◦ at the epicardium.
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3
N U M E R I C A L R E S U LT S I N P H Y S I O L O G I C A L C O N D I T I O N S

In this chapter, we present electromechanical simulations in SR on LVs with-
out ICM. In this way, we prove the capability of our mathematical approach to
effectively simulate physiological scenarios.

3.1 idealized left ventricle

We start by showing a numerical simulation of a full heartbeat (T = 0.8 s) in the
electromechanical framework, by considering an idealized LV.

We depict the meshes in Figs. 3.1 and 3.2. Their details are provided in
Tab. 3.1. We employ the SIS1 scheme, which enables the use of different in-
dependent grids, even though we have to use P1 Finite Elements to numer-
ically approximate the core models, so that the unknowns are actually com-
puted on the vertices of each tetrahedron. The time step for electrophysiology
is τ = 50µs, whereas the one for activation, mechanics and windkessel model is
∆t = 5τ = 250µs. All the parameters used in the electromechanical model can
be found in Appendix A.1.1.

Differently from all the other numerical simulations of this thesis, here and
in Sec. 4.1.1 we apply the so called prestress technique instead of the refer-
ence configuration recovery method (Sec. 2.2 and Sec. 2.5) to properly take into
account the internal stresses of the myocardium at the beginning of the elec-
tromechanical simulation [61]. Indeed, we compute a distribution of stresses
such that the reference geometry is in equilibrium with the blood pressure pLV
at the end of the diastolic phase. We perform an additive decomposition of ten-
sor P = P(d) + P0, where the prestress tensor P0 is determined to ensure a null
displacement d0 in correspondance of the initial pressure at the endocardium.
For more information about this technique we refer to [61].

In Fig. 3.3 we observe the evolution in space and time of the transmembrane
potential V , activation variable γf and total displacement magnitude |d| over
one entire heartbeat. Even if the electrophysiogical mesh is fine, we should use
a smaller value of hmean to describe all the space scales properly and to have a
convergent velocity of the wavefront [17]. The activation is slightly delayed with

Core models Number of elements Number of vertices hmean

Electrophysiology 1’002’886 170’009 1.2mm
Activation and mechanics 119’419 21’928 3mm

Table 3.1: Information about the two meshes of an idealized LV with the corresponding number
of elements, number of vertices and average edge length.
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Figure 3.1: View from above of the meshes for the idealized LV for electrophysiology (left),
activation and mechanics (right).

Figure 3.2: Cut front view of the meshes for the idealized LV for electrophysiology (left), activa-
tion and mechanics (right).

respect to the propagation of the AP because it is driven by the calcium concen-
tration, that evolves in time slower than the transmembrane potential. The my-
ocardial tissue undergoes a significant thickening, which is in accordance with
experimental observations [139]. A high value of the bulk modulus B permits to
obtain a significant torsion of the LV and to impose the quasi-incompressibility
constraint [61]. With the choice of parameters for the Robin boundary condition
at the epicardium in the mechanical problem (2.9), we are able to properly keep
into account the effect of the pericardium [129]: in this way we can reduce the
movement of the apex while increasing the one of the base.

The PV loop is depicted in Fig. 3.4. Even if a comparison with in-vivo measure-
ments would be meaningless, due to the fact that we are dealing with an ideal-
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t = 0.01 s t = 0.02 s

t = 0.04 s t = 0.1 s

t = 0.20 s t = 0.30 s

t = 0.41 s t = 0.80 s

Figure 3.3: Evolution of the transmembrane potential V , γf and |d| in the idealized LV over the
time. The second and the third views of each picture are warped by the displacement
vector.

ized framework, we can state that the PV loop developed over the simulation is
in accordance with those observed experimentally [154], at least qualitatively.

Finally, with reference to [61], we have also performed this numerical simula-
tion in a monolithic fashion, by considering only the first isochoric phase, for a
total time T = 50ms. In this case we are forced to use the time step of electro-
physiology (here τ = ∆t = 50µs) also for both activation and mechanics, due to
the fact that AP and calcium dynamics require a higher resolution in time. For
what concerns space discretization, we are again forced to use only the mesh of
electrophysiology (here the one of the first row in Tab. 3.1), even if we do not
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Figure 3.4: Ventricular volume and endocardial pressure over time (left) with PV loop (right) for
the idealized LV.

Numerical scheme Electrophysiology Activation Mechanics Interpolation

Monolithic 0.47 s 0.30 s 8.2 s -
SIS1 0.48 s 0.24 s 3.1 s 2.4 s

Table 3.2: Comparison between monolithic and SIS1 schemes in terms of CPU times dedicated
to the assembly stages of the block matrices corresponding to the different physics.
These results are referred to time t = 30ms of the simulation, during the systolic
phase.

need such a high number of elements for the mechanical problem. In Tab. 3.2,
we report the time needed to perform one single time step with both monolithic
and SIS1 approaches in a parallel framework. We place ourselves in the worst
scenario where we consider a time step for the SIS1 scheme in which we have
to solve the whole electromechanical problem and interpolate both calcium con-
centration and displacement vector. This does not occur for all the time steps of
the numerical simulation. We see that the use of two different time steps and
two different meshes, which is allowed by our RL-RBF intergrid transfer opera-
tor, yields a significant gain with respect to the monolithic strategy. Monolithic
schemes are indeed not competitive in terms of performance with respect to
segregated ones. With the SIS1 approach we observe a 10x speed-up in the com-
putational time with respect to [61]. Given the scalability properties of RL-RBF
[46, 161], this speed-up holds for different combinations in number of cores and
mesh resolution. The interpolation process does not present a bottleneck for the
numerical simulations even when a very large number of cores is employed
and no load balancing issues have been observed. Morever, the SIS1 scheme
also guarantees a proper and accurate capture of both the time and space scales
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Figure 3.5: Comparison between monolithic and SIS1 schemes for the transmembrane potential
V over the computational domain at a certain time step (t = 30ms). We also provide
in the third view the pointwise difference in absolute value between the transmem-
brane potentials of the two schemes, i.e. |Vmonolithic(x) − Vsegregated(x)|.

Figure 3.6: Comparison between monolithic and SIS1 schemes for γf over the computational
domain at t = 30ms.

of this multiphysics problem. Indeed, in Figs. 3.5 and 3.6, we observe small
differences in the velocity of propagation of the wavefronts. This little discrep-
ancy is due to the splitting error of the segregated scheme, to the small error
in space introduced by the interpolation process, and finally to the larger time
step used for activation and mechanics. The same conclusions hold also for the
electrophysiological problem, due to the feedback that involves the deformation
tensor F.
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Number of elements Number of vertices hmean

Mesh1
Electrophysiology 1’008’896 1’046’641 1mm

Activation/Mechanics 15’764 19’099 4mm

Mesh2
Electrophysiology 2’590’464 2’663’817 0.75mm
Activation/Mechanics 40’476 47’529 3mm

Mesh3
Electrophysiology 8’939’776 9’116’741 0.5mm
Activation/Mechanics 139’684 159’149 2mm

Table 3.3: Details of the Zygote LV meshes used for the numerical results reported in Sec. 3.2.
Two nested meshes are generated for each of the three configurations (Mesh1, Mesh2,
and Mesh3): the finer - used for the electrophysiological model - is obtained by re-
cursively splitting each element of the coarser - adopted for both the activation and
mechanical models.

3.2 realistic left ventricle

We now present some numerical simulations of cardiac electromechanics with
the SIS2 scheme by considering the Zygote LV [80] in SR.

We list in Tab. 3.3 the three configurations of the nested computational meshes
under consideration, from the coarsest (Mesh1) to the finest one (Mesh3). In all
the cases, we employ for the electrophysiological problem a mesh size that is
four times smaller than the one of the mechanical problem.

In terms of numerical results, we first provide a grid sensitivity study, by con-
sidering increasingly refined meshes, i.e. Mesh1, Mesh2 and Mesh3. Then, we
show that our mathematical model can generate several scenarios according to
the chosen parameter sets: specifically, we vary preload, afterload and contrac-
tility, and we evaluate the effects of these changes on the PV loops of the LV. We
also depict activation maps generated by means of either Q1 or Q2 elements for
electrophysiology and only Q1 elements for activation and mechanics: in this
way we show that our intergrid transfer operator can handle different Finite
Element spaces for different core models.

All the parameters related to the electromechanical model are reported in Ap-
pendix A.1.2. We use a time step τ = 50µs for electrophysiology and activation,
and ∆t = 5τ = 250µs for mechanics.

3.2.1 Mesh sensitivity

We run electromechanical simulations for several heartbeats (T = 4 s) on Mesh1,
Mesh2 and Mesh3 of Tab. 3.3 to study how the numerical results vary with the
space discretization. Given the negligible impact of MEFs in SR (see Chap. 4)
and for the sake of simplicity, we consider model (E ) for cardiac electrophysiol-
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Figure 3.7: Pressure and volume transients over time and PV loops related to the Zygote LV,
considering different mesh resolutions (Mesh1, Mesh2, Mesh3 of Tab. 3.3) and Q1
Finite Element spaces.

ogy. In Fig. 3.7 we display the PV loop and the evolution in time of pressure and
volume for the three proposed mesh settings. These numerical results are not
only influenced by the average diameter hmean [8], but also by the effective num-
ber of DOFs. Under the assumption of properly distributed mesh elements, the
number of DOFs itself can potentially be an indicator to evaluate the accuracy
of the space discretization for cardiac simulations, unifying numerical approxi-
mations coming from different mesh elements and different techniques, such as
FEM, Spectral Element Methods and Isogeometric Analysis [24, 127, 136].

In Fig. 3.8 we display the activation maps for the Mesh1 setting in Tab. 3.3.
We use either Q1 or Q2 Finite Elements for electrophysiology, and Q1 for both
activation and mechanics. We show one numerical simulation with Q2 Finite El-
ements for electrophysiology to underline that our mathematical discretization
can be extended to high-order methods, which are known to be more suitable
than standard FEM for wave propagation problems [24, 127]. We observe that
the activation map resulting from Q2 Finite Elements features slightly more pro-
nounced anisotropy of the isochrones. Indeed, the additional DOFs provided by
Q2 elements allow to better outline the different roles of conductivities σl, σt
and σn, as shown in [130].

3.2.2 Variations in preload, afterload and contractility

We test the response of our electromechanical model to some scenarios of clin-
ical interest. The parameters of the baseline simulation are reported in [148].
Starting from this setting, we consider three physiologically relevant scenarios,
aimed at investigating the effects of changes in preload, afterload and myocar-
dial contractility, respectively. In all the cases, we simulate several heartbeats,
until when we reach a periodic regime. However, we report only the PV loops
related to the last cycle.
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Figure 3.8: Activation times on the Zygote LV considering different Finite Element spaces (Q1,
1’046’641 DOFs, on the left, and Q2, 8’211’745 DOFs, on the right) for electrophysiol-
ogy.

Stresses computation

We define the following indicator to evaluate the components of the mechanical
stress:

Sab = (Pa0) ·
Fb0

|Fb0|
, (3.1)

where a,b ∈ {f, s,n} indicate the fiber (f), the sheet (s) and the crossfiber (n)
direction respectively. The metric Sab measures the stress component in the b
direction (where b = Fb0

|Fb0|
denotes the direction b0 in the current configuration)

across a surface normal to the direction a0. Hence, we refer to axial stresses
when a = b, to shear stresses when a 6= b. We remark that in the active stress
framework, P incorporates an additive decomposition between the passive and
the active terms, the latter coming from the active tension Ta. On the other hand,
in the active strain approach, F is defined by a multiplicative decomposition
between the passive and the active components of the deformation tensor, the
latter coming from the γf variable.

Even though a possible strategy to handle the computation of the stress tensor
would be to solve an L2-projection problem [148], we represent each component
as a piecewise constant (Q0) Finite Element vector, where the average of the
values over the quadrature points of each cell is associated with the only local
DOF corresponding to the cell centroid. Since the stresses are only processed
for visualization purposes, our strategies turns out to be very efficient while not
hampering the accuracy of the computation.
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Baseline simulation

In Fig. 3.9 we report the time evolution of both the transmembrane potential V
and the displacement magnitude |d| in the Zygote LV, by considering the first
heartbeat of the numerical simulation. We use Mesh2 in Tab. 3.3. We compute
the initial displacement d0 by inflating Ω0 until the desired EDP is reached. We
accomplish this task by performing a pressure ramp on the quasi-static approx-
imation of the mechanical problem, i.e. Eq. (2.19).

In Fig. 3.10 we depict the axial stresses Sff, Sss and Snn, whereas in Fig. 3.11 we
show the shear stresses Sfs, Sfn and Ssf. We observe that Sff has a dominant role
with respect to Sss and Snn, especially during ejection (i.e. the second part of sys-
tole) and isovolumetric relaxation (i.e. early diastole). The same considerations
hold for the shear stresses components involving the fiber field f.

Test Case 1

We change the ventricles preload (i.e. their EDP) by modifying the value of the
atrial contractility with respect to the baseline setting. More precisely, we con-
sider the two cases when Eact,max

LA and Eact,max
RA are respectively increased and

decreased by 50%. As shown in Fig. 3.12, the larger the atrial contractility, the
more blood is injected in the ventricle, thus increasing preload. Moreover, our
electromechanical model predicts a larger SV for a larger preload. This is con-
sistent with the so-called Frank-Starling effect, a self-regulatory mechanism that
guarantees the balance between venous return and cardiac output [83].

Test Case 2

We investigate the effects of changing the resistance of the arterial circulation.
This mimics the situation of a patient affected by diseases associated with hy-
pertension, such as arteriosclerosis, or to the effect of vasodilator-vasoconstrictor
drugs. Starting from the baseline setting, we perform two additional simulations
where we respectively increase and decrease by 15% the value of RSYS

AR . In both
cases, we modify the value of CSYS

AR accordingly, so that the product RSYS
AR C

SYS
AR ,

corresponding to the characteristic time constant of the arterial system, is pre-
served. The results in Fig. 3.12 show that an increase of the arterial resistance
yields larger values of both the AV opening pressure and the maximal LV pres-
sure (hypertensive effect).

Test Case 3

We consider the response of our electromechanical model to either positive or
negative changes to inotropic state of the muscle, whose effect is that of in-
creasing and, respectively, decreasing the myocardial contractility. Specifically,
starting from the baseline, we first increment and then decrement the atrial
contractility (Eact,max

LA and Eact,max
RA ) and the ventricular contractility (Tmax

a and
Eact,max

RV ) by 35%. The results in Fig. 3.12 show that an increase in myocardial
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t = 0.03 s t = 0.06 s

t = 0.25 s t = 0.375 s

t = 0.42 s t = 0.45 s

t = 0.60 s t = 0.80 s

Figure 3.9: Evolution of the transmembrane potential V and the displacement magnitude |d| in
the Zygote LV over time. The right view of each picture is warped by the displace-
ment vector. Conversely, the transmembrane potential V is displayed on the reference
configuration Ω0.
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t = 0.03 s t = 0.15 s

t = 0.25 s t = 0.40 s

t = 0.50 s t = 0.80 s

Figure 3.10: Evolution of Sff, Sss, Snn during the first heartbeat of the numerical simulation.
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t = 0.03 s t = 0.15 s

t = 0.25 s t = 0.40 s

t = 0.50 s t = 0.80 s

Figure 3.11: Evolution of Sfs, Sfn and Ssn during the first heartbeat of the numerical simulation.
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Figure 3.12: LV PV loops obtained in the three Test cases of Sec. 3.2.2 compared with baseline.
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contractility generates an increase of both the maximal LV pressure and the SV,
but it does not affect preload. As a matter of fact, the EDP is unaltered.

3.3 discussion

In Sec. 3.1 we show the effectiveness of our SIS1 scheme to simulate the elec-
tromechanical activity of an idealized LV in physiological conditions, where
the PV loop qualitatively resembles the ones observed experimentally [154].
The SIS1 scheme makes use of an intergrid transfer operator based on RL-
RBF to accurately and efficiently interpolate the intracellular calcium concen-
tration [Ca2+]i and the deformation tensor F between the very different non-
nested meshes employed for electrophysiology and mechanics. Indeed, non-
nested grids are more flexible to accommodate geometrical heterogeneity and
to be tuned to different local accuracy requirements. The use of two different
meshes and time steps entails a significant speed-up in the numerical resolu-
tion of this multifield coupled problem with respect to the monolithic approach,
which is slower and more memory-demanding while leading to similar levels
of accuracy [146, 161]. To the best of our knowledge, only techniques involving
nested grids and first-order Finite Elements have been used in the context of car-
diac electromechanics [32, 37]. Moreover, proofs of scalability are not provided
and comparisons in terms of computational costs are lacking. The SIS1 scheme
and the numerical simulations presented in Sec. 3.1 fill this gap by enabling the
use of completely independent meshes and by providing comparisons with a
monolithic strategy in terms of computational times and accuracy [161].

On the other hand, in Sec. 3.2 we consider our SIS2 scheme, in which we
employ another parallel and flexible intergrid transfer operator that permits to
interpolate the numerical solution of a core model between nested meshes and
among possibly different Finite Element spaces [1]. This scheme accounts for
the coupling of a 3D electromechanical model with a /0D circulation model in
a fully segregated manner while avoiding the balloon dilemma [76] – which af-
fects segregated schemes wherein the displacement update is not aware of the
incompressibility constraint of the enclosed fluid, thus possibly leading to the
failure of the scheme [12, 68] – by the introduction of a volumetric constraint
on the numerical solution of the mechanical problem. In this way, the cavity
pressure can be reinterpreted as a Lagrange multiplier associated with the con-
straint, that enforces the coupling between the /0D circulation model and the 3D
electromechanical model. At the algebraic level, we end up with a saddle-point
problem, that we solve by means of Schur complement reduction [18].

In the active stress model we replaced a biophysically detailed, but compu-
tationally demanding, subcellular model of active force generation by a surro-
gate model, based on an ANN [143]. This model, which is based on a Machine
Learning approach from a collection of pre-computed simulations, allows to ac-
curately reproduce the results of the FOM model by reducing by a factor of
1’000 the number of internal variables [141, 143]. In this way we obtain a very
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favorable trade-off between the biophysical accuracy of the results and the com-
putational cost of our numerical simulations.

We consider electromechanical simulations on the Zygote LV where we vary
different parameters of the mathematical model to affect preload, afterload and
contractility, thus investigating its response for situations of clinical interest. Our
mathematical model correctly reproduces the increase of SV as a consequence
of increased preload, coherently with the Frank-Starling law [83], thus guar-
anteeing the matching between the venous return and the cardiac output. We
also present a numerical test where we use different polynomial orders for the
electrophysiological variables, on one hand, and for the activation and the me-
chanical ones, on the other hand.
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4
N U M E R I C A L R E S U LT S I N PAT H O L O G I C A L C O N D I T I O N S

In this chapter, we present electromechanical simulations for LVs with ICM,
both in SR and under VT. We show that our mathematical framework enables
the investigation of severe pathological scenarios, including arrhythmias.

4.1 patient-specific left ventricles with ischemic cardiomyopa-
thy

We consider two patient-specific LVs with ICM in which both the geometry
and the distribution of the ischemic regions are mapped from Late Gadolinium
Enhancement Magnetic Resonance Imaging (LGE-MRI). We employ the SIS1

scheme for SR simulations on the first LV, whereas we use the SIS2 scheme to
perform SR and VT simulations on the second LV. Thanks to the availability
of more clinical data, we develop a personalized computational model on the
second patient by manually calibrating some electromechanical parameters in
the mathematical model. All clinical data reported in this section were appro-
priately de-identified and acquired for a retrospective study in accordance with
the Johns Hopkins Institutional Review Board.

4.1.1 First geometry

Core models Number of elements Number of vertices hmean

Electrophysiology 3’584’356 605’480 0.8mm
Activation and mechanics 448’044 81’243 2.0mm

Table 4.1: Information about the two meshes of the first patient-specific LV with ICM with the
corresponding number of elements, number of vertices and average edge length.

We display the distribution of scars, grey zones and healthy areas over the
myocardium of the first LV in Fig. 4.1. This heterogeneity translates into differ-
ent electromechanical properties. The prestress technique described in Sec. 3.1
is still in place to properly initialize the numerical simulation [61]. We illustrate
the two unstructured and independent grids employed for the electromechani-
cal simulation in Figs. 4.2 and 4.3. By combining these figures with the informa-
tion reported in Tab. 4.1, we notice that the SIS1 scheme allows for a significant
space scales separation between electrophysiology and mechanics even in com-
plex patient-specific cases.

In Figs. 4.5 and 4.6 we show the evolution in time of both γf and d over one
heartbeat. The distribution of infarct, peri-infarct and healthy regions is interpo-
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Figure 4.1: First patient-specific LV with ICM: distribution of scars (black), grey zones (grey)
and non-remodeled regions (red) over the myocardium.

Figure 4.2: View from above of the first patient-specific LV with ICM meshes for electrophysiol-
ogy (left), activation and mechanics (right).

Figure 4.3: Cut front view of the first patient-specific LV with ICM meshes for electrophysiology
(left), activation and mechanics (right).

lated on the coarser mesh. We observe a different thickening of the cardiac tissue
according to the specific area of the LV. Dense scars, which mostly occupy the
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Figure 4.4: Comparison between the PV loops of the idealized LV of Sec. 3.1 and the first patient-
specific LV with ICM.

t = 0 s t = 0.15 s

t = 0.25 s t = 0.35 s

t = 0.44 s t = 0.70 s

Figure 4.5: Evolution of γf over the time for the first patient-specific LV with ICM. The left view
synthesizes the ischemic regions distribution on the coarser mesh. The right view of
each picture is warped by the displacement vector.
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t = 0 s t = 0.15 s

t = 0.25 s t = 0.35 s

t = 0.44 s t = 0.70 s

Figure 4.6: Evolution of d over the time for the first patient-specific LV with ICM. The left view
synthesizes the ischemic regions distribution on the coarser mesh. The right view of
each picture is warped by the displacement vector.

lower part of the LV, do not present any electrophysiological activity and do not
contract. Grey zones show intermediate electromechanical properties between
scars and healthy regions.

In Fig. 4.4, we depict the PV loop of this patient-specific LV. We see that, com-
pared to an idealized LV, which resembles physiological conditions, the PV loop
of an ICM patient significantly moves towards the right and manifests a lower
SV. This is motivated by the electromechanical remodeling that is determined
by ICM over a long period of time.

We stress that, for this specific numerical simulation, due to the lack of clinical
data, the parameters of the electromechanical model are not calibrated for the
patient at hand. Indeed, we reuse the parametrization of the electromechanical
model that is proposed in [161]. For this reason, the PV loop only provides
qualitative indications of what is generally observed in ICM patients.

4.1.2 Second geometry

We depict the geometric model of the second patient-specific LV in Fig. 4.7. We
use the Segment cardiac image analysis software package [74] to segment the
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Figure 4.7: Second patient-specific LV with ICM: distribution of scars (black), grey zones (grey)
and non-remodeled regions (red) over the myocardium. Volumetric view (left) and
cut view (right).

Parameter Value

EF 13 %
SV 39mL

HR 57

MAP 80mmHg

SBP 110mmHg

DBP 69mmHg

Table 4.2: Patient-specific data for the second LV with ICM. EF, SV and HR have been retrieved
from Cine MRI, while MAP, SBP and DBP where observed by means of a sphygmo-
manometer.

Cine Magnetic Resonance Imaging (MRI) of the patient. From this segmentation,
we retrieve the volume of the LV blood pool over time, SV, EF and HR. We
also collected some pressure data, namely MAP, systolic blood pressure (SBP)
and diastolic blood pressure (DBP), by using a sphygmomanometer before the
clinical trial. All these information are reported in Tab. 4.2.

The geometry is tetrahedralized by using elements of average edge length
equal to 0.35mm. We show the tetrahedral mesh and the tags for base, epi-
cardium and endocardium in Fig. 4.8. Meshing and ischemic region mapping
from imaging are performed with the commercial software Materialise Mimics
[105]. On the other hand, VMTK is used to generate the corresponding hexa-
hedral mesh and to downsample it to the desired resolution employed in the
numerical simulations (average element diameter hmean = 1.5mm, 638’048 ele-
ments and 692’535 vertices). We also use VMTK to accurately map the ischemic

89



Figure 4.8: Initial tetrahedral mesh (left) and distribution of tags over the myocardium (right)
for the second patient-specific LV with ICM.

region distribution from the original high resolution mesh to the downsampled
one, after computing the reference configuration, as shown in Fig. 4.9.

We compute the reference configuration of this patient-specific LV by solving
the inverse problem proposed in [147, 148], which is also reported in Sec. 2.2
and Sec. 2.5. In this way, we get the geometry in a stress-free condition, as if the
blood was completely removed from the LV. Accounting for the heterogeneous
coefficient η = η(x) in Eqs. (2.1), (2.5) and (2.9) has a clear influence on the
numerical solution of this inverse problem, as shown in Fig. 4.10 [162].

We report the setup of all the numerical simulations of this section in Tab. 4.3.
We will present personalized numerical results in the context of cardiac elec-
trophysiology and cardiac electromechanics, both in SR and during VT, for a
patient-specific LV with ICM. Despite the complete SIS2 scheme would be ben-
eficial, we do not consider different mesh resolutions for electrophysiology and
mechanics but rather use a mesh that balances numerical accuracy and com-
putational efficiency for both models. In this way, we have a fully consistent
geometrical representation of these complex patient-specific ischemic regions,
which is certainly important to define, to the best of our knowledge, the first in-
dividualized computational model of the electromechanical activity in a human
LV with ICM.

Sinus rhythm

We run several numerical simulations in SR (Tab. 4.3, code 1 ) to perform the
calibration of the parameters of our electromechanical model. In particular, we
manually tuned µA for active strain, Kepi

⊥ , Kepi
‖ , Cepi

⊥ and Cepi
‖ for mechanics, re-

sistance R and capacitance C of the 2-element windkessel model. We do not
calibrate the passive mechanics parameters related to the Guccione constitutive
law. Indeed, we are unable to fit a Klotz curve for this patient-specific case [88].
We reuse the same parametrization provided in [156] on failing swine hearts.
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Figure 4.9: Preprocessing phase for the second patient-specific LV with ICM. The ischemic re-
gions are mapped on the high resolution tetrahedral mesh (step 1a). Then, downsam-
pling and conversion to hexahedral elements are performed (step 1b). We compute
the reference configuration on the latter mesh (step 2). The displacement vector is ac-
curately and efficiently interpolated on the high resolution mesh with the ischemic
regions, by using the interpolant proposed in [148] (step 3). Finally, we warp the
tetrahedral mesh with the interpolated reference configuration displacement (step 4)
and we perform closest point projection of the ischemic regions distribution on the
hexahedral mesh used in our numerical simulations (step 5).

We remind that the reference configuration recovery is repeated for each new
set of parameters. We report in Appendix A.2.2 the final configuration that we
used for the SR simulation. In Fig. 4.11 we depict the evolution of γf and dis-
placement magnitude |d| over different time steps of the numerical simulation.
We highlight the heterogeneity in the activation of the myocardium, that leads
to different contractility according to the specific region. Dense scars, which ap-
proximately occupy half of the LV, do not contract. Displacement magnitude
|d| is again dominant at the base, so that the LV is pushed towards the apex.
Moreover, even if we do not perform a quantitative strain analysis, we get a
qualitative match between the displacement field observed from our numerical
simulation and the one coming from Cine MRI.

In Fig. 4.12, we show the evolution of the LV volume over time for the pa-
tient, along with the PV loop. We provide a good quantitative match with Cine
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Figure 4.10: Reference configuration recovery for the second patient-specific LV with ICM. We
depict the displacement to reach the unstressed geometry Ω0 in case the ischemic
regions distribution is imported (left) or when fully healthy conditions are consid-
ered (right). Scars, which are mostly localized at the apex, prevent the unloading
for part of the myocardium.

MRI for the evolution of blood pool volume over time, as well as for all values
reported in Tab. 4.2. Indeed, even if we do not have at our disposal the evo-
lution of the LV pressure over time, we also provide a match with the three
available pointwise pressure measurements (i.e. MAP, SBP and DBP). Moreover,
we underline the major differences with respect to a reference healthy PV loop
(baseline simulation in [148]). The presence of ICM significantly dilates the LV
over the years. As a consequence, the PV loop moves to the right and both EDV
and ESV increase. The EDP is generally higher with ICM, whereas the pressure
peak is lower. Indeed, the capability of the LV to push blood into the aorta is
strongly impaired. This coincides with smaller contractility and reduced EF.

Ventricular tachycardia

We induced a VT by repeatedly stimulating the LV at one specific location. We
run an electrophysiological simulation with the software package CARP (Car-
dioSolv LLC) [191, 193] on the original tetrahedral mesh (hmean = 0.35mm) and
we induced a sustained VT by following the strategy proposed in [6] (Tab. 4.3,
code 2 ). Then, we run an electrophysiological simulation with the lifex library
on the hexahedral mesh (hmean = 1.5mm). We reproduce a similar activation
map between the two numerical simulations, as shown in Fig 4.13.

Next, we induce a sustained VT in the lifex electrophysiological simulation
by using a shorter stimulation protocol (Tab. 4.3, code 3 ). While the VT ob-
served in CARP has a basis cycle length BCL ≈ 0.390 s, the one resulting from
lifex shows a BCL ≈ 0.420 s. This may be motivated by the use of different stim-
ulation protocols, different mesh elements (tetrahedron vs. hexahedron) and
different average mesh sizes (0.35mm vs. 1.5mm). In particular, given the same
biophysical parametrizations, the mesh resolution has a significant impact on
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t = 0.03 s t = 0.06 s

t = 0.20 s t = 0.25 s

t = 0.30 s t = 0.40 s

t = 0.60 s t = 0.90 s

Figure 4.11: Evolution in SR of γf and displacement magnitude |d| for the second patient-specific
LV with ICM (Tab. 4.3, code 1 ). Each picture is warped by the displacement vector.

the effective CVs [204]. The use of a shorter stimulation protocol and a coarser
mesh resolution for the electrophysiological simulation performed in lifex are
dictated by the complexity of the electromechanical simulations that we run. In-
deed, to ensure maximum comparability of the results, electrophysiological and
electromechanical simulations in lifex (Tab. 4.3, codes 1 , 3 4 , 5 ) must run
by employing the same numerical settings. The electrophysiological simulation
performed in CARP stands as a reference solution, thanks to the fine space and
time discretization that we adopted.

At this point, we run an electromechanical simulation under VT (Tab. 4.3, code
4 ) by using the multiphysics model parameters reported in Appendix A.2.2.
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Figure 4.12: Electromechanical simulation of the second patient-specific LV with ICM (Tab. 4.3,
code 1 ): blood pool volume over time (left) and PV loop (right). We highlight the
comparison with clinical data and a reference healthy LV (taken from [148]).

Figure 4.13: Activation time for the second patient-specific LV with ICM. Numerical simulations
from CARP (left, Tab. 4.3, code 2 ) and lifex (right, Tab. 4.3, code 3 ). We use a
tetrahedral mesh (hmean = 0.35mm) in CARP. We consider the reference configu-
ration, meshed with hexahedral elements (hmean = 1.5mm), in lifex. Only minor
differences in terms of activation times can be observed between the two cases.

More specifically, for the /0D circulation model, we consider the pathological
parametrization reported in Tab. A.9, with steady state initial conditions ob-
tained after running the /0D model in SR for 100 heartbeats.

In Fig. 4.14 we compare the electrophysiological simulation (Tab. 4.3, code 3 )
with the electromechanical one (Tab. 4.3, code 4 ), by depicting the distribution
of the transmembrane potential over time. In the time interval before the VT
is triggered, no major differences between the two numerical simulations are
observed. On the other hand, after the VT is induced, its morphology around
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t = 0.5 s t = 1.0 s

t = 1.5 s t = 2.0 s

t = 2.5 s t = 3.0 s

t = 3.5 s t = 4.0 s

t = 4.5 s t = 5.0 s

Figure 4.14: Propagation of the transmembrane potential V during VT for the second patient-
specific LV with ICM. Electrophysiological simulation (left, Tab. 4.3, code 3 ) runs
on the geometry retrieved from LGE-MRI (i.e. without reference configuration re-
covery). Electromechanical simulation (right, Tab. 4.3, code 4 ) is warped by the
displacement vector.
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t = 5.5 s t = 6.0 s

t = 6.5 s t = 7.0 s

t = 7.5 s t = 8.0 s

t = 8.5 s t = 9.0 s

t = 9.5 s t = 10.0 s

Figure 4.15: Propagation of the transmembrane potential V during VT for the second patient-
specific LV with ICM. We depict two electromechanical simulations with a healthy
parametrization of the circulation model (left, Tab. 4.3, code 5 ) and a pathological
one (right, Tab. 4.3, code 4 ). The geometry is warped by the displacement vector
in both cases.
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Figure 4.16: Electromechanical simulation of VT for the second patient-specific LV with ICM
and a healthy parametrization of the circulation model (Tab. 4.3, code 5 ): blood
pool volume over time for the /0D LA and the 3D LV (left), pressure over time for
the LA, the LV and the arterial systemic part of the cardiovascular system (center),
flow rates of the MV and the AV (right).
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Figure 4.17: Electromechanical simulation of VT for the second patient-specific LV with ICM and
a pathological parametrization of the circulation model (Tab. 4.3, code 4 ): blood
pool volume over time for the /0D LA and the 3D LV (left), pressure over time for
the LA, the LV and the arterial systemic part of the cardiovascular system (center),
flow rates of the MV and the AV (right).

the isthmus significantly changes, as well as the CV of the electric signal. Indeed,
the basis cycle length slightly increases, going to BCL ≈ 0.440 s. Moreover, given
a certain stimulation point and a certain sequence of S1-S2-S3 stimuli, we also
conclude that in this case, if a VT is observed by considering electrophysiology
only, a VT is also inducible by considering electromechanics.

We also compare two electromechanical simulations which are performed by
using a very different parametrization for the /0D circulation model: the first one
(Tab. 4.3, code 5 ), resembles the activity of a heart without infarction (Tab. A.8),
whereas the second one (Tab. 4.3, code 4 ) defines a pathological cardiovascular
system with an infarcted heart (Tab. A.9). For further details about the two
settings, we refer to Appendix A.2.2.
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In Fig. 4.15 we highlight that different parametrizations of the circulation
model induce differents activation patterns and consequently different displace-
ment fields. Nevertheless, we employ the very same sequence of S1-S2-S3 stimuli
to induce the VT. In Figs. 4.16 and 4.17 we illustrate the behavior of LA pressure
and volume, LV pressure and volume, arterial systemic pressure, MV and AV
flow rates, during VT. We highlight that pressures in the aorta and in the LV
are either dropping or oscillating on unsustainable levels for the cardiovascular
system. Indeed, the LV is not able to push blood into the circulation system and
the blood pool volume presents small variations over time. On the other hand,
both LA pressure and volume are increasing during VT. In particular, due to
electric isolation between atria and ventricles, the LA is assumed to follow the
SR pacing during the simulated VT, which lasts for 10 s. Moreover, the flow
rates of both MV and AV indicate that, even if no regurgitation occurs, there
is no proper synchronization between the different cardiac chambers. For this
reason, the left heart function is highly compromised. Finally, the PV loop of
the LV is not stabilizing over a certain limit cycle that would not cause its im-
pairment. For this reason, we can classify the VT as hemodynamically unstable
regardless the parametrization of the /0D circulation model. This VT is critical
for the patient and it may lead to SCD.

4.2 zygote left ventricle

We present electromechanical simulations to evaluate the effects of MEFs by
considering the geometric model of the Zygote LV in Fig. 4.18, which is endowed
with an idealized distribution of ischemic regions made by two scars and two
different types of grey zones. We consider different modeling choices for the
monodomain equation, as reported in Tab. 2.1.

We introduce a fine geometrical description (1’987’285 DOFs, 1’926’912 cells,
hmean ≈ 0.86mm) for cardiac electrophysiology to accurately capture the electric
propagation due to fine-scale phenomena arising from the continuum modeling
of the cellular level, especially with the aim of reproducing and properly address
arrhythmias [162]. On the other hand, cardiac mechanics allows a lower space
resolution (35’725 DOFs, 30’108 cells, hmean ≈ 3.3mm). This eases its numerical
solution, which is computationally demanding given the intrinsic high degree
of nonlinearity, especially for the assembling phase [161].

We start from a baseline simulation with model (E ), in which we obtain a sta-
ble VT. Then, we compare the effects of different geometry-mediated MEFs, i.e.
models (E ), (EgMEF-minimal), (EgMEF-enhanced) and (EgMEF-full). We also study the
impact of different parametrizations for SACs, i.e. (ESAC), with respect to (E ).
Finally, we evaluate the combined effects of geometry-mediated MEFs and non-
selective SACs. The values of the parameters that we use to get these numerical
results are reported in Appendix A.2.3.

99



Figure 4.18: Zygote LV with an idealized distribution of scars (black), grey zones (grey) and
non-remodeled regions (white) over the myocardium. Volumetric view (left) and
cut view (right). The first type of grey zone corresponds to η = 0.2, while on the
second one η = 0.1 is prescribed.

4.2.1 Baseline simulation

We depict in Fig. 4.19 the evolution of the transmembrane potential and the
displacement magnitude for the baseline electromechanical simulation, where
all MEFs are fully neglected (model (E ) in Tab. 2.1). We induce a sustained VT
with a figure-of-eight pattern around the isthmus, which is laterally bordered
by scars, that act as conduction blocks.

In Fig. 4.20, we compare the PV loop over different heartbeats for the baseline
simulation under VT with a reference healthy PV loop in SR obtained by remov-
ing scars and grey zones. We observe that the contractility increases while the
SV decreases. The EF remains approximately the same and indeed we approach
a steady state in which the electromechanical function is not impaired.

VT associated with ischemia is known to perturb the normal isovolumetric
processes and to influence the end systolic/diastolic pressure volume relation-
ship. Simultaneously, a phenomenon called incomplete relaxation may occur,
especially when the VT does not leave enough time for the uncoupling of all the
actin-myosin bonds between two consecutive contraction phases [15]. The occur-
rence of this phenomenon is illustrated in Fig. 4.21, where we depict the time
evolution of the minimum, maximum and average active stress in the computa-
tional domain Ω0 for a reference healthy case in SR and the baseline simulation
under VT. Specifically, in the healthy case there is always a time interval between
two consecutive heartbeats (precisely, during ventricular diastole) in which the
active stress is virtually zero in the LV. In the VT case, instead, the cardiac mus-
cle is never fully relaxed, thus not allowing the LV to complete its emptying. All
these details are properly captured by our electromechanical model thanks to
its biophysical accuracy.
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t = 0.03 s t = 0.25 s

t = 0.46 s t = 0.80 s

t = 1.5 s t = 3.0 s

t = 3.3 s t = 4.0 s

Figure 4.19: Time evolution of the transmembrane potential V (left) and displacement magni-
tude |d| (right) for the Zygote LV with an idealized distribution of ischemic regions.
Each picture on the right side is warped by the displacement vector d. MEFs are
neglected, i.e. we use model (E ).
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Figure 4.20: Comparison between a reference healthy PV loop in SR (red, Appendix A.2.3, heart-
beat period equal to 0.8 s) and the one obtained in the baseline simulation under
VT for t ∈ [0, 4] s (light blue). We underline that here we induce a hemodynamically
tolerated VT.

Figure 4.21: Minimum, average and maximum active tension Ta over time for a reference healthy
case in SR (left, Appendix A.2.3, heartbeat period equal to 0.8 s) and the baseline
simulation under VT (right). We see that incomplete relaxation occurs during VT.

4.2.2 Effects of geometry-mediated MEFs

We consider four different modeling choices for the geometry-mediated MEFs,
namely (E ), (EgMEF-minimal), (EgMEF-enhanced) and (EgMEF-full) in Tab. 2.1, while
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t = 0.20 s

t = 0.45 s

t = 2.4 s

t = 4.0 s

Figure 4.22: Comparison among different models for geometry-mediated MEFs in terms of
transmembrane potential V .
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Figure 4.23: Pointwise values of transmembrane potential V , intracellular calcium concentration
[Ca2+]i, sarcomere length SL, active tension Ta, pressure pLV and volume VLV over
time for (E ), (EgMEF-minimal), (EgMEF-enhanced) and (EgMEF-full).

for the moment we completely neglect the impact of SACs. We perform four
different electromechanical simulations by employing these four different for-
mulations for the monodomain equation.

We illustrate in Fig. 4.22 the development of transmembrane potential V over
time. We observe minor differences in AP propagation among (E ), (EgMEF-enhanced)
and (EgMEF-full). These differences, as it can be seen for t = 4 s, are mainly fo-
cused on the depolarization wave and occur during VT. Moreover, by looking
at Tab. 4.4, we notice that the VT BCL is very similar among these three models.
Indeed, the BCL is approximately equal to 0.60 s, which is long if compared to
more dangerous VT and justifies a stable ventricular excitation.
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Model (E ) (EgMEF-minimal) (EgMEF-enhanced) (EgMEF-full)

BCL 0.60 s 0.65 s 0.61 s 0.60 s

Table 4.4: BCL for different modeling choices of geometry-mediated MEFs. Model
(EgMEF-minimal) significantly changes BCL with respect to (E ), (EgMEF-enhanced),
(EgMEF-full).

Model VT type

(E ) Stable (BCL = 0.60 s)

(ESAC), Gs = 100 s
−1, Vrev = −70mV Stable (BCL = 0.60 s)

(ESAC), Gs = 100 s
−1, Vrev = −35mV Stable (BCL = 0.60 s)

(ESAC), Gs = 100 s
−1, Vrev = 0mV Unstable (BCLavg = 0.50 s)

(ESAC), Gs = 50 s
−1, Vrev = 0mV Stable (BCL = 0.60 s)

Table 4.5: VT classification for different SACs parametrizations. The unstable VT has a BCL that
ranges from 0.43 s to 0.58 s.

On the other hand, (EgMEF-minimal) entails major changes in VT BCL, which
increases from 0.60 s (for model (E )) to 0.65 s, and alters CV, that significantly
decreases.

These observations are in agreement with Fig. 4.23, where the electrophysio-
logical, mechanical and hemodynamic variables retrieved in a random point of
the computational domain are shifted forward in time during VT for (EgMEF-minimal),
while (E ), (EgMEF-enhanced) and (EgMEF-full) show a very similar pattern. This is
also motivated by the change in the VT exit site, as it can be seen from Fig. 4.22

for t = 2.4 s. This phenomenon is particularly evident from the plot of sarcom-
ere length over time (Fig. 4.23), which also presents different peak values for
(EgMEF-minimal) and t ' 2.4 s. Finally, we notice that wave stability is not affected
by geometry-mediated MEFs. Indeed, the VT always remains hemodynamically
stable in the four different cases.

4.2.3 Effects of SACs

In this section, we fully neglect the effects of geometry-mediated MEFs and we
focus on different parametrizations for SACs in terms of Gs and Vrev. We also
compare the outcomes of (ESAC) with the ones of (E ) to outline similarities and
differences.

We notice from Fig. 4.24 that both APD and wave stability are affected by
SACs parametrizations. Indeed, by combining the 3D information with the

105



t = 0.25 s

t = 2.5 s

t = 3.1 s

t = 4.0 s

Figure 4.24: Comparison between model (E ) and model (ESAC), for different values of Vrev (Gs =

100 s−1).
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Figure 4.25: Pointwise values of transmembrane potential V , intracellular calcium concentration
[Ca2+]i, sarcomere length SL, active tension Ta, pressure pLV and volume VLV over
time for (E ) and (ESAC) with different choices of Vrev (Gs = 100 s

−1).

pointwise evaluations of Fig. 4.25, we discover that there is one choice of the
parameters, namely Gs = 100 s−1 and Vrev = 0mV , that converts the VT from
stable to unstable. The instability derives from an extra stimulus that is com-
pletely driven by contraction, which occurs in the superior-right part of the
ventricle. This extra stimulus changes the VT morphology, along with its BCL,
which is not the same over time.

By considering data of Tab. 4.5, we observe that the VT BCL remains the
same when there is no stability transition. Moreover, from the hemodynamic
perspective, the onset of different types of arrhythmias is driven by the com-
bined effects of Gs and Vrev. Indeed, in Fig. 4.25 we see that given Gs, different
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Figure 4.26: Pointwise values of pressure pLV and volume VLV over time for (E ) and (ESAC) with
different choices of Gs (Vrev = 0mV).

Model VT type

(E ) Stable (0.60 s)

(ESAC), Gs = 100 s
−1, Vrev = 0mV Unstable (BCLavg = 0.50 s)

(EgMEF-full, SAC), Gs = 100 s
−1, Vrev = 0mV Unstable (BCLavg = 0.47 s)

Table 4.6: VT classification for combinations of geometry-mediated MEFs and nonselective
SACs. The unstable VT related to (ESAC) has a BCL that ranges from 0.43 s to 0.58 s.
The unstable VT related to (EgMEF-full, SAC) has a BCL that ranges from 0.44 s to 0.50 s.

Vrev may change wave stability. On the other hand, in Fig. 4.26 we show that
different Gs may affect wave stability, with Vrev fixed a priori.

4.2.4 Combined effects of geometry-mediated MEFs and SACs

We also evaluate the combined effects of geometry-mediated MEFs and non-
selective SACs for an unstable VT. Once SACs parametrization is fixed, we
notice that switching between no formulation (i.e. (ESAC)) to full formulation
(i.e. (EgMEF-full, SAC)) of geometry-mediated MEFs entails significant differences.
In particular, from Fig. 4.27 we see that (EgMEF-full, SAC) triggers the extra stim-
uli faster than (ESAC). As we can see from Fig. 4.28, the VT remains unstable
but both pressure and volume traces over time are very different from each
other for (ESAC) and (EgMEF-full, SAC). From Tab. 4.6, we infer that the VT BCL
for (EgMEF-full, SAC) is lower than the one of (ESAC). This potentially defines a
more dangerous VT. Finally, in Fig. 4.29 we highlight the joint contributions of
electrophysiology, mechanics and hemodynamics in the (EgMEF-full, SAC) coupled
model.

108



t = 0.25 s

t = 2.79 s

t = 3.80 s

t = 4.0 s

Figure 4.27: Comparison among models (E ), (ESAC) and (EgMEF-full, SAC).
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Figure 4.28: Pointwise values of pressure pLV and volume VLV over time for (E ), (ESAC) (Gs =

100 s−1, Vrev = 0mV) and (EgMEF-full, SAC) (Gs = 100 s
−1, Vrev = 0mV).

4.3 discussion

In Sec. 4.1.1 we provide a numerical test to assess the applicability of the SIS1

scheme to patient-specific LVs with ICM. We keep a very good separation of
space-time scales in terms of mesh sizes and time steps. The coefficient η =
η(x) permits to use different parametrizations for infarct, peri-infarct and non-
remodelled zones inside the electromechanical model. The PV loop qualitatively
resembles the one of an ICM patient with heart remodeling and severely re-
duced EF.

In Sec. 4.1.2 we present a personalized computational model of the electrome-
chanical activity in the LV of a patient with ICM, both in SR and VT. We manu-
ally personalize model parameters by means of numerical simulations in SR to
fit the available clinical data. Then, we successfully induce a sustained VT and
we study its effects by combining electrophysiological, mechanical and hemody-
namic observations. To the best of our knowledge, this is the first time in which
a VT is analyzed by means of an electromechanical model in a patient-specific
ventricle with ICM. All the numerical results in Sec. 4.1.2 are obtained with the
SIS2 scheme.

Again, our mathematical parametrization incorporates the heterogeneous dis-
tribution of scars, grey zones and non-remodeled regions of human ventricles.
Differently from previous works in literature [6, 133], we model both electro-
physiological and mechanical properties. While prior state-of-the-art electrome-
chanical simulations seek to model both normal function and pathological con-
ditions, including heart failure [173], or the impact of drugs [101], only the SR
case is addressed and tissue heterogeneity of the myocardium is not kept into
account over the entire electromechanical model. The coupling with a closed-
loop system and the numerical scheme developed in this thesis allow for the
effective numerical simulation of VT. Indeed, this approach does not discrimi-
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Figure 4.29: Coupled effects of electrophysiology, mechanics and hemodynamics for the numeri-
cal simulation with (EgMEF-full, SAC) model. The extra stimuli in the upper right part
of the LV, which is driven by SACs, activate the LV electrophysiologically and me-
chanically. This has a direct impact on both pressure and volume transients, which
in turn have an effect on the electromechanical behavior of the LV.

111



nate among the four different phases of the PV loop as in prior formulations of
electromechanical models [32, 61, 111].

For SR simulations, we observe major differences in the hemodynamics of an
LV with ICM with respect to a reference healthy case. Specifically, when incorpo-
rating the pathological remodeling, we notice an increase in EDV and EDP, and
a significant reduction in SV/EF and contractility. Regarding the electromechan-
ical simulations under arrhythmia, we notice that geometry-mediated MEFs al-
ter the morphology of the VT, along with the overall CV, which decreases with
respect to the electrophysiological simulations. Indeed, the wave propagation
is partially influenced by the displacement of the myocardium while running
electromechanical simulations. This is due to the presence of the ventricular
deformation inside the formulation of the monodomain equation.

The /0D circulation model allows to compute the evolution over time of LV
pressure and volume, LA pressure and volume, arterial system pressure, MV
and AV flow rates. With this information, we could classify a VT as either hemo-
dynamically stable or unstable: the former would let the LV stabilize on a PV
loop that does not compromise its function, while the latter entails an unstable
behavior of the arterial pressure over time, small variations of the blood pool
volume of the LV over time, valves flow rates that are not synchronized [206]. We
conclude that this specific VT is unstable. Having the ability to non-invasively
assess a hemodynamically unstable VT is very useful from the clinical perspec-
tive. Indeed, our electromechanical model allows a thorough understanding of
this VT using numerical simulations, whereas investigating this intraprocedu-
rally could be difficult, since the patient might not support hemodynamically
unstable VT.

For this specific patient, very different parametrizations of the /0D closed-loop
circulation model did not change the hemodynamic nature of the VT, which
remained unstable. This may suggest that the hemodynamic nature of the VT
is linked to the electromechanical substrate. Furthermore, this may have strong
clinical implications, in particular when the parameters of the cardiovascular
system of the patient are either not known or very uncertain. This type of elec-
tromechanical simulations can be employed for precision medicine and to gain a
deeper understanding of VT mechanisms thanks to detailed electric, mechanical
and hemodynamic descriptions.

Finally, in Sec. 4.2 we investigate how several types of geometry-mediated
MEFs and different parametrizations for nonselective SACs affect the electric
and hemodynamic stability of VT [163]. In particular, we focus on the sustain-
ment and the morphology of VT macro-reentrant circuits and blood supply,
which is analyzed by means of PV loops. Differently from previous studies
[36, 85, 179], we keep into account tissue heterogeneity by introducing an ide-
alized distribution of scars, grey zones and non-remodelled regions over the
myocardium. We also consider a more sophisticated mathematical model that
embraces electrophysiology, activation, mechanics and cardiovascular fluid dy-
namics to analyze these mechano-electric couplings.
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We notice that if a VT is triggered by following a certain stimulation protocol
and by neglecting all MEFs, the very same pacing protocol induces a VT for
all possible combinations of MEFs, while keeping the same parameters for the
electromechanical model coupled with closed-loop circulation in all cases. Nev-
ertheless, even if this behavior was also observed in the second patient-specific
LV with ICM (Sec. 4.1.2), we still cannot conclude that it is completely general.

We do not observe a significant impact of geometry-mediated MEFs on the in-
duction and sustainment of the VT. Most of the modeling choices for geometry-
mediated MEFs, namely (E ), (EgMEF-enhanced) and (EgMEF-full), present very sim-
ilar VT BCLs and conduction velocities, while showing a few differences in the
depolarization wave [36]. On the other hand, (EgMEF-minimal) manifests major
differences in the VT BCL, which increases, and its exit site with respect to (E ),
(EgMEF-enhanced) and (EgMEF-full), as shown in [162] for a patient-specific unsta-
ble VT. This can be justified by the simplifications introduced in (EgMEF-minimal),
while moving towards (EgMEF-full) we almost totally recover the behavior ob-
served in (E ). Therefore, the minimal MEFs modeling choice might lead to bi-
ased results which are in favor of less severe VT.

We observe that nonselective SACs may affect the hemodynamic nature of
the VT, as they may induce EADs or DADs, which lead to ectopic foci that re-
activate the LV [73]. These extra stimuli are generally located in the regions of
the myocardium in which there is a transition between scar and border zone
or between border zone and non-remodeled areas, where high stretches are
likely to be present [82]. According to the specific combination of Gs and Vrev,
nonselective SACs affects both APD and AP resting values [184]. Indeed, it is
known that nonselective SACs may determine wavebreaks, irregular rhythms
or possibly the onset of fibrillation [36, 85]. We remark that such spontaneous
arrhythmias triggered by myocardial stretches cannot be assessed in electro-
physiological simulations, where the mechanical behavior is neglected.

To conclude, we also investigate the combined effects of geometry-mediated
MEFs and nonselective SACs. Significant differences between (EgMEF, full, SAC)
and (ESAC) are observed when geometry-mediated MEFs are combined with a
parametrization of SACs that entails extra stimuli. Specifically, the VT BCL with
(EgMEF, full, SAC) is lower than the one of (ESAC) because the extra stimuli driven
by SACs is triggered more often in the former case. This completely changes
the PV dynamics of the VT, whose stability is however still not affected by the
geometry-mediated MEFs.
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5
A M A C H I N E L E A R N I N G M E T H O D F O R R E A L - T I M E
E L E C T R O M E C H A N I C A L S I M U L AT I O N S

In this chapter, we propose a Machine Learning method to build a ROM of car-
diac electromechanical models. We rely on the ANN-based method proposed in
[141], which can learn a time-dependent differential equation from a collection
of input-output pairs. After presenting the application of our technique to the
electromechanical function, we show and discuss some numerical results in the
context of global sensitivity analysis and Bayesian parameter estimation.

5.1 methods

Thanks to its non-intrusive nature, this Machine Learning method can be ap-
plied to virtually any cardiac electromechanical model. Therefore, at this stage,
we introduce our method in an abstract formulation for cardiac electromechan-
ics.

5.1.1 The full-order model

Let us consider a generic model of cardiac electromechanics, that is a set of dif-
ferential equations describing physical processes involved in the heart function.
We introduce the state vector y(t), collecting the state variables associated with
this multiphysics system. These may include the transmembrane potential, gat-
ing variables, ionic concentrations, protein states, tissue displacement, or simply
phenomenological variables. In this thesis, we focus on the single-chamber case
of the human heart (e.g. the LV), as the generalization to multiple chambers
is straightforward. By introducing a nonlinear differential operator L that col-
lectively encodes the differential equations and boundary conditions associated
with the electromechanical model, the latter reads:

∂y(t)
∂t

= L(y(t),pLV(t), t; pM) for t ∈ (0, T ],

y(0) = y0,
(5.1)

where pLV(t) denotes the LV endocardial pressure (here seen as an input), pM

are the model parameters (possibly including, e.g., electrical conductivities, cell
membrane conductances, protein binding affinities, contractility, passive tissue
properties) and y0 is the initial state. We denote by PM ⊆ RNM the space of
parameters such that pM ∈PM, being NM the number of parameters. We notice
that the right-hand side of (5.1) depends on t, as heartbeats are paced by exter-
nally applied stimuli, that we assume to have a period of duration THB, which
is fixed a priori.
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The 3D cardiac electromechanical model (5.1), henceforth denoted by M3D,
must be coupled with a closure relationship assigning the pressure pLV(t). One
possible option is to couple the M3D model with a /0D model for the external
circulation (see e.g. [10, 76, 147]), thus obtaining a system in the form of:

∂y(t)
∂t

= L(y(t),pLV(t), t; pM) for t ∈ (0, T ],

dc(t)
dt

= f(c(t),pLV(t), t; pC) for t ∈ (0, T ],

VC
LV(c(t)) = V

3D
LV (y(t)) for t ∈ (0, T ],

y(0) = y0,
c(0) = c0.

(5.2)

where c(t) are the state variables of the circulation model (pressures, volumes
and fluxes in the circulatory network) and pC ∈ PC ⊆ RNC is a vector of NC

parameters (e.g. vascular resistances and conductances). The two models are
coupled through the geometric consistency relationship V3D

LV (y(t)) = VC
LV(c(t)),

where the left-hand and right-hand sides represent the LV volume predicted by
the M3D and by the C models, respectively. The LV pressure pLV is determined
as a Lagrange multiplier that enforces the consistency relationship. An alterna-
tive approach is to adopt different closure relationships in the different phases
of the heartbeat [61, 95] with suitable preload and afterload models, such as
windkessel models [197]. These relationships link the changes in LV pressure
pLV with its volume, obtained as VLV = V

3D
LV (y). In both cases, should the M3D

be coupled to a closed-loop circulation model or to an afterload-preload rela-
tionship, we denote by M3D-C the resulting coupled model. In Fig. 5.1 we show
an M3D-C model in which C consists of a the lumped-parameter closed-loop
model of [147], which is employed to produce the numerical results.

We remark that the closure relationships never directly involve the state y of
the model M3D, but only the LV volume VLV = V

3D
LV (y). This is a key observation

since it suggests that a ROM that is able to surrogate the relationship between
pLV and VLV, albeit agnostic of the state y, can replace the M3D model in its
coupling to the C model. In what follows, we present our strategy to build an
ANN-based ROM of the M3D model, denoted by MANN, that can be coupled
with the C model resulting in the MANN-C coupled model, that will surrogate
the M3D-C model.

5.1.2 The reduced-order model

To setup a ROM surrogating the M3D model of Eq. (5.1), we employ the Ma-
chine Learning method proposed in [141]. This method is designed to learn a
differential equation from time-dependent input-output pairs, by training an
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Figure 5.1: The M3D-C model. From left to right: The parameters pC and pM are associated
with the C and M3D respectively. The two models are coupled via the variables pLV
and VLV. Their union constitutes the model M3D-C. The model M3D-C considered to
produce the numerical results of this thesis is shown on the right. For more details on
the M3D-C model and for the definition of the parameters pC and pM, see Sec. 5.1.6.

ODE model, whose right-hand side is represented by an ANN. We define our
ANN-based ROM MANN as:

dz(t)
dt

= NN
(

z(t),pLV(t), cos( 2πtTHB
), sin( 2πtTHB

), pM; ŵ
)

for t ∈ (0, T ],

z(0) = z0,
(5.3)

where z(t) ∈ RNz is the reduced state and NN : RNz+NM+3 → RNz is a fully con-
nected ANN. The ANN input consists indeed of Nz state variables, NM scalar
parameters, the pressure pLV, and the two periodic inputs cos(2πt/THB) and
sin(2πt/THB) (whose role will be clarified later), for a total of Nz +NM + 3 in-
put neurons. The vector ŵ ∈ RNw encodes the weights and biases of the ANN,
that need to be suitably trained. We remark that, among the arguments of the
ANN, we have not introduced the time variable t, but rather cos(2πt/THB) and
sin(2πt/THB), that are the coordinates of a point cyclically moving along a cir-
cumference with period THB. In this way, the ROM encodes by construction the
periodicity associated with the heartbeat pacing. This expedient allows for the
use of the ROM also for time spans longer than those shown during the training
phase. Moreover, by introducing the parametric dependence (i.e. on pM) within
the ANN, the latter is not specific to a particular parameter setting.

In this work, according to [141], we adopt an output-inside-the-state approach,
that is we train the model so that the LV volume coincides with the first state
variable. More precisely, the LV volume predicted by the MANN model is by
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definition VANN
LV (z(t)) := z(t) · e1, where e1 is the first element of the canonical

basis of RNz . Therefore, the first ROM state variable has a clear physical inter-
pretation (i.e. it coincides with the LV volume), while the other ROM states are
latent variables with no immediate physical interpretation, providing however a
compact representation of the full-order state y(t). Coherently with this choice,
we define the initial state as z0 = (V

3D
LV (y0), 0)T . The remaining initial states are

set, without loss of generality, to zero (this choice does not reduce the space of
candidate models, as proved in [141]).

Here we need to determine the optimal value of the weights ŵ, such that the
MANN model reproduces the outputs of the M3D model as accurately as possible.
With this goal, we generate a training set, by sampling the parameter space
PM×PC with Ntrain sample points. For each sample, we perform a simulation
with the M3D-C model until time Ttrain, and we record the LV pressure and
volume transients. The training set is thus given by:

piC, piM,piLV(t),V
i
LV(t) t ∈ [0, Ttrain], for i = 1, . . . ,Ntrain.

We remark that, due to the non-intrusive nature of our method, there is no
need to retain the FOM states y(t). Finally, we train the ANN weights ŵ by
minimizing the discrepancy between the training data and the model outputs,
that is by considering the following constrained optimization problem:

ŵ = argmin
w∈RNw

Ntrain∑
i=1

∫Ttrain

0
|V iLV(t) − V

ANN
LV (zi(t))|2 dt+β|w|2


such that, for each i = 1, . . . ,Ntrain:

dzi(t)
dt

= NN
(

zi(t),piLV(t), cos( 2πtTHB
), sin( 2πtTHB

); piM; w
)

for t ∈ (0, Ttrain],

zi(0) = z0,
(5.4)

where β > 0 is a regularization hyperparameter. We remark that the optimiza-
tion problem (5.4) is not a standard Machine Learning problem of data fitting.
Indeed, the ANN appears at the right-hand side of a differential equation that
acts as a constraint under which the loss function is minimized. To train this
model, we use the algorithm proposed in [141], which envisages approximat-
ing the differential equation by the Forward Euler method, the loss function by
the trapezoidal method, and then computing the gradients by solving the ad-
joint equations. The parameters are then optimized by means of the Levenberg-
Marquardt method [112]. The training process is summarized in Fig. 5.2.

Once the ANN has been trained (that is, the optimal weights ŵ have been
determined), the MANN model can be used as a surrogate of the M3D model,
also for different combinations of the parameters than those contained in the
training set. Moreover, it can be coupled with the closure relationships C, thus
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Figure 5.2: Training algorithm of the MANN model. We sample the parameter space PM ×PC

(top left) and, for each parameter instance (pM, pC), we simulate some heartbeats
through the M3D-C model (center). Finally, from the training set obtained by collect-
ing the resulting pressure and volume transients (top right), we train the ANN-based
model MANN (bottom right), according to Eq. (5.4).

obtaining the MANN-C model. For example, by considering the case of a closed-
loop circulation model, as in (5.2), its reduced counterpart MANN-C reads:

dz(t)
dt

= NN
(

z(t),pLV(t), cos( 2πtTHB
), sin( 2πtTHB

); pM; ŵ
)

for t ∈ (0, T ],

dc(t)
dt

= f(c(t),pLV(t), t; pC) for t ∈ (0, T ],

VC
LV(c(t)) = V

ANN
LV (z(t)) for t ∈ (0, T ],

z(0) = z0,
c(0) = c0.

(5.5)

As matter of fact, the M3D model has the same input-output structure of the
model being surrogated, that is MANN. Hence, the latter can be employed in
replacement of the former in approximating the outputs associated with a given
set of parameters (pM, pC), as shown in Fig. 5.3.
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simulation extraction

pressure-volume transients

or

Figure 5.3: Parameters-to-QoIs computation using either the M3D or the MANN model. Given a
parameter instance (pM, pC), either the M3D or the MANN model can be coupled with
the C model to obtain pressure and volume transients, from which a set of QoIs are
extracted. See Tabs. 5.1, 5.2 and 5.3 for the definition of pM, pC and q, respectively.

5.1.3 Hyperparameters tuning

Like any Machine Learning method, there is a dependence on a set of hyperpa-
rameters, that is variables that are not trained (they are not part of the vector ŵ),
but are used to control the training process. These include ANN architecture
hyperparameters (namely the number of layers Nlayers and the number of neu-
rons per layer Nneurons), the regularization factor β and the number of reduced
states Nz. To tune the hyperparameters, we rely on a k-fold cross-validation pro-
cedure. Specifically, after splitting the training set into k = 5 non-overlapping
subsets, we cyclically train the model by excluding one subset that is used as
validation set. Finally, we evaluate the average validation errors and we select
the hyperparameters setting that attains the lowest validation error and better
generalization properties (see Appendix B.4 for more details).

5.1.4 Global sensitivity analysis

To assess how much each parameter contributes to the determination of a QoI,
e.g. a biomarker of clinical interest, we perform a variance-based global sensi-
tivity analysis, which relies on a probabilistic approach. The sensitivity of a QoI
(say qj) with respect to a parameter (say pi) can be quantified through Sobol
indices [172]. Specifically, the so-called first-order Sobol index (denoted by Sij)
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indicates the impact on the j-th QoI (i.e. qj) of the i-th parameter (i.e. pi) when
the latter varies alone, according to the definition:

Sij =
Varpi

[
Ep∼i

[
qj|pi

]]
Var

[
qj
] ,

where p∼i indicates the set of all parameters excluding the i-th one. The first-
order Sobol index Sij, however, only accounts for the variations of the parameter
pi alone, averaged over variations in the other parameters, and thus does not ac-
count for the interactions among parameters. Conversely, it is possible to assess
the importance of a parameter in determining a QoI, also accounting for the
interactions among parameters, by resorting to the so-called total-effect Sobol
index STij, defined as:

STij =
Ep∼i

[
Varpi

[
qj|p∼i

]]
Var

[
qj
] = 1−

Varp∼i

[
Epi

[
qj|p∼i

]]
Var

[
qj
] .

The latter index quantifies the impact of a given parameter when it varies alone
or together with other parameters.

To compute an estimate of the Sobol indices, we use the Saltelli method [78,
160], that makes use of Sobol quasi-random sequences to approximate the inte-
grals that need to be computed. In practice, this method requires evaluating the
model for a large number of parameters, and then processing the obtained QoIs
to provide an estimate of the Sobol indices.

In this thesis we perform a variance-based global sensitivity analysis simulta-
neously with respect to the circulation model parameters pC and the electrome-
chanical model parameters pC (that is, we set p = (pM, pC)). To this end, we use
model MANN-C as a surrogate for model M3D-C to perform the evaluations re-
quired by the Saltelli method. As we will see in Sec. 5.2, using MANN-C instead
of M3D-C entails a huge computational gain. In addition, for each parameter
setting we simulate a certain number of heartbeats to achieve a limit cycle (i.e.
a periodic solution), and we calculate QoIs with respect to the last cycle, which
is the most significant one, as it removes the effects of incorrect initializations
of the state variables. We remark that the need to simulate a certain number
of heartbeats to overpass the transient phase (that typically lasts from 5 to 15

cycles, see Appendix B.2) makes the use of a reduced cardiac electromechanical
model even more necessary.

5.1.5 Parameter estimation under uncertainty

The patient-specific personalization of a cardiac electromechanical model re-
quires, besides the usage of a geometry derived from imaging data, the esti-
mation of the parameters associated with the mathematical model (or at least
the most important ones), starting from clinical measurements. Very often, only
a few scalar quantities are available for this purpose; moreover, the resolution
of this inverse problem (i.e. estimating p from q) should account for the noise
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that unavoidably affects the measurement of q and that reflects in uncertainty
on p.

Bayesian estimation is a technique that permits to address these issues within
a rigorous statistical framework, by providing the likelihood, expressed as a
probability distribution, of the parameters values, given the observed QoIs (de-
noted by qobs). The likelihood computation accounts for the uncertainty on
measurements (associated with measurement noise and encoded in the noise
covariance matrix Σ), as well as a prior distribution on parameters (denoted by
πprior(p)), that is previous knowledge or belief about the parameters. By denot-
ing the parameters-to-QoIs map by F : p 7→ q, we have qobs = F(p) + ε, where
ε ∼ N(·|0,Σ) denotes the measurement error (that we assume for simplicity to
be distributed as a Gaussian random variable). Bayes’ theorem states that the
posterior distribution of parameters, that is the degree of belief of their value
after having observed qobs, is given by:

πpost(p) =
1

Z
N(qobs|F(p),Σ)πprior(p),

where the normalization constant Z is defined as

Z =

∫
P

N(qobs|F(p̂),Σ)dπprior(p̂).

In practice, the computation of πpost may be challenging from the computational
viewpoint, because of the need to approximate the integral that defines Z. The
MCMC method permits to approximate the distribution πpost with a relatively
small computational effort. Similarly to the Saltelli method that we use for sen-
sitivity analysis, also the MCMC method requires a large number of model eval-
uations, for different parameter values. Moreover, this method is non-intrusive,
that is it only requires evaluations of the map F : p 7→ q. Therefore, we can em-
ploy for this purpose the MANN-C model as a surrogate for the M3D-C model,
which drastically reduces the necessary computational time.

Moreover, we remark that the Bayesian framework permits to rigorously ac-
count for the approximation error introduced by replacing the high fidelity
model M3D-C by its surrogate MANN-C. Indeed, if we denote by F̃ the approx-
imated parameters-to-QoIs map represented by the surrogate model MANN-C,
we have F(p) = F̃(p) + εROM, where εROM is the ROM approximation error. It
follows qobs = F̃(p)+εROM +εexp, where εexp is the experimental measurement
error. Since the two sources of error can be assumed independent, the covariance
of the total error ε = εROM + εexp satisfies Σ = ΣROM +Σexp, where ΣROM is the
ROM approximation error covariance (which can be estimated by evaluating
the ROM on a testing set) and Σexp is the experimental error covariance (that de-
pends on the measurement protocol at hand). This permits to take into account
in the estimation process the error introduced by the surrogate model.

To assess the capability of our ROM to accelerate the estimation of parame-
ters for multiscale electromechanical models, we perform the following test. We
perform a simulation with the M3D-C model, from which we derive a set of
QoIs (qobs). Then, by employing the MANN-C model as a surrogate of the M3D-C
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Parameter Baseline Unit Description

aXB 160.0 MPa Cardiomyocytes contractility
σf 76.43 mms−1 Electrical conductivity along fibers
α 60.0 degrees Fibers angle rotation
C 0.88 kPa Passive stiffness

Table 5.1: Parameters pM of the M3D model considered in this thesis and associated baseline
values.

model, we obtain a Bayesian estimate of the parameters, that we validate against
the values used to generate qobs.

5.1.6 The cardiac electromechanical model

As mentioned above, due to its non-intrusive nature, our method is not lim-
ited to a specific electromechanical model, but can be applied to virtually any
electromechanical model as long as pressure and volume transients are avail-
able for the training procedure. Nevertheless, to produce the numerical results
of this thesis, we apply it to the electromechanical model that is presented in
Chap. 2.

Specifically, we consider an LV geometry processed from the Zygote 3D heart
model [80] endowed with a fiber architecture generated by means of the Bayer-
Blake-Plank-Trayanova algorithm [16, 130]. Before starting the numerical sim-
ulations, we recover the reference unstressed configuration through the algo-
rithm is reported in Secs. 2.5 and 2.5.1. To model the AP propagation, we em-
ploy the monodomain equation [35], coupled with the TTP06 ionic model [185]
(see Sec. 2.1.1). We model the microscale generation of active force through the
biophysically detailed RDQ20-MF model [142] (see Sec. 2.1.2), that is coupled,
within an active stress approach, with the elastodynamics equations describ-
ing tissue mechanics (see Sec. 2.1.3). On the other hand, the passive behavior
of the tissue is modeled through a quasi-incompressible exponential constitu-
tive law [187]. We model the interaction with the pericardium by means of
spring-damper boundary conditions at the epicardium, while we adopt energy-
consistent boundary conditions [143] to model the interaction with the part of
the myocardium beyond the artificial ventricular base. To model blood circu-
lation, that is C, we rely on the /0D closed-loop model presented in [147] (see
Sec. 2.1.4), consisting of a compartmental description of the cardiac chambers,
systemic and pulmonary, arterial and venous circulatory networks, based on an
electrical analogy. The different compartments are modeled as RLC (resistance,
inductance, capacitance) circuits, while cardiac valves are described as diodes.

Among the parameters associated with the M3D model, in this thesis we fo-
cus on the four ones reported in Tab. 5.1. Similarly, we report in Tab. 5.2 the
parameters associated with the C model.
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Parameter Baseline Unit Description

V tot
heart 400.15 mL Initial blood pool volume of the heart
Eact

LA, Eact
RA, Eact

RV 0.07, 0.06, 0.55 mmHgmL−1 LA/RA/RV active elastance
E

pass
LA , Epass

RA , Epass
RA 0.18, 0.07, 0.05 mmHgmL−1 LA/RA/RV passive elastance

T contr
LA , T contr

RA , T contr
RV 0.14, 0.14, 0.20 s LA/RA/RV contraction time

T rel
LA, T rel

RA, T rel
RV 0.14, 0.14, 0.32 s LA/RA/RV relaxation time

V0,LA, V0,RA, V0,RV 4.0, 4.0, 16.0 mL LA/RA/RV reference volume
tav

L , tav
R 0.16, 0.16 s Left/right atrioventricular delay

Rmin, Rmax 0.0075, 75006.2 mmHgsmL−1 Valve minimum/maximum resistance
RSYS

AR , RSYS
VEN 0.64, 0.32 mmHgsmL−1 Systemic arterial/venous resistance

RPUL
AR , RPUL

VEN 0.032, 0.036 mmHgsmL−1 Pulmonary arterial/venous resistance
CSYS

AR , CSYS
VEN 1.2, 60.0 mLmmHg−1 Systemic arterial/venous capacitance

CPUL
AR , CPUL

VEN 10.0, 16.0 mLmmHg−1 Pulmonary arterial/venous capacitance
LSYS

AR , LSYS
VEN 0.005, 0.0005 mmHgs2mL−1 Systemic arterial/venous inductance

LPUL
AR , LPUL

VEN 0.0005, 0.0005 mmHgs2mL−1 Pulmonary arterial/venous inductance

Table 5.2: Parameters pC of the C model considered in this thesis and associated baseline values.

We report in Tab. 5.3 the list of all the QoIs, computed from the numerical
solution of the M3D-C model, and outputs of interest that are used through
this thesis. The last column of the table indicates which variables are used for
cross-validation during the training phase (see Sec. 5.1.3), those that are used
for sensitivity analysis purposes (see Sec. 5.1.4) and those that are used to run
Bayesian parameter estimations (see Sec. 5.1.5).

To numerically approximate this multiphysics and multiscale model, we adopt
the SIS2 scheme [148] (see Sec. 2.4). For space discretization, we rely on bilin-
ear Finite Elements defined on hexahedral meshes, adopting a different spatial
resolution for the electrophysiological and the mechanical variables. For time
discretization, we employ a staggered scheme, where different time steps are
used according to the specific subproblem. Moreover, to avoid the numerical
oscillations arising from the mechanical feedback on force generation (that are
commonly cured by recurring to a monolithic scheme [95, 124]), we use the
stabilized-staggered scheme that is proposed in [146]. This numerical model re-
quires, on a 32 cores computer platform, nearly 4 hours of computational time to
simulate a heartbeat. More details on the numerical discretization and the com-
putational platform employed to generate the training data used in this thesis
are available in Appendix B.1.

5.1.7 Software libraries

The electromechanical simulations are performed by means of the lifex li-
brary, a high-performance C++ platform developed within the iHEART project.
To train the ANN-based models, we employ the open source MATLAB library
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Parameter Unit Description Usage

Left atrium
Vmin

LA ,Vmax
LA mL End-systolic and end-diastolic volume GSA

pmin
LA ,pmax

LA mmHg Minimum and maximum pressure GSA
Left ventricle
VLV(t) mL Volume transient X-validation
pLV(t) mmHg Pressure transient X-validation
Vmin

LV ,Vmax
LV mL End-systolic and end-diastolic volume X-validation, GSA

pmin
LV ,pmax

LV mmHg Minimum and maximum pressure X-validation, GSA
SVLV mL Stroke volume (Vmax

LV − Vmin
LV ) X-validation, GSA

Right atrium
Vmin

RA ,Vmax
RA mL End-systolic and end-diastolic volume GSA

pmin
RA ,pmax

RA mmHg Minimum and maximum pressure GSA
Right ventricle
Vmin

RV ,Vmax
RV mL End-systolic and end-diastolic volume GSA

pmin
RV ,pmax

RV mmHg Minimum and maximum pressure GSA
SVRV mL Stroke volume (Vmax

RV − Vmin
RV ) GSA

Systemic arterial circulation
pmin

AR,SYS,pmax
AR,SYS mmHg Minimum and maximum pressure GSA, MCMC

Table 5.3: List of QoIs used through this thesis, either for cross-validation (X-validation), global
sensitivity analysis (GSA) or MCMC based Bayesian parameter estimation (MCMC).

model-learning1, that implements the Machine Learning method proposed in
[141] and used in this thesis. Sensitivity analysis is carried out through the open
source Python library SALib2 [75]. Finally, for the MCMC based Bayesian param-
eter estimation we rely on the open source Python library UQpy3 [116]. To em-
ploy the ANN-based models trained with the MATLAB library model-learning
within the Python environment of SALib and UQpy, we exploit pyModelLearning,
a Python wrapper for the model-learning library4.

5.2 numerical results

5.2.1 Trained models

To generate the pressure and volume transients needed to train an ANN-based
ROM, we sample the parameter space PM ×PC with a Monte Carlo approach,
even if more sophisticated sampling strategies – such as Latin Hypercube De-
sign – can be considered as well. For simplicity, in this stage we only consider
a subset of the parameters pC, selected as the most significant ones, on the ba-
sis of a preliminary variance-based global sensitivity analysis, obtained with a

1 https://model-learning.readthedocs.io/

2 https://salib.readthedocs.io/

3 https://uqpyproject.readthedocs.io/

4 https://github.com/FrancescoRegazzoni/model-learning
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Trained model Parameters Training set size Hyperparameters
pM Ntrain Nz Nlayers Nneurons β

M
single
ANN [aXB] 30 2 1 8 0

Mfull
ANN [aXB,σf,α,C] 40 1 1 12 0.01

Table 5.4: Optimal sets of hyperparameters for the two trained models M
single
ANN and Mfull

ANN.

version of the closed-loop model in which the LV is also represented by a /0D
circuit element (see Appendix B.3).

We consider two scenarios. We study the variability with respect to a sin-
gle parameter, namely the active contractility. Thus, we set pM = [aXB]. Under
this setting, we generate 30 simulations through the M3D-C model to train a
ROM, henceforth denoted by M

single
ANN . For this ROM, the remaining parameters

(i.e. σf, α and C) are kept constant (more precisely, equal to the baseline values
of Tab. 5.1). Then, we consider the full parametric variability (that is, we set
pM = [aXB,σf,α,C]), we generate 40 training samples and we train a second
ROM, denoted by Mfull

ANN. All the simulations included in the training set are 5

heartbeats long. The optimal sets of hyperparameters, tuned through the algo-
rithm of Sec. 5.1.3, are reported in Tab. 5.4. In both the considered cases, training
an ANN-based model takes approximately 18 hours on a single core standard
laptop.

Once trained, the two ROMs (Msingle
ANN and Mfull

ANN) can be coupled with the cir-

culation model C, thus obtaining the models M
single
ANN -C and Mfull

ANN-C, according
to Eq. (5.5). These two models represent two surrogates of the M3D-C model,
capable of approximating its output at a dramatically reduced computational
cost. As a matter of fact, numerical simulations with either the M

single
ANN or the

Mfull
ANN model take nearly one second of computational time per heartbeat on a

single core standard laptop.
To test the accuracy of the M

single
ANN -C and Mfull

ANN-C models with respect to the
M3D-C model, we consider a testing dataset, by taking unobserved samples in
the parameter space PM×PC. For both models, we consider 15 testing simula-
tions of the same duration of the ones included in the training set. In addition,
to test the reliability of the ROMs over a longer time horizon than the one con-
sidered in the training set, we include in the testing set 5 simulations of double
length (i.e. 10 heartbeats). Then, we compare the simulations obtained with the
two ROMs (Msingle

ANN and Mfull
ANN) with the ones obtained with the M3D-C model

for the same parameters pM and pC.
The accuracy of the two ROMs is summarized Tabs. 5.5 and 5.6. Specifically,

in Tab. 5.5 we report metrics regarding the ability of the ROMs to correctly pre-
dict the function of the LV, that is the chamber surrogated by the ANN-based
model. Specifically, we report the relative errors in L2 norm (i.e. the mean square
errors) associated with pressure and volume transients (pLV and VLV) and the
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5 heartbeats
pLV(t) VLV(t) pmin

LV pmax
LV Vmin

LV Vmax
LV

M
single
ANN -C vs M3D-C

relative error 0.0336 0.0090 0.0097 0.0046 0.0139 0.0035

R2
99.691 99.864 99.896 99.948

Mfull
ANN-C vs M3D-C

relative error 0.0620 0.0285 0.0517 0.0272 0.0471 0.0127

R2
94.370 95.302 95.942 97.061

10 heartbeats
pLV(t) VLV(t) pmin

LV pmax
LV Vmin

LV Vmax
LV

M
single
ANN -C vs M3D-C

relative error 0.0293 0.0071 0.0113 0.0037 0.0096 0.0031

R2
99.924 99.980 99.851 99.944

Mfull
ANN-C vs M3D-C

relative error 0.0631 0.0265 0.0442 0.0147 0.0382 0.0122

R2
92.227 99.957 99.229 99.063

Table 5.5: Testing errors and R2coefficients on the LV outputs obtained with the two models
M

single
ANN and Mfull

ANN, for 5 heartbeats long (top) and 10 heartbeats long (bottom) numer-
ical simulations.

5 heartbeats
pRV(t) VRV(t) pmin

RV pmax
RV Vmin

RV Vmax
RV

M
single
ANN -C vs M3D-C

relative error 0.0048 0.0035 0.0015 0.0027 0.0028 0.0004

R2[%] 100.000 99.993 99.998 100.000

Mfull
ANN-C vs M3D-C

relative error 0.0069 0.0040 0.0029 0.0079 0.0072 0.0069

R2[%] 99.994 99.807 99.819 99.997

Table 5.6: Testing errors and R2coefficients on the RV outputs obtained with the two models
M

single
ANN and Mfull

ANN, for 5 heartbeats long numerical simulations.

relative errors on some biomarkers of clinical interest (maximum and minimum
pressures and volumes). For the latter, we also report the coefficient of deter-
mination R2. We notice that both model Msingle

ANN -C and model Mfull
ANN-C are able

to surrogate model M3D-C with remarkably good accuracy. Model Mfull
ANN-C fea-

tures slightly larger errors than model M
single
ANN -C; this is not surprising since

model Mfull
ANN-C explores a much larger parametric space than model Msingle

ANN -C
(four parameters instead of one). Interestingly, the errors obtained over a long
time horizon are very similar to those obtained for simulations of the same du-
ration as those used to train the ANNs. This demonstrates the reliability of the
ROMs in long-term simulations. Similarly, in Tab. 5.6 we report the errors and
R2 coefficients associated with the RV output (for simplicity, we here consider
only 5 heartbeats long simulations). The accuracy obtained in reproducing the
RV function is even better than that for the LV, coherently with the fact that the
RV is included in the C model and thus it is not surrogated by the ANN-based
model.
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pLV(t) VLV(t) pmin
LV pmax

LV Vmin
LV Vmax

LV

M
single
ANN -C ′ vs M3D-C ′ relative error 0.0459 0.0518 0.0065 0.0004 0.0080 0.0009

Mfull
ANN-C ′ vs M3D-C ′ relative error 0.0510 0.0219 0.0116 0.0027 0.0110 0.0063

Table 5.7: Testing errors on the LV outputs obtained with the two models M
single
ANN and Mfull

ANN
coupled with the C ′ model for 5 heartbeats long numerical simulations.

In Figs. 5.4 and 5.5 we compare 10 heartbeats long transients obtained with
the M

single
ANN -C and Mfull

ANN-C models, respectively, to those obtained with the
M3D-C model. All these transients were not used to train the ANN-based mod-
els (that is, they belong to the testing set). In Fig. 5.6 we show the LV biomarkers
predicted by the M

single
ANN -C and Mfull

ANN-C models versus those predicted by the
M3D-C model.

5.2.2 Coupling the electromechanical reduced-order model with different circulation models

To generate the data used to train the MANN model, we employ the M3D-C
coupled model (that is, we couple the M3D model with the circulation model
C). However, the ANN-based ROM MANN surrogates the M3D model regardless
of its coupling with a specific circulation model. In fact, thanks to Eq. (5.5), the
trained MANN model can be coupled with circulation models that are different
from the one used to generate the training data. We remind that predictions
are reliable only if pressure and volume values are inside the ranges explored
during the training phase.

We demonstrate the flexibility of our Machine Learning algorithm by coupling
the MANN model with a pressure-volume closure relationship that is different
from the closed-loop circulation model C used during the training phase (see
Sect. 5.1.6). Specifically, we consider a circulation model C ′ with a windkessel
type relationship during the ejection phase and a linear pressure ramp during
the filling phase [144]. In spite of the different nature of the two circulation mod-
els (the one used during the training and the one used during the testing), the
ANN-based ROM trained with the C model proves to be reliable also when it is
coupled with the C ′ model. Indeed, as shown in Tab. 5.7, the results obtained by
the MANN-C ′ coupled model approximate those of the M3D-C ′ coupled model
with an excellent accuracy. These errors are indeed comparable to the ones ob-
tained by surrogating the MANN-C model with the M3D-C model (see Tab. 5.5).

5.2.3 Global sensitivity analysis

Once we have verified that models M
single
ANN -C and Mfull

ANN-C are able to repro-
duce the outputs of model M3D-C with high accuracy, we use them to perform
a global senstivity analysis. The aim is to determine which of the parameters
of the circulation model (pC) and the electromechanical model (pM) contribute
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Figure 5.4: Pressure and volume transients obtained with the M
single
ANN -C (dashed lines), compared

to those obtained with the M3D-C model (solid lines). The different colors correspond
to different samples of the testing set. For the sake of clarity, only three samples are
shown in the first row.
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Figure 5.5: Pressure and volume transients obtained with the Mfull
ANN-C (dashed lines), compared

to those obtained with the M3D-C model (solid lines). The different colors correspond
to different samples of the testing set. For the sake of clarity, only three samples are
shown in the first row.
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Figure 5.6: LV biomarkers obtained with the M
single
ANN -C and Mfull

ANN-C models versus those ob-
tained with the M3D-C model in the testing set. The different marker colors are asso-
ciated with 5 heartbeats and 10 heartbeats long simulations, respectively.

the most to the determination of a list of outputs of interest, the so-called QoIs
(see Tab. 5.3). For this purpose, we compute the Sobol indices Sij and STij, as
described in Sec. 5.1.4. When replacing model M3D-C with a ROM, we can only
estimate sensitivity indices with respect to the parameters pM that were consid-
ered during the training phase. On the other hand, we can compute sensitivity
indices with respect to all parameters pC of the circulation model, even those
that were not varied during training. It would even be possible – at least in
principle – to consider a circulation model different from the one used to gen-
erate the training data. In fact, as pointed out in Sec. 5.1.2, the model Msingle

ANN
and Mfull

ANN surrogate the model M3D independently of the circulation model to
which it is coupled with.

We only report the results obtained by means of the most complete ROM, that
is Mfull

ANN-C. The results are shown in Figs. 5.7 and 5.8, respectively. We notice
that the Sij and STij indices have only small differences from each other. This
means that the interaction among the different parameters is less significant,
in the determination of the QoIs, than the variation of the individual parame-
ters. Furthermore, we note that, as expected, the QoIs associated with a given
chamber or compartment are mostly determined by the parameters associated
with the same region of the cardiovascular network. However, there are some
important exceptions. Indeed, the venous resistance of the systemic circulation
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RSYS
VEN has a strong impact on the right heart (RA and RV), i.e. the part of the net-

work located immediately upstream. In addition, the systemic arterial resistance
RSYS

AR significantly impacts the maximum LV pressure. In fact, this parameter is
known to contribute in the determination of the so-called afterload [182]. We
also note that total circulating blood volume V tot

heart has a major impact on al-
most all biomarkers. Conversely, the parameters associated with the pulmonary
circulation network have a minimal impact. In addition, parameters describing
the resistance of opened and closed valves also have a very little impact. This
is an interesting result, since it shows that these parameters, chosen as a very
low and very high value respectively (since for reasons of numerical stability
they cannot be set equal to zero and infinity), have virtually no impact (at least
within the ranges considered here) on the output quantities of biomechanical
interest.

Regarding individual compartments, we note that variability can be explained
by only a few parameters. Specifically, atria are mainly influenced by passive
stiffness and atrioventricular delay, whereas for the RV the most relevant pa-
rameters are active and passive stiffness. As expected, the biomarkers associated
with the LV – the only chamber included in the M3D model – are mainly influ-
enced by the parameters pM. Among these, the most influential one is the active
contractility aXB, followed the fibers orientation α and, to a lesser extent, the
passive stiffness C. Finally, the electrical conductivity σf has a minimal impact
on the biomarkers under consideration.

It is important to note that Sobol indices are affected by the amplitude of the
ranges in which the parameters are varied. In particular, the wider the range as-
sociated with a parameter, the greater the associated Sobol indices will be, as the
parameter in question potentially generates greater variability in the QoI. There-
fore, the results shown here are valid for the specific ranges we used, which are
reported in Appendix B.5.

5.2.4 Bayesian parameter estimation

In this section we present a further practical use of the cardiac electromechanics
ROM presented in this thesis. In particular, we show that the ROM can be used
to enable Bayesian parameter estimation for the M3D-C model, which, due to
the prohibitive computational cost, would not be affordable without the use of
a ROM.

We consider a prescribed value for the parameter vector p = (pM, pC) (specifi-
cally, we employ the values reported in Tabs. 5.1 and 5.2) and we run a simula-
tion using the M3D-C model. Based on the output of this simulation, we consider
a couple of QoIs, consisting of minimum and maximum arterial pressure (i.e. we
set q = (pmin

AR,SYS,pmax
AR,SYS)). The choice of these two QoIs is motivated by the fact

that they are two variables that can be measured non invasively, and in fact
they are often monitored in clinical routine. We reconstruct the value of a cou-
ple of parameters, namely the active contractility aXB and the systemic arterial
resistance RSYS

AR , assuming known and keeping fixed the values of the remain-
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Figure 5.7: First-order Sobol indices Sij computed by exploiting the Mfull
ANN-C model. Each row

corresponds to a parameter of either the electromechanical model (i.e. pM, see
Tab. 5.1) or the circulation model (i.e. pC, see Tab. 5.2). Each column corresponds
to a QoI (i.e. q, see Tab. 5.3). Both parameters and QoIs are split into a number of
groups, separated by a black solid line. Specifically, from left to right, we list QoIs
referred to LA, LV, RA, RV and systemic circulation. Similarly, from top to bottom,
we list parameters associated with LA, LV, RA, RV, systemic circulation, pulmonary
circulation, valves and blood total volume.
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Figure 5.8: Total-effect Sobol indices STij computed by exploiting the Mfull
ANN-C model. For a de-

scription of the figure see caption of Fig. 5.7.
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ing parameters. Indeed, we aim at demonstrating that the ROM we propose is
suitable for estimating parameters of both the M3D model (such as aXB) and of
the C model (such as RSYS

AR ). Specifically, in this section we rely on the M
single
ANN -C

model.
To mimic the presence of measurement error, we artificially add to the exact

values of the QoIs pmin
AR,SYS and pmax

AR,SYS a synthetic noise, with increasing mag-
nitude. Specifically, we add an artificial noise by sampling from independent
Gaussian variables with zero mean and with variance σ2exp. We consider three
cases: σ2exp = 0 (i.e. no noise), σ2exp = 0.1mmHg2 and σ2exp = 1mmHg2.

We use the MCMC method to derive a Bayesian estimate of the parameters
value from (possibly noisy) measurements of the minimum and maximum ar-
terial pressure. For both unknown parameters we employ a non-informative
prior, that is a uniform distribution on the ranges used to train the ROM (aXB ∈
[80, 320]MPa and RSYS

AR ∈ [0.4, 1.2]mmHgsmL−1). According to Sec. 5.1.5, we
set Σ = ΣROM +Σexp, where the experimental measurement error covariance is
given by Σexp = σ2exp I2 (I2 being the 2-by-2 identity matrix) and where the ROM
approximation error covariance is estimated from its statistical distribution on
the validation set as ΣROM = 0.2mmHg2 I2. More details on the MCMC setup
are available in Appendix B.6.

In Fig. 5.9 we show the posterior distribution πpost on the parameters pair
(aXB, RSYS

AR ) obtained for the three noise levels considered. We depict with a red
line the 90% credibility region, that is the region in the parameter space with
largest posterior probability such that it covers 90% of πpost. We notice that for
each value of noise, the credibility region contains the exact value of the pa-
rameters (namely aXB = 160MPa and RSYS

AR = 0.64mmHgsmL−1), represented
by a red star. As expected, for larger values of noise, the size of the credibility
region increases (that is, the estimate is more uncertain). As a matter of fact, an
advantage of Bayesian parameter estimation methods, compared to determinis-
tic methods, is their ability of quantifying the uncertainty associated with the
parameters estimate. A further feature of Bayesian methods stands in captur-
ing correlations among the estimated parameters. Indeed, this aspect emerges
clearly because of the oblique shape of the credibility regions. This is due to
the fact that an increase in aXB or a decrease in RSYS

AR leads to similar changes in
terms of the measured QoIs (pmin

AR,SYS and pmax
AR,SYS), thus making their posterior

distributions highly correlated.

5.3 discussion

In this thesis, we propose a Machine Learning method to build ROMs of 3D car-
diac electromechanical models. Thanks to the reduced-order differential equa-
tions, learned through our algorithm, it is possible to approximate the cardiac
dynamics in terms of pressure and volume transients with great fidelity and
with a huge computational saving. As a matter of fact, once trained, the ANN-
based ROM permits to simulate a heartbeat virtually in real time (about one
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Figure 5.9: Output of the Bayesian estimation presented in Sec. 5.2.4. The figures show the poste-
rior distribution πpost, estimated by means of the MCMC method, for σ2exp = 0 (left),
σ2exp = 0.1mmHg2 (middle) and σ2exp = 1mmHg2 (right). The red lines show the
90% credibility regions, while the red stars represent the exact value of the unknown
parameters aXB and RSYS

AR .

second of numerical simulation for a heartbeat on a standard laptop), when the
original electromechanical model requires about four hours per heartbeat on a
supercomputer with 32 cores. By taking into account the number of cores, our
ANN-based ROM yields the impressive speedup of 460’000x. A fair evaluation
of the computational saving should also take into account the time required to
generate the training dataset and to train the model. To this aim, we consider
two test cases, corresponding to the examples of global sensitivity analysis and
Bayesian parameter estimation presented in Secs. 5.1.4 and 5.1.5, respectively. In
both cases, we consider 5 computer nodes with 32 cores each available, and we
compare the total computational times using either the M3D-C or the MANN-C
model with these computational resources (see Fig. 5.10).

The global sensitivity analysis presented in Sec. 5.1.4 requires the numerical
simulation of 74’000 parameter cases. On average, the limit cycle is reached in 10

heartbeats, for a total of 740’000 heartbeats to be simulated. Running this huge
amount of numerical simulations with the FOM M3D-C model would not be
feasible, as it would require about 68 years of uninterrupted use of the 5 nodes
endowed with 32 cores. On the contrary, by virtue of our Machine Learning
algorithm, we are able to perform a global sensitivity analysis, albeit with a
small approximation (see Tabs. 5.5 and 5.6) in the results, in 7.5 days (6.7 days
to generate the training dataset, 18 hours to train the model and 1 hour and 17

minutes to perform the sensitivity analysis using the MANN-C model). Therefore,
taking into account the time required to build the ROM, our approach yields a
3’300x speedup. Bayesian parameter estimation, on the other hand, requires the
numerical simulation of approximately 960’000 heartbeats. In this case, despite
using only 20 cores to run the MCMC, we are able to obtain a result in just
6 days and 8 hours (including generation of the training dataset), when with
the FOM M3D-C model it would take more than 87 years. We thus obtain an
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simulation of a heartbeat

simulation of a heartbeat

training

32 cores 
supercomputer

single core
standard laptop

single core
standard laptop

4 hours
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model task computational platform computational time

460’000x speedup

Global Sensitivity Analysis

training dataset generation

reduced model training

simulation of 740’000 heartbeats

160 h

18 h

1 h 17 min

160 cores

1 core

160 cores

180 h (~7.5 days)

simulation of 740’000 heartbeats 592’000 h (68 years)160 cores

3’300x speedup

Bayesian Parameter Estimation

training dataset generation

reduced model training

simulation of 960’000 heartbeats

120 h

18 h

13 h 20 min

160 cores

1 core

20 cores

162 h (~6.25 days)

simulation of 960’000 heartbeats 768’000 h (87 years)160 cores

5’000x speedup

Figure 5.10: Summary of the computational times required to solve and train the models (top)
or associated with global sensitivity analysis (center) and Bayesian parameter esti-
mation (bottom).
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overall speedup of 5’000x. Moreover, we notice that in case we need to execute a
Bayesian calibration for different data, it is not necessary to repeat the training
of the ANN-based model, but it is sufficient to re-run only the MCMC algorithm,
which takes – thanks to our ROM – only 13 hours and 20 minutes. Finally, we
remark that the cost required to train the ANN or to perform simulations with
the MANN-C model does not depend on the specific M3D model at hand, as it
is only based on the generated pressure and volume transients. In particular,
it is not expected to raise if the biophysical detail or the number of degree of
freedom of the computational mesh increase.

In recent times, a number of surrogate models of cardiac electromechanics
have been proposed in the literature. They are built using Machine Learning
techniques and they are often called emulators [27, 44, 47, 98]. These emulators
are based on a collection of pre-computed numerical simulations obtained by
sampling the parameter space, similarly to what has been done in this work.
However, the approach behind these emulators is very different from the one
we follow. These emulators are in fact functions that fit the parameters-to-QoIs
map (F : p 7→ q) in a static manner. On the contrary, with our approach, the
ROM makes it possible to perform a real numerical simulation of the cardiac
function, since the circulation model C is kept in its full-order form, while only
the computationally demanding part, i.e. the 3D electromechanical model (M3D),
is surrogated. This has a number of advantages:

1. The ROM MANN is independent of the circulation model C to which is
coupled and it can also be coupled to models different from those used
during training, or with different values of its parameters.

2. Unlike the emulators in [27, 44, 47, 98], our ROM allows for time extrapo-
lation, i.e. reliable predictions even over longer time spans than those used
during training, as demonstrated by our numerical results. This observa-
tion is very important since, while for emulators that fit the parameters-to-
QoIs map the simulations contained in the training set must have reached a
limit cycle (otherwise the associated QoIs would be meaningless), with our
approach it is possible to defer the reaching of the limit cycle to the ROM,
during the online phase. This permits to lighten the computational cost
associated with the creation of the training set, which typically represents
the main component of the total cost (see use cases cited above).

3. The output of the simulations obtained with our ROM is not limited to
a list of QoIs. Indeed, it contains the transient of pressures and volumes
of the heart chamber that is surrogated and of the compartments of the
circulation model. We notice that the latter is not hidden as a black-box
in the parameters-to-QoIs map, as for emulators, but is rather represented
explicitly.

4. With our approach, the ROM only needs to learn the variability with re-
spect to pM since the circulation model (involving the parameters pC) re-
mains explicitly represented. Conversely, emulators based on a parameters-
to-QoIs map must capture the dependence on both pM and pC and thus the
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training set must be large enough to accurately represent their statistical
variability. Indeed, we obtained accurate results with only 30–40 samples,
a very low number compared to the ones typically required to construct
emulators (e.g. 825 samples in [98], 9000 samples in [27]).

A limitation of our ANN-based ROM is that the online phase may be slower
than the one of emulators, which do not require to approximate a differential
equation but only need to evaluate a function. However, our ANN-based ROM
enables real-time simulations and can be readily applied in a number of use
cases, such as global sensitivity analysis, parameter estimation and uncertainty
quantification. Furthermore, as highlighted above, most of the computational
cost is not due to the evaluation of the ROM, but rather to the construction of
the training set, which our approach allows to keep very small (30–40 samples in
our test cases). Therefore, we conclude that keeping the circulation model in its
full-order form and surrogating only the computationally intensive electrome-
chanical model allows for a very favorable trade-off between what is reduced
(variability that must be explored during the offline phase) and what is not
reduced (variability that must be account for in the online phase).

A different type of emulator is the one proposed in [145], that permits - sim-
ilarly to what done in this thesis - to couple a reduced version of the 3D elec-
tromechanical model to a circulation model, thus enabling for real-time numer-
ical simulations. However, the emulator of [145] either is built for a fixed value
of the parameters pM, or accounts (through a linear interpolation) for the vari-
ability of a single parameter at most. On the other hand, its construction only
requires one or two numerical simulations performed through the FOM. There-
fore, the emulator of [145] is advantageous when one needs to surrogate the
model for a given parametrization (e.g. to quickly converge to a limit cycle,
or to perform sensitivity analysis on pC only); conversely, when one needs to
explore the parametric dependence of an electromechanical model, our ANN-
based approach turns out to be advantageous.

The Machine Learning technique proposed in [141] features several differ-
ences with respect to projection-based ROMs, which have been used in the car-
diovascular field as well (see e.g. [22, 118, 119, 135]), or Deep Learning based
approximations of the parameters-to-solution map (see e.g. [58]). The latter fam-
ilies of ROMs indeed provide a richer output than our ROM, as they allow
for the approximation of spatially varying outputs of the 3D model, such as the
transmembrane potential and tissue displacement. However, the online phase of
projection-based ROMs is typically more computationally demanding [22, 119].
Moreover, projection-based ROMs are intrusive in the equations to be reduced
and suitable hyper-reduction techniques should be addressed to handle the non-
linearities of cardiac models. The Deep Learning based method of [58] features
a training phase that is more computationally demanding, due to the larger size
of the output. Conversely, in applications in which the knowledge of pressures,
volumes and blood fluxes associated with the cardiac chambers are sufficient,
our ROM permits to accurately approximate the outputs of the FOM at a very
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reduced computational cost and in a non-intrusive manner (only pressure and
volume recordings are required from the FOM).

We remark that the proposed method is limited to electromechanical simula-
tions that feature a periodic behavior, such as in SR. The ROM is indeed periodic
by construction, due to the presence of the sine and cosine terms, as highlighted
in Eq. (5.3). Therefore, the ROM is not suitable, e.g., to simulate an irregular elec-
trophysiological behavior, such as arrhythmias and other electric dysfunctions.
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C O N C L U S I O N S

In this thesis, we developed a novel and comprehensive mathematical and nu-
merical model for the simulation of cardiac electromechanics in human ventri-
cles with ICM, where the different physical phenomena therein involved are
described by means of biophysically detailed core models [6, 162]. We modeled
scars and grey zones of the myocardium by properly changing the electrome-
chanical properties of these regions. In particular, regions of dense scars do not
contract at all and are very stiff. With respect to healthy areas, grey zones show
a reduced CV, a lower AP peak after the upstroke and a longer APD. Moreover,
they have intermediate contractility and stiffness properties among scars and
healthy regions.

Our 3D electromechanical model for the LV is coupled with either a wind-
kessel afterload model or a /0D closed-loop model that accounts for the rest of
the cardiocirculatory system. We proved that the 3D-/0D closed-loop model ful-
fills the principle of conservation of mechanical energy [147]. Indeed, the power
exerted by the cavity pressure in the 3D electromechanical model balances the
power exchanged with the /0D circulation model at the coupling interface. We
analyzed the mechanical work associated with the different compartments of
our circulation model and we proved that a balance of mechanical energy is
satisfied by the model. This balance holds both when we consider the /0D circu-
lation model alone and when we consider the 3D-/0D coupled problem too. We
showed that the circulation model considered in this thesis can be exploited to
provide better quantitative insights into the heart energy distribution than the
relationships used in daily clinical practice. In particular, if common formulas
from daily clinical practice are employed, the mechanical work is understimated
by 16%, the LV work is underestimated by 11% and the total work of the my-
ocardium is underestimated by 24%.

We proposed two numerical schemes that are aimed at coupling, in a com-
putationally efficient and accurate manner, mathematical models with different
space and time characteristic scales [148, 161]. Our computational framework
is based on three main pillars, namely: (1) a fully partitioned coupling of the
different core models; (2) parallel and flexible intergrid transfer operators to in-
terpolate relevant Finite Element functions among different meshes that reflect
the space resolution needed to approximate a specific core model; (3) IMEX
schemes to approximate the single core physics in a staggered fashion by us-
ing a suitable time step. The two SIS strategies we developed are numerically
stable, and prove to be faster and less memory-demanding than the monolithic
approach [146, 162]. Moreover, the SIS2 scheme enforces the coupling between
the /0D circulation model and the 3D electromechanical model by reinterpreting
the LV cavity pressure as a Lagrange multiplier associated with a volumetric
constraint [148]. This allows for the effective simulation of VT. Indeed, the nu-
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merical scheme does not distinguish among the four different phases of the PV
loop as in previous formulations of electromechanical models [162].

As a further new contribution, we introduced an algorithm to reconstruct
the reference (i.e. stress-free) configuration of the LV starting from a stressed
configuration obtained from medical images, by solving a suitable inverse prob-
lem [148]. Determining such configuration is essential to correctly initialize elec-
tromechanical simulations. This is especially useful in patient-specific scenarios
where the EDP and/or the EDV are possibly known. Furthermore, this reference
configuration recovery algorithm keeps into account the distribution of infarct
zones, peri-infarct areas and non-remodeled regions in its numerical resolution.

We carried out several numerical simulations in the context of cardiac elec-
tromechanics, based on idealized or realistic LV geometries, with and without
ICM [148, 161–163]. We varied different parameters of the 3D-/0D coupled model
for an LV without ICM to affect preload, afterload and contractility, thus in-
vestigating the response of our mathematical model to different situations of
clinical interest. The increase of SV as a consequence of increased preload is
correctly reproduced, coherently with the Frank-Starling law, thus guarantee-
ing the matching between the venous return and the cardiac output. We also
performed numerical simulations of patient-specific LVs with ICM in SR to fit
clinical data, by manually calibrating the parameters of our electromechanical
model coupled with a 2-element windkessel afterload model. We commented
on the main differences observed in the PV loop of an LV with ICM with re-
spect to a reference healthy case. Specifically, there is an increase in EDV and
EDP, and a significant reduction in SV/EF and contractility. We studied the ef-
fects of geometry-mediated MEFs and nonselective SACs on sustained VT for
LVs with ICM by exploiting the coupling between our 3D electromechanical
model and a /0D closed-loop circulation model of the whole cardiovascular sys-
tem. By combining electrophysiology, activation, mechanics and hemodynamics,
we observed several differences on VT propagation with respect to electrophys-
iological simulations. In particular, geometry-mediated MEFs do not affect VT
stability but may alter the VT BCL, along with its exit site. On the other hand, the
recruitment of SACs may generate EADs or DADs, which may change the hemo-
dynamic nature of VT. These extra stimuli are driven by myocardial contraction
and are induced by changes in the APD or in the resting value of the transmem-
brane potential. We concluded that both geometry-mediated MEFs and nonse-
lective SACs define important contributions in electromechanical models with
hemodynamic coupling, especially when numerical simulations under arrhyth-
mia are carried out. Thanks to the /0D circulation model, we get the evolution in
time of LV pressure and volume, LA pressure and volume, arterial system pres-
sure, MV and AV flow rates, which allow to classify the hemodynamic nature
of VT. This has important clinical implications for VT treatment planning [162].

Finally, we presented a Machine Learning method to build ANN-based ROMs
of cardiac electromechanical models [149]. Our algorithm is capable of learn-
ing, on the basis of pressure and volume transients generated with the FOM, a
system of differential equations that approximate the dynamics of the cardiac
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chamber to be surrogated. This differential equation, linking pressure and vol-
ume of a cardiac chamber, is coupled with lumped-parameter models of cardiac
hemodynamics, thus allowing for the numerical simulation of the cardiac func-
tion at a dramatically reduced computational cost with respect to the original
FOM. As a matter of fact, our ANN-based ROM permits to perform numerical
simulations virtually in real-time while keeping the relative errors with respect
to the pressure and volume transients of the FOM small, i.e. of the order of 10−3-
10−2. Moreover, thanks to its non-intrusive nature, the proposed method can be
easily applied to other electromechanical models besides the one considered in
this thesis. We presented two test cases in which we employ the ANN-based
ROM. We carried out a global sensitivity analysis to assess the influence of the
parameters of the electromechanical and hemodynamic models on a list of out-
puts of clinical interest. Then, we performed a Bayesian estimation of a couple of
parameters, starting from the noisy measurement of a couple of scalar quantities
(namely maximum and minimum arterial pressure). In both the cases, perform-
ing through the FOM the large number of numerical simulations needed would
not have been possible, due to their high computational cost (it would in fact
have taken tens of years on a supercomputer computational platform). Replac-
ing the FOM with its ANN-based surrogate allowed us to obtain an approximate
solution in a few hours of computation. Taking into account that generating the
numerical simulations of the training set required less than 7 days on the same
computational platform, our ANN-based ROM allowed us to reduce the total
computational time by more than 3’000 times.

future developments

Several future developments can be foreseen, on the ground of the achievements
of this thesis.

• Our computational model for ICM can be further improved by avoiding
using only three discrete levels for scars, grey zones and healthy regions.
This can be obtained for example by integrating different types of non-
invasive imaging data with invasive high-density catheter mapping data
[6, 59, 120, 167, 176].

• There are other types of MEFs that could be investigated in future works.
Among them, an important role is certainly played by the mechanical ef-
fects mediated by fibroblasts in the extracellular matrix, [Ca2+]i buffers
handling, alterations in transmembrane capacitance Cm due to local stretch
and ions selective SACs [89]. Indeed, modeling different cellular processes
in cardiac electromechanics might be of interest to shed further light on
the underlying mechanisms of arrhythmias [163].

• Our SIS2 scheme leaves room for the study of high-order methods in the
context of cardiac electromechanics. Indeed, wave propagation problems,
such as the one arising in cardiac electrophysiology, can be suitably rep-
resented using high-order basis functions, which can be obtained for ex-
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ample by Isogeometric Analysis or Spectral Element Methods [24, 28, 63].
These techniques potentially guarantee higher accuracy and lead to lower
numerical dispersion and dissipation than FEM while using a smaller num-
ber of DOFs [63, 127].

• The numerical simulations of the FOM of cardiac electromechanics can be
accelerated by means of matrix-free solvers [93], which are more efficient
and less memory demanding than matrix-based approaches. In particular,
the fairly reduced memory requirements of matrix-free solvers leave room
to parallel frameworks based on graphics processing units (GPUs) or ten-
sor processing units (TPUs), where RAM usage must be generally limited
with respect to standard CPU-based HPC architectures [194].

• Albeit in this thesis we focused on LV numerical simulations, the 3D-/0D
coupling that we described can be also extended to a biventricular [131]
or a four chambers representation of the human heart. Similarly, the pro-
cedure to reconstruct the reference geometry can be generalized and em-
ployed for both atria and ventricles.

• Our Machine Learning method can be also employed to build ANN-based
ROMs of whole-heart electromechanics and to account for various cardio-
vascular diseases.

• Finally, we may also design ANN-based ROMs for space- and time-dependent
fields associated to PDEs, such as action potential, ionic variables, protein
states and mechanical displacement. This would allow for global sensitiv-
ity analysis and uncertainty quantification on all the parameters of the 3D
electromechanical model, ranging from the cell to the tissue level.
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A
PA R A M E T E R S O F T H E E L E C T R O M E C H A N I C A L M O D E L

In this appendix, we report the electromechanical parameters that we use to run
the numerical simulations of this thesis in both physiological and pathological
conditions.

a.1 physiological conditions

a.1.1 Idealized left ventricle

In Tab. A.1 we provide the full list of the electromechanical parameters for the
SR simulation with an idealized LV (Sec. 3.1), which has been performed by
means of the (E )–(I )–(Astrain)–(W )–(M ) mathematical model.

σl σt, σn λepi λendo k̄epi k̄endo k̄
′

α

120.4 17.61 0.8 0.5 0.75 1.0 -7.0 -6.0

[Ca2+]i,0 µ̂1A µ̂2A µ̂3A µ̂4A SLmin SLmax SL0

0.05 2.1 7.0 12 500 1.7 2.6 1.95

d0 d1 d2 d3 e1 e2 e3 ρ

-4.33e3 2.57e3 1.33e3 0.10e3 -2.05e3 0.30e3 0.22e3 1e-3

B Cguccione K
epi
⊥ K

epi
‖ C

epi
⊥ C

epi
‖ C R

50000 880 0.2 0.0 0.005 0.0 4500 3.5e-5

Table A.1: Parameters used in the electromechanical simulation with an idealized LV: longitu-

dinal and transversal conductivities σl, σt and σn

(
mm2

s

)
; transmurally heteroge-

neous wall thickening coefficients λepi, λendo, k̄epi, k̄endo and k̄
′
; active strain coeffi-

cients α
(
µM−2

)
, [Ca2+]i,0, and µ̂A

(
µM2 · s

)
of the four cardiac phases; minimum,

maximum, reference sarcomere lengths SLmin, SLmax and SL0 (µm) respectively; coef-
ficients of the truncated Fourier series approximation of the force-length relationship

d0, d1, d2, d3, e1, e2, e3; density ρ
( g

mm3

)
; bulk modulus B (Pa); Guccione parameter

Cguccione (Pa); Robin boundary condition coefficients Kepi⊥ and Kepi‖

(
kPa

mm

)
, Cepi⊥

and Cepi‖

(
kPa · s
mm

)
; windkessel model parameters C and R

(
mm3

kPa
,
kPa · s
mm3

)
.
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a.1.2 Realistic left ventricle

We provide the full list of parameters adopted for the baseline electromechani-
cal simulation in SR on the Zygote LV (Sec. 3.2), which has been performed with
the (E )–(I )–(Astress)–(C )–(V )–(M ) mathematical model. Specifically, Tab. A.2
contains the parameters related to the electrophysiological model, Tab. A.3 those
related to the mechanical model and Tab. A.4 the ones of the circulation model.
For the TTP06 model, we adopt the parameters reported in the original paper
(for mid-myocardial cells) [186]. For the RDQ18 model, we employ the parame-
ters of the original paper [140].

Variable Value Unit Variable Value Unit

Conductivity tensor Applied current
σl 0.7643 · 10−4 m2 s−1 Ĩmax

app 35 V s−1

σt 0.3494 · 10−4 m2 s−1 tapp 3 · 10−3 s

σn 0.1125 · 10−4 m2 s−1

Table A.2: Parameters of the electrophysiological model for the Zygote LV in physiological con-
ditions.

Variable Value Unit Variable Value Unit

Constitutive law Boundary conditions
B 50 · 103 Pa K

epi
⊥ 2 · 105 Pam−1

C 0.88 · 103 Pa K
epi
‖ 2 · 104 Pam−1

bff 8 − C
epi
⊥ 2 · 104 Pa sm−1

bss 6 − C
epi
‖ 2 · 103 Pa sm−1

bnn 3 −

bfs 12 − Activation
bfn 3 − Tmax

a 180 · 103 Pa

bsn 3 − SL0 2 µm
ρs 103 kgm−3

Table A.3: Parameters of the mechanical model for the Zygote LV in physiological conditions.

a.2 pathological conditions

a.2.1 First patient-specific left ventricle

We reuse the same parametrization reported in Sec. A.1.1 for the electromechan-
ical simulation in SR on the first LV with ICM that we analyzed by means of
the (E )–(I )–(Astrain)–(W )–(M ) mathematical model. This is motivated by the
lack of additional clinical data, especially regarding the pressure-volume rela-
tionship, for this patient.
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Variable Value Unit Variable Value Unit

External circulation Cardiac chambers
RSYS

AR 0.8 mmHgsmL−1 E
pass
LA 0.09 mmHgmL−1

RPUL
AR 0.1625 mmHgsmL−1 E

pass
RA 0.07 mmHgmL−1

RSYS
VEN 0.26 mmHgsmL−1 E

pass
RV 0.05 mmHgmL−1

RPUL
VEN 0.1625 mmHgsmL−1 Eact,max

LA 0.07 mmHgmL−1

CSYS
AR 1.2 mLmmHg−1 Eact,max

RA 0.06 mmHgmL−1

CPUL
AR 10.0 mLmmHg−1 Eact,max

RV 0.55 mmHgmL−1

CSYS
VEN 60.0 mLmmHg−1 V0,LA 4.0 mL

CPUL
VEN 16.0 mLmmHg−1 V0,RA 4.0 mL

LSYS
AR 5 · 10−3 mmHgs2mL−1 V0,RV 10.0 mL

LPUL
AR 5 · 10−4 mmHgs2mL−1 Cardiac valves
LSYS

VEN 5 · 10−4 mmHgs2mL−1 Rmin 0.0075 mmHgsmL−1

LPUL
VEN 5 · 10−4 mmHgs2mL−1 Rmax 75006.2 mmHgsmL−1

Table A.4: Parameters of the circulation model for the Zygote LV in physiological conditions.
We consider a heartbeat period T = 0.8 s.

a.2.2 Second patient-specific left ventricle

We provide the list of parameters adopted for both SR and VT simulations
on the second LV with ICM (Sec. 4.1.2). SR simulations exploit the (E )–(I )–
(Astrain)–(W )–(M ) mathematical model, while VT simulations employ the (E )–
(I )–(Astrain)–(C )–(V )–(M ) mathematical model. Tab. A.5 contains the param-
eters related to the electrophysiological model and Tab. A.6 those related to the
mechanical model. For the TTP06 model, we adopt the parameters of the orig-
inal paper (for mid-myocardial cells) [186]. Tab. A.8 and Tab. A.9 contain the
parameters of the circulation model in healthy and pathological conditions, re-
spectively. In particular, for the pathological case we increase the resistance of
the arterial system while decreasing its capacitance, to maintain their product
almost constant. Morever, we raise the passive elastance of the RV while reduc-
ing the active one. Indeed, both from LGE-MRI and Cine MRI, we noticed that
the RV of this patient might be affected by ICM as well. We observed that the
RV presents a small dimension and a low SV (≈ 25mL). Finally, we consider a
fibrosis-free dilated LA, with higher active elastance and higher resting volume.

Variable Value Unit Variable Value Unit

Conductivity tensor Applied current
σl 0.6714 · 10−4 m2 s−1 Ĩmax

app 35 V s−1

σt 0.0746 · 10−4 m2 s−1 tapp 5 · 10−3 s

σn 0.0746 · 10−4 m2 s−1

Table A.5: Parameters of the electrophysiological model for the second LV with ICM (taken from
[6, 148]).
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Variable Value Unit Variable Value Unit

Constitutive law Boundary conditions
B 5 · 104 Pa K

epi
⊥ 2 · 105 Pam−1

C 0.88 · 103 Pa K
epi
‖ 2 · 105 Pam−1

bff 8 − C
epi
⊥ 2 · 104 Pa sm−1

bss 6 − C
epi
‖ 2 · 103 Pa sm−1

bnn 3 −

bfs 12 − Activation
bfn 3 − µ̂1A 1.5 sµM2

bsn 3 − µ̂2A 3 sµM2

ρs 103 kgm−3 µ̂3A 1.2 sµM2

µ̂4A 5 sµM2

Table A.6: Parameters for passive mechanics (taken from [148]), boundary conditions and me-
chanical activation (manually calibrated) for the second LV with ICM. The other pa-
rameters of the active strain model are reported in Sec. A.1.1.

Variable Value Unit

C 4.0e-10 m3 Pa−1

R 5.0e7 Pa sm−3

Table A.7: Parameters of the windkessel model, which are manually calibrated to fit the clinical
data reported in Tab. 4.2, for the second LV with ICM.

Variable Value Unit Variable Value Unit

External circulation Cardiac chambers
RSYS

AR 0.64 mmHgsmL−1 E
pass
RV 0.05 mmHgmL−1

RSYS
VEN 0.035684 mmHgsmL−1 Eact,max

LA 0.07 mmHgmL−1

RPUL
VEN 0.1625 mmHgsmL−1 Eact,max

RV 0.55 mmHgmL−1

CSYS
AR 1.2 mLmmHg−1 V0,LA 4.0 mL

Table A.8: Parameters of the circulation model in healthy conditions for the second LV with ICM.
We consider a heartbeat period T = 0.92 s. The remaining parameters are reported in
Sec. A.1.2.

a.2.3 Zygote left ventricle

We provide the full list of parameters adopted for the VT simulations on the Zy-
gote LV endowed with an idealized distribution of the ischemia (Sec. 4.2), where
we use the (E )–(I )–(Astress)–(C )–(V )–(M ) mathematical model. Specifically,
Tab. A.10 contains the parameters related to the electrophysiological model,
Tab. A.11 those related to the sarcomere model RDQ20-MF, Tab. A.12 the pa-
rameters of the mechanical model and Tab. A.13 the ones associated with the
circulation model. For the TTP06 model, we adopt the parameters reported in
the original paper (for endocardial cells) [185], with the only difference that we
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Variable Value Unit Variable Value Unit

External circulation Cardiac chambers
RSYS

AR 1.0 mmHgsmL−1 E
pass
RV 0.3 mmHgmL−1

RSYS
VEN 0.26 mmHgsmL−1 Eact,max

LA 0.14 mmHgmL−1

RPUL
VEN 0.035684 mmHgsmL−1 Eact,max

RV 0.4 mmHgmL−1

CSYS
AR 0.8 mLmmHg−1 V0,LA 5.0 mL

Table A.9: Parameters of the circulation model in pathological conditions for the second LV
with ICM. We consider a heartbeat period T = 0.92 s. The remaining parameters are
reported in Sec. A.1.2.

rescale the intracellular calcium concentration [Ca2+]i by a factor of ωCa to get
more physiological values [39].

Variable Value Unit Variable Value Unit

Conductivity tensor Applied current
σl 0.7643 · 10−4 m2 s−1 Ĩmax

app 17 V s−1

σt 0.3494 · 10−4 m2 s−1 tapp 3 · 10−3 s

σn 0.1125 · 10−4 m2 s−1 Calcium rescaling
ωCa 0.48 -

Table A.10: Parameters of the electrophysiological model for the Zygote LV with an idealized
ischemia.

Variable Value Unit Variable Value Unit

Regulatory units steady-state Crossbridge cycling
µ 10 - µ0fP 32.255 s−1

γ 30 - µ1fP 0.768 s−1

Q 2 - r0 134.31 s−1

kd 0.4 µM α 25.184 -
αkd −0.2083 µMµm−1 Upscaling
Regulatory units kinetics aXB 160 MPa

k- 40 s−1 SL0 1.9 µm
kT 8 s−1

Table A.11: Parameters of the sarcomere model RDQ20-MF for the Zygote LV with an idealized
ischemia (for the definition of the parameters, see [142]).
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Variable Value Unit Variable Value Unit

Constitutive law Boundary conditions
B 50 · 103 Pa K

epi
⊥ 2 · 105 Pam−1

C 0.88 · 103 Pa K
epi
‖ 2 · 104 Pam−1

bff 8 − C
epi
⊥ 2 · 104 Pa sm−1

bss 6 − C
epi
‖ 2 · 103 Pa sm−1

bnn 3 − Tissue density
bfs 12 − ρs 103 kgm−3

bfn 3 −

bsn 3 −

Table A.12: Parameters of the mechanical model for the Zygote LV with an idealized ischemia.

Variable Value Unit Variable Value Unit

External circulation Cardiac chambers
RSYS

AR 0.64 mmHgsmL−1 E
pass
LA 0.18 mmHgmL−1

RPUL
AR 0.032116 mmHgsmL−1 E

pass
RA 0.07 mmHgmL−1

RSYS
VEN 0.32 mmHgsmL−1 E

pass
RV 0.05 mmHgmL−1

RPUL
VEN 0.035684 mmHgsmL−1 Eact,max

LA 0.07 mmHgmL−1

CSYS
AR 1.2 mLmmHg−1 Eact,max

RA 0.06 mmHgmL−1

CPUL
AR 10.0 mLmmHg−1 Eact,max

RV 0.55 mmHgmL−1

CSYS
VEN 60.0 mLmmHg−1 V0,LA 4.0 mL

CPUL
VEN 16.0 mLmmHg−1 V0,RA 4.0 mL

LSYS
AR 5 · 10−3 mmHgs2mL−1 V0,RV 16.0 mL

LPUL
AR 5 · 10−4 mmHgs2mL−1 Cardiac valves
LSYS

VEN 5 · 10−4 mmHgs2mL−1 Rmin 0.0075 mmHgsmL−1

LPUL
VEN 5 · 10−4 mmHgs2mL−1 Rmax 75006.2 mmHgsmL−1

Table A.13: Parameters of the circulation model for the Zygote LV with an idealized ischemia.
We consider a heartbeat period T = 0.8 s.
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B
R E D U C E D - O R D E R M O D E L I N G O F C A R D I A C
E L E C T R O M E C H A N I C S

In this appendix we report the main numerical approaches that we employ to
develop and test our ROM of cardiac electromechanics.

b.1 numerical simulations

We use the same choices in terms of space and time discretization for all the nu-
merical simulations involving the FOM. Specifically, we employ a finer mesh for
cardiac electrophysiology, which consists of 258’415 DOFs and 240’864 elements
(with an average mesh size of hmean = 1.7 mm), and a coarser one for cardiac me-
chanics, which is made by 35’725 DOFs and 30’108 elements (hmean = 3.4 mm).
To advance the electrophysiological variables we use a time step ∆t = 100µs,
while a five times larger time step is employed to advance the mechanical vari-
ables. The numerical simulations have run by using one cluster node endowed
with 32 cores (four Intel Xeon E5-4610 v2, 2.3 GHz) which is available at MOX,
Dipartimento di Matematica.

b.2 convergence to the limit cycle

To determine when a numerical simulation reached a limit cycle (i.e. a periodic
solution), we employ a criterion based on the increment between successive cy-
cles. In particular, we consider the limit cycle to be reached when the maximum
difference between two consecutive cycles in the pressures and volumes of all
four chambers is less than 0.8mmHg and 0.8mL, respectively. This criterion is
typically satisfied in 5 to 15 cycles. In any case, we always perform a minimum
of 5 cycles.

b.3 training algorithm

To generate the training datasets, we employ a Monte Carlo based sampling
of the parameter space PM ×PC. We consider a subset of the parameters pC

which is made by:

V tot
heart,E

pass
LA , tav

L ,Epass
RA , tav

R ,Eact
RV,Epass

RV ,RSYS
AR ,RSYS

VEN.

To define the sampling spaces PM and PC, we consider 50% to 200% ranges
of the baseline values reported in Tabs. 5.1 and 5.2 for V tot

heart, E
pass
LA , aXB, Epass

RA ,
Eact

RV, Epass
RV , RSYS

AR and RSYS
VEN, 50% to 150% for σf and C. We vary α ∈ (40°, 80°) and

tav
L , tav

R ∈ (0.08, 0.24) s.
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To train the ANN-based model according to Eq. (5.4), we employ the algo-
rithm that we proposed in [141]. More precisely, we approximate the trained
ODE with a time step size of ∆t = 5ms and the objective functional with a
twice as wide time step. To train the ANN, we employ 2000 iterations of the
Levenberg-Marquardt algorithm.

b.4 hyperparameters tuning

To tune the hyperparameters, we adopt a k-fold cross-validation procedure as
described in Sec. 5.1.3. Specifically, we consider a given hyperparameter setting
and we partition the training dataset in k = 5 non-overlapping subsets. Then,
by retaining a single subset as validation data, we train, on the remaining k− 1
subsets, three different models (with three different random initializations of the
ANN weights) and we keep the model attaining the lowest validation error. This
procedure is repeated k times, once for each subset. Finally, we average the er-
rors over the k trained models, and we compare the resulting average errors for
different hyperparameter settings. More precisely, to compare the performances
of the models obtained with different hyperparameter settings, we consider the
validation errors associated with the QoIs reported in Tab. 5.3, in terms of rela-
tive errors. Moreover, we assess the generalization skills of the trained models
by computing the ratio between validation errors and training errors. Indeed,
a ratio that is much larger than one indicates overfitting. By following these
criteria, we get to the final configurations of Tab. 5.4.

b.5 global sensitivity analysis

To perform global sensitivity analysis, we consider all parameters pM and pC,
which are reported in Tabs. 5.1 and 5.2, respectively. To define the sampling
spaces PM and PC, we consider 80% to 120% ranges of the baseline values in
Tabs. 5.1 and 5.2, except for V tot

heart ∈ (193, 593) mL and for tav
L , tav

R ∈ (0.04, 0.28)
s.

We employ the Saltelli’s method to sample the parametric space PM×PC. A
naive sampling of the space would require an exponential increase with respect
to the number of parameters to guarantee a prescribed accuracy; conversely,
Saltelli’s method leads to a linear increase. More precisely, the number of sam-
ples required is N(2D+ 2), where D is the number of parameters and N is a
user defined setting. In this thesis we set N = 1000, for a total of 74’000 samples,
that guarantees small confidence intervals around the first-order Sobol indices
and the total-effect Sobol indices reported in Figs. 5.7 and 5.8, respectively. We
use one cluster node endowed with 20 cores (four Intel Xeon E5-2640 v4, 2.4
GHz), which is available at MOX, Dipartimento di Matematica, to run global
sensitivity analysis.
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b.6 bayesian parameter estimation

We perform Bayesian parameter estimation by means of the MCMC method.
We consider 500 samples per chain, a jump period of 10 samples and a burn-
in equal to 1000, for a total number of 20 chains. Indeed, we use one cluster
node endowed with 20 cores (four Intel Xeon E5-2640 v4, 2.4 GHz), which is
available at MOX, Dipartimento di Matematica, where each core manages a
single chain and then all final results are collected together at the end of the
numerical simulation.
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