
POLITECNICO DI MILANO

SCUOLA DI INGEGNERIA INDUSTRIALE E DELL’INFORMAZIONE

TESI DI LAUREA MAGISTRALE IN COMPUTER SCIENCE AND

ENGINEERING

DEVELOPMENT AND EVALUATION OF WCET

BENCHMARKS FOR PROBABILISTIC

REAL-TIME APPROACHES

Author:

Dott. Riccardo Confalonieri
Student ID:

920410

Supervisor:

Prof. William Fornaciari

Co-Supervisor (Correlatore):

Dott. Federico Reghenzani

Academic Year – 2019/20

Contents

List of Figures V

List of Tables VII

Acronyms XI

Acknowledgments XIII

Abstract XV

Abstract (in Italiano) XVII

1 Introduction 1
1.1 Embedded systems and Real-Time systems 1
1.2 The WCET problem . 3

1.2.1 The hardware complexity 4
1.3 Timing analyses techniques 5

1.3.1 Traditional techniques 5
1.3.2 Probabilistic timing analysis 7

1.4 Motivation and contribution of this thesis 8
1.4.1 Motivation . 8
1.4.2 Contribution . 9
1.4.3 Structure . 9

I

Contents

2 Background knowledge 11
2.1 Probabilistic Real-Time computing 11

2.1.1 The pWCET distribution 12
2.1.2 The Extreme Value Theory 13
2.1.3 The EVT hypotheses 15
2.1.4 Application of EVT to pWCET problem 17

2.2 Statistical tests . 18
2.3 Probabilistic Predictability Index 19

2.3.1 PPI construction 20

3 State of the Art 23
3.1 Measurement Based Probabilistic Timing Analyses 23
3.2 WCET benchmarks . 27

3.2.1 Mälardalen WCET 28
3.2.2 TACLeBench . 30
3.2.3 MiBench . 31

4 Methodology and Experimental Framework 33
4.1 Overview of the experiments 33
4.2 Benchmark preparation 34

4.2.1 Input generation 34
4.2.2 Execution time measurements 35

4.3 STM32 Nucleo Board 35
4.3.1 Hardware architecture 35
4.3.2 Code structure 36
4.3.3 Setup for Real Applications 39

4.4 Raspberry PI . 42
4.4.1 Hardware architecture 42
4.4.2 Software configuration 42

5 Experiments on the STM32 Board 45
5.1 Original benchmarks . 46

5.1.1 Experimental setup 46
5.1.2 Methodology of the experiments 46
5.1.3 Results . 47
5.1.4 Discussion . 47
5.1.5 Final considerations 48

II

Contents

5.2 Modified benchmarks 49
5.2.1 Fibcall . 49
5.2.2 Minver . 50
5.2.3 Qsort-exam . 50
5.2.4 Final considerations 51

6 The development of novel benchmarks 57
6.1 Making the original benchmarks input-independent . . . 57
6.2 TCAS-sort . 59
6.3 A loop-based benchmark 62
6.4 Audio compression benchmark 64
6.5 TCAS . 66

7 Experimental evaluation of the Linux real-time patch 71
7.1 PREEMPT_RT: The Linux real-time patch 71
7.2 Experimental Results 73

7.2.1 Plain Linux . 73
7.2.2 PREEMPT_RT Linux 74
7.2.3 Comparison & Discussion 74

8 Future Works and Conclusions 85
8.1 Future Works . 85
8.2 Conclusions . 86

Appendices 89

A List of Benchmarks 91

B Histograms 95

Bibliography 105

III

List of Figures

1.1 The evolution of the impact of embedded systems’ cost on
the total cost of cars. 2

3.1 An example of function call graph, taken from benchmark
"compress". 29

4.1 The block scheme of STM32L010RB microcontroller. . . 37

5.1 Plots of time series from "fdct" benchmark. It is possible
to notice the random noise in the logical analyses plot (a)
with respect to the internal timer (b). 48

5.2 Plots of time series from "minver-weibull" benchmark,
executed on the STM32 board, measuring time with a
logic analyser (a) and the internal timer of the board (b). . 51

6.1 Plots of time series from the two versions of "tcas-sort"
benchmark, original (a) and input-independent (b), em-
ploying the internal timer for the measurements. 64

6.2 Plots of time series from "timing" benchmark, employing
the internal timer of the board for the measurements and
using random values (a) and real values (b) as inputs. . . . 67

V

List of Figures

6.3 Plots of time series from "TCAS" benchmark, employing
the internal timer for the measurements, and using random
values (a) and real values (b) as inputs. 70

6.4 Plot of the PPI values of the different chunks of data of
"TCAS" benchmark. 70

7.1 Comparison of time series from "coop" benchmark, exe-
cuted on the STM32 board (a), and on the Raspberry PI4
(b). 73

7.2 Comparison of time series from "minver" benchmark, exe-
cuted on the STM32 board (a), and on the Raspberry PI4
with PREEMPT_RT patch application (b). 75

7.3 Comparison of time series from "edn" benchmark, exe-
cuted on the STM32 board (a), and on the Raspberry PI4
with PREEMPT_RT patch application (b). 76

7.4 Comparison of time series from "bitcount" benchmark,
executed on a Raspberry PI4 with standard Linux version
(a), and PREEMPT_RT patch application (b). 76

7.5 Comparison of time series from "qsort-exam" benchmark,
executed on a Raspberry PI4 with standard Linux version
(a), and PREEMPT_RT patch application (b). 80

VI

List of Tables

5.1 Results of original benchmarks, obtained by measuring
time through the STM32 board internal timer. 52

5.2 Results of original benchmarks, obtained by measuring
time through a logic analyser. 53

5.3 Results of the modified versions of "fibcall" benchmark,
obtained through the STM32 Board Internal Timer. 54

5.4 Results of the modified versions of "fibcall" benchmark,
obtained by measuring time through a logic analyser. . . . 54

5.5 Results of the modified versions of "minver" benchmark,
obtained through STM32 internal timer. 54

5.6 Results of the modified versions of "minver" benchmark,
obtained by measuring time through a logic analyser. . . . 55

5.7 Results of the modified versions of "qsort" benchmark,
obtained through STM32 internal timer. 55

5.8 Results of the modified versions of "qsort" benchmark,
obtained by measuring time through a logic analyser. . . . 55

6.1 Results from sorting benchmarks, obtained by measuring
time through STM32 board internal timer. 59

6.2 Results from sorting benchmarks, obtained by measuring
time through a logic analyser. 59

VII

List of Tables

6.3 Results from "tcas-sort" benchmark, obtained by measur-
ing time through STM32 board internal timer. 63

6.4 Results from "tcas-sort" benchmark, obtained by measur-
ing time through a logic analyser. 64

6.5 Results from trivial benchmarks, obtained by measuring
time through the STM32 board internal timer. 65

6.6 Results from trivial benchmarks, obtained by measuring
time through a logic analyser. 66

6.7 Results from audio compression benchmark, obtained by
measuring time through the STM32 board internal timer. . 66

6.8 Results from audio compression benchmark, obtained by
measuring time through a logic analyser. 67

6.9 Results from TCAS benchmark, obtained by measuring
time through the STM32 board internal timer. 68

6.10 Results from TCAS benchmark, obtained by measuring
time through a logic analyser. 68

7.1 Results from original benchmarks, run on a Raspberry PI
4 with standard Linux version. 77

7.2 Results from modified versions of "fibcall" benchmark,
run on a Raspberry PI 4 with standard Linux version. . . . 78

7.3 Results from modified versions of "minver" benchmark,
run on a Raspberry PI 4 with standard Linux version. . . . 78

7.4 Results from modified versions of "qsort" benchmark, run
on a Raspberry PI 4 with standard Linux version. 78

7.5 Results from sorting benchmarks, run on a Raspberry PI 4
with standard Linux version. 79

7.6 Results from "TCAS-sort" benchmark, run on a Raspberry
PI 4 with standard Linux version. 79

7.7 Results from trivial benchmarks, run on a Raspberry PI 4
with standard Linux version. 79

7.8 Results from "TCAS" benchmark, run on a Raspberry PI
4 with standard Linux version. 79

7.9 Results from audio compression benchmark, run on a Rasp-
berry PI 4 with standard Linux version. 80

VIII

List of Tables

7.10 Results from original benchmarks, run on a Raspberry PI
4 with PREEMPT_RT Patch application. 81

7.11 Results from the modified versions of "fibcall" benchmark,
run on a Raspberry PI 4 with PREEMPT_RT Patch appli-
cation. 82

7.12 Results from modified versions of "minver" benchmarks,
run on a Raspberry PI 4 with PREEMPT_RT Patch appli-
cation. 82

7.13 Results from modified versions of "qsort" benchmarks, run
on a Raspberry PI 4 with PREEMPT_RT Patch application. 82

7.14 Results from sorting benchmarks, run on a Raspberry PI 4
with PREEMPT_RT Patch application. 83

7.15 Results from TCAS-sort benchmarks, run on a Raspberry
PI 4 with PREEMPT_RT Patch application. 83

7.16 Results from trivial benchmarks, run on a Raspberry PI 4
with PREEMPT_RT Patch application. 83

7.17 Results from "TCAS" benchmark, run on a Raspberry PI
4 with PREEMPT_RT Patch application. 83

7.18 Results from audio compression benchmark, run on a Rasp-
berry PI 4 with PREEMPT_RT Patch application. 84

IX

Acronyms

BM Block Maxima.

CDF Cumulative Distribution Function.

COTS Commercial Off-The-Shelf.

CV Coefficient of Variation.

EVT Extreme Value Theory.

GEVD Generalized Extreme Value Distribution.

GoF Goodness-of-Fit.

GPD Generalized Pareto Distribution.

GPIO General Purpose Input/Output.

HDTA Hybrid Deterministic Timing Analysis.

HPC High-Performance Computing.

HRT High-Resolution Timer.

i.i.d. Independent and Identically Distributed.

IRQ Interrupt Request.

XI

Acronyms

MBDTA Measurement-Based Deterministic Timing Analysis.

MDA Maximum Domain of Attraction.

MLE Maximum Likelihood Estimator.

OS Operating System.

PNRG Pseudo-Random Number Generator.

PoT Peak Over Threshold.

PPI Probabilistic Predictability Index.

pWCET Probabilistic Worst-Case Execution Time.

PWM Probability Weighted Moments.

RCU Read-Copy-Update.

RT Real-Time.

SDTA Static Deterministic Timing Analysis.

SPTA Static Probabilistic Timing Analysis.

TCAS Traffic Alert and Collision Avoidance System.

WCET Worst-Case Execution Time.

XII

Acknowledgments

Il conseguimento di questo importante risultato ha richiesto impegno,
dedizione e sacrifici. Non sarei però mai riuscito a raggiungere questo
traguardo senza l’aiuto di chi, durante il percorso, mi è stato vicino e mi
ha aiutato.

Ringrazio innanzitutto la mia famiglia. A Lara, per aver condiviso
con me le gioie e le difficoltà della vita da universitari, per la capacità
di distrarmi dallo studio tutte le volte che ne avevo bisogno e per avermi
spinto a credere di più in me stesso. Ai miei genitori e a mia sorella,
per avermi supportato durante tutti gli studi, non solo economicamente,
ma soprattutto moralmente e per avermi sempre assecondato in ogni mia
scelta. Ai miei nonni, per l’orgoglio dimostratomi ad ogni esame superato.

Grazie poi ai miei compagni di corso, da quelli rimasti solo per poco
tempo, a chi ha condiviso con me l’intero percorso: i lavori di gruppo
e i progetti svolti con voi sono stati di grande aiuto per vincere la mia
timidezza. Ringrazio in particolare Valerio, Samuele e Simone, che da
compagni sono diventati amici.

Grazie infine al professor William Fornaciari e al correlatore Federico
Reghenzani, per non avermi mai fatto mancare il loro appoggio nonostante
la situazione anomala che abbiamo dovuto affrontare durante la stesura di
questa tesi.

XIII

Abstract

The accurate estimation of the Worst-Case Execution Time (WCET) is
essential when dealing with hard Real-Time systems, in particular when
they execute mission-critical or safety-critical applications. Traditional
static methods for its computation are, however, not efficient when used
on modern hardware architectures, especially in multi-core and many-core
CPUs. In this scenario, a promising solution is represented by Probabilistic
Timing Analysis, aiming at determining the probabilistic-WCET. Current
WCET benchmark suites have been developed mainly for static analyses,
lacking information needed to test probabilistic techniques. This thesis re-
caps the currently available WCET benchmarks, with an in-depth analysis
of their statistical characteristics, focusing, in particular, on probabilistic-
WCET properties. Then, we propose possible modifications to these
benchmarks to improve the applicability with probabilistic real-time, as
well as novel benchmarks created from scratch. Several experiments, exe-
cuted on a STM32L010RB microcontroller and a Raspberry PI 4, assess
the predictability of the benchmarks in different configurations, allowing
us to draw advice to be used in future academic works and industrial
applications.

XV

Abstract (in Italiano)

Un’accurata stima del Worst-Case Execution Time (WCET) è essenziale
quando si ha a che fare con sistemi hard Real-Time, in particolar modo
quando questi eseguono applicazioni di tipo mission-critical o safety-
critical. Tuttavia, i tradizionali metodi di calcolo non sono efficienti
se utilizzati con le più moderne architetture hardware, specialmente su
CPU multi-core e many-core. In questi casi, una soluzione promettente
è rappresentata dalla Probabilistic Timing Analysis, il cui obiettivo è la
determinazione del probabilistic-WCET. Le attuali suites di benchmarks
per il WCET sono state sviluppate principalmente per l’analisi statica e
mancano quindi di informazioni necessarie a testare le tecniche proba-
bilistiche. Questa tesi riepiloga i benchmarks per il WCET attualmente
esistenti, con un’analisi specifica delle loro caratteristiche statistiche, con-
centrandosi, in particolare, sulle proprietà relative al probabilistic-WCET.
In seguito, proponiamo possibili modifiche ai benchmarks, per migliora-
re la loro applicabilità alle tecniche di probabilistic real-time, insieme a
benchmarks creati interamente da zero. Diversi esperimenti, condotti su
un microcontrollore STM32L010RB e su una Raspberry PI 4, valutano la
predicibilità dei benchmarks con diverse configurazioni, permettendoci di
definire alcune linee guida da usare per la futura ricerca accademica e per
l’applicazione industriale.

XVII

CHAPTER1
Introduction

1.1 Embedded systems and Real-Time systems

Embedded systems are computing systems where hardware and software
integration are tightly coupled. They are usually part of a bigger system
(the embedding one), where they may cooperate with other embedded
systems in a distributed environment, but some of them can also work on
their own. They are designed to perform specific tasks and to optimize spe-
cific parameters such as size, cost of production, and power consumption,
while guaranteeing very high levels in terms of performance and reliability.
Nowadays, smart and interconnected embedded systems are getting more
and more present not only in electronic devices, such as smartwatches
and cameras, but also on household appliances used in everyday life, like
fridges, washing machines, and televisions. Another sector in which this
kind of devices’ employment is rapidly increasing is automotive: statisti-
cians forecast about 50% of the cost of cars will be due to the electronic
devices in 2030, as shown in Figure 1.1.

A subset of embedded systems is different from the rest due to the

1

Chapter 1. Introduction

1970 1980 1990 2000 2010 2030

Year

0

5

10

15

20

25

30

35

40

45

50

%
 s

h
a
re

 o
f
to

ta
l
c
o
s
t

Figure 1.1: The evolution of the impact of embedded systems’ cost on the total
cost of cars.

requirement of reacting to external events within a specified amount of
time: Real-Time systems. This kind of devices can be further split into two
categories: in hard Real-Time systems, missing a timing constraint deter-
mines the failure of the whole system, while in soft Real-Time systems,
delays cause degradation in the quality of service, but are still acceptable,
provided that their frequency is not too high. Examples of soft Real-Time
systems are videogames, for which a brief reduction of the video frame rate
makes the experience of the player worse, but does not prevent him from
keeping on playing, or software for live audio and/or video conferences,
in which missing some brief part of the communication causes the quality
of the call to be lower, but still allows users to continue their meeting
after that. In both cases, if the time interval in which the reduction of the
Quality of Service occurs is short enough, the users may even not notice
the degradation. Instead, examples of hard Real-Time systems are the
navigation systems of aircraft, fire protection and alarm systems, online
trading systems of banks, control systems of nuclear plants, or the software
used to switch on the engine of a car. In these cases, instead, even a small
violation of the deadline may cause the system to misbehave. Usually,
hard real-time systems are also critical systems, which can be further
categorized in mission-critical and safety-critical. Among the previously

2

1.2. The WCET problem

shown examples, only trading systems and cars’ engine software belong to
the first category. In fact, non-operating online systems make it impossible
for the customers of the bank to rapidly buy or sell stocks on the market
(with possible loss of money for them, or for the bank itself), and the
failure of the engine software may prevent the car to switch on, or even
damage the engine. In any case, apart from the potential economic loss,
none of the two malfunctions of such applications constitutes a danger
for anyone. All the other systems are instead examples of safety-critical
applications, since having them not respecting their deadlines may cause
people to get injured, or even worse to lose their lives, as in the case of a
lately reported fire, the control system of a plane failing to react in time,
or the meltdown of a nuclear power plant. In these cases, it is essential
to guarantee not only the functional correctness of the software, but also
the timing correctness, i.e. the ability for the tasks to meet all the timing
deadlines.

1.2 The WCET problem

The estimation of the Worst-Case Execution Time (WCET) is essential
for hard real-time systems, in which the timing constraints of the tasks
must be always satisfied. Failing to meet these constraints leads the
system to behave improperly, with possible unacceptable consequences,
especially in the case of mission-critical or safety-critical applications,
as previously described. Furthermore, accurate WCET estimations can
introduce improvements also at the level of run-time resource management.
Some policies of resource allocation, in fact, may gain advantage from
the possibility of knowing in advance the amount of computing resources
needed to be reserved to a task which is ready to be executed, in order to
guarantee its completion within a given time [26]. This would implicitly
minimize the resource over-provisioning, and thus costs, maximizing at the
same time the executable workload. For these reasons, a timing analysis
requires the estimated WCET value to be greater or equal than the real
WCET. Also, this estimation must be as tight as possible to the real WCET,
in order to minimize the amount of resources assigned to a specific task
without necessity.

3

Chapter 1. Introduction

1.2.1 The hardware complexity

During the past two decades, the hardware platforms used in real-time
systems have become increasingly more complex due to both the increas-
ing computational power demand and, at the same time, the limitations in
single-core power and performance. In fact, the performance limit in the
development of single-core CPUs has been reached, making it pointless to
focus on further development of the single-core computational power, and
thus forcing the employment of multi-core solutions in the vast majority
of the applications. One of the main reasons why this happened was the
end of Moore’s law validity. Unlike the name would suggest, it is not a
law of physics, but an empirical observation based on the experience of
Gordon Moore, the co-founder of Fairchild Semiconductor and Intel, who
in 1965 forecasted the number of transistors in a dense integrated circuit
to double every year. His prediction was valid for 10 years, and in 1975 it
was revised by Moore himself, who expected the number to double every
two years from that point on. The new law has applied until 2010, when
an industry-wide slow down below the predicted rate was noticed.

Another cause of the reaching of the limit in the single-core perfor-
mance was the breakdown of Dennard scaling, a scaling law formulated
in 1974 in [6], a paper whose Robert H. Dennard was one of the authors.
It stated that, in an electric circuit, power density is constant, thus energy
consumption grows proportionally with the area. According to his calcu-
lations, dimensions of the transistors could have been decreased by 30%
every technology generation (thus reducing also delays and voltage by the
same percentage, allowing a 40% increase in operating frequency, while
reducing power by 50%), resulting in a 50% reduction in the total area.
Summing up, an evolution doubling the density of the transistors brings
to a speedup of 40%, while keeping power consumption unchanged. This
law was valid until about 2006, when improvements in the technology
began to result in lower frequency increase than expected and, thus, an
increasing power density.

Nowadays, architectures also include advanced optimization tech-
niques such as pipelines, branch prediction, out-of-order execution, caches,
writebuffers, scratchpads, and multiple levels of memory hierarchy. Adding
complexity makes it harder to create reliable models of the processors.
This problem is even amplified when considering previously mentioned

4

1.3. Timing analyses techniques

multi-core and many-core platforms, with different tasks running at the
same time and producing interferences which are very hard to predict and
analyse. Furthermore, most of the acceleration features are Commercial
Off The Shelf (COTS), designed to optimize the average-case rather than
the worst-case behaviour, and can result in significant variability in execu-
tion times. They are very common in non-critical industrial world (unless
high customisation level, requiring ad-hoc components, is needed), since
they allow to reduce development costs and require very low maintenance
effort, usually being already very well tested by the producer, who can
base on feedbacks and issues reported by all the customers.

The increasing software and hardware complexity makes it difficult to
define measurement protocols able to ensure that the worst-case path(s)
through the code are visited, and that the worst-case hardware states are
taken into account during the analysis. For all these reasons, traditional
methodologies of static WCET analyses fail to obtain safe and tight WCET
estimations when dealing with modern platforms, in a sustainable amount
of time, since the required computational complexity would be unfea-
sible, or many approximations should be introduced, that generates a
very pessimistic WCET. Consequently, researchers are searching for new
techniques to overcome these issues.

1.3 Timing analyses techniques

1.3.1 Traditional techniques

Traditional analyses techniques aim at finding a single value of the WCET,
i.e. a value upper-bounding all execution times obtainable with every
possible input and hardware state. As shown by Abella et al. [1], these
methods can be divided into three categories:

• Static Deterministic Timing Analyses (SDTA): WCET estimation
is obtained by just analysing the code, without actually executing
it. First, a control flow analysis is performed to find out which are
the feasible paths and the bounds of the loops in the program. Then,
the focus moves to the hardware architecture, in order to calculate
an over-approximation of the previously discovered paths by taking
into account factors such as caches, pipelines, and memory structure.
Finally, integer linear programming is employed to combine the

5

Chapter 1. Introduction

results of the first two steps. Of course, the main challenge for this
kind of analysis to provide sound outcome is to have very accurate
estimations both on hardware and software sides, which becomes
more and more tricky with the growth of the complexity of the code
and architecture. For instance, it may not be easy to determine the
content of a cache at a given point (and thus the rate of hits and
misses) when input values show some kind of correlation;

• Measurement-Based Deterministic Timing Analyses (MBDTA):
the execution time of the task is measured by testing different con-
figurations, both in terms of input and initial hardware state. The
highest obtained time can then be taken as lower bound for WCET
computation, or directly used for the calculation of the WCET itself
by adding some overhead, whose value can be fixed, or better a
fraction of the actual measured time. Of course, for the estimation
to be more accurate, inputs leading to the highest execution times
should be included in the test vector, as well as the worst hardware
states. Anyway, finding out the configurations making the highest
times occur becomes more and more difficult with the increasing
of the complexity of both the programs and the hardware they are
tested on;

• Hybrid Deterministic Timing Analyses (HDTA): it is the tech-
nique in which the previous two are combined, trying to solve the
weaknesses of both of them. In this case, time is measured only on
sub-paths of the program, that makes finding the input leading to the
worst-case path not necessary anymore. Then results are combined
through static analysis techniques, that can now be considered only
for what concerns control flow analysis, while studies about hard-
ware structure can be avoided (since execution times of the different
parts of the program have already been empirically measured), which
is the biggest advantage of this method. The issue, instead, is that
the execution time of each sub-task is very likely to be influenced
by the execution history, and thus by previously executed sub-tasks,
which are not considered in this method.

6

1.3. Timing analyses techniques

1.3.2 Probabilistic timing analysis

Probabilistic timing analyses differ from traditional approaches in the fact
that they move the characterisation of the timing behaviour of a program
from taking into account just a single run of the program itself, to the
consideration of a repeating sequence of many runs, referred to as a
scenario, thus changing the results from a scalar value –the WCET– to a
probability distribution –the probabilistic-WCET distribution (pWCET).
While traditional timing analysis methods aim to tightly upper bound the
execution time that could occur for a single run of a program out of all
possible runs, probabilistic timing analysis methods aim to tightly upper
bound the distribution of execution times that could potentially occur for
some scenario of operation, out of all possible scenarios of operation. The
techniques of analysis belonging to this category are:

• Static Probabilistic Timing Analysis (SPTA): as it happened in
SDTA, the execution of the program on the actual hardware or a simu-
lator is not directly measured. The difference is that in SPTA random
phenomena in the environment (such as cache state, rate of correctly
predicted branches, or input correlation) are modelled through prob-
ability distributions. Thus, the result of the analysis is an upper
bound of the pWCET, and not just a single value upper-bounding
the WCET. Anyway, the problems with this method are similar to
the corresponding deterministic one, since a poor approximations
of very complex dynamics can lead to a large over-estimation of
the actual pWCET. This is the reason why this method is not very
appealing for current research;

• Measurement-Based Probabilistic Timing Analysis (MBPTA): as
in the corresponding deterministic technique, programs are actually
run to measure their execution times. This can be done through
two different approaches: per-path, in which the observations are
separated according to the path traversed in the single execution,
and per-program, where instead all the observations are grouped
together to have a direct estimation of the pWCET. In both cases,
for the estimation to be possible, collected results must pass proper
statistical tests. From this perspective, the first method can give
some advantage, since measurements made with the per-program

7

Chapter 1. Introduction

approach may fail the tests in case different paths lead to very dif-
ferent distributions, while in the per-path approach it happens just
in case different inputs determine much different behaviour through
the same path, which is less likely. Furthermore, the issue of repre-
sentativity (i.e. test input must reflect the one that will actually occur
during operation) is simpler when employing the per-path approach
rather than per-program. Anyway, in the first case, the frequency at
which the different paths are exercised has a lot of impact on the final
pWCET estimate, and therefore it must be precisely estimated: for
instance, visiting a path with high execution times more often during
analysis than what will happen during the actual usage of the applica-
tion will result in a pWCET over-estimate. Another disadvantage of
the per-path approach is that by splitting measurements information
about ordering and dependencies between consecutive executions,
which may be very important when computing pWCET, is lost. In
any case, the per-program approach is the one that is usually chosen,
since we do not have to divide outcomes according to the path they
derive from, making in this way the analysis more practical;

• Hybrid Probabilistic Timing Analysis (HPTA): it is a mixed ap-
proach, combining the techniques belonging to the previous two.

1.4 Motivation and contribution of this thesis

1.4.1 Motivation

In the previous paragraphs, we showed how the problem of having a very
accurate estimate of the WCET of a real-time application in mission-
critical and safety-critical environments created the need for alternative
WCET estimation techniques for modern systems. Probabilistic real-time,
based on a so-called pWCET distribution, is a promising solution. The
pWCET upper bounds all possible scenarios of operation, and not just a
single value like the WCET. In order to obtain good confidence in pWCET
estimations, probabilistic methods are used. Such tools require some
hypotheses to be satisfied and verified via statistical procedures. Current
state-of-the-art benchmarks have been used in previous works, but not
appropriately analysed. For this reason, creating a suite of statistically

8

1.4. Motivation and contribution of this thesis

characterized benchmarks would be beneficial for the scientific community,
in particular for pWCET analyses. A common and stable benchmark suite
allows the comparisons between the different methods and architectures.
The lack of such a collection, carefully studied for probabilistic purposes,
is the motivation that inspired this thesis.

1.4.2 Contribution

The work of this thesis begins by changing the structure (but not the be-
haviour) of already existing programs, taken from some of the available
benchmark suites for WCET, to be able to execute them under different
execution conditions and inputs. We use the obtained results to perform
statistical analyses, in particular related to the probabilistic predictability
index, a value stating whether a certain program is suitable for probabilistic
timing analysis. After the analysis of the current benchmarks, we modify
them and create new benchmarks from scratch, in order to improve the
satisfaction of the statistical hypotheses needed by pWCET approaches,
and better represent real applications and situations. The experiments,
executed on different architectures and by using different instruments for
time measurements, allow us to make several considerations and compar-
isons about the different setups, which, in turn, lead to propose advice and
best-practices for the use of probabilistic real-time in future works.

1.4.3 Structure

After this introduction, in which an overview of Embedded and Real-Time
Systems is given, together with an explanation of the WCET problem
and of the different timing analysis techniques, Chapter 2 presents the
background knowledge which is needed to fully understand the content of
this thesis, with a special focus on Probabilistic Timing Analysis. Chapter
3 is dedicated to the State of the Art: the first part is about scientifical
papers on the development of MBPTA, while the second shows the char-
acteristics of the available benchmark suites for WCET. Then, in Chapter
4, we move to the description of the experimental setup, including the
different architectures and time-measuring instruments employed in the
analysis. After that, we begin to show the experimental results we obtained
with an STM32 Nucleo Board: Chapter 5 contains the results related to
the original benchmarks, while Chapter 6 presents the results obtained

9

Chapter 1. Introduction

from the modified benchmarks and the brand new ones. In Chapter 7, code
executed in the previous two chapters is re-run on a Raspberry PI, with the
standard Linux version Raspberry Pi OS 1.4 and the PREEMPT_RT Patch
installed, and related results are shown. Finally, in Chapter 8, conclusions
and possible future works related to this thesis are presented.

10

CHAPTER2
Background knowledge

In this chapter, some background knowledge, needed to fully understand
the content of this thesis, is provided. After introducing the concept of
pWCET, we explain how this kind of distribution can be used, and why the
application of the Extreme Value Theory is fundamental to reach high levels
of accuracy. This last concept is deeply analysed, through a description of
the two distributions that can be used to fit data, the procedure needed, and
the hypotheses that must be checked in order to apply the algorithm. Then,
we provide an overview of how statistical tests are performed, before
introducing PPI, an index summarizing the outcomes of the different
statistical tests.

2.1 Probabilistic Real-Time computing

The classification of timing analyses has been presented in Section 1.3.
Among them, the probabilistic approaches are the Static Probabilistic
Timing Analysis (SPTA) and the Measurement-Based Probabilistic Timing
Analysis (MBPTA).

11

Chapter 2. Background knowledge

Probabilistic real-time, and in particular Measurement-Based Proba-
bilistic Timing Analysis (MBPTA), has been introduced since the begin-
ning of the 2000s. This technique can become very useful in the industrial
world, because it enables the WCET computation with little effort and in-
dependently from the complexity of the hardware. This method estimates
a statistical distribution of the WCET (pWCET) directly from the execu-
tion time observations. In this chapter, we will see how a very accurate
estimate of the pWCET is needed, and how it can be used, together with
an overview about Extreme Value Theory (EVT), the way it is applied to
the pWCET problem, and software and hardware related issues that may
cause its usage to not be possible.

2.1.1 The pWCET distribution

A pWCET distribution is defined as the tightest upper bound of the execu-
tion time distribution of a program for every feasible scenario of operation,
which is an infinite sequence of input parameters and hardware internal
states that may occur when repeatedly execute the program itself. It is
convenient to write the pWCET distribution with its complementary cu-
mulative distribution function:

p = 1− F (WCET) = P (X > WCET),

where X is the random variable representing the program execution time,
p the probability of observing execution times greater than WCET , which
is a constant, and F (·) the cumulative distribution function (cdf). In fact,
having this cdf, it is possible to make two kinds of operations:

1. Fixing a value for WCET and compute the probability p of observ-
ing an execution time longer than this value;

2. Fixing a value for the probability p and compute the value WCET

for which the probability p represents the probability of observing a
longer execution time.

The goal of any timing analysis, in particular for safety-critical systems,
is to obtain a safe and accurate estimation of the pWCET, in order to
guarantee a sufficiently low probability of failure (e.g. 10−9) able to
meet the failure requirements. However, for such low probability values,

12

2.1. Probabilistic Real-Time computing

we need to collect a large number of timing measurements to achieve
a sufficient level of confidence, which is clearly not practical. That is
why we can exploit the Extreme Value Theory (EVT), which has been
developed to study the tails of the distributions and so it is positioned at
the opposite to the famous central limit theorem, which instead focuses on
the behaviour of the distribution around its mean value.

2.1.2 The Extreme Value Theory

Given a sequence of independent and identically distributed (i.i.d.) random
variables X1, X2, ..., Xn, the EVT provides the limit distribution at the
extremes, i.e. the max(X1, X2, ..., Xn) or min(X1, X2, ..., Xn). In the
scenario we are considering in this thesis, X1, X2, ..., Xn is a sequence of
execution times of a given program. Consequently, since for the WCET
estimation we are interested in the maximum value, we can formalize the
probability of not observing an execution time longer than a certain value
x as follows:

P (max(X1, X2, ..., Xn) ≤ x) = P (X1 ≤ x,X2 ≤ x, ..., Xn ≤ x)
i.i.d.
= P (X1 ≤ x)P (X2 ≤ x) · · ·P (Xn ≤ x) = F n(x),

where, as already mentioned above, F n(x) is the cumulative distribu-
tion function of X1, X2, ..., Xn. The most important result of the EVT is
that there exists a sequence an ∈ R and a sequence bn such that:

lim
n→∞

F n(bn + anx) = G(x)

where G(x) is the cdf of a statistical distribution called extreme value
distribution. The interesting result on this formula is the Fisher-Tippett-
Gnedenko theorem, which says that if the previous limit is non-degenerating,
G(x) is a cdf of well-known distributions, independently on the form of
F (x). The original Fisher-Tippett-Gnedenko theorem provided three possi-
ble forms forG(x): Weibull, Frechet, and Gumbell distributions. However,
it has been later proved in [9] and [13] that they can be generalized in the

13

Chapter 2. Background knowledge

Generalized Extreme Value Distribution (GEVD) that has the follow-
ing form:

G(x) =

e
−ex−µ

σ ξ = 0

e−[1+ξ(
x−µ
σ

)]−1/ξ
ξ 6= 0

Another, but asymptotically equivalent, formulation for G(x) is the Gen-
eralized Pareto Distribution (GPD) having the following form:

G(x) =

1− ex−µσ ξ = 0

1− [1 + ξ(x−µ
σ

)]−1/ξ ξ 6= 0

Both distributions have three parameters: the location µ, the scale σ, and
the shape ξ. While the first two parameters are a similar concept to the
average and standard deviation, the third parameter has an important role
when considering pWCET distributions. In fact, depending on the sign of
this parameter, the shape of the tail of the distribution significantly changes.
Talking about Generalized Extreme Value Distribution, if ξ > 0 the GEVD
converges to the Frechet distribution, if ξ < 0 it converges to the Weibull
distribution, otherwise if ξ → 0 it converges to the Gumbel distribution.
Instead, considering the Generalized Pareto Distribution if ξ = 0 the GPD
converges to the exponential distribution, while if ξ > 0 and µ = σ

ξ
it

converges to the Pareto distribution. Two different methods exist to fit
these distributions. The first is called Block-Maxima (BM) and can be
used to fit GEVD: the set of observations is divided into blocks of size B
(which is the parameter that must be correctly tuned here) and the max-
imum value in each block is taken. Formally, the following filter is applied:

Yi = max(XB·(i−i), XB·(i−i)+1, ..., XB·i)

Thus, the sequence Y1, Y2, ..., Ydn/Be represents the maxima of the blocks.
The second, instead, is called Peak-over-Threshold (PoT) and it is used
to fit GPD and, as the name suggests, it is a simple threshold filter:

Y = {Xi > u}

14

2.1. Probabilistic Real-Time computing

where u (the parameter that has to be set here) is a predefined threshold.
So, the sequence Y1, Y2, ..., Ym represents those measurements that are
greater than u, while all the values below the threshold u are discarded.
After applying one of the two methods, any traditional parameter estima-
tion algorithm can be used to fit the corresponding distribution (e.g. the
Maximum Likelihood Estimator or Probabilistic Weighted Moments).

Anyway, the condition for EVT to be applied is that the sample of
execution time observations passes appropriate statistical tests. In that
case, we can estimate the probability distribution of the extreme values of
the execution time traces of the program.

2.1.3 The EVT hypotheses

Early studies required the sample of observations to be independent and
identically distributed (i.e. they are mutually independent and each random
variable has the same probability distribution as the others). This condition
is very difficult to obtain in this context, since a processor with a standard
cache would not be able to fulfil this requirement, having subsequent
executions of the same task affected by the status of the cache. However,
later work by Leadbetter [18] showed that the hypotheses can be relaxed,
while maintaining the validity of EVT results if the following properties
are proved to be valid:

• Stationarity: a sequence of random variables (i.e. a series of ob-
servations) is stationary if the joint probability distribution does not
change when shifted in time, and hence the mean and variance do
not change over time. The most used test to check it is the KPSS
(Kwiatkowsky, Phillips, Schmidt, and Shin) test;

• Short-term independence: it requires the elements of the sequence
of execution times not to present a statistical dependency with the
near other elements. It can be checked through BDS (Brock, Dechert,
Scheinkman and LeBaron) test;

• Long-term independence: it requires the job execution time not
to present seasonality, which means there is no long periodicity.
The Hurst Exponent (H) is the traditional index used to measure

15

Chapter 2. Background knowledge

the long-term memory of a time series in financial applications.
However, performing a statistical test on H is nontrivial and it does
not exist a well-assessed test. Thus, R/S statistic equation, which
can be directly used as a test, is employed to compute the Hurst
index.

Besides the previous hypotheses, other two important hypotheses have to
be verified before exploiting EVT for probabilistic real-time:

• Maximum Domain of Attraction (MDA): this requirement does
not have a direct correlation with hardware or software features,
rather it is a statistical property. From previous statistical works, it
is known that most of all continuous distributions satisfy this hy-
pothesis, if the measurements are correctly acquired. During the
real measurements of our system, we clearly need to discretize the
elapsed time. However, if the time sampling has a sufficient resolu-
tion (i.e. sufficiently high frequency of sampling), this hypothesis
can be considered valid with a good degree of confidence. Any-
way, to check the validity of MDA hypothesis, a Goodness-of-Fit
statistical test (GoF) is usually performed a posteriori of the pWCET
analysis. This test helps also to identify any error in the estima-
tion phase, because it is able to detect the discrepancies between
the estimated pWCET distribution and data that have actually been
measured;

• Representativity: this is a fundamental issue in applying statistical
methods (i.e. MBPTA) to estimate the pWCET distribution of a
program. The problem is that the results obtained are only valid for
those scenarios of operation for which the sample of observations
used in the analysis is representative. So, it is essential that the
measurement protocol covers all the future scenarios of operation
that could occur in practice. Usually, wide coverage of the different
input states, hardware states, and the worst-case path(s) through the
program is required. A simple experimental example shows how the
estimated pWCET distribution produced depends on the distribution
of input values, and hence that if the input data distribution used for
analysis does not match the one occurring during the operation of
the system, then the results obtained may not be precise. Applying

16

2.1. Probabilistic Real-Time computing

uniformly distributed input values during analysis may result in poor
estimates, as well.

In this thesis, we do not take into account these last two hypotheses,
because the former is often true and the latter is dependent on the appli-
cation code itself. We instead focus on the i.i.d. hypothesis and the three
conditions to satisfy when i.i.d. is relaxed.

2.1.4 Application of EVT to pWCET problem

The whole pWCET estimation process can be summarized in the following
steps:

1. acquire the time measurements X1, X2, ..., Xn;

2. check the previously explained hypotheses on inputs;

3. apply BM or PoT filtering to the time measurements to obtain a
new set of execution times Y1, Y2, ..., Yn representing the WCET
behaviour;

4. run the estimator (e.g. MLE or PWM) to obtain the pWCET distri-
bution;

5. compare the pWCET distribution with the original samples thanks
to a GoF test;

6. compute the WCET given the desired violation probability by using
the cdf of the estimated pWCET, or vice versa.

The check performed at point 2 does not always return positive out-
comes (i.e. not all the necessary conditions are matched). This could
happen due to issues related both to the software or hardware parts of the
environment. Regarding the software side, the inputs’ correlation is one
of the main causes that could affect the applicability of this technique. It
happens when the input values depend on previous ones, but also when
they are influenced by previous outputs, making the program show some
kind of history dependence. The problem may be reduced by changing the
way test input is created, but still keeping in mind that the representativity
condition must always be satisfied, otherwise the analysis would not be
useful to find out what actually happens in the production environment.

17

Chapter 2. Background knowledge

Other issues may be given by the structure of the code itself: global vari-
ables may store information deriving from previous executions and having
an impact on the following observations, plus, different paths in the pro-
gram may result in different execution time distributions. In this second
case, employing per-path approach instead of per-program one could re-
sult in an improvement. On the hardware side, instead, the main obstacle
for independency conditions to be satisfied is cache content, which may
store data that can be re-used in the following executions, determining
lower completion times. In this case, proposed solutions are the complete
reset of the cache before each execution, or the use of time-randomised
hardware (such as random replacement caches), even if it has been proved
that the latter is neither sufficient nor necessary condition for the EVT to
be applied.

2.2 Statistical tests

A statistical test is a method of statistical inference that aims at verifying a
statistical hypothesis, which is a hypothesis that can be verified through
the observations of a model. Such observations can be represented by
a set of random variables. The first step, when applying this method, is
choosing the Null Hypothesis (H0), whose truthfulness is not sure and
needs to be checked, and the Alternative Hypothesis (H1), which is the
one that can be taken as valid in case the first one is not. The statistical test
decides, based on the realization of the observations’ random variables, if
H0 should be rejected in favour of H1, or not. The result of a statistical
test is itself a random variable, thus it may produce incorrect results. There
might be cases in which it states that the null hypothesis must be rejected
even if it is actually true. This is often referred to as Error of the I type,
and its frequency can be tuned by modifying the significance level α of
the test, which determines how often this kind of error is going to happen.
Typical values for the significance level are 1%, 5%, and 10% and can be
selected by the experimenter. Tuning the α parameter also has an impact
on another kind of error, called Error of the II type, which happens when
the alternative hypothesis is wrongly accepted. The frequency of this
error increases by decreasing the significance level. After defining the two
hypotheses and the α parameter, the next step is choosing an appropriate
test suitable for the considered case. Then, observations of the model must

18

2.3. Probabilistic Predictability Index

be performed, and from them tobs, the observed value of the statistic T , can
be computed. It allows calculating the probability to have an observation
at least as extreme as the observed one, which goes under the name of
p-value. Finally, this value can be compared to the level of significance, to
determine the outcome of the test. In particular:

• if p-value ≥ α, then there is not enough evidence to be able to reject
the null hypothesis H0;

• if p-value < α, then we can say the null hypothesis is rejected at the
chosen level of significance, in favour of the alternative one H1.

An alternative but equivalent method, the one that will be used in this
thesis, splits the possible values of the statistic T into those for which the
null hypothesis is rejected (the critical region) and those for which it is
not. The critical value, dividing the two regions, is chosen according to
the distribution of the test statistic under the null hypothesis. In particular,
the probability of the critical region is equal to α. Whether to accept the
null hypothesis H0 or not is chosen according to the observed statistic tobs:

• if tobs /∈ critical region: H0 cannot be rejected;

• if tobs ∈ critical region: H0 is rejected;

2.3 Probabilistic Predictability Index

The different output values of the three previously described statistic tests
(Section 2.1.3) do not allow to understand in a clear and immediate way
whether the input time series was time predictable or not, nor if EVT can
be applied. A unified and thus more quickly readable index providing
a numerical value that expresses the fulfilment of the EVT statistical
hypotheses has been introduced by Reghenzani et al. [29]. This index is
called Probabilistic Predictability Index or PPI. It is meant to merge the
three tests, while maintaining their statistical properties, so that it can be
used as a hypothesis test as well. The PPI is defined over the continuous
range (0, 1), and PPI values near 0 state there is strong evidence that the
time series is not analysable, vice versa for PPI values near 1 the time
series is very likely satisfying EVT hypotheses.

19

Chapter 2. Background knowledge

2.3.1 PPI construction

In order to merge the three statistics, a common domain D = (0; 1), that is
the PPI domain, is defined. Taking into account the desired meaning for
PPI and the ranges of the three statistics, the following functions have to
be found:

fKPSS : (0; +∞)→ D

fBDS : (−∞; +∞)→ D

fR/S : (0; +∞)→ D

Under the following constraints:

lim
x→+∞

fKPSS = 0 lim
x→0

fKPSS = 1

lim
x→±∞

fBDS = 0 lim
x→0

fBDS = 1

lim
x→+∞

fR/S = 0 lim
x→0

fR/S = 1

Moreover, the rejection property of the test statistics against the critical
value has to be maintained. In order to meet this requirement, the fKPSS ,
fBDS , fR/S transformations have to be continuous, positive, and monotonic
functions. The following formulae were proved to satisfy all previous
properties:

fKPSS(x) = e−KKPSS·x

fBDS(x) = e−KBDS·|x|

fR/S(x) = e−KR/S·x

Then, KKPSS , KBDS , KR/S have to be selected in order to be compli-
ant with the previous constraints and to get the same critical value for each
test. The first value KKPSS = 1

4
is assigned empirically, then the critical

value for KPSS test can be computed as C∗KPSS = e−
1
4
CKPSS . Since the

same critical value for the other two tests is desired, their constants have
to be computed as follows:

20

2.3. Probabilistic Predictability Index

kBDS = − logC∗KPSS
|CBDS|

kR/S = − logC∗KPSS
CR/S

obtaining:

CPPI := C∗i = fi(Ci) ∀i ∈ {KPSS,BDS,K/S}

Of course, assigning a different value to kKPSS would produce different
statistic PPI, for what concerns absolute values. However, the statistical
meaning would not be modified, because the critical values would change
in a consistent manner. Choosing the value of kKPSS = 1

4
, the obtained

CPPI is 0.89 for α = 0.05.
Having the three statistics uniformed in the (0; 1) range and with the

same critical value, it is finally possible to merge them into a unique index,
by following these conservative listed criteria:

• if all test statistics are higher than the critical value, the PPI must be
higher than the critical value as well;

• if any of the three test statistics is lower than the critical value, the
PPI must be lower than the critical value;

• if more than one test statistics are lower than the critical value, the
PPI must be lower than the minimum statistic.

This approach allows us to state that if and only if at least one of the
three hypotheses is violated, then PPI will be lower than the critical value
and thus the null hypothesis rejected. So, the following transformation is
applied:

PPI :=

min
∀i
fi(Si) ·

∏
i∈v∗

[1− (CPPI − fi(Si))] v 6= ∅
1

3

∑
∀i
fi(Si) v = ∅

where v = {i | fi(Si) < CPPI} and v∗ = {v \ argmin∀i fi(Si)} are re-
spectively the violation set and the violation set, excluding the minimum.

21

Chapter 2. Background knowledge

So, if no violation occurs in the three tests, PPI is computed as the
average of the three values (which means they all have the same weight),
which is greater than CPPI . Otherwise, the PPI is equal to the minimum
statistic potentially multiplied by other statistics that violate CPPI , leading
to a PPI value lower than CPPI . Summarizing, it is possible to compute
the value of PPI through the previous equation and then the following null
hypothesis (H0) has to be rejected in favour of the alternative one (H1)
when PPI < CPPI . The statistical testing hypotheses scheme is then:

H0: the time trace verifies the EVT hypotheses

H1: at least one EVT hypothesis is violated

22

CHAPTER3
State of the Art

While studies with traditional techniques on WCET have been researched
for a long time, the branch of probabilistic timing analyses began to spread
only in recent years. In this chapter we go through its development, starting
from the first scientific work, and showing the evolution of the estimation
procedure, both in terms of how to verify the EVT hypotheses, and how
to perform the statistical tests to check them. After that, we move to the
description of frequently used benchmark suites, which are very important
since they form a common basis from which we start our analysis, and
allow us to make comparisons between the results of different methods.

3.1 Measurement Based Probabilistic Timing Analyses

The use of EVT to estimate the maxima of a distribution of a series of
execution times of a program was introduced in 2000 by Burns and Edgar
[4]. The reason was the increasing complexity of hardware architectures
that makes more and more complex and computationally expensive the
estimation of the WCET using the traditional techniques, as we also

23

Chapter 3. State of the Art

described in Section 1.2.1. The following year, the statistical estimation of
the pWCET distribution was proposed by Edgar and Burns [7]. This work
was proved to contain some issues: first of all, they were using a Gumbel
distribution to directly fit the observations, instead, it should be used on
maxima of subsets of execution times, as pointed out by Hansen et al. [17].
Furthermore, χ-squared test is used to fit the scale and location parameters
of the Gumbel distribution, but this test is not meant for this purpose,
as underlined by Cucu-Grosjean et al. [5]. These issues were solved in
2009 by Hansen et al. [17], by applying BM method (see Section 2.1.2),
starting from a block size of 100 and tuning the parameters until the χ-
squared test proved sufficiently high goodness of fit. This method provided
much better results than taking the highest measured execution time as
WCET, however, some cases in which the estimation was too optimistic
occurred. In 2010, other issues were found out to be solved in order to
have better estimation by Griffin and Burns [14]. These included the fact
that Gumbel distribution (which is continuous), was used on execution
times that may had large discrete steps, and also the requirement of the
measurements to be statistically independent and identically distributed
(i.i.d.). The independence assumption can be broken by factors such
as caches (storing information from previous executions that can be re-
used and allows to save some time), or input which is dependent on the
previous output (and thus creating some kind of historical dependence in
the trace), while different paths in the program may determine different
behaviour of the program itself, this causing issues with the identical
distribution constraint. In 2012, Cucu-Grosjean et al. [5] introduced a
new method for applying EVT to estimate pWCET, by exploiting end-to-
end execution time measurements and involving three different kinds of
tests: two sample Kolmogorov-Simirnov test, and Runs test to verify i.i.d.
hypothesis and Exponential Tail test to check whether the distribution of
the maxima (obtained through BM algorithm even in this case) fits Gumbel
distribution. Another key point discussed in this paper is how to keep
i.i.d. requirement valid even in multi-path programs. Two solutions were
proposed: the first is to randomize input selection and keep the sequential
order of the measurements, the second is to test all the possible inputs and
then perform random sampling without replacement when dividing them
into blocks.

24

3.1. Measurement Based Probabilistic Timing Analyses

From this point on, in the literature, the focus was trying to relax
the i.i.d. hypothesis, thus making the cases in which observations show
dependencies between themselves easier to analyse. Such cases are very
likely to happen. In this regard, the first work was by Santinelli et al. [34] in
2014, where weaker hypotheses are checked, such as stationarity, verified
by considering autocorrelation through lag plots, and extremal dependence,
which is studied with extremograms, that show whether the extremes are
clustered or distributed throughout the whole time series. Furthermore,
the effects of changing the size of the blocks in BM procedure and the
threshold in PoT are investigated, finding out high sensitivity to these
two parameters and performance degradation, when block size or the
threshold is increased too much. In the same year, Berezovskyi et al. [3]
provide a critic about the Runs test previously used by Cucu-Grosjean et
al. [5], suggesting to replace it with tests based on auto-regression and
autocorrelation. Lag plots (for autocorrelation, together with Ljung-Box
test) and extremograms (for extreme values dependence) are still used; in
addition, autocorrelation tests combined with the notion of stationarity are
performed to verify statistical independence, and stationarity is determined
by an autoregressive model. In 2016, Guet et al. [15] introduced a logical
work-flow that requires the verification of the following properties: (I)
stationarity, (II) short-range dependence, (III) local independence of the
peaks, and (IV) that the empirical peaks over the threshold follow a GPD.
Kwiatowski-Philips-Schmit-Shin (KPSS) test is used to determine the
stationarity, Brock-Dechert-Scheinkman (BDS) test to evaluate the short-
range dependence, and Extreme Index is used to determine whether the
peaks can be considered independent.

Another crucial point is representativity, i.e. the obtained results are
valid only for those scenarios which are represented by the input used
for the analysis. In 2016, Lima et al. [22] explained that since the peaks’
distribution is highly related to how often each input occurs, there may be
more than one distribution describing the behaviour of the program; thus,
they introduced the concept of weak pWCET, which is related only to the
distribution of the input used for the analysis. Furthermore, it was also
pointed out that GEV distribution should be used to fit data, instead of a
more specific one (e.g. Gumbel), and various examples in which peaks
belong to all the three classes (reversed Weibull, Gumbel, and Frechet), to-

25

Chapter 3. State of the Art

gether with cases in which none of them can be used are provided. Finally,
the authors presented evidence that time randomization is not necessary,
nor sufficient for the EVT to be applied, similarly to what is claimed by
Lima and Bate [12]. In this paper, the authors introduced Indirect Esti-
mation in Statistical Time Analysis (IESTA) method, in which a random
component (e.g. a value taken from a normal distribution) is added to the
time measurements, increasing the probability that EVT can be applied
without introducing too much pessimism in pWCET estimation. Issue of
representativity, together with the one of reproducibility, is also discussed
by Maxim et al. [24]. For what concerns representativity, they claimed
there must exist a certain value k for which taking any number of observa-
tions greater than this value guarantees that the obtained distribution would
finally converge to a sufficiently close approximation of the actual pWCET.
Instead, reproducibility means that two different traces obtained by starting
from the same initial conditions will lead to the same pWCET distribution,
or at least to two close ones. In 2017, Santinelli and Guo [33] proposed
a new framework, in which each task is represented by a collection of
pWCETs (each one related to a different input distribution) and not by
just a single one. Enumerating all the possible environmental conditions
is a complex problem, anyway, some of them can be eliminated due to
the dominance relationship, while incomparable ones can be summarized
by a single pWCET upper-bounding all of them. The authors suggested
using this kind of approach on mixed-criticality systems. In the same
year, Abella et al. [2] introduced a new way to select the parameters of
PoT and BM algorithms, so that enough values from the actual tail of the
distribution are passed to EVT, including only a few of them from the non-
tail part of the distribution. The method is based on the assumption that
real-time systems have finite execution times, so heavy-tailed distributions
can be excluded, and exponential-tailed distributions (i.e. Gumbel) can
be used as upper bound of the light-tailed ones, since it is acceptable to
have slightly pessimistic pWCET, while an optimistic one is not allowed.
So, plots showing how the value of the CV (coefficient of variation, i.e.
standard deviation over mean) changes according to the different tuning
parameters are employed, with the aim of finding a configuration in which
the exponential tail hypothesis cannot be rejected, and the value of the
CV is close to 1 (also needed to have an exponential distribution). This

26

3.2. WCET benchmarks

method was, however, proved to be optimistic, and consequently unsafe,
under certain circumstances [27].

Up to this point, most of the research papers assumed EVT hypotheses
as always satisfied, or at most based their verification on strategies based
on expert knowledge, that cannot guarantee high levels of accuracy. In
this regard, recent researches, such as [30] and [29], have focused on
the usage of statistical tests to correctly verify the hypotheses. In these
works, PPI, an index showing at which level hypotheses are satisfied
in terms of numerical values (and thus in a more objective way), was
introduced. Of course, also statistical tests are subject to errors, this
is why in [31] their degree of confidence was studied, with particular
focus on the minimum number of input samples (that until then was
usually empirically determined) required to reach sufficiently high level
of significance. Furthermore, in [32], the relationship between statistical
tests and the estimators’ accuracy was studied, and techniques to study
and cope with uncertainties were proposed.

Embedded systems is not the only field in which pWCET can be
employed. In this recent article [11], its applicability to high-performance
computing (HPC) was inspected. Authors explained than in this case
there are further issues that must be faced, since considered systems have
higher complexity (thus it is difficult to have full coverage of execution
conditions guaranteed), and multi-threaded applications are run on them.
However, they prove how techniques based on MBPTA and software
randomization can provide tight pWCET estimates. Moreover, European
RECIPE project [10] is aiming at improving runtime resource management
techniques, to increase predictability in terms of reliability and timing,
while ensuring full exploitation of available resources.

3.2 WCET benchmarks

Finding the WCET of real-time software is crucial when developing and
verifying real-time systems. These bounds must be safe and, preferably,
tight (i.e. as close to the actual WCET as possible) and WCET analysis
attempts to deliver such a bound. Several WCET analysis tools have
emerged in recent years and, of course, it would be very important to
find out which of them provide the best results. However, a comparison
between these tools, and the associated methods and algorithms, requires

27

Chapter 3. State of the Art

common sets of benchmarks. The typical evaluation metric is the accuracy
of the WCET estimate, but other properties such as performance (i.e. scal-
ability of the approach) and general applicability (i.e. ability to handle all
code constructs found in real-time systems) also have great importance. In
summary, it is very useful to have easily available, deeply tested, and well
documented common sets of benchmarks in order to enable comparative
evaluations of the different existing tools. Open source benchmarks are
even more attractive, not only because they improve the reproducibility
of the experiments and the possible exploitation by other researchers, but
also because they allow any person to check, study, and modify the source
code.

3.2.1 Mälardalen WCET

The Mälardalen WCET benchmarks [16] were collected in 2005 from
several types of research and industrial use-cases within the WCET field
and are all available on a web page1. They have been extensively used,
mainly for evaluation of WCET algorithms and tools in research papers,
and for comparisons between WCET tools. The benchmarks have been
used as test programs also for other purposes, like dynamic programming,
migration of real-time tasks, and scratchpad memory management.

The researchers marked each benchmark program with some properties,
indicating whether it is a single path program, contains (nested) loops,
uses arrays or matrices, or includes recursion and other characteristics.
The web page also includes additional information for the benchmarks:

• input limits: each benchmark contains its own input, so the programs
in the benchmark can all be run "as is", that means that they exe-
cute a single path. However, most realistic programs are run with
different inputs at different invocations, since if the inputs can affect
the control flow, the program’s WCET is usually highly dependent
on inputs. Thus, feasible intervals for input variables are given,
sometimes together with information about the best and worst cases;

• loop bounds, i.e. the number of times each loop contained in the
benchmarks may be traversed. The loop bounds for each program
are either exact (in case the program has been run only with the input

1URL: http://www.mrtc.mdh.se/projects/wcet/benchmarks.html

28

http://www.mrtc.mdh.se/projects/wcet/benchmarks.html

3.2. WCET benchmarks

main

initbuffer compress

getbyte cl_block

cl_hash output

putbyte writebytes

Figure 3.1: An example of function call graph, taken from benchmark "compress".

in the code) or the maximum possible with the feasible inputs, as
previously defined;

• call graphs and scope hierarchy graphs, generated by the SWEET
tool and provided as PDF files, useful to easily understand function
calls and loop invocations in the programs. The root scope is typi-
cally the main function, or the top function in a subgraph, while the
other scopes are either functions or loops, and constitute possibly
looping entities in the programs. The arrow from one scope to an-
other below represents a call in the case of a function scope, or a
loop invocation in the case of a loop scope. An example of graph,
taken from benchmark compress, is shown in figure 3.1.

There are also some drawbacks to underline. Being them not industrial
real-time applications, the benchmarks are mostly small programs (all ex-
cept two are less than 900 lines of code). The WCET benchmarks typically
test just a few specific programming constructs, and, therefore, they cannot
test how algorithms and tools scale with larger programs. Furthermore,
the whole program often fits in a cache, making the evaluation of cache
analyses hard. Moreover, benchmarks are mainly focused on flow analy-
sis, without testing hardware features like instruction caches, data caches,
or branch predictions, and some program constructs such as complex

29

Chapter 3. State of the Art

low-level code (e.g. bit-operations and shifts), use of dynamic memory,
mode-specific behaviour, tasks with multiple roots, tasks wrapped in a
loop, and programs using function pointers are missing. There is also
weak support for measurement-based WCET analyses:

• the inputs of each program are fixed in the file and therefore different
inputs cannot be supplied as parameters;

• the worst-case test vector is not given;

• a common set of realistic test vectors is missing, thus different tools
and techniques are very likely to generate different inputs, making
comparison awkward.

Finally, these benchmarks are not suitable for parallel computing, which
would be important since WCET analysis has moved towards multi-core
systems.

3.2.2 TACLeBench

TACLeBench [8] provides a freely available and comprehensive suite of 53
benchmark programs for timing analysis and related research topics. They
have already been widely used in different study fields, such as compiler
optimizations, measurement-based and hybrid analyses of WCET and
hardware design. The benchmarks included in TACLeBench are provided
as ISO C99 source codes, and are totally self-contained, that means no
dependencies to system-specific header files via #include directives or an
operating system exist, but all input data is part of the benchmark source
code. Almost all benchmarks are processor-independent, i.e. they can be
compiled and evaluated for any kind of target processor, and any update
of TACLeBench is carefully managed with snapshots and versioning,
so that it is clear which code has been used in a research experiment.
All benchmarks are completely annotated with flow facts, distinguishing
between so-called flow restrictions2, loop bounds, and entry points. These
flow facts are directly incorporated into the C source codes using pragmas.
The benchmarks are divided into five classes:

• kernel benchmarks, synthetic benchmarks implementing small kernel
functions;

2Indications about feasible paths

30

3.2. WCET benchmarks

• sequential benchmarks, implementing large function blocks, such as
encoders and decoders, which are used in many embedded systems
and covering graph search, cryptographic algorithms, compression
algorithms, etc.;

• artificial test benchmarks, that can be used to stress test WCET
analysis tools;

• application benchmarks, derived from real applications (such as a
lift controller and a controller for an electric window in a car) and
provided with simulated input stimuli;

• parallel benchmarks.

The original versions of the benchmarks have been rewritten in or-
der to split the functions of input data initialization, and the benchmark
itself. The TACLeBench suite includes all input data hard-coded into
the C source, which unfortunately turns them into single-path programs.
Another consequence of the fixed input data, and also of the fact that some
programs did not provide any return value, was that compilers with opti-
mizations turned on could optimize most of the code away. To overcome
this issue, with respect to the first version of the suite, the way input data is
represented in variables has been changed (making them volatile), and the
return of the main function has been made dependent on the benchmark
calculation. Also, some benchmarks contain target-dependent code and a
few benchmarks are byte-order dependent, when there is no standard way
in C to detect the byte order of a processor. Finally, some benchmarks can
be executed only once, because either they rely on global initialization, or
they improperly use the dynamic memory allocation.

3.2.3 MiBench

MiBench [23] is a suite of 35 benchmarks, that presents similarities to
EEMBC suite3, but with the difference that source code is freely available.
The programs are split into 6 different categories, ranging through the
whole embedded domain: Automotive and Industrial Control, Network,
Security, Consumer Devices, Office Automation, and Telecommunications.
All benchmarks are written in standard C, which makes MiBench portable

3Suite of benchmarks created by Embedded Microprocessor Benchmark Consortium

31

Chapter 3. State of the Art

to any platform with compiler support. Each program is provided, when
needed, with examples of input parameters for both light-weight and
large analyses, allowing to perform tests respectively in a simple and in
a more stressful way, computationally speaking. Furthermore, statistics
and graphs regarding the length of the benchmarks in terms of lines of
code, cache misses, branch misprediction rates, and the distribution of
the different classes of instructions (branches, integer, floating-point, and
memory) in the different categories and single programs are provided.

32

CHAPTER4
Methodology and Experimental

Framework

In this chapter, the adopted methodology for the subsequent experiments
and analyses is described. We start by focusing on the software part, ex-
plaining how already existing benchmarks have been modified in order
to make them all follow the same general structure. After that we move
to the hardware side, describing what instruments have been used for the
analyses, and how they have been configured. All paragraphs contain
some pieces of pseudo-code, providing a quick idea about the interac-
tions between the different components, and showing the operation of the
considered programs.

4.1 Overview of the experiments

The objective of our experiments is to check whether considered bench-
marks are time predictable, i.e. if execution time series obtained by
running them multiple times verify EVT hypotheses. To do this, we ex-

33

Chapter 4. Methodology and Experimental Framework

ploit PPI, which, as explained in Section 2.3, provides a numerical value
stating whether the hypotheses of the three statistical tests are valid or
not. Furthermore, we fit data on GEVD and GPD, with particular focus
on the shape parameter ε, providing information about the tails of the
distributions.

Checked programs come from the most common benchmark suites,
but we also create some new ones by modifying them, and we write
others from scratch, as well. Histograms showing the distributions of the
execution times of all the tested benchmarks are available in Appendix B.
All the programs are tested on different hardware architectures and with
different configurations. First, they are executed on a microcontroller by
STM32, and two different methods of measuring time are employed: the
internal timer of the board, and a logic analyser. Then, benchmarks are run
on a Raspberry PI 4, with two different setups: in fact, besides executing
them on the standard Linux version, experiments are also repeated after
the application of the PREEMPT_RT patch.

4.2 Benchmark preparation

The initial step was collecting a set of benchmarks to be used for the
analyses. Most of them were taken from the Mälardalen benchmark suite
[16], but some of them come from different sources, such as MiBench [23]
and MediaBench [20], as previously presented in Section 3.2. First of all,
all benchmarks have been converted to the standard C format, eliminating
unnecessarily complicated constructs or deprecated syntax from the early
C standards (e.g. the function parameters expressed with the K&R style).
After that, all main functions have been removed, substituted by functions
with the same name of the benchmark itself (i.e. name of the .c file). In
case the program contained a method with the desired name already, it has
required rename as well.

4.2.1 Input generation

Most of the benchmarks contained hard-coded input values, which did not
allow us to test different input sizes and values, necessary when a WCET
analysis is performed. Thus, predefined initialization has been replaced by
a custom function, designed to assign random values to all needed variables

34

4.3. STM32 Nucleo Board

and arrays, thanks to a Pseudo-Random Number Generator (PRNG). The
function makes use of a seed, exploited for the generation of the random
numbers. This allows us to have a different initialization by just changing
the value of the seed at each execution. Having a configurable seed makes
experiments replicable, since feeding the random function with the same
seed means generating the same random series. The employed random
function was lfsr113 [19], a 32-bit PRNG returning numbers in the interval
[0,1), and guaranteeing a period ρ = 2113. Previously, another PNRG,
taken from Mälardalen benchmark suite, had been tested, however, its
frequency proved to be too low, affecting the results of the experiments
by introducing dependencies. Another option was the usage of rand()
function, but it was excluded to keep the benchmarks independent from C
libraries.

4.2.2 Execution time measurements

In addition to the seed, we added as input parameters to all the considered
benchmarks two function pointers, which are used for the computation of
the execution times of the benchmarks. Algorithm 1 shows the general
structure of a benchmark. The function at line 4 corresponds to the call
of the first pointer at the beginning of the execution, right after the initial-
ization of the variables (in order to avoid measuring the variability that
may be present in the previously described random function to affect the
results). The second function pointer is called at the end of the computa-
tion (line 6), just before the return instruction. These two pointers can be
provided by the experimenter depending on the platform he or she uses to
perform the tests. For example, in a Linux system, the two functions can be
implemented with clock_gettime primitives, and the computed difference
between the two values represents the execution time.

4.3 STM32 Nucleo Board

4.3.1 Hardware architecture

The first set of experiments has been carried out using a STM32L010RB
microcontroller, manufactured by ST Microelectronics. The board is
equipped with Arm Cortex-M0+ 32-bit RISC core operating at 32 MHz and
embeds high-speed memories: 128 Kbytes of Flash program memory, 512

35

Chapter 4. Methodology and Experimental Framework

Algorithm 1: Benchmarks’ general structure

1 Function benchmark(seed, start_function, end_function):
2 PRNG_setseed(seed);
3 foreach var ∈ variables_to_initialize do
4 var := PRNG_random();
5 end
6 start_function();
7 execute_benchmark(variables_to_initialize);
8 end_function();
9 return;

10 end

bytes of data EEPROM, and 20 Kbytes of RAM. Several communication
interfaces are also present: one I2C, one SPI, one USART, and a low-power
UART (LPUART). Finally, 51 General Purpose Input/Output (GPIO) pins
are available. Figure 4.1 shows the block scheme of the board.

4.3.2 Code structure

The base code including the setup of the board, the initialization of some
of the GPIOs, the clock rate, and other settings, has been automatically
generated by using the dedicated software STM32CubeMX. These parame-
ters have then been edited and enriched according to the purposes of each
experiment. Two different versions of the code have been written, one for
each method employed to measure the execution time. The reasons why
we tested two different measurement methods will be explained later in
Chapter 5. The first and simpler way to perform measurements was by
exploiting the internal timer of the board. A sketch of the code used in this
case is shown in Algorithm 2. The wait function at line 1 is called to let
the microcontroller complete its initialization and the clock to stabilize,
otherwise, the first measurements may result incorrect. At line 2, the ran-
dom function is initialized with a certain seed, while at line 4 the function
of the corresponding benchmark is called, and the two parameters are the
two pointers to the functions called respectively at the beginning and at the
end of the computation. In this case, their behaviour is just to store into
variables start and stop the time instant (i.e. amount of time elapsed since

36

4.3. STM32 Nucleo Board

128-Kbyte
Flash memory

System

Power supply 1.8 V
regulator POR/PDR/BOR

Xtal oscillators
32 kHz + 1 to 32 MHz

Internal RC oscillators
38 kHz + 16 MHz

PLL

Internal multispeed ULP
RC oscillator

64 kHz to 4 MHz

Clock control

RTC/AWU

SysTick timer

2x watchdogs
(independent and window)

51 I/Os

Cyclic redundancy
check (CRC)

Voltage scaling
3 modes

Nested Vector
Interrupt

Controller (NVIC)

SW debug

Arm Cortex-M0+ CPU
32 MHz

AHB-Lite+ bus matrix

AHB-bus I/O port Bus

Up to 7-channel DMA

Analog

1x 12-bit ADC SAR

20-Kbyte SRAM

512-bytes EEPROM

20-bytes backup data

BOOT ROM

Connectivity

1x SPI, 1x I2C

1x USART

1x ULP UART

Control

1x ultra-low-power
16-bit timer

1x ULP UART

Figure 4.1: The block scheme of STM32L010RB microcontroller.

the beginning of the computation, in terms of microseconds) in which they
are called. The total execution time can then be derived by simply sub-
tracting the starting time from the end one. However, the time counter has
a limit (65536), after which it is reset to 0, and it may happen it overflows
in the middle of the benchmark, thus bringing to negative execution time.
We implemented a function named correctOverflow in charge of fixing the
issue, by checking whether the value of time is lower than 0, and simply
adding 65536 to it in case it is. Finally, the measured time is sent to the
virtual serial port, and can be read from the host computer the board is
connected to.

The other method employed for the time measurements makes use of
an external logic analyser, which is connected to one of the GPIO pins
of the STM32 board, whose function is to signal when each execution of

37

Chapter 4. Methodology and Experimental Framework

Algorithm 2: STM32 Nucleo board code – Internal Timer

1 wait();
2 random_seed := SEED;
3 foreach i ∈ 1 .. Num_Of_Mesurements do
4 execute_benchmark(begin, end);
5 time := stop - start;
6 correctOverflow(time);
7 send(time);

8 end

the benchmark starts and stops. The behaviour is the following: the logic
analyser monitors the status of the pin it is connected to, waiting until
the signal is kept low and triggering as soon as a rising edge is detected.
In fact, this means that the first execution of the benchmark has started
on the board. From now on, the analyser keeps sampling the value (i.e.
high or low) of the pin at the frequency of 100 MHz1, and each time
a falling or rising edge is detected, the timestamp (i.e. the moment in
which the event occurred) is saved. Given the sampling frequency, the
precision of the performed measurements is 10 ns. At the end of the last
execution, all stored timestamps are returned by the software of the logic
analyser in a .csv file, which must then be correctly parsed in order to
obtain the actual execution times of the benchmarks. The structure of the
codes of both the board and the logic analyser is presented in Algorithm
3 and Algorithm 4. At the beginning of Algorithm 3 (showing the code
of the board), the waiting time has been removed since the internal timer
is not responsible for the measurements anymore, so there is no need to
wait until its initialization is completed, while the seed of the random
function is still set and its value is the same that had been used in previous
measurements, in order to have the same input values and thus comparable
results. Unlike before, in this case, begin and end functions just change
the state of the output pin (from low to high and vice versa) used for
the communication with the logic analyser. Furthermore, the instructions
related to the management of the final result have been removed, because
in this case it is the logic analyser in charge of computing the actual

1The frequency 100 MHz was the highest possible on the instrument available during the
experiments.

38

4.3. STM32 Nucleo Board

Algorithm 3: STM32 Nucleo board code – Logic analyser measure-
ments
1 random_seed := SEED;
2 foreach i ∈ 1 .. Num_Of_Mesurements do
3 execute_benchmark(begin, end);
4 end

execution time.
Algorithm 4 shows the code related to the logic analyser. The behaviour

of the first part (lines 1-7) is as previously explained: the analyser waits
for the first rising edge and then keeps sampling and storing the desired
timestamps until the last execution is over. After that (lines 8-11), vector
times is built by computing the difference of consecutive elements of
vector timestamps. Thus, times contains both the desired execution times
(i.e. difference between a rising and a falling edge) and the idle times
between the end of an execution and the beginning of the following one (i.e.
difference between a falling and a rising edge), which are not interesting
for the analysis and must be discarded. This is done in the last part (lines
13-17) of the previous code, where all the values in odd positions of
vector times are inserted in vector executionTimes, while the others are
eliminated.

4.3.3 Setup for Real Applications

An issue that had to be faced when dealing with the STM32 Nucleo board
was the limited size of the data memory SRAM. In a few cases, in fact,
the size of the arrays and matrixes included in the original benchmarks
had to be slightly reduced in order to have everything fitting the available
space. Furthermore, while in most of the cases benchmarks are fed with
random input, generated at runtime during the execution of the program
itself, in other cases it was not possible. For example, real applications
(such as TCAS, presented in Section 6.5, or audio compression benchmark,
presented in Section 6.4) required realistic inputs to be provided. Neither
hard-coding this data into the source .c file was a viable option: putting the
whole values needed to perform all necessary executions (about 10.000
for each benchmark) would have meant to go beyond the limits of the

39

Chapter 4. Methodology and Experimental Framework

Algorithm 4: Logic analyser code

1 timestamps := [];
2 foreach i ∈ 1 .. Num_Of_Mesurements do
3 wait_RisingEdge();
4 timestamps.add(current_time);
5 wait_FallingEdge();
6 timestamps.add(current_time);

7 end
8 times := [];
9 foreach i ∈ 1 .. timestamps.length do

10 times.add(timestamps[i+1] - timestamps[i]);
11 end
12 executionTimes := [];
13 foreach i ∈ 1 .. times.length do
14 if i is odd then
15 executionTimes.add(timestamps[i]);
16 end
17 end

available SRAM and flash regions. Changing the hard-coded input at
each execution was clearly not a solution, because it would have required
to keep manually modifying the code to reach the desired number of
executions. That is why both .csv and .txt files containing realistic input
values for the different benchmarks were employed. These kinds of files
cannot be accessed and read directly from the board itself, therefore we
implemented a data exchange mechanism through serial communication
between the board and the host computer. The latter was in charge of
reading the previously mentioned files containing the input and sending
data to the board for the execution. In Algorithm 5 and Algorithm 6 it is
possible to see respectively the script on the board and the host side.

At line 1 of Algorithm 5, the number of chars to be received at each
execution is set. In fact, function reading characters from the serial port
used at line 4 needs to know in advance how many it has to receive before
storing them into variable data, which is a string. Thus, it must be turned
into a numerical format to let the function executing the actual benchmark
be able to use it. The function parse is called at line 5, and is responsible for

40

4.3. STM32 Nucleo Board

Algorithm 5: Board receiving applications’ realistic data code

1 numOfChars := CHARS;
2 input := [];
3 for i in 1..numOfExecutions do
4 data := read_n_chars(numOfChars);
5 input := parse(data);
6 start();
7 execute_Benchmark(input);
8 stop();

9 end

splitting the string into the tokens it is composed by (the comma is usually
used as separator character in .csv files), and for converting substrings into
numerical values, that can be then stored into input array. Of course, the
whole initialization part is excluded from the time measurement, which
only includes the actual benchmark execution.

Regarding the host side (Algorithm 6), at the beginning (lines 1-2),
both the number of characters to be sent each time and the amount of time
the host needs to wait before sending the next chunk of data are set. The
former is needed to send at each execution the amount of data the board is
expecting. Sending less would make the board wait for the remaining part,
and that would be taken from data related to the following execution, which
is clearly undesired behaviour. The latter, instead, must be tuned according
to the execution time of the benchmark: a too short delay would cause data
to be sent while the board is still performing the previous execution and is
not ready to receive the new stream, yet. After that, at line 3 the host opens
the file containing the input and keeps repeating these operations until the
last line is reached: at the beginning, it reads the first line and stores it
into line variable (line 4); then, after computing how many characters the
string consists of (line 6), some x characters are added at the end of it to
reach the amount of data the board is waiting for (lines 7-10); finally (lines
11-13), the board sends the data, reads the following line of the file, and
stops for the previously set amount of time. The process is repeated until
the new line is empty. In that case, the file is closed and the process stops.

41

Chapter 4. Methodology and Experimental Framework

Algorithm 6: Host sending applications’ realistic data code

1 numOfChars := CHARS;
2 delay := DELAY;
3 data := open(input_file);
4 line := readLine(data);
5 while data != NULL do
6 chars := length(line);
7 while chars < numOfChars do
8 line.append(’x’);
9 chars++;

10 end
11 send(line);
12 line := readLine(data);
13 wait(DELAY);

14 end
15 close(data);

4.4 Raspberry PI

Besides in a time deterministic environment as in the previous case, bench-
marks have also been tested on a system where some randomness is
involved. For this purpose, a Raspberry Pi 4 has been employed.

4.4.1 Hardware architecture

The board we used is equipped with quad-core Cortex-A72 64-bit CPU,
running at 1.5 GHz, and 4 GB LPDDR4-3200 SDRAM. Besides 40 GPIOs,
it also hosts 4 USB ports (2 with 3.0 and 2 with 2.0 specification), 2
micro-HDMI ports and one SD-slot (used for loading the OS and for data
storage). Supported connection are IEEE 802.11ac wireless (2.4 GHz and
5.0 GHz), Bluetooth 5.0, and Gigabit Ethernet.

4.4.2 Software configuration

Two different kinds of configuration have been tested:

1. First, programs have been run on the standard command-line Linux
version Raspberry Pi OS 1.4;

42

4.4. Raspberry PI

Algorithm 7: Raspberry PI 4 measurements code

1 struct start, stop;
2 time := [];
3 random_seed := SEED;
4 foreach i ∈ 1 .. Num_Of_Mesurements do
5 execute_Benchmark(begin, end);
6 time[i] := (stop.sec - start.sec)*109 + (stop.nanosec - start.nanosec);

7 end
8 Function begin():
9 clock_gettime(CLOCK_MONOTONIC, &start);

10 return;

11 end
12 Function end():
13 clock_gettime(CLOCK_MONOTONIC, &stop);
14 return;

15 end

2. Then, the PREEMPT_RT Patch has been applied, allowing almost
all of the kernel code (with the exception of a few very small critical
regions) to be preempted. This increases the time predictability, but
it reduces the overall system throughput. Approaches to use this
patch for building real-time Linux-based systems are described in
detail in [28].

Furthermore, all benchmarks have been forced to be executed on one of
the 4 available cores. Most of the interrupts have been moved from the
core where the task is executed (some of them that could not be moved),
to reduce even more the interferences. The code used in this case is quite
similar to the one for the measurements with the internal timer of the
STM32 Board, but it still has some differences, as shown in Algorithm 7.

The seed of the function generating random numbers is set to the same
values of the STM32 experiments, so that the same input values have
been generated as in the previous cases. Furthermore, two structs are
defined to store the results of the time measurements, which are performed
through the native clock_gettime function, which returns the current time
by means of two different values: using CLOCK_MONOTONIC as an

43

Chapter 4. Methodology and Experimental Framework

input parameter to the function, sec indicates the number of seconds since
some arbitrary fixed point in the past, while nanosec stores the number of
nanoseconds expired in the current second. This second value increases by
some multiple of nanoseconds, according to the system clock’s resolution.
To calculate the actual execution times, the difference in terms of seconds
between the end and the beginning of the benchmarks is first converted
into nanoseconds (by multiplying it with one billion), and then added to
the difference in terms of nanoseconds. An alternative method that could
have been used, similarly to the one of STM32, is to employ one of the
GPIO pins of the Raspberry PI as start/stop signal, and then measure
absolute time through a logic analyser.

44

CHAPTER5
Experiments on the STM32 Board

This chapter presents the results of the experiments involving already
existing benchmarks and their modified versions (i.e. programs in which
the sizes of variables or the number of iterations of cycles are not fixed
anymore, but sampled from different kinds of distributions). Outcomes
have been obtained by measuring time with both STM32 board internal
timer, and through a logic analyser, and comparisons between the two
different methods are made. In particular, the goal is to check whether the
two methods always lead to the same output, or if there is any difference
between the two. We expect the timing stability (i.e. measurements
with the internal timer of the board) to produce better results in terms
of PPI satisfaction. However, a small degree of variability (given by the
noise introduced from the logic analyser) might be also positive in case
benchmarks are showing a lack of variability, as already stated by Lima et
al. in [21]. Therefore, an experimental evaluation is needed to verify the
satisfaction of EVT hypotheses in the two cases.

45

Chapter 5. Experiments on the STM32 Board

5.1 Original benchmarks

5.1.1 Experimental setup

The first experiments have been executed employing the STM32 Nucleo
Board, described in Section 4.3, and involving only the already existing
benchmarks, with no changes but the ones already described in Section
4.2: code has been re-written in compliance with the standard C format,
programs containing hard-coded input have been changed so that it could
randomly be generated through a random function fed with a seed, and
two functions (as well as related function pointers) have been inserted
after the initialization part and at the end of each benchmark, to make the
execution time measurements possible. The set of programs considered
at this stage is made of 34 benchmarks: 29 are from the Mälardalen suite
(almost all the benchmarks belonging to this suite have been considered in
this work, with the exception of the ones resulting in very high execution
times and the ones for which determining the feasible input region was
too difficult), 4 are from MiBench, and 1 was taken from the WCET Tool
Challenge held in 2014.

5.1.2 Methodology of the experiments

As previously described in Section 4.3.2, two different measurement tech-
niques were used to gather the execution time values: first, time was
directly measured through the internal timer of the board itself, then, mea-
sures were repeated by using a logic analyser. The benchmarks use a
GPIO to expose the execution time: the logical analyser calculates the
time between the rising edge (i.e. start of the execution) and the falling
edge (signalling the end of the execution) of the GPIO pin. With the first
method, results were printed from the board on the serial port, through
which they could be read by the host and turned into a .txt file. In the
second, instead, it was the software of the logic analyser to be in charge of
building the final .csv file. In both cases, the files were then parsed with
MATLAB (one of the most common software for scientific computing),
in order to perform three different statistical analyses: PPI (probabilistic
predictability index), gevfit (returning the maximum likelihood estimates
of the parameters for the generalized extreme value distribution), and gpfit

46

5.1. Original benchmarks

(similar to the previous one, but for generalized pareto distribution). With
PPI we aimed at checking if the EVT hypotheses were satisfied, while with
gevfit and gpfit we computed the distribution parameters and, in particular,
the ε parameter, which provides an indication about the shape of the tail
of the distribution, as already explained in Section 2.1.2.

5.1.3 Results

Table 5.1 and Table 5.2 contain the results obtained by the execution of all
the benchmarks on the STM32 Nucleo board. In Table 5.1, the time has
been measured exploiting the internal timer of the board itself, while Table
5.2 refers to the measurements made through a logic analyser. The first
column contains the computed value for the PPI test, whose hypotheses
are respected when the index is greater than the critical value, which, as
written in the second column, is always 0.891, computed for a value of α
of 0.05, as explained in Section 2.3.1. The following three columns store
the single results of the three statistical test PPI test is composed by, while
in the last two it is possible to find the values of the shape parameter ε,
respectively for the generalized extreme value and the pareto distributions.
Results show that in 13 out of the 34 considered benchmarks (i.e. about
the 38% of the performed experiments) PPI hypotheses are satisfied for
both results obtained from the logic analyser and the internal timer, while
in 17/34 (50% of the cases) at least one of the necessary conditions is not
valid for both the instruments. Finally, there are 4 benchmarks for which
the internal timer and the logic analyser lead to different conclusions.
There were also some cases among the previous ones in which, although
both methods were giving negative output, the values of PPI were heavily
different. In all these cases, it is the value of the index derived from
the internal timer’s measurements to be higher than the logic analyser’s
one, while it never happens the opposite. This is the case for instance of
benchmarks crc, matmult, and shadriver.

5.1.4 Discussion

Through deeper analysis of previously mentioned cases (in particular
by looking at the plot of the time series), it is clear that very different
values of PPI between the two methods are obtained when there are just
small differences between the measured times from execution to execution.

47

Chapter 5. Experiments on the STM32 Board

0 2000 4000 6000 8000 10000

Measurements

1950

1955

1960

1965

1970

1975

1980

T
im

e
 (

s
)

(a) Logic analyser

0 2000 4000 6000 8000 10000

Measurements

2060

2065

2070

2075

2080

2085

2090

T
im

e
 (

s
)

(b) Internal timer

Figure 5.1: Plots of time series from "fdct" benchmark. It is possible to notice
the random noise in the logical analyses plot (a) with respect to the internal
timer (b).

As one would expect, the internal timer measures execution time very
precisely (but it does not consider any possible clock skew), while the
usage of the logic analyser, that has to deal with GPIOs and electrical
signals, introduces some noise, which is responsible for the previously
explained behaviour in this specific situation. This is clearly visible in
Figure 5.1, showing the plots of the time series obtained by executing fdct
benchmark.

5.1.5 Final considerations

From the previous results, it is possible to state that the majority of the
programs in the most common WCET benchmark suites do not meet EVT
hypotheses, even in a simple and predictable architecture like the STM32
board. For what concerns the way execution times are measured, the two
different methods proved to often lead to the same outcome, even if the
employment of the STM32 internal timer looks preferable, since in some
case the noise introduced by the logic analyser can worsen the outcome of
the statistical tests. However, in some spare cases, the opposite can happen,
with noise improving results by introducing variability when measurements
from the timer are "stuck" into the same few values. Regarding the ε values,
we discovered that, when fitting the GPD, for most of the benchmarks the
shape parameter is negative (indicating a finite value of the tail), or at least
close to 0 (which means the tail is infinite, but quickly converging to 0).

48

5.2. Modified benchmarks

On the contrary, fitting the GEVD leads, in the majority of the cases, to
positive values of ε. This is undesired when performing WCET analysis,
since it indicates an unbounded tail, tending to 0 very slowly.

5.2 Modified benchmarks

Three of the benchmarks considered in the previous section (fibcall, min-
ver, and qsort-exam) have been further modified and tested. The three
benchmarks have been selected to cover different cases: in fibcall, the input
parameter defines the number of iterations performed by the algorithm; in
minver, it determines the size of the square matrix; in qsort-exam, it is the
size of the input array to be sorted. In all the three modified programs, we
considered five distribution classes to generate the input size: exponential,
normal, pareto, uniform, and weibull.

5.2.1 Fibcall

The fibcall benchmark performs iterative Fibonacci calculations, and of
course the higher is the position of the element of the series to be calculated,
the longer the execution time of the benchmark is. In the original version,
this parameter was determined in a random uniform manner, while in the
new one, it is chosen by sampling from different distributions.

Results are shown in Table 5.3 and Table 5.4, where the modified
versions are compared to the original one, respectively for the internal
timer and the logical analyser cases. First, there is no difference between
the outcomes of the logic analyser and internal timer, since the values
they provide for PPI are very close. Furthermore, an improvement in the
fulfilment of EVT hypotheses can be found in all modified benchmarks but
fibcall-uniform, which gets the same result as fibcall-original. This makes
sense, since also in the original version the input parameter determined
the number of iterations, and the employed random function did it by
sampling from uniform distribution as well. Thus, in this particular case,
the difference is just in the function sampling the input, but the distribution
shape is uniform in both cases.

49

Chapter 5. Experiments on the STM32 Board

5.2.2 Minver

In the minver benchmark, the inverse of a floating-point matrix is computed.
In the first version, only 3x3 matrixes were considered, and the only
difference between one execution and the others is the initialization of
the values in the matrixes themselves, performed each time completely at
random. In the modified version, besides still initializing the matrix in a
different way at every execution, we also vary the size according to the
different kinds of distributions previously defined.

The related results are shown in Table 5.5 and Table 5.6. There are
two cases in which the output derived from logic analyser’s observations
is different from the one obtained through internal timer’s measurements.
When determining the size of the matrix to be inverted through normal
distribution, it is the internal timer that gets the higher value of the index,
and the cause can still be found in the noise introduced by the logic
analyser, which makes the hypotheses of KPSS and h not satisfied anymore.
Vice versa, when dealing with the weibull distribution, the internal timer
results lead to lower PPI value than the logic analyser. By looking at data
related to these executions (whose plots are visible in Figure 5.2), it is
clear that, in this case, the introduced noise is helpful for the statistical test
to be passed. In fact, in the vast majority of the cases, measurement by the
internal timer of the board result in the same 3 values of time, while there
are just some spare cases varying from this behaviour. This is detected
by the tests (in particular by KPSS, which carried out the lowest value)
as evidence of a correlation between the different executions. On the
contrary, this does not happen with the logic analyser, whose noise (which
is not clearly visible in the plot, being most of the values very close to 0)
introduces some kind of variability that makes the phenomenon invisible
from the statistical tests standpoint.

5.2.3 Qsort-exam

The Qsort-exam benchmark implements the algorithm to perform the
quick-sort of a floating-point array in a non-recursive way. Similarly to
what happened in the minver benchmark, while in the original version
it was just the content of the array to change between the various execu-
tions, in the modified one it is also the size that varies every time, always

50

5.2. Modified benchmarks

0 2000 4000 6000 8000 10000

Measurements

0

0.5

1

1.5

2
T

im
e
 (

s
)

10
6

(a) Logic analyser

0 2000 4000 6000 8000 10000

Measurements

0

1

2

3

4

5

6

T
im

e
 (

s
)

10
4

(b) Internal timer

Figure 5.2: Plots of time series from "minver-weibull" benchmark, executed on
the STM32 board, measuring time with a logic analyser (a) and the internal
timer of the board (b).

according to values taken from specific distributions.
Outcomes of the experiments are shown in Table 5.7 and Table 5.8.

Results from the logic analyser do not show any difference when compared
to the corresponding ones from the internal timer. Moreover, all modified
versions obtain a high value of PPI, as it happened with the original one.

5.2.4 Final considerations

The set of modified benchmarks leads to very positive results in terms
of time predictability. In general, the PPI value is on average at least
as high as the one deriving from the original version of the code, and is
improved in case the EVT hypotheses were not satisfied at the beginning.
Furthermore, although there were some spare cases in which the outcome
was lower than the critical value, all the benchmarks proved to be time
predictable with at least one of the two ways to measure time.

51

Chapter 5. Experiments on the STM32 Board

Board internal timer
BENCHMARK ppi cval kpss bds h ε ε pareto

adpcm 0.938 0.891 0.957 0.944 0.914 0.874 -1.669
basicmath 0.948 0.891 0.992 0.914 0.938 0.207 0.169
bitcount 0.962 0.891 0.964 0.991 0.929 -0.339 -2.470
bsort100 0.920 0.891 0.949 0.906 0.905 -0.364 -2.633

cnt 0.914 0.891 0.899 0.930 0.915 -0.191 -2.992
compress 0.317 0.891 0.996 0.317 0.976 0.830 -2.085

coop 0.941 0.891 0.946 0.978 0.899 0.404 -0.505
cover 0.000 0.891 1.000 0.000 0.988 -1.207 -2.148
crc 0.931 0.891 0.953 0.910 0.930 -0.297 -2.323
duff 0.013 0.891 0.999 0.013 0.977 1.620 -1.679
edn 0.319 0.891 0.997 0.319 0.969 -0.856 -1.556

expint 0.952 0.891 0.961 0.999 0.896 -1.067 -1.244
fdct 0.958 0.891 0.981 0.947 0.945 -0.731 -2.486
fft1 0.945 0.891 0.974 0.950 0.909 -1.032 -1.702

fibcall 0.856 0.891 0.948 0.856 0.922 -0.457 -1.013
fir 0.015 0.891 0.998 0.015 0.970 -0.866 -1.516

fourierbench 0.237 0.891 0.966 0.237 0.910 -1.373 -2.329
insertsort 0.866 0.891 0.975 0.866 0.932 -0.245 -0.968

janne-complex 0.796 0.891 0.994 0.796 0.971 3.785 -0.267
jfdctint 0.405 0.891 0.999 0.405 0.984 -1.113 -2.324
lcdnum 0.380 0.891 1.000 0.380 0.987 0.266 -1.658
ludcmp 0.958 0.891 0.980 0.964 0.930 -0.151 -2.895
matmult 0.821 0.891 0.968 0.821 0.923 -0.028 -1.697
minver 0.954 0.891 0.981 0.958 0.922 -0.747 -2.644

ndes 0.078 0.891 0.996 0.078 0.980 -0.745 -1.927
prime 0.970 0.891 0.988 0.982 0.939 1.067 0.728

qsort-exam 0.955 0.891 0.991 0.942 0.933 -0.114 -1.321
qurt 0.947 0.891 0.990 0.924 0.926 -1.467 -1.830

recursion 0.955 0.891 0.969 0.976 0.921 2.691 2.219
select 0.963 0.891 0.989 0.957 0.942 -0.159 -0.646

shadriver 0.776 0.891 0.986 0.776 0.934 0.288 -2.024
sqrt 0.319 0.891 1.000 0.319 0.990 0.387 -2.082

statemate 0.053 0.891 1.000 0.053 0.993 -1.146 -1.661
ud 0.877 0.891 0.908 0.877 0.904 -0.022 -1.715

Table 5.1: Results of original benchmarks, obtained by measuring time through
the STM32 board internal timer.

52

5.2. Modified benchmarks

Logic Analyser Time
BENCHMARK ppi cval kpss bds h ε ε pareto

adpcm 0.939 0.891 0.960 0.944 0.915 -1.426 -1.817
basicmath 0.949 0.891 0.984 0.935 0.930 -0.916 -1.098
bitcount 0.958 0.891 0.960 0.988 0.925 2.900 -0.025
bsort100 0.917 0.891 0.942 0.907 0.902 2.271 -0.494

cnt 0.234 0.891 0.257 0.928 0.803 3.306 -0.146
compress 0.315 0.891 0.939 0.315 0.911 1.619 -0.085

coop 0.941 0.891 0.946 0.978 0.899 0.495 0.054
cover 0.000 0.891 0.964 0.000 0.944 2.115 -0.011
crc 0.690 0.891 0.749 0.964 0.812 2.689 -0.058
duff 0.016 0.891 0.994 0.016 0.963 3.963 -0.138
edn 0.000 0.891 0.000 0.488 0.347 -1.190 -1.987

expint 0.952 0.891 0.961 0.999 0.896 0.537 0.164
fdct 0.705 0.891 0.775 0.915 0.801 2.544 -0.098
fft1 0.879 0.891 0.932 0.938 0.879 -0.316 -0.390

fibcall 0.857 0.891 0.949 0.857 0.922 0.000 -0.012
fir 0.000 0.891 0.001 0.005 0.507 -1.608 -1.707

fourierbench 0.252 0.891 0.966 0.252 0.907 -1.795 -1.969
insertsort 0.869 0.891 0.974 0.869 0.932 1.485 -0.025

janne-complex 0.839 0.891 0.996 0.839 0.964 4.003 2.710
jfdctint 0.391 0.891 0.917 0.391 0.913 3.064 -0.097
lcdnum 0.380 0.891 0.999 0.380 0.986 2.720 0.008
ludcmp 0.942 0.891 0.938 0.969 0.920 2.624 -0.305
matmult 0.000 0.891 0.000 0.000 0.212 -1.610 -1.398
minver 0.956 0.891 0.984 0.957 0.927 2.564 -0.105

ndes 0.000 0.891 0.002 0.206 0.554 3.367 -0.424
prime 0.970 0.891 0.988 0.983 0.939 0.035 0.000

qsort-exam 0.957 0.891 0.991 0.943 0.936 1.096 -0.066
qurt 0.947 0.891 0.990 0.924 0.927 1.170 0.921

recursion 0.927 0.891 0.919 0.965 0.898 1.127 1.046
select 0.962 0.891 0.989 0.956 0.942 -0.012 -0.063

shadriver 0.102 0.891 0.238 0.448 0.665 -1.580 -1.641
sqrt 0.317 0.891 0.998 0.317 0.987 2.256 0.004

statemate 0.053 0.891 0.998 0.053 0.975 1.129 -0.005
ud 0.880 0.891 0.921 0.880 0.910 2.322 -0.103

Table 5.2: Results of original benchmarks, obtained by measuring time through
a logic analyser.

53

Chapter 5. Experiments on the STM32 Board

Board internal timer
BENCHMARK ppi cval kpss bds h ε ε pareto
fibcall-original 0.856 0.891 0.948 0.856 0.922 -0.457 -1.013

fibcall-exponential 0.931 0.891 0.949 0.932 0.912 0.480 0.002
fibcall-normal 0.954 0.891 0.977 0.975 0.911 -0.220 -1.321
fibcall-pareto 0.934 0.891 0.936 0.950 0.916 0.601 0.195

fibcall-uniform 0.857 0.891 0.949 0.857 0.922 -0.456 -1.017
fibcall-weibull 0.958 0.891 0.978 0.977 0.920 1.910 1.252

Table 5.3: Results of the modified versions of "fibcall" benchmark, obtained
through the STM32 Board Internal Timer.

Logic analyser Time
BENCHMARK ppi cval kpss bds h ε ε pareto
fibcall-original 0.857 0.891 0.949 0.857 0.922 0.000 -0.012

fibcall-exponential 0.931 0.891 0.949 0.932 0.912 -0.018 -0.043
fibcall-normal 0.954 0.891 0.978 0.973 0.910 1.958 -0.046
fibcall-pareto 0.943 0.891 0.967 0.933 0.930 1.480 0.419

fibcall-uniform 0.857 0.891 0.948 0.857 0.922 0.000 -0.013
fibcall-weibull 0.954 0.891 0.958 0.989 0.915 0.297 0.177

Table 5.4: Results of the modified versions of "fibcall" benchmark, obtained by
measuring time through a logic analyser.

Board internal timer
BENCHMARK ppi cval kpss bds h ε ε pareto
minver-original 0.954 0.891 0.981 0.958 0.922 -0.747 -2.644

minver-exponential 0.941 0.891 0.963 0.929 0.932 1.968 1.476
minver-normal 0.958 0.891 0.983 0.968 0.924 -1.308 -2.014
minver-pareto 0.941 0.891 0.958 0.952 0.913 2.853 0.137

minver-uniform 0.964 0.891 0.987 0.975 0.930 -0.425 -0.650
minver-weibull 0.719 0.891 0.736 0.977 0.867 2.240 0.473

Table 5.5: Results of the modified versions of "minver" benchmark, obtained
through STM32 internal timer.

54

5.2. Modified benchmarks

Logic analyser Time
BENCHMARK ppi cval kpss bds h ε ε pareto
minver-original 0.956 0.891 0.984 0.957 0.927 2.564 -0.105

minver-exponential 0.934 0.891 0.932 0.969 0.902 0.318 0.189
minver-normal 0.874 0.891 0.994 0.874 0.939 1.022 -0.226
minver-pareto 0.958 0.891 0.972 0.980 0.921 3.544 0.121

minver-uniform 0.944 0.891 0.979 0.920 0.934 1.298 0.992
minver-weibull 0.969 0.891 0.982 0.977 0.947 3.325 0.247

Table 5.6: Results of the modified versions of "minver" benchmark, obtained by
measuring time through a logic analyser.

Board internal timer
BENCHMARK ppi cval kpss bds h ε ε pareto
qsort-original 0.955 0.891 0.991 0.942 0.933 -0.114 -1.321

qsort-exponential 0.974 0.891 0.995 0.975 0.953 0.430 -0.166
qsort-normal 0.935 0.891 0.951 0.945 0.909 -0.212 -0.923
qsort-pareto 0.962 0.891 0.977 0.977 0.931 0.140 -0.141

qsort-uniform 0.946 0.891 0.927 0.990 0.920 -0.298 -0.697
qsort-weibull 0.953 0.891 0.969 0.961 0.929 0.314 -0.145

Table 5.7: Results of the modified versions of "qsort" benchmark, obtained
through STM32 internal timer.

Logic analyser Time
BENCHMARK ppi cval kpss bds h ε ε pareto
qsort-original 0.957 0.891 0.991 0.943 0.936 1.096 -0.066

qsort-exponential 0.974 0.891 0.995 0.975 0.953 0.783 -0.128
qsort-normal 0.933 0.891 0.947 0.944 0.907 -0.152 -0.357
qsort-pareto 0.961 0.891 0.977 0.977 0.931 1.201 -0.080

qsort-uniform 0.945 0.891 0.926 0.990 0.920 -0.074 -0.251
qsort-weibull 0.953 0.891 0.970 0.961 0.929 1.317 -0.103

Table 5.8: Results of the modified versions of "qsort" benchmark, obtained by
measuring time through a logic analyser.

55

CHAPTER6
The development of novel benchmarks

Due to the limitations of the previously described benchmarks, we de-
veloped new benchmarks from scratch, or derived them from the already
existing ones by applying heavier changes (e.g. the code has been modified
to become independent from the input values in terms of execution time,
or alterations have been applied to whole parts of the original programs).
The execution time is still measured through the internal timer of the board
or the logic analyser, as described in the previous chapter.

6.1 Making the original benchmarks input-independent

Among the benchmarks taken into account in the previous chapter, there
are twos sorting a numerical array: qsort-exam, already analysed by vary-
ing the size of the array in Section 5.2 and performing the quicksort
algorithm, and insertsort, which orders the array by using the insertion sort
technique, as the name suggests. The original versions of the two bench-
marks have already been tested in Section 5.1. In this section, we, instead,
explain how we developed new versions of them for further analysis. The

57

Chapter 6. The development of novel benchmarks

Algorithm 8: Input independent sorting benchmarks code

1 Function sort_indep():
2 random_seed := SEED;
3 array := [];
4 reversed := [];
5 for i in 1..length do
6 array[i] := random();
7 reversed[length - i + 1] := array[i];

8 end
9 start();

10 sort(array);
11 sort(reversed);
12 stop();

13 end

goal is to try to make the execution time less dependent on the input values,
because it is obvious that a sorting algorithm takes much less time when
dealing with an array that is almost sorted, rather than with a completely
unordered one. This problem creates a dependency on the inputs, making
the EVT hypotheses possibly invalid. To solve this problem, we imple-
mented a simple strategy, i.e. sorting an array filled with the input values
and its reversed version. In this way, even if the initial array is completely
sorted, the best case (completely ordered array) is coupled with the worst
one (completely unordered array) and vice versa. This makes the sorting
strategy less dependent on the original inputs. Algorithm 8 shows the code
used in this case.

Such a strategy obviously reduces the average performance by doubling
the work to be performed. However, if it guarantees the pWCET to be
computed, it can be beneficial for real-time systems. The seed is properly
set to have the same input values as in the previous versions of the code. For
what concerns the initialization part (whose instructions are still excluded
from the time measurements), line 5 fills the vector cell with a random
number, as in the original benchmark, while line 6 is added to fill the
reversed array in specular order. At lines 8-9, the sorting algorithm is
applied to both the previously built arrays. These instructions are included
within the two functions (start and stop) used to measure the execution

58

6.2. TCAS-sort

Board internal timer
BENCHMARK ppi cval kpss bds h ε ε pareto

insertsort-original 0.866 0.891 0.975 0.866 0.932 -0.245 -0.968
insertsort-indep 0.948 0.891 0.954 0.948 0.943 -0.318 -1.369
qsort-original 0.955 0.891 0.991 0.942 0.933 -0.114 -1.321
qsort-indep 0.922 0.891 0.918 0.947 0.901 -0.115 -1.941

Table 6.1: Results from sorting benchmarks, obtained by measuring time through
STM32 board internal timer.

Logic analyser Time
BENCHMARK ppi cval kpss bds h ε ε pareto

insertsort-original 0.869 0.891 0.974 0.869 0.932 1.485 -0.025
insertsort-indep 0.949 0.891 0.954 0.949 0.944 1.332 -0.030
qsort-original 0.957 0.891 0.991 0.943 0.936 1.096 -0.066
qsort-indep 0.915 0.891 0.902 0.944 0.898 1.223 -0.687

Table 6.2: Results from sorting benchmarks, obtained by measuring time through
a logic analyser.

time.
The results are shown in Table 6.1 and Table 6.2. This kind of approach

is very effective for insertsort benchmark, whose input-independent ver-
sion fulfils EVT hypotheses, unlike the original version of the code. For
what concerns qsort, instead, there is not much difference between the two
versions: in both cases PPI value is higher than the critical threshold, even
if the independent version of the benchmark leads to slightly lower output.
The modifications to make the two benchmarks independent from the input
values have a cost in terms of execution times, which is 2 times higher in
qsort and 2.5 in insertsort. However, it guarantees the satisfaction of the
EVT hypotheses, independently on the input data. This achievement is
more clear when the input data is not random, as shown in the next section.

6.2 TCAS-sort

Instead of completely random generated values, from this section we
present the experiments using real applications and data, to simulate a
realistic result. The goal is to assess the differences in the results obtained

59

Chapter 6. The development of novel benchmarks

from the two different approaches. For this purpose, the preliminary stages
of the TCAS algorithm, which is described in detail in Section 6.5, have
been chosen as the candidate for the first experiment. TCAS is the acronym
for Traffic Alert and Collision Avoidance System and is a software used
on aircraft, that provides advice to the pilots about the manoeuvres to be
performed to do not enter in dangerous situations, potentially leading to
a collision. As we later describe in detail, the TCAS software analyses
the position of nearby aircraft. There may be more than one intruder w.r.t.
the position of the aircraft running the algorithm, and the closer it is, the
higher is the priority with which its status has to be checked. To prioritize
the aircraft, a sorting algorithm is employed: the inputs to the program are
the coordinates (latitude and longitude, altitude is not considered at this
stage) of the aircraft running the software and all the intruders. At each
execution, at most 20 intruders can be taken into account, but in most of
the cases, the limit number of aircraft is not reached, because not so much
aircraft is "visible" by the TCAS antennas. In the first positions of the
array, the computed distances are inserted, while the empty positions are
filled with fictitious aircraft at "infinite" distance, so that the input appears
with the same size. To sort the array, the bubble-sort algorithm has been
chosen. The code of the benchmark can be found in Algorithm 9.

In the initialization part (lines 1-8), the distances between the aircraft
(whose coordinates are stored in my_lat and my_lon variables) and the
intruders (whose positions can be found into arrays lat and lon) are com-
puted. As already explained, when data is missing (value indicated as
X in the code), distance is set to infinite. This part of the computation
is excluded from the measurements of execution time, since it is not the
object of the analysis, and it should not affect the results obtained through
the sorting algorithm. The input data have been extracted from a flight
simulator.

The overall structure of the code is similar to the previous algorithms.
What changes between the input-independent version of the code and the
original one is that the input array is sorted together with its reverse, as
it happened in the case of Section 6.1, and, most importantly, the way
bubblesort algorithm is implemented. This second difference is shown in
Algorithm 10 and Algorithm 11.

In the original version, the sorting algorithm is fully optimized: the

60

6.2. TCAS-sort

Algorithm 9: TCAS-sort benchmark code

1 Function TCAS_sort(my_lat, my_lon, lat[], lon[]):
2 distances := [];
3 for i in 1..20 do
4 if lat[i] == X then
5 distances[i] :=∞;
6 end
7 else
8 distances[i] :=

√
(my_lat− lat[i])2 + (my_lon− lon[i])2;

9 end
10 end
11 start();
12 bubblesort(distances);
13 stop();

14 end

array is fully scanned only once, then, at each iteration, it is possible to
check one position less than the previous iteration, since we know that
every time the highest element (among the unordered ones) will be moved
to the right position. Furthermore, at each cycle, we check that at least one
swap is performed: when this does not happen, it means the array is sorted
and the process can stop. This makes the execution time input-dependent.

In the input-independent version, the first optimization, exploiting
the fact that it is possible to check one position less of the array than
the previous iteration, is still present. On the contrary, the second one,
checking if the process can be stopped due to already sorted array, has
been removed, causing the same number of cycles to be performed (since
the length of the array does not vary) independently from the input.

The outcome, shown in Table 6.3 and Table 6.4, proves the modifi-
cations are very effective in this case. With both timing measurement
approaches (i.e. with the logic analyser and internal timer), the value of
PPI is much higher with the independent version than with the original
one. In the independent case, EVT hypotheses are clearly respected, while
in the dependent one the outcome is very close to the critical value, but
not high enough to state their fulfilment. The differences between the two
versions of the code are also visible in Figure 6.1, showing the plots of

61

Chapter 6. The development of novel benchmarks

Algorithm 10: Bubblesort implementation - original version

1 Function bubblesort(array):
2 swapped := 1;
3 end := array.length - 1;
4 while swapped = 1 do
5 swapped := 0;
6 for i in 1..end do
7 if array[i] > array[i+1] then
8 swap(array[i], array[i+1]);
9 swapped := 1;

10 end
11 end
12 end–;

13 end
14 end

the time series obtained through the internal timer. In the original code,
a dependence on the number of intruders is evident. This is expected,
since the remaining positions of the array are filled with "infinite" values,
which are already in the right position and do not need to be swapped.
This improvement in timing predictability does not come for free: the
independent version leads to execution times that are on average 2.9 times
higher than the ones from the original program.

6.3 A loop-based benchmark

In order to test the satisfaction of EVT hypotheses when the execution time
follows a given distribution, we created a trivial benchmark that consists of
a loop, and it is composed of very basic operation, such as the increment
of a variable. The number of times the cycle is visited is not fixed, but
randomly determined at each execution. Similarly to what is already done
in Section 5.2, the number of iterations is determined by sampling values
from different kinds of distributions: uniform, exponential, pareto, weibull,
and normal. The structure of the code can be found in Algorithm 12. Line
2 is where the number of iterations is determined: it is sufficient to change
the function called for getting the random value (one for each different

62

6.3. A loop-based benchmark

Algorithm 11: Bubblesort implementation - independent version

1 Function bubblesortIndep(array):
2 end := array.length - 1;
3 while end ≥ 1 do
4 for i in 1..end do
5 if array[i] > array[i+1] then
6 swap(array[i], array[i+1]);
7 end
8 end
9 end–;

10 end
11 end

Board internal timer
BENCHMARK ppi cval kpss bds h ε ε pareto

tcas-sort 0.000 0.891 0.000 0.000 0.137 -0.589 -1.022
tcas-sort-indep 0.963 0.891 0.973 0.973 0.942 0.274 -2.030

Table 6.3: Results from "tcas-sort" benchmark, obtained by measuring time
through STM32 board internal timer.

distribution has been created) to have a "new" benchmark (i.e. benchmark
doing the same thing, but with different behaviour in terms of number of
cycles). This operation is not included in the time measurements, since
they begin at line 3 and end at line 7, after the for loop has been completed.

Tables 6.5 and 6.6 show the outcomes of the described programs, with
the two different ways of making time measurements. The names simply
refer to what kind of distribution has been used to determine the number
of times the for loop is iterated. All the distributions show good results,
since in all the cases the internal timer and the logic analyser provide very
close values for all the different tests performed on data. PPI values are
generally very high, and greater than the critical one in all cases but when
the uniform distribution is employed.

63

Chapter 6. The development of novel benchmarks

Logic analyser Time
BENCHMARK ppi cval kpss bds h ε ε pareto

tcas-sort 0.000 0.891 0.000 0.000 0.137 2.496 2.794
tcas-sort-indep 0.861 0.891 0.875 0.970 0.875 4.320 1.523

Table 6.4: Results from "tcas-sort" benchmark, obtained by measuring time
through a logic analyser.

0 1000 2000 3000 4000 5000 6000 7000

Measurements

0

500

1000

1500

2000

2500

3000

T
im

e
 (

s
)

(a) Original version

0 1000 2000 3000 4000 5000 6000 7000

Measurements

4375

4380

4385

4390

4395

4400

4405

4410

T
im

e
 (

s
)

(b) Input-independent version

Figure 6.1: Plots of time series from the two versions of "tcas-sort" benchmark,
original (a) and input-independent (b), employing the internal timer for the
measurements.

6.4 Audio compression benchmark

Starting from the timing benchmark included into Mediabench suite, we
developed a novel audio compression benchmark. The behaviour of the
original benchmark was to read data from a .wav file, compress it to have
half of the space occupied, and then do the opposite operation, i.e. to re-
build the original audio file after decompression. In the modified version
of the code, all those parts involving .wav files (both in the data retrieving
and audio file re-generation phases) have been removed, focusing on the
pure compression and decompression tasks. The input and output data
format has been changed from .wav files to arrays of short integers, so
that retrieving data directly from the file (which cannot be done by the
STM32 board) is not necessary. Even in this case, the resulting benchmark
has both been studied with random and real inputs. In the first case, the
previously described random generation function has been used, while, in

64

6.4. Audio compression benchmark

Algorithm 12: Trivial benchmarks code

1 x := 0;
2 cycles := sample_from_distribution();
3 start();
4 for i in 1 .. cycles do
5 x++;
6 end
7 stop();

Board internal timer
BENCHMARK ppi cval kpss bds h ε ε pareto

exponential 0.926 0.891 0.967 0.891 0.921 0.356 -0.232
normal 0.938 0.891 0.969 0.947 0.898 -0.230 -0.876
pareto 0.953 0.891 0.973 0.980 0.907 0.643 0.295

uniform 0.857 0.891 0.948 0.857 0.922 -0.457 -1.021
weibull 0.936 0.891 0.976 0.932 0.902 1.673 0.963

Table 6.5: Results from trivial benchmarks, obtained by measuring time through
the STM32 board internal timer.

the second case, the original version of the program was employed: the
instructions reading the input file and turning it into a numerical arrays
were used to scan chunks of 100 bytes of a real audio file, and exporting
them into a text file that could then be used as an input source for the
modified version of the benchmark.

Table 6.7 and Table 6.8 contain the results obtained by running timing
benchmark. The suffixes in the name explain which kind of data has
been used as input (randomval indicates data generated through a random
function, while in realval it has been derived from an existing audio
file). The comparison between the two different tables shows the two
different ways of measuring time lead to very similar results in terms of
PPI. It is interesting to notice there is a huge difference between the values
of the index when using random input, with respect to when a real use
of the application is simulated. In the first case, all the hypotheses are
respected, and so the test is passed, while in the second case the values
of PPI are very low, and none of the outcomes of the three tests checking
independence in the data is above the critical threshold. This difference is

65

Chapter 6. The development of novel benchmarks

Logic analyser Time
BENCHMARK ppi cval kpss bds h ε ε pareto

exponential 0.932 0.891 0.950 0.933 0.912 0.462 0.151
normal 0.938 0.891 0.969 0.947 0.898 -0.016 -0.105
pareto 0.943 0.891 0.967 0.933 0.930 0.814 0.318

uniform 0.856 0.891 0.948 0.856 0.922 0.667 -0.036
weibull 0.954 0.891 0.958 0.989 0.915 0.740 0.659

Table 6.6: Results from trivial benchmarks, obtained by measuring time through
a logic analyser.

Board internal timer
BENCHMARK ppi cval kpss bds h ε ε pareto

timing-randomval 0.954 0.891 0.960 0.952 0.949 -0.238 -2.741
timing-realval 0.093 0.891 0.253 0.353 0.684 -0.307 -2.802

Table 6.7: Results from audio compression benchmark, obtained by measuring
time through the STM32 board internal timer.

clearly visible also from the plots in Figure 6.2, that show the data taken
from the internal timer of the board: the increasing trend, that is evident in
the first executions with real values, is not present with randomly generated
values, and is one of the causes determining such a high difference in the
results. Thus, this can be taken as an example of the importance of the
concept of representativity, as explained in Section 2.1, which is critical
when performing probabilistic timing analysis: in this case, studying the
benchmark by just submitting randomly generated numerical arrays would
have brought to draw conclusions not reflecting the actual behaviour of the
program in a real-world use case (i.e. when compressing and then bringing
back to the original format a real audio file).

6.5 TCAS

The Traffic Alert and Collision Avoidance System (TCAS) is a software
helping aircraft pilots to avoid dangerous manoeuvres that could potentially
lead to a collision with other aircraft flying nearby. The preliminary
stage of the algorithm, ordering up to 20 intruders according to their
distance from the considered plane to assign higher priority to the closest

66

6.5. TCAS

Logic analyser Time
BENCHMARK ppi cval kpss bds h ε ε pareto

timing-randomval 0.937 0.891 0.972 0.935 0.905 -1.537 -1.668
timing-realval 0.157 0.891 0.448 0.367 0.658 2.921 0.106

Table 6.8: Results from audio compression benchmark, obtained by measuring
time through a logic analyser.

0 2000 4000 6000 8000 10000

Measurements

8050

8100

8150

8200

8250

T
im

e
 (

s
)

(a) Random values

0 2000 4000 6000 8000 10000

Measurements

7950

8000

8050

8100

8150

8200

T
im

e
 (

s
)

(b) Real values

Figure 6.2: Plots of time series from "timing" benchmark, employing the internal
timer of the board for the measurements and using random values (a) and real
values (b) as inputs.

ones, has already been discussed in Section 6.1. The second part of
the program consists of deciding what kind of action the pilots must
be advised to perform, in order to keep the safety conditions (i.e. a
minimum distance from the other aircraft) respected. There are some
implementations available on the web for this task that have been also
used as WCET benchmark, however, the found ones resulted very simple
and not realistic. This simplicity causes them to have too few conditional
branches determining different kinds of behaviour when different input
values are submitted. We decided then to write a new version, in order to
create a benchmark closer to a real application, following the description
of the software in [25]. There are 6 possible outputs the algorithm can
return: climb and climb at high speed, meaning the altitude of the aircraft
must be incremented (the speed is determined according to how high is the
danger of collision with the intruder); descend and descend at high speed,
similar to the previous two, but shown when the altitude must be decreased;

67

Chapter 6. The development of novel benchmarks

Board internal timer
BENCHMARK ppi cval kpss bds h ε ε pareto
tcas-randomval 0.954 0.891 0.985 0.933 0.942 1.349 -0.547

tcas-realval 0.000 0.891 0.047 0.000 0.512 0.042 -0.514

Table 6.9: Results from TCAS benchmark, obtained by measuring time through
the STM32 board internal timer.

Logic analyser Time
BENCHMARK ppi cval kpss bds h ε ε pareto
tcas-randomval 0.954 0.891 0.985 0.933 0.942 0.420 -0.120

tcas-realval 0.000 0.891 0.000 0.978 0.381 1.222 0.716

Table 6.10: Results from TCAS benchmark, obtained by measuring time through
a logic analyser.

traffic, indicating there is other aircraft nearby, but no manoeuvre is needed
to avoid it; clear, stating there is nothing in the surroundings. For the
actual software to work properly, each aircraft should send information
related to its flight status to the others, and receive the corresponding
data from the others. However, this part has not been implemented in
our benchmark, supposing the necessary information has already been
retrieved. Furthermore, the created code compares the status of the aircraft
with the one of the intruders, an operation that needs to be repeated for
each airplane flying nearby (following the priorities established in the
preliminary phase) in the real application. The input variables to the
algorithm are the coordinates of the two aircraft (in terms of latitude,
longitude and altitude), their horizontal speeds (split into x and y axes),
and the vertical ones. The algorithm has both been tested through randomly
generated input and realistic one, obtained with a flight simulator software.

In Table 6.9 and Table 6.10, the outcomes of the performed experi-
ments are shown. As it happened in the previous case, the values of the
probabilistic predictability index are very close between the internal timer
and logic analyser. Instead, there is a big difference between the outputs
coming from random input, that proves to respect the hypotheses of PPI
tests, and the ones derived from real data, that lead to a very low PPI value
(with the only difference that bds test passed with the logic analyser, while

68

6.5. TCAS

it does not with the internal timer). The reason of the different results
is clearly visible in Figure 6.3: with random values, the program keeps
behaving the same way from the beginning to the end, while real data
show different functioning modes through the 10.000 measurements, this
leading to the very low value for the PPI test, as previously seen. For fur-
ther analysis, a change detection algorithm has been written and employed
to split the set of measurements into chunks showing the same behaviour.
The algorithm works as follows: first, it loads a chunk of 20 execution
time values, computing its mean and standard deviation. After that, the
following measurements are taken one per one and added to the to the
current chunk (every time updating the previously mentioned statistical
values) unless one of the following two conditions (inspired to the Western
Electric rules) occurs:

• the difference between the following value and the current mean is
higher than three times the current standard deviation;

• at least two out of the three following values differ from the current
mean by more than two times the current standard deviation.

When it happens, it means a change of behaviour has been detected. Thus,
the previous chunk is completed, and the process restarts by creating a new
one composed by the following 20 measurements. The first 20 elements
considered when a new chunk is started, however, may contain 2 (or more)
different modes, which is undesired for our analysis. To prevent this
from happening, the ratio of the first 20 elements of the chunk and their
standard deviation is computed and, in case it is lower than 2 (indicating
too high standard deviation value with respect to the average), the window
including the values for the initialization is shifted by one, in order to
exclude the first element and substitute it with the 21st. The process is
iterated until the condition on the ratio is matched.

Running the algorithm on previously shown data, 223 different modes
are detected. PPI test can then be performed on each of the chunks the
set of data has been split into. The results are shown in Figure 6.4: the
average value of PPI is 0.759, which is much higher than the one observed
before, while the median is 0.814. Furthermore, in 56 out of the 223
cases (i.e. about the 25% of the found chunks) the value is higher than
the critical one, meaning the hypotheses are fulfilled. In any case, the

69

Chapter 6. The development of novel benchmarks

0 2000 4000 6000 8000 10000

Measurements

0.5

1

1.5

2

2.5

3

3.5

4

T
im

e
 (

s
)

10
4

(a) Random values

0 2000 4000 6000 8000 10000

Measurements

0.5

1

1.5

2

2.5

3

3.5

T
im

e
 (

s
)

10
4

(b) Real values

Figure 6.3: Plots of time series from "TCAS" benchmark, employing the internal
timer for the measurements, and using random values (a) and real values (b)
as inputs.

Figure 6.4: Plot of the PPI values of the different chunks of data of "TCAS"
benchmark.

outcome we get with realistic input is still different than what we would
have concluded by just observing results provided by random data. Thus,
after the timing benchmark described in Section 6.4, this is another proof
that when dealing with a real application, it is very important to study it
using inputs reflecting as much as possible its actual operating behaviour.
The detection and identification of the modes enable to split the input
values to different datasets, and they help to satisfy the PPI hypotheses
and, consequently, to produce a correct pWCET.

70

CHAPTER7
Experimental evaluation of the Linux

real-time patch

In this Chapter, results obtained through the employment of a Raspberry
PI 4 are presented. As already explained in Section 4.4.2, two different
configurations have been tested: benchmarks have been run on the standard
command-line Linux version Raspberry Pi OS 1.4, and then they have
been re-executed after the application of PREEMPT_RT Patch. The latter
increases time predictability by making the kernel code preemptable (with
the exception of some small critical regions), while lowering the average
throughput of the system.

7.1 PREEMPT_RT: The Linux real-time patch

The main goal of the PREEMPT_RT patch is to increase the preemptibility
degree of the kernel code, in order to increase its predictability and reduce
the latencies. It is described in detail by Reghenzani et al. in [28], and its
main features are:

71

Chapter 7. Experimental evaluation of the Linux real-time patch

• High-resolution timers (HRTs): the patch allows to instantiate timers
with a resolution in the order of nanoseconds (the actual resolution
depends on the hardware implementation). They can be enabled
or disabled at compile-time via the CONFIG_HIGH_RES_TIMERS
configuration flag, or at runtime. HRTs also enable Full Tickless
Operation: in the Linux kernel, in fact, an interrupt is triggered at
a fixed rate to update the internal structures. This recurrent event
can be disabled with the introduction of HRTs, thus decreasing extra
latencies due to the preemptions caused by the periodic timer;

• Threaded Interrupt Handlers: in Linux, each interrupt handler is
split into top-half part (hard IRQ), quickly reacting to the interrupt
and performing the most critical operations, and bottom-half part
(soft IRQ), performing additional computation. With PREEMPT_RT
patch, the top-half part can be written as a simple function waking
up the related interrupt thread, thus scheduling the bottom half part
as a regular kernel thread;

• Priority Inheritance: it is a solution to the well-known priority inver-
sion problem, in which a thread with lower priority may indirectly
preempt a higher-priority one. The idea is to increase the priority of
the low-level tasks locking resources required by higher-level ones to
the same level of the highest-priority task among the ones requiring
the same resource.

• Read-Copy-Update (RCU): this synchronization technique is partic-
ularly efficient in scenarios involving multiple readers and a single
writer. Standard read-write locks are replaced by RCU primitives,
thus preventing read-side locks from blocking, and creating multiple
versions of the resource updated by the writers;

• Memory Allocators: PREEMPT_RT employs Two-Level Segregate
Fit (TLSF) approach for memory allocation. Its main feature is
the capability to allocate memory in O(1) complexity. This allows
having bounded WCET for memory allocation operations, indepen-
dently from applications and data.

• Preemptible Spinlocks: they are a locking mechanism where a thread
continuously attempts to acquire the lock until performing it suc-

72

7.2. Experimental Results

0 2000 4000 6000 8000 10000

Measurements

0

0.5

1

1.5

2

2.5
T

im
e
 (

s
)

10
4

(a) STM32 board internal timer

0 2000 4000 6000 8000 10000

Measurements

0

5

10

15

T
im

e
 (

n
s
)

10
4

(b) Raspberry PI4 - Standard Linux

Figure 7.1: Comparison of time series from "coop" benchmark, executed on the
STM32 board (a), and on the Raspberry PI4 (b).

cessfully. This "spinning" causes a waste of CPU time and prevents
the possibility of preemption, however, it results in a benefit for the
overall performance. With the PREEMPT_RT patch, most of the
non-preemptible spinlocks are removed.

7.2 Experimental Results

7.2.1 Plain Linux

The configuration employing a Raspberry PI 4 running the standard com-
mand line Linux OS (whose results are visible in Tables 7.1, 7.2, 7.3,
7.4, 7.5, 7.6, 7.7, 7.8, and 7.9) proves not to be a good setup for time
predictability. In fact, among the 60 benchmarks that have been tested,
just 8 (i.e. about 13%) proved to respect EVT hypotheses. The reason
why this happens can be found in the high amount of dependencies and
unpredictability of the Linux kernel. This is clearly visible in Figure 7.1,
comparing the plots obtained from the internal timer of the STM32 board
and from Raspberry PI 4 with standard Linux OS. In the former, observa-
tions keep the same behaviour through all the 10.000 executions, while
in the latter at least three different modes are present, together with some
measurements higher than the general trend, caused by the previously
described unpredictable latencies.

73

Chapter 7. Experimental evaluation of the Linux real-time patch

7.2.2 PREEMPT_RT Linux

Results deriving from the application of PREEMPT_RT patch (shown
in Tables 7.10, 7.11, 7.12, 7.13, 7.14, 7.15, 7.16, 7.17, and 7.18) look
comparable with the ones we obtained through the STM32 board. However,
there are some benchmarks in which the outcome the two architectures
lead to is different. In fact, when using the Raspberry PI, the execution
times still suffer from unpredictability: from the software side, this is due
to the fact that the board relies on an OS, which introduces some spurious
latencies (e.g. preemption and interrupts); instead, for what concerns the
hardware, high-latency events are mainly given by the CPU complexity,
for instance, the fact that it is composed of four cores. Thus, different
tasks can be executed at the same time, which may cause interferences
between themselves.

Unexpected latencies have two different kinds of effects. Sometimes
they cause EVT hypotheses, that were matched when using STM32 board,
not to be respected anymore. This happens for example in benchmark
minver, whose plots can be found in Figure 7.2. Latency peaks are clearly
visible in those execution times being much higher than the average, and
outputs of statistical tests show they result in a significant decrease of
PPI value. On the contrary, in case a program showed too low variability
when executed on the STM32 board, introducing some noise can prevent
statistical tests from detecting dependence among executions, and thus
from failing, in a similar way as we have already observed when comparing
the internal timer of the board with the logic analyser. This happens for
instance in benchmark edn, which can be found in Figure 7.3.

7.2.3 Comparison & Discussion

Besides the characteristics pointed out in Section 7.1, another difference
between the two configurations the Raspberry PI 4 has been employed
with is that, with PREEMPT_RT Patch, all interrupts have been moved
to a different core than the one on which the benchmarks were executed
(excluding the few for which this was not possible). On the other hand,
with standard Linux, interrupts were left on the core they had been assigned
to by default.

All the aforementioned dissimilarities result in a decrease in the general

74

7.2. Experimental Results

0 2000 4000 6000 8000 10000

Measurements

1.1

1.2

1.3

1.4

1.5

1.6

1.7
T

im
e
 (

s
)

10
4

(a) STM32 board internal timer

0 2000 4000 6000 8000 10000

Measurements

0

0.5

1

1.5

2

2.5

3

T
im

e
 (

n
s
)

10
4

(b) Raspberry PI4 - PREEMPT_RT patch

Figure 7.2: Comparison of time series from "minver" benchmark, executed on
the STM32 board (a), and on the Raspberry PI4 with PREEMPT_RT patch
application (b).

throughput of the system when the PREEMPT_RT patch is applied, due
to the higher number of context switches. However, they introduce an
improvement in terms of time predictability. This is because the frequency
at which the execution of the programs is stopped (due to preempting
tasks or interrupts) is significantly lowered. This phenomenon is shown in
Figure 7.4, where plots related to bitcount benchmark are visible: outliers
happen more often when the program is run on the standard Linux version
(whose graph also presents three different modes, unlike the one deriving
from Real-Time patch). Seldom, however, we observe the opposite, i.e.
the highest value of PPI is obtained when the PREEMPT_RT patch is
not applied. This is, for instance, the case of qsort-exam benchmark,
shown in Figure 7.5. Outliers are still more frequent in the plot from the
standard Linux version, yet it presents the same behaviour throughout the
experiments, unlike in the previously mentioned program. Statistical tests
state in this case EVT hypotheses are respected only when PREEMPT_RT
Patch is not applied.

75

Chapter 7. Experimental evaluation of the Linux real-time patch

0 2000 4000 6000 8000 10000

Measurements

3.84

3.845

3.85

3.855

3.86

3.865

3.87

T
im

e
 (

s
)

10
4

(a) STM32 board internal timer

0 2000 4000 6000 8000 10000

Measurements

5

6

7

8

9

T
im

e
 (

n
s
)

10
4

(b) Raspberry PI4 - PREEMPT_RT patch

Figure 7.3: Comparison of time series from "edn" benchmark, executed on
the STM32 board (a), and on the Raspberry PI4 with PREEMPT_RT patch
application (b).

0 2000 4000 6000 8000 10000

Measurements

0

2

4

6

8

10

T
im

e
 (

n
s
)

10
4

(a) Standard Linux

0 2000 4000 6000 8000 10000

Measurements

0.5

1

1.5

2

2.5

3

3.5

T
im

e
 (

n
s
)

10
4

(b) PREEMPT_RT patch

Figure 7.4: Comparison of time series from "bitcount" benchmark, executed on
a Raspberry PI4 with standard Linux version (a), and PREEMPT_RT patch
application (b).

76

7.2. Experimental Results

Linux - original
BENCHMARK ppi cval kpss bds h ε ε pareto

adpcm 0.000 0.891 0.000 0.003 0.483 0.200 -0.483
basicmath 0.000 0.891 0.000 0.003 0.502 0.247 -0.246
bitcount 0.000 0.891 0.000 0.001 0.222 0.009 -0.119
bsort100 0.000 0.891 0.000 0.001 0.183 0.384 -0.415

cnt 0.000 0.891 0.000 0.000 0.182 0.642 -0.209
coop 0.000 0.891 0.000 0.524 0.437 0.432 -0.107
cover 0.000 0.891 0.000 0.001 0.188 0.833 -0.231
crc 0.000 0.891 0.000 0.997 0.321 0.791 -0.049
duff 0.012 0.891 0.016 0.999 0.624 1.623 0.000
edn 0.000 0.891 0.000 0.001 0.137 0.873 -0.364

expint 0.000 0.891 0.000 0.974 0.428 0.027 -0.025
fdct 0.000 0.891 0.000 0.001 0.323 -0.030 -0.153
fft1 0.000 0.891 0.000 0.001 0.267 2.234 -0.049

fibcall 0.008 0.891 0.016 0.598 0.611 -0.020 -0.072
fir 0.000 0.891 0.000 0.002 0.399 0.288 -0.412

fourierbench 0.000 0.891 0.000 0.001 0.189 0.452 -0.419
insertsort 0.000 0.891 0.000 0.041 0.126 -0.001 -0.128

janne-complex 0.004 0.891 0.006 0.999 0.604 0.023 -0.007
jfdctint 0.965 0.891 0.974 0.999 0.921 3.532 -0.041
lcdnum 0.792 0.891 0.846 0.829 0.893 0.022 -0.066
ludcmp 0.000 0.891 0.000 0.000 0.098 0.625 -0.187
matmult 0.000 0.891 0.000 0.001 0.215 0.885 -0.434
minver 0.000 0.891 0.000 0.008 0.236 0.039 -0.095

ndes 0.000 0.891 0.000 0.000 0.097 0.869 -0.253
prime 0.001 0.891 0.001 0.991 0.526 0.732 0.036

qsort-exam 0.960 0.891 0.942 0.996 0.940 0.033 -0.036
qurt 0.958 0.891 0.937 0.999 0.937 0.018 -0.022

recursion 0.305 0.891 0.352 0.922 0.759 4.075 1.433
select 0.952 0.891 0.971 0.947 0.937 0.009 -0.024

shadriver 0.000 0.891 0.000 0.002 0.283 0.636 -0.463
sqrt 0.000 0.891 0.000 0.063 0.175 0.032 -0.034

statemate 0.000 0.891 0.000 0.518 0.099 0.042 -0.036

Table 7.1: Results from original benchmarks, run on a Raspberry PI 4 with
standard Linux version.

77

Chapter 7. Experimental evaluation of the Linux real-time patch

Linux - fibcall
BENCHMARK ppi cval kpss bds h ε ε pareto
fibcall-original 0.008 0.891 0.016 0.598 0.611 -0.020 -0.072

fibcall-exponential 0.000 0.891 0.000 0.000 0.089 -0.399 -1.345
fibcall-normal 0.621 0.891 0.863 0.737 0.757 -0.033 -1.556
fibcall-pareto 0.000 0.891 0.000 0.422 0.196 0.029 -0.023

fibcall-uniform 0.971 0.891 0.977 0.999 0.936 3.833 -0.092
fibcall-weibull 0.000 0.891 0.000 0.000 0.100 5.346 -0.071

Table 7.2: Results from modified versions of "fibcall" benchmark, run on a
Raspberry PI 4 with standard Linux version.

Linux - minver
BENCHMARK ppi cval kpss bds h ε ε pareto
minver-original 0.000 0.891 0.000 0.008 0.236 0.039 -0.095

minver-exponential 0.000 0.891 0.000 0.000 0.067 1.716 -0.053
minver-normal 0.380 0.891 0.414 0.999 0.809 0.016 -0.004
minver-pareto 0.971 0.891 0.978 0.999 0.936 0.069 -0.005

minver-uniform 0.017 0.891 0.039 0.482 0.615 0.013 -1.483
minver-weibull 0.000 0.891 0.000 0.000 0.054 -0.383 -1.199

Table 7.3: Results from modified versions of "minver" benchmark, run on a
Raspberry PI 4 with standard Linux version.

Linux - qsort
BENCHMARK ppi cval kpss bds h ε ε pareto
qsort-original 0.960 0.891 0.942 0.996 0.940 0.033 -0.036

qsort-exponential 0.000 0.891 0.000 0.000 0.055 0.727 -0.266
qsort-normal 0.000 0.891 0.000 0.000 0.075 0.277 -0.082
qsort-pareto 0.001 0.891 0.015 0.009 0.635 0.189 -0.047

qsort-uniform 0.000 0.891 0.000 0.073 0.204 0.130 -0.075
qsort-weibull 0.000 0.891 0.000 0.709 0.169 0.035 -0.026

Table 7.4: Results from modified versions of "qsort" benchmark, run on a
Raspberry PI 4 with standard Linux version.

78

7.2. Experimental Results

Linux - sorting
BENCHMARK ppi cval kpss bds h ε ε pareto

insertsort-original 0.000 0.891 0.000 0.041 0.126 -0.001 -0.128
insertsort-indep 0.000 0.891 0.000 0.001 0.131 0.252 -0.078
qsort-original 0.960 0.891 0.942 0.996 0.940 0.033 -0.036
qsort-indep 0.000 0.891 0.000 0.001 0.084 0.735 -0.321

Table 7.5: Results from sorting benchmarks, run on a Raspberry PI 4 with
standard Linux version.

Linux - TCAS-sort
BENCHMARK ppi cval kpss bds h ε ε pareto

tcas-sort 0.000 0.891 0.000 0.000 0.401 0.064 -0.001
tcas-sort-indep 0.000 0.891 0.000 0.000 0.106 1.074 -0.053

Table 7.6: Results from "TCAS-sort" benchmark, run on a Raspberry PI 4 with
standard Linux version.

Linux - trivial
BENCHMARK ppi cval kpss bds h ε ε pareto

exponential 0.000 0.891 0.000 0.607 0.472 0.546 0.077
normal 0.000 0.891 0.000 0.025 0.107 0.016 -0.363
pareto 0.913 0.891 0.907 0.930 0.902 1.099 0.442

uniform 0.000 0.891 0.000 0.217 0.294 -0.006 -0.183
weibull 0.931 0.891 0.896 0.989 0.909 2.049 1.376

Table 7.7: Results from trivial benchmarks, run on a Raspberry PI 4 with
standard Linux version.

Linux - TCAS
BENCHMARK ppi cval kpss bds h ε ε pareto
tcas-randomval 0.870 0.891 0.988 0.870 0.927 0.272 -0.025

tcas-realval 0.000 0.891 0.000 0.001 0.301 0.402 -0.013

Table 7.8: Results from "TCAS" benchmark, run on a Raspberry PI 4 with
standard Linux version.

79

Chapter 7. Experimental evaluation of the Linux real-time patch

Linux - timing
BENCHMARK ppi cval kpss bds h ε ε pareto

timing-randomval 0.000 0.891 0.000 0.000 0.054 1.015 -0.171
timing-realval 0.000 0.891 0.000 0.000 0.169 0.000 -0.082

Table 7.9: Results from audio compression benchmark, run on a Raspberry PI 4
with standard Linux version.

0 2000 4000 6000 8000 10000

Measurements

0

2

4

6

8

10

12

T
im

e
 (

n
s
)

10
4

(a) Standard Linux

0 2000 4000 6000 8000 10000

Measurements

0

2

4

6

8

10

12

T
im

e
 (

n
s
)

10
4

(b) PREEMPT_RT patch

Figure 7.5: Comparison of time series from "qsort-exam" benchmark, executed
on a Raspberry PI4 with standard Linux version (a), and PREEMPT_RT patch
application (b).

80

7.2. Experimental Results

PREEMPT_RT - original
BENCHMARK ppi cval kpss bds h ε ε pareto

adpcm 0.848 0.891 0.943 0.848 0.897 0.068 -0.460
basicmath 0.981 0.891 0.987 0.996 0.960 0.126 0.019
bitcount 0.961 0.891 0.952 0.996 0.935 0.010 -0.252
bsort100 0.000 0.891 0.331 0.000 0.612 -0.190 -1.354

cnt 0.455 0.891 0.986 0.455 0.946 -0.100 -2.664
coop 0.942 0.891 0.949 0.977 0.899 0.286 -0.203
cover 0.971 0.891 0.972 0.997 0.945 0.076 -0.216
crc 0.975 0.891 0.985 0.998 0.941 0.084 -0.142
duff 0.492 0.891 0.522 0.999 0.834 0.049 -0.058
edn 0.973 0.891 0.992 0.970 0.958 0.140 -0.875

expint 0.957 0.891 0.986 0.951 0.934 0.400 -0.700
fdct 0.872 0.891 0.939 0.998 0.872 0.107 -0.109
fft1 0.960 0.891 0.945 0.999 0.937 0.058 -0.021

fibcall 0.623 0.891 0.718 0.793 0.852 -0.048 -0.119
fir 0.872 0.891 0.997 0.872 0.965 0.076 -1.778

fourierbench 0.109 0.891 0.935 0.111 0.866 0.010 -0.203
insertsort 0.872 0.891 0.957 0.872 0.925 -0.240 -1.364

janne-complex 0.967 0.891 0.966 0.999 0.936 4.462 -0.029
jfdctint 0.668 0.891 0.762 0.993 0.767 2.631 -0.233
lcdnum 0.963 0.891 0.952 0.999 0.936 0.016 -0.022
ludcmp 0.422 0.891 0.704 0.576 0.792 0.015 -0.252
matmult 0.967 0.891 0.965 0.999 0.936 0.346 0.017
minver 0.531 0.891 0.572 0.839 0.868 0.005 -0.112

ndes 0.108 0.891 0.238 0.403 0.778 0.117 -0.454
prime 0.967 0.891 0.987 0.977 0.937 1.234 -0.027

qsort-exam 0.597 0.891 0.621 0.867 0.877 0.015 -0.088
qurt 0.935 0.891 0.950 0.947 0.907 0.003 -0.167

recursion 0.925 0.891 0.919 0.960 0.897 2.331 1.371
select 0.958 0.891 0.951 0.986 0.938 -0.015 -0.116

shadriver 0.971 0.891 0.993 0.973 0.948 0.113 -0.853
sqrt 0.846 0.891 0.966 0.846 0.933 0.019 -0.060

statemate 0.953 0.891 0.930 0.999 0.930 0.073 -0.041

Table 7.10: Results from original benchmarks, run on a Raspberry PI 4 with
PREEMPT_RT Patch application.

81

Chapter 7. Experimental evaluation of the Linux real-time patch

PREEMPT_RT - fibcall
BENCHMARK ppi cval kpss bds h ε ε pareto
fibcall-original 0.623 0.891 0.718 0.793 0.852 -0.048 -0.119

fibcall-exponential 0.651 0.891 0.940 0.651 0.923 -0.178 -2.731
fibcall-normal 0.952 0.891 0.980 0.940 0.935 0.164 -1.870
fibcall-pareto 0.948 0.891 0.911 1.000 0.933 4.843 -0.084

fibcall-uniform 0.951 0.891 0.917 0.999 0.936 0.042 -0.058
fibcall-weibull 0.955 0.891 0.929 0.999 0.936 0.019 -0.054

Table 7.11: Results from the modified versions of "fibcall" benchmark, run on a
Raspberry PI 4 with PREEMPT_RT Patch application.

PREEMPT_RT - minver
BENCHMARK ppi cval kpss bds h ε ε pareto
minver-original 0.531 0.891 0.572 0.839 0.868 0.005 -0.112

minver-exponential 0.971 0.891 0.978 0.999 0.936 0.025 -0.016
minver-normal 0.955 0.891 0.931 0.999 0.936 0.030 -0.014
minver-pareto 0.557 0.891 0.951 0.557 0.947 0.004 -0.426

minver-uniform 0.000 0.891 0.000 0.042 0.317 -0.046 -1.526
minver-weibull 0.970 0.891 0.975 0.999 0.936 0.046 -0.019

Table 7.12: Results from modified versions of "minver" benchmarks, run on a
Raspberry PI 4 with PREEMPT_RT Patch application.

PREEMPT_RT - qsort
BENCHMARK ppi cval kpss bds h ε ε pareto
qsort-original 0.597 0.891 0.621 0.867 0.877 0.015 -0.088

qsort-exponential 0.411 0.891 0.435 0.970 0.835 0.000 -0.582
qsort-normal 0.873 0.891 0.873 0.924 0.891 -0.109 -0.562
qsort-pareto 0.862 0.891 0.862 0.983 0.901 0.098 -0.196

qsort-uniform 0.889 0.891 0.889 0.975 0.911 -0.073 -0.199
qsort-weibull 0.960 0.891 0.944 0.999 0.935 0.254 -0.100

Table 7.13: Results from modified versions of "qsort" benchmarks, run on a
Raspberry PI 4 with PREEMPT_RT Patch application.

82

7.2. Experimental Results

PREEMPT_RT - sorting
BENCHMARK ppi cval kpss bds h ε ε pareto

insertsort-original 0.872 0.891 0.957 0.872 0.925 -0.240 -1.364
insertsort-indep 0.966 0.891 0.995 0.950 0.953 0.009 -0.092
qsort-original 0.597 0.891 0.621 0.867 0.877 0.015 -0.088
qsort-indep 0.730 0.891 0.751 0.953 0.864 0.021 -0.286

Table 7.14: Results from sorting benchmarks, run on a Raspberry PI 4 with
PREEMPT_RT Patch application.

PREEMPT_RT - TCAS-sort
BENCHMARK ppi cval kpss bds h ε ε pareto

tcas-sort 0.000 0.891 0.000 0.000 0.309 -0.040 -0.171
tcas-sort-indep 0.016 0.891 0.166 0.074 0.682 0.166 -0.245

Table 7.15: Results from TCAS-sort benchmarks, run on a Raspberry PI 4 with
PREEMPT_RT Patch application.

PREEMPT_RT - trivial
BENCHMARK ppi cval kpss bds h ε ε pareto

exponential 0.931 0.891 0.948 0.935 0.911 0.483 -0.003
normal 0.937 0.891 0.965 0.948 0.896 -0.079 -0.373
pareto 0.941 0.891 0.963 0.931 0.928 1.134 0.433

uniform 0.866 0.891 0.946 0.866 0.924 -0.152 -0.292
weibull 0.953 0.891 0.957 0.987 0.913 2.060 1.369

Table 7.16: Results from trivial benchmarks, run on a Raspberry PI 4 with
PREEMPT_RT Patch application.

PREEMPT_RT - TCAS
BENCHMARK ppi cval kpss bds h ε ε pareto
tcas-randomval 0.852 0.891 0.956 0.852 0.922 0.127 -0.127

tcas-realval 0.024 0.891 0.794 0.031 0.758 0.042 -0.025

Table 7.17: Results from "TCAS" benchmark, run on a Raspberry PI 4 with
PREEMPT_RT Patch application.

83

Chapter 7. Experimental evaluation of the Linux real-time patch

PREEMPT_RT - timing
BENCHMARK ppi cval kpss bds h ε ε pareto

timing-randomval 0.088 0.891 0.114 0.809 0.735 -0.001 -0.846
timing-realval 0.025 0.891 0.390 0.070 0.609 0.004 -0.230

Table 7.18: Results from audio compression benchmark, run on a Raspberry PI
4 with PREEMPT_RT Patch application.

84

CHAPTER8
Future Works and Conclusions

In this final section, we present the possible future research activities
regarding the WCET benchmarks and their application in probabilistic
timing analyses. Then, the conclusions of this thesis are drawn.

8.1 Future Works

In this work, we limited the analysis to WCET benchmarks whose source
code is publicly available. For this reason, one of the possible future works
is to statistically analyse other already existing benchmarks, belonging
to different suites than the ones we have considered. Furthermore, new
programs to test probabilistic timing analyses (and in particular MBPTA)
could be created, starting from the ones already contained in the common
benchmark collections, or even by writing them from scratch. Particular
importance should be given to real applications and code linked to the
industrial world. Further experiments could be performed through the
employment of different hardware architectures or setups than the ones
shown in this thesis.

85

Chapter 8. Future Works and Conclusions

More complex techniques for making benchmarks’ execution time
independent from input values are promising and, consequently, are good
candidates for future studies. The body of the so-called trivial benchmarks
could be enriched with other instructions than the only increment of a
variable, that may have a different impact depending on the architecture.
Finally, more focus could be given to the statistical hypotheses (described
in Section 2.1.3) that have not been considered in this thesis: the MDA
and representativity hypotheses. The dataset of observed execution times
of all the experiments run in this work has been made public for further
analyses1, including the verification of these two hypotheses.

8.2 Conclusions

This thesis was focused on the probabilistic analysis of WCET benchmarks.
We started our study from the programs belonging to already existing
suites (in particular Mälardalen WCET benchmark suite), statistically
characterizing them through their PPI value, and proving that most of
them did not respect EVT hypotheses, a condition that is necessary for the
correct computation of the pWCET. After that, we moved to the creation
of new benchmarks, to form a new suite for probabilistic analyses. The
first set was obtained by introducing randomness on certain benchmark
parameters (such as the size of matrixes and arrays, or the number of
iterations to be performed), according to specific distributions. This was
done to test the ability to fulfil the hypotheses according to the change
of the benchmark and input parameters. Then, we revised the code of
some benchmarks performing the sorting of numerical arrays, with the
goal to make their execution time less dependent on the input values.
These modifications showed a great improvement in the EVT hypotheses’
satisfaction, and they can, consequently, inspire future works to make
existing applications compliant with EVT. The last programs presented
in this work, instead, were written from scratch. We started with trivial
benchmarks – composed of a for loop incrementing the value of an integer
value each time –, whose number of iterations was determined by sampling
from different distributions. This allowed us to test how the specific
distributions’ impacts on PPI. Finally, we developed some real applications,

1URL: https://doi.org/10.5281/zenodo.4024316

86

https://doi.org/10.5281/zenodo.4024316

8.2. Conclusions

in particular one performing compression and decompression of audio files,
and two derived from different stages of the TCAS algorithm. Thanks
to these applications, we showed the limits of probabilistic real-time,
when it is applied without proper preliminary considerations, such as the
introduction of input-independent code.

All the benchmarks have been tested on different architectures (i.e. a
STM32L010RB microcontroller and a Raspberry PI 4), and with different
setups (i.e. measuring time with the internal timer and with a logic analyser
in the case of STM32 board, and with and without the application of
PREEMPT_RT patch in the case of Raspberry PI board). These hardware
and software configurations allowed us to explore the behaviour of the
statistical metrics on different scenarios.

87

Appendices

89

APPENDIXA
List of Benchmarks

In this section, the list of all the benchmarks considered in this thesis is
shown, specifying which suite they have been taken from. Also, for each
benchmark suite some information is provided.

Benchmark Type Suite
adpcm pseudo-app Mälardalen

basicmath synthetic MiBench
bitcount synthetic MiBench
bsort100 synthetic Mälardalen

cnt synthetic Mälardalen
compress pseudo-app Mälardalen

coop synthetic WTC14
cover synthetic Mälardalen
crc pseudo-app Mälardalen
duff synthetic Mälardalen
edn pseudo-app Mälardalen

expint synthetic Mälardalen

91

Appendix A. List of Benchmarks

Benchmark Type Suite
exponentialBenchmark trivial Custom

fdct pseudo-app Mälardalen
fft1 pseudo-app Mälardalen

fibcall synthetic Mälardalen
fibcall-exponential synthetic Mälardalen custom

fibcall-normal synthetic Mälardalen custom
fibcall-pareto synthetic Mälardalen custom

fibcall-uniform synthetic Mälardalen custom
fibcall-weibull synthetic Mälardalen custom

fir pseudo-app Mälardalen
fourierbench synthetic MiBench

insertsort synthetic Mälardalen
insertsort-indep pseudo-app Mälardalen
janne-complex synthetic Mälardalen

jfdctint pseudo-app Mälardalen
lcdnum synthetic Mälardalen
ludcmp pseudo-app Mälardalen
matmult synthetic Mälardalen
minver synthetic Mälardalen

minver-exponential synthetic Mälardalen custom
minver-normal synthetic Mälardalen custom
minver-pareto synthetic Mälardalen custom

minver-uniform synthetic Mälardalen custom
minver-weibull synthetic Mälardalen custom

ndes pseudo-app Mälardalen
normalBenchmark trivial Custom
paretoBenchmark trivial Custom

prime synthetic Mälardalen
qsort-exam synthetic Mälardalen

qsort-exponential synthetic Mälardalen custom
qsort-indep synthetic Mälardalen custom

qsort-normal synthetic Mälardalen custom
qsort-pareto synthetic Mälardalen custom

qsort-uniform synthetic Mälardalen custom

92

Benchmark Type Suite
qsort-weibull synthetic Mälardalen custom

qurt synthetic Mälardalen
recursion synthetic Mälardalen

select synthetic Mälardalen
shadriver synthetic MiBench

sqrt synthetic Mälardalen
statemate real-app Mälardalen

tcas-randomvalues real-app Custom
tcas-realvalues real-app Custom

tcas-sort real-app Custom
tcas-sort-indep real-app Custom

timing-randomval real-app Mediabench custom
timing-realval real-app Mediabench custom

ud pseudo-app Mälardalen
uniformBenchmark trivial Custom
weibullBenchmark trivial Custom

Suite Link License
Mälardalen
[16]

http://www.mrtc.mdh.se/
projects/wcet/benchmarks.html

GPL

MediaBench
[20]

https://cs.slu.edu/~fritts/
mediabench/

LLVM

MiBench
[23]

http://vhosts.eecs.umich.edu/
mibench//index.html

FREE with no
restrictions

WTC’14
https://github.com/t-crest/
patmos-benchmarks/tree/master/
WTC14-misc

-

93

http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
https://cs.slu.edu/~fritts/mediabench/
https://cs.slu.edu/~fritts/mediabench/
http://vhosts.eecs.umich.edu/mibench//index.html
http://vhosts.eecs.umich.edu/mibench//index.html
https://github.com/t-crest/patmos-benchmarks/tree/master/WTC14-misc
https://github.com/t-crest/patmos-benchmarks/tree/master/WTC14-misc
https://github.com/t-crest/patmos-benchmarks/tree/master/WTC14-misc

APPENDIXB
Histograms

In this section, histograms showing the distribution of the execution times
of all the benchmarks discussed in this Thesis are shown. In particular,
the plots refer to the measurements deriving from the employment of the
internal timer of the STM32 board.

adpcm basicmath

95

Appendix B. Histograms

bitcount bsort100

cnt compress

coop cover

crc duff

96

edn expint

exponentialBenchmark fdct

fft1 fibcall

fibcall-exponential fibcall-normal

97

Appendix B. Histograms

fibcall-pareto fibcall-uniform

fibcall-weibull fir

fourierbench insertsort

insertsort-indep janne-complex

98

jfdctint lcdnum

ludcmp matmult

minver minver-exponential

minver-normal minver-pareto

99

Appendix B. Histograms

minver-uniform minver-weibull

ndes normalBenchmark

paretoBenchmark prime

qsort-exam qsort-exponential

100

qsort-indep qsort-normal

qsort-pareto qsort-uniform

qsort-weibull qurt

recursion select

101

Appendix B. Histograms

shadriver sqrt

statemate tcas-randomval

tcas-realvalues tcas-sort

102

tcas-sort-indep timing-randomval

timing-realval ud

uniformBanchmark weibullBenchmark

103

Bibliography

[1] J. Abella, D. Hardy, I. Puaut, E. Quiñones, and F. J. Cazorla. On the comparison of
deterministic and probabilistic wcet estimation techniques. In 2014 26th Euromicro
Conference on Real-Time Systems, pages 266–275, 2014.

[2] Jaume Abella, Maria Padilla, Joan Del Castillo, and Francisco J. Cazorla.
Measurement-based worst-case execution time estimation using the coefficient
of variation. ACM Trans. Des. Autom. Electron. Syst., 22(4), June 2017.

[3] Kostiantyn Berezovskyi, Luca Santinelli, Konstantinos Bletsas, and Eduardo Tovar.
Wcet measurement-based and extreme value theory characterisation of cuda kernels.
In Proceedings of the 22nd International Conference on Real-Time Networks and
Systems, RTNS ’14, pages 279–288, New York, NY, USA, 2014. Association for
Computing Machinery.

[4] A. Burns and S. Edgar. Predicting computation time for advanced processor
architectures. In Proceedings 12th Euromicro Conference on Real-Time Systems.
Euromicro RTS 2000, pages 89–96, 2000.

[5] L. Cucu-Grosjean, L. Santinelli, M. Houston, C. Lo, T. Vardanega, L. Kosmidis,
J. Abella, E. Mezzetti, E. Quiñones, and F. J. Cazorla. Measurement-based proba-
bilistic timing analysis for multi-path programs. In 2012 24th Euromicro Conference
on Real-Time Systems, pages 91–101, 2012.

[6] Robert H Dennard, Fritz H Gaensslen, Hwa-Nien Yu, V Leo Rideout, Ernest
Bassous, and Andre R LeBlanc. Design of ion-implanted mosfet’s with very small
physical dimensions. IEEE Journal of Solid-State Circuits, 9(5):256–268, 1974.

[7] S. Edgar and A. Burns. Statistical analysis of wcet for scheduling. In Proceedings
22nd IEEE Real-Time Systems Symposium (RTSS 2001) (Cat. No.01PR1420), pages
215–224, 2001.

105

Bibliography

[8] Heiko Falk, Sebastian Altmeyer, Peter Hellinckx, Björn Lisper, Wolfgang Puffitsch,
Christine Rochange, Martin Schoeberl, Rasmus Sørensen, Peter Wägemann, and Si-
mon Wegener. Taclebench: a benchmark collection to support worst-case execution
time research. 01 2016.

[9] Ronald Aylmer Fisher and Leonard Henry Caleb Tippett. Limiting forms of the fre-
quency distribution of the largest or smallest member of a sample. In Mathematical
Proceedings of the Cambridge Philosophical Society, volume 24, pages 180–190.
Cambridge University Press, 1928.

[10] William Fornaciari, Giovanni Agosta, David Atienza, Carlo Brandolese, Leila
Cammoun, Luca Cremona, Alessandro Cilardo, Albert Farres, José Flich, Carles
Hernandez, Michal Kulchewski, Simone Libutti, José Maria Martínez, Giuseppe
Massari, Ariel Oleksiak, Anna Pupykina, Federico Reghenzani, Rafael Tornero,
Michele Zanella, Marina Zapater, and Davide Zoni. Reliable power and time-
constraints-aware predictive management of heterogeneous exascale systems. In
Proceedings of the 18th International Conference on Embedded Computer Systems:
Architectures, Modeling, and Simulation, SAMOS ’18, pages 187–194, New York,
NY, USA, 2018. Association for Computing Machinery.

[11] Matteo Fusi, Fabio Mazzocchetti, Albert Farres, Leonidas Kosmidis, Ramon Canal,
Francisco J. Cazorla, and Jaume Abella. On the use of probabilistic worst-case
execution time estimation for parallel applications in high performance systems.
Mathematics, 8(3):314, Mar 2020.

[12] Lima G. and Bate. I. Valid application of evt in timing analysis by randomising
execution time measurements. In Proceedings of the IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2017.

[13] Boris Vladimirovich Gnedenko. On a local limit theorem of the theory of probability.
Uspekhi Matematicheskikh Nauk, 3(3):187–194, 1948.

[14] David Griffin and Alan Burns. Realism in Statistical Analysis of Worst Case
Execution Times. In Björn Lisper, editor, 10th International Workshop on Worst-
Case Execution Time Analysis (WCET 2010), volume 15 of OpenAccess Series in
Informatics (OASIcs), pages 44–53, Dagstuhl, Germany, 2010. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik. The printed version of the WCET’10 proceedings
are published by OCG (www.ocg.at) - ISBN 978-3-85403-268-7.

[15] Fabrice Guet, Luca Santinelli, and Jérôme Morio. On the Reliability of the Prob-
abilistic Worst-Case Execution Time Estimates. In 8th European Congress on
Embedded Real Time Software and Systems (ERTS 2016), TOULOUSE, France,
January 2016.

[16] Jan Gustafsson, Adam Betts, Andreas Ermedahl, and Björn Lisper. The mälardalen
wcet benchmarks: Past, present and future. volume 15, pages 136–146, 01 2010.

106

Bibliography

[17] J. Hansen, S. A. Hissam, and G. A. Moreno. Statistical-based wcet estimation and
validation. In Proceedings of the Workshop on Worst-Case Execution Time Analysis
(WCET), volume 252, 2009.

[18] M Ross Leadbetter, Georg Lindgren, and Holger Rootzén. Conditions for the
convergence in distribution of maxima of stationary normal processes. Stochastic
Processes and their Applications, 8(2):131–139, 1978.

[19] Pierre L’Ecuyer. Tables of maximally equidistributed combined lfsr generators.
Mathematics of computation, 68(225):261–269, 1999.

[20] Chunho Lee, Miodrag Potkonjak, and William Mangione-Smith. Mediabench: A
tool for evaluating and synthesizing multimedia and communicatons systems. pages
330–335, 12 1997.

[21] G. Lima and I. Bate. Valid application of evt in timing analysis by randomising
execution time measurements. In 2017 IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), pages 187–198, 2017.

[22] G. Lima, D. Dias, and E. Barros. Extreme value theory for estimating task execution
time bounds: A careful look. In Proceedings of the Euromicro Conference on Real-
Time Systems (ECRTS), 2016.

[23] Guthaus Matthew R., Ringenberg Jeffrey S., Ernst Dan, Austin Todd M., Mudge
Trevor, and Brown Richard B. Mibench: A free, commercially representative
embedded benchmark suite. In IEEE 4th Annual Workshop on Workload Charac-
terization, 12 2001.

[24] C. Maxim, A. Gogonel, I. Asavoae, M. Asavoae, and L. Cucu-Grosjean. Re-
producibility and representativity: Mandatory properties for the compositionality
of measurement-based wcet estimation approaches. SIGBED Rev., 14(3):24–31,
November 2017.

[25] César Munoz, Anthony Narkawicz, and James Chamberlain. A tcas-ii resolution
advisory detection algorithm. In AIAA Guidance, Navigation, and Control (GNC)
Conference, page 4622, 2013.

[26] Lara Premi, Federico Reghenzani, Giuseppe Massari, and William Fornaciari. A
game theory approach to heterogeneous resource management. In Proceedings of
the International Conference on Embedded Software Companion, EMSOFT ’20.
Association for Computing Machinery, 2020.

[27] F. Reghenzani, G. Massari, and W. Fornaciari. The misconception of exponential
tail upper-bounding in probabilistic real time. IEEE Embedded Systems Letters,
11(3):77–80, 2019.

[28] Federico Reghenzani, Giuseppe Massari, and William Fornaciari. The real-time
linux kernel: A survey on preempt_rt. ACM Comput. Surv., 52(1), February 2019.

107

Bibliography

[29] Federico Reghenzani, Giuseppe Massari, and William Fornaciari. Probabilistic-wcet
reliability: Statistical testing of evt hypotheses. Microprocessors and Microsystems,
77:103135, 2020.

[30] Federico Reghenzani, Giuseppe Massari, William Fornaciari, and Andrea Galim-
berti. Probabilistic-wcet reliability: On the experimental validation of evt hypothe-
ses. In Proceedings of the International Conference on Omni-Layer Intelligent
Systems, COINS ’19, pages 229–234, New York, NY, USA, 2019. Association for
Computing Machinery.

[31] Federico Reghenzani, Luca Santinelli, and William Fornaciari. Why statistical
power matters for probabilistic real-time: Work-in-progress. In Proceedings of the
International Conference on Embedded Software Companion, EMSOFT ’19, New
York, NY, USA, 2019. Association for Computing Machinery.

[32] Federico Reghenzani, Luca Santinelli, and William Fornaciari. Dealing with
uncertainty in pWCET estimations. ACM Trans. Embed. Comput. Syst., 19(5),
2020.

[33] Luca Santinelli and Zhishan Guo. On the criticality of probabilistic worst-case
execution time models. In Kim Guldstrand Larsen, Oleg Sokolsky, and Ji Wang,
editors, Dependable Software Engineering. Theories, Tools, and Applications, pages
59–74, Cham, 2017. Springer International Publishing.

[34] Luca Santinelli, Jérôme Morio, Guillaume Dufour, and Damien Jacquemart. On
the Sustainability of the Extreme Value Theory for WCET Estimation. In Heiko
Falk, editor, 14th International Workshop on Worst-Case Execution Time Analysis,
volume 39 of OpenAccess Series in Informatics (OASIcs), pages 21–30, Dagstuhl,
Germany, 2014. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

108

	List of Figures
	List of Tables
	Acronyms
	Acknowledgments
	Abstract
	Abstract (in Italiano)
	Introduction
	Embedded systems and Real-Time systems
	The WCET problem
	The hardware complexity

	Timing analyses techniques
	Traditional techniques
	Probabilistic timing analysis

	Motivation and contribution of this thesis
	Motivation
	Contribution
	Structure

	Background knowledge
	Probabilistic Real-Time computing
	The pWCET distribution
	The Extreme Value Theory
	The EVT hypotheses
	Application of EVT to pWCET problem

	Statistical tests
	Probabilistic Predictability Index
	PPI construction

	State of the Art
	Measurement Based Probabilistic Timing Analyses
	WCET benchmarks
	Mälardalen WCET
	TACLeBench
	MiBench

	Methodology and Experimental Framework
	Overview of the experiments
	Benchmark preparation
	Input generation
	Execution time measurements

	STM32 Nucleo Board
	Hardware architecture
	Code structure
	Setup for Real Applications

	Raspberry PI
	Hardware architecture
	Software configuration

	Experiments on the STM32 Board
	Original benchmarks
	Experimental setup
	Methodology of the experiments
	Results
	Discussion
	Final considerations

	Modified benchmarks
	Fibcall
	Minver
	Qsort-exam
	Final considerations

	The development of novel benchmarks
	Making the original benchmarks input-independent
	TCAS-sort
	A loop-based benchmark
	Audio compression benchmark
	TCAS

	Experimental evaluation of the Linux real-time patch
	PREEMPT_RT: The Linux real-time patch
	Experimental Results
	Plain Linux
	PREEMPT_RT Linux
	Comparison & Discussion

	Future Works and Conclusions
	Future Works
	Conclusions

	Appendices
	List of Benchmarks
	Histograms
	Bibliography

