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Abstract 

Bipolar disorder (BD) is a chronic and disabling mood disorder, characterized by a 

heterogeneous clinical and symptomatological presentation and a diagnosis latency 

of 5 to 10 years. Identifying objective neurobiological markers for BD, such as those 

based on neuroimaging data, might help improve the diagnosis sensitivity by 

translating quantitative knowledge to clinical practice.  A vast amount of 

neuroscientific literature has reported neuroanatomical alterations correlating with 

BD, although evidence is fragmented. Machine Learning (ML), as a multivariate 

statistical method, has become a widely used approach to investigate biological 

markers and build predictive models for clinical diagnosis. Nevertheless, limitations 

have hampered their development and application, such as the large number of cases 

required for the training process and the lack of domain relevance of most models, 

being characterized as “black box”, providing no insight into disease 

pathophysiology mechanisms. In the present study, for the first time, we experiment 

an alternative approach for the automatic detection of BD, based on structural 

neuroimaging data, using an Autoencoder-based (AE) normative model, trained 

solely on healthy controls’ (HC) data devoid of confounding factors. We use a 

multisite 3T structural Magnetic Resonance Imaging (sMRI) dataset composed of 605 

HC and 558 BD, from which we extract brain morphological features and design both 

an internal and external validation framework, to evaluate the model’s 

discriminative power and generalizability. To eliminate confounding effects in the 

sMRI data, we compare different multisite data harmonization options using the 

ComBat tool combined with biological covariates correction. We conclude that 

estimating ComBat center effects solely in the training set, via a CV framework, leads 

to an effective harmonization of training, test, and external set. After being trained 

and tested on HC data, the AE model is employed in an anomaly detection 

framework on BD data, using the reconstruction error to spot deviating samples, 

achieving an AUC of 0.51 for BD discrimination, using all brain features. With the 

proposed model, we then identify BD neuroanatomical deviating features and assess 

if they help increase the discriminatory power, achieving an AUC of 0.61 in the 

external set, higher than the AUC obtained in a traditional SVM approach. 

Key-words: Normative Model, Anomaly Detection, Bipolar Disorder, Multisite Data 
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Abstract in lingua italiana 

Il disturbo bipolare (BD) è un disturbo dell'umore cronico e invalidante, 

caratterizzato da una presentazione clinica e sintomatologica eterogenea e da una 

latenza della diagnosi che si stima dai 5 ai 10 anni. L'identificazione di marcatori 

neurobiologici oggettivi relativi al BD, come quelli basati sui dati di neuroimaging, 

potrebbero aiutare a migliorare la qualità della diagnosi traducendo le conoscenze 

quantitative estratte nella pratica clinica. Una vasta quantità di letteratura 

neuroscientifica ha riportato alterazioni neuroanatomiche correlate al BD, sebbene le 

prove siano frammentate. L’utilizzo di tecniche di Machine Learning (ML), come 

metodo statistico multivariato, è diventato un approccio ampiamente utilizzato per 

studiare i marcatori biologici e costruire modelli predittivi per la diagnosi clinica di 

specifichi patologie. Tuttavia, tali tecniche sono associate a specifiche limitazioni 

proprio relative alla modalità operative di tipo “black-box”, a scatola nera, che rende 

i processi computazioni e i meccanismi di predizione di specifiche patologie non 

totalmente trasparenti. In questo studio, per la prima volta, verrà sperimentato un 

approccio alternativo per la detezione automatica di BD, basato su dati di 

neuroimaging strutturale, utilizzando un modello normativo basato su Autoencoder 

(AE), addestrato esclusivamente su dati di controlli sani (HC) privi di fattori 

confondenti. Abbiamo utilizzato un set di dati 3T strutturale di risonanza magnetica 

(sMRI) composto da 605 HC e 558 BD, da cui abbiamo estratto le caratteristiche 

morfologiche del cervello e progettiamo un framework di convalida sia interno che 

esterno, per valutare il potere discriminativo e la generalizzabilità del modello. Per 

eliminare gli effetti confondenti nei dati sMRI, abbiamo confrontato diverse opzioni 

di armonizzazione dei dati multicentrici utilizzando il toolbox di ComBat combinato 

con la correzione di covariate biologiche. Concludiamo che la stima e la rimozione 

degli effetti centro ottenuta da ComBat esclusivamente nel training set, tramite un 

framework CV, porta a un'efficace armonizzazione nel training, test set e dataset 

esterno indipendente. Dopo essere stato addestrato e testato sui dati HC, il modello 

AE è stato impiegato in un framework di rilevamento delle anomalie sui dati BD, 

utilizzando l'errore di ricostruzione per individuare i soggetti che deviano dal 

modello normativo, ottenendo un AUC di 0,51 per la discriminazione del BD, 

utilizzando tutte le caratteristiche cerebrali. Con il modello proposto, si identificano 
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quindi le caratteristiche neuroanatomiche  dei BD che deviano rispetto al modello 

normativo (i.e., modellizzato su HC), per poi valutare il relativo potere 

discriminatorio, raggiungendo un'AUC di 0,61 nel dataset esterno indipendente, 

superiore all'AUC ottenuta con un approccio SVM tradizionale. 

Parole chiave: Modello Normativo, Identificazione Caratteristiche Anomale, 

Disturbo Bipolare, Dati multicentrici. 
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1. Introduction 

The argument of this thesis aligns with current concern in tackling the 

underdevelopment of Psychiatry methods for objective diagnostics and treatment. 

Precision medicine is a reality in almost all fields of medical specializations, but 

Psychiatry and Neuro-related specializations have experienced a significant delay in 

transitioning to this framework, due to an intrinsic disadvantage: the complexity of 

the brain. How biology and physiology affect behavior and personality is a complex 

field of study. There are entangled relationships between genetics and environmental 

factors such as nutrition, physical activity, and family environment, through 

epigenetics, which come to play to shape our personality, resilience to stress, and 

adaptation capacity. Brain disorders can be a combination of underlying etiologies 

that are very complex to disentangle, so researchers and doctors cannot pinpoint 

which of the individual systems are contributing to the pathogenesis process. 

Moreover, psychiatric disorders have severe consequences on those who suffer from 

them, on the health system, and on the economic system, yet, history shows us that 

they were not paid the necessary attention. There is an inability to provide a fast and 

accurate diagnosis which leads to an immense delay in defining a proper treatment 

plan. Currently, the practice of psychiatry uses a diagnosis tool book, Diagnostic and 

Statistical Manual of Mental Disorders (DSM–5), or ICD-10-CM, which guides 

psychiatrists in the diagnosis of their patients by categorizing disorders with a set of 

symptoms so that criteria checkpoints can be met. However, the knowledge gathered 

so far by clinicians and researchers has shown that many disorders categorize in the 

DSM have similar symptoms which leads to the conception that there is a continuum 

spectrum that blurs the frontiers between several disorders. These overlapping 

symptoms make it hard for a psychiatrist to nail the correct diagnosis and therapy. It 

is in this gap that lies the need for evidence-based approaches to help increase the 

accuracy and the speed of psychiatry disorders diagnosis. To bring precision to 

psychiatry is to bring intelligent resources that will support psychiatrists in their 

practice. For these purposes, there is a necessity in finding clinical biomarkers 

associated with the disorder pathogenesis that can be the basis for a precision-

oriented diagnosis. The idea behind the work of this thesis is to contribute to a 
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clinical decision support systems (CDSS), that may assist psychiatrists in the 

diagnosis of Bipolar Disorder (BD). 

1.1 Motivation 

Bipolar Disorder (BD) is a mood [affective] disorder which causes cyclic mood 

swings, also known as maniac depression. It is a long-lasting and life-threatening 

disorder with a lifetime prevalence of around 2-5%[1]. Its patients go from one 

extreme mood, depression, to another, mania/hypomania, passing through euthymia 

(state without mood disturbances), with varying length periods, or suffer from mixed 

states, although, it’s possible that people experience maniac episodes and never 

depressive ones. In fact, to be diagnosed with BD a person must have experienced at 

least one episode of mania or hypomania. Nevertheless, around 60% of BD patients 

suffered from depression as their first-lifetime affective episode [2], and these Major 

Depressive Episodes (MDE) seem to last longer than the maniac ones, at least 2 

consecutive weeks but can last years, tending to dominate the course of the illness. 

Consequentially, and due to the categorical and symptom-based approach to 

diagnosis, it's hard to distinguish BD depression from Unipolar Depression (UD), 

which leads to many patients being left undiagnosed. Indeed, the latency for BD 

diagnosis is around 5-10 years, and many are misdiagnosed, particularly with 

Unipolar Depression, comprising 60% of the false diagnosis for BD[3]. The fact that 

BD patients are misdiagnosed with UD or Major Depression Disorder (MDD) brings 

severe consequences for their health and very poor prognosis, due to inadequate 

treatment -BD depressive patients tend to be resistant to antidepressants-, which can 

lead to exacerbation of symptoms.  

Concluding, the diagnosis of BD is rather complex and early detection of the disease 

is very difficult. The latter issue is exacerbated by the heterogeneity of BD which has 

prevented so far the identification of specific neuroanatomical markers for an 

objective and precise diagnosis of the disease. Our work goes in that direction in the 

sense that we try to provide knowledge of the neuroanatomical bases that might 

allow for accurate automatic detection of BD, based on the study of BD and Healthy 

Control (HC) differences. Thus, this work aims to contribute to a future evidence-

based clinical support system that might support clinicians in making a differential 

diagnosis of BD. It was focused on the use of imaging data, specifically structural 

MRI (sMRI), with the main purpose of discriminating BD patients from (HC).   
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1.2 Bipolar Disorder: what do we know so far? 

Even though the biological basis of the disease is unknown, some progress has been 

made in identifying some biological modifications and risk factors for BD. There are 

several areas of study that investigate alterations in BD patients such as genomics, 

physiology, and neurosciences. These new findings bring a clearer picture of the 

biological etiology of BD, however very complex to integrate. There is evidence of 

alterations in brain connectivity levels, oxidative stress, mitochondrial function, 

inflammation, circadian rhythms, and dopamine levels. Another very established 

knowledge is that of the high heritability of BD, estimated at 85% in twin studies [4]. 

The study of BD etiology has been progressing from different perspectives.  

Starting with genomics, there has been an effort to discover and characterize BD 

phenotype by searching for polymorphism in the genome of the population. It is 

known that BD inheritance comes in a form of several gene variants with small 

effects, being a polygenic disorder. These genes and loci have been identified with 

genome-wide association studies and have led to the discovery of several affected 

pathways, such as glutamate and calcium signaling. Some Voltage-gate calcium 

channels (VGCC) genes seem to play a role in BD but there is also evidence of their 

influence on schizophrenia and major depression [5]. The key might be identifying 

patterns of alterations rather than individual biomarkers.  

In neuroimaging research, several alterations have been found both in brain Grey 

Matter (GM) and White Matter (WM), yet the available knowledge is fragmented[6], 

[7]. At the WM level, there have been findings reporting an increased rate of deep 

WM hyperintensities and reduced WM volumes in BD. Robust results point to 

alterations specifically in the cingulum,  corpus callosum, frontal areas, 

parahippocampal areas, and tracts such as uncinate fasciculus and fornix[8].  

Widespread GM alterations have been found to characterize progressive cognitive 

deterioration, mainly loss of GM volume. Although, as BD is a highly heterogenous 

disease it is characterized by variable degrees of cognitive impairment [6]. Besides, 

there is a lack of clear knowledge on the GM correlates of BD, as there also have been 

reports of GM alterations unrelated to cognitive impairment [9].  

Particularly, in BD patients, there are consistent reports of alterations in the Limbic 

Network (LN), which is involved in stress-related modulation of homeostasis and 

neurotransmitter signaling, specifically an increased volume of the amygdala along 

with volume reductions in the hippocampus. These are paired with state-dependent 

metabolic changes, such as increased metabolism in the amygdala and hyperactivity 

of the hypothalamus-pituitary-adrenal (HPA) axis [8].  At the functional 

neurochemical level, there have been findings of alterations for some 



4 Introduction 

 

 

neurotransmitters, mainly, elevated levels of glutamate and glutamine in BD 

patients, and some growth factors that promote neurogenesis and neuroplasticity 

called neurotrophic factors. The latter lead to impairment in plasticity and resilience 

in brain cells in BD patients.   

At endocrine and immune system levels, many alterations have been found, either 

associated with states like depression, mania, or maintenance, as also with illness 

phase and progression. BD has been characterized by neuroinflammation with 

increased pro-inflammatory markers. There has been evidence for comorbidity of 

autoimmune diseases and BD, elevated levels of pro-inflammatory circulating 

cytokines (some evidence points to a causal link to maniac and depressive 

symptoms), C-protein, increased cortisol levels (dysfunction in stress pathways with 

HPA axis hyperactivity), in both mania and depression phases with complete 

normalization during euthymia, which leads to conclude a strong implication 

between BD and immune/endocrine dysfunction.  

Additionally, circadian rhythms disruption has been consistently determined in BD 

patients, regardless of disease state, comprising lower levels of melatonin compared 

to healthy controls. There is also evidence for oxidative stress implications in BD, 

with lowered antioxidant defenses and increased oxidative and nitrosative stress 

which seems to lead to mitochondrial damage and dysfunction. Robust evidence 

suggests energetic metabolic impairment in BD brains found with neuroimaging 

studies and supported by some genetic findings [4]. Many of the above-mentioned 

systems, related to the pathophysiology of BD are interdependent. A polygenic 

disease, with changes at the glial and neuronal level, chronobiological alterations, 

immune system compromised, and mitochondrial dysfunction.  

It is to determine though whether some of these factors are of etiological basis or part 

of disease progression, i.e., some of the described alterations may be common effects 

of the true etiological factors of mood disorders. It is known for example that HPA 

axis abnormalities are related to environmental risk factors since no variants of HPA-

axis related genes were found to be associated with increased risk of BD or HPA-axis 

malfunction [4]. Moreover, the allostatic load could potentially explain some of these 

alterations: they can be thought of as the result of chronic exposure to the disease 

itself, after all, there are physiological consequences of exposure to chronic stress. In 

fact, as reported previously, GM alterations have not been found in early-stage BD or 

first episodes but rather have been associated with illness progression [8]. 

Regarding the etiology of BD, data suggests that the disorder is characterized by an 

immune-mediated WM damage, especially in the Limbic Network. Stress response 

and inflammation could induce changes in neurotransmitter availability which then 

could pathologically affect the functional brain activity in BD patients, which goes to 
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relate to structural alterations of the LN [8]. To understand how each one of these 

alterations is connected to the others, integrating all the information into one unified 

biological hypothesis for the etiology and progression of BD, is extremely complex. 

In [8] the authors attempt to propose a unified model of the pathophysiology of BD, 

Figure 1.1. The hypothesis is that a core dysregulation of the immune system leads to 

an LN damage which further alters neurotransmitter signaling. The model proposes 

that a chronic pro-inflammatory profile in BD, triggered by a susceptible polygenic 

background, leads to damage in the WM, due to the migration of effector T cells into 

brain tissue and consequent cytotoxic activity. Stress-related limbic overactivity, 

together with pro-inflammatory mediators may divert cerebral blood-flow to the 

hyperactive regions resulting in structural alterations in that LN and consequently 

destabilizing neurotransmitter signaling which leads to an increased susceptibility to 

perturbations by several stressors, either internal or environmental. The phasic mood 

states of BD are explained by the changes in neurotransmitter signaling. The model 

proposes phasic reconfigurations of intrinsic brain activity, mediated by 

neurotransmitter unavailability which leads to functional disconnection of the 

neurotransmitter-related nuclei, clinically manifesting into manic-depressive states. 

A stressor can trigger a stress-response that is intrinsically hyperactive in BD, causing 

a prolonged increase in pro-inflammatory factors which can lead to a reduction of 

5HT availability (serotonin receptors) or DA availability (dopamine signaling). The 

latter results in a cascade of triggers, leading to either an over-tuned intrinsic brain 

activity, associated with maniac state, or de-tuned associated with depression, 

respectively. Finally, the authors hypothesized that BD subgroups are characterized 

by the presence of further neurodegenerative factors which lead to GM loss, hence 

GM alterations could be related to progressive cognitive deterioration. However, 

there is also evidence of widespread GM alternations unrelated to cognitive 

impairment [9], thus the latter correlation needs to be further investigated. 

In the future, other unified models might be proposed, using new findings or taking 

different perspectives and hypotheses to integrate the knowledge gathered so far. For 

now, we accept what has been consistently reported in the literature and take 

advantage of the biological alterations that can be measured and used to evaluate 

disease progression, target treatment to improve long-term outcomes, and used for 

diagnostic purposes, even if a true etiological model has not been accepted and 

defined.  
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Figure 1.1: A unified model of the pathophysiology of BD [8]. 

1.3 Magnetic Resonance Imaging[10], [11] 

Magnetic Resonance Imaging is a non-invasive imaging modality that uses non-

ionizing electromagnetic radiation to create 3D images of the internal structures of 

the body. It is based on the physical phenomena of Nuclear Magnetic Resonance 

which consists of a spinning nucleus inducing a local magnetic field. An image is 

created by taking advantage of the different magnetic properties of different types of 

tissues, which will translate to different contrasts and shades. The spin is the central 

quantum property that creates the phenomenon. The spin is the intrinsic property of 

the angular momentum of a particle, being a fundamental property just like mass 

and charge, but it’s quantized. Protons and electrons have a spin number of ½, and 

an atom that possesses an unpair proton or neutron will have a nonzero net spin 

which gives rise to a magnetic moment associated with the proton, and a local 

magnetic field is generated. Hydrogen is an example of an atom with a solitary 

proton, which acts as a magnetic dipole.  

In paramagnetic materials, the magnetic dipoles are “relaxed” at thermal 

equilibrium, which means they are randomly oriented and so their cumulative or net 

magnetization is zero. Whenever are submitted to an external static magnetic field, 

B0, they will re-orient themselves parallel or anti-parallel to this external field, and 

the number of parallel orientations – lower energy state- is higher, which will result 

in a global magnetization vector M, in the longitudinal direction Mz, with a 



Introduction 7 

 

 

macroscopic magnetization magnitude M0, Figure 1.2a). Although their axes are 

oriented in the direction of the field, there is a tilting from this position which is 

called precession, characterized by a frequency called lamor frequency, which is 

proportional to the external magnetic field, B0.  Because the macroscopic 

magnetization cannot be measured in the longitudinal direction, it is necessary to 

resort to further means that will allow for absorption or emission of measurable 

energy. The energy to force the nuclei into an energy level transition is supplied with 

a Radiofrequency (RF) magnetic field B1. When this rotating magnetic field, B1, which 

rotates in the transversal plane xy, is applied to the static external magnetic field, a 

transversal magnetization component appears due to the rotation of vector M0 of an 

angle α, resulting when α= 90º, in an Mz=0, and a Mxy=M1, as reported in Figure 1.2b). 

In this process, protons start precessing in phase around M1. Once the RF is turned 

off, the system comes back to thermal equilibrium, orienting itself with B0. During 

the relaxation process, the nuclei are undergoing transitions between energy levels, 

which means absorbing or releasing energy, where the energy levels correspond to 

the orientations parallel and anti-parallel of the nuclear axis.  

To summarize, first, an external magnetic field is applied so that the nuclei axis of 1H 

are oriented parallelly and anti-parallelly to the magnetic field B0. When the energy 

of RF is directed, the protons which were aligned with B0, and that possess a lamor 

frequency matching the RF, will absorb that energy, which is the so-called resonance, 

and shift away from the B0 direction, with a flip angle α (90º or 180º). This RF is 

usually emitted in small pulses which will lead to an absorption-emission sequence 

from the nuclei that is detected in a suitable coil.  

There are two types of relaxation, T1, and T2. T1 is the spin-lattice relaxation where 

the nuclei realign with the external magnetic field,i.e, goes back to a lower energy 

state – parallel orientation- by transferring energy from it (spin) to the surrounding 

molecules (lattice). Also called the longitudinal relaxation, where the Mz component 

recovers the equilibrium value of M0. T1 measures the time taken for the system to 

return 63% towards that thermal equilibrium after RF pulse offset. The transversal 

magnetization Mxy will thus decay to a null value with the T2 time constant, which is 

the spin-spin relaxation. This means the protons that had started precessing in phase 

will begin to diphase out of the lamor frequency in the transverse plane.  The energy 

loss in the transverse direction, due to the change in the magnetic moment of the net 

magnetization is detected by the RF coil and is called Free Induction Decay (FID).  

To connect the FID with a specific position in the body is then necessary to be able to 

discriminate the FID signal contribution for each voxel. For this purpose a spatially 

variant intensity magnetic field is added to B0, i.e, a gradient, which encodes the 

spatial information, as seen in Figure 1.2 c). Because the lamor frequency is 
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proportional to the magnetic field strength, with a gradient magnetic field, the 

precession frequency of protons will linearly depend on their position in space.  This 

allows for slice selection and the production of images in the x,y,z components, 

respectively, sagittal, coronal, and axial. If one is interested in imaging only the brain 

then it is just necessary to match the RF pulse with the frequency of the precessing 

protons for that magnetic field strength.  

 

 

a) Net Magnetization M0z. 

 

b) Mxy component of net magnetization. 

 

c) Gradient Magnetic Field [12]. 

 

d) Brain T1-Weighted MRI scan [12]. 

Figure 1.2: MRI Principles. 

The information contained in the detected frequency signals is transformed into gray 

values through Fourier Transformation. The signal that is detected will then depend 

on the presence of 1H, the bonding degree within a molecule and the differentiation 

of tissues of interest will depend on the T1 and T2 relaxation times. Because the 

human body is composed mainly of water, the hydrogen properties are used to 

produce an image. Bone tissue is characterized by firmly bound 1H atoms and as a 

consequence, their nucleus does not produce a useful signal. In soft tissues and 

liquids, the present 1H is more loosely bound which enables the production of a 

measurable signal [10]. T1-weighted images are suitable for fat tissues because fat 

has the shortest T1 relaxation time which produces a bright image and so good 

contrast is possible with other tissues. T2-weighted images are also called water 

images because water has the shortest T2 relaxation times. For brain imaging, one 
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can differentiate white matter, grey matter, bone, and Cerebral Spinal Fluid (CSF) 

exactly because they give off different amounts of energy when relaxation happens, 

as exemplified in  Figure 1.2d). 

1.3.1 MRI for BD diagnosis 

Within neuroscience studies, neuroimaging data has been widely used to investigate 

both functional and structural brain alterations in psychiatry disorders. Brain 

features extracted from MRI have demonstrated reasonable power in discriminating 

BD patients while leaving many open questions on the brain underpinnings of this 

heterogenous illness. Up until now,  univariate analyses have been most widely used 

to investigate the relationship between selected brain characteristics and disease 

conditions. Univariate analyses are statistical analysis methods where there is one 

dependent variable and one or more independent variables. Many studies 

investigating associations between brain morphology or functional activations and 

disease conditions have been performed using univariate analyses, leading to 

novelty findings on voxel-based or ROI-based brain alterations that need to be 

integrated into a whole-brain framework.    

From raw sMRI T1-weighted scans many interesting brain measures can be 

extracted, which may further add to our knowledge of BD biomarkers. Voxel or ROI-

Based Morphometry enables the estimation of local volume-based or surface-based 

brain morphological properties including cortical thickness, cortical and subcortical 

volume, cortical surface area, cortical curvature, and cortical gyrification. 

As reported in section 1.2, several brain structure alterations have been found in 

individuals affected by BD through the employment of sMRI. In section 1.2, the focus 

was mainly on brain structure alterations that could be linked to the etiology of the 

disease, such as WM damage which seem consistently identifiable in early-stage BD 

or first episodes. Nevertheless, because BD may be diagnosed at later stages of 

progression, structural brain changes that are a consequence of exposure to the 

disease itself can also be useful and aid in diagnosing BD.  

Besides the findings described in section 1.2, it has been shown that several areas of 

the brain suffer GM volume and thickness reduction, consistently in the anterior 

limbic regions. There have been reports specifically of grey matter volume reductions 

in the prefrontal cortex, left rostral anterior cingulate cortex, mean hippocampus, and 

thalamus accompanied by greater grey matter volumes for lateral ventricles, and 

grey matter thickness reductions in the right fronto-insular cortex [13]. In general, a 

pattern of cortical thinning has been found, mainly in frontal, temporal, and parietal 
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regions. Robust findings show that frontal-subcortical and prefrontal-limbic circuits 

are compromised in BD patients [13][4]. 

Moreover, patients with a longer history of BD diagnosis have been found to have a 

more substantially reduced cortical thickness and these changes are more 

pronounced in patients which have experienced multiple maniac episodes[14]. It also 

seems that both volume and cortical reduction in BD increase with some specific 

medication, therefore some brain structure alterations may be exacerbated by such 

environmental factors. The latter may act as confounders when investigating brain 

alterations that should be linked exclusively to disease or disease progression. 

The identification of brain morphological alterations being consistently associated 

with BD over heterogeneous cognitive and clinical features may help clinicians 

perform early, accurate, and objective BD diagnoses, thus making the use of 

structural brain features to have a very relevant clinical applicability.  

1.4 Machine Learning for BD diagnosis 

At the current time, the scientific community has made available robust quantitative 

measures from clinical and biological data that have been integrated to provide 

findings on differences between BD and HC. Therefore, there have been many 

attempts to develop clinical support systems, mainly based on Machine Learning 

algorithms, that aim to diagnose BD patients. Different types of data can be used to 

try to make BD diagnoses, such as neuroimaging data, genetic data, blood 

biomarkers, neuropsychological data, etc., as well as integrating all of them. Even 

though univariate analysis has been very useful to pinpoint alterations in several 

clinical feature expressions, a strong drawback is that variables under investigation 

are considered independent of each other, therefore, multi-voxel patterns or feature 

patterns of structural and functional alterations across conditions cannot be studied. 

To overcome this limitation, multivariate analysis can be used to study possible 

correlated variables, considering the effects of all variables in the condition of 

interest. Machine Learning, which is the study of algorithms and multivariate 

statistical methods that allow machines to learn without human intervention, has 

emerged as the most used method for pattern recognition tasks and prediction tasks. 

In a decoding setting, it is used to make predictions about variables of interest, based 

on the joint analysis of multiple features. In a recent review study, 33 articles from 

2016 to 2021 that used ML for BD diagnosis were analyzed [15]. It was found that the 

most commonly used data was clinical,  with MRI being the most widely used 

datatype type while genomic data was the least one. In terms of classification ML 

models, Support Vector Machines (SVM) were the most commonly used models, 

followed by Artificial Neural Networks (ANN) and Random Forest. Deep learning-
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based models belong to the least commonly used. Most researchers have chosen 

accuracy as the preferred metric to evaluate model performance. The majority of the 

studies used a limited number of samples to develop ML models,in fact, only 2 used 

datasets above 2000 subjects. Besides binary classification between BD and HC, many 

models have also been proposed to differentiate BD and UD. A meta-analysis 

conducted in 65 studies analyzed the ML performance in classifying BD patients 

using various biomarkers against HC and other psychiatric disorders. The single 

study accuracy (ACC) ranged from 46.4% to 100% [16]. The authors concluded that 

biomarkers that enable a good classification of BD were: global alteration in 

functional and structural connectivity, cognitive deficits in attentive and reward-

seeking domains, and genes and peripheral biomarkers related to immune-

inflammatory response. The highest classification accuracy was found to be 

associated with Logistic Regression and ANN, although is reported that the ML 

algorithm should be chosen according to the specific type of marker. Overall 

classification accuracy for BD in this meta-analysis was 0.77.  

1.4.1 ML for BD diagnosis using MRI-based brain features  

From the same meta-analysis, 24 studies used sMRI, reaching a classification 

accuracy of BD ranging from 54.8%-100%. As well, some of the most discriminative 

features found were grey matter and white matter alterations in the cortico-limbic 

network, reporting an ACC discriminating BD vs HC ranging from 59% to 78% [16]. 

From all the studies that have reported results in terms of ML with sMRI 

neuroimaging data, the two leading to the most robust evidence were based on big 

samples resulting from the integration of samples across multiple sites. Among them, 

one study was conducted with 853 BD patients and 2167 HC from 13 different sites, 

reporting an AUC of 0.71 and ACC of 65.23% [17]. Furthermore, an ACC of 66% was 

reported by the other multicentric study, employing more than 1000 subjects [18]. 
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2. Machine Learning Overview 

Machine Learning (ML) is the study and development of algorithms that allow 

machines to learn from data some specific rules and patterns, without human 

intervention, to complete an assigned task. Several tasks can be solved with Machine 

Learning. From Classification, where the computer learns to label observations to 

specific classes, either binary or multi-class labeling, to Regression, where the 

computer learns to estimate a  value for a continuum numerical outcome of interest 

given some set of input variables by finding the function that best describes that 

relationship, to Anomaly Detection, where the computer is asked to learn to spot and 

flag abnormal events. Most commonly, the ultimate purpose of a given task is 

prediction, either of a label for categorical variables, or of a continuum value in a 

regression form, but can also be mainly interpretation. The models used in ML can be 

of empirical bases, like Classification Trees, or of multivariate statistics bases, like 

Regression and Bayesian classifiers.  

Machine Learning Algorithms can be divided into different categories according to 

the type of learning they employ. There are algorithms based on supervised 

(including self-supervised), semi-supervised and unsupervised learning. Supervised 

Learning is when the true outcome of a set of explanatory variables is given to the 

algorithm, allowing it to learn based on all data available and known outcomes. The 

goal is to accurately predict unseen future observations. When this label is not 

provided, meaning there are no predefined classes, the learning scheme is called 

Unsupervised. The latter is used to learn properties of the structure of the data, 

meant to retrieve similarity/homogeneity rules for example, either through clustering 

of observations, association rules, etc. Semi-supervised learning combines both by 

having a small amount of labeled data in the training set that is used to label a large 

amount of unlabeled data, which is then re-used in a new training process. Within 

ML, there is a differentiation between the classical models and Deep Artificial Neural 

Networks. The latter is called Deep Learning, considered to be more powerful, 

although needing more training data, it can overcome many ML limitations, such as 

the need for feature engineering, and the ability to learn abstract representations of 

data leading to better generalization performances, and the ability to learn any 
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function according to the Universal Approximation Theorem (UAT). The advantages 

of Deep Learning will be discussed later on in section 2.4. 

2.1 Building a Machine Learning Algorithm: An 

Overview [19] 

2.1.1 Learning Process and Optimization Algorithms 

To develop a machine learning algorithm there must be an optimization algorithm 

that supports the learning process. The learning implies that the model should 

incrementally improve its performance on a given task, given a set of observations 

from which to draw some experience. In supervised learning, the learning process 

develops through the minimization of an error, called loss, which leads to the update 

of model weights -parameters- in the direction that will minimize that error. The 

most basic notion of the error can be the deviation of the estimated prediction from 

its true value. This learning process is called the training phase. Once the model has 

been realized, a test phase takes place to assess the performance of the model to 

unseen data samples. In this process, an estimation of the generalization error is 

retrieved, i.e., the expected performance of the model on future data observations.  

A validation phase is also needed when model optimization is performed. Using a 

disjoint set of data for the validation set, one can evaluate the performance of several 

models within a model class, i.e., by setting the model with different 

hyperparameters combinations and retrieving the one that yields better validation 

performance. This process is called hyperparameter tunning, where hyperparameter 

stands for parameters that are used to control the learning process. Hyperparameters 

are divided into model and algorithm hyperparameters. The model hyperparameters 

are those that cannot be derived via the training process, as opposed to model 

weights, which are indeed the learned model parameters. The algorithm 

hyperparameters are those that will influence the speed and efficiency of the learning 

process.  

The learning process is an iterative process, where, an n number of observations are 

fed to the model from the training set and in several repetitions. The amount of 

observation that the model is allowed to see each time is called batch size and the 

number of repetitions, called epochs, is the number of times the model sees the entire 

training set. The batch size can go from a single observation to the entire training set 

size. To feed the model with one single example for each new weight update of the 

model can give rise to a very erratic training process. Conversely, feeding the entire 

training set can be unviable to fit in memory, if the training set is too big. Finding an 
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in-between reasonable batch size can be crucial for learning process stability. 

Usually, small batch size is preferred as it can offer a form of regularization, i.e, 

constraining model complexity, mainly because the batch will tend to be noisier thus 

contributing to prevent overfitting to the training samples. The number of epochs 

and batch size are two examples of algorithm hyperparameters that can be tuned.   

During the training phase, the model weights are updated, gradually, and with the 

experience that the repetitions and exposure to examples allow. This weight 

updating scheme is done by minimizing an error function, called Cost Function, 

through an optimization algorithm. The cost function is the cumulative error 

calculated by averaging the loss function value for each data observation. There are 

many loss functions to choose from, and the criterium depends on which model is 

being used and for which purpose. For linear regression, Equation ( 2.1 ), Least 

Square Error (LSE), Equation ( 2.2 ), is commonly used as loss function, whereas the 

cost function would be the Mean Square Error (MSE), Equation( 2.3 ). 

 

 𝑦̂ = 𝛽0𝑥0 +  𝛽1𝑥1 + ⋯ +  𝛽𝑗𝑥𝑗 

𝑗: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 

( 2.1 ) 

 
𝐿𝑆𝐸 = (𝑦̂(𝑖) − 𝑦(𝑖))2 

( 2.2 ) 

 
𝑀𝑆𝐸 =

1

𝑚
∑(𝑦̂(𝑖) − 𝑦(𝑖))2

𝑚

𝑖

, 

𝑤ℎ𝑒𝑟𝑒 𝑚: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 , 𝑖: 𝑖𝑡ℎ 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 

 

( 2.3 ) 

The objective function, the function to minimize in the training set, is, therefore, the 

MSE. The process is to search for the weights, β coefficients in this case, which will 

lead to a reduction in that error. This can be done by solving for where the gradient 

of the MSE is 0. In fact, the LSE leads to a convex optimization problem, most 

appropriated to find the global minimum through the gradient. This optimization 

algorithm is the Gradient Descent Algorithm (GDA). There are many types of 

Optimization Algorithms depending on which types of models are used, and the 

goal is to find the set of parameters that result in a minimum function evaluation. 

Optimization Algorithms that used derivatives are appropriate for differentiable 

objective functions. The gradient is just the first-order derivative of a multivariate 

continuous function, Equation ( 2.4 ), and gives information about the rate of 

inclination of a slope, which tells us how to change the model weights to improve the 
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error value. The minimum point on the objective function will yield a null derivative 

value. If in the parameters search space, we are far away from that point and the 

calculated gradient is a positive value, we know then that there must be a decrease in 

the parameter value, -moving it in the opposite sign direction of the derivative- 

Equation ( 2.5 ), to lead the cost function to its minimum point as seen in Figure 2.1 

with the red vector. This algorithm however can pose problems with local minima 

and saddle points. 

 𝜕𝑀𝑆𝐸(𝛽)

𝜕𝛽𝑗
=

2

𝑚
∑(𝑦̂(𝑖) − 𝑦(𝑖))𝑥𝑗

𝑖

𝑚

𝑖

 
( 2.4 ) 

 

 
𝛽𝑗

𝑛𝑒𝑤 =  𝛽𝑗 −  𝜂
1

𝑚
∑(𝑦̂(𝑖) − 𝑦(𝑖))𝑥𝑗

𝑖

𝑚

𝑖

 
( 2.5 ) 

 

 

Figure 2.1: Gradient Descent Algorithm.[19] 

Equation ( 2.5 ) brings a new element to the discussion, the η coefficient, called the 

learning rate. The learning rate is a scaling parameter, going from 0 to 1, that 

determines the size of each step by scaling the gradient vector. An update step with 

an inappropriate -too big- gradient scaling vector may cause the algorithm to miss 

the minimum value altogether, leading it to non-convergency, therefore, the learning 

rate is another algorithm hyperparameter that needs to be tunned since it influences 

the algorithm speed and ability to converge.  

Besides GD, there are other kinds of optimization algorithms, such as second-order 

optimization algorithms that are based on second-order derivatives or other different 
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kinds. Specifically, decision trees models have cost functions that contain flat regions. 

Therefore, the optimization problem is formulated in a completely different setting. 

They use an inductive greedy algorithm, through a recursive procedure where a split 

function is optimized one node at a time, using a splitting criterion. The objective 

function to be optimized is local, the splitting criteria, is usually information gain or 

Gini index, which is maximized by selecting predictors that yield the highest-scoring 

split. 

2.1.2 Regularization Techniques  

Regularization techniques are a very important part of the optimization process as 

they allow to modify the learning algorithm according to a set of preferences. It is 

intended mainly to reduce generalization error and not training error. For that 

purpose, simpler solutions are preferred, regarding model complexity. 

One way to do this might be to restrict the hypothesis space, for example, by 

decreasing the polynomial degree allowed for a regression problem. However, this 

does not stand for a regularization technique because it does not modify the learning 

algorithm.  

Another way to apply regularization techniques is to consider the weight's absolute 

value. Each feature of our data will have a weight attributed in the model, so the 

weights can be thought of as the strength or importance of that specific feature. If we 

constrain the weights to be small this leads to solutions,  map function between 

inputs and outcome, that have smaller slopes. The idea is that the simplest solution is 

f=0, a function that attributes 0 to all inputs, and so one can measure complexity from 

the distance to 0. This is called weight decay and is a commonly used regularization 

technique. Adding this criterion to the optimization process is a form of controlling 

for overfitting, expressing a preference for simpler solutions that still fit well to the 

training set. It is done by adding a penalty term to the cost function with a 

controlling parameter λ, Equation ( 2.6 ). This controlling parameter forces the 

weights to be smaller when it’s set to be large during the minimization process.  

The two most used regularization techniques are the L1 norm, or Lasso Regression, 

corresponding to the absolute value of the magnitude of the weight, and the L2 

norm, or Ridge Regression, corresponding to the square magnitude. The L2 norm can 

have the advantage of penalizing more large components of the weight vector while 

L1 norm penalties can be a form of feature selection because end up assigning many 

feature weights to zero. 

 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒_𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝑤) = 𝐶𝑜𝑠𝑡_𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑀𝑆𝐸) +  𝜆 𝑤𝑇𝑤 ( 2.6 ) 
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2.1.3 Evaluation Metrics 

Finally, the model choice decision will have to be backed up by a quantitative 

measure, a measure indicating how well the model performs. There are two 

evaluation metrics to consider, the training loss metric and the generalization 

evaluation metric. The first tells us whether the model fits well in the training set. 

The second, is whether the model performs well on unseen data samples, the test set. 

These metrics can be a measure of error, as the MSE, suitable for regression, or,  

accuracy, for classification models. To have a clearer picture of model performance 

one can resort to decision tables like confusion matrix, which give more complete 

and comprehensive information on different types of errors committed by the model, 

such as sensitivity, the true positive rate, and specificity, the true negative rate. 

Another commonly used evaluation method is the Receiver operating characteristic 

(ROC) curve,Figure 2.2, and the corresponding Area Under the Curve (AUC). This 

curve chart allows for evaluation accuracy, assuming a probabilistic classification 

output, without settling to a specific threshold. For binary classification, the 

probability of belonging to one of the classes is between 0 and 1. For a given sample 

within the test set, a probability of belonging to a class will be attributed, and, 

iteratively, different thresholds for that boundary decision will be tried out, defining 

whether that observation would fall in class 0 or 1. For a given threshold, the 

resulting true positives rate (tp), Equation ( 2.7 ), and false positives rate (fp), 

Equation ( 2.8 ), are calculated and a point corresponding to that pair (tp,fp) is 

assigned in the chart. After testing for a range of boundary decision thresholds, 

which are not explicitly seen in the chart, the ROC curve is complete and its 

underneath area is measured [20]. The best possible scenario, the ideal ROC, is when 

the true positive rate is 1 and the false positive rate is 0, meaning is perfectly capable 

of separating the two classes. This gives an area of exactly 1, an 100% chance that the 

model can distinguish between the 2 classes, the blue line in Figure 2.2. The worst-

case scenario is when the curve is settled on the chance level, so an AUC of 

approximately 0.5, red dot line in Figure 2.2. That would mean the classes completely 

overlap and that the model assigns samples to a class in a completely random 

manner. When the AUC is under 0.5 and tends to 0, the model is reciprocating the 

classes. 
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Figure 2.2: ROC curve [20]. 

 

𝑡𝑝 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑜𝑠𝑡𝑖𝑣𝑒𝑠

𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

( 2.7 ) 

𝑓𝑝 =
𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

( 2.8 ) 

 

2.2 Important Trade-offs 

2.2.1 Bias-Variance Trade-off 

The idea behind any ML model for classification is to learn to generalize well to new 

unseen observations. The challenge posed is to learn sufficiently well, that it does not 

overfit the data from which it has learned, and still achieve a good performance on 

new observations. Overfitting implies a large variance in the predictions, where 

variance stands for how much the prediction would vary for a specific data point in 

different realizations of the model. It also implies low bias, where bias stands for the 

error between the true data-generating function and the optimal model estimate of 

that function, indicated in Equation( 2.9 ). The expected test error, for a square error 

loss, is then decomposed into bias, variance, and irreducible noise term contributions 

reported in Equation( 2.10 ) [21]. 

 𝐵𝑖𝑎𝑠 (𝑓(𝑥0)) = 𝐸[𝑓(𝑥0)] − 𝑓(𝑥0) ( 2.9 ) 

 

 𝐸(𝑦0 −  𝑓(𝑥0))2 = 𝑉𝑎𝑟 (𝑓(𝑥0)) + [𝐵𝑖𝑎𝑠 (𝑓(𝑥0))]2 + 𝑉𝑎𝑟(𝜀) ( 2.10 ) 

The bias-variance tradeoff is intrinsically related to model complexity, sample size, 

and prediction error. Model complexity can be thought of as the flexibility of the 
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estimated function that maps the intended inputs to the outcome. It is related to the 

non-linearity of a model and the number of its parameters, but not only. A used 

concept and definition of model complexity is given by the Vapnik-Chervonenkis 

dimension which quantifies how many data points a function can shatter (or 

separate). The variance rises with model complexity while bias declines. Thus, 

complex models yield higher variance and low bias which can lead to overfitting, 

while simpler models are represented by low variance and high bias which can lead 

to model underfitting. The optimal model should balance the bias and variance to 

achieve the minimum prediction error which implies the choice of model complexity 

based on average test error, amounting to the so-called bias-variance trade-off. The 

sample size will influence positively the trade-off because large sample sizes allow 

for having more complex models without necessarily leading them to overfit.  

2.2.2 Complexity-Interpretability Tradeoff 

Another challenging trade-off is that of model complexity and interpretability. 

Indeed, as model complexity increases, interpretability ability decreases. 

Interpretability of an ML model stands for the ability to retrieve meaningful rules 

and identify regular patterns in data, through a final model analysis, that can be 

understood by experts.[20] The relationships derived should increase the level of 

knowledge and understanding of a specific system. There are plenty of models, each 

suited for different complexity requirements. The models that allow achieving higher 

levels of complexity are also those which interpretability is harder to achieve. Not 

always a model that was developed with a prediction purpose will yield meaningful 

interpretations. Indeed, this trade-off translates into a sometimes-mutual exclusive 

relation between prediction performance and model interpretability. A model 

yielding high accuracy prediction might not yield meaningful interpretations while a 

model with a moderate above-chance accuracy level can yield a lot of increment 

utility when it comes to understanding a certain system. Therefore, the evaluation 

metric and method used to draw conclusions on model performance depends on the 

defined goal for that specific model. If it’s prediction, accuracy solely can be an 

appropriate metric, if it is interpretation, other metrics and analysis should be 

employed. 

2.3 Support Vector Machines (SVM) 

As mentioned previously, SVM models are the preferred models to use with 

neuroimaging data. These models have a powerful mathematical foundation and 

excel in many diverse applications. They have outperformed other classical ML 

models and for this reason, have become the most successful and preferred 
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classifiers.  SVMs are a class of models for supervised learning, either classification or 

regression. What they do is find the hyperplane that best separates two classes in the 

feature space.  

The hyperplane is built and supported by specific examples from the input dataset, 

called support vectors, that define the position of this separating surface. In a sense, 

the support vectors can be understood as the most representative observations for 

each class. The goal of  SVM is to find the maximal separation margin δ, defined in 

Equation  ( 2.11 ), i.e, the hyperplane furthest away from examples of the 2 classes, 

allowing for a bigger gap between them. The optimization problem is formulated as 

the minimization of the reciprocal of the margin of separation. For the linear 

separable problem, it just constructs an optimal linear decision boundary, as seen in 

Figure 2.3 a).  However, the optimal linear separation can lead to poor generalization 

capability to new unseen observations due to overfitting to the current data points 

and not allowing for a sufficiently reasonable wide margin where the new data 

points could fall in. Besides, in most cases,  data is not linearly separable, therefore, 

to handle the last two mentioned limitations, the SVM can 1) soften the concept of 

separation - soft margin - and 2) map data with a kernel function into a higher 

dimensional space to achieve the needed linear separability, this is called the kernel 

trick. 

 The first approach defines a soft margin by allowing some misclassifications errors 

to occur.  For  this purpose a loss function on the violation of the linearly separable 

constraints is introduced, the hinge loss, described in Equation( 2.12 ), where 

(𝑤′𝑥𝑖 + 𝑏) , also denoted by, 𝑦𝑖̂ , corresponds to prediction  (either 1 or -1) and yi to 

the true classification of the ith data point. The hinge loss ignores correct 

classifications, allows data points to be misclassified so as to have a linear solution to 

the optimization problem but penalizes this violation proportionally to its severity, 

i.e., all points falling on the wrong side of the separation hyperplane will have a 

positive hinge loss that increases linearly with the point distance to the correct 

margin side.  For example, a point belonging to class 1 predicted as 0.3, will have a 

hinge loss of 0.7.  

To represent the hinge loss in the optimization problem a slack variable is 

introduced. The slack variable measures the distance from the data point to the 

corresponding class margin, denoted by di in  Figure 2.3(b),  and is added to the 

objective function with a regulating parameter C.  This measure incorporates then 

the severity of misclassification, the furthest away a data point is from the right side 

of the class margin, the higher will be the measured distance 𝑑𝑖, and so the worst the 

penalty will be. C is a model hyperparameter that allows controlling the importance 

we give to misclassifications. If C is small, misclassifications are given less 
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importance and as a consequence, a higher rate is accepted and a wider margin 

separation is achieved.   

The final objective function and the corresponding optimization problem are defined 

in Equation ( 2.13 ) incorporating the penalty term, corresponding to a Constrained 

Optimization Problem. [22]  

 

 

a) Canonical Hyperplane. 
 

b) Soft Margin. 
 

Figure 2.3: Soft Margin Definition.[20] 

 
 𝛿 =  

2

‖𝑤‖
 ,   𝑤ℎ𝑒𝑟𝑒    ‖𝑤‖ =  ∑ 𝑤𝑗

2

𝑗

 
( 2.11 ) 

 

 ℎ𝑖𝑛𝑔𝑒 𝑙𝑜𝑠𝑠: 𝐿 = max (0, 1 − 𝑦𝑖(𝑤′𝑥𝑖 + 𝑏)) ( 2.12 ) 

 

 
𝑚𝑖𝑛𝑤,𝑑

1

2
‖𝑤‖2 +  ∁ ∑ 𝑑𝑖

𝑚

𝑖

   

𝑠. 𝑡𝑜 𝑦𝑖(𝑤′𝑥𝑖 + 𝑏) ≥ 1 − 𝑑𝑖 ,    𝑖 = 1, … , 𝑚   

 𝑑𝑖 ≥ 0, 𝑖 = 1, … , 𝑚 

( 2.13 ) 

 

Although the arguments presented previously are a very efficacy formulation to 

circumvent the nonlinear separable problem, not always the soft margin formulation 

will be enough to overcome that limitation. Indeed, for certain tasks, no matter which 
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C value is chosen, the model will always underperform because the data is 

intrinsically characterized by nonlinear patterns so no linear separation can be found 

to be satisfactory.  

This brings us to the kernel trick, which constitutes a way of enlarging the feature 

space through some transformations and achieving a linear separation in that 

transformed space. This results in a nonlinear decision boundary in the original 

space, but the advantage is that the problem is formulated in the transformed space 

and so it allows us to search for a nonlinear separating function while solving a linear 

optimization problem.   

A kernel function is a generalized function that measures similarity between 2 

vectors by outputting a respective score, Equation( 2.14 ), where φ denotes a given 

transformation and the dot product,  <φ,φ> , a the kernel  K. It can be shown that a 

linear function can be re-written with a kernel function, simply because the function 

can be written in terms of dot products between examples, Equation ( 2.15 ) [19]. As 

we can see, the relationship between f(x) and  K and α is linear, even though is 

nonlinear with respect to x.  An example of the utility of nonlinear SVM can be seen 

when data is structured in a somehow circular pattern in the 2D space, and the 

decision boundary that is best suited for class separation is therefore radial. The way 

nonlinear SVM would solve this problem is by starting to map the input data to a 

higher-dimensional space. The coordinates are projected to a new reference system 

that separates observations in a way that a linear hyperplane fits in as a decision 

boundary,  Figure 2.4.   

 𝐾(𝑥) =  𝜑(𝑥). 𝜑(𝑥)   ( 2.14 ) 

 

 
𝑓(𝑥) = 𝑏 + ∑ 𝛼𝑖𝐾(𝑥, 𝑥𝑖

𝑚

𝑖

) 
( 2.15 ) 

 

Regarding the optimization algorithm of SVM, we are faced with a Constrained 

Optimization Problem, and to overcome the difficulty this imposes,  the method of   

Lagrangian multipliers is used to convert the problem into an unconstrained 

optimization problem by including the constraints into the objective function.  By 

using the Lagrangian Method the dual optimization problem is derived, and it is to 

this objective function that an optimization algorithm is ultimately applied.   
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Figure 2.4: Kernel Transformation [23]. 

Many optimization algorithms can be applied, including the ones belonging to the 

family of Gradient Descent Algorithms.  By solving the optimization problem, we 

will be able to identify the support vectors and classify new instances of data by 

using the resulting decision function. For the nonlinear SVM optimization process, 

the difference resides in simply substituting x with φ(x), the kernel transformation,  

in the Lagrangian formulation.  

The key difficulty of nonlinear SVM is the requirement of meaningful kernel 

functions that enable an efficient transformation. The major drawback is the high 

computational cost of training when the dataset is large. Indeed, the quadratic form 

of kernel matrix requires memory that grows as well with the square of the number 

of data samples, being the computational cost O(m2) [19].   

2.4 Deep Learning 

Deep learning is a form of representation learning which in turn is a form of machine 

learning and all are within the Artificial Intelligence (AI) field.  It was designed to 

overcome kernel machines' limitations, respectively 1) Lack of meaningful kernels 

and 2) Computational Cost on large datasets. The main problem that classical ML 

models were facing was the difficulty to generalize well when working with high-

dimensional data, also known as the curse of dimensionality.  

Usually, in a low-dimensional space, a finite number of training samples will be able 

to represent more or less each and every possible combination for a given variable, 

then, when generalizing to an unseen observation it simply needs to inspect the 

training examples that are highly representative of the new sample. In high-

dimensional spaces, because the number of possible configurations is huge, the 

training data is insufficient to represent well every possible combination, which leads 
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to the problem of having to predict for a new observation for which a  variable 

configuration has never been seen [19].  This problem is also observed in the 

difficulty that many ML applications suffer regarding the ability to extract high-level 

abstract features that allow generalizing well for the assigned task. For example, 

being able to recognize an object should be independent of its position, orientation, 

illumination, color, etc.  

The reason why DL can overcome the formerly mentioned limitations is that 

compared to kernel algorithms, which use a generic pre-defined mapping function, 

the kernel function, the strategy of deep learning is to learn the mapping function 

itself φ(x) from a broader class of functions [19]. Also, its hierarchical nature, makes 

it well adapted to learning hierarchies of knowledge by expressing complex 

representations in terms of simpler ones. For example, it can learn to recognize an 

object by learning simple concepts like corners and contours to then combine them 

into edges and so on arriving at a high-level representation that has a much higher 

generalizability performance compared to what other models are capable of. The 

ability to learn the mapping function is related to the Universal Approximation 

Theorem (UAT) which will be explained in more detail in the next subsection.  

Therefore, a Deep Learning model is capable of extracting features from raw data, 

different from the feature engineering perspective where a feature is designed 

manually in a preprocessing stage. We talk about Deep learning when an Artificial 

Neural Network (ANN) model has a network depth of more than 3 layers (including 

input and output layers). The basic instance of an ANN, a single-layer network, is 

called perceptron, is constituted by an input and output layer, and is considered a 

classical ML model. The power is unleashed by combining many of these units 

together by increasing the depth of the network.  

2.4.1 Artificial Neural Networks 

Artificial Neural Networks emulate a biological neural network by simulating 

neuron interactions through the electrical activity that gives rise to the processing of 

information. Biological neurons are connected through synapses, gap regions that 

exist between the axon of one and the dendrite of another.  The artificial neuron 

model is an abstraction of the biological neuron. It is a computational unit that maps 

the inputs into one output signal, also called its state. Can be seen as a non-linear 

transformation unit that takes a weighted summation of inputs, called the Action 

Potential denoted by z, and transforms it through an Activation Function (AF), 

denoted as ϑ(z), which can be linear or non-linear, Equation ( 2.16 ) [24]. The weights, 

denoted by w, simulate the synaptic strength of a connection between neurons and 
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the learning process is realized by the changing of this weight through the presence 

of an external stimulus, emulating the plasticity of brain neural networks.  

The simplest ANN architecture is a  single-layer network, also called perceptron, 

Figure 2.5, composed of the input layer and output layer. In multi-layer neural 

networks, these instances are stacked together and arranged in a layered 

architecture, called a Feed-Forward Network (FNN). Not only, in an FNN the 

neurons are fully connected, and, as the name already hints, the connections are in 

the forward direction only, with no feedback connections. All layers within the input 

and output layers are called hidden layers. Considering the perceptron for a binary 

classification task, to determine the 0 or 1 class output, the weighted sum has to 

overcome a given threshold value so that the Activation Function can map it to 1, 

otherwise, the output is 0. The described process is simulating the threshold that 

needs to be overcome in a biological neuron membrane so that an Action Potential 

can be propagated.  The threshold, called bias b, can be added to the neuron as if it is 

a weighted input itself. The trick is just considering a positive unit input and bias b as 

its weight. In this way, the threshold to overcome becomes 0 but the mathematical 

description becomes simpler,  z ≥ 0.   

The AF representing this transformation, ϑ, could be the Heaviside step function. It is 

appropriated because it bounds the input in the saturation domain, allowing to 

stabilize the Action Potential signals. The problem with the simplistic Heaviside step 

function is that a small change in the weights can lead to a big change in the output,  

i.e., the output completely flips undesirably. Besides, this step function is non-

differentiable which can lead to several limitations during the learning process, 

regarding the optimization algorithms.  The sigmoid function can be seen as a 

differentiable function which is approximating the step function. Its smoother shape 

enables the necessary behavior: that a small change in the weights concomitantly 

causes a small change in the output [25]. Indeed a balance needs to be found between 

the change in the weights and a change in the error of the model. Ultimately, AFs are 

chosen according to the strengths of their intrinsic properties.   

  

Figure 2.5: Perceptron[26]. 

 

y=ϑ(z) 

 

𝑧 = ∑ 𝑤𝑘𝑥𝑘 + 𝑏

𝑘

 

( 2.16 ) 
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As discussed in previous chapters, the learning process will consist in learning the 

weights so that an objective function is minimized. This objective is a cost function, 

denoted by J, a proxy for the output error given by the model.  The GDA is a suitable 

algorithm to figure out how to change the weights so to improve model performance. 

The gradient of the cost function must hint at which direction to update the values of 

the weights. An effective learning process happens when the AF changes its output 

whenever we have a meaningful update in weights.  If the AF is insensitive to a 

change in weights it becomes hard to realize in which direction to evolve the 

weights, leading to a stagnation in the number of misclassified observations, thus 

obstructing the improvement of model performance. A weight update is given by the 

form of Equation ( 2.17 ), where  𝛻𝐽 is the gradient of the cost function, the partial 

derivative with respect to weights, Equation ( 2.18 ). To solve the optimization 

problem for any ANN for binary classification task one must decide on the AF and 

the loss function. For a simple example on a single-layer ANN, one can consider that 

the cost function is simply the MSE, 𝐽 =
1

2
(𝑦𝑖̂ − 𝑦𝑖)2, as previously in Chapter 2.1 and 

the AF the sigmoid function. The derivation of the cost function gradient, ∇J, for the 

gradient descent algorithm, can be seen in Equation ( 2.19 ), where delta 𝛿 denotes 
𝜕𝐽

𝜕𝑦

𝜕𝑦𝑖

𝜕𝑤𝑖𝑘
 , which integrates the Equation ( 2.17 ), called delta rule.  

For each training epoch, the gradient descent algorithm needs to calculate the 

gradient of the cost function, which means calculating the gradient of the loss 

function for each ith observation and averaging the m total samples. For a large 

training size, it can be unfeasible to use all samples to take a single updating step, 

given the time that it would take to compute this average considering all m 

observations at once. An improvement on this batch GD is the mini-batch Stochastic 

Gradient Descent algorithm (SGD). The mini-batch SGD provides a modification by 

considering a randomly picked small batch from the training set which is used to 

estimate the true gradient of the cost function. It can be shown that for a large sample 

size m, the estimate is a good approximation of the true overall cost function gradient 

[25]. Thus, for each epoch, several steps on the weight update rule will be made, each 

based on a randomly picked small batch of training data until all the training 

samples have been exhausted.  

 𝑤𝑘
𝑛𝑒𝑤 =  𝑤𝑘 +  𝛥𝑤   

 𝑤ℎ𝑒𝑟𝑒,   𝛥𝑤 =  − 𝜂𝛻𝐽   

( 2.17 ) 

 
𝛻𝐽 = (

𝜕𝐽

𝜕𝑤1
, … ,

𝜕𝐽

𝜕𝑤𝑘
) =

𝜕𝐽

𝜕𝑦

𝜕𝑦

𝜕𝑤1,..,𝑘
 

( 2.18 ) 
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𝜕𝐽

𝜕𝑤𝑖𝑘
=

𝜕 (
1
2

(𝑦𝑖̂ − 𝑦𝑖)2)

𝜕𝑦𝑖

𝜕𝑦𝑖

𝜕𝑤𝑖𝑘
→   

→ −(𝑦𝑖̂ − 𝑦𝑖)
𝜕𝑦𝑖

𝜕𝑧𝑖

𝜕𝑧𝑖

𝜕𝑤𝑖𝑘
 →  

→ −(𝑦𝑖̂ − 𝑦𝑖)ϑ′(𝑧𝑖) 𝑥𝑖    

𝛥𝑤 = 𝜂 𝛿 𝑥 

( 2.19 ) 

The Universal Approximation Theorem states that any continuous function on a 

closed and bounded subset of IRn can be approximated by a neural network, 

featuring a nonlinear squashing hidden unit and a linear output layer [19]. This is a 

very powerful statement, affirming that an ANN will be able to represent any 

function that it’s trying to learn, even if it’s not able to find it in practice due to 

limitations on the training algorithm. Besides, theoretically, for a single-layer ANN, 

the degree of error to which we can approximate the true function can be defined at 

any nonzero amount and is only constrained by the number of hidden units.  To 

achieve the desired accuracy, however, the number of necessary hidden units can be 

prohibitively large and also lead to an overfitting problem. Increasing the depth of 

the network, i.e., the number of hidden layers, the number of hidden units required 

to represent the given function will be reduced, thus the great power that comes with 

Deep Learning. 

2.4.2 Learning Process for DL: Backpropagation 

There is however one thing missing to complete the learning process overview for a 

deep ANN, i.e., with some hidden layer(s). The former explanation suits well for a 

single-layer ANN, Figure 2.5, given that we are in a supervision framework, thus 𝑦𝑖, 

the true label of an observation, is used in the loss function to calculate 

misclassifications/errors and further guide the learning process to change the weights 

to correct for these misclassifications. In the case of Deep ANN, the hidden neuron’s 

weights also need updating, however, there are no explicit supervision labels to 

directly apply the delta rule, Equation( 2.17 ). Hence, the backpropagation concept is 

introduced, which will address the formerly mentioned gap in the weight updating 

rule.  

Backpropagation is a method developed to efficiently calculate the weights which 

later are used in the gradient descent optimizer (or other). The weights will be 

denoted from now on as 𝑤𝑘𝑗
𝑙  and the activation value of a neuron as 𝑎𝑗

𝑙 , i.e., a hidden 

neuron output, where l denotes the lth layer, k the kth neuron in the (l-1)th layer and j 

the jth neuron in the current lth layer. Regardless of the network depth, the rationale 
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behind the computation of backpropagation can be visualized in Figure 2.6,  in a 

simplified toy ANN.  

If the input layer is layer l, then the first hidden layer will be l+1 and so on, until the 

output layer which is denoted by L. The weight update is based on the gradient 

descent method.  

 

 

Figure 2.6: Chain rule in Backpropagation. 

 

Since a known true label doesn’t exist for activation  𝑎1
𝑙+1, The cost J= 

1

2
( 𝑎̂1

𝑙+1 −

 𝑎1
𝑙+1)

2
cannot be explicitly calculated nor its partial derivative for the GD algorithm. 

In fact, we can see that the cost function dependency on 𝑎1
𝑙+1 is not direct, which is 

represented in the equality on the top of Figure 2.6. This already suggests that a 

further derivation will be necessary to understand how the weight on hidden layer 

l+1 will be updated.  

  
𝜕𝐽

𝜕𝑦

𝜕𝑦

𝜕𝑧𝐿

𝜕𝑧𝐿

𝜕𝑎1
𝑙+1

𝜕𝑎1
𝑙+1

𝜕𝑧𝑙+1

𝜕𝑧𝑙+1

𝜕𝑤11
𝑙+1 

𝜹𝒍+𝟏𝒙𝟏 =  𝜹𝑳 𝒘𝑳  𝜽′𝒍+𝟏
(𝒛𝒍+𝟏)𝒙𝟏                             

( 2.20 ) 
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The learning process will evolve in the following way: firstly, there is a forward step, 

where weights are initialized according to a chosen criteria and the training set is 

passed layer by layer until we get the output predictions for each observation, 𝑦𝑖̂. 

From the output layer, the cost function can be calculated based on the 

misclassifications which result in an error value. The last layer weight, 𝑤11
𝐿  , can be 

easily updated by applying the delta rule since we do have an explicit label, 𝑦𝑡𝑟𝑢𝑒 , 

which corresponds to the derivations on points 1) a),b) in Figure 2.6, similarly to 

what was shown previously in Equations ( 2.17 ), ( 2.18 ) and ( 2.19 ). From this point 

on, a backward step initializes where the error will be propagated back to the input 

layer and the weights will be iteratively updated. In Step 2) the backpropagation 

starts and it must serve to calculate the partial derivative of the cost function with 

respect to 𝑤11
𝑙+1, which is shown in point 2)  c). While point 2) a) and b) follow the 

same dynamics as 1) a),b), with the gradient of the Cost function being calculated 

with respect to a different layer weight, l+1 instead of L, a further step arises in sub-

step c), where it is necessary to further apply the chain rule to 
𝜕𝐽

𝜕𝑎
 for the reasons 

already stated above (there is no explicit computation of cost on the output of 𝑎1
𝑙+1 

hidden layer). This leads us to Equation ( 2.20 ) , the complete rule to backpropagate 

the error back to layer l+1 in Figure 2.6. It is noticeable that there is a repeating 

pattern, and in Equation( 2.21 ), the general cost function derivation on a hidden 

neuron output, o, can be seen. The general rule for weight update, 𝛥𝑤𝑘𝑗
𝑙  , in a layer 

l<L is stated in Equation ( 2.22 ), where we can see that 𝛿𝑙 unfolds to the product 

between weights and 𝛿 delta of the next layer, l+1. The chain rule is recursively 

applied until input layer. 

 𝜕𝐽

𝜕𝑜𝑗
𝑙 =

𝜕𝐽

𝜕𝑧𝑗
𝑙+1

𝜕𝑧𝑗
𝑙+1

𝜕𝑜𝑗
𝑙 =

𝜕𝐽

𝜕𝑜𝑙+1

𝜕𝑜𝑙+1

𝜕𝑧𝑗
𝑙+1

𝜕𝑧𝑗
𝑙+1

𝜕𝑜𝑙
 

( 2.21 ) 

 

 𝛥𝑤𝑘𝑗
𝑙 = 𝜂 𝛿 𝑘

𝑙 𝑥𝑗
𝑙−1    

𝛿 𝑘
𝑙 =  (∑(𝑤𝑟,𝑘

𝑙+1)𝛿𝑟
𝑙+1

𝑅

𝑟

) 𝜗′(𝑧𝑘
𝑙 ),    𝑓𝑜𝑟 𝑙 < 𝐿  

𝑤ℎ𝑒𝑟𝑒 𝑅 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑖𝑑𝑑𝑒𝑛 𝑢𝑛𝑖𝑡𝑠   

( 2.22 ) 

2.4.3 Optimizing the Learning Process 

For the sake of optimizing the learning process, several modifications or 

improvements can be made at different levels in our model. From the optimizer in 

use to the choice of Activation Function, the possibilities are endless. 
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2.4.3.1 Choice of Activation Function (AF) 

The choice of AF plays an important role in the efficiency of the training since there 

are some known limitations characterizing each of them. An overview will be made 

of the Sigmoid function, Rectified Linear Unit (ReLU), and Scaled Exponential Linear 

Unit (SELU).  

One problem that can arise in training an ANN is the vanishing gradient problem (as 

well as the exploding gradient problem). This problem is intensified with the depth 

of the ANN and it can be traced back to the way gradients backpropagate. This 

problem can be identified when using sigmoid AF to train deep ANN.  

The sigmoid function saturates mostly for very high and low values of input z, and is 

most sensitive when z is near 0, although its derivative is less than 0.25 in the entire 

domain, 𝜗′(𝑧), Figure 2.7 a). When the calculated gradient is small in beginning, the 

later gradients will be increasingly small, due to the chain-like product computation 

in backpropagation. Consequentially, earlier layers learn much slower (or nothing at 

all) than late ones. Layers learning at different speeds is undesirable since the goal is 

to optimize all layers, therefore, if the gradient is vanishing, the gradient-based 

learning becomes very difficult and the weights result stagnated. On the contrary, if 

the AF has too large gradients, the opposite problem can arise, the exploding 

gradient problem.  

The ReLU AF is defined as max(0,z), being 0 for negative values of input and the 

identity function for positive values. It overcomes the vanishing gradient problem 

and is usually accepted as a default choice for an ANN. It is noticeable that it 

contains a discontinuity at z=0 however this does not invalidate the use of gradient-

descent learning. There are several AF that are non-differentiable but only at some 

points, and because it is not expected that the ANN training algorithm arrives at a 

minimum point then this point can also have an undefined gradient. It is enough to 

ensure that the cost function value is reduced substantially [19]. The derivative of 

ReLU returns 0 when z<0 and returns 1 when z>1, Figure 2.7b), and because of this 

behavior we encounter another problem, called the “dead” neuron problem. When 

z<0, the neuron becomes inactive because the gradient is zero and so the update will 

also be zero. ReLU cannot learn via gradient-descent methods for samples whose 

activation is zero.  

Various generalizations of ReLU AF were introduced which improve the limitations 

mentioned before. For example, SELU AF avoids vanishing or exploding gradient 

problems and the dead neuron problem[27].  
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a) Derivative of Sigmoid Function. 

 

b) Derivative of ReLU Function. 

Figure 2.7: Derivatives of AF [26]. 

2.4.3.2 Choice of Loss Function 

The choice of loss function influences the efficiency of the optimization algorithm. 

Some loss functions cannot be minimized, as in the case of 0-1 loss. For this reason, 

loss functions were developed to act as proxies for the one we care about, this is 

called a surrogate loss function. Besides, as was mentioned previously, the 

optimization of an ANN is not a pure optimization since we do not care about 

reaching a minimum point in the training set search space, but to decrease a 

generalization error. In fact, when training a model, the training is stopped when it 

has converged to a solution that is decreasing an evaluation metric, and right after 

overfitting starts to happen, even though the gradient might still be high. This 

evaluation metric acts as a preview of the generalization error we expect in the 

unseen test set. 

Several loss functions have advantages compared with the simple quadratic cost or 

0-1 loss. Some problems already discussed, like the vanishing gradient, can be fixed 

by choosing an improved cost function, with better gradient characteristics, 
𝜕𝐽

𝜕𝑤𝑗
, 

which improves the efficiency of the gradient descent method.  

For example, the gradient of the cross-entropy cost function has a form that does not 

pose the problem caused by the quadratic cost, of slowing down learning when 

using a sigmoid AF. This is because the term 𝜗′(𝑧), responsible for the vanishing 

gradient problem due to small derivatives with the sigmoid function, is canceled out 

during the derivation of the final expression of the gradient using cross-entropy cost, 

Equation ( 2.23 ) [25]. 
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 𝜕𝐽

𝜕𝑤𝑗
=

1

𝑛
∑ 𝑥𝑖𝑗(𝜗(𝑧) − 𝑦𝑖) 

𝑖

  
( 2.23 ) 

2.4.3.3 Choice of Optimizer 

SGD is a very commonly used optimizer, however, it can be slow for solving certain 

problems, and because of this, several other optimizers have been proposed that try 

to improve SGD limitations.  

Momentum is a concept of physics that was introduced in the optimizers' methods to 

accelerate learning. In fact, momentum can be defined as the increase in the rate of 

development of a process which is translated in the optimizing framework as a 

model’s ability in increasing its learning velocity, the more it learns, the faster it also 

learns. It introduces a hyperparameter α, bound between 0 and 1, that determines 

how quickly the contributions of previous gradients exponentially decay. The higher 

the α is with respect to learning rate η, the more previous gradients affect the current 

direction. If learning is affected more by previous gradients, then, the step size taken 

during gradient descent becomes larger when many successive observations follow a 

certain somehow similar pattern (gradient points following the exact same direction). 

One way to accelerate learning is to combine SGD with momentum, Figure 2.8 a).  

Another approach is to adapt the learning rate during training. This can be done 

through learning rate schedules, which adapt the learning rate throughout the 

training course. This method does not modify the optimizer. Learning rate influences 

significantly the model performance and it can be advantageous if it decreases 

during training so that when reaching a minimum value it takes smaller updating 

steps. For this, several types of schedules can be used, such as the Exponential 

Learning Rate Schedule, which exponentially decays the learning rate during 

training. Of course, this introduces more hyperparameters in the algorithm, such as 

the ones concerning the schedule itself.  

Another perspective is introduced by optimizers that adapt the learning rate for each 

parameter, such as AdaGrad. In fact, in the search space, the cost can be rather 

insensitive to some parameters directions, exemplified in Figure 2.8b) and by 

introducing an individual learning rate for each, the issue can be mitigated and more 

degrees of freedom are introduced. The parameters with the largest partial 

derivatives of the loss will have a higher decrease in the learning rate. RMSProp is 

another adaptative learning optimizer that was introduced as an improvement to 

AdaGrad. It can be applied to nonconvex functions where AdaGrad fails, by 

decreasing the learning rate fast only when it finds a convex region [19]. 

Lastly, Adam optimizer, which is derived from “adaptative moments” is a 

combination of RMSProp with momentum and it has been proved to perform fairly 
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better with respect to others [28]. There is no standard method to define which is the 

right optimization algorithm for a given optimization problem. Adaptative learning 

rate algorithms seem to perform better but, within that family of algorithms, the 

choice is more empirically and subjective to the user’s experience.  

 

a) GD with momentum. 

 

b) Elliptic Loss Function- more 

insensitive to x-direction. 

Figure 2.8: Optimizers’ Methods [26]. 

2.4.3.4 Parameter Initializer 

Training algorithms are usually iterative which implies the definition of a starting 

point. This starting point can then influence whether or not an algorithm will 

converge to a solution. For this reason, several strategies were developed for the 

initialization of model parameters. One of these strategies is to randomly initialize all 

weights in the model drawing from a Gaussian or Uniform distribution. 

Furthermore, the scale of this initialization also seems to be relevant. Initializing 

weights with too small a value can lead to losing signal during backpropagation and 

too large weights can lead to the exploding of weights problems or causing AF to 

saturate causing the vanishing gradient problem. Adding to this, some AF functions 

require specific parameter initializers such as SELU AF which requires LecunNormal 

initialization. 

2.4.3.5 Dropout Regularization 

Regularization techniques have already been discussed in Chapter 2.1.2. These 

regularizers can be equally added to the optimization process for DL. 

 A specific form of regularization for ANN models is the dropout method. Dropout 

does not modify the cost function, it modifies the network by forcing sparsity. With 

dropout, some hidden units of the network are shut down during each weight 
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update in the backpropagation process. This means that a small group of neurons 

activate to a set of inputs which force these neurons to learn more robust features. 

Another take on the dropout technique is that dropping out a different set of neurons 

is like training different ANN at the same time. 

2.5 Autoencoders 

An Autoencoder is a type of ANN used for feature learning, is a type of FFNN 

designed with a symmetric architecture. The goal of an Autoencoder is to learn the 

underlying structure of data. It learns how to reconstruct its input from a compressed 

version of it. This implies that the information present in the compressed version, or 

code, must be very relevant and representative of the input.   

It’s composed of two parts, the encoder, starting from the input layer in which layers 

decrease gradually in breath until the minimum dimension, the so-called bottleneck, 

where the code for representing the input is presented, also denoted by latent space 

or latent variables, and the decoder,  composed by layers of hidden units mirroring 

the encoder part, increasing in size leading to the output, which has the same size as 

the input and should be a successful reproduction of it, Figure 2.9 a).  

The challenge is to learn to represent the input without copying it, i.e., learning an 

approximation to the identity function but not the identity itself. This is more or less 

ensured if the architecture of the AE is designed in the formerly described way, i.e., 

shrinking the number of hidden units in each layer, called an undercomplete AE, so 

to force a low dimensionality representation of the input in the bottleneck. However, 

restraint must be taken in the capacity (complexity)  that is allowed to the network. 

Indeed, an undercomplete AE where the hidden units are allowed too much capacity 

can still be able to overfit to the training data, for this reason, adding regularization 

layers might be useful to further ensure the model does not learn to copy the input. 

The learning framework of an AE is similar to any other NN within the supervised 

training, it learns how to reconstruct the input by a self-supervised framework, 

where the input itself serves as the target variable. The training goal is to minimize 

the generalization error on the test set between the reconstruction and the original 

sample.  

In terms of the dimensionality reduction ability, there are some counterparts to PCA. 

An undercomplete AE in which the decoder is composed of only linear units and the 

loss function is the mean squared error learns the principal subspace of training data, 

i.e., the same subspace as PCA would [19]. When nonlinear units are chosen instead, 

AE can learn a more powerful nonlinear generalization of PCA. Indeed, AE can map 
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an input to an even lower dimensionality than PCA because AE manages to learn the 

structure of the data manifold.  

The basis of manifold learning is the idea that data follows a certain low-dimensional 

manifold or set of manifolds. A manifold is a connected region, i.e., a set of points 

associated with a neighborhood around each point [19], which can be understood as 

a hidden data structure. Many ML algorithms try to learn a function that behaves 

correctly in the manifold but fail to generalize if an observation is of the manifold.  

 

a) Autoencoder [26]. 

 

L1=ϑ(∑ 𝑤𝑘𝑎𝑘𝑘 ) 

b) Latent Variables. 

Figure 2.9: Autoencoder. 

The AE should then be able to recover the manifold structure, which PCA fails to do 

because manifolds are intrinsically nonlinear- they are curved in the original space 

because data may be distributed in entangled spirals and complex shapes- and Deep 

nonlinear AEs are suitable for disentangling such forms. Of course, this capacity also 

comes with the drawback that an AE may be able to memorize the input, learning a 

representation that is not useful, therefore it is recommended to make use of 

architecture constraints and regularization techniques, as mentioned previously. 

Besides data compression, the AE can be used to tackle other tasks, such as denoising 

data, integrating different data types, as a generative network, and anomaly 

detection. In data compression one is interested in preserving the code, i.e., the latent 

variables of the input. Thus, once the AE is trained the decoder part can be lost.  

The latent variables, however, can be hard to interpret since one does not know 

exactly what they represent. They are derived as any other hidden unit activation, by 

applying the AF to the input which represents the output of a neuron of a previous 

layer, Figure 2.9 b).  

In the anomaly detection task, the AE learns how to represent the input, being this 

input considered the “normal” or within a normative range. When a sample is 
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deviating from this normative range, presenting some abnormality, the AE fails to 

reconstruct it well. This is closely related to dimensionality reduction, in fact, 

anomaly detection is a consequence of an AE which has effectively learned how to 

represent an input through a compressed representation. A compressed 

representation of data represents only regularities in data, i.e., all unusual and noisy 

variations are lost in the dimensionality reduction process. Since an outlier point is 

mainly characterized by irregularities, the AE will be unable to encode it without 

losing information [26]. The strategy is therefore to quantify the reconstruction error 

so to have a score within a sample is considered an inlier and above a certain 

threshold an outlier. 

2.6 ML Best Practices  

Aiming to build a robust and replicable ML model it is important to respect and 

follow certain standards and guidelines. From data collection, and data processing to 

ML pipelines, there are a lot of factors to be considered to avoid overestimating 

results and misleading conclusions.  

In the area of psychiatry and brain disorders, many ML models for diagnosis have 

been proposed, however, the reported results are rather polarized and ambiguous, 

giving rise to concerns about the validity of certain findings. Focusing on 

neuroimaging data for the diagnosis of BD, reported performance results are 

extremely discrepant, going from 50% to 100% accuracy (ACC) [18]. Taking this into 

account it is important to overview ML best practices and recommendations in order 

to develop a model grounded in a robust pipeline. 

From the data point of view, some issues might be a source of systematic 

overestimations, concerning size and sample heterogeneity. There has been a 

consistent bias where small sample studies report better performances than large 

sample studies. In fact, an inverse relationship between sample size and balanced 

accuracy has been reported, a rather counter-intuitive finding since one would expect 

accuracy to increase with sample size [29]. This finding hints at the fact that subject 

inter and intra-variability, and population heterogeneity could be influencing 

lowering model performances. If one is to study BD through a sample of N subjects, 

within this sample, patients might belong to different subtypes of the disorder, be at 

different statuses or disease progression, present a variety of different symptoms 

between each other, and have been submitted to different neuroimaging collection 

protocols, use of different scanners, etc. Logically, all these factors should contribute 

to lower model performance since it is harder to learn on a broad heterogeneous data 

sample. However, a small sample may lack the heterogenicity that is intrinsically 

presented in the population under study, making it easier for the model to learn and 
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predict for that sample but failing to generalize to the whole population of interest. 

Whereas higher sample sizes yield increased statistical power, making heterogeneity 

a lesser problem and resulting in more replicable findings. Heterogenicity may be 

represented by demographic variability, site variability, phenotypic variability, and 

clinical status variability. Since the biological etiology of most brain disorders is 

unknown, it is not possible to subtype patients by creating well-defined clusters that 

yield phenotypic homogeneity. Moreover, a collection of data taken place at the same 

recruiting center will be rather homogeneous whereas a multisite data collection 

would yield a significantly higher variability.  

Apart from sample heterogeneity, size can be by itself a limiting factor, regarding its 

relationship with model complexity. Sample size shifts the trade-off between bias 

and variance allowing for the retrieval of complex models with low bias and 

relatively low variance, Figure 2.10. This means that large sample sizes allow for the 

realization of complex models without compromising the prediction error [21]. This 

is why, Deep Learning models require more data to be trained in order to 

outperform classical ML models, as they have much more parameters to be learned 

yielding more complex models. With increased model complexity, a small sample 

size easily leads to overfitting models. It is hard to effectively learn from a few data 

samples when the learning task is very complex, thus, models end up memorizing 

rather than learning. Although it is important to keep this in mind, Deep learning 

models should not be excluded on this basis as some methods and adaptations can 

be done to try to circumvent this issue. Firstly, using a priori knowledge of methods 

that facilitate training can reduce the number of to-be-trained parameters and the 

large dataset size demands. This can include sticking to more shallow network 

architectures (small number of hidden layers), choosing efficient activation functions 

(facilitating the training process), modifications to loss functions for example with 

regularizations techniques that can efficiently decrease model complexity hence 

optimizing the training process in specific ways, employing an efficient initialization 

process which can improve training convergency, choosing efficient training schemes 

that adapt well to smaller sample sizes, using data augmentation techniques, using 

pre-trained networks and making use of transfer learning techniques, etc. Just to 

mention a few [21]. The idea is that size requirements to successfully train a Deep 

ANN model depends on many hyperparameters and design/architecture choices, 

and that these can be tunned to smaller to medium size datasets. 
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Figure 2.10: Bias variance trade-off and sample size shifting [21]. 

Another source of systematic overestimation can happen when evaluating model 

performance. When optimizing a model, it is recurrent to perform feature selection 

and hyperparameter tuning. If we perform these operations and evaluate the error in 

the same set, then this will optimistically bias the model. To choose the best 

parameters based on the same dataset in which we evaluate performance is to choose 

the parameters that best fit that specific set, which consists in a form of circular bias. 

The generalization error (performance of model) is ought to be reported in a set of 

data “unseen” by the model – the test set. For this reason, a Cross-Validation (CV) 

framework is the best way to conduct any of the former operations.  

CV is a broad model validation strategy that allows estimating the generalizability of 

a model to an independent set. It is a resampling method, using different portions of 

the data to train and test, in several iterations. A common CV technique is a k-fold 

CV which divides data into k parts, using each one of them one time as a test set and 

all the others as the training set, therefore, it implies performing k iterations or runs. 

The Leave-one-out-CV (LOO-CV) implies living 1 sample for testing, using the rest 

of the data as training, thus requiring N-1 iterations, where N is the number of 

observations/examples in the dataset. Lastly, Leave-one-site-out-CV (LOSO-CV) is a 

good strategy to use for multisite data, in which a model is validated by leaving out 

in each iteration data from one site to test it, thus achieving a more robust and 

average performance of how a model whole generalize to an external set. Therefore, 

as a re-sampling procedure allows us to effectively evaluate the model, especially in 

case of limited data size. However, the CV disadvantages are associated with the 

increasing time complexity by increasing the number of evaluations performed, 

especially when high K folds are used.  

In CV framework for hyperparameter tunning (thus model optimization), all 

hyperparameter combinations are applied and evaluated based solely on the training 

set, holding out a complete unseen set – the test set- to later evaluate the 
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generalization error. The recommended procedure is k-fold nested cross-validation. 

It consists of an outer loop where data is divided into training and test set folds. 

Then, an inner loop where the former training set is further divided into train and 

validation set folds. This is recommended when both hyperparameter tunning and 

estimation of generalizing error are performed. In the inner loop data 

transformations and hyperparameter tuning are performed. A certain model is 

trained, with hyperparameters combination A, and then tested on a validation set, 

within the inner loop. This nested loop is used to set the hyperparameters, whereas 

the outer loop, with a varying test set within each fold, is used to measure prediction 

performance. The performance measured in the inner loop tells us which model 

parameters fit best to our data, whereas the outer loop performance tells us an 

estimation of how the model would respond to unseen data, Figure 2.11 . The 

recommended number of folds, and most used K, is 10 folds, as it has been shown 

that it best balances bias-variance trade-off [29]. 

 

Figure 2.11: Nested K-Fold Cross-Validation [23]. 

In the best-case scenario, when there is a large enough sample available, it is 

recurrent to divide the data into train/validation/test, called Holdout method, where 

a single run is performed. With this method, the model is chosen by analyzing 

validation set performance and the generalization error is evaluated in the test set.  

The next level, regarding model validation, is to use an external validation 

framework. For multisite data, this would mean using a new unseen independent 

site. For psychiatry disorders, it can also be useful to evaluate model specificity, i.e., 
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test models on different psychiatry disorders since many disorders somehow overlap 

in some of the etiologic factors and symptoms. Performing carefully all the above-

mentioned steps will lead to more robust conclusions regarding model 

generalization performance results, making the model one step closer to clinical 

applicability. 

Another practice that can lead to the overestimation of results is called data leakage. 

Data leakage happens when statistical dependencies are created between 

train/validation/test sets. A common example would be to perform feature selection 

before train/validation/test set partition. If features are selected based on a global 

overview of the entire dataset, then, the test set is contributing to informing which 

features might be relevant, losing completely the validity of being a set of “unseen” 

data samples. Hence, later model evaluation on the test set would yield optimistic 

results because the model would have been shaped according, somehow, to test set 

feature distributions. Indeed, any data transformations and feature selection must be 

performed after dataset partition or within the cross-validation folds, exclusively on 

the training set and later applied to the test set [29]. 

Although the standard procedure would be model optimization, it has been 

reported, in an ML review of the kind, that 73% of studies employed only one ML 

model, and even for that model hyperparameter search was not performed [29]. 

Proceeding in this way might avoid data leakage and optimistic biased results, 

however, it is not very informative since any other model could outperform the 

latter, according to the No Free Lunch Theorem. 

Still, many limitations are commonly found in Machine Learning studies for brain 

disorders. A lot of studies are performed on one site, lacking the external validity 

step for an independent site sample. This leads to relevant site-dependent 

conclusions but questionable generalization capability. Concluding, in order to have 

a Machine Learning Model which might yield clinical applicability, it is 

recommended to consider several check-points[29]: 

1) Generalization: 

1.1) Nested- CV for model evaluation and hyperparameter tunning; 

1.2) Large independent test set; 

1.3) Large external test set; 

2) Model-scope: 

2.1) Representative sample of target population: heterogeneous samples are 

recommended if it represents the real-life scenario for the population of 

interest. (e.g: excluding patients with certain comorbidities might be 
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suboptimal if the aim is to have a clinical decision support system for this 

group of patients) ; 

3) Incremental utility: 

3.1) Reporting whether results outperform the current state of the art; 

4) Model Interpretability: 

4.1) Excluding/Treating confounding variables; 

 

 

 



 43 

 

 

 

3.  Data Processing 

Neuroimaging data can consist of raw images, processed images, or features 

extracted from MRI scans. The data processing protocols will be reviewed in this 

section with a particular perspective of how these protocols can then be included in a 

ML pipeline. 

3.1 Brain Morphological Feature Extraction 

Once the raw MR images are obtained, they can be processed to extract relevant 

measurements. One could always use raw image data and input it to a Deep 

Learning Model, however, such high dimensionality data would yield the necessity 

of extremely high computational resources, such to store data, optimizing the model 

and training the model. The alternative method is to proceed with some pre-

processing to reduce the dimensionality of this data, such as with Regions-Of-

Interest (ROIs) feature extraction. To extract ROIs features a Statistical Parametric 

Mapping (SPM) Tool [30] is used, which is also the standard procedure to perform a 

Voxel-based Morphometry (VBM).  

VBM is the study of local brain regions' sizes and shapes compared at a voxel-wise 

level for a given population. To do this, brain images need to be processed and 

tissues segmented, as the raw ones present noise, intensity-inhomogeneities, vessels, 

etc., all details that are not reliable or interested to study. Besides, to perform a group 

analysis or comparison one wants to eliminate all variations that are external and 

unrelated to group differences. The idea is to extract volumetric and cortical 

thickness measures from ROIs, as well as the Total Intracranial Volume (TIV), from 

each brain scan. Due to anatomy inter-subject variability, brain image scans contain 

unwanted spatial variations, but scans need to match spatially between each other so 

that the location of each region in one scan can correspond to the same location in 

another scan so that a direct comparison can be performed.  Therefore, scans must be 

aligned in the same space, and shot to the same brain template, so that the remaining 
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differences account for group differences and nothing else. The spatial matching is 

called spatial normalization.  

The protocol is usually implemented with SPM12 Software [30] or Computational 

Anatomy Toolbox (CAT12), an SPM12 add-on [31]. The default protocol follows the 

steps of Tissue Segmentation, into Grey Matter (GM), White matter (WM) and 

Cerebrospinal fluid (CSF), Spatial Normalization, making brain scans matching into 

a common space via registration to a standard stereotactic atlas( a default template 

usually given by the software) to ensure voxel-wise correspondence across different 

brains, an optional Modulation step which aims at correcting for local volumes 

deformations, and finally, a Spatial Smoothing step, which helps compensate some 

imprecision of the spatial normalization and increase Signal-to-Noise Ratio (SNR) 

[32]. When these steps are performed, ROIs features can be automatically extracted, 

through anatomical automatic labeling [33], using probabilistic atlases to extract 

volumetric and cortical thickness measures, since the brain scans will be matching to 

a reference template brain.  

The main differences between the CAT12 protocol and SPM12 are in the method 

used to classify brain tissues. SPM12 uses Tissues Probability Maps (TPM), i.e., using 

images of six tissue priors representing their best guess on that tissue type to classify 

a voxel, which consists of a hypothesis-based approach. In this method, the image 

histogram is modeled as a mixture of 3 Gaussians, representing GM, WM, and CSF 

tissues, and the classification of each voxel tissue is done by estimating the 

contribution of each gaussian to that single voxel.  CAT12 uses an adaptive 

maximum a posteriori (AMAP) method to classify voxel units, making the final 

tissue classification independent from priors, a hypothesis-free approach [32], [34]. 

 CAT12 basic voxel-based protocol called “Voxel-based processing” includes a 

module for tissue segmentation, spatial normalization, and ROIs generation and 

ROIs measurements extraction. The protocol can be separated into three main data 

processing steps, the initial voxel-based processing, then refined voxel-based 

processing, and finally the surface-based processing (optional). The initial voxel-

based processing corresponds to the initial SPM12 pipeline, and includes an affine 

registration step and initialization of tissue segmentation with TPM priors, through 

the SPM Unified Segmentation[35]. The initial spatial normalization ensures the 

registration of individual MR scans to an MNI space template. The step includes a 

12-parameter affine registration, it determines the optimum transformations among 

the following 12 degrees of freedom: 3 translations, 3 rotations, 3 shears, and 3 

zooms, therefore linear transformations. The normalization, or warping, is 

performed to the default ICBM space template – European Brains.  
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a) CAT12 flowchart. 

 

 

b) Modulation [36]. 

 

c) Spatial Smoothing. Adapted from [37]. 

Figure 3.1: CAT12 pre-processing. 

The refined consequent step starts the brain parcellation and uses the AMAP 

approach to derivate the final segmented tissues and, as the last step, tissue segments 

are further spatially normalized, this time including non-linear deformations, to the 

template from (http://www.brain-development.org) of the IXI-dataset, using 

Diffeomorphic Anatomical Registration Through Exponentiated Lie algebra 

(DARTEL) algorithm [38].  

After spatial normalization, an optional step called modulation can be performed. 

Modulation serves to correct for volumes changes, and its logic follows the reasoning 

that because brain regions can be artificially enlarged or shrink during normalization 

so to match the MNI space, the value of its voxels should be proportionally reduced 

or enlarged to guarantee that the original overall volume of that region is preserved 

in the normalized scan [36]. To correct for these volume alterations, the Jacobian 

determinants are used, which capture the amount of expansion or contraction of a 

voxel. If a Jacobian Determinant is 0.5, it means the native voxels were shrunk by this 

amount, and we can calculate 1/0.5 = 2, giving 1 voxel in the MNI space 

corresponding to 2 voxels in the native space. Therefore, if one multiplies the voxel 

2) MNI voxel in 

Native space 

1) Native voxel 

in Native space 

3) MNI voxel in 

MNI space 

Adaptative 
Maximum 
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gray matter values in the MNI space by quantity 2, it would restore the original grey 

volume value, Figure 3.1b).  

Regardless of performing the modulation step, the normalized or modulated images 

are spatially smoothed in the final step of the pipeline. At this last processing point, 

the voxels are convoluted with a gaussian function, with an optional Full-Width Half 

Maximum (FWHM), depending on the level of blurring one wants to achieve. This 

step aims at suppressing noise by ensuring each voxel contains an averaging of the 

voxel’s values in its neighborhood, defined exactly by the FWHM choice. It 

guarantees also that data are more normally distributed, an important factor when 

considering final analysis through statistical testing. Lastly, it also helps compensate 

for imprecision in spatial normalization[32]. For balanced designs an FWHM of 4 

mm was found to be enough to attenuate the nonnormality in data, while non-

balanced designs were less robust to violations of normality, needing a smoothing 

with FWHM above 8mm[39]. 

To proceed with an automated ROI analysis, probabilistic atlases are given within 

the CAT software which can be used to estimate the volumes and thickness of 

different regions. The probabilistic atlases are created based on the labeling of MRI 

scans of multiple healthy individuals which are then registered to MNI space. The 

result is an average template that accounts for inter-subject variations, resulting in a 

labeled brain atlas, with the brain parcellated into known regions, covering the 

whole cortex, subcortical structures, grey and white matter structures, etc., 

depending on the atlases[40]. Commonly used atlases are the Hammers(c) Copyright 

Imperial College of Science, Technology and Medicine 2007. All rights reserved., 

CoBra[41], Neuromorphometrics Inc. [42], and Desikan-Killiany Atlases[43]. CAT12 

then enables the estimation of mean tissue volumes, cortical thickness, and 

gyrification index of surfaces, for different ROIs, according to the atlases chosen as 

reference.  

3.2 Brain Morphological Feature Processing 

After pre-processing MR raw images, one can extract volumetric measures and 

cortical thickness measures for several brain regions. This allows for 1) repeatability 

of studies, since the regions correspond to an automatic labeling procedure using 

reference probabilistic atlases and 2) for reducing data dimensionality while still 

being able to study features provided from the subject's MRIs. Nevertheless, a 

further processing step should be considered regarding covariates of no interest 

coded in the data that can act as confounder variables to our model.  
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Dealing with confounders is an important data processing step, which might 

influence positively the final ML model interpretability. A confounding variable has 

several definitions in the literature, depending on the context it is applied. In disease 

etiological studies, confounding variables have a blurring effect that interferes with 

casual inferences by hiding the true causal effect [44]. In this kind of setup, a 

confounding variable is defined as a variable that has an association with disease, it 

must be a risk factor that is unequally distributed between exposure groups (HC vs 

not HC).  

In the context of ML analysis, a confounding variable has a different definition, 

defined as a variable that confounds a certain predictive model. When using 

neuroimaging data, the confounder variable it’s not constricted to be a risk factor, but 

rather a variable that covaries with the target (disease), that affects neuroimaging 

data, but which the ML model shouldn’t take into account as useful information. It 

can be defined as a variable that affects our data but its association with a target 

variable is not representative of the population of interest. Hence, data in this setup 

is said to be biased by the confounding variable with respect to the population of 

interest [45]. This concept is illustrated in Figure 3.2, where TIV covaries with gender, 

with males having larger brain volumes, and in the population of interest the 

decreased brain sizes are associated with an increase in y scores (target variable). 

However, gender has no association with y target variable, as it is evenly distributed. 

In a biased sample, there is a correlation between gender and y that is not 

representative of the population of interest, with males tending to have higher values 

of y than females, thus gender is acting as a confounder.  

 

 

Figure 3.2: Confounders: A Biased Sample [47]. 
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Besides, in an ML decoding analysis, confounders can be thought of as giving rise to 

a source ambiguity problem [46]. Usually, there is an interest in interpreting which 

features have contributed the most to an increase in the accuracy or performance of 

an ML model prediction. In this process, usually, it is (implicitly) assumed that the 

model is using information encoded in data that is uniquely related to the outcome of 

interest, the target variable. However, when the data encodes for information that is 

correlated with the outcome but that is of no interest to the study, there is a scenario 

of multiple unwanted sources of information which violates the aforementioned 

assumption, giving rise to a source ambiguity problem. This problem leads to the 

inability to know if the model used information that is uniquely associated with a 

disease or also information associated with a covariate of no interest, thus leading to 

confusion when trying to interpret a link between brain structure alterations and 

disease.  

Acquiring brain imaging is costly, however, the hypothesis is that neuroimaging data 

will increase the ability of an ML model to identify a disease, and it’s worth gaining 

knowledge about neuroimaging features that are relevant to identifying it. Therefore, 

it’s important to prevent an ML prediction from being guided by other cheap-

acquisitional clinical variables. Thus, in a setting which we care about 

interpretability, a variable that is encoded in our data and is not a covariate of 

interest, becomes a confounder variable for our model.  

For example, gender can covary with several diseases (men or women being more 

often diagnosed with that disease than the other) and also affects grey matter, 

representing a covariate of no interest. In neurodegenerative diseases, however, age 

covaries with disease and also affects grey matter, but in this case, age effects are 

directly associated with changes in disease progression, being a covariate of interest. 

One might want to eliminate the age effect in neuroimaging data, without 

eliminating disease-specific age effects, thus removing age effects that are associated 

with Healthy Controls, leaving only the disease-specific age effects. 

The data processing step which allows disentangling multiple sources of information 

that might be encoded in our data is called controlling for confounding variables. 

Besides gender, other variables can be considered confounding variables depending 

on the context of the study, such as age, medication, total intracranial volume (TIV), 

scanner or site effects. It has been shown that scanner and site effects can 

significantly bias the ML model and that it could accurately predict data origin based 

solely on the site effects that are encoded in data. This can lead to an ML model that 

learns the structure of the site effects on data and further uses it positively biasing its 

performance.[48], [49] To be sure the model is not capturing these variations in data, 

and that its performance is guided only by features of interest, it is necessary to 
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remove its effects from the data. Usually, confounding effects can be reduced by 

applying a statistical adjustment method. These methods produce an output that has 

been corrected for the effect of these variables, thus, being free of such confounding 

effects. 

• Regressing-out biological covariates 

One of the methods to model confounding effects is through regression models, 

which estimate the influence of one variable on another. The simplest regression 

model is a linear regression with 2 variables. The regression model can be extended 

to a multivariate case, reported in, Equation ( 3.1 ), assuming that each confounder 

has a linear relationship with feature Y and that their joint effect is the sum of their 

separate effects [45].  

For continuous variables,  the 𝛽 coefficient will give an indication of the effect of a 

unit increase in confounding variable X on the variable of interest Y. If we considered 

X to represent age, having a coefficient 𝛽1, its meaning would be: 1-year increase in 

age leads to an average increase or decrease (depending on signal) of  𝛽1 to Y. For X 

representing gender, which in the model is transformed into a dummy variable, the 

interpretation of 𝛽 coefficient is slightly different. Here, the number of dummy 

variables is always one less than the total number of options - eg: gender: female 1, 

thus leaving male 0, thus,  𝛽2 * (1) female. The interpretation is, for a positive  𝛽2 

coefficient, that feature Y value is higher for females than for the reference group 

males. Supposing Y stands for cortical thickness (in mm) for region j, and  𝛽𝑗,𝑓𝑒𝑚𝑎𝑙𝑒 is 

5, then, females have, on average, a cortical thickness for feature j of 5 mm more than 

males. 

 𝑌 = 𝛽1𝑎𝑔𝑒 + 𝛽2𝑔𝑒𝑛𝑑𝑒𝑟 + 𝛽3𝑇𝐼𝑉 + 𝛼 ( 3.1 ) 

 𝑌𝑗,𝑐𝑜𝑟𝑟 = 𝑌𝑗 − 𝛽̂𝑗𝑋  

𝑤ℎ𝑒𝑟𝑒 𝑗 𝑠𝑡𝑎𝑛𝑑𝑠 𝑓𝑜𝑟 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑎𝑛𝑑 𝑋 𝑡ℎ𝑒 𝑐𝑜𝑛𝑓𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠   

( 3.2 ) 

It is important to notice that the proposed model is assumed, not proved, therefore 

the coefficients estimated do not yield any information about model rightness [50]. If 

the chosen model is not suitable, then the assumed association between covariates 

and outcome differs from the true association, which is called misspecification. There 

are methods to analyze the regression model validity, such as normality and 

independence of the regression residuals, the significance of the coefficients, analysis 

of variance, coefficient of determination R2,  multicollinearity of the independent 

variables, and confidence and prediction limits [51],[20]. 
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1) Normality of Residuals: The residuals represent the errors between each pair 

of observations (x, y) to the linear regression. It can be seen as the remaining 

variance that hinds the linear regression to perfectly fit and predict the data 

observations. For this reason, there should be no source of regularity or 

pattern left in the residuals, i.e., the residuals should behave as random noise, 

satisfying the normality assumption. To assess the normality assumption of 

the residuals one can perform a goodness-of-fit hypothesis test, such as the 

Kolmogorov-Smirnov test, or plot a QQ plot of the residuals. Another method 

is to simply visualize the distribution of residuals against the fitted values of 

estimated y and look for abnormalities or regular trends which might indicate 

some explanatory factor left in the residuals not included in the model. 

2) The significance of the coefficients: a hypothesis test is performed for each 

independent variable included in the model, for which the null hypothesis is 

that the beta coefficient contains the zero value in its confidence interval. In 

fact, if we conclude that a variable X, influences the dependent variable, 

positively and negatively, thus the confidence interval including the zero 

value, then this variable is also not given a meaningful contribution to the 

regression. Thus, we look to the p-value and conclude it is significant if 

p<0.05. For multiple linear regression, if a variable is said to not be 

meaningful to the regression, it does not mean it will never be meaningful, 

just that it is not meaningful for that group of independent explanatory 

features. 

 

 

Figure 3.3: Significance of coefficients Analysis [20]. 

 

3) Analysis of variance: Analyze that the predictive variables explain totally the 

variance inherent to the dependent variable Y, leaving aside only random 

noise represented by the residuals. If this is achieved, the sample variance of 

the residuals needs to be much smaller than the one of the independent 

variable Y.  

4) Coefficient of linear correlation: the closer R2 is to 1, the better the 

approximation of the distribution of the observations to the straight line. 

5) Multicollinearity of independent variables: The independent variables 

included in the regression model should not be linear correlated. If they are, 

regression model significance is compromised. 
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After finding a linear equation that fits the data, we might ask whether it fits the data 

well. If it fits the data well, the coefficient of multiple determination R2 should be 

close to 1, which tells us how much of the dependent variable variation is explained 

by the independent features. Then we can assess whether a particular independent 

variable contributes significantly to the regression, after controlling for the effect of 

the others, through the p-value or significance of the t-statistics. 

Despite the previously considered problem, linear regression to adjust for covariates 

is a standard procedure in literature in dealing with confounding variables, called 

confound regression. After fitting the linear regression, the variance that can be 

explained by the confounding variable is removed from the data directly, with the 

estimated β coefficients, reported in Equation ( 3.2 ). The β coefficients are estimated 

by solving the Least Squares Problem, through minimization of the residuals or the 

Moore-Penrose pseudoinverse method.  

One additional point we need to have into account, in an ML analysis, regarding the 

Cross-Validation (CV) framework. As it was discussed previously, whenever model 

optimization and generalization error estimation are performed employing the same 

subset of data, it necessarily leads to a biased model. Data transformations must take 

into account the latter, hence, correcting for confounders must be done within an ML 

pipeline in a way that does not break the CV validity. For this reason, the β 

coefficients must be estimated only using the training set, and, if using k-fold CV, 

within each fold that is used for training. Then, the estimated β coefficients are 

applied to the train and test set. This is called Cross-validated confound regression 

(CVCR) and was studied by L. Snoek et al. [46] yielding plausible model 

performances, while Whole-Dataset Confound Regression showed pessimistic and 

below chance level performance results.  

Besides the regression model, another commonly used method is Counterbalancing 

(A Priori or Post Hoc). Apriori Counterbalancing is done by counterbalanced 

confounding variables in the experimental design. This entails that subjects are 

chosen (randomly) in a way that there is no correlation between confound and target 

variable, leading to the definition of rigorous excluding criteria. If this is not possible 

a priori, the Post Hoc Counterbalancing proposes to extract a subset of samples, from 

the original complete dataset, in which there is no correlation between target and 

confounders. This method however has been shown to yield optimistic model 

performances in an ML framework and has been suggested as an inappropriate 

method to control for confounders. This can be explained by the fact that restrictive 

excluding criteria or subsampling rejects samples that are harder to classify or to 

learn from, but that is representative of the population of interest,  inducing 

substantial bias in the model [46]. 
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Figure 3.4: Dealing with Confounding Variables [46]. 

• Data Harmonization 

More recently, with the increase of multicentric studies and datasets, a necessity for 

center harmonization has arisen. A tool specifically to remove batch effects in 

genomics was introduced in the literature and has been appropriated for the 

correction of site or scanner effects in neuroimaging studies. Site effects are non-

biological covariates that stand for different acquisition protocols, different data 

acquisition sites, different scanning equipment, or even parameter configurations. It 

was then proposed a reproducible and repeatable method to model for these effects: 

using the same tool that was developed to deal with batch effects, called ComBat 

(Combating batch effect) [52].  

ComBat is a parametric and non-parametric empirical Bayes framework for adjusting 

data for batch effects. In the context of its development batch effect was defined as 

systematic non-biological differences that make samples not directly comparable[52]. 

This concept can be easily generalized and applied to other settings besides genetics, 

such as the ones considering neuroimaging studies.  

The model extends a linear regression in which biological covariates are included so 

that their effect is separated from the non-biological site effects, making the 

assumption that scanners or sites have both an additive and multiplicative effect on 

data. The ComBat model, described in Equation ( 3.3 ), shows a parameter  𝛼𝑣 

represents the average cortical thickness or matter volume for the reference site for 

feature v, 𝛾𝑖𝑣 are the coeficients associated with the site i for feature v, 𝛽𝑣 are the 

coefficients associated with biological covariates X, 𝜀𝑖𝑗𝑣 is the residual term with zero 

mean and 𝛿𝑖𝑣 describe the multiplicative site effect for the ith site on feature v. The 

site parameters are estimated using Empirical Bayes, described in W. Johnson et al. 
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[52], and the final harmonize data is calculated like in Equation ( 3.4 ) with the star * 

signal representing the estimated site parameters. The estimated biological covariates 

effect, 𝛽𝑣̂ , are not removed, they are estimated but added again after correcting for 

the site effects, similarly for the data standardization procedure. ComBat has proven 

to be successful in harmonizing neuroimaging data, by removing site effects from 

data while conserving biological associations in data [53]. However, a further 

modification needs to be considered to be able to apply this processing step in an ML 

analysis, within a CV pipeline.  

 𝑦𝑖𝑗𝑣 = 𝛼𝑣 + 𝑋𝑖𝑗
𝑇 𝛽𝑣 + 𝑍𝑖𝑗

𝑇 𝜃𝑣 + 𝛿𝑖𝑣𝜀𝑖𝑗𝑣 ( 3.3 ) 

 
𝑦𝑖𝑗𝑣

𝐶𝑜𝑚𝐵𝑎𝑡 =
𝑦𝑖𝑗𝑣 − 𝛼𝑣̂ − 𝑋𝑖𝑗𝛽𝑣̂ − 𝛾𝑖𝑣

∗

𝛿𝑖𝑣
∗ + 𝛼𝑣̂ + 𝑋𝑖𝑗𝛽𝑣̂ 

( 3.4 ) 

The site harmonization parameters need to be estimated in the training set once 

again, or within a CV fold, and then be applied to the test set. Several ComBat 

modifications have been proposed that allow that flexibility, such as in J. Radua et al. 

[54], where the authors propose a combat_fit, suitable to estimate and apply in the 

training set, and comBat_apply, to use only in test sets, made available in R in 

https://enigma.ini.usc.edu/wp-content/uploads/combat_for_ENIGMA_sMRI/combat 

_for_ENIGMA_sMRI.R. As well as in J. Fortin et al. [53], the authors that developed 

the neuroCombat function, provided in https://github.com/Jfortin1/ 

ComBatHarmonization, also available in the form neuroCombatFromTraining, both in 

R and in Python, which enables the application of Combat coefficients separately to a 

test set. Nevertheless, both suffer from a drawback that limits their use in an external 

validation pipeline, the constraint that the sites or scanners from where data was 

acquired in the test set, coincide with those in the training set. This prevents the 

possibility of further testing an ML model with data pooled from a new, not seen, 

site. To respect the CV pipeline, the parameters cannot be re-estimated based on test 

data either, i.e, by re-running ComBat on training data plus a new site set because it 

would lead to a different harmonization from the one performed using only the 

training set. Further reasoning has to be made on how to apply ComBat 

harmonization for external datasets.  

A different ComBat modification, proposed in C. Stein et al. [55], called M-ComBat, 

available in GitHub - SteinCK/M-ComBat in R, was proposed to center data on a 

location and scale of a pre-determined batch reference. The modification of M-

ComBat enables the use of external datasets to validate fixed predictive models by 

using a reference batch to which new data is shifted. Although M-ComBat was 

developed for a different context, mainly to shift data to a gold-standard reference 

https://enigma.ini.usc.edu/wp-content/uploads/combat_for_ENIGMA_sMRI/combat%20_for_ENIGMA_sMRI.R
https://enigma.ini.usc.edu/wp-content/uploads/combat_for_ENIGMA_sMRI/combat%20_for_ENIGMA_sMRI.R
https://github.com/Jfortin1/%20ComBatHarmonization
https://github.com/Jfortin1/%20ComBatHarmonization
https://github.com/SteinCK/M-ComBat
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batch, the idea of using a reference batch could be further applied to harmonized 

external data samples. Adapting to the training/test/external validation pipeline of 

ML, the independent external data set could be harmonized by adjusting the samples 

towards the already harmonized training set, which would work as the reference set. 

The untransformed data from an external validation site is brought to the level of the 

harmonized data.  

In Figure 3.5,  4 different sites are represented – red, green, purple, and blue clusters 

stand for a training set that is being harmonized, and an external site represented in 

yellow, being harmonized a posteriori. Two possible application scenarios of 

reference ComBat are represented. The second figure, b), represents the standard 

ComBat application to a training set while using M-ComBat to harmonize a 

posteriori an external set. In c) both training and validation sets are harmonized 

using M-ComBat, in which, one of the sites included in the training set is chosen as 

the reference batch. The implementation of the reference-batch option has been 

further made available on neuroCombat and pycombat function [56], with the option 

ref_batch.  

 

Figure 3.5: PCA visualization on different ComBat methods. Adapted from [55]

-Data samples from 4 different sites – red, green, purple, blue and an external validation 

site represented in yellow. a) Untransformed data. b) ComBat: using global grand mean 

and variance. Black arrow representing possible a posteriori harmonization for external 

data, shifting new data to grand-mean location, 𝛼̂𝑔𝑙𝑜𝑏𝑎𝑙. c) M- ComBat: using reference 

batch, i, mean, 𝛼̂𝑖  and variance. Red arrow representing possible a posteriori 

harmonization for external data, shifting data to reference-mean location 𝛼̂𝑖. 

𝛼̂𝑖 

 

𝛼̂𝑖 

 

𝛼̂𝑔𝑙𝑜𝑏𝑎𝑙 

 
𝛼̂𝑖 

 

b) a) c) 
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4. Aim of the Work 

The methodological work presented in this thesis employs autoencoders in an 

anomaly detection framework to discriminate and classify BD subjects from HC. In 

order to achieve the main proposed goal, several intermediate methodological steps 

had to be investigated by the mean of secondary analyses, each with a specific 

secondary goal.  

The ultimate goal is to achieve BD subjects' diagnosis through a normative automatic 

approach based on brain structural characteristics.  

Thus, the first aim of this work is to build a healthy brain-features reconstructive 

model, free of biological and exogenous confounders, to be used as a normative 

model. The normative approach is trained on a dataset of HC and tested in an 

independent set composed of HC and BD subjects data for its capability of 

reconstructing HC samples and discriminating between BD patients and controls. 

This latter approach is then compared to a classical SVM classifier performance. 

Finally, a specific BD brain-feature pattern is assessed in order to uniquely classify 

the BD patient group.  

In between this pipeline, mainly in the data processing step, several trials were 

performed to define a proper processing pipeline that would be robust towards 

confounding factors, generalizable to unseen datasets, following approaches usually 

recommended or employed in the scientific literature. Specifically, the comparison 

and optimization of processing methods for dealing and controlling with 

confounding variables (i.e., age, sex, and center’s effects) were assessed as a 

secondary aim of this project. 

Resuming, the specific aims of this thesis are: 

1. Produce a successful normative model to reconstruct healthy brain features; 

2. Discriminate BD against HC using the normative model; 

3. Extract brain-feature abnormalities characterizing patients within  the 

heterogeneous BD spectrum; 
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4. Assess if BD can be classified by using the subset of unique relevant brain 

features (aim 3) instead of all brain features; 

5. Assess any improvement in BD classification obtained using the normative-

based approach with respect to the classical SVM classifier; 

6. Identify the optimal site-effect removal pipeline to be integrated in a ML 

analysis by comparing different multisite harmonization pipelines combined 

with biological covariates correction; 

For the first point, the question to ask is, “Can the model successfully reconstruct HC 

brain features?”, for which the answer is concluded by developing a normative 

model on a big training set composed of HC and by measuring, in a HC test set, the 

reconstruction error. The second goal aims to answer the question “Can BD be 

discriminated by employing a Normative model approach?” which we try to answer 

by assessing the discriminative power of the model’s BD reconstruction error, 

through a test set composed of BD patients. The third point would answer to the 

question “Which brain features deviate the most in BD patients with respect to HC 

?”. Then, the fourth goal is reached by answering the question “Can we use this 

subset of abnormal brain features to uniquely identify BD subjects with respect to 

HC?”, and we answer it by evaluating the discriminative performance of this subset 

of features on an external independent set of data (replication set). Specific goal n. 5 

is reached by comparing different multisite harmonization pipelines integrated 

differently in the ML analysis framework. They are compared based on the 

normative model results (i.e., reconstruction error and BD anomaly detection 

metrics), and we try to understand which harmonization pipeline is the most 

effective in removing site-related confounders while preserving the biological 

variability of interest and independence between train, test and external sets. Finally, 

the performances of the autoencoder-based BD classifications are compared to the 

performance of the SVM classifier, acting as a baseline, to assess the improvements in 

the automatic BD vs. HC classification produced by the newly proposed anomaly 

detection approach (specific aim 5). 

4.1 Organization of the thesis 

To reach the above-defined goals, the thesis results and methods will be organized 

coherently and chronologically to the designed pipeline. This thesis is organized in 

the following way: first, the MRI data preprocessing step, which includes the usage 

of CAT12 software to extract brain morphological features, second, the cross-

validation framework and splitting of the dataset are defined so that all further data 

transformations and processing are performed within that framework; third, the 

processing step, in which parallel sub-pipelines are defined, involving the multisite 
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harmonization procedure with ComBat function and the biological confounder 

regression procedure, which later will be compared among each other based on the 

final results of classification; forth, the design and evaluation of the gold standard 

SVM classifier; fifth, the design of the normative model and consequent 

hyperparameter tunning, then the evaluation of the model performance on both 

unseen HC and BD subjects to determine its discriminative power, and finally the 

selection of a subset of brain features to uniquely identify BD patients and 

consequent evaluation performance with an external independent set. The model 

evaluation is repeated for all harmonization pipelines defined in the third step – the 

data processing step- and all model results will be compared. 

4.2 Methodological approach 

In this section, it will be explained the foundations that led to the definition of the 

proposed pipelines and methodologies, since those are not standard approaches to 

the problem this work is trying to solve. 

• Data processing stage 

In the work presented in this thesis, the methodological approach to correct for 

biological covariates and to model differences in MRI acquisition protocols and 

scanners will consist of the use of linear regression to adjust for biological covariates 

and of the ComBat tool for data harmonization across multiple sites. What led to the 

definition and comparison of several pipelines regarding data harmonization was the 

lack of a standardized protocol. Even in the literature, different strategies are used 

for this purpose, or entirely skip this step of data processing. Besides, including this 

data processing step within an ML analysis pipeline is rather recent, and not many 

references are found in the literature, especially for neuroimaging data. 

• Autoencoder Pipeline 

The methodological approach proposed for the normative model was based on the 

pipeline presented in W. Pinaya et al. [57]. In the former study, the authors designed 

a deep AE model to detect abnormalities in subjects’ brain structures. With this 

approach, the authors reported an attempt to discriminate between HC subjects and 

patients affected by Autism (AD) and Schizophrenia (SCZ) both with a classical SVM 

classifier and with the normative AE-based approach, and extract brain regions that 

are found to be significantly different between healthy and patients groups. The 

authors used 104 brain features, composed of 68 cortical thickness measures and 36 

neuroanatomical volumetric measures, extracted from the Desikan-Killiany atlas and 

via whole-brain segmentation procedure, respectively. The AE model was trained 

with 1113 HC subjects from the public dataset Human Connectome Project, and the 
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test sets were drawn from NUDAST (40 HC and 35 SCZ) and ABIDE (105 HC and 83 

AD) public datasets. The reported results show that the AE model is capable of 

differentiating HC from SCZ patients with an AUC-ROC=0.707 and HC from AD 

patients with an AUC-ROC=0.639, whereas the SVM classifier achieved an AUC-

ROC=0.637 and AUC-ROC=0.569, respectively. Furthermore, brain regions were 

identified for each disorder, those which presented significantly deviations.  

The described AE model is a versatile one since it is not constricted from the 

beginning to classify one disease type, but rather can be applied to any and all brain 

disorders. Furthermore, the reconstruction error is a useful interpretability tool that 

characterizes this methodology, as one can trace back, easily, the features that have 

been relevant for the lack of success when reconstructing data from a specific subject.  

In conclusion, the overall objective of the former study was to develop a model 

capable of discriminating HC and non-HC subjects and then use the model to 

investigate abnormal brain regions in different brain disorders.  

In the present thesis, for the first time, we aim to develop an adapted version of the 

brain structural normative model and to use such a model for the detection of 

neuroanatomical underpinnings of bipolar disorder. Therefore, the proposed 

pipeline is to develop an HC discriminative network, an adapted version of the 

normative approach presented in the previously mentioned study, and then develop 

a subsequent step to classify HC and BD patients.  

An AE model is trained solely on HCs’ brain morphological features extracted from 

sMRI data, with the main goal being that the AE learns the hidden data structure of 

healthy brains. The hypothesis is that an AE model should have more difficulty in 

reconstructing data from a subject not belonging to the HC group, and this will be 

quantified by a reconstruction error (RE) metric, such as the deviation between 

feature value reconstruction and original, denoted from here and on as Deviation 

Metric (DM). The DM score is then used to threshold HC from non-HC individuals.  

Then, abnormal brain regions in BD vs HC are investigated, by extracting the brain 

features that are being worst reconstructed in BD patients. A Mann-Whitney U-test is 

performed to the feature deviation scores comparing the two groups, and the brain 

regional features that yield statistically significant differences at the DM level 

between HC and BD are extracted. Theoretically, to specifically classify an individual 

as a BD patient there must exist a unique disease feature-pattern signature, i.e., the 

specific disorder needs to be identified through a unique set of brain regions that 

specifically deviate overall from  HC but do not overlap with any other brain 

disorder. The hypothesis is that, if the abnormal brain regions that are found to 

belong to the BD patient group are generalizable when taking into account the 



4. Aim of the Work 61 

 

 

network reconstruction of those features in a new independent test set, the 

classification of the two groups should be well above chance. 

The proposed methodological pipeline is reported in Figure 4.1. The first step is to 

evaluate the model capability in discriminating HC and BD subjects, and the second 

step is to explore the local brain abnormalities by extracting relevant brain features, 

i.e., the brain regional morphological characteristics that mostly deviate in BD patient 

group from the normative model. The additional step, in an attempt to classify the 

specific patient group, is to use only the abnormal brain regions to perform 

classification, hypothesizing that the regions that are found are generalizable to any 

BD subject. This last step must be validated in a new independent test set. 

There are important distinctions between the methodological approach described in 

W. Pinaya et al. [57] and the one presented in this work mainly regarding the 

modeling for different MRI acquisition protocols, which was required in our study. 

In the described study the authors did not need to model these differences, since the 

network was trained with a dataset collected from the same site, the problem of the 

network learning site effects was not posed. Besides, the authors designed a model in 

a semi-supervised manner, with age and sex included in the data which the model 

learns to classify in a supervised framework while using a custom loss function to 

disentangle the information learned about age and sex from the latent variables 

encoded by the AE. 

 

Figure 4.1: Proposed AE Pipeline to classify HC and BD.
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5. Methods 

5.1 Project 

This thesis was developed at B3Lab (Biosignal-Bioimaging-Bioinformatics) in the 

Department of Electronics, Informatics and Bioengineering at Politecnico di Milano 

in collaboration with the MiBrain (Milan Brain Research on Affective and Integrative 

Neuroscience) Lab coordinated by Prof. Paolo Brambilla in the Psychiatry Unit of the 

Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico and the University of 

Milan. The methodological work is inserted n the scope of the Moodlearning project, 

“Classifying unipolar versus bipolar depression: an innovative diagnostic support 

system based on clinical features and genetic, inflammatory and neuroimaging 

biomarkers”. The Moodlearning project has been granted by the Italian Ministry of 

Health (GR-2018-12367789) to the Ospedale San Raffaele S.R.L., Milan, (PI: Dott.ssa I. 

Bollettini) and the Fondazione Policlnico (Operative Unit leader: Prof. E. Maggioni). 

The main goal of the Moodlearning project is the development of a clinical decision 

support system (CDSS) to aid psychiatrists in the diagnosis of Bipolar Disorder, 

specifically in discriminating between Unipolar and Bipolar Depression.   

The Fondazione Policlinico Unit, which is responsible for developing and releasing 

the CDSS, is implementing data pre-processing and processing pipelines using 

already available datasets, which were collected in the context of multicentric 

projects. Specifically, to reach the before mentioned purpose, clinical and 

neuroimaging data was collected from BD and HC across several hospitals and 

research centers that participate in the StratiBip network initiative, which is 

coordinated by Prof. Brambilla and Prof. Maggioni . With this multisource and big 

sample data, the goal of StratiBip is to:  

1) Identify reliable biomarkers to discriminate BD patients from HC and stratify 

BD based on neurobiological dimensions. 

2) Create an international consortium for sharing BD clinical and neuroimaging 

data.  
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In the present thesis project, the StratiBip sMRI dataset was used to develop the AE-

based normative model and test its performance in discriminating individuals with 

BD from HC.  

In the future, the newly developed tool will be tested on the newly acquired 

MoodLearning dataset and extended to accommodate multiple patient groups. 

Specifically, using the identified deviation features as candidate BD biomarkers, the 

ultimate intention is to integrate this data and develop an ML model to discriminate 

healthy controls or other disorders (e.g., major depressive disorder (MDD)) against 

BD patients.  

The novelty that is brought by the StratiBip Project is the integration of large 

multisite and multimodal data, with the aim to achieve higher generalizability of 

prediction models and higher statistical power. Besides, the numerosity of subjects 

that can be included to train and test the ML model leads to more robust conclusions 

and results  - which might be relevant for regulatory requirements and CE marking 

for the CDSS software [58].  

The work in this thesis was focused on discriminating between HC and BD subjects. 

All the Data Processing and Machine Learning Pipelines were built using Google 

Colaboratory, a free cloud service by Google, and Anaconda3 with Jupyter notebook, 

with Python 3.7.13. 

5.2 Participants 

The data used in this work was retrieved from 7 centers that have been collected 

from the Stratibip study, previously introduced. It is composed of 1163 subjects, 

divided into 605 HC and 558 BD. 

All subjects underwent a clinical assessment by professional psychiatrists, which 

confirmed BD diagnosis according to the Structured Clinical Interview for DMS-IV 

Axis I disorders (SCID-I)[59], with the exception of the patients recruited in 

Vancouver Center for which the BD diagnosis was achieved based on a clinical 

interview and Mini International Neuropsychiatry Interview[60]. 

The excluding criteria considered in the study were: comorbidities; mental 

retardation; pregnancy, history of epilepsy, major medical and neurological 

disorders; neuroleptic treatment in the last 3 months; drug or alcohol abuse in the 

last 6 months; medical conditions affecting immune system. 

All subjects provided written informed consent to the study protocol, which was 

conducted in accordance with the Declaration of Helsinki and approved by the 

Ethical Committees of the participating centers. 
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 After recruitment, sociodemographic and clinical data for all subjects was attentively 

checked for missing data, which resulted in the exclusion of one subject due to 

missing biological and clinical data (eg: age, sex, diagnosis). 

ID Center  Abbreviation Reference Person HC BD Total 

1 
AOU Verona, Verona, 

Italy 
AUOV Marcella Bellani 93 20 113 

2 
Fondazione IRCCS 

Santa Lucia, Roma, Italy 
FSL_ROME 

Gianfranco 

Spalletta 
250 257 507 

3 
University of Jena, 

Germany 
JUH Igor Nenadic 111 23 134 

4 
Milano Policlinico, 

Italy 
MI_POLI_3T_3 Paolo Brambilla 26 12 38 

5 
Ospedale San Raffaele, 

Milano, Italy 
OSR 

Francesco 

Benedetti 
67 133 200 

6 

University of 

Pittsburgh, Pittsburgh, 

US 

PITTS Amelia Versace 28 58 86 

7 

University of British 

Columbia, Vancouver, 

Canada 

UBC Lakshmi Yatham 30 55 85 

Total - - - 605 558 1163 

Table 5.1: Center Participants Information. 

5.3 Data Acquisition 

The sMRI scans were acquired in the 7 centers using T1-weighted sequences on 3T 

RMN scanners.  

• 1-AUOV-Verona 

-Scanner: Magnetom Allegra Syngo (Siemens, Erlangen, Germany) 

-Sequence: T1-MPRAGE 

-Matrix size: 256x256x160 mm3 

-Voxel Size: 1.00x1.00.x1.00 mm3 

• 2- FSL-Rome  

-Scanner: Philips Achieva 3T (Philips, Best, the Netherlands) 
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-Sequence: T13D-MPRAGE 

-Matrix size: 432x432x190 mm3 

-Voxel Size: 0.542x 0.524.x 0.900 mm3 

• 3-JUH-Jena 

-Scanner: Siemens Tim Trio (Siemens, Erlangen, Germany) 

-Sequence: T1 Magnetization Prepared Rapid Gradient Echo (MP-RAGE) 

-Matrix size: 256x256x192 mm3 

-Voxel Size: 1.00x1.00.x1.00 mm3 

• 4-MI-Milano Policlinico 

-Scanner: Philips Achieva 3T (Philips, Best, the Netherlands) 

-Sequence: T1-Turbo Field Echo (TFE) 3D  

-Matrix size: 240x240x165 mm3  

-Voxel Size: 1.1x1.05x1.05 mm3 

• 5-OSR-Ospedale S.Raffaele 

-Scanner: Philips Intera (Philips, Best, the Netherlands) 

-Sequence: T1-Fast Field Echo (FFE) 

-Matrix size: 256x256x220 mm3  

-Voxel Size: 0.9x0.9x0.8 mm3 

• 6- PITTS-Pittsburgh 

-Scanner: 3T Siemens Tim Trio 

-Sequence: - 

-Matrix size: 192x256x192 mm3 

-Voxel Size: 1.00x1.00x1.00 mm3 

• 7-UBC- Vancouver 

-Scanner: Philips Achieva (Philips, Best, the Netherlands) 

-Sequence: 3D TFE  

-Matrix size: 256x256x180 mm3 

-Voxel Size: 1.00x1.00x1.00 mm3 
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5.4 MRI Preprocessing 

The raw MRI scans were processed after acquisition using a gold-standard protocol. 

Firstly, images underwent a visual check to assess their quality and were converted 

from DICOM to NIFTI, the standard format for neuroimaging analysis software. The 

preprocessing pipeline was performed in Matlab R2018a (The Mathworks, Inc®) 

environment. 

The preprocessing was performed using SPM version 12 Software [30] 

(http://www.fil.ion.ucl.ac.uk/spm/software/spm12/) and Computational Anatomy 

Toolbox (CAT12), an SPM12 add-on [31], using the preprocessing module of the 

“basic VBM analysis”  described in chapter 3.1 Brain Morphological Feature 

Extraction. For all the preprocessing descriptions that will follow, the used 

parameters were the default ones for the basic VBM analysis [61], unless stated 

otherwise, for which in that case parameters are specified. 

The preprocessing pipeline followed the hereunder steps: 

1. First Module: Data Segmentation 

a. Writing Options: Process Volume ROI – Atlases – cobra; 

2. Second Module: Display Slices – Quality check after segmentation; 

3. Third Module: Estimation of Total Intracranial Volume (TIV) 

4. Fourth Module: Sample Intensity Homogeneity  

a. No Nuisances  

5. Fifth Module: Data Smoothing 

a. FWHM: 6mm  

The brain ROI measures included in this work regarded only Gray Matter (GM) and 

were extracted from 52 subcortical regions of CoBra Atlas for volumes and 68 cortical 

regions of the Desikan-Killiany Atlas for cortical thickness, whose detailed 

description is reported in Appendix A. 

5.5 Cross-Validation Framework 

An internal and external validation frameworks were designed to evaluate models’ 

performance. Within the internal validation framework, a 10-fold CV was used 

during the hyperparameter tuning to estimate the best model, while a holdout 

method was used to estimate the generalization error. First, a holdout method was 

used, splitting the entire dataset into training set, test set, and an external replication 

set, which was used in the external validation framework. The training set was then 

inputted into a 10-fold CV framework for hyperparameter tuning. A simple holdout 

http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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method was chosen for generalization error evaluation due to the high 

computational resources and the amount of time needed to perform a complete 10-

fold nested CV, given the DL model properties. 

• Holdout Method: Dataset Splitting 

The data was split into a training set, test set, and external site set in the following 

manner:  

Firstly, from the 7 centers contained in the dataset, one was randomly holdout as an 

independent site set, specifically all data from the PITTS site. Secondly, data were 

divided into HC datasets and BD datasets. The HC dataset was split stratifying to 

site proportions, in 90% training data and 10% test data, using function 

train_test_split from class model_selection in the scikit-learn python library, with a fixed 

random-state to ensure the splits were always the same and reproducible. The BD 

dataset was split also stratifying to site proportions holding 15% for the test set, so to 

have a balance test set. The training set, composed only of HC, contained 519 HC 

subjects, whereas the test set was composed of 58 HC and 75 BD subjects. For specific 

analysis, which will be described in the next sections, we use the whole BD dataset, 

500 subjects, instead of the BD test set. The described dataset split will be used for all 

of the subsequent steps in the general ML pipeline. 

• Hyperparameter Tuning: 10-fold CV 

To perform hyperparameter tunning to the AE model which will be described 

afterward, a 10-fold CV framework was used. Within this process, only the training 

set was used, retrieved from the splitting described in the previous point, and which 

is further divided into 10 folds iteratively used for training. The data transformations 

that are to be applied in the holdout pipeline (i.e, to the training, test, and external 

sets), will be applied similarly inside the hyperparameter search process, where 9 

folds of the training set are used to train the model with a hyperparameter 

combination x and 1 fold is used to test the trained model. This process ensures that 

the best hyperparameter combination is chosen according to its performance on the 

training set part, without compromising the unseen test set. In this way, once the best 

model was realized within the 10-fold CV, the whole training set was then used to re-

train the best model from the beginning. 
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Figure 5.1: Internal and External Validation Framework Description. 

5.6 Modeling Confounding Variables 

In this step, multisite data harmonization and correction for biological covariates are 

considered. There is not a gold-standard approach to dealing with confounding 

variables, and so, the effort was to align ourselves to what was more conventional in 

the scientific literature.  

The multisite data harmonization was achieved by performing ComBat with 

neurocomBat function in python, and the correction for biological covariates by a 

regressing-out approach, through a linear regression fitting, both done considering 

all brain ROI features included in the data. Several variations of the former methods 

were investigated. 

The assumptions that were considered for applying the former transformations were 

that age-related changes and inbetween sex differences might be comparable 

between HC and BD. This assumption allows us to perform estimates on the training 

set, which is composed of only HC data. However, if there is a correlation between 

older age and more serious brain damage- due to chronic exposure to disease –, those 

effects would still be present in the disease group. 

In light of these considerations, due to the lack of standard protocols in the data 

harmonization processing step, it was decided that the best approach would be to 

create distinct pipelines and compare them. For this reason, different harmonization 

approaches were considered which were the following: 
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A. No Harmonization 

Data are not harmonized across centers, which are concatenated as if they were a 

unique center. 

B. CV-Harmonization 

Site-related effects are estimated and corrected by respecting the CV frameworks, 

both in the holdout method and 10-fold CV during hyperparameter tunning. The 

center effects are only estimated on the data which is being used as a training set and 

those estimates are applied afterward to the test set. The test set contains data from 

centers that belong also to the training set. 

C. Harmonization of an External Set 

The external set is a test set that contains data from an independent unseen center, 

which is not included in the training set. The harmonization process is done a 

posteriori, as if after the model design in a real clinical application. The ComBat 

correction coefficients related to the external set are extracted keeping the external set 

independent from all the others, by using the reference batch method, as explained in 

section 3.2, avoiding to re-run ComBat including external set examples into the 

training set which would be a form of data leakage and break the independence of 

the external set. 

D. Harmonization of the whole dataset  

Data is harmonized before entering the ML pipeline, i.e., before dataset splitting. 

The effectiveness of the above harmonization pipelines, which will be presented in 

the results section,  is qualitatively assessed by inspecting the main directions of data 

variance before and after the application of each harmonization approach using PCA. 

 

 

Figure 5.2: ComBat Options. 
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From the former data harmonization options, A, B and D are alternatives to each 

other, A serves as a baseline comparison for non-harmonization, B is a consequence 

of integrating this processing step into an internal validation ML framework (i.e., the 

holdout/CV framework), and D is the opposition to B, harmonizing data outside the 

internal validation framework. Whereas option C, the harmonization of an external 

set, is the variation that allows the integration of this processing step into an external 

validation framework. Hence, B and C options are combined to design a pipeline 

fully integrated into the ML validation frameworks, whereas D and C are also 

combined, but for the objective of comparing against option D alone.  

Regarding the adjustment of data for biological covariates, a fixed pipeline was 

considered, and all variations of the processing pipelines perform this adjustment by 

respecting the CV framework (as in the above B option).  

Thus, the processing pipelines arising from the combination of the different 

harmonization options that I presented before, together with the correction for 

biological covariates are the following: 

1) No Data Correction (A) Pipeline  

Including correction for biological covariates: 

2) No Harmonization (A) Pipeline 

3) Whole Dataset Harmonization (D) Pipeline  

4) Whole Dataset Harmonization (D) + External Set Harmonization (C) Pipeline 

5)CV-Harmonization pipeline (B+ C) 

The following sub-sections will explain in a detailed manner the harmonization 

options integrated into pipelines 3,4,5, (options – B,C,D). A detailed description will 

be made of how pipeline 5 is integrated inside the hyperparameter tunning, where a 

10-fold CV was used, where data processing was performed within each fold of the 

CV.  Finally, a detailed description will be reported of how the correction for 

biological covariates takes place, which is similar to all processing pipelines 

including this step (2,3,4,5). 

5.6.1 Data Harmonization Options Within Processing Pipelines 

For all data harmonization options, the data is divided into cortical thickness 

measures and volumetric measures. The biological covariates considered to 

harmonize cortical thickness measures are age and sex whereas, for volumetric 

measures, TIV is also added as a biological covariate. 

• Pipeline 5: CV-Harmonization 
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-Holdout method: Option B+C 

I. CV-ComBat – Option B 

After dataset splitting, all confounder effect estimations and data transformations 

must be performed in the training set and then applied to the test set and the external 

set to respect the CV framework. Thus, the neurocomBat function is used firstly on the 

training set data.  

Cortical thickness and volumetric measures are harmonized separately, however, 

before harmonizing volumetric measures, for which TIV must be included as a 

biological covariate, TIV must be itself corrected for site effects. TIV is a measure 

extracted from the MRI scans in the CAT12 preprocessing so it is affected by the 

same site effects. This preliminary correction step avoids that site effects are 

preserved in data by preserving the TIV effects that include site confounding effects. 

To this end, the volumetric regional features extracted from the CoBra atlas and TIV 

values are concatenated, and the neurocomBat function is applied to that data, using 

age and sex as biological covariates. The harmonized TIV values are extracted and 

the neurocomBat function is applied once again to original ROI volumetric measures, 

using age, sex, and harmonized TIV as biological covariates.  

After this process, comBat center parameters ar extracted to harmonize the test set. 

The harmonization of the test set is done using the neurocomBatFromTraining 

function, which receives as input all the ComBat center parameters estimated in the 

training set. The application of the estimates is done in the same fashion as in the 

training set, i.e., dividing test data into cortical and volumetric measurements, 

harmonizing separately cortical thickness data, TIV, and volumetric measurements.  

II. Ref_ComBat – Option C 

Finally, there is the external set, which belongs to a center that is not included in the 

training and test sets, which still has to be harmonized. This choice was aimed to 

assess the versatility and suitability of the newly developed tool in a real multicenter 

research project. To not break its independence, data from the external center must 

not be present in the training set, to simulate data from a new collection site that has 

arrived after model design. Therefore, there are no estimated parameters for this new 

center. The strategy to harmonize an independent center is to consider the 

harmonized training set as a unique reference batch, and the new center will be 

brought to its level (i.e., overall mean and variance of training set). To ensure 

consistency of the procedure, the independent center parameters are estimated in the 

previously described way, using only the HC from the independent center. Then, the 

center parameters are applied to the BD subjects using the neurocomBatFromTraining 

function. 
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-10-fold CV: AE Hyperparameter search  

All experiments presented in the results section, considering the several processing 

pipelines, were performed using the same best model, which is found through the 

hyperparameter search using pipeline 5 as the data processing pipeline. Data 

processing was performed within each fold respecting the CV framework. Within the 

10-fold CV, the data was harmonized and corrected using option B – CV- ComBat, 

respecting the dataset splitting within each fold. Here, only the training set is being 

used, and the estimations are performed to the 9-folds used to train the model, and 

the estimations are applied to the 1-fold used as the validation set. The external set 

data will not be seen in this process (nor the test set from the dataset split with the 

holdout method), thus model hyperparameters will be fitted by training with data 

that does not include any observation from the external set center acquisition. The 

best model will be retrieved and used in all processing pipelines for possible 

comparability of results. 

 

 

Figure 5.3: Data processing within hyperparameter tunning. 

• Pipeline 3:  Whole-Dataset Harmonization ( D ) 

Before splitting data into the training set,  test set, and external set, multisite data was 

harmonized all together using neurocomBat function, considering the diagnosis 

variable as a biological covariate. The variable is added to the demographic 

biological covariates (age, sex and, TIV), to ensure that ComBat does not eliminate 

some biological effects by mistaking them with site effects. After data harmonization, 
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the resulting harmonized dataset is entered into the validation frameworks. This 

option is considered to try to model the scenario in which data ideally would come 

from one unique center, and so the data processing stage would start with data that 

is somehow ideal. The correction of data for biological covariates is performed within 

the CV framework, so after the harmonization process takes place and after dataset 

splitting. 

• Pipeline 4: WD Harmonization (D) + External Set Harmonization (C)  

In this harmonization pipeline, the PITTS external set is holdout before the whole-

dataset harmonization. This pipeline is set to be compared especially with the 

previous one, pipeline 3, in an attempt to understand how model generalization to 

an external set is influenced by harmonization.  Also, compared with pipeline 5, as 

ComBat harmonization is influenced by the number of examples it is presented with, 

increasing its performance with the increase of dataset examples, it could be the case 

that the harmonization process is improved slightly when performed in more 

numerous data, case of this pipeline 4, and that would lead to an improved model 

generalization to an external set. Thus, WD-ComBat is performed with neurocomBat 

function and ref_neurocomBat is used to harmonize a posteriori the external set. The 

correction of data for biological covariates is performed within the CV framework, 

after dataset splitting. 

5.6.2 Biological covariate correction 

Data is adjusted for biological covariates in pipeline 2,3,4,5 in a similar way, although 

in pipeline 2, No harmonization (A), the input for this step is the raw data, instead of 

harmonized data. The covariates taken into consideration are age, sex, and 

harmonized TIV (or raw TIV for pipeline 2). From this point forward the training set, 

test set, and external set are already harmonized (for pipelines 3,4,5).  

Firstly, the training set standardized statistics are estimated, employing the 

StandardScaler() python function from the preprocessing class in the scikit-learn library, 

applying the function fit(). Then, the training set, the test set, and the external set are 

standardized by applying the python function transform() using the former estimated 

training set standardization statistics. The effect of the biological covariates is 

estimated through a linear regression considering each brain ROI feature as the 

dependent variable. Cortical thickness features are corrected for age and sex effects. 

The linear regression fit is done using the OLS() function from statsmodels python 

module, besides the function add_constant() is used to add an intercept to our linear 

regression. The OLS() function receives as input the training data, and the biological 

covariates matrix, which contains a constant unit column in the case of the intercept 
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option. Then, employing the fit() function, linear regression is fitted to the training 

data. Afterward, only the volumetric measures are considered, which are corrected 

for age, sex and (not harmonized for pipeline 2)/ harmonized TIV. The same process 

as before takes place, the linear regression is fitted to the harmonized volumes of the 

training set and the beta coefficients are estimated.  

 

Figure 5.4: Regressing-out biological covariates integrated into pipelines 2,3,4,5 

(input is harmonized data for 3,4,5). 

The beta coefficients, β, that will result from this process have the dimension of the 

number of covariates (i) x number of brain features (j), thus 2 (age, sex) x 68 cortical 

brain features, for βi_cortical, and 3 (age, sex, harm/no harm TIV) x 52 volumes, for 

βi_volumes. To adjust data each of the beta coefficients is multiplied by the respective 

covariate data and subtracted to the respective brain feature. At the end of this 

process, data is further standardized. Having available the beta coefficients estimates 

of the training set, they are applied to the test set and external set, as described 

previously, by directly using them to adjust the test data.  

5.7 Autoencoder Normative Model 

5.7.1 The Autoencoder 

The Autoencoder model was designed using tensorflow 2, an ML open-source python 

module and keras API built on top of tensorflow 2 for easy deep learning models 

implementation. A random seed was set at the beginning of the model architecture 

definition to ensure the replicability of the model.  
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Using the keras.layers API a sequential model was built, making use of the Input layer 

and Dense layers. The AE is composed of 5 layers, including input and output with 

120 hidden units. The hidden layers dimension is to be chosen, as well as the 

activation function, parameter initializer, and layer regularization.  

In the encoder part, the dimension is forced to decrease while in the decoder part is 

forced to increase mirroring the dimensions of the encoder. The activation function 

and parameter initialization were chosen a priori and were not included in the 

hyperparameter search. For the three hidden layers, the Scaled  Exponential Linear 

Unit (SELU) was chosen as the activation function, paired with the lecun_normal 

parameter initializer, enforcement of the AF itself. The output layer is composed of a 

linear activation function and gorot_uniform() parameter initializer. Besides the model 

architecture design, we chose Adam optimizer as the network optimizer, paired with 

the MSE loss function and a learning rate that was tuned during hyperparameter 

tuning. Regarding the remaining algorithm hyperparameters, batch size and the 

number of epochs was fixed to 30 and 2000, respectively, however, the EarlyStopping 

option from the keras.callbacks API was used, which stopped the training process 

when overfitting was identified. For the EarlyStopping option, the monitorization 

metric used was the MSE of the validation set, with a patient of 250 epochs. Thus, 

while training the model, if the MSE of the test set wasn’t improving for 250 epochs, 

the training stops, and the best model weights are restored. The training data was 

shuffled at the beginning of each epoch to avoid overfitting, by setting the option 

shuffle=True. 

Hyperparameter tuning 

The hyperparameter tuning was performed to two hidden layer dimensions -the first 

hidden layer (i.e., second network layer) and the bottleneck- as the third hidden layer 

is forced to have the same dimension as the first one (decoder part), to layer 

regularizer, equally used in all layers, and learning rate. A grid search was 

performed but not using the GridSearchCV function from sklearn.model_selection due 

to the data transformations that must be performed within each fold.  

The pipeline was the following: the number of splitting iterations was defined as 10 

and performed to the training set making use of the StratifiedKFold function from 

sklearn.model_selection class, stratifying for center proportions. The ParameterGrid was 

used to define a grid from the hyperparameter space which is defined by creating a 

dictionary with the hyperparameter options and values. For each hyperparameter 

combination i, a 10-fold splitting iteration initializes, and the model is trained, 

iteratively, with different 9 folds of the training set, and evaluated in the left-out fold, 

the validation fold.  
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Figure 5.5: Network Architecture. 

Once the training was done, the validation MSEs for the 10 iterations were averaged 

and saved. Finally, after the entire hyperparameter combinations have been tried out, 

the best hyperparameter combination was chosen according to which had the lower 

average validation MSE – thus lower reconstruction error. The best model was 

retrieved and the hyperparameter tuning ends. The best model was then re-trained 

with the entire training set.  

Model Evaluation metrics 

After model realization, the testing set composed of HC was used to evaluate AE 

performance, i.e., how good could it reconstruct an HC, whereas the BD subjects was 

used to evaluate anomaly detection capabilities. For the latter purposes, a Deviation 

Metric (DM) was defined, as the reconstruction MSE for all features or all subjects. At 

the subject level, it can be viewed as a reconstruction score, a proxy for the 

reconstruction error of each subject, whereas at the feature level, a reconstruction 

score for each feature within the HC group and BD group, denoting a local 

reconstruction effort by the network.  These metrics allow us to evaluate the model 

reconstruction capabilities and to investigate differences between HC and BD 

patients’ data.  

 

Figure 5.6: Deviation Metrics. 
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5.7.2 Normative Approach Framework 

The following stage in the AE pipeline was that of employing the model for anomaly 

detection. The goal is to discriminate HC from BD patients. The trained model was 

tested in the test set, composed of both HC and BD subjects. Each subject had 

associated a reconstruction score, through the calculation of the subject DM. It was 

assumed that a BD patient would contain irregularities in data for which the AE has 

not learned to model, hence, data from BD patients should be more difficult to 

reconstruct, yielding a higher score than HC subjects.  

Discriminating HC and BD 

The first step to evaluate the normative model capacity to detect “anomalies”, i.e., 

data that is not from HC subjects, is to perform a Mann-Whitney U test (MWU) to 

search for significant differences between HC and BD subjects' reconstruction error 

scores. The MWU one-sided test was applied to the subject DM, assuming the 

alternative hypothesis of BD-DM to be greater than HC-DM. The p-value was 

analyzed to confirm significant differences between the two groups. Once this step 

was performed, a ROC was carried out, using the subject DM as the data to be 

thresholded and the diagnosis as the binary target variable, 1 for BD and 0 for HC. 

Ideally, higher subject DM should be classified as BD, and if the network works as 

supposed, BD patients would have higher reconstruction error overall. The AUC 

results will let us conclude whether the latter point is true.  

5.7.3 Feature Selection 

The next stage is to identify abnormal brain regional morphologies belonging to the 

BD patients. For this purpose, each feature was considered separately, and the DM 

score was calculated for each subject as the square error between the original and 

reconstructed values. In this step, we used all BD subjects’ dataset, 500 patients, 

instead of the BD test set, to have a higher statistical power in inspecting the 

deviating regions in the BD group. The BD and HC groups are compared with a one-

sided MWU-Test, as shown in Figure 5.7, with the alternative hypothesis being 

reconstruction error greater in the BD subject group, and each feature was associated 

with a p-value. Besides, Cliff’s delta absolute value was used to measure effect size. It 

was preferred to Cohen’s d in our case because the reconstruction error distributions 

might not follow a normal distribution. It measures how often one value in one 

distribution is higher than in the other distribution.  
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Figure 5.7: Subject DM on feature subset. 

The brain features that were found to be associated with a significant p-value (i.e. p-

value < 0.05) indicate the brain regional abnormalities belonging to the BD group, i.e., 

outside the normative range associated with HC. An MWU-Test was repeated this 

time on the Subject DM for the feature subset. If discrimination ability is improved, 

the p-value should reflect this. After finding the abnormal brain features for the BD 

group, a new evaluation of the discriminative power of the AE model was performed 

on the test set, by computing the AUC-ROC curve. Because the features were 

selected in the test set and the evaluation was re-performed in the test set, inevitably 

an increase in performance was expected, thus the AUC-ROC results should improve 

as this step is a form of circular analysis. Nevertheless, the AUC-ROC curve was re-

performed, using the subject DM, which is calculated only on the former selected 

features. 

5.7.3.1 Classifying HC and BD 

After feature selection, a further validation step must be performed to test the 

classification performance of the discovered brain features subset. Since the subset of 

features is selected in the test set, this subset of features must be validated in an 

external independent set. Furthermore, the subset of features is supposed to 

represent a disease-specific-signature pattern, thus, it needs to be generalizable to an 

external set. The PITTS external set is thus passed through the network and the 

subject DM was calculated. If the brain feature subset that was found to be abnormal 

in the BD patient group is generalizable, it should have an equivalent performance to 

the test set, when classifying HC and BD patients in the external set. The AUC-ROC 

results on the entire feature set are compared to the results in the feature subset for 

the PITTS center data.  
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5.8 SVM Model 

The SVM model was used as a baseline comparison for the BD classification 

performance since it is the most used ML model for neuroimaging data features and 

has been applied extensively to classify psychiatry disorders.  

From the 7 centers contained in the dataset, one out of four was holdout as an 

external site set, specifically all data from MI_POLI, OSR, PITTS, and UBC sites, thus 

following a semi-LOSO-CV framework. The choice of these sites was based on the 

little amount of HC data it would remove from the training set since the previous 

centers contain much fewer data compared to AUOC, FSL_ROME, and JUH. 

Afterward, for each LOSO trial, the rest of the dataset was split into a training set and 

a test set, using the function train_test_split , 70% for the training set and 30% for the 

test set, stratifying for center proportions. The target variable was also retrieved, 

based on the concurrent split of the diagnosis covariate. In this case, since data on the 

training set included both HC and BD, the diagnosis was included as a biological 

covariate in the harmonization with ComBat.  

The SVM model was imported from sklearn.svm library, namely SVC(), for which the 

probability option was set to True, to evaluate the model using the ROC curve. No 

hyperparameter tunning was performed here, instead, the SVM model which was 

used was the one reported in the ENIGMA study, employing multi-site data from 

HC and BD patients [17]. The SVM model uses a linear kernel and a fixed 

hyperparameter C=1.  

The analysis performed with the SVM model was both LOSO-CV using multi-site 

data for which processing pipelines 1 and 5 were analyzed, and a site-level analysis, 

equivalent to the analysis performed in the ENIGMA study.  

5.9 Comparison of Results 

Finally, the results from all the pipelines were compared, through the AUC-ROC 

metric. The goal was to compare both the data processing pipelines and the results of 

the classification task of the AE model and SVM model.    

We evaluated the results assessing the AE-based normative and SVM model, by 

comparing the outcomes obtained from pipeline 5, the application of CV-ComBat 

(i.e., harmonization option B), the classification performances when no 

harmonization is performed ( i.e., option A), pipeline and with diagnosis clinical 

state-of-art 

Furthermore, for the normative approach, we report the comparison across all 

processing pipelines. Regarding the SVM model, we compared SVM results across 
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pipelines 1 and 5 for the LOSO-CV framework and the site-specific analysis, as well 

comparing with respect to ENIGMA SVM model. 

The comparations that were performed were:  

• AE-based normative model  

1. Processing Pipelines: 1,2,3,4,5 

The goal was to understand how the harmonization process and biological 

covariate correction influenced the model's capability to generalize, 

validate the harmonization of an external set, and have a discussion about 

data leakage in an ML pipeline and how that can bias the final results. 

2. Normative approach for BD 

We assessed the successfulness of the normative approach in 

discriminating BD subjects. 

• SVM model 

1. LOSO-CV with processing pipelines : 1,5 

The goal was the same as point 1 related to the normative approach. We 

assessed how harmonization influences the SVM classification and 

generalization performances.  

2. ENIGMA Study 

We compared our SVM results on site-level and LOSO-CV analysis with 

processing pipeline 1 (no data harmonization) with those achieved by the 

ENIGMA Study (which also does not employ data harmonization), as we 

used the same SVM model. 

• AE-based normative model compared to SVM model and clinical state-of-

art 

1. CV-harmonization processing  pipeline 5: option B+C 

We set ourselves to understand whether a normative approach for the 

classification of BD disorder would yield better or comparable results to a 

classic SVM model. Thus, we determined whether there is a significant 

advantage of using this approach specifically with BD patients' data. 

2. Processing pipeline 1 (no data correction): option A  

To determine how both models handle no harmonized data and which 

generalization performance it yields. 

3. Incremental utility of normative model compared to state-of-art 
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We compared the results of the AE Normative Approach with the state-of-

art clinical diagnostic performance and with the best ML state-of-art BD 

classification performance, which we consider the ENIGMA results.  
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6. Results 

6.1 Demographic Results 

Demographic analyses were performed on the dataset by comparing HC and BD 

subject groups, whose demographic characteristics are presented in Table 6.1 and 

Table 6.2, respectively. Their overall age distribution can be seen in Figure 6.1. It is 

noticeable that the BD group is slightly older than the HC group, on average, and 

within each group, females have a higher mean age than males. 

HC 

 Male Female Total 

Sex 270 335 605 

Age(years) 35.0±14.1 37.6±15.2 36.4±14.8 

Table 6.1: Demographic data in HC group. 

BD 

 Male Female Total 

Sex 242 316 558 

Age(years) 40.3±15.5 42.0±14.4 41.3±14.8 

Table 6.2: Demographic data in BD group. 
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Figure 6.1: Age Distribution for HC and BD groups. 

Besides, after dataset splitting, a demographic analysis was performed, comparing 

the training set with the test set and the external set (PITTS dataset) populations. The 

sex-specific age characteristics of the three datasets are reported in Table 6.3-Table 

6.7. Lastly, in Table 6.8 the results of applying a two-sided MWU test comparing the 

HC training set to all other age distributions are presented, from which we can 

conclude that the only comparable age distribution is between the training set and 

HC test set. 

Training Set 

 Male Female Total 

Sex 230 289 519 

Age(years) 35.2±14.3 38.7±15.5 37.1±15.0 

Table 6.3: Demographic data in the Training Set. 

Test Set HC  

 Male Female Total 

Sex 27 31 58 

Age(years) 36.9±14.8 31.3±12.7 33.9±14.0 

Table 6.4: Demographic data in the Test Set HC. 

Test Set BD 

 Male Female Total 

Sex 34 41 75 

Age(years) 39.5±12.4 41.0±12.9 40.3±12.7 

Table 6.5: Demographic data in Test Set BD. 
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Figure 6.2 Age Distribution in Training set, Test Set HC, and Test Set BD. 

 

PITTS External Set HC 

 Male Female Total 

Sex 13 15 28 

Age 28.3±4.5 28.9±4.7 28.6±4.6 

(years)    

Table 6.6: Demographic data in HC from PITTS center. 

PITTS External Set BD 

 Male Female Total 

Sex 24 34 58 

Age 27.1±4.3 29.4±4.7 33.8±10.4 

(years)    

Table 6.7: Demographic data in BD from PITTS center. 

 

Figure 6.3: Age Distribution of HC and BD from external PITTS center. 
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Age 
HC: Train 

vs Test 

HC: Train vs 

PITTS 

HC Train 

vs BD test 

HC Train 

vs BD 

PITTS  

statistics 13324.5 5457.5 100012.0 5625.0 

p-value 0.065 0.013 1.19710-10 0.005 

Table 6.8: MWU test on age distributions. 

6.2 Harmonization Results 

To evaluate and confirm that data was successfully harmonized, we apply PCA to 

data, before and after harmonization, and check whether with the 2 principal 

components (PCs) it was possible to distinguish data based on its center label, i.e., 

whether the 2 components captured site-related data variance. The PCs scores were 

colored by center, in order to visualize whether the orthogonal directions of variance 

of the ROI-based measures were associated with the center before and after 

harmonization.  

If data is successfully harmonized, the clusters representing the PCs scores from 

different centers should be confused, thus there should be no visible and 

differentiated clusters corresponding to the center. The PCA results relative to 

different harmonization pipelines are illustrated hereinafter. The labels for each 

center are respectively: 

1: AUOV 2: FSL_ROME 3: JUH 4: MI_POLI_3T_3 5: OSR 6: PITTS 7: UBC 

 

A. No Harmonization: We apply PCA to the non-harmonized whole data set. It 

is visible at least one clear cluster corresponding to center 5 (i.e., OSR), which 

likely employs a very different MRI acquisition protocol from the others. 
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Figure 6.4: First and Second PCs extracted from the original raw data. 

B. CV-Harmonization: This option is used in pipeline 5, where harmonization is 

performed after dataset splitting, respecting the CV framework, i.e., the center 

adjustment parameters estimated by ComBat are estimated in the training set, 

applied to the training set and test set like-wise. This is made possible by the 

fact that data in the training set and test set belong to the same centers. The 

test set harmonization effectiveness is clearly seen in Figure 6.5c), 

corresponding to the BD dataset, particularly for the cluster represented by 

center 5 OSR, before and after harmonization. 

 

 
a)Training Set. 
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b)Test Set HC. 

 
c)Test Set BD. 

Figure 6.5: First and Second PCs extracted before (left) and after (right) ComBat 

harmonization of Training (a) and Test set (b,c). 

C. Harmonization of an External Set: This option is necessary as the external set 

belongs to an external center (PITTS), therefore there are no center adjustment 

parameters estimated from the training set to apply directly to the external set.  

Thus, the harmonized training set is used as a reference batch for the 

estimation of PITTS site effects, as discussed previously in section 5.5. In 

Figure 6.6, the red label 0 corresponds to the previously harmonized training 

set, composed of harmonized examples from centers 1, 2, 3, 4, 5, and 7, all 

represented as a unique center (i.e., cluster). The green label 6.0 are 

represented the samples from PITTS center (i.e., center 6), before and after 

harmonization. It is noticeable that PITTS data before harmonization was 

already not isolated from the main cluster (i.e., harmonized training set), 

hence the visible changes on the PITTS cluster, after harmonization, are very 

subtle. 
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Figure 6.6: First and second PCs before (left) and after (right) ComBat harmonization 

of the external test set, PITTS, indicated by green label 6.0.  

D. Whole-Dataset Harmonization 

D.1+C Leave out an External Set: The whole dataset is harmonized, without 

PITTS data. We keep the PITTS center as an external set. 

 

a) Whole Dataset without External Set (PITTS data). 
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b) External set (PITTS data). 

Figure 6.7: First and Second PCs extracted before and after ComBat (D+C) from (a) 

the whole dataset (excluding PITTS data) and (b) from the external set (PITTS data). 

D.2 Harmonize all 7 Centers: The whole 7 centers dataset is harmonized, 

before the splitting of data in the CV framework. 

 

Figure 6.8: First and Second PCs extracted before and after ComBat (D) from the 

whole dataset (including PITTS data). 

An observation that is worth to be highlighted is that we do not find substantial site 

effects between all centers, except for center 5 OSR, as it can be concluded by not 

observing clear isolated center clusters on the scatterplots of the two PCs, extracted 



6. Results 91 

 

 

on non-harmonized data. After assessing all harmonization options, we can conclude 

that option B, harmonization within the CV framework, used in processing pipeline 

5, was as rigorous and effective as the harmonization option D, which accounted for 

harmonizing the entire dataset (hence, more numerous data). In option B, CV-

Harmonization, ComBat site effects are estimated in the training set, composed of 

519 samples, while option D, WD-Harmonization, accounted for 1163 samples. 

Regardless, the results of a posteriori test set harmonization in option B, seen in 

Figure 6.5c), clearly show that the estimated site effects in a smaller sample as the 

training set, are reliable to be applied separately to the test set.   

6.3 Regressing-out biological confounders 

Linear regression is fitted to data considering the brain features as the dependent 

variable and the biological covariates as the independent variables. In this procedure, 

we assume that the brain features and biological covariates have a linear relationship 

and that the covariates' joint effect is the sum of their separate effects. This approach 

has the advantage of being simple and straightforward, but the drawback is the risk 

of misspecification.  

To analyze the validity of such an assumption we investigate several statistics such 

as the significance of the coefficients through the p-values of the corresponding t-

tests, and the analysis of the variance through the p-value of the model F-statistics. 

As explained in section 3.2, to validate a regression model, the variance of the 

dependent variable explained by the predictive variables must be significant, thus F-

p-value<0.05. Not only, to see whether the biological covariates do have a linear 

relationship with the brain feature as hypothesized, we see if the dependency of the 

dependent variable on the predictive variables is significant, thus T-p-value <0.05.  

As an example, in Figure 6.9 we can conclude that the cortical thickness of the right 

hemisphere insula cannot be well predicted from age and gender, having a non-

significant F-statistics (p-value=0.122) and gender beta coefficient distribution clearly 

includes the zero value, thus the negative linear relationship is not significant. 

Overall, the linear regressions model fitting, estimated in the training set, were 

satisfactory, with 12 out of 68 from the cortical thickness features and only 2, right 

and left fornix, out of 52 from the volumetric features not achieving a significant  F-p-

value (<0.05), Figure 6.10 and Figure 6.11. We can say that the age covariate had the 

worst performance for anatomical volumes predictions, thus its linear relationship 

with many volumetric brain features was not proved. The latter might be due to TIV 

inclusion in the linear model. 
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Figure 6.9 Summary Statistics of  Linear Regression for Cortical Thickness measure of 

Insulta on Right Hemisphere. 

The age coefficients are estimated at net TIV, which in itself brings the most age-

related effects. Sex linear relationship was also not significant with many of the brain 

features, both cortical thickness and volumetric measures. On the other hand, TIV 

performed well as a predictor variable for volumetric brain features. These results 

are reported extensively in Appendix A. 

 

Figure 6.10 Cortical thickness regions with non-significant F_statistics. 

 

Figure 6.11 Neuroanatomical volumes’ regions with non-significant F_statistics. 
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6.4 Model Optimization 

The model optimization was performed employing a grid search technique within a 

10-fold CV framework. Because the time and memory resources requests are very 

high for a 10-fold CV hyperparameter tuning, the parameter grid, composed of 79 

combinations, was divided into 3 subgrids, so 3 search steps were performed, each 

step containing 10 iterations of the 10-fold CV for each parameter combination 

evaluation, totaling 790 iterations. 

The fixed hyperparameters were: 

• Loss Function: Mean Square Error, ‘MSE’ 

• Activation Function: SELU 

• Parameter Initializer: Lecun_normal 

• A.F output layer: Linear 

• Parameter Initializer output layer: Gorot_Uniform 

• Optimizer: Adam 

• Batch size: 35 

• Epochs: 2000 with early stopping (patient 250 epochs) 

Trial 

Combination 

Layer 

2,4 
Layer 3 Regularizer Learning Rate 

Search 

Step 

Best MSE 

validation 

1.1 100,80 75 

L2: 0.00001, 

0.0001, 0.001, 

0.01 

0.0001, 0.001, 

0.01, 

lr_schedule 

1-10th 0.09665 

1.2 100,80 75 

L2: 0.00001, 

0.0001, 0.001, 

0.01 

0.0001, 0.001, 

0.01, 

lr_schedule 

11-27th 0.09604 

2.1 100 80,60 

L2: 0.00001, 

0.0001, 0.001, 

0.01 

0.0001, 0.001, 

0.01, 

lr_schedule 

0-6th 0.08983 

2.2 100 80,60 

L2: 0.00001, 

0.0001, 0.001, 

0.01 

0.0001, 0.001, 

0.01, 

lr_schedule 

7-18th 0.08570 

2.3 100 80,60 

L2: 0.00001, 

0.0001, 0.001, 

0.01 

0.0001, 0.001, 

0.01, 

lr_schedule 

19-31th 0.09902 

3 100 
85,70, 

65 

L2: 0.00001, 

0.0001 

0.0001, 

lr_schedule 
- 0.07390 

*Layer 2 and 4 have the same dimensionality in the AE. Layers 1 and 2 are input and output, with dimension 120.  
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Table 6.9 Hyperparameter Tunning Results. 

The learning rate schedule, denoted as lr_schedule in the table above had the 

following fixed hyperparameters: 

• Initial Learning Rate: 0.001 

• Decay Step: number_subjects/ batch_size 

• Decay Rate: 0.9977 

Finally, the best-retrieved network architecture was from trial combination 3, 

reporting the following hyperparameters:  

• Layer 1,3: 100 

• Layer 2: 85 

• Regularizer: L2 = 0.0001 

• Learning Rate: 0.0001. 

 

 

Figure 6.12: Best Network Architecture (hyperparameter combination from trial 

combination 3).  

6.5 AE Model: Normative Approach 

In this section, the results regarding normative model reconstruction and anomaly 

detection performances are reported for several processing pipelines. The test set is 

composed of 58 HC and 75 BD subjects and the external  PITTS set of 28 HC and 58 

BD. To select the significant deviating brain regional features in the BD group, we 

perform an additional analysis by considering all 500 BD subjects from the test set. 

Data was processed according to the four harmonization options described in section 

5.6 that were alternated or combined in the five processing pipelines resumed below. 

Harmonization pipelines: 
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A. No Harmonization 

B. CV-ComBat  

C. Ref-ComBat 

D. WD-ComBat 

Given rise to 5 parallel processing pipelines: 

1) No Data Correction (A) Pipeline  

Including biological covariates correction: 

2) No Harmonization (A) Pipeline 

3) Whole Dataset Harmonization (D) Pipeline  

4) Whole Dataset Harmonization (D) + External Set Harmonization (C) Pipeline 

5) CV-Harmonization pipeline (B+ C): described in detailed section 5.6.1. 

6.5.1 Data Processing Pipelines Results 

All results in the following section were obtained using the best model retrieved 

from the hyperparameter tuning. The results for pipeline 5, using CV-Harmonization 

option B, will be presented in a detailed manner because we suggest that this 

processing pipeline, which respects the validation frameworks, is the most rigorous 

one. At the end of this section, a summary table will report the results for all five 

processing pipelines. 

-Best Model: Model retrieved from the hyperparameter tunning, trial combination 3. 

Layer 1,3: 100 Layer 2: 85 L2: 0.0001 Lr: 0.0001 

• Pipeline 5 

I. Training  

The training was employed as described in sub-section 5.7.1. The average 

reconstruction errors on the training set and HC test set were 0.0278 and 0.0710, 

respectively, as stated in Table 6.10.  

 

Epochs Train 

Loss 

Train 

MSE 

Test 

Loss 

Test 

MSE 

2000 0.0419 0.0278 0.0850 0.0710 

Table 6.10: Training Results from pipeline 5. 
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Figure 6.13: Training Evolution for pipeline 5. 

II. Testing 

Once the AE model was trained, the test set was passed through the network and 

each subject's data was reconstructed by the model. The DM distributions in the HC 

test set and BD dataset (i.e., all 500 patients) groups can be seen in Figure 6.14 a) and 

b). When visually comparing the distributions between HC and BD, it is not possible 

to see a clear distribution shift, rather both distributions are overlapping, as shown in 

Figure 6.14 c). This factor hints at a difficulty in detecting abnormal samples, which 

should be the BD patients. In Appendix A, two output data reconstructions are 

reported, one for the 20th subject from the HC Test Set and the other for the 56th 

subject from the BD  dataset.  

A one-sided MWU test is performed on the BD DM vs. HC DM, with alternative 

hypothesis option greater, to check whether BD subjects’ DM is significantly greater 

than HC subjects’ DM, with the resulting p-value=0.28172 (statistic=15172), thus 

clearly confirming BD group reconstruction error not to be significantly greater than 

HC group one. 

 

a)HC Subjects. 

 

b)BD Subjects. 
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c) Distributions Overlapping. 

Figure 6.14: Reconstruction Error Distribution on Test set, for Pipeline 5. 

The HC and BD subjects' DMs are used then to evaluate the discriminative power of 

the normative approach. Using a BD test set of 75 subjects, randomly selected from 

the 500 BD dataset, stratifying for center proportions, as explained in section 5.5, the 

AUC-ROC curve is performed. From Figure 6.15 it is possible to see that the ROC 

curve lies on the chance line level, with an AUC=0.51, which means the data 

classification is random, and no clear threshold can be found on the DM to 

discriminate between HC and BD.  

 

Figure 6.15: AUC-ROC curve on test set for pipeline 5: Discriminating HC vs BD 

subject. 

III. Feature Selection 

Considering each feature individually, the DM within the 500 BD subjects is 

compared against the 58 HC test set subjects, and the features which are found to 

have a significantly greater DM score in the BD group are retrieved (p-value<0.05), 
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reported in Table 6.11, with the effect size measured by Cliff’s delta absolute value. 

The effect sizes found are all small or negligible.  

After selecting the  BD abnormal brain regions with respect to HC, the subjects’ DM 

is recalculated, for the test set, 58 HC and 75 BD, taking into account only those 

features, as explained in sub-section 5.7.3 Feature Selection. A new MWU test is 

performed on the new subjects’ DM scores, to test whether considering only the 

subset of features, the BD group holds a greater reconstruction error, resulting in a p-

value=0.001040 (Statistic=2854) thus confirming the alternative hypothesis. The AUC-

ROC curve is re-performed, improving the discrimination power with an AUC=0.66, 

as reported in Figure 6.16. The latter is a circular analysis. 

ID Regions Statistic p-value Effect size 

24 [lmedialorbitofrontal] 16552.0 0.038778 0.1415 

54 [lsuperiorparietal] 16973.0 0.016699 0.1706 

75 [lSupPostCerebLVI] 16493.0 0.043238 0.1374 

85 [lHCA1] 17200.0 0.010101 0.1862 

95 [rGloPal] 17337.0 0.007335 0.1957 

110 [rAmy] 16417.0 0.049584 0.1322 

Table 6.11: Abnormal Brain Regions in the BD group compared to HC from Pipeline 

5. 

 

Figure 6.16: AUC-ROC curve on a subset of features for Pipeline 5. 

IV. Classification HC and BD 

To understand whether the subset of features is generalizable to BD we need to test if 

this subset of features yields a comparable discriminative power in an external 

independent set. This external set of data was never seen by the model in any step of 

the ML pipeline, nor has data from the same center acquisition been included in the 
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training and test set. The data from the PITTS center is inputted into the network and 

the subjects’ reconstruction error scores are calculated. In Figure 6.17 a) and b) the 

subjects’ DMs distribution are reported and in c) the AUC-ROC curve, resulting in an 

AUC=0.58, achieving higher discriminative performance than in the test set. 

 

a) HC subjects’ DM distribution. 

 

b) BD subject’ DM distribution. 

 

c)AUC-ROC curve: all brain features. 

 

d)AUC-ROC curve: feature subset 

Figure 6.17: External set (PITTS  data) results for Pipeline 5. 

Then, the AUC-ROC curve is re-performed considering the subjects’ DMs calculated 

on the subset of features selected in the test set. The result, seen in Figure 6.17 d), 

shows an AUC=0.61, which represents a slight improvement from c)- considering all 

brain features. As expected, the AUC obtained considering only the subset of 

features in the external set was lower than the one in the test set (AUC=0.66), but we 

should consider that the latter result comes from a circular analysis.  

 

• Summary Results 

In Appendix A the BD abnormal brain regions, for the feature selection step III, are 

reported for pipelines 1 to 4.  
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Pipe- 

line 

Test Set External Set 

HC Test 

DM 

BD Test 

DM 

All features Feature Subset  All Feat. Feat. 

Subset 

Stat. p- 

value 

AUC Stat. p-

value 

AUC AUC AUC 

1 0.0473± 

0.0266 

0.0591± 

0.0525 

16548 
.0391 

0.56 3011 
7.51e-5 

0.69 0.45 0.51 

2 0.0524±0.0

301 

0.0607±0.0

4761 

16241 
.0671 

0.56 3149 
5.00e-6 

0.72 0.39 0.43 

3 0.0654±0.0

333 

0.0674±0.0

430 

14673 
.4410 

0.52 2668 
.0127 

0.61 0.92 0.71 

4 0.0669±0.0

355 

0.0686±0.0

415 

14825 
.3900 

0.50 2752 
.0045 

0.63 0.45 0.54 

5 0.0710± 

0.0417 

0.0764± 

0.0577 

15172 
.2817 

0.51 2854 
.0010 

0.66 0.58 0.61 

Table 6.12: Normative Approach results apply to the test set. 

Option 

External Set 

HC 

PITTS 

DM 

BD 

PITTS 

DM 

All Features Feature Subset 

Stat. p-value AUC Stat. p-value AUC 

1 0.0446±0.0

144 

0.0416±0.0

130 

731 
0.7737 

0.45 825 
0.4541 

0.51 

2 0.0483±0.0

122 

0.0438±0.0

1382 

626 
0.9572 

0.39 705 
0.8391 

0.43 

3 0.0286±0.0

074 

0.0518±0.0

195 

1497 1.411e-

10 

0.92 1147 
0.0010 

0.71 

4 0.0548±0.0

151 

0.0518±0.0

151 

726 
0.7873 

0.45 880 
0.2669 

0.54 

5 0.0494± 

0.0129 

0.0534± 

0.0174 

942 
0.1163 

0.58 984 
0.0570 

0.61 

Table 6.13: Normative Approach results on PITTS external set. 

6.5.2 Discussion 

• Pipelines 1 vs. 2 

The processing pipeline that obtains the lowest reconstruction error on the test set is 

Pipeline 1 – No Data Correction (A). No harmonization option A is the one that 

presents higher anomaly detection capabilities in the test set, having an AUC=0.56 
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(for all features). When data is not harmonized but is corrected for biological 

covariates pipeline 2 (No Harmonization - Option A) the mean reconstruction error 

of the test set is higher but the discriminative performance maintains an AUC=0.56 

(for all features). Regarding the feature selection, there is a slight increase in 

discriminative performance in the test set, comparing pipelines 1 to 2. Nevertheless, 

both these pipelines' results demonstrated a poor generalization capability, with 

AUC results in the external set below chance and in the chance line. The latter was 

expected because we knew the AE-based model could be able to learn center effects 

structure in data, thus failing to generalize when a new set presents a different site 

effects structure. 

Interestingly, the AUC results on the external set decrease when data is corrected for 

biological covariates, from pipeline 1 to 2. To extract some interpretation from the 

latter fact we inspect differences between pipelines 1 and 2 if other centers were to be 

considered as external sets, as reported in Table 6.14. It can be seen in the reported 

table that an improvement happens in the discriminative performance on the 

external set, for pipeline 2 compared to 1, for the three external set trials. 

Pipeline AUC 
Test 

set 

Ext. Set Test 

set 

Ext. Set Test 

set 

Ext. Set 

4-MI_POLI 5-OSR 7-UBC 

1 
all 0.55 0.48 0.56 0.64 0.61 0.51 

subset 0.66 0.35 0.65 0.63 0.70 0.53 

2 
all 0.54 0.53 0.58 0.70 0.60 0.53 

subset 0.70 0.44 0.60 0.65 0.72 0.55 

Table 6.14: Pipeline 1 and 2 AUC results for external sets: 4,5,7. 

The issue presented in the external set PITTS could be explained by different age 

distributions between train, test, and external set, as reported in Table 6.3Table 6.7. 

However, by assessing the age distributions for MI_POLI, OSR, and UBC, we 

conclude that the UBC center data is also demographically different from the 

respective training and test set, being composed of only young subjects ranging from 

16 to 33 years old, with an age average of 22.7176±4.1885. Yet, the drop in the 

performance due to biological covariates correction is not posed. Hence, it seems that 

in PITTS data, correcting for biological covariates worsens the discriminative 

performance, as opposed to what happens for the other three external sets trials. This 

could be explained by a covariate shift in the PITTS dataset, where the estimated age, 

sex and TIV beta coefficients have a certain linear relationship direction with regional 

brain features that is reversed in the PITTS case. For example, age could have a 

significant negative linear relationship with some regional brain features in the 
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training set and in PITTS this relationship being positive or non-significant, thus 

eliminating some data variance that explains the diagnosis, worsening discriminative 

performance. It could also be an overestimation of the coefficients which would lead 

to the same result. 

A new observation that can be drawn from Table 6.14 is that from the four centers 

experimented as external sets, only when using OSR as an external set, did the model 

manage to generalize for non-harmonized data (results in green). The reconstruction 

error in OSR was much worse (HC: 0.2068±0.100, BD:0.2976±0.2088) compared to 

what is shown in Table 6.13 for PITTS external set (HC: 0.0446±0.0144, BD: 

0.0416±0.0130), nevertheless, the discriminatory performance was good (AUC=0.70). 

This is an interesting result because OSR was also the only center for which a clear 

separate cluster could be seen when plotting the 2 PCs extracted with PCA for non-

harmonized data, Figure 6.4. We think the model was able to generalize well to the 

OSR center dataset, the center most affected by site effects, because all the others 

were already very homogenous and those were the ones included in the training set. 

By having a more homogenous training set, although data was not harmonized and 

the external center was not comparable, the model didn’t learn site effects and was 

able to generalize to OSR both in pipelines 1 and 2. 

Conclusive remarks: by assessing both pipelines, we have verified that not modeling 

the multi-site characteristics of the dataset through harmonization leads to good 

results in an internal validation framework but then the model fails to generalize to 

an external set. This is further confirmed by verifying that the model manages to 

generalize only for an external set when is trained with more homogenous data, even 

if not harmonized. We also verified that correcting for biological covariates, pipeline 

2, worsens the discriminative performance in the PITTS center. 

• Pipeline 1 and 2 vs. 3 

In the test set there is a drop in the AUC metric from 0.56 to 0.52 (for all features), 

between pipelines 1,2 to 3. Harmonization thus seems to worsen discriminative 

performances in the test set (internal validation), which further confirms that the AE-

based model was learning site effects encoded in data in pipelines 1 and 2, which 

helped improve its performance.   

• Pipelines 3 vs. 4 

The training set and test set results, in both processing pipelines, do not differ 

substantially. The best results on the external set were obtained with pipeline 3 

(Harmonization option D), when the independency of this set is broken, by 

harmonizing it together with the rest of the dataset, resulting in an AUC=0.92 in the 
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external set. This result is rather high, considering that in the test set the result is a 

random classification, AUC=0.52. It possibly indicates that the results in the test set 

when grouped by center origin are heterogenous and this heterogeneity is canceled 

out by the averaging effect. However, pipeline 4 was mainly designed to witness 

how not taking into account a CV framework positively biases the results potentially 

leading to false optimistic conclusions. When the procedure is repeated but this time 

leaving PITTS as an external set and harmonizing it separately with ref_comBat, 

pipeline 4 (Harmonization option D+C), the performance on the external set drops to 

the chance line (AUC=0.54), from the previous AUC=0.92.  

Conclusive remark: by assessing both pipelines we can verify that performing 

harmonization prior to dataset splitting might positively bias the results and does not 

model an external validation framework. 

• Pipelines 4 vs. 5 

In both pipeline 4 and pipeline 5 the external set was harmonized a posteriori, using 

harmonization option C, however, the results in pipeline 4 for the external set are 

much worse. The possible reason why in pipeline 4 the performance in the external 

set drops to the chance line might be related to the chosen model. As mentioned 

previously, for the sake of comparability and to reduce the number of estimations to 

be made, the hyperparameter combination was chosen by performing 10-fold CV, 

while integrating processing pipeline 5 in each fold. Thus, the best model is the best 

model for data processed according to pipeline 5. Even if a better model could be 

found for processing pipeline 4 yielding comparable results to pipeline 5 we would 

still argue that the test set in pipeline 4 is not independent of the training set because 

of WD-Harmonization, and it would only indicate that including more data in the 

harmonization process could be an advantage to estimate site effects, which is 

expected. 

Conclusive remark: the aim of including pipeline 4 was to assess that the 

performance would drop from pipeline 3 to 4 in the external set. The magnitude of 

this drop or the actual AUC results is not relevant because there could still be a 

model yielding a better performance for data processed according to pipeline 4 than 

the chosen one (and perhaps comparable to pipeline 5 results).  

• Discriminative performance in the test set  

All processing pipelines yield chance or close to chance line performances on the test 

set when all features are considered. Both the training and test set result from 

pooling data for random partition, thus, containing data from all sites split 

randomly. While in the external set, data is not partitioned by a random factor, thus, 

the data center characteristic that might influence positively or negatively the model 
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reconstructions and discriminatory performance will directly reflect the evaluation 

metrics, while in the test set this factor might be canceled out, as mentioned 

previously in discussion pipeline 3 vs.4. The hypothesis is that data, even though 

harmonized and corrected for biological covariates, is still heterogeneous, and this 

heterogeneity is highly specific for each site cluster. Thus, evaluating model 

performance at the site level should give heterogeneous results. This can be shown 

by projecting the AUC-ROC results grouped by center origin, within the test set, for 

pipeline 1 and pipeline 5, Table 6.15. The AUC results within each scenter differ very 

much, ranging from 0.3 to 1 on pipeline 1 for all features and ranging from 0.3 to 0.67 

on pipeline 5 for all features. Notably, only pipeline 5 performance improves or 

maintains for all sites in the feature subset. Results at the site-level analysis for 

pipeline 5 are equally heterogenous compared to pipeline 1 possibly pointing to the 

fact that there exist clinical variables which are center-specific and not modeled for, 

for example, a specific center might be composed of more severe cases of BD 

patients, thus making it easier to discriminate than within others. However, samples 

for each center are imbalanced regarding diagnosis and have few data, and such a 

limitation hinders our ability to conclude if the source of heterogeneous results at the 

site-level are due to the latter or due to clinical patient heterogeneity covarying with 

site origin. 

 

Pipeline Features 

1-

AUOV 

2- 

ROME 
3-JUH 

4-MI_ 

POLI 

5-  

OSR 

7- 

UBC 

9HC 

3BD 
25HC 39BD 

11HC 

3BD 

3HC 

2BD 

7HC 

20BD 

3HC 

8BD 

1 
all 0.481 0.533 0.303 1 0.579 0.583 

subset 0.741 0.732 0.454 0.333 0.628 0.458 

5 
all 0.407 0.556 0.303 0.667 0.5 0.667 

subset 0.851 0.58 0.393 1 0.6 0.667 

Table 6.15: AUC test set results grouped by center. 

Concluding remark: It is clear from the above table that harmonized and corrected 

data still yields heterogeneous discriminative AUC results across sites – comparing 

pipelines 1 and 5 at site-level analysis. Thus in the test set, which is composed of 

subjects belonging to 6 different centers, the heterogeneous results are canceled out, 

due to an averaging effect, and we get an overall result close to chance classification. 

The source of these heterogeneous results could be within-site numerosity or clinical 

heterogeneity covarying with site origin. 
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• Pipeline 5 

The data processing pipeline which we were sure respected the CV framework, 

reported as Pipeline 5 (Harmonization option B+C), achieved unsatisfactory results 

on the external set. When all features were considered, it achieved an AUC=0.58 

compared to an AUC=0.51 in the test set. The latter result might be a reflection of the 

previous discussion and the AUC results grouped by center on the test set for 

pipeline 5 are shown in Table 6.15. The test set is intrinsically heterogeneous due to 

the random partition while the external set is not.  Then, the AUC in the feature 

subset was 0.61, improving slightly from the AUC of 0.58 considering all features. A 

higher improvement would be reassuring but we conclude the subset of features do 

generalizes at some level to the external set, as they help improve discriminatory 

performance. This is also the best classification performance from the AE-based 

normative model results. 

• BD Abnormal Brain Regions 

The most difficult features for the model to reconstruct in the BD group were: left 

medial orbital frontal, left superior parietal, Left Superior Posterior Cerebellar Lobule 

VI, left Hippocampus CA1, Right Globus Pallidus, and right Amygdale. As described 

in section 1.2, there have been reports of alterations in volumes of the amygdala, and 

hippocampus. In the ENIGMA study [9], both left medial orbital frontal and left 

superior parietal had shown significantly reduced cortical thickness in BD patients, 

although not with the highest effect size. However, as suggested in Pinaya et al. [57], 

this normative approach represents a multivariate analysis method, thus features 

that are found to have high discriminative power should be interpreted as a spatially 

distributed pattern rather than individually.  The founded feature pattern certainly is 

model-dependent and not necessarily linked to disease pathophysiology. Because the 

model is only capable of discriminating HC and BD locally, the differences that exist 

at the sMRI level are very subtle and may not represent, at least individually, a tool 

to help diagnose BD disorder. Besides, clinical data such as disease status or 

medication were not included in this study. Further analysis must be performed to 

test the normative approach hypothesis. 

6.6 SVM Classification Results  

In this section, the results of the SVM classifier will be reported for pipeline 1 

(Harmonization Option A) and pipeline 5 (Harmonization Options B+C. The choices 

of the processing pipelines included here are related to the fact that to compare our 

SVM results with ENIGMA study results, we have to employ pipeline 1, and pipeline 
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5 to compare the SVM model with the AE-based normative model results, as it 

represents the most rigorous processing pipeline. 

The SVM model did not undergo hyperparameter tunning, it employs a linear kernel 

and C=1. Because of this, a LOSO-CV was performed, and the model was tested on 4 

external sets, by leaving one of these centers out of the train and testing set at each 

trial: 

- Milano Policlinico (MI_POLI) 

- Ospedale San Raffaele, Milano, Italy (OSR) 

- University of Pittsburgh, Pittsburgh, US (PITTS) 

- University of British Columbia, Vancouver, Canada (UBC) 

By iteratively considering 4 different external sets we could report more robust 

results on the external set performance of the model. Finally, a site-level analysis will 

be performed, where each center data will be used to train and test the SVM model 

individually. In Appendix A detailed information is reported for each LOSO-CV 

iteration. 

• External set: MI_POLI  

 
Training 

set 

Test 

set 
External set 

HC 406 174 26 

BD 382 164 12 

Table 6.16: Dataset Split for MI_POLI external set. 

Pipeline Set AUC Precision Recall F1-score 

1 
Test Set 0.65 0.58 0.6 0.59 

Ext. Set 0.66 0.38 0.5 0.43 

5 
Test Set 0.54 0.54 0.54 0.54 

Ext. Set 0.59 0.41 0.58 0.48 

Table 6.17: Results for MI_POLI external set. 

• External Set: OSR 

 
Training 

set 

Test 

set 

External 

set 

HC 377 161 67 

BD 297 128 133 
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Table 6.18: Dataset Split for OSR external set. 

Pipeline Set AUC Precision Recall F1-score 

1 
Test Set 0.62 0.50 0.45 0.47 

Ext. Set 0.42 0.51 0.49 0.55 

5 
Test Set 0.54 0.50 0.45 0.47 

Ext. Set 0.54 0.74 0.26 0.38 

Table 6.19: Results for OSR external set. 

• External Set: PITTS 

 
Training 

set 

Test 

set 

External 

 set 

HC 403 174 28 

BD 350 150 58 

Table 6.20: Dataset Split for PITTS external set. 

Pipeline Set AUC Precision Recall F1-score 

1 
Test Set 0.64 0.57 0.56 0.57 

Ext. Set 0.47 0.30 0.43 0.35 

5 
Test Set 0.55 0.51 0.47 0.49 

Ext. Set 0.50 0.69 0.60 0.64 

Table 6.21: Results for PITTS external set. 

• External Set: UBC 

 
Training 

set 

Test 

set 

External 

 set 

HC 402 173 20 

BD 352 151 55 

Table 6.22: Dataset Split for UBC external set. 

Pipeline Set AUC Precision Recall F1-score 

1 
Test Set 0.61 0.54 0.48 0.51 

Ext. Set 0.47 0.70 0.25 0.37 

5 Test Set 0.51 0.49 0.43 0.46 
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Ext. Set 0.42 0.61 0.49 0.55 

Table 6.23: Results for UBC external set. 

• Average Performance for LOSO-CV 

Pipeline 
Ext. Set  

AUC  

Test set  

AUC 

1 0.5050±0.0918 0.6300±0.0158 

5 0.5125±0.0621 0.5350± 0.0150 

Table 6.24: LOSO-CV Results. 

• Individual site-level analysis 

Center 

HC 

Training 

set 

BD 

Training 

set 

HC Test 

Set 

BD Test 

set 

Pipeline 1 

AUC-

ROC  

F1-

score 

1 61 15 32 5 0.9125 0.5000 

2 166 174 84 83 0.4674 0.5497 

3 80 16 31 7 0.6359 0.3333 

4 20 7 6 5 0.3667 0.2222 

5 50 96 17 37 0.6701 0.7222 

6 20 43 8 15 0.2500 0.6897 

7 26 40 4 15 0.7407 0.4500 

*The f1-score is not based on any probability decision threshold. It is calculated on the native 

SVM outputs, thus, inconsistencies with the AUC-ROC are expected.  

Table 6.25: Site-level analysis results. 

6.6.1 Discussion 

• Pipeline 1 

The results on the external set, training the SVM classifier with a LOSO-CV (out-of-

4), is on average a chance-level AUC, for both pipelines. The results on the test set are 

better when data was not corrected, following pipeline 1, but leading to worst results 

generalizing to the external set, as seen before in the normative approach. 

• Pipeline 5 
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For CV-Harmonization pipeline 5, the average result on the four external sets is an 

AUC of 0.51 and 0.53 in the test set. The results were better on the test set for pipeline 

1 but the drop between test set and external set performance is also higher. Pipeline 5 

in the SVM model obtained results in the test set that are similar to the normative 

model approach. 

• Enigma Study Comparision 

The ENIGMA study[17], for which we have set ourselves to compare results using 

the same SVM model, reported an AUC for LOSO-CV framework of 60.92, an AUC 

of 71.49 for Aggregated subject-level analysis, and an AUC ranging from 40.00 to 

71.00 for site-level analysis. The latter did not harmonize data but rather modeled for 

site differences. To compare our results, we consider pipeline 1, where site and 

biological confounders are not corrected for. For our SVM model, the site-level 

analysis AUC results range from 25.00 to 91.00, while the LOSO-CV analysis results 

in an AUC=63.00 in the test set and AUC=53.00 in the external set. The results are 

worse than those achieved by the ENIGMA study.  

The key methodological differences between the analysis are mainly in the CV 

method used and data numerosity. They have performed Synthetic Minority 

Oversampling Technique with Tomek link in all analyses and used k-fold CV for 

which in all analyses the validation fold would have 3(±1) cases. The dataset they 

used for the several ML analysis consisted of data from 13 sites, ranging from 30 to 

749 BD cases, due to using the oversampling technique. The data used in our analysis 

was gathered from 7 sites, ranging from 7 to 174 BD cases, and we did not model for 

dataset imbalanced. They have performed k-fold CV, setting k such that all analyses 

had 6 samples (3 HC and 3 BD) as test set, while in our analysis we have used the 

Holdout method leaving 30% of data for the test set. Thus, we can say the analysis is 

not fully comparable, and our results might be hindered due to training the SVM 

model on fewer data, both on the site-level and aggregated analysis, and not using a 

k-fold CV framework leads to test set results being statistically weaker as model 

generalizability estimates.  

6.7 Comparing the Normative Approach, SVM, and 

Clinical state-of-art diagnostic performance 

• Pipeline 1: Normative model vs SVM model 

In both Normative and SVM models, for pipeline 1 – no data correction (A) – the 

AUC-ROC curve results were better on the test set, but not on the external set. We 

conclude that when confounding variables such as site and biological covariates are 
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not modeled, the generalization capability of an ML model to data from new sites is 

hampered. The latter finding, although expected, also implies that an internal 

validation framework is insufficient to estimate models’ generalization error, in a 

setting where usage of that same model is projected to include data from new 

centers, thus for multi-site studies.   

• Pipeline 5: Normative model vs SVM model 

Comparing pipeline 5, between the normative model and SVM model, with PITTS 

set as the external set, we conclude the AUC results on the test set are comparable. 

While the SVM model achieved an AUC of 0.55 in the test set, the normative model 

achieved an AUC of 0.51, slightly lower. However, in the external set, the SVM 

model achieved an AUC of 0.50 while the normative model achieved an AUC of 0.58. 

The advantage of the SVM model approach is that of allowing direct classification, 

while in the normative approach one has to classify a positive case through a unique 

set of features. The normative approach classification achieved an AUC of 0.61 in the 

external set, however, a LOSO-CV would be necessary to improve confidence in the 

later result. Further limitations on these results will be discussed later in chapter 7. 

• Increment Utility: Clinical state-of-art 

The classification result achieved in the external set is an AUC=0.61. According to 

[62] the BD misdiagnosis rate is around 69% - a false-negative rate - thus the average 

psychiatrist's sensitivity in diagnosing BD is estimated at 31%. Recall or sensitivity 

tells us how many positive cases are spotted from the total amount of positive cases. 

Clinically, it can be more important to have high confidence in a positive diagnosis, 

than to risk a wrong BD diagnosis.  The burden of misdiagnosis for the patient, 

currently means that more than one-third remain misdiagnosed for 10 years or more. 

To evaluate the increment utility an ML model yields regarding  BD diagnosis, the 

accuracy metric is not enough. It is important to achieve good precision, i.e., the 

positive cases a model find should very likely be corrected, i.e., achieving a low false-

positive rate. The recall-precision curve performed for the subset of features on the 

External Set show two possible optimal thresholds, with the second one yielding a 

recall/sensitivity of 40% - comparable to the clinical state-of-art- and a precision of 

0.85, metric for which a clinical comparable metric was not found in the literature but 

is expected to be high.  
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Figure 6.18 Precision-Recall Curve: Feature subset on External Set for Pipeline 5. 
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7. Conclusions 

The goals of this work were both focused on the evaluation of a Normative approach 

starting from ROI-based volume and cortical thickness data to classifying HC and BD 

disorder patients and on the adaptation and comparison of different harmonization 

processing pipelines integrated into an ML analysis. From chapter 4. Aim of the 

Work, we report here what we have proposed ourselves to analyze: 

1. Produce a successful normative model to reconstruct healthy brain features; 

2. Discriminate BD against HC using the normative model; 

3. Extract brain-feature abnormalities characterizing patients within  the 

heterogeneous BD spectrum; 

4. Assess if BD can be classified by using the subset of unique relevant brain 

features (aim 3) instead of all brain features; 

5. Assess any improvement in BD classification obtained using the normative-

based approach with respect to the classical SVM classifier; 

6. Identify the optimal site-effect removal pipeline to be integrated in a ML 

analysis by comparing different multisite harmonization pipelines combined 

with biological covariates correction; 

In this chapter conclusions on the several aforementioned points will be drawn and 

the limitations of this work and solutions to those limitations will be discussed. 

7.1 Conclusions 

In this section, we will report the conclusions we can extract from the harmonization 

methods pipelines, the normative model performance, and the SVM model 

performance. 

1) Harmonization methods 

Regarding the different harmonization methods, we conclude that harmonizing data 

with option B (used in pipeline 5) is as effective as when harmonizing the whole 

dataset together and that the previous option is more rigorous because is performed 

within the CV framework. Not only, the option that led to better model 
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generalization to the external set was also harmonization integrated into the external 

validation framework, option C also used in pipeline 5.  

A novelty has been introduced by this work is the harmonization of neuroimaging 

data on an external set, using the reference_batch option in the ComBat function, as 

well as, data harmonization within a k-fold CV framework. To the best of our 

knowledge, this type of discussion and practice has not been presented in the 

literature for neuroimaging data, within the scope of ML analysis.  

2) AE-based Normative Model Generalization 

Considering all the trials that were made, the best external set generalization results 

were obtained by employing processing pipeline 5 and processing pipeline 2 when 

the external set was OSR center. The former results reveal the importance of training 

the model with a lot of data but somehow homogenous or devoided of confounding 

variables. When the model is not presented with confounding effects it won’t learn 

them and it will be able to generalize better. In the case of our dataset, composed of 7 

centers, only one of them showed marked site effects, center OSR. When this center 

was not included in the training set and was used in the external validation 

procedure, although it yield a much worse reconstruction error, the model was still 

able to detect the main structural differences between HC and BD.  

Conclusions from 1) + 2): Having data that is clear of noise and confounding effects 

might yield models with better performance, which are domain-relevant and 

generalizable. However, is it quite easy for a model to have good results with the CV 

framework and these internal validation techniques don’t allow to assess if the 

model is domain-relevant. By testing in independent and external sources of data 

and having consistently replicable good results we can have more confidence the 

model did not overfit to confounding information represented in the training 

samples [63]. 

3) Normative Approach 

The normative approach results show that the model was not successful in 

discriminating BD patients from HC subjects, even though was quite successful in 

reconstructing HC brain features. The problem posed is that the model was also 

successful in reconstructing BD brain features. This either points to the fact that BD 

patients and HC brain regional features are too similar, resulting in difficult 

discrimination through reconstruction error scores, or that minimizing the network 

reconstruction error in the HC does not maximize the network discriminative ability.  

4) Neuroanatomical deviating features generalization 
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The model is used to identify a neuroanatomical deviating pattern in the BD group. 

This subset of features was then used to classify BD in the external set. We conclude 

the features were generalizable to the external set, yielding an improved AUC from 

0.58 in the test set to 0.61 in the external set, being the achieved classification of BD 

the AUC=0.61. The latter represents a promising result from our proposed 

methodological approach. 

5) SVM model 

The SVM model yield low performances in the test set, comparable to the one of the 

normative approach. In the LOSO-CV, the ENIGMA study achieved higher 

generalizability performances compared to our SVM model, regardless of not having 

harmonized data. As discussed in section 6.6, we argue that increasing data 

numerosity could improve our analysis.  

Finally, the key achievements of this work are: 

✓ A harmonization processing pipeline proposal, to be integrated both in 

internal and external validation frameworks of ML analysis. 

✓ A normative approach pipeline proposal going from discrimination to 

classification of disorder patients. 

✓ A multivariate feature extraction normative model. 

7.2 Limitations and Future Developments 

Limitations of the presented work concern the neuroimaging features, the sample 

clinical heterogeneity, CV framework used, the dataset size, the psychiatry disorder 

diagnostic specificity and possibly the confounder adjustment method. In this 

section, those limitations will be discussed and possible solutions and future 

developments will be proposed to tackle them. 

• ROI-based features 

The data that was used was feature engineering in an automatic ROIs feature 

extraction. Ideally, using voxel-based data would be better and would possibly allow 

achieving higher discriminative performances. When ROIs are extracted a lot of 

information is lost, although one gains by reducing data dimensionality, in time and 

memory resources. Not only, it would be preferred to input raw data to a Deep 

Learning model, as it works very well in this setting. We think that voxel-based 

features would increase the network capability of learning from normality samples, 

encoding a more powerful normality feature space. Besides, it would possibly lead to 

a better discriminative performance in BD patients, since the sMRI differences are 

subtle and difficult to spot. 
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Another future development would be to include in this study WM brain features 

together with the ones already used or on their own. It could be interesting to 

analyze the performance of the model when including these features, since as 

discussed in section 1.2, WM tracks in the LN are also compromised in BD disorder 

patients.  

• CV Framework 

The CV framework that was used in this work is also a limitation. Ideally, a nested 

10-fold CV should have been performed, instead, data was split using the Holdout 

Method, and the training set underwent into a 10-fold CV for model optimization. In 

a nested 10-fold CV the number of iterations would increase 10 times because each 

complete hyperparameter search step would have to be repeated for 10 different 

training sets. Adding to this, because we are randomly selecting 15% of the BD 

patient set to be used as a BD test set, to have a more balanced test set, this split 

should be repeated for 10 different random partitions. Thus for each test set, 10 

different BD test sets should be used and performances averaged. The latter should 

be performed to model BD patient heterogeneity. The alternative is to use the entire 

BD set as a test set but this would lead to a very imbalanced test set, although this 

fact could be dealt with by choosing the appropriate evaluation metrics, such as 

precision-recall curves, f1-scores. Besides, a LOSO-CV would also be recommended, 

iteratively considering each site as the external set. The current model optimization 

time resources were 45 minutes to complete one parameter combination evaluation 

(composed of 10 iterations – 10-folds). If we would have 10 folds for training/test set 

split, one hyperparameter combination evaluation would take seven hours and a 

half. Considering all 7 centers as external sets one at a time would mean repeating 

the later procedure 7 times, thus one hyperparameter combination trial would take 

around 2 days to evaluate. Since the parameter grid is usually composed of 50 or 

more different combinations, it would increase immensely the time and computer 

resources needed to train the Deep Learning model.  

• Samples’ clinical heterogeneity 

The clinical heterogeneity of the sample should be considered in the future. For the 

BD group, clinical dimensions were not included at all in the covariates, and this 

could affect the reconstruction error results in this group. Some important factors, 

such as medication, were not modeled for. There are known effects of several types 

of medication-related to structural brain alterations which do not correlate with BD. 

For a new undiagnosed individual, which consequently does not take BD-related 

medication, those alterations would not be presented. Thus, a classification model 

cannot use that information to learn how to accurately classify a BD subject, during 
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model design, as it is not generalizable to a new BD case. These considerations 

should be taken into account in the future. 

• Sample size and Anomaly Samples Variety 

Another limitation of this work is potentially the number of samples in the training 

set as well as the test set. Although the training set is big containing 519 HC subjects, 

a deep learning model would benefit from a larger dataset, and because we wanted 

to keep the maximum amount of data for the training set, only 10% were used to test 

the model, thus reinforcing more the necessity of performing a nested k-fold CV. A 

future development to be considered is to integrate an oversampling technique to 

increase numerosity and balance the dataset. There are many oversampling 

techniques, from re-sampling techniques to the artificial generation of new samples. 

Besides sample size, an approach such as the normative one requires to be tested on 

more than one psychiatry disorder group. To evaluate the discriminative 

performance of the network, it should be tested besides BD patients. It might be the 

case that the model is good at discriminating against other psychiatric disorders. 

Also, to evaluate whether the BD abnormal brain features are uniquely predictors of 

BD they should be tested against other psychiatry disorders whose diagnoses or 

clinical biomarkers usually overlap, such as MDD, UD, and Schizophrenia. Only by 

performing the latter points, we can validate the discriminative performance and the 

classification ability of the Normative Model. Several public neuroimaging databases 

include both HC and cases of different brain disorders. Those could be used to 

increase the amount of data but also data variability and heterogeneity of the dataset. 

The Human Connectome Project (HCP) database [64] which contains HC, the Autism 

Brain Imaging Data Exchange (ABIDE) initiative [65], and the Northwestern 

University Schizophrenia Data and Software Tool (NUSDAST) [66] are three 

examples of public databases that could be included in further studies. 

• Anomaly Detection with AE models  

The issue of improving anomaly detection capabilities in autoencoders is discussed 

in S.Wang [67], where the author state that the assumption that an AE learning on 

training data will produce higher reconstruction errors for anomalous samples does 

not hold in practice. Minimizing the reconstruction error does not mean maximizing 

anomaly detection capabilities. This is also confirmed by the fact that the model 

which yields better generalization performance in the external set, reported in 

Appendix A, is not the model which yields the lower reconstruction error, deemed 

the best model in the results. They argue that for training data contaminated with 

anomalous data the AE ends up generalizing so well for the training set that it can 

reconstruct well both normal and anomalous samples. The latter argument is 

especially severe for unsupervised anomaly detection, where the data label is 
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unknown and corrupted with anomaly events. Nevertheless, the issue is valid for 

both supervised anomaly detection – use of both labels to train a model-, and semi-

supervised anomaly detection – using only normal data to train a model. Our case is 

not exactly training data contaminated with anomalous BD samples but perhaps 

correlated with the inter-variability of HC subjects’ brain features. The hypothesis is 

that HC outliers are being taken into account as a normative sample when they 

should not be modeled in this way. Then, these outliers HC, which do not represent 

BD, contaminate the training set. During training, the AE is force to learn how to 

reconstruct HC in a too wide-variability range leading to the model generalizing too 

well, thus generalizing as well to BD patient, given the subtle differences it exists 

between the 2 groups at the neuroanatomy level. This leads to the reconstruction 

error between the two groups being less separable, which is the hypothesis we 

propose for the fact that our model reconstructs very well both HC and BD subjects. 

The problem that is posed with the latter argument is that defining an outlier in the 

HC population is rather problematic. HC that are more deviating from the normative 

range do not have a disorder necessarily. Eliminating all together these subjects 

would also bias the model, possibly leading it to label “anomalous” HC as 

disordered, which is unwanted. The authors of the aforementioned study proposed 

an Improved AE for Anomaly Detection (IAEAD) by proposing incorporating an 

SVDD loss into the AE instead of using the reconstruction loss as a strategy to spot 

anomalies. They argue that minimizing the reconstruction loss does not necessarily 

mean maximizing anomaly detection performance and with the SVDD loss the 

volume of a hypersphere that encloses the network representation of data can be 

minimized, leading to detecting anomalies based on the distance to the centroid of 

this hypersphere. Thus, their method detects anomalies in the feature space. There 

are other methods proposed in the literature that seem to improve separability 

between normal and anomaly data, such as including information that aids 

separability between samples in the training set or including sample labels for the 

same reason. Possibly, the Normative model could be modified to a supervised 

framework including labels to help improve the separability of data. In our case 

especially, since there is access to a lot of label data from both groups, it could be an 

advantage. An improvement to the loss function as proposed in [68] could also do 

the trick. Another possible method to be investigated is to analyze HC outliers before 

the training of the normative model. This could be done by employing an 

autoencoder method as proposed in [69] with an application example in [70] on T1-

weighted MRI data. Concluding, there are several proposed methods to improve a 

AE model for anomaly detection.  

• Harmonization with ComBat 
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Future development of this work, regarding the harmonization option, would be to 

use M-ComBat [55] variant to harmonize all data, which we have identified in this 

work as Ref_ComBat. This means choosing one center as the reference batch, perhaps 

the one with better quality or more updated acquisition protocols or sequences, in 

order to bring all the other centers, one by one, to the reference-batch level. With the 

latter approach, there would not be differences in the harmonization technique 

between test sets and external sets. It could be an advantage to eliminate this source 

of variation in the processing pipeline. The test set would be composed of several 

external sets, thus leading to evaluate the model solely in an external validation 

framework, which is by itself already more informative than using internal 

validation frameworks.  

• Regressing-out confounding effects 

For the biological covariates, although regressing out their effects is a common and 

standard procedure in literature, the risk of misspecification is a major drawback. 

Usually, linear regression is used due to its simplistic approach and easiness of 

application, however, the linear relationship assumption is not proven, and when it 

does not hold, data might be still confounded by some unwanted signals for which 

higher-order models would be necessary. In W. Pinaya et al. [57], the effects of the 

biological covariates, age, and sex were modeled within the AE model. The authors 

design a semi-supervised network architecture that would learn to reconstruct HC 

brain-feature data unsupervised and parallelly learn to predict age and sex for each 

subject, in a supervised framework. The AE loss function was modified to include 

two objectives regarding age and sex prediction, to guide the model to learn this 

information from neuroimaging data, and an extra term called XCov that guides the 

training to disentangle the age and sex signals encoded in the data from other latent 

features. The authors argue that with this framework the latent variables encoded by 

the AE are devoided of the biological covariates information. A detailed description 

of this semi-supervised framework is given by B.Cheung et al. [71]. The latter is an 

interesting method to deal with confounding effects without making assumptions 

about their relationship with features of interest and could be further investigated.  
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A. Appendix A 

• Desikan-Killiany Atlas Cortical Parcelations 

ID Abbreviation ROI Name Lobe 
2647065 'lbankssts' 

Banks superior temporal sulcus Temporal 
2647065 'rbankssts' 

10511485 'lcaudalanteriorcingulate' 
 Caudal anterior-cingulate cortex  Frontal 

10511485 'rcaudalanteriorcingulate' 

6500 'lcaudalmiddlefrontal' 
Caudal middle frontal gyrus Frontal 

6500 'rcaudalmiddlefrontal' 

3294840 'lcorpuscallosum' 
Corpus Callosum WM 

3294840 'rcorpuscallosum' 

6558940 'lcuneus' 
 Cuneus cortex  Occipital 

6558940 'rcuneus' 

660700 'lentorhinal' 
Entorhinal cortex  Temporal 

660700 'rentorhinal' 

9231540 'lfusiform' 
Fusiform gyrus Temporal 

9231540 'rfusiform' 

14433500 'linferiorparietal' 
Inferior parietal cortex  Parietal 

14433500 'rinferiorparietal' 

7874740 'linferiortemporal' 
 Inferior temporal gyrus  Temporal 

7874740 'rinferiortemporal' 

9180300 'listhmuscingulate' 
Isthmus – cingulate cortex  Parietal 

9180300 'risthmuscingulate' 

9182740 'llateraloccipital' 
Lateral occipital cortex  Occipital 

9182740 'rlateraloccipital' 

3296035 'llateralorbitofrontal' 
Lateral orbital frontal cortex  Frontal 

3296035 'rlateralorbitofrontal' 

9211105 'llingual' 
Lingual gyrus  Occipital 

9211105 'rlingual' 

4924360 'lmedialorbitofrontal' 
Medial orbital frontal cortex  Frontal 

4924360 'rmedialorbitofrontal' 

3302560 'lmiddletemporal' 
Middle temporal gyrus Temporal 

3302560 'rmiddletemporal' 



130 A. Appendix A 

 

  

3988500 'lparahippocampal' 
Parahippocampal gyrus  Temporal 

3988500 'rparahippocampal' 
3988540 'lparacentral' 

Paracentral lobule  Frontal 
3988540 'rparacentral' 

9221340 'lparsopercularis' 
Pars opercularis  Frontal 

9221340 'rparsopercularis' 
3302420 'lparsorbitalis' 

 Pars orbitalis  Frontal 
3302420 'rparsorbitalis' 

1326300 'lparstriangularis' 
Pars triangularis  Frontal 

1326300 'rparstriangularis' 

3957880 'lpericalcarine' 
Pericalcarine cortex  Occipital 

3957880 'rpericalcarine' 

1316060 'lpostcentral' 
Postcentral gyrus  Parietal 

1316060 'rpostcentral' 

14464220 'lposteriorcingulate' 
Posterior-cingulate cortex  Parietal 

14464220 'rposteriorcingulate' 

14423100 'lprecentral' 
Precentral gyrus  Frontal 

14423100 'rprecentral' 
11832480 'lprecuneus' 

Precuneus cortex Parietal 
11832480 'rprecuneus' 

9180240 'lrostralanteriorcingulate' 
Rostral anterior cingulate cortex Frontal 

9180240 'rrostralanteriorcingulate' 
8204875 'lrostralmiddlefrontal' 

Rostral middle frontal gyrus Frontal 
8204875 'rrostralmiddlefrontal' 

10542100 'lsuperiorfrontal' 
Superior frontal gyrus  Frontal 

10542100 'rsuperiorfrontal' 

9221140 'lsuperiorparietal' 
Superior parietal cortex  Parietal 

9221140 'rsuperiorparietal' 

14474380 'lsuperiortemporal' 
Superior temporal gyrus Temporal 

14474380 'rsuperiortemporal' 
1351760 'lsupramarginal' 

Supramarginal gyrus Parietal 
1351760 'rsupramarginal' 

6553700 'lfrontalpole' 
Frontal pole Frontal 

6553700 'rfrontalpole' 
11146310 'ltemporalpole' 

Temporal pole Temporal 
11146310 'rtemporalpole' 

13145750 'ltransversetemporal' 
Transverse temporal cortex Temporal 

13145750 'rtransversetemporal' 
2146559 'linsula' 

Insula Insula 
2146559 'rinsula' 
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• CoBra Atlas Regions for anatomical volumes estimation 

ID Abbreviation ROI Name 

0 lStriatum Left Striatum 
1 lGloPal Left Globus Pallidus 
2 lTha Left Thalamus  
3 lAntCerebLI_II Left Anterior Cerebellar Lobule I-II 

11 lAntCerebLIII Left Anterior Cerebellar Lobule III 
12 lAntCerebLIV Left Anterior Cerebellar Lobule IV 
13 lAntCerebLV Left Anterior Cerebellar Lobule V 
14 lSupPostCerebLVI Left Superior Posterior Cerebellar Lobule VI 
15 lSupPostCerebCI Left Superior Posterior Cerebellar Lobule Crus I 
16 lSupPostCerebCII Left Superior Posterior Cerebellar Lobule Crus II 
17 lSupPostCerebLVIIB Left Superior Posterior Cerebellar Lobule VIIB 
18 lInfPostCerebLVIIIA Left Inferior Posterior Cerebellar Lobule VIIIA 
19 lInfPostCerebLVIIIB Left Inferior Posterior Cerebellar Lobule VIIIB 
20 lInfPostCerebLIX Left Inferior Posterior Cerebellar Lobule IX 
21 lInfPostCerebLX Left Inferior Posterior Cerebellar Lobule X 
22 lAntCerebWM Left Cerebellar White Matter 
23 lAmy Left Amygdala 
26 lHCA1 Left Hippocampus CA1 
31 lSub Left Subiculum 
32 lFor Left Fornix 
33 lCA4 Left CA4/Dentate Gyrus 
34 lCA2_3 Left CA2/CA3 
35 lStratum Left Stratum Radiatum/Lacunosum/Moleculare 
36 lFimbra Left Fimbria 
37 lMamBody Left Mammillary body 
38 lAlveus Left Alveus 
39 rStriatum Right Striatum 

101 rGloPal Right Globus Pallidus 
102 rTha Right Thalamus  
103 rAntCerebLI_II Right Anterior Cerebellar Lobule I-II 
111 rAntCerebLIII Right Anterior Cerebellar Lobule III 
112 rAntCerebLIV Right Anterior Cerebellar Lobule IV 
113 rAntCerebLV Right Anterior Cerebellar Lobule V 
114 rSupPostCerebLVI Right Superior Posterior Cerebellar Lobule VI 
115 rSupPostCerebCI Right Superior Posterior Cerebellar Lobule Crus I 
116 rSupPostCerebCII Right Superior Posterior Cerebellar Lobule Crus II 
117 rSupPostCerebLVIIB Right Superior Posterior Cerebellar Lobule VIIB 
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118 rInfPostCerebLVIIIA Right Inferior Posterior Cerebellar Lobule VIIIA 
119 rInfPostCerebLVIIIB Right Inferior Posterior Cerebellar Lobule VIIIB 
120 rInfPostCerebLIX Right Inferior Posterior Cerebellar Lobule IX 
121 rInfPostCerebLX Right Inferior Posterior Cerebellar Lobule X 
122 rAntCerebWM Right Cerebellar White Matter 
123 rAmy Right Amygdala 
126 rHCA1 Right Hippocampus CA1 
131 rSub Right Subiculum 
132 rFor Right Fornix 
133 rCA4 Right CA4/Dentate Gyrus 
134 rCA2_3 Right CA2/CA3 
135 rStratum Right Stratum Radiatum/Lacunosum/Moleculare 
136 rFimbra Right Fimbria 
137 rMamBody Right Mammillary body 
138 rAlveus Right Alveus 

 

Results 

• Section 6.3: Linear Regression Estimations 

1)Linear Regressions for which T-test p_value for age is not significant 

-Cortical Thickness 

regions t_pvalue_age t_pvalue_sex F_pvalue R_square   
8 [lentorhinal] 0.38864 0.71480 0.66501 -0.00218 

9 [rentorhinal] 0.60388 0.35622 0.59904 -0.00180 

24 [lmedialorbitofrontal] 0.06379 0.55796 0.12993 0.00385 

28 [lparahippocampal] 0.42363 0.72837 0.65837 -0.00215 

29 [rparahippocampal] 0.54012 0.45176 0.65456 -0.00213 

61 [rfrontalpole] 0.11548 0.48517 0.25279 0.00139 

62 [ltemporalpole] 0.45692 0.02147 0.06314 0.00650 

63 [rtemporalpole] 0.66397 0.05887 0.16365 0.00300 

66 [linsula] 0.11404 0.35838 0.21776 0.00194 

-Volumetric measures 

  regions t_pvalue_age t_pvalue_sex t_pvalue_TIV F_pvalue R_square 

2 [lTha] 0.99906 0.00000 0.00000 0.00000 0.07046 

17 [lHCA1] 0.34310 0.07650 0.00000 0.00000 0.13363 
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18 [lSub] 0.97010 0.25252 0.00000 0.00000 0.15618 

19 [lFor] 0.26649 0.05550 0.16547 0.19866 0.00307 

20 [lCA4] 0.12245 0.06177 0.00000 0.00000 0.14019 

21 [lCA2_3] 0.37184 0.21419 0.00000 0.00000 0.06261 

22 [lStratum] 0.17010 0.43103 0.00000 0.00000 0.17025 

23 [lFimbra] 0.65436 0.35974 0.00543 0.02983 0.01098 

24 [lMamBody] 0.05387 0.00347 0.00007 0.00021 0.03022 

25 [lAlveus] 0.19918 0.69526 0.00000 0.00000 0.10157 

27 [rGloPal] 0.17158 0.22536 0.27566 0.02066 0.01245 

28 [rTha] 0.84167 0.00001 0.00000 0.00000 0.08415 

29 [rAntCerebLI_II] 0.05806 0.62897 0.00011 0.00000 0.05522 

42 [rAmy] 0.08770 0.31608 0.00000 0.00000 0.18621 

43 [rHCA1] 0.95260 0.02769 0.00000 0.00000 0.11219 

44 [rSub] 0.93086 0.05630 0.00000 0.00000 0.14618 

45 [rFor] 0.71614 0.08329 0.05553 0.22737 0.00248 

46 [rCA4] 0.35498 0.02973 0.00000 0.00000 0.16798 

47 [rCA2_3] 0.43310 0.11757 0.00000 0.00000 0.07336 

48 [rStratum] 0.83753 0.12255 0.00000 0.00000 0.17487 

49 [rFimbra] 0.25257 0.04047 0.00005 0.00045 0.02733 

50 [rMamBody] 0.14723 0.04740 0.00233 0.00989 0.01538 

51 [rAlveus] 0.60119 0.11199 0.00000 0.00000 0.11066 

 

2)Linear Regressions for which T-test p_value for sex is not significant 

-Cortical Thickness 

  regions t_pvalue_age t_pvalue_sex F_pvalue R_square 

2 [lcaudalanteriorcingulate] 0.01948 0.75710 0.06506 0.00639 

3 [rcaudalanteriorcingulate] 0.02545 0.13823 0.03859 0.00831 

4 [lcaudalmiddlefrontal] 0.00000 0.07256 0.00000 0.06140 

6 [lcuneus] 0.00001 0.98040 0.00004 0.03352 

7 [rcuneus] 0.00000 0.50837 0.00000 0.06218 

8 [lentorhinal] 0.38864 0.71480 0.66501 -0.00218 

9 [rentorhinal] 0.60388 0.35622 0.59904 -0.00180 
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10 [lfusiform] 0.00280 0.35902 0.00969 0.01336 

14 [linferiortemporal] 0.00331 0.59707 0.00917 0.01356 

15 [rinferiortemporal] 0.00013 0.21491 0.00047 0.02437 

17 [risthmuscingulate] 0.00096 0.55694 0.00417 0.01643 

19 [rlateraloccipital] 0.01335 0.07201 0.01476 0.01183 

21 [rlateralorbitofrontal] 0.00059 0.10432 0.00128 0.02073 

22 [llingual] 0.00004 0.07153 0.00009 0.03048 

23 [rlingual] 0.00000 0.56971 0.00000 0.04354 

24 [lmedialorbitofrontal] 0.06379 0.55796 0.12993 0.00385 

25 [rmedialorbitofrontal] 0.00009 0.39739 0.00021 0.02730 

26 [lmiddletemporal] 0.00001 0.10324 0.00004 0.03323 

27 [rmiddletemporal] 0.00000 0.18889 0.00000 0.04624 

28 [lparahippocampal] 0.42363 0.72837 0.65837 -0.00215 

29 [rparahippocampal] 0.54012 0.45176 0.65456 -0.00213 

30 [lparacentral] 0.00002 0.06781 0.00006 0.03194 

31 [rparacentral] 0.00000 0.15706 0.00000 0.07941 

32 [lparsopercularis] 0.00000 0.07348 0.00000 0.07296 

33 [rparsopercularis] 0.00000 0.17624 0.00000 0.05798 

36 [lparstriangularis] 0.00000 0.29262 0.00000 0.05883 

37 [rparstriangularis] 0.00000 0.08003 0.00000 0.06437 

38 [lpericalcarine] 0.00000 0.08511 0.00001 0.03696 

39 [rpericalcarine] 0.01474 0.08773 0.01832 0.01103 

40 [lpostcentral] 0.00000 0.06390 0.00000 0.07450 

41 [rpostcentral] 0.00000 0.08219 0.00000 0.07470 

43 [rposteriorcingulate] 0.00002 0.09360 0.00005 0.03266 

44 [lprecentral] 0.00000 0.11447 0.00000 0.05583 

46 [lprecuneus] 0.00000 0.29400 0.00000 0.05444 

47 [rprecuneus] 0.00000 0.45401 0.00000 0.08267 

48 [lrostralanteriorcingulate] 0.00021 0.82060 0.00084 0.02223 

49 [rrostralanteriorcingulate] 0.01985 0.85367 0.05976 0.00670 

50 [lrostralmiddlefrontal] 0.00000 0.10887 0.00000 0.07024 
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51 [rrostralmiddlefrontal] 0.00000 0.25287 0.00000 0.07192 

52 [lsuperiorfrontal] 0.00000 0.12700 0.00000 0.08273 

53 [rsuperiorfrontal] 0.00000 0.07319 0.00000 0.08999 

56 [lsuperiortemporal] 0.00000 0.30493 0.00000 0.04648 

57 [rsuperiortemporal] 0.00000 0.21610 0.00000 0.04084 

58 [lsupramarginal] 0.00000 0.05571 0.00000 0.07771 

59 [rsupramarginal] 0.00000 0.15719 0.00000 0.07199 

60 [lfrontalpole] 0.00004 0.81297 0.00021 0.02720 

61 [rfrontalpole] 0.11548 0.48517 0.25279 0.00139 

63 [rtemporalpole] 0.66397 0.05887 0.16365 0.00300 

64 [ltransversetemporal] 0.00017 0.83627 0.00084 0.02226 

65 [rtransversetemporal] 0.00002 0.54351 0.00005 0.03228 

66 [linsula] 0.11404 0.35838 0.21776 0.00194 

67 [rinsula] 0.04626 0.48201 0.12230 0.00407 

      

-Volumetric Measures 

 regions t_pvalue_age t_pvalue_sex t_pvalue_TIV F_pvalue R_square 

0 [lStriatum] 0.00000 0.33632 0.00000 0.00000 0.16151 

1 [lGloPal] 0.03322 0.05412 0.54572 0.00172 0.02218 

3 [lAntCerebLI_II] 0.03540 0.89398 0.00533 0.00026 0.02935 

4 [lAntCerebLIII] 0.00035 0.27750 0.00001 0.00000 0.09928 

5 [lAntCerebLIV] 0.00116 0.18719 0.00055 0.00000 0.07438 

6 [lAntCerebLV] 0.00038 0.78892 0.00000 0.00000 0.12936 

7 [lSupPostCerebLVI] 0.00007 0.98186 0.00000 0.00000 0.12627 

8 [lSupPostCerebCI] 0.00001 0.53256 0.00000 0.00000 0.10905 

9 [lSupPostCerebCII] 0.00066 0.64579 0.00003 0.00000 0.07842 

10 [lSupPostCerebLVIIB] 0.00219 0.39249 0.00000 0.00000 0.06410 

11 [lInfPostCerebLVIIIA] 0.00020 0.47065 0.00000 0.00000 0.07549 

12 [lInfPostCerebLVIIIB] 0.00013 0.76046 0.00001 0.00000 0.08806 

13 [lInfPostCerebLIX] 0.00212 0.92950 0.00060 0.00000 0.04841 

14 [lInfPostCerebLX] 0.03519 0.82050 0.00021 0.00001 0.04265 

15 [lAntCerebWM] 0.00430 0.20660 0.00371 0.00000 0.05619 

16 [lAmy] 0.01067 0.89119 0.00000 0.00000 0.18984 
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17 [lHCA1] 0.34310 0.07650 0.00000 0.00000 0.13363 

18 [lSub] 0.97010 0.25252 0.00000 0.00000 0.15618 

19 [lFor] 0.26649 0.05550 0.16547 0.19866 0.00307 

20 [lCA4] 0.12245 0.06177 0.00000 0.00000 0.14019 

21 [lCA2_3] 0.37184 0.21419 0.00000 0.00000 0.06261 

22 [lStratum] 0.17010 0.43103 0.00000 0.00000 0.17025 

23 [lFimbra] 0.65436 0.35974 0.00543 0.02983 0.01098 

25 [lAlveus] 0.19918 0.69526 0.00000 0.00000 0.10157 

26 [rStriatum] 0.00000 0.34789 0.00000 0.00000 0.17545 

27 [rGloPal] 0.17158 0.22536 0.27566 0.02066 0.01245 

29 [rAntCerebLI_II] 0.05806 0.62897 0.00011 0.00000 0.05522 

30 [rAntCerebLIII] 0.00032 0.38989 0.00003 0.00000 0.08697 

31 [rAntCerebLIV] 0.00109 0.37242 0.00003 0.00000 0.08329 

32 [rAntCerebLV] 0.00010 0.30032 0.00000 0.00000 0.13963 

33 [rSupPostCerebLVI] 0.00001 0.63251 0.00000 0.00000 0.12782 

34 [rSupPostCerebCI] 0.00000 0.86117 0.00000 0.00000 0.11023 

35 [rSupPostCerebCII] 0.00830 0.98475 0.00000 0.00000 0.07550 

36 [rSupPostCerebLVIIB] 0.01054 0.81302 0.00000 0.00000 0.07394 

37 [rInfPostCerebLVIIIA] 0.00043 0.76228 0.00000 0.00000 0.08563 

38 [rInfPostCerebLVIIIB] 0.00022 0.96792 0.00002 0.00000 0.07524 

39 [rInfPostCerebLIX] 0.00214 0.55281 0.00319 0.00000 0.04842 

40 [rInfPostCerebLX] 0.00292 0.55313 0.00001 0.00000 0.06335 

41 [rAntCerebWM] 0.01837 0.08518 0.00397 0.00000 0.05943 

42 [rAmy] 0.08770 0.31608 0.00000 0.00000 0.18621 

44 [rSub] 0.93086 0.05630 0.00000 0.00000 0.14618 

45 [rFor] 0.71614 0.08329 0.05553 0.22737 0.00248 

47 [rCA2_3] 0.43310 0.11757 0.00000 0.00000 0.07336 

48 [rStratum] 0.83753 0.12255 0.00000 0.00000 0.17487 

51 [rAlveus] 0.60119 0.11199 0.00000 0.00000 0.11066 

 

3)Linear Regressions for which t_p_value of TIV is not significant 

-Volumetric Measures 

  
         

regions 
t_pvalue_age t_pvalue_sex t_pvalue_TIV F_pvalue R_square 

1 [lGloPal] 0.03322 0.05412 0.54572 0.00172 0.02218 

19 [lFor] 0.26649 0.05550 0.16547 0.19866 0.00307 
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27 [rGloPal] 0.17158 0.22536 0.27566 0.02066 0.01245 

45 [rFor] 0.71614 0.08329 0.05553 0.22737 0.00248 
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a)20th HC subject Reconstruction. 

 

b)56th BD patient Reconstruction. 
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• Section 6.5: Normative Model Results 

BD Abnormal Brain Regions (all processing pipelines) 

-Pipeline 1 

ID  regions Stat. p-value 

1 [rbankssts] 16459.0 0.045991 

4 [lcaudalmiddlefrontal] 16547.0 0.039140 

12 [linferiorparietal] 16647.0 0.032389 

20 [llateralorbitofrontal] 16578.0 0.036935 

25 [rmedialorbitofrontal] 17694.0 0.003002 

39 [rpericalcarine] 16544.0 0.039359 

43 [rposteriorcingulate] 16963.0 0.017059 

62 [ltemporalpole] 17247.0 0.009064 

65 [rtransversetemporal] 16570.0 0.037494 

68 [lStriatum] 18478.0 0.000311 

70 [lTha] 16981.0 0.016415 

85 [lHCA1] 17145.0 0.011445 

90 [lStratum] 16967.0 0.016914 

95 [rGloPal] 16473.0 0.044841 

100 [rAntCerebLV] 16959.0 0.017206 

101 [rSupPostCerebLVI] 16523.0 0.040921 

105 [rInfPostCerebLVIIIA] 17535.0 0.004517 

109 [rAntCerebWM] 16691.0 0.029739 

115 [rCA2_3] 17526.0 0.004620 

117 [rFimbra] 16499.0 0.042766 

 

-Pipeline 2 

ID regions Stat.         p-

value 
4 [lcaudalmiddlefrontal] 16667.0 0.031161 

39 [rpericalcarine] 16879.0 0.020359 

43 [rposteriorcingulate] 18434.0 0.000357 
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46 [lprecuneus] 16431.0 0.048362 

60 [lfrontalpole] 17187.0 0.010406 

68 [lStriatum] 18365.0 0.000442 

70 [lTha] 16679.0 0.030443 

84 [lAmy] 16883.0 0.020190 

85 [lHCA1] 17307.0 0.007876 

90 [lStratum] 17004.0 0.015622 

100 [rAntCerebLV] 16693.0 0.029623 

105 [rInfPostCerebLVIIIA] 17120.0 0.012106 

112 [rSub] 16662.0 0.031465 

-Pipeline 3 

ID regions stats p-value 

33 [rparsopercularis] 12398.0 0.035298 

53 [rsuperiorfrontal] 11678.0 0.007601 

56 [lsuperiortemporal] 12395.0 0.035097 

102 [rSupPostCerebCI] 12021.0 0.016486 

 

-Pipeline 4 

ID Regions Stat.  p-value 

1 [rbankssts] 17207.0 0.009940 

10 [lfusiform] 17130.0 0.011838 

28 [lparahippocampal] 16540.0 0.039653 

31 [rparacentral] 16761.0 0.025895 

43 [rposteriorcingulate] 17097.0 0.012743 

54 [lsuperiorparietal] 16452.0 0.046575 

70 [lTha] 16439.0 0.047675 

72 [lAntCerebLIII] 16905.0 0.019284 

92 [lMamBody] 16641.0 0.032765 

95 [rGloPal] 17099.0 0.012687 
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Conclusions 

• Best discriminative model – 2.2 

Although the best model was found through a hyperparameter tuning, the 

hyperparameter combination trials were divided into several steps, thus leading to 

the testing of several models which until a certain point were considered the “best” 

model. The model results presented in the following section yield the best 

generalizability performance in the external set, using pipeline 5.  

Model: hyperparameter combination from trial 2.2 

Layer 1,3: 100 Layer 2: 80 L2: 0.0001 Lr: 0.001 

I. Training 

 

Epochs 
Train 

Loss 

Train 

MSE 

Test 

Loss 

Test 

MSE 

536 0.0455 0.0331 0.0949 0.0825 

 

II. Testing  

  

Overlapping Distributions and AUC-ROC on test set. 

III. Feature Selection 

 Regions Statistic p-value 

30 lparacentral 17099 0.0127 

64 ltransversetemporal 16433 0.0482 

70 lTha 17637 0.0035 
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71 lAntCerebLI_II 17308 0.0078 

83 lAntCerebWM 16473 0.0448 

85 lHCA1 17087 0.0130 

95 rGloPal 17245 0.0091 

105 rInfPostCerebLVIIIA 16911 0.0190 

113 rFor 16517 0.0414 

 

 

AUC-ROC curve on test set with feature subset 

IV. Classification 

  

  

Results on external set. AUC-ROC curve (righ) on feature subset. 
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