

A Motivational Assistant in

the ActiveUP System for

Frailty Prevention in Older

Adults

TESI DI LAUREA MAGISTRALE IN

COMPUTER SCIENCE ENGINEERING – INGEGNERIA

INFORMATICA

Author: Luca Leoni

Student ID: 963082

Advisor: Prof.ssa Franca Garzotto

Academic Year: 2021-22

 i

Abstract

The percentage of the elderly population is increasing. Consequently, living a healthy

aging is one of the great challenges of the current century. Societies that adapt to this

demographic change and invest in healthy aging can enable people to live longer and

healthier lives [1].

More and more older people are in need of care. However, the number of potential

caregivers is not satisfactory for the current demand.

Frailty is a clinically recognizable state of increased vulnerability resulting from

deterioration associated with aging [2].

To ensure autonomy and a higher quality of life, it is essential to prevent the

progression of frailty.

As people age, certain physiological and cognitive changes are almost inevitable. And

while many people over 60 have been surrounded by technology for most of their

adult lives, there is a need to compensate for these physiological and cognitive

changes.

However, some older adults are not as comfortable or familiar with technology in

general, or with more specific things like mobile devices. They need incentives to

participate.

The goal of this master's thesis is to implement a motivational assistance component

to be integrated into the ActiveUP project, a national initiative created to counteract

frailty with the help of tailored exercise plans for older adults. The purpose of

providing project participants with additional motivational assistance is to prevent

non-adherence to exercise plans. Indeed, even if the user is aware of the benefits of

exercising, maintaining regularity is the biggest challenge of intervention plans for

older people.

The work is based on "Application of Motivational Traits, Motivational State and Stage of

Change Modelling for Frailty Prevention in Older Adults" by Natalia Sokól [3]. Sokól

created a first prototype of a motivational assistance software that uses information

about older patients' motivational traits, their level of motivation (motivational state)

and their degree of internalization of the daily exercise habit (stage of change) to adjust

the user interface and initiate personalized interactions.

This paper presents new advances in the design and implementation of the

Motivational Assistant to support older adults during their training program. The

ii

work began with an analysis of the component developed so far and identification of

code-related problems. Also, the document describes improvements in the ActiveUP

system, such as the migration to the new server and to a brand new Android

application. Then, it provides a detailed description of the design of new features as

well as the implementation. In particular, the document describes the Leader board,

the Challenges, the User statistics, and the Alerts’ mechanism Finally, the manuscript

reports the usability evaluation performed by an expert in the matter.

Key-words: usability, older adults, accessibility, exercise, frailty.

 iii

Abstract in italiano

La percentuale di popolazione anziana è in aumento. Di conseguenza, vivere un

invecchiamento sano è una delle grandi sfide del secolo attuale. Le società che si

adattano a questo cambiamento demografico e investono in un invecchiamento sano

possono consentire alle persone di vivere più a lungo e in salute [1].

Sempre più anziani hanno bisogno di assistenza. Tuttavia, il numero di potenziali

assistenti non è soddisfacente per l'attuale domanda.

La fragilità è uno stato clinicamente riconoscibile di maggiore vulnerabilità derivante

dal deterioramento associato all'invecchiamento [2].

Per garantire l'autonomia e una maggiore qualità di vita, è essenziale prevenire la

progressione della fragilità.

Con l'invecchiamento, alcuni cambiamenti fisiologici e cognitivi sono quasi inevitabili.

Sebbene molti ultrasessantenni siano stati circondati dalla tecnologia per la maggior

parte della loro vita adulta, è necessario compensare questi cambiamenti fisiologici e

cognitivi.

Tuttavia, alcuni anziani non si sentono a proprio agio o non hanno familiarità con la

tecnologia in generale, o con cose più specifiche come i dispositivi mobili. Hanno

bisogno di incentivi per partecipare.

L'obiettivo di questa tesi di master è quello di implementare una componente di

assistenza motivazionale da integrare nel progetto ActiveUP, un'iniziativa nazionale

creata per contrastare la fragilità con l'aiuto di piani di esercizio su misura per gli

anziani. Lo scopo di fornire ai partecipanti al progetto un'assistenza motivazionale

aggiuntiva è quello di prevenire la mancata aderenza ai piani di esercizio. Infatti, anche

se l'utente è consapevole dei benefici dell'esercizio fisico, il mantenimento della

regolarità è la sfida più grande dei piani di intervento per gli anziani.

Il lavoro si basa su "Application of Motivational Traits, Motivational State and Stage of

Change Modelling for Frailty Prevention in Older Adults" di Natalia Sokól [3]. Sokól ha

creato un primo prototipo di software di assistenza motivazionale che utilizza

informazioni sui tratti motivazionali dei pazienti anziani, sul loro livello di

motivazione (stato motivazionale) e sul loro grado di interiorizzazione dell'abitudine

all'esercizio quotidiano (stadio di cambiamento) per regolare l'interfaccia utente e

avviare interazioni personalizzate.

iv

Questo articolo presenta i nuovi progressi nella progettazione e nell'implementazione

dell'Assistente Motivazionale per supportare gli anziani durante il loro programma di

allenamento. Il lavoro è iniziato con un'analisi del componente sviluppato finora e con

l'identificazione dei problemi legati al codice. Inoltre, il documento descrive i

miglioramenti apportati al sistema ActiveUP, come la migrazione al nuovo server e a

una nuova applicazione Android. Fornisce poi una descrizione dettagliata della

progettazione di nuove funzionalità e della loro implementazione. In particolare, il

documento descrive la classifica, le sfide, le statistiche degli utenti e il meccanismo

delle notifiche.

Parole chiave: usability, older adults, accessibility, exercise, frailty.

 vii

Contents

1 Introduction ... 1

1.1. Context .. 1

1.2. Thesis objectives .. 1

1.3. Structure of the document ... 2

2 Theoretical Foundations ... 3

2.1. User-centered design .. 3

2.2. Design for older adults ... 5

2.3. Vivifrail ... 6

2.4. Positive .. 7

2.5. ActiveUP ... 9

2.6. Motivation .. 10

3 Antecedents ... 13

3.1. POSITIVE architecture.. 13

3.2. POSITIVE Patient app .. 13

3.3. POSITIVE server .. 15

3.4. Initial state of the Motivational Assistant .. 17

4 Problem Statement ... 23

4.1. Criticisms .. 23

4.2. Objectives ... 24

5 Migration of the server .. 27

5.1. New server in Python with FastAPI ... 27

5.2. Periodic Jobs ... 31

5.2.1. Cron ... 31

6 Migration to the new Android application ... 33

6.1. My Exercises section ... 34

6.2. My Nutrition section... 36

6.3. My Advice section ... 36

7 Development of the new features ... 39

7.1. Leader board .. 39

viii | Contents

7.1.1. Description ... 39

7.1.2. Low fidelity design ... 40

7.1.3. Implementation ... 41

7.1.4. Final User Interfaces ... 44

7.2. Challenges .. 47

7.2.1. Description ... 47

7.2.2. Low fidelity design ... 48

7.2.3. Implementation ... 50

7.2.4. Final User Interfaces ... 55

7.3. User Statistics ... 58

7.3.1. Description ... 58

7.3.2. Low fidelity design ... 59

7.3.3. Implementation ... 59

7.3.4. Final User Interfaces ... 61

7.4. Alerts ... 63

7.4.1. Description ... 63

7.4.2. Low fidelity design ... 64

7.4.3. Implementation ... 65

7.4.4. Final User Interfaces ... 72

7.4.5. Communication from the Motivational Assistant 74

7.5. Further Changes .. 82

8 Cognitive Walkthrough .. 85

8.1. First connection of the user .. 85

8.2. Changes in the leader board .. 94

8.3. New challenge and achievement of it .. 97

9 Conclusion and Future Work ... 109

9.1. Conclusion .. 109

9.2. Future work .. 109

Bibliography ... 111

A Appendix A.. 115

A.1. SQL queries to retrieve the leader board ... 115

A.2. Code to compute changes in the leader board 116

A.2.1. leaderboard.js ... 116

B Appendix B .. 123

B.1. Code to handle the Challenges feature .. 123

B.1.1. check_status_challenges.js ... 123

| Contents ix

B.1.2. manejador_challenges_to_be_notified.js ... 135

List of Figures ... 141

List of Tables .. 145

Acknowledgments ... 147

 1

1 Introduction

1.1. Context

The global number of people aged 60+ years is continuously increasing. In 2019, the

number of people aged 60+ years was 1 billion. This value is estimated to rise to 1.4

billion by 2030 and 2.1 billion by 2050. This increase is occurring at an unprecedented

pace and will accelerate in the coming decades [1].

An increased number of seniors means coping with several different situations.

Indeed, there is no prototype for older people. Some 80-year-olds have physical and

mental capacities similar to many 30-year-olds. On the other hand, other people

experience significant declines in abilities and need assistance. This condition turns on

frailty.

Frailty is a clinically recognizable state of increased vulnerability resulting from an

ageing-associated decline in reserve and function across multiple physiologic systems

as the ability to cope with everyday life. Identified signals are low grip strength, low

energy, slowed walking speed, and low physical activity [2].

Preventing the progression of frailty is crucial to guarantee autonomy and a better

quality of life.

In Europe, several projects are currently on to ensure the prevention of frailty.

Started in June 2020, the ActiveUP project aspires to implement a personalized

assistance framework that promotes active ageing activities for the elderly.

Unfortunately, the adherence rate to exercise programs observed in previous projects

is lower than expected. For this reason, the researchers think involving motivation may

be the correct technique to prevent treatment abandonment.

1.2. Thesis objectives

The objectives of this thesis are directly related to the progress of the national ActiveUP

project. Following the piloting phase of POSITIVE and the usability evaluation of the

ActiveUP application, changes and improvements had to be made in order to correct

the flaws identified. The chosen approach was to create a new Android application for

patients to integrate the Vivifrail program into.

2 | Introduction

Also, during the POSITIVE project cycle, the team noticed how the server in NodeJS

had drawbacks in terms of concurrency and reliability. For this reason, it was decided

to migrate to a new server in Python, based on the FastAPI framework.

Finally, as researched by Fernández-Avilés Pedraza [4], Zorzenon [5], and Sokól [3],

involving motivation in the exercise plan can prove to be the trump card for increased

adherence. To achieve this, building on Sokól's work [3], the thesis proposes a

refactoring of the component developed so far. In addition, to incorporate features

mentioned by Sokól [3], the design and implementation of the motivational assistant

able to adapt itself according to the motivational traits of the patients are described. In

particular, the incorporated features are the Leader board, the Challenges, the User

statistics, and the Alerts mechanism.

1.3. Structure of the document

The Master Thesis consists of ten chapters.

The first one explains the context in which the work is carried out. Chapter 2

introduces some theoretical backgrounds and the works already done in this field.

Chapter 3 provides an overview of the system at the time the development of this

motivational assistant component began. The fourth chapter describes the problems

encountered and presents the thesis objectives. The migration to the new server, with

all the details, is covered in Chapter 5. Chapter 6 explains the migration to the new

version of the android application for patients. Chapter 7 describes in-depth the new

features of the motivational assistant. A Cognitive Walkthrough is described in

Chapter 8. Finally, conclusions and future works are explained in the ninth chapter.

Chapter 10 contains the references of all the consulted manuscripts.

 3

2 Theoretical Foundations

2.1. User-centered design

With the term User-Centered Design (UCD), we refer to a collection of techniques that

place consumers at the center of product development and design. Nowadays, it is

imperative to understand our users, their routines, and their requirements to

continuously design and implement with these elements in mind.

The UCD acknowledges that any innovation must begin with a user understanding.

The basic idea of user-centered design is that the end user's needs, abilities, and desires

drive the design at every step of the process. From the beginning of the software life

cycle, user scenarios, personas, and requirements are produced, assessed, and

evaluated.

UCD is frequently used interchangeably with human-centered design. User-centered

design necessitates a more in-depth examination of users and your target audience.

UCD considers age, gender, social position, education, and professional background,

influencing factors, product usage expectations and needs, and other characteristics

that may differ for various segments.

Human-computer interaction user-centered design techniques allow us to understand

our users and their patterns and requirements to design iteratively with these features

in mind and then evaluate the design's usability and influence on daily routines,

behaviors, and activities [6].

▪ The design process relies on the knowledge of people, tasks, and surroundings.

▪ Users are involved in the design and development process from start to finish.

▪ User-centered assessment drives and modifies design.

▪ The procedure is iterative.

▪ The design regards the entire user experience.

▪ The design team consists of individuals with diverse talents and perspectives.

UCD is an interconnected set of circles encompassing eight indicators. The user joins

a circle comprising "Context, Objectives, Environment, and Goals" and a layer

representing "Task Detail, Task Content, Task Organization, and Task Flow." (Figure

2.1).

4 | Theoretical Foundations

Figure 2.1: User-centered design definition

According to [7], the UCD is founded on three core ideas:

• Early focus on users and tasks: The user should be involved starting from the

product's origin. The earlier the user gets involved, the less maintenance work is

required at the end of the life cycle.

• Product usage metrics based on empirical data: The emphasis here is on

conventional usability: simplicity of learning and effective, error-free operation

through prototype usability testing.

• Iterative design: The product should be created, changed, and tested regularly.

The goal behind the iterative design is to fail early; changing the user interface of an

early prototype is considerably easier than changing the user interface of a deployed

system.

The objective of User-Centered Design is to create usable products. According to [8],

there are four general phases of the User-Centered Design process, as presented in

Figure 2.2:

▪ Understand and specify the context of use: Establish who the product's

consumers will be, why they will use it, what their requirements will be, and

the context they will use it.

▪ Specify the user and organization requirements: At each step of UCD, product

designers conduct usability testing to gather input from consumers on the

product.

| Theoretical Foundations 5

▪ Produce design solutions: Begin an iterative process based on product goals and

requirements.

▪ Evaluate design against requirements: Check if the proposed solution matches

the specifications. If yes, the process ends. Otherwise, some modifications are

needed.

Figure 2.2: User-centered design process

2.2. Design for older adults

The user target of the ActiveUP project is older adults. This term refers to people aged

over 65. When dealing with technology, this segment proved to be weak. According

to [9], older adults face several unique barriers and challenges when it comes to

adopting new technologies. These include physical challenges to using them, skeptical

attitudes about the benefits, and difficulties learning to use new apparatus. Nielsen

heuristics [6] were not enough to overcome these obstacles. The framework adopted

in this work was based on the “Heuristics established by a systematic review of guidelines

to design mobile technology for older adults”) [10]. Since this Master Thesis is about the

implementation and integration of a component and not a new application, not all the

heuristics are applicable. The ones considered during the whole process are the

following:

Table 2.1: Usability Heuristics for Older Adults [10]

UHOA1 Heuristic

4 Simplify the navigation, reduce the number of alternatives, and

maintain the focus on the current action.

1 Acronymous for Usability Heuristics for Older Adults

6 | Theoretical Foundations

5 Provide back and exit buttons as a safe exit.

10 Reduce the number of available elements, options, and actions on the

screen.

11 Use icons that are concrete and familiar images.

12 Add labels to icons.

13 Use semantically close icons.

14 Clearly show which elements are touchable.

15 Provide high contrast between foreground and background color.

16 Use simple, familiar, and unambiguous language. Don’t rely on the

user to remember information.

17 Don’t assume familiarity with conventional symbols as “?”, “+”, “→”.

19 Maintain instructions and messages short.

20 Favor control tapping over gesture interaction.

23 Increase the distance between interactive controls.

26 Show clear feedback after control tapping, subtle feedback might not

be noticed.

2.3. Vivifrail

The Vivifrail project [11] is an exercise promotion program, an international

benchmark for community and hospital-based interventions aimed at preventing

frailty and falls in the elderly.

The entire project is based on the idea that health in the elderly should be measured in

terms of functionality and not as a disease that determines life expectancy, quality of

life, and the resources or supports each population needs. The goal is to maintain the

level of functionality that preserves as much independence as possible in each case.

The evidence based Vivifrail application allows health care providers to classify older

people according to their risk of loss of functional capacity, dependency, and risk of

falls. The assessment consists of the Short Physical Performance Battery (SPPB or

Guralnik test), the 6-meter walk speed test, the get-up and go test, and the fall risk

assessment.

| Theoretical Foundations 7

The SPPB is a test in which the participant is asked to perform three tasks. First, the

Balance Test in three different positions (feet together, semi-tandem, and tandem).

Next, the Walking Speed Test and the Chair Stand Test are performed.

One of the most widely used assessments to examine movement-related physical

function involves measuring the time it takes to walk 6 meters at the patient's usual

speed. Finally, the Get-up and Go Test combines the assessment of aspects related to

strength, balance, and walking and is considered a good test to assess the risk of falling

in a frail elderly person.

Once the participant is assessed, the algorithm proposes a tailored multicomponent

physical training program. The training program consists of a series of exercises that

allow, depending on the level of functional capacity (i.e., severe limitation, moderate

limitation, and mild limitation), to develop arm and leg muscle strengthening, balance

retraining, and flexibility. By following these simple programs, an elderly participant

can improve functional capacity and avoid frailty syndrome and the risk of falls.

Depending on the elderly person's level of functional ability (severe limitation,

moderate limitation, and mild limitation) and fall risk, up to six different types of

exercise programs can be assigned:

▪ A: Disability (elderly person who cannot get up from a chair or bed),

▪ B and B+: Frailty (an elderly person who can walk with difficulty or with help),

▪ C and C+: Pre-fragility (an elderly person who has slight difficulty walking and

also has difficulty getting up or maintaining balance), and

▪ D: Robust (older adult with minimal physical limitations).

To be effective, the program must be followed for 12 weeks. During this period, the

participant should see the first signs of improvement. After the 12 weeks, the initial

assessment tests should be repeated, and a new tailored program should be assigned.

Ideally, the participant should end the program in a healthier state regardless of the

assigned program.

According to [12], the key factor is consistency in exercise. This is a critical aspect of

Vivifrail, as lack of adherence to exercise plans tends to be high in older adults.

2.4. Positive

POSITIVE [13] is a project that integrates the Vivifrail exercise set in a comprehensive

system to bring care home by constantly monitoring a patient’s intrinsic capacity and

sounding an alarm when a decline in that capacity may indicate the onset of a disease

or disability. The system unites a person’s full community of caregivers, bringing

together the patient, caregiver, and primary and specialized care professionals (Figure

2.3).

8 | Theoretical Foundations

Figure 2.3: POSITIVE conceptual map

POSITIVE was led by SERMAS, through its EIP-AHA reference site (Getafe University

Hospital). All partners involved are among the leading institutions in the relevant

segments in their countries. They also represent a broad range of European locations:

UPM and ATOS in Spain, Karolinska Institut in Sweden, and the Medical University

of Lodz in Poland.

Using remote monitoring of a person’s intrinsic capacity, POSITIVE provides a

technological infrastructure to enable a new organizational model for elderly care that

involves all the relevant actors: patient, caregiver, and primary and specialized care.

Patients are assessed constantly, and as needed, a tailored physical activity program is

automatically prescribed to maintain or improve their condition. Caregivers are aware

of any decline and can check whether the senior being monitored is alright at any given

time. Primary care professionals can process alarms related to dangerous declines of

intrinsic capacity and adjust treatments accordingly, with the assistance of a decision

support system. As the remote system keeps them in regular contact, primary

caregivers can involve specialized care if needed.

The pilot phase lasted 6 months. According to the findings of this experiment, most of

the participants were not using the application on their own, some faced difficulties

with the user interfaces and some did not see the advantages of the system.

| Theoretical Foundations 9

2.5. ActiveUP

The R&D national project ActiveUP starts from the previous POSITIVE project. The

findings of the pilot phase in POSITIVE suggested possible improvements to the

system.

The goal of ActiveUP is to provide an unobtrusive and personalized system for

assessing and managing frailty, promoting active ageing, and preventing dependency

on the elderly.

The design and deployment of a customized software support system particularly

targeted at senior users are part of ActiveUP. This framework should be able to

construct a user model that includes important personal attributes and psychological

qualities, infers motivational state from observed behavior, and determines the present

stage of change. Based on this model, the system will suggest appropriate therapeutic

intervention adjustments while also providing appropriate motivational and

empowerment support. The ultimate aims of individualized support are to reduce

treatment desertion, increase older adult empowerment to prevent frailty, and

therefore promote a healthier ageing process.

The ActiveUP ecosystem (see Figure 2.4) is designed as an Internet of Things (IoT)

infrastructure to evaluate frailty and functional capacity without interfering with daily

life and with the least amount of pain to the person.

Figure 2.4: ActiveUP ecosystem

The ActiveUP system consists of a wearable sensor (IMU), central node (Raspberry Pi),

Cloud Server and APP for Tablet (Patients APP).

10 | Theoretical Foundations

The Raspberry Pi acts as a central node for the system at the patient's house. The

wearable sensor is connected to it via WiFi.

This central node has a service running in Python inside a Docker container that

establishes the connection between the sensors and the Raspberry Pi via FTP and

MQTT protocol which is a standard for IoT communications. The Raspberry Pi acts as

a broker and the sensor as a client. Also this service is responsible for collecting the

data sent from the sensors and saving it into a ORACLE database.

The cloud server is developed using Python, more specifically FastAPI which is a

standard-based framework that lets us build fast, intuitive and robust APIs easily. It is

also one of the fastest Python frameworks to build APIs.

During the course of the ActiveUP project, some improvements were made, and some

adjustments were implemented to the POSITIVE system.

The figure of health care professionals is not in the scope of ActiveUP because of

budget constraints. For this reason, starting from the POSITIVE application for

patients, the possibility to send messages to doctors is not available anymore. So, the

focus is on patients, and the mobile applications for caregivers and care professionals

are now discontinued.

2.6. Motivation

As stated in his work [12], adherence to the exercise plan is crucial. Lack of training

will influence patients' outcomes and consequently their quality of life.

Motivation, the need, desire, or willingness to do something to achieve the desired

outcome, plays a significant role in the adherence to any type of exercise activity or

program [14].

Accordingly, an individual’s motivation to engage in exercise may be influenced

positively or negatively by internal factors (e.g., knowledge of exercise benefits) and

by external factors (e.g., support of others). Exercise self-efficacy, the confidence a

person has in their ability to develop and meet physical or cognitive exercise goals, is

also key to exercise motivation.

While older adults acknowledge theoretical awareness of exercise benefits and express

a desire to adopt exercise regimes, their intentions often fail. Multiple motivational

barriers have the potential to interfere with their ability to successfully engage in

exercise programs. Documented motivational barriers to initiation of physical or

cognitive exercise include an individual’s decreased insight into their own need to

exercise, absence of exercise goals, and absence of specific information regarding what

would constitute a beneficial exercise program [15] [16] [17].

| Theoretical Foundations 11

In recent years, some students have looked in depth at the topic of motivation as

applied to older people and how it can play a decisive role in adherence to exercise

programs.

Daniel Fernández-Avilés Pedraza, in his doctoral thesis, proposed an ontology and

architecture for motivational systems. He explained that combining motivation and

technology could bring a higher adoption rate and better user experience for these

applications. Identifying a person with specific motivational traits will allow

understanding the behavior related to a specific challenge and taking action to prevent

undesired conduct.

Luca Zorzenon, starting from the PhD manuscript [4], designed and implemented a

new gamified test for the motivational traits assessment in the elderly. The game aims

at extracting the user's motivational profile. This information will be consequently

used to personalize and customize the ActiveUP application for patients.

Finally, Natalia Sokól set the foundations of the motivational assistant to be integrated

into the ActiveUP application for patients. A detailed explanation of this component

will be provided in the section Initial state of the Motivational Assistant.

 13

3 Antecedents

The chapter aims at explaining the original architecture of the POSITIVE system, as

well as the database and the so-far implemented motivational assistant component.

3.1. POSITIVE architecture

The original POSITIVE architecture (Figure 3.1) included a cloud server for data

storage, measurement sensors, and a number of applications, including:

▪ Patient Mobile App: mobile application the patient uses at their home.

▪ Professionals Mobile App: mobile application used in the hospital by health

professionals to check on the patients.

▪ Caregiver Web App: web application used by the caregiver to review the

patient's evolution.

A weight scale, a chair stand sensor, and a gait speed sensor are among the Bluetooth

measuring devices, directly connected to the Patient Mobile App.

Figure 3.1: POSITIVE Architecture

3.2. POSITIVE Patient app

The POSITIVE application for patients is a tablet-based software. It counts several

services:

▪ Perform chair stand, gait speed, and weight scale tests, using Bluetooth devices.

14 | Antecedents

▪ Answer to questionnaires.

▪ Check the results of already performed tests.

▪ Support the performance of the Vivifrail exercises.

▪ Watch videos about nutrition.

▪ Read the manuscript of the assigned Vivifrail plan.

▪ Send messages to health care professionals.

The communication between the patient application and the server relies on the

Internet connection. In order to avoid loss of data, all the data are temporarily stored

in Shared Preferences, and uploaded to the server once the connection is stable. Shared

Preferences is an interface for accessing and modifying data. This class provides strong

consistency guarantees and for this reason it is used for storing data that can be

accessed frequently.

Figure 3.2 presents the UML (Unified Modeling Language) representation of the

architecture of the POSITIVE Patient app at the package level.

The structure of the system is as follows:

▪ es.upm.ctb.positive:

▪ activities: this package contains all classes defined as extensions of Activity.

An activity is a single, focused thing that the user can do. Almost all

activities interact with the user, so the Activity class takes care of creating a

window for you in which you can place your UI. All activity classes must

have a corresponding <activity> declaration in their package's

AndroidManifest.xml,

▪ objects: this package contains objects that are used within the system. They

are created with the statement new ObjectName(params),

▪ util: contains several files in charge of different functions, such as detection

algorithms,

▪ rest: this package oversees the RestAPI. All the requests are declared in the

RestAPI file,

▪ firebaseutils: file CSVWriter and JSONFlattener are stored.

| Antecedents 15

Figure 3.2: UML Positive_pacientes_android (February 2022)

3.3. POSITIVE server

The POSITIVE server is implemented in Node.js, a back-end JavaScript runtime

environment that executes JavaScript code.

The server uses RabbitMQ, an open-source message-broker software [18]. It gives the

application a common platform to send and receive messages, and the messages a safe

place to live until received.

The server used originally in ActiveUP was the one implemented for the POSITIVE

project from the beginning.

The structure (https://gitlab.com/AgeingLab/servidorpositive) is as follows:

▪ caidas: contains the file caidas.js, responsible for everything related to falls,

▪ configuration: this folder contains the sub-folders (backup_positive, f_config,

and servicio_positive),

▪ pacientes: this folder contains all the files related to the patient’s mobile

application.

▪ comprobar_actividades.js

▪ comprobar_asistente.js

▪ comprobar_vivifrail.js

▪ consumidor_rabbit.js

▪ pacientes.js

▪ publicador_rabbit.js

16 | Antecedents

▪ profesionales: this folder is responsible for all the files related to the

professional’s application.

▪ actividades_aplicacion_profesionales.js

▪ profesionales.js

The server uses Cron Jobs for scheduling tasks. Cron Jobs automate specific commands

or scripts on the server to complete repetitive tasks automatically [19].

To specify at what time a specific job must be executed, it is important to edit the

crontab file by adding a new line, using the proper syntax:

m h dom mon dow user command
00 00 * * * ageinglab cd

/var/www/api/positive; node pacientes/eval_asistente.js >>
logs/eval_asistente.log

Where m: minute, h: hour of the day, dom: day of the month, mon: month, dow: day

of the week. For example, the command above is executed every day at midnight.

The database structure is directly defined and initialized in phpMyAdmin.

phpMyAdmin is a free software tool, written in PHP, intended to handle the

administration of MySQL over the Web. phpMyAdmin supports a wide range of

operations on MySQL and MariaDB. The database server used in POSITIVE is

MariaDB, which is an open-source relational database.

Figure 3.3 shows the entity-relationship diagram of the original POSITIVE database. It

stores some data and information no longer in use in ActiveUP, such as the messages

between patient and health care professionals.

Figure 3.3: Legacy database architecture

| Antecedents 17

3.4. Initial state of the Motivational Assistant

The Master Thesis developed by Sokól [3] proposes a prototype of a motivational

assistance component to be integrated into the ActiveUP project.

The designed motivational assistance software uses information about elderly

patients’ motivational traits, their level of motivation (motivational state), and their

degree of daily exercise habit internalization (stage of change) to adjust the user

interface and initiate personalized interactions.

In her document, Sokól firstly described the motivational assistance software design.

It consists of three main parts:

▪ Key Factors: refer to motivational traits, motivational states, stage of change,

and user history.

▪ Motivational traits are defined as relatively stable attributes describing

how individuals approach goal-oriented situations [20]:

▪ Determination (D) – being more likely to have high levels of

motivation and pursuing achievement,

▪ Personal Mastery (PM) - being motivated by the desire of

constant improvement of one's performance as well as by the need

of gaining new knowledge and experience,

▪ Other-Referenced Goals (ORG) - pursuing status and

recognition in the eyes of others and using others' performance as

a point of reference for the determination of one's own objectives,

▪ Competition Seeking (CS) - striving for competition and being

motivated by a possibility to outperform others,

▪ Failure Avoidance (FA) - dislike of evaluative situations and a

tendency to avoid situations with a possibility of failure.

Motivational traits in patients can vary continuously. For this reason,

each motivational trait is assigned a degree of prevalence. The used

values are the following:

▪ Very Low,

▪ Low,

▪ Medium,

▪ High,

▪ Very High.

▪ Motivational states are defined as a transient characteristic related to

motivation [21]. In Sokól's design the motivational state can take three

values:

▪ High,

▪ Medium,

18 | Antecedents

▪ Low.

▪ Stages of change are behavioral stages described in the Transtheoretical

Model [22]:

▪ Precontemplation – a stage characterised by a lack of awareness;

the patient is lacking knowledge about the reasons that speak for

the habit of daily exercise or has doubts about the benefits,

▪ Contemplation – a stage of ambivalence, in which the patient is

aware of the benefits of exercise but also concerned with the

difficulties and disadvantages that they may encounter on their

way to habit change,

▪ Preparation – the stage characterised by being fully convinced

about the need for daily exercise but before having started to

exercise,

▪ Action – a stage in which the patient is already realising regular

exercise but is still prone to relapse,

▪ Maintenance – a stage achieved after following the exercise

programme for a longer time, when the risk of falling into old

habits is considerably lower.

▪ User History comprises the information recorded during

interactions with the intervention and assistance software.

▪ Key Resources: refer to the resources that can be applied to influence the

motivational state of the user, namely the motivational techniques and elements

that can be added to the user interface to increase the overall motivational

performance. Among the resources defined by Sokól, there are Awards,

Challenges, Leader board, User statistics, and Messages from the motivational

assistant.

▪ Key Situations: refer to significant events which may require the motivational

assistant to act. Examples of Key Situations are:

▪ First use of the application,

▪ Application Start after a Long User Absence,

▪ Application Start after an Interrupted Exercise Session,

▪ End of an Exercise Session.

In the designing phase, the techniques to be applied for each motivational trait are

defined. To be more precise, the Leader board is available only for Competition

Seekers with a value of Failure Avoidance lower than High. Then, Challenges and User

statistics are only for patients with Personal Mastery higher than Competition Seeking

and Other-Referenced Goals, and Failure Avoidance lower than High.

After the initial motivational trait diagnosis and stage of change assessment, the user

profile should include the level of each motivational trait and the initial stage of

change. In the document, the algorithm for motivational modelling is explained in

| Antecedents 19

detail. Here, Figure 3.4 illustrates all possible transitions between the stages of change

and motivational states.

Figure 3.4: Possible transitions between stages of change and motivational states in the

motivational assistance system proposed by Sokól

Furthermore, a complete and very precise list of messages to be delivered to the patient

was provided. Here, Table 2 shows an example of feedback after a decision to start an

exercise session, as proposed by [3].

Table 3.1: The messages designed to give the user positive feedback after a decision to start

exercise depending on user’s motivational traits and stage of change

 Precontemplation Contemplation Preparation Action/

Maintenance

D “Fantastic!

Regularity means

constant

improvement.”

“Brilliant!

Regular

exercise makes

you feel better

and have more

energy.”

“That is

wonderful!

Exercise will

help you

maintain

your

progress.”

“Excellent! There is

nothing better for

your health than

exercise.”

20 | Antecedents

PM “Awesome! You

are one step

closer to

achieving your

goals.”

“That is

wonderful! The

time spent

exercising

always pays

off.”

“Brilliant!

Regular

exercise is

easy once

you make it

a habit.”

“Awesome! Regular

exercise prevents

many diseases.”

CS “Awesome! You

are one step

closer to

advancing in the

classification of

patients.”

“Brilliant! Your

results are

remarkable.”

“Wonderful!

This way

you will

maintain

your

excellent

results.”

“Fantastic! Keep up

the good job and

you will be one of

the top project

participants.”

ORG “Awesome! Your

dearest ones will

be very proud of

you.”

“Brilliant! Your

results are

remarkable.”

“Excellent!

Getting

stronger

means being

there for

your dearest

ones.”

“Excellent! Being

more fit means

being there for your

dearest ones.”

FA “It is awesome

that you decided

to exercise

today!”

“Fantastic! You

are doing a

great job.”

“Brilliant! I

know that

you can do

it.”

“Excellent! I believe

in you.”

After the design, the implementation of the motivational assistant for the ActiveUP

project was started.

The first step to implement the motivational assistant logic was the creation of new

tables in the database to store additional information about the user and to manage the

new alert and evaluation system. These tables were added directly on the database in

phpMyAdmin.

Changes introduced to the original server were saved in the branch ‘qa’ of the

repository ‘servidorpositive’.

The changes introduced to the user application were saved in the repository

‘POSITIVE_Pacientes_Android’ in the branch ‘1-recoger-mas-datos-de-vivifrail’

(https://gitlab.com/AgeingLab/positive_pacientes_android). The modifications

| Antecedents 21

concerned the communication with the database as well as the visual and logical

aspects of the user interface. The most significant changes were introduced to classes:

▪ RestAPI.java, in the package es.upm.ctb.positive.rest

▪ MenuPrincipal_nuevo.java, in the package es.upm.ctb.positive.activities

▪ MeasurementUploaderService.java, in the package es.upm.ctb.positive.rest

▪ EjercicioFisico.java, in the package es.upm.ctb.positive.activities.ejercicio_fisico

One important function developed and kept in the new version is the evaluation of the

patient's performance. The table “eval” was added to store information about daily

and weekly evaluations of the exercise completeness level for each patient. The

evaluation is run at midnight every day. The daily evaluation type considers the

exercise completeness level obtained on the previous day and the weekly evaluation

takes into account the data from the just-finished week.

 23

4 Problem Statement

4.1. Criticisms

Figure 4.1: Evolution of the POSITIVE - ActiveUP projects

Figure 4.1 describes the evolution of the POSITIVE – ActiveUP projects. The POSITIVE

project began in 2019. During it, Fernandez-Aviles Pedraza and Zorzenon pursued

their projects related to motivation. In the last semester of the POSITIVE project, while

the pilot phase was taking place, Sokól began designing the prototype of the

motivational assistant to be integrated into POSITIVE. When this master's thesis

began, the POSITIVE pilot phase was in its final stage. The ActiveUP project, on the

other hand, was already underway.

The changes proposed by ActiveUP, combined with POSITIVE's problems identified

during the pilot, made renovation necessary. In addition, this renovation made it

necessary to adapt Sokól's work to the new system.

In addition, in March 2022, the Ageing Lab performed a heuristic review of the

ActiveUP application. All the 27 heuristics proposed in (Gomez-Hernandez et al. 2022)

were considered. The results highlight the following drawbacks:

▪ Some icons are not concrete enough and do not depict a real meaning.

▪ Some texts are not clear enough. Older adults could face problems

understanding them.

▪ The feedback after control tapping is not properly highlighted. Older users need

stronger feedback to their interaction.

24 | Problem Statement

To address these issues and also to cope with a new architecture and evolved

technologies, the team decided to create a brand-new android application for patients,

implemented in Java and Kotlin. However, the new application still did not integrate

Vivifrail and the motivational assistant.

The POSITIVE server also had proved to have several issues. In particular, it was not

reliable enough, and the concurrency did not work as expected. The main problems

were raised when complex queries were executed. In addition, the generation of

exercise plans often failed. For these reasons, the team opted for a new server, written

in Python3, using the FastAPI framework and a new database.

Moving on to the motivational assistant, Sokól in her manuscript proposes Key

Resources, i.e., resources that can potentially be used to influence the user's motivation

state. However, these are only mentioned. The design of such resources was not

addressed in the master thesis.

For what concerns the initial implementation of the motivational assistant, we

identified the following drawbacks:

▪ The class MenuPrincipal_nuevo was used to handle the alerts from the

Motivational Assistant. This mainly led to having a class of over a thousand

lines of code with multiple disconnected functionalities. In addition, this class

was modified so that only notifications related to "Two days of inactivity" could

be shown. That is, it means that the code is neither scalable nor reusable.

▪ While handling notifications, multiple PUT requests were being sent. This

meant that the client kept changing values in the database with each user

interaction. This move was considered unnecessary, as it would suffice to have

a single update request once the dialogue was finished.

▪ The added classes were not incapsulated in a proper structure. This makes the

possibility of component expansion complex.

4.2. Objectives

Given the problems highlighted in the previous section, the following four goals were

set for this thesis:

1. Migration to the new server - overhaul of the legacy server and integration of

only the functions currently in use,

2. Migration to the new Android application - review of the legacy patient

application and integration of features that will be preserved in the new

version,

3. Refactoring of the motivational assistant component done so far - resolution

of the critical issues highlighted above and reorganization of the code,

4. Design of new features – design and low-fidelity prototypes of the new

features to integrate into the motivational assistant,

| Problem Statement 25

5. Implementing the motivational assistant component - development of the

new features as well as the ones only specified by Sokól in her manuscript but

never implemented.

 27

5 Migration of the server

5.1. New server in Python with FastAPI

As briefly explained in the previous chapter, several issues brought the team to the

choice of moving the server from Node.js to Python with FastAPI. In addition, the new

server features Swagger toolset, which simplifies the API development and allows

developers to check APIs through its interface.

The new server (https://gitlab.com/ageing-lab/activeup-cloud-server) is organized as

follows:

▪ config: in this folder, you will find the files related to the configuration of the

different databases.

▪ models: here you can find files that define the types of the data model that you

are going to use as if they were objects.

▪ routes: CRUD operations are programmed here.

▪ schemas: in this folder, you define the table schema that will create the object

(columns, data types, etc.).

▪ utils: folder where we put code that can be used generically by the rest of the

files.

▪ main.py: is the file to be executed by FastAPI. Here we simply import the CRUD

operations created in the files in the routes folder.

▪ docker-compose.yml: Docker container where we define the services to use:

MySQL, PHPMyAdmin, and MongoDB.

▪ launch.sh: bash script that runs the whole system. It is in charge of installing

dependencies, activating the Python virtual environment, raising the Docker

container, and, finally, launching the API.

▪ requirements.txt: file where the Python packages to be installed are defined as

dependencies.

The initial server configuration was done by another team member. Despite this, the

motivational assistant was not integrated yet. Figure 5.1 shows the description of the

database schema.

28 | Migration of the server

Figure 5.1: Description of the database schema (February 2022)

In order to integrate the motivational assistant component, the following files have

been added:

In the schemas folder:

▪ alerts_assistant_schema.py

class AlertAssistant (BaseModel):
alert_id: int
content_id int
patient_id: int
notified: int
conclusion: int

▪ stage_of_change_schema.py

class StageOfChange (BaseModel):
patient_id: Optional[int]
stage_of_change_id: Optional[int]
motivational_state_id: Optional[int]

▪ eval_schema.py

class Eval(BaseModel):
patient_id: Optional[int]
eval: float
type: int
activity_id: int
status: int

| Migration of the server 29

timestamp: datetime

▪ motivational_profile_schema.py

class MotivationalProfile(BaseModel):
patient_id: Optional[int]
profile_id: Optional[str]
value: int

In the models folder:

▪ alerts_assistant_model.py

Column ("id", Integer, primary_key=True),
Column ("alert_id", Integer),
Column ("patient_id", Integer),
Column ("notified", Integer),
Column ("conclusion", Integer),
Column ("timestamp", TIMESTAMP)

▪ eval_model.py

Column ("id", Integer, primary_key=True),
Column ("patient_id", Integer),
Column ("eval", Float (6)),
Column ("type", Integer),
Column ("id_index_activity", Integer),
Column ("status", Integer),
Column ("timestamp", TIMESTAMP)

▪ index_alerts_assistant_model.py

Column ("id", Integer, primary_key=True),
Column ("name_alert", VARCHAR (50))

▪ index_alertas_conclusion_model.py

Column ("id", Integer, primary_key=True),
Column ("name_conclusion", VARCHAR (50))

▪ index_stage_of_change_model.py

Column ("id", Integer, primary_key=True),
Column ("name_stage_of_change", VARCHAR (50))

▪ index_motivational_state_model.py

Column ("id", Integer, primary_key=True),
Column ("name_state", VARCHAR (50))

▪ index_motivational_profile_model.py

Column ("id", Integer, primary_key=True),
Column ("name_profile", VARCHAR (50))

▪ motivational_profile_model.py

Column ("id", Integer, primary_key=True),

30 | Migration of the server

Column ("patient_id", Integer),
Column ("profile_id", Integer),
Column ("value", Integer)

In the routes folder:

▪ alerts_assistant.py

This file contains the GET requests to retrieve the alerts.

During the migration, the code has been changed from MySQL query to Python.

An example is provided in Table 3:

 GET Request: getAlertsAssistant

Given the patient_id as a parameter, it returns a list of

AlertAssistant. This function is called when the application is

launched, in order to retrieve all the alerts to display.

Table 5.1: Example of query in MySQL and Python

MySQL "SELECT id, id_alerta, id_contenido FROM
alertas_asistente WHERE id_paciente = " +
id_paciente + " AND = 0 "

Python alertas_asistente_data_model.select().where(
alertas_asistente_data_model.c.patient_id ==
patient["patient_id"],
alertas_asistente_data_model.c. == 0)

GET Request: getAlertAssistant

Given the alert_id, it returns the object AlertAssistant.

In addition, it has the PUT and POST requests:

 POST Request: postAlertAssistant

This function adds a new alert in the database.

 PUT Request: updateAlertAssistant

Given the alert_id and conclusion_id as parameters, the function

updates the AlertAssistant by changing the values of notified and

conclusion.

▪ stage_of_change.py

This file contains the GET request to retrieve the state of change and the PUT

requests to update it:

GET Request: getStageOfChange

Given the patient_id, this function returns an object StageOfChange.

| Migration of the server 31

PUT Request: updateStageOfChange

Given the patient_id and stage_of_change_id as parameters, the function

updates the StageOfChange of the specified patient, by changing the

stage_of_change_id.

PUT Request: updateMotivationalState

Given the patient_id and motivational_state_id as parameters, the

function updates the StageOfChange of the specified patient, by

changing the motivational_state_id.

▪ eval.py

This file contains the GET request to retrieve the evaluations of a patient:

GET Request: getEval

Given the patient_id, this function returns an object Eval.

▪ motivational_profile.py

This file contains the GET request to retrieve motivational traits per each user:

GET Request: getMotivationalProfile

Given the patient_id, this function returns an object MotivationalProfile.

5.2. Periodic Jobs

The following sections describe the changes introduced to the crontab file and explain

the scripts (modified and created) to perform some required actions.

5.2.1. Cron

Cron is a tool that allows you to schedule the execution of preset tasks. It can be used

in Unix-like systems to schedule jobs that must be completed over a set period or at a

specific moment. Cron settings for the entire system are stored in the file etc/crontab.

The structure of the cron files has changed during the migration in order to properly

accomplish the required tasks.

The already existing eval_asistente.js file has been split into eval_asistente_daily.js and

eval_asistente_weekly.js.

5.2.1.1. eval_asistente_daily.js

This file is executed every day (from Tuesday to Saturday) at midnight. The main

function is evalPacienteDia.

32 | Migration of the server

evalPacienteDia evaluates the daily performance of the user and inserts a row in the

“eval” table. Since this is the per diem assessment, the ‘type’ field will contain the value

1.

5.2.1.2. eval_asistente_weekly.js

This file is executed every Saturday at midnight. The main function is

evalPacienteSemana.

evalPacienteSemana evaluates the weekly performance of the user and inserts a row

in the “eval” table. Since this is the per-week assessment, the ‘type’ field will contain

the value 2.

 33

6 Migration to the new Android

application

As explained in Chapter 4, during the timeline of the POSITIVE project, it has been

decided to make changes, including the mobile application for the patients.

The new version aims to be more efficient and in line with the results obtained during

the pilot phase and the feedback received from the review.

The main difference from the predecessor version in terms of technology is the use of

Kotlin, as well as Java. In addition, the new version does not work with Firebase

Analytics, and it does not rely on SharedPreferences, which is what Android apps use

to store simple data in an allocated space.

The new application features some optimizations that allow developers to speed up

the implementation. The BaseActivity class extends the AppCompatActivity bult-in

class provided by Android. As the name suggests, it is a basic activity with specific

functions available to all the activities that extend it. An example of those is the

function inicializarMenuInferior. By calling this method, the navigation bar at the

bottom is automatically added to the user interface. In addition, the methods

desactivarBoton, activarBoton, pulsarBotonAtras, pulsarBotonSalir, and

pulsarBotonSiguiente are in charge of the behavior of each button.

In order to integrate the Vivifrail system, it was necessary to add to the new application

the ability to perform the exercises in the treatment plan, see the nutrition advice, and

consult the Vivifrail manual. The entire Vivifrail package can be found under My

treatment in the main menu (see Figure 6.1). Upon accessing this section, the user will

find the three subsections: My exercises, My nutrition, and My advice (see Figure 6.2).

34 | Migration to the new Android

application

Figure 6.1: Home page of the new

application

Figure 6.2: My treatment section

Upon access to the specific section, the system calls respectively the methods

cargarEjercicios, cargarMiDieta, and cargarMiEducacion. In the following three

subchapters, all the details of the above-mentioned sections are provided.

6.1. My Exercises section

My Exercises section is encoded in the Java class MenuVivifrail that extends

BaseActivity. This is where the patient can see the exercises to be performed that day.

Exercises are associated with the user through the Vivifrail plan previously set up. The

exercises are retrieved from the database through the function

ObtenerPlanActividadesVivifrail. If no exercises are scheduled, a notification message

is shown (see Figure 6.5). The user interface presents a grid with a number of buttons

equal to the number of exercises (see Figure 6.3). By pressing on them, the user

interface changes and displays the specific exercise (see Figure 6.4).

| Migration to the new Android

application
35

Figure 6.3: My exercises menu

Figure 6.4: Exercise interface

Figure 6.5: Interface in case there are no

pending exercises

Figure 6.6: Interface that asks the user

how many repetitions they did

From this point, users can start with the execution of the activity. Furthermore, they

can ask to read the instructions and see a video tutorial.

Once the user has finished the activity, by pressing the Next button, they are asked

how well they performed the exercise. As Figure 6.6 shows, four options are available

(I did all the repetitions, I did almost all the repetitions, I did a few repetitions, and I

did not perform the exercise). The answer to this question is crucial in computing the

patient’s daily evaluation.

36 | Migration to the new Android

application

6.2. My Nutrition section

My Nutrition section starts with the Java class MiDieta. The class extends BaseActivity

and sets the content to the layout element activity_mi_dieta.xml. From here (see Figure

6.7), the user can go to the video section, where a collection of videos related to

nutrition are displayed (see Figure 6.8). The video playback is handled by the class

MiDietaVideoPlayer that opens a window with the corresponding YouTube video.

Figure 6.7: My nutrition menu

Figure 6.8: My nutrition recipes

6.3. My Advice section

My Advice section allows the user to consult the exercise manual and get general tips.

This section starts with the Java class MiEducacionMenu. The menu (Figure 6.9) shows

two buttons, the Exercise Manual one starts a new activity within the class

ManualVivifrail. On the other hand, the General advice one starts a new activity within

the class ConsejosGenerales.

The ManualVivifrail activity class shows the Vivifrail plan assigned to the user (Figure

6.10). First, through the GetVivifrailTask, the system retrieves the information from

the database. Then, it computes which manual has to be displayed to the user. To

display this information, the application leverages on the WebView component.

WebView objects allow the developer to display web content as part of the activity

layout.

The ConsejosGenerales class provides tips about healthy ageing and why it is

important in order to improve the quality of life (Figure 6.11).

| Migration to the new Android

application
37

Figure 6.9: My advice menu

Figure 6.10: Exercise Manual

Figure 6.11: General Advice

 39

7 Development of the new features

As explained in Chapter 4, one of this Master Thesis objectives is the implementation

of new features to be integrated into the ActiveUP Patient application. The set of these

new features comprehends the leader board, challenges, users’ statistics, and a

collection of notifications to be sent to the user.

7.1. Leader board

7.1.1. Description

The leader board has been identified as a Key Resource by Sokól (2022), but its design

was pending. It is a ranking showing the user’s performance in comparison to the

performance of other project participants in terms of exercise completeness level.

This resource is used to motivate patients with High or Very High levels of

Competition Seeking. They are classified as striving for competition and being

motivated by a possibility to outperform others. The user ranking will be based on

adherence to the program, measured as the percentage of the performed exercises’

repetitions and the total number of exercises performed. So, the patients with the

highest percentage of performed exercises will appear at the top of the ranking.

The user classification will be shown to all users with Very High or High levels of

Competition Seeking, unless they also have High or Very High levels of Failure

Avoidance.

The leader board will include daily, weekly, and global classifications. Since the

evaluation of the performance is computed at midnight, the daily leader board will

rank users based on the performance of the day before. Equally, the weekly leader

board will rank users based on the performance of the previous week. Finally, the

global leader board will rank users starting from the first day of the program until the

last one.

To meet some design requirements for older adults, having a leader board with a long

list of participants was undesirable, so we decided to create groups and divide the

participants. Each group should have a maximum of 6 members. The main reason for

this choice is related to the difficulty of older adults to perform the scrolling gesture

on digital devices. In fact, if we had considered a ranking based on all users in the

system, we would have generated a very long list. And it would have meant forcing

40 | Development of the new features

users to navigate through this list. This way, each patient will be included in a group

of participants that have initiated their exercise program in the same day.

Also, since it could happen that less participants than 6 initiate their program in a given

week, we decided to create fake users to complete groups with less than 6 real patients.

For every real user, there will be a maximum of five fake users. This way, we will make

sure that each user has a group of people to compete with.

7.1.2. Low fidelity design

To access the leader board two steps are required. First, the user will reach the Leader

board menu (Figure 7.1) from Homepage / My Progress / My Results. In this menu, the

user will find three buttons with an icon and a title explaining the section. Then, from

there, by clicking on one of the three options, they will reach the specified leader board

(daily, weekly, or global). Depending on the type of leader board, at the top of the

interface, there will be the date of yesterday, the interval of the previous week, or the

text ‘Global’. Each row on the ranking will have the position, the username, and the

evaluation (Figure 7.2).

To be consistent with the ActiveUP application UI, the navigation bar will be available

on all the screens.

| Development of the new features 41

Figure 7.1: Wireframe of Leader board

menu

Figure 7.2: Wireframe of Leader board

activity

7.1.3. Implementation

7.1.3.1. Server-side

Figure 7.3 represents the diagram of the tables added for the leader board feature into

the database.

Figure 7.3: New tables added into the database for the Leader board feature.

In order to implement the leader board component, the following files have been

added to the server:

In the models folder:

▪ fake_users_model.py

Column (“id”, Integer, primary_key=True),
Column (“fake_user_id”, Integer),
Column (“eval_min”, Float (6)),

42 | Development of the new features

Column (“eval_max”, Float (6)),
Column (“eval”, Float (6)),
Column (“timestamp”, TIMESTAMP)

▪ group_model.py

Column (“id”, Integer, primary_key=True),
Column (“name”, String (100)),
Column (“number_users”, Integer)

In the schemas folder:

▪ fake_users_schema.py

class FakeUser(BaseModel):
fake_user_id: Optional[int]
eval_min: float
eval_max: float
eval: float
timestamp: datetime

▪ group_schema.py

class Group(BaseModel):
id: Optional[int]
name: text
number_users: int

In addition, the patient.py has been modified. A new column has been added to

associate each user with a specific group. Column (“group_id”, Integer).

In the crontab, the function evalFakeUsersDia has been added to

eval_asistente_daily.js.

evalFakeUsersDia updates the evaluation in the “fake_users” table. The generated

value is a random number between the values eval_min and eval_max defined for each

fake user. As Table 7.1 shows, every user has a different value for eval_min and

eval_max. These amounts allow us to have users along all the positions in the leader

board. For instance, user 60 will be always at the bottom, while user 64 will be always

in the top positions.

Table 7.1: Table "fake_users" to store daily evaluation of the fake users

id id_fake_user eval_min eval_max eval timestamp

1 60 0.0010 0.29 0.2358 2022-06-22 00:00:01

2 61 0.1 0.49 0.4384 2022-06-22 00:00:01

3 62 0.2 0.59 0.5612 2022-06-22 00:00:01

4 63 0.4 0.79 0.7233 2022-06-22 00:00:01

| Development of the new features 43

5 64 0.6 1 0.8943 2022-06-22 00:00:01

After the random generation, the UPDATE the ‘insert_fake_user_eval’ trigger is

launched. It simply adds into the “eval” table, the eval for each fake user.

To generate the ranking, the system implements three different GET Requests,

respectively getClasificacionDiaria, getClasificacionSemana, and

getClasificacionGlobal, passing as parameter the patient_id. The response is a

list of users from the same group with the evaluation.

getClasificacionDiaria performs a query to obtain the daily ranking (To see the

code Appendix 10.1). It returns an object with patient_id, patient_name, and eval.

getClasificacionSemana performs a query to obtain the weekly ranking (To see the

code Appendix 10.1). It returns an object with patient_id, patient_name, and eval.

getClasificacionGlobal performs a query to obtain the global ranking (To see the

code Appendix 10.1). It returns an object with patient_id, patient_name, and eval.

The object returned is then managed in the Android app, as explained below.

7.1.3.2. Client-side

On the ACTIVE-UP application, the files related to the leader board are in the packages

(as reported in Figure 7.4):

▪ com.activeup.activities.leaderboard

▪ com.activeup.objects.asistente_motivacional.

Figure 7.4: UML for the Leader board feature

44 | Development of the new features

Leaderboard is the main object. To create an instance of the object, the system does a new
Leaderboard(Context context, RecyclerView recyclerView, String token,

String user_id, int activity_id). The class has the constructor and three private

classes ObtenerClasificacionDiaria, ObtenerClasificacionSemana, and

ObtenerClasificacionGlobal. The first performs the GET Request to the server to

retrieve the daily leader board. The second performs the GET Request to the server to

retrieve the weekly leader board. The third one performs the GET Request to the server

to retrieve the global leader board. Once the data are downloaded from the database,

they are stored in a list and passed to the RecyclerViewLeaderboard.

RecyclerViewLeaderboard is a RecyclerView. RecyclerView makes it easy to efficiently

display large sets of data. You supply the data and define how each item looks, and

the RecyclerView library dynamically creates the elements when they’re needed. Each

element in the list is defined by a view holder object (in our case

LeaderboardViewHolder). It is responsible for how the rows in the ranking are displayed.

In addition, it is in charge of replacing the first three icons on the list, putting an icon

representing a trophy. The RecyclerView requests those views, and binds the views to

their data, by calling methods in the adapter.

LeaderboardViewHolder is a RecyclerView.ViewHolder, which describes an item view.

In particular, LeaderboardViewHolder has three TextView (position, username, and

evaluation) and one ImageView (the trophy icon).

LeaderboardMeasurement is the return type of the GET requests.

Leaderboard_menu extends BaseActivity. The Activity class takes care of creating a

window for you in which you can place your UI with #setContentView. This class

takes care of creating the leader board menu, where the three buttons (Daily, Weekly,

and Global) are shown. In the following section, the UI of this activity will be

presented.

Leaderboard_activity also extends BaseActivity. It is responsible for each specific leader

board. In the following section, the UI of this activity will be presented.

7.1.4. Final User Interfaces

Android provides a variety of pre-built UI components such as structured layout

objects and UI controls that allow you to build the graphical user interface for your

app. Each developed layout contains Android components, such as LinearLayout,

RelativeLayout, ImageView, TextView, and Button. LinearLayout is a view group that

aligns all children in a single direction, vertically or horizontally. RelativeLayout is a

view group that displays child views in relative positions. ImageView displays image

resources. TextView contains the text to be displayed. A Button is an element the user

can tap or click to perform an action (specified in the onClick attribute).

| Development of the new features 45

The user interfaces created for this feature are XML files stored in the layout folder. In

particular, the files are leaderboard_menu.xml, leaderboard_activity.xml, and

row_leaderboard.xml.

Concerning the low-fidelity design, some changes have been made. In particular, in

the Leader board menu (Figure 7.5), all the icons have been removed.

Figure 7.5: UI for Leader board menu

46 | Development of the new features

Figure 7.6: UI for Leader board Activity

For what concerns the Leader board activity, instead of using the CardView,

apparently the most straightforward option, to contain each row, a simple

LinearLayout has been used (Figure 7.6). The reason behind this choice lies on the

possibility of confusion among the elderly. Actually, with CardView, the interface is

more aesthetically pleasant (Figure 7.7). However, the rows appear as if they were

buttons and therefore might create the illusion of being clickable. Thus, the final choice

was to provide a ranking closer to a simple list (Figure 7.8). In this way, the system

matches the UHOA 14 (Section 2.2), which recommends increasing the difference

between touchable and non-touchable elements [10].

| Development of the new features 47

Figure 7.7: Leader board activity with

CardView

Figure 7.8: Leader board activity without

CardView

7.2. Challenges

7.2.1. Description

Challenges have been identified by [3] as a Key Resource for patients with High or Very

High levels of the Personal Mastery trait. Personal Mastery includes both Desire to

Learn and Mastery Goals, the motivational techniques referring to this trait frequently

mention user goals and model the exercise sessions as an opportunity to gain new

experiences, skills, and knowledge.

So far, seven challenges have been implemented. They are explained in Table 7.2.

Table 7.2: Name and description of the challenges

Challenge Name Description

1 Regular day The user is asked to do all the exercises for

one day, regardless of the repetitions.

2 Regular week The user is asked to do at least one exercise

every day for a week, regardless of the

repetitions.

3 Perfect week The user is asked to do all the exercises with

all repetitions every day for a week.

48 | Development of the new features

4 Two regular weeks The user is asked to do at least one exercise

every day for two weeks, regardless of the

repetitions

5 Two perfect weeks The user is asked to do all the exercises with

all repetitions every day for two weeks.

6 Perfect month The user is asked to do all the exercises with

all repetitions every day for an entire month.

7 Perfect final week The user is asked to do all the exercises with

all repetitions every day for the last week of

the program.

The user is notified of a new challenge via alerts. In addition, they can always check

their collection of awards in the specific section. Furthermore, if they want to know

what the challenge is about, they can check it in the Next Challenge section, where the

description is provided.

Ideally, all the challenges should be faced during the 12 weeks of the program

according to Figure 7.9. During the first week, the user receives an alert from the

motivational assistant explaining the Challenge n°1 (Regular Day). If they overcome

the challenge, the next Monday, the motivational assistant will launch the Challenge

n°2 (Regular week). The same pattern is followed for the remaining challenges. Notice

that Challenge n°7 (Perfect final week) will be offered only to users who accomplished

all the previous challenges in their due time.

Figure 7.9: Schedule of the challenges during the 12-weeks programme

If the user always wins each challenge in time, at the end of the program they should

have gained all the awards. It is crucial to take into account the possibility of losing a

challenge. In this case, the idea is to re-launch the same challenge in the following

week. For instance, if the user does not complete the Challenge 2 (Regular Week)

during the second week, the next Monday they will receive again the alert to fight for

this challenge.

7.2.2. Low fidelity design

To access the challenge section at least two steps are required. First, the user will reach

the Challenges menu (Figure 7.10) from Homepage / My Progress / My Results. In this

menu, the user will find two buttons with an icon, and a title explaining the section.

| Development of the new features 49

Then, from there, by clicking on one of the two options (Won challenges, or Next

challenge), they will reach the specified challenge activity (Won or Next), as shown in

Figure 7.11, and Figure 7.12. From these interfaces, by clicking on a specific challenge,

the Challenge description activity appears (Figure 7.13). This screen provides all the

information related to the challenge, such as name, description, icon, and date of

achievement (if achieved).

To be consistent with the ActiveUP application UI, the navigation bar will be available

on all the screens.

Figure 7.10: Wireframe of Challenges

menu

Figure 7.11: Wireframe of Challenges

activity (Won challenges)

50 | Development of the new features

Figure 7.12: Wireframe of Challenges

activity (Next challenge)

Figure 7.13: Wireframe of Challenges

description activity

7.2.3. Implementation

7.2.3.1. Server-side

To implement this feature, two new tables have been added to the database (Figure

7.14).

Figure 7.14: New tables added into the database for the Challenges feature

The following files have been added to the server:

In the models folder:

▪ index_challenges_model.py

Column (“id”, Integer, primary_key=True),
Column (“name”, VARCHAR (50)),

▪ challenges_model.py

| Development of the new features 51

Column (“id”, Integer, primary_key=True),
Column (“patient_id”, Integer),
Column (“challenge_id”, Integer),
Column (“status”, Integer),
Column (“timestamp”, TIMESTAMP)

In the schemas folder:

▪ challenges_schema.py

class Challenge(BaseModel):
patient_id: Optional[int]
challenge_id: Optional[str]
status: int

CHALLENGES (id, patient_id, challenge_id, status, timestamp)

The field ‘id’ refers to a unique id of each row. The id of the patient is stored in the

field ‘patient_id’ and it is taken from the already existing table “patient”. The id of

the challenge is stored in the column ‘challenge_id’. Every value has a description

in the table “index_challenges”. The column ‘status’ contains a value that could be -

2, -1, 0, or 1, depending on the status of the challenge. -2 means that the challenge is

not available yet. -1 means that the challenge has to be notified to the user by the

motivational assistant. 0 means that the user is currently facing that challenge. Finally,

if the challenge has been achieved, the value is 1. This column is crucial in order to

display the correct content in the section Won Challenges and Next Challenge. The

field ‘timestamp’ contains the timestamp of the insertion of the challenge. This

timestamp is updated when the field ‘status changes. Once the patient is added to

the database and the motivational profile has been defined, this table is filled with all

the 7 challenges (‘status’ = -2). The Challenge 1 is the only one with ‘status’ = -1.

INDEX_CHALLENGES (id, name)

As stated above, so far, it has been implemented 7 types of challenges. The following

table (Table 7.3) shows the contents of the table in the database defining the challenges.

Table 7.3: Types of Challenges

Id Name

1 Regular day

2 Regular week

3 Perfect week

4 Two regular weeks

5 Two perfect weeks

52 | Development of the new features

6 Regular month

7 Perfect final week

The field ‘id’ identifies the challenge, it is referenced in the table “Challenges”. The

column ‘name’ explains the specific challenge type.

To download the challenges, the system implements two different GET Requests,

respectively getLogros, and getRetos, passing as parameter the patient_id.

getLogros performs a query to obtain the already won challenges. It accesses the table

“Challenges” and selects all the rows with ‘patient_id’ = patient_id and ‘status’

= 1.

getRetos performs a query to obtain the challenge the user is facing at the moment. It

accesses the table “Challenges” and selects all the rows with ‘patient_id’ =

patient_id and ‘status’ = 0.

The management of the challenges is implemented using Cron Jobs. Two files were

added to the server: check_status_challenges.js (Appendix B.1.1) and

manejador_challenges_to_be_notified.js (Appendix B.1.2).

check_status_challenges.js is executed every Monday at midnight. It consists of

the following twelve functions:

▪ computePatients() – retrieves the patients with Personal Mastery trait.

▪ checkChallengeInProgress(patient_id) – checks whether the patient

associated with the patient_id has a challenge in progress. According to the

result, one of the following checkChallenge() is called:

▪ checkChallenge1(patient_id, challenge_id) – checks if the

requirements of the Challenge 1 are satisfied. If so,

notifyWonChallenge() is called.

▪ checkChallenge2(patient_id, challenge_id) - checks if the

requirements of the Challenge 2 are satisfied. If so,

notifyWonChallenge() is called.

▪ checkChallenge3(patient_id, challenge_id) - checks if the

requirements of the Challenge 3 are satisfied. If so,

notifyWonChallenge() is called.

▪ checkChallenge4(patient_id, challenge_id) - checks if the

requirements of the Challenge 4 are satisfied. If so,

notifyWonChallenge() is called.

▪ checkChallenge5(patient_id, challenge_id) - checks if the

requirements of the Challenge 5 are satisfied. If so,

notifyWonChallenge() is called.

| Development of the new features 53

▪ checkChallenge6(patient_id, challenge_id) - checks if the

requirements of the Challenge 6 are satisfied. If so,

notifyWonChallenge() is called.

▪ checkChallenge7(patient_id, challenge_id) - checks if the

requirements of the Challenge 7 are satisfied. If so,

notifyWonChallenge() is called.

▪ updateWonChallenge(patient_id, challenge_id) – this function is

executed if the checkChallenge() retrieves a Won Challenge. It updates the

field “status” on table “challenges”, by setting it equal to 1 (won).

▪ notifyWonChallenge(patient_id, challenge_id) – inserts a new alert of

type 5 into “alerts_assistant” with “id_content” set to the value of the

challenge. In addition, if the challenge_id is different from 7 (which is the last

available challenge) the updateNewChallenge() is executed.

▪ updateNewChallenge(patient_id, challenge_id) – it updates the field

“status” on table “challenges”, by setting it equal to -1 (to be notified).

manejador_challenges_to_be_notified.js is executed every Monday at 00:05. It

is structured as follows:

▪ computePatients() – retrieves the patients with Personal Mastery trait.

▪ checkNewChallenge(patient_id) – checks whether the patient associated

with the patient_id has a challenge to be notified. According to the result,

notifyNewChallenge() is called.

▪ notifyNewChallenge(patient_id, challenge_id) – inserts a new alert of

type 4 into “alerts_assistant” with “id_content” set to the value of the

challenge.

▪ updateChallenge(patient_id, challenge_id) - it updates the field

“status” on table “challenges”, by setting it equal to 0 (to be notified).

The entire code of these files is attached in sections B.1.1 and B.1.2.

7.2.3.2. Client-side

On the ACTIVE-UP application, as shown in Figure 7.15, the files related to the

challenge are in the packages com.activeup.activities.challenges and

com.activeup.objects.asistente_motivacional.

54 | Development of the new features

Figure 7.15: UML for Challenges

Challenge is the main object. To create an instance of the object, the system executes a
new Challenge(Context context, RecyclerView recyclerView, String

token, String user_id, int activity_id). The class has the constructor and

two private classes ObtenerReto and ObtenerCollecionLogros. ObtenerReto is in

charge of performing the GET request to the server to obtain the current challenge the

user is facing. On the other hand, ObtenerCollecionLogros performs the GET

request to the server to retrieve the already won challenges. Once the data are retrieved

from the database, they are passed to the RecyclerViewChallenge.

RecyclerViewChallenge is a RecyclerView. It dynamically creates the element defined by

the ChallengeViewHolder.

ChallengeViewHolder is a RecyclerView.ViewHolder, which describes an item view. It

has two TextView (name and date), one ImageView (challenge icon), and one

CardView (to simulate the appearance of a button).

ChallengeMeasurement is the return type of the GET requests.

Challenge_menu extends BaseActivity. It creates the window responsible for the menu.

In this interface the two buttons (Next and Won) are displayed.

Challenges_activity extends BaseActivity. In this activity the view set with

#setContentView represents the list of the won challenges or the next challenge.

Challenges_description_activity extends BaseActivity. It shows the details of each

challenge, providing name, icon, description, and date of achievement.

| Development of the new features 55

7.2.4. Final User Interfaces

The user interfaces created for the challenges are XML files stored in the layout folder.

Specifically, row_challenges.xml challenges_menu.xml,

challenges_activity.xml, and challenges_description_activity.xml. With

respect to the low-fidelity prototypes, the left icons on the buttons have been deleted

(Figure 7.16).

Figure 7.16: UI of Challenges Menu

The Challenges activity has been implemented as expected (Figure 7.17). By using the

CardView component, the rows simulate buttons and behave as such (Figure 7.18).

56 | Development of the new features

Figure 7.17: UI for Challenges Activity

Figure 7.18: UI for the awards collection

On the other hand, the Challenge description activity has been changed, to be more

consistent with the whole system.

Figure 7.19 shows the first user interfaces that were implemented. The idea was to put

the icon and the name of the challenge at the top-center. Below that, the description of

the challenge and then the date of achievement. However, after review we realized

this design was not in line with the already existing application.

| Development of the new features 57

Figure 7.19: UI for Challenge description

We agreed to differentiate two interfaces for Challenge Won and Next Challenge.

Figure 7.20 represent the Won Challenge interface. It shows the icon of the challenge

and the name. Then, the date of the achievement. Finally, a short motivational message

is provided.

Figure 7.20: UI of specific won challenge

The description of the challenge has been kept only for the Next Challenge (Figure

7.21). In addition, a relevant motivational message is shown.

58 | Development of the new features

Figure 7.21: UI of specific next challenge with description

An additional difficulty encountered was the decision about the design of the icons.

Indeed, the icons might prove difficult for older people to understand. As suggested

by UHOA 11 and 13 (Section 2.2), icons should be concrete and semantically closed.

Initially, thought was given to how to represent each challenge through an image. A

small calendar was thought of to represent monthly challenges, or a box with a number

inside for daily ones. However, the meaning was not obvious. As a second approach,

we were directed toward an icon representing a laurel wreath with a star inside (Figure

7.22). To differentiate the different challenges, different colors were used. Red was

selected to identify daily challenges, green for weekly challenges, purple for 2-weeks

challenges, blue for monthly challenges. Finally, gold for the last challenge. In

addition, silver color in the wreath was used to differentiate the Regular category

challenges, and gold color was used for the Perfect ones.

Figure 7.22: Icons of each award

7.3. User Statistics

7.3.1. Description

User Statistics have been identified by [3] as a Key Resource for patients with High or

Very High levels of the Personal Mastery trait.

| Development of the new features 59

7.3.2. Low fidelity design

Sokól proposed representing user statistics as a diagram showing the evolution of

users’ own performance over time. However, the topic of statistics for older adults is

a highly contested one. In fact, many people currently over 65 have not received a

comprehensive mathematical education. For this reason, graphs and numbers could

require too much cognitive effort. Also, an expert pointed out that a two-axis diagram

is a foreign concept to this user target.

Following the suggestions received, the low-fidelity prototypes have been designed.

Figure 7.23 shows the Statistics Menu, reachable from Homepage / My Progress / My

Results, in which 12 buttons are available. These buttons will represent the 12 weeks of

the program. By clicking one of them, the interface changes to Figure 7.24. It will

display the daily evaluation statistics for that specific week.

To be consistent with the ActiveUP application, the navigation bar will be always

available on all the screens.

Figure 7.23: Wireframes of User Statistics

menu

Figure 7.24: Wireframes of User Statistics

7.3.3. Implementation

7.3.3.1. Server-side

To implement the User Statistics feature a new GET Request has been created on the

server. The function getStatistics retrieves data about the evaluation of a specified

user. It receives as parameter the patient id, and it returns a list of

StatisticsMeasurement objects.

60 | Development of the new features

So far, no new tables have been added to the database. The reason is that the desired

data are already stored in the table “eval”. This table is updated every day.

7.3.3.2. Client-side

On the ACTIVE-UP application, as shown in Figure 7.25, the files related to the

statistics are in the packages com.activeup.activities.statistics and

com.activeup.objects.asistente_motivacional.

Figure 7.25: UML of User Statistics

Statistics is the main object. To create an instance of the object, the system executes a
new Statistics(Context context, RecyclerView recyclerView, String

token, String user_id, int activity_id). The class has the constructor and a

private class ObtenerStatistics. ObtenerStatistics is in charge of requesting to

the server the user’s statistics. Once the data are retrieved from the database, they are

sorted by week, in order to be later displayed in the proper interface.

RecyclerViewStatistics is a RecyclerView. It dynamically creates the element defined by

the StatisticsViewHolder.

StatisticsViewHolder is a RecyclerView.ViewHolder. It represents the view of the object.

It has two TextView (day of the week and evaluation).

StatisticsMeasurement is the return type of the GET request.

Statistics_menu extends BaseActivity. In the onCreate method, setContentView sets

the user interface to display the menu. In this interface, a button for each week of the

training program is displayed.

| Development of the new features 61

Statistics_activity also extends BaseActivity. The class displays the

statistics_activity.xml. The content will be a list with all the daily statistics. The

statistics are shown with the day of the week and the evaluation expressed in % (of

completeness).

7.3.4. Final User Interfaces

The user interfaces created for the feature User Statistics are XML files stored in the

layout folder. In particular, row_statistics.xml, statistics_menu.xml, and

statistics_activity.xml. Compared to the low-fidelity prototypes, no relevant

changes have been performed.

Figure 7.26 presents the Statistics menu, which has been implemented as planned.

Figure 7.26: UI of Statistics Menu

The Statistics Activity, as well, has been implemented as planned (Figure 7.27). The

RecyclerView takes care of the list of items and adapts the content.

62 | Development of the new features

Figure 7.27: UI of Statistics Activity

Figure 7.28 represents a real example of the user interface created by Statistics Activity.

On the left, the day of the week is displayed, and the evaluation is placed next on the

right.

Figure 7.28: UI of Statistics Activity filled in with data

This feature has been the last one to be realized. Due to time constraints, it was not

possible to evaluate this functionality during the Cognitive Walkthrough later

explained.

| Development of the new features 63

7.4. Alerts

7.4.1. Description

During the 12-weeks program, the motivational assistant sends multiple notifications

and alerts to notify the user about specific situations.

So far, six different scenarios have been established, as reported in the table below

(Table 7.4).

Table 7.4: Types of Alerts

Scenario Description

First user connection When the user opens the application for the first

time, the motivational assistant introduces itself.

Depending on the motivational traits, the

dialogue is customized.

Exercise session

interrupted

In the event that the user interrupts an exercise

session, the next time they open the application,

the motivational assistant will ask about the

reasons for the interruption. In addition, it will

propose to start a new exercise session.

Two days of inactivity The user is supposed to do exercises every day

(the number is based on the Vivifrail plan). If the

user does not perform exercises for two days, the

motivational assistant will ask about the reasons

for such an absence. In addition, it will propose

to start a new exercise session.

New challenge If the user fulfills the requirements to play some

challenge, at the beginning of every week they

might receive an alert about a new challenge.

Challenge won If the user is eligible for challenges, and they win

one of them, the motivational assistant will

congratulate the user.

Changes in the

leaderboard

If the user fulfills the requirements to compete

against other users, the motivational assistant

will notify them every time their position on the

leaderboard changes.

64 | Development of the new features

During these dialogues, the user could be asked to answer some questions or just read

the communications.

7.4.2. Low fidelity design

A low-fidelity design has been proposed during the first phase of the development.

The basic structure of the interface contains a few elements. Since elderly people are

the target users of the application, some interaction methods were excluded. For

example, notifications do not appear as pop-up windows. Older people often find it

difficult when these components appear. For this reason, a dialogue consisting of

several steps in which the user is guided was devised.

An icon representing the motivational assistant is at the top of the screen, meaning that

it is the one speaking to the user. The content of the communication is under the icon,

in the center of the interface. Depending on the nature of the alert, some buttons could

be placed under the message. Finally, at the bottom, the navigation bar is located, to

be consistent with the whole application. The user interaction provokes changes in the

interface. For instance, if multiple choices are available, by clicking on one of them, the

color of the others changes. In addition, once an alternative is picked, the next button

in the navigation bar is enabled.

Figure 7.29 and Figure 7.30 represent an example of a low-fidelity design for this

feature.

Figure 7.29: Low fidelity design of the

alerts (before the user interaction)

Figure 7.30: Low fidelity design of the

alerts (after the user interaction)

| Development of the new features 65

7.4.3. Implementation

7.4.3.1. Server-side

To implement this feature, four new tables have been added in the database (Figure

7.31).

Figure 7.31: Entity-Relationship diagram for the Alert feature

The following elements have been included in the server:

In the models folder:

▪ alerts_assistant_model.py

Column (“id”, Integer, primary_key=True),
Column (“alert_id”, Integer),
Column (“content_id”, Integer),
Column (“patient_id”, Integer),
Column (“notified”, Integer),
Column (“conclusion_id”, Integer),
Column (“timestamp”, TIMESTAMP)

▪ index_alerts_content_model.py

Column (“id”, Integer, primary_key=True),
Column (“name_content”, VARCHAR(50))

ALERTS_ASSISTANT (id, patient_id, alert_id, content_id, conclusion_id, notified,

timestamp)

The field ‘id’ refers to a unique id of each row. The id of the patient is stored in the

field ‘patient_id’ and it is taken from the already existing table “patient”. The id of

66 | Development of the new features

the alert is stored in the column ‘alert_id’. Every value has a description in the table

“index_alerts_assistant”.

The column ‘content_id’ contains a value that refers to the specific content for the

alert. The default value is 0. For instance, if the user has gained positions on the

leaderboard because they have performed better during the last exercise session, the

‘content_id’ will be set to 11. Accordingly, the motivational assistant will display a

congratulatory message to the user.

The column ‘conclusion_id’ refers to the specific conclusion of the alert. This value

can indicate multiple concepts. For instance, in the case of two days of inactivity,

depending on the answers of the user, this value will change.

The default values for the columns ‘notified’ and ‘conclusion_id ’ are 0. The

‘notified’ changes to 1 once the alert has been read by the user. The field ‘timestamp’

contains the timestamp of the insertion of the alert. This timestamp is not updated

when the fields ‘notified’ and ‘conclusion_id ’ change.

INDEX_ALERTS_ASSISTANT (id, name_alert)

As stated above, so far, it has been implemented 6 types of alerts. The following table

represents the contents of this table in the database.

Table 7.5: “index_alerts_assistant” table with id and related name of the type of alert

id name_alert

1 First connection

2 Exercise session interrupted

3 Two days of inactivity

4 New challenge

5 Challenge won

6 Changes in the leaderboard

The field ‘id’ identifies the alert, and it is referenced in the table “alerts_assistant”. The

column ‘name’ explains the specific alert type.

INDEX_ALERTS_CONCLUSION (id, name_conclusion)

Depending on the user response to the alert the conclusion changes. The following

table represents the table in the database with all the possible alternatives.

| Development of the new features 67

Table 7.6: “index_alerts_conclusion” table with id and related name of all the possible

conclusions

id name_conclusion

1 Lack of problems

2 Problems

3 Absent caregiver

4 Disadvantages of exercise

5 Doubts about benefits

6 Lack of desire

7 Health problems

8 Technical problems

9 I prefer not to say

10 Other occupations/holidays

11 Forgotten to end

12 Lack of time

13 Lack of energy

14 Major disruption

15 First connection made

The column ‘id’ refers to the type of conclusion, while the field ‘name_conclusion’

describes the specific conclusion. The ‘id’ is used in the table “alerts_assistant”. This

value is established based on the answers the user provides.

INDEX_ALERTS_CONTENT (id, name_content)

For each specific alert scenario (for example New challenge), the content of the alert

may change (for example the current challenge to be presented). The following table

represents the table in the database with all the possible alternatives.

Table 7.7: “index_alerts_content” table with id and related name of all the possible contents

id name_content

68 | Development of the new features

1 Intro Motivational Assistant

2 Intro Leader board

3 Intro Challenges & User Statistics

4 Reto 1

5 Reto 2

6 Reto 3

7 Reto 4

8 Reto 5

9 Reto 6

10 Reto 7

11 Competitive user rises in the daily rankings because they have

improved

12 Competitive user drops in the daily ranking because they have

worsened

13 Competitive user rises in the daily rankings because others have

fallen in the rankings

14 Competitive user drops in daily rankings because others have

improved

The field ‘id’ identifies the different types of content. The column ‘name_content’

describes the specific content. Through the ‘id’ the content is referenced in the table

“alerts_assistant”. It has been decided to add the concept of content in order to make

the alert feature more scalable and easier to upgrade.

1.1.1.1.1. Generation of the alert

The rows in the “alerts_assistant” table can be inserted in different ways.

Alerta Asistente Tipo 1: First connection

During the first setup, every patient receives a value for the five different motivational

traits. At the end of this process, a row with ‘alert_id’ equal to 1 (First connection)

is added to the table. Depending on the values of the motivational traits, the

‘content_id’ can be set to 1, 2, or 3. 1 means that the user will not see Challenges,

| Development of the new features 69

Leader board, or User statistics. 2 means that the user fulfills the requirements for the

Leader board, so a tutorial is provided by the motivational assistant upon the first

connection. 3 means that the user fulfills the requirements for the Challenges and the

User statistics, so a tutorial is provided by the motivational assistant upon the first

connection. Here below, an explanation and a scheme (Figure 7.32) are provided.

The leader board will be shown to all users with very high or high levels of

Competition Seeking (unless they also have high or very high levels of Failure

Avoidance).

The challenges and users’ personal statistics will be only visible to individuals with

high or very high levels of Personal Mastery.

Figure 7.32: Algorithm that computes which features will be displayed to the user, and

consequently which ‘content’ specify in the alert

Alerta Asistente Tipo 2: Exercise session interrupted

During an exercise session, the user always can stop it. In this case, a confirmation

message is displayed (Figure 7.33). If the user decides to quit the session a row with

‘alert_id’ equal to 2 is added to the table.

Figure 7.33: Window that appears to the user when they try to exit from an exercise session

Alerta Asistente Tipo 3: Two days of inactivity

70 | Development of the new features

Every day at midnight, the system computes the evaluation of the exercise session for

every patient. If the user has not performed any exercises in the last two days

(excluding the weekend), a row with ‘alert_id’ equal to 3 is added to the table.

Alerta Asistente Tipo 4: New challenge

Based on the algorithm explained in Section 7.2.3, every time a new challenge has to

be proposed to the user, a row with ‘alert_id’ equal to 4 is added to the table. In

addition, the value for the column ‘content_id’ is also set.

Alerta Asistente Tipo 5: Challenge won

During the midnight evaluation of the performance, the system checks if the user

completed a specific challenge. If so, a row with ‘alert_id’ equal to 5 is added to the

table. In addition, the value for the column ‘content_id’ is also set.

Alerta Asistente Tipo 6: Changes in the leader board

Every day the leader board is re-computed to be always up to date. The file in charge

of this is leaderboard.js (Appendix A.2). This file is executed every day at midnight. It

is in charge of evaluating if a user has gained or lost positions on the leader board. In

particular, it first downloads the ranking of the current date, then the one of the

previous day. Finally, it compares the two lists and computes the difference between

the positions. Depending on the value of this difference, a row with ‘alert_id’ equal to

6 is added. The ‘content_id’ value is also set according to the situation.

The alerts are supposed to be displayed once the patient opens the app.

Multiple alerts of the same type might be added to the database. A concrete example

is when a patient does not do exercises for a week. In this case, the server will insert

more than one row with ‘alert_id’ equal to 3. Once the user reads the first notification,

automatically a trigger deletes the previous alerts of the same type.

7.4.3.2. Client-side

On the ACTIVE-UP application, as shown in Figure 7.34, all the files related to the

alerts are in the package com.activeup.objects.asistente_motivacional.

| Development of the new features 71

Figure 7.34: UML for the Alert feature

AlertaAsistente represents the main object. It has three attributes: alert_id, id, and

id_contenido. This class only contains the constructor, getters, and setters.

AlertaAsistenteList represents a set of objects AlertaAsistente. It has the constructor,

getter, and setter.

Inside the package manejadorAlertas, the alerts are managed.

The system, after the Login process, runs a new AlertasMotivational(Context

context, int pacient_id). By doing so, all the alerts related to the specified user

are downloaded and managed. Once the user receives the notifications, an UPDATE

request is sent to the server to update the field ‘notified’ to 1.

The two main methods in AlertaMotivacional are obtenerAlertasServidor and

evaluarAlertas. The former performs a GET request to the server and retrieves the

data from the database. Once the data have been downloaded, the latter evaluates

every row. During the evaluation, the values of alert_id and content are checked.

According to the first, one of the AlertasTipoObj is called. Then, depending on the

content, the content of the notification is customized.

AlertaTipo is an object that contains the public method cargarMotivacion(). This

method detects the dominant motivational trait, change state, and motivational status

of the user. The function returns an integer value that will later be used to personalize

the motivational assistant messages.

All the six AlertasTipoObj extend the parent object AlertaTipo. These child objects create

and show dialogues. The methods in the parent class AlertaTipo can be invoked here.

72 | Development of the new features

7.4.4. Final User Interfaces

The user interfaces created for this feature are XML files stored in the layout folder. In

particular, the files are:

▪ asistente_motivacional_alerta_tipo_1.xml
▪ asistente_motivacional_alerta_tipo_2.xml
▪ asistente_motivacional_alerta_tipo_3.xml
▪ asistente_motivacional_alerta_tipo_4.xml
▪ asistente_motivacional_alerta_tipo_5.xml
▪ asistente_motivacional_alerta_tipo_6.xml

During the implementation, some changes have been made. To keep this feature

consistent with the already existing application, it has been decided to move the icon

to the left and add a title at the right of the image. Under this part, the message of the

motivational assistant and buttons can be displayed.

In this section, Figure 7.35, Figure 7.36, and Figure 7.37 display the layout for alerts.

Figure 7.35 represents a simple notification with the message from the motivational

assistant.

Figure 7.35: UI for Alerts with a plain text message

Figure 7.36 displays a question asked by the motivational assistant. Below that, the

possible answers are provided inside buttons. In this situation, the user has not

interacted with the interface. For this reason, the buttons are green with white text.

Since the user has not picked an option yet, the Next button in the navigation bar at

the bottom is disabled. It will be enabled after the user intervention.

| Development of the new features 73

Figure 7.36: UI for Alerts with a question and possible answers

Figure 7.37 represents the user interface after the user interaction. In this case, the user

has clicked on the first answer. The color of the second changes. Indeed, the button

becomes gray with green text. In addition, the Next button on the navigation bar at the

bottom is now enabled.

74 | Development of the new features

Figure 7.37: UI for Alerts with a question and one answer selected

7.4.5. Communication from the Motivational Assistant

When older adults are the end-user, it is not enough to implement user interface

measures to ensure a satisfactory level of easy-to-use. Indeed, people over the age of

75 have a very different level of education than typical users of technological devices.

This fact impacts mainly two aspects, language, and level of attention.

Language, according to UHOA 16 (Section 2.2) must be familiar. This means using

simple terms and clear feedback in the mobile application. In this way, older users,

regardless of their cultural background, can understand it and the technology does not

create anxiety.

The level of attention, (UHOA 19, Section 2.2) can be ensured by shortness. Instructions

and text should be short, in order to avoid overwhelming the older user with the

cognitive effort of reading extensive messages.

Here below, all the messages or the buttons’ text used in the Alert feature are shown.

Alert Type 1:

Table 7.8: Messages the MA shows to the user during the first connection

Name Message

| Development of the new features 75

primera_conexion_usuario During these 12 weeks of training, I will be your

assistant and I will help you to do exercises every

day.

Clasificacion1 If you do your exercises every day, you will

manage to stay at the top of the leaderboard.

Clasificacion2 This is how the leaderboard appears.

Retos1 From time to time, I will set you a challenge. If

you complete it successfully, you will win a new

award!

Retos2 Once you win the challenge, you will be able to

see your awards collection.

Statistics1 I know you like to keep track of your progress!

Statistics2 Every time you want to check your statistics, just

go to the Statistics section.

Alert Type 2:

Table 7.9: Messages the MA shows to the user after an interrupted exercise session

Name Message

sesion_interrupida_1 I noticed that you didn’t finish your last exercise

session.

Sesion_interrupida_2 Can you tell me why you didn’t finish your

session?

Sesion_interrupida_3 I didn’t have the energy to finish.

Sesion_interrupida_4 I was interrupted by something important.

Sesion_interrupida_5 I didn’t have time for all the exercises.

Alert Type 3:

Table 7.10: Messages the MA shows to the user (Alert Type 3)

Name Message

76 | Development of the new features

informarAusencia I noticed that it has been some time since your

last exercise session.

preguntaProblemas Have you had any problems?

preguntaMotivo Good! Why were you absent?

preguntaPorQueNo Why couldn’t you do the exercises?

tristeEmpatia I’m sorry to hear that, can you tell me more about

your problem?

botonSiProblema Yes, I had a problem.

botonNoProblema No, I have not had any problems.

botonPrefieroNoDecir I prefer not to talk about it.

botonNoHePodido I have not been able to do the exercises.

botonProblemasSalud I have had health problems.

botonCuidadorAusente My caregiver was not there to help me.

botonProblemasTecnicos I have had technical problems.

botonOtrasOcupaciones I have had other occupations.

botonPrecontemplacion I don’t understand why I need to exercise.

botonContemplacion I think it is too difficult to exercise every day.

botonFaltaGanas I didn’t feel like exercising, but it won’t happen

again.

botonVacaciones I have had other occupations or been on holiday.

Alert Type 4:

Table 7.11: Messages the MA shows to the user when explaining a new challenge

Name Message

nuevo_reto I have a new challenge for you! Do you want to

know about it?

| Development of the new features 77

Reto_1_description If you are going to do all the exercises for one

day, you will get this achievement.

Reto_2_description If you are going to do at least one exercise every

day for a week, you will achieve this milestone.

Reto_3_description If you are going to perform all exercises with all

repetitions every day for a week, you will get this

achievement.

Reto_4_description If you are going to do at least one exercise every

day for two weeks, you will achieve this

milestone.

Reto_5_description If you are going to perform all the exercises with

all the repetitions every day for two weeks, you

will achieve this accomplishment.

Reto_6_description If you perform all exercises with all repetitions

every day for a month, you will achieve this

accomplishment.

Reto_7_description Since you gained all the previous awards. Now,

you have the opportunity to win the most

important one. If you are going to perform all

exercises with all repetitions every day during

this week, you will get this achievement!

Alert Type 5:

Table 7.12: Messages the MA shows to the user when informing them about a won challenge

Name Message

reto_conseguido Thanks to your efforts you have earned a new

achievement! Do you want to see it?

preguntaReto Want to see your collection of achievements?

Alert Type 6:

Table 7.13: Messages the MA shows to the user when notifying them about changes in the

leader board

Name Message

78 | Development of the new features

alerta_6_tipo_1 Since your last session other people have worked

hard and overtaken you in the rankings. Now

you have the opportunity to regain your place.

Alerta_6_tipo_2 In your last session you managed to move up in

the rankings

alerta_6_tipo_3 In the last session you were not at your usual

level and lost positions in the standings. I hope

that today you have the strength to try to recover

your position.

Alerta_6_tipo_4 Since your last session you have moved up in the

standings.

preguntaVerClasificacion Do you want to see your position in the leader

board?

Among the main features of the motivational assistant is that it is adaptable and can

customize its “behavior” depending on the situation and the user with whom it is

interacting. For this reason, the motivational assistant can tailor the messages to be

delivered to the user based on the dominant motivation trait and the user’s stage of

change. The tables below provide some examples of tailored messages, proposed by

[3].

Table 7.14 provides the possible answers the MA gives to the user if they decide to

start an exercise session.

Table 7.14: Personalised feedback when the user decides to start an exercise session

 Precontemplation Contemplation Preparation Action/

Maintenance

D “Fantastic!

Regularity means

constant

improvement.”

“Brilliant!

Regular

exercise makes

you feel better

and have more

energy.”

“That is

wonderful!

Exercise will

help you

maintain

your

progress.”

“Excellent! There is

nothing better for

your health than

exercise.”

PM “Awesome! You

are one step

closer to

“That is

wonderful! The

time spent

“Brilliant!

Regular

exercise is

“Awesome! Regular

exercise prevents

many diseases.”

| Development of the new features 79

achieving your

goals.”

exercising

always pays

off.”

easy once

you make it

a habit.”

CS “Awesome! You

are one step

closer to

advancing in the

classification of

patients.”

“Brilliant! Your

results are

remarkable.”

“Wonderful!

This way

you will

maintain

your

excellent

results.”

“Fantastic! Keep up

the good job and

you will be one of

the top project

participants.”

ORG “Awesome! Your

dearest ones will

be very proud of

you.”

“Brilliant! Your

results are

remarkable.”

“Excellent!

Getting

stronger

means being

there for

your dearest

ones.”

“Excellent! Being

more fit means

being there for your

dearest ones.”

FA “It is awesome

that you decided

to exercise

today!”

“Fantastic! You

are doing a

great job.”

“Brilliant! I

know that

you can do

it.”

“Excellent! I believe

in you.”

Table 7.15 shows the messages the MA sends to the user if they decide not to perform

an exercise session.

Table 7.15: Personalised feedback when the user decides not to start an exercise session

 Precontemplation Contemplation Preparation Action/

Maintenance

D “Alright but

please do not

forget about your

goals.”

“Okay but

remember that

regular

exercise is

important for

your health.”

“Alright

but do not

forget that

regular

exercise

makes you

feel better.”

“That is a shame.

Exercising would

help you maintain

your progress.”

PM “That is a shame.

Exercising would

help you

“Okay but

remember that

regular

“That is a

shame.

Regular

“I am sorry to hear

that. Please

remember that

80 | Development of the new features

maintain your

progress.”

exercise

prevents many

diseases.”

exercise is

good for

your

heart.”

exercise makes your

bones and muscles

stronger.”

CS “That is a shame.

Regular exercise

would help you

advance in the

classification of

patients.”

“I am sorry to

hear that.

Remember that

you have a

chance to be

one of the top

project

participants.”

“Alright

but

remember

that

exercise

would help

you

maintain

your

results”

“Alright but did

you know that

finding a fixed time

to do your exercise

makes it easier?”

ORG “Alright but

please remember

that many people

have made it to

follow this

programme. You

can do it, too!”

“Alright but

please

remember that

regular

exercise is easy

once you make

it a habit.”

“Okay but

keep in

mind that

exercise is

easy once

you make it

a habit.”

“Alright but please

remember that

many people have

made it to follow

this programme.

You can do it, too!”

FA “Alright, do not

worry. Have a

rest and come

back later.”

“Alright, you

are still doing a

great job.

Come back

when you feel

better.”

“Okay, no

problem.

Take a

break and

come back

when you

feel ready.”

“Alright, do not

worry. I am sure

that you will feel

better after a small

break.”

When the user receives the alert type 3 (2 days of inactivity), the MA asks about the

reasons why they were absent. First, it asks whether they had a problem or not. Table

7.16 shows the messages the MA provides if the user explains they did not have a

problem.

Table 7.16: Personalised feedback when the user explains they had a problem

 Precontemplation Contemplation Preparation Action/

Maintenance

| Development of the new features 81

D “I am glad to hear

that. Did you

know that regular

exercise improves

your sleep?”

“That is good

to hear but

please imagine

how daily

exercise would

change your

life!”

“That is great

to hear but

please

remember

that

regularity is

important.”

“I am glad to hear

that but please

remember that

regularity always

pays off.”

PM “That is great to

hear but please

do not forget

about your

goals.”

“That is good

to hear but

remember that

regular

exercise helps

you maintain

your

progress.”

“That is great

to hear.

Please

remember

that being

consistent is

important to

achieve your

goals.”

“It is great to hear

that. Please do not

forget that exercise

makes you

stronger.”

CS “I am glad to hear

that. Please

remember that

regular exercise

helps you

advance in the

user

classification.”

“That is good

to hear but

please imagine

how daily

exercise would

change your

life!”

“I am glad to

hear that but

keep in mind

that exercise

is easy once

you make it a

habit.”

“I am glad. Please

remember that

regular exercise

helps you maintain

your results”

ORG “That is good to

hear but please

remember that

getting stronger

means being there

for your close

ones.”

“I am glad to

hear that but

please

remember that

exercising is

easier after a

few times.”

“I am glad to

hear that.

Your dearest

ones will be

proud that

you

connected

yourself

today!”

“I am glad to hear

that. Your dearest

ones will be proud

that you connected

yourself today!”

FA “That is good to

hear. I am proud

that you decided

to connect

yourself today.”

“I am glad.

You are still

doing a great

job connecting

“That is good

to hear. Did

you know

that finding a

fixed time to

“I am glad to hear

that. I hope that

you are feeling

better after this

break.”

82 | Development of the new features

yourself

today.”

do exercise

makes it

easier to

follow the

programme?”

7.5. Further Changes

During the development of the previously explained features, an important design

issue was how the user should reach them. The leader board, the challenges, and the

user statistics are under the path Homepage/My Progress/My Results, as Figure 7.38

shows.

Figure 7.38: Path to reach the features

In the beginning, the possibility to reach these directly from the homepage was added,

as shown in Figure 7.39. However, in order to agree with UHOA 9 and UHOA 10

(Section 2.2), this option was later removed (Figure 7.40). Indeed, the three buttons

were placed at the top of the interface, which is a hard-to-reach point. In addition,

older adults tend to have better user experiences with an application when layouts are

simple, even at the cost of reducing the set of available functionalities.

| Development of the new features 83

Figure 7.39: Homepage with the buttons

at the top

Figure 7.40: Homepage without the three

buttons at the top

Nevertheless, since these features are a fundamental part of the motivational assistant,

it was thought they were too hidden, so it was suggested to add a button to those

already present in the homepage. So, either the Leader board button, or Challenges or

Statistics, is placed below the Report fall button. The choice of which button to display

is based on the dominant motivational trait. During the generation of the main menu,

an object of the type RasgoMotivacional is created. The method

obtenerBotonesPersonalizados is next called. This function first generates a GET

request to obtain the values of each motivational trait from the server. It then checks

whether the requirements to show one of the three buttons are met. If this is the case,

it is set to VISIBLE via setVisibility (Figure 7.41). An example of the resulting

homepage is represented in Figure 7.42.

Figure 7.41: Algorithm that computes which button will be shown on the homepage

84 | Development of the new features

Figure 7.42: Example of the homepage, the Leader board is displayed because the user has

Competition Seeking as dominant trait

 85

8 Cognitive Walkthrough

A Cognitive Walkthrough is a technique for evaluating usability. It entails using a

predesigned artifact or a functional prototype to complete a series of predetermined

user tasks. This is normally done by a usability specialist who goes through the

activities step by step, assessing how well a user would do at each stage, as well as

which components can create confusion and which mistakes might arise [23]. It is the

role of the usability expert to identify any possible deviations from the designer’s ideal

user task solution path [24].

The selection of user tasks to be evaluated is one of the most important things to

address before doing a Cognitive Walkthrough. The chosen actions, according to [25],

should be representational of the system. Furthermore, the usability analyst should

answer a series of questions regarding the users’ goals and knowledge, as well as the

perceptible system and interface state, at each stage [25].

This usability evaluation approach, according to [23], is especially well-suited for the

design of systems that may be new to the target user group. This may frequently be

the case when building software applications for older persons.

The Cognitive Walkthrough was performed by a subject matter expert who works

with older adults on a regular basis. A set of guiding questions were provided to the

expert so that the system could be evaluated.

▪ Is the cognitive load for the user too high?

▪ Is the language used understandable for older adults?

▪ Are there any usability criticisms?

▪ Will the user associate the correct action with the effect they are trying to achieve?

▪ Do changes in the user interface show an appropriate progress in the task?

Three different scenarios have been evaluated:

1. First connection of the user

2. Changes in the leader board

3. New challenge and achievement of it

8.1. First connection of the user

Number 1

86 | Cognitive Walkthrough

Scenario First connection of the user

Description The user is a 70-year-old patient who was

prescribed with a Vivifrail exercise programme.

They are robust and in an overall good health

condition. They have been associated with the

motivational trait Competition Seeking.

They are starting the programme today. In the

previous days, a technician explained them how

the mobile application works.

| Cognitive Walkthrough 87

Figure 8.1: First interface of

Alert type 1

The first time the user opens the application, the

motivational assistant introduces itself. Figure

8.1 shows the first screen of the Alert type 1.

The expert explains that the image and the title

are good, but the “Welcome!” should be placed

horizontally-centered. The message is concise

and understandable. Also, this text should be

horizontally-centered.

He suggests increasing the padding and margin

in the navigation bar.

In general, an increment of the margin should be

implemented.

Figure 8.2: Second interface

of Alert type 1 (Competition

Seeking) MA introducing the

leader board

In order to avoid messages too long, we decided

to split the communications along more screens.

Figure 8.2 represents the motivational assistant

introducing the leader board feature.

The expert explains that it’s always better to have

short texts. He appreciated the direct tone of the

messages.

88 | Cognitive Walkthrough

Figure 8.3: Third interface of

Alert type 1 (Competition

Seeking) MA showing how

the leader board looks like

In this screen (Figure 8.3), the motivational

assistant shows how the leader board looks like.

The expert raised concerns about the size of the

image. Also, he is not sure whether the % format

can be understood by elderly people (given their

backgrounds). In any case, he recommends

checking it during the usability testing phase.

Finally, he suggests replacing the word ‘appears’

with ‘looks like’.

Figure 8.4: Fourth interface of

Alert type 1, MA asking to

start the first exercise session

After the explanation, the motivational assistant

asks the user whether they want to start their first

exercise session (Figure 8.4).

As highlighted before, the expert thinks the text

should be placed in the center.

The only suggestion is to remove the ‘thank you!’

in the second button.

| Cognitive Walkthrough 89

Figure 8.5: Fourth interface of

Alert type 1 after user

interaction

The screen, after having selected an option,

changes as depicted in Figure 8.5. The chosen

button is highlighted and the other one is faded

using a grey color. The text of the unselected

button changes color, becoming green.

Moreover, the “Next” button changes its color

from grey to green, which draws the attention of

the patient to using this option.

The expert identified these modifications as

understandable by the user. The feedback is

strong enough to be noticed. Anyway, he

explains that depending on the users, the double

confirmation of the selection could be

appreciated or not.

Figure 8.6: Fifth interface of

Alert type 1, MA wishing a

pleasant workout

Before being redirected to the exercise session,

the motivational assistant sends a kind message

to the user (Figure 8.6).

The expert, again, recommends putting the text

horizontally-centered.

90 | Cognitive Walkthrough

Figure 8.7: My exercise menu

The My exercises menu screen (Figure 8.7) is

displayed after the user has selected the option to

start an exercise session and confirmed it with

the “Next” button.

The expert explains that the notification boxes

(red boxes with a number) are cognitively

demanding for older adults. In addition, in some

cases, they hide the text.

Figure 8.8: Exercise interface

The screen presented in Figure 8.8 comes from

the original application for patients developed

during POSITIVE. This application screen was

not modified for the sake of this investigation.

Nonetheless, it was included in the evaluated

scenario since it is part of the predefined path to

solve the user’s task.

According to the subject matter expert, the screen

with exercise instructions is not consistent with

other parts of the application. The evaluator

stated that the buttons (‘See instructions’ and

‘Watch video’) have smaller size and opposite

colors. They should be modified to ensure a

consistent user interface and decrease the

patient’s cognitive load.

| Cognitive Walkthrough 91

Figure 8.9: Pop-up window

to exit an exercise session

When the user is in the middle of an exercise

session, they have the option to exit it, by

pressing the “Home” button. By doing so, a pop-

up appears (Figure 8.9), asking for a

confirmation.

The expert explains that usually pop-ups are not

recommended for older adults. Nevertheless, he

stated that in this case it fits with the double

confirmation function. In addition, the pop-up

window does cover basically the entire screen.

For this reason, it does not increase the cognitive

load.

Figure 8.10: Homepage of the

app

The screen presented in Figure 8.10 comes from

the original application for patients developed

during POSITIVE. The user comes back here

every time the "Home" button is pressed.

92 | Cognitive Walkthrough

Figure 8.11: First interface of

Alert type 2

Once the user selected the “Yes, I would like to

exit” button (Figure 8.9), the system generates a

new alert, that will be shown to the user at the

following restart of the application.

Figure 8.11 presents the first screen of the alert

type 2.

The expert suggests minimizing the title in green,

by removing “It’s good to see you again”. He

proposes to move that text to the body text

below.

Regarding that text, he remarks to put the text

vertically and horizontally centered.

Figure 8.12: Second interface

of the Alert type 2, MA

asking information about the

interruption

When the user receives this alert, they are asked

to answer a question about the reasons for

interrupting the last exercise session (Figure

8.12).

The expert raises concerns about the length of

text in buttons. He suggests being more concise

and focusing on keywords. For example, instead

of “I didn’t have the energy to finish”, a simple

“Lack of energy”. Moreover, instead of “I was

interrupted by something important”, just

“Interrupted by something”. Finally, instead of

“I didn’t have time for all the exercises”, replace

it with “Lack of time”.

| Cognitive Walkthrough 93

Figure 8.13: Second interface

of Alert type 2 after user

interaction

As explained above, when the user interacts with

the system, by choosing among multiple options,

the interface adapts itself. The unselected buttons

become grey with green text. The next button

becomes green, so as to mean that it is now

enabled (Figure 8.13).

The expert does not add further comments.

Figure 8.14: Third interface of

Alert type 2, MA asking to

continue with an exercise

session

As it happens in the alert type 1, also here the

motivational assistant proposes an exercise

session to the user. In this case, the message is

slightly different. It says “continue” because the

user interrupted an exercise session (Figure 8.14).

The expert explains he is not convinced that the

title is explanatory enough.

94 | Cognitive Walkthrough

Figure 8.15: Third interface of

Alert type 2 after user

interaction

As explained above, when the user interacts with

the system, by choosing among multiple options,

the interface adapts itself. The unselected buttons

become grey with green text. The next button

becomes green, so as to mean that it is now

enabled (Figure 8.15).

The expert does not add further comments.

Figure 8.16: Fourth interface

of Alert type 2

If the user decides not to continue with an

exercise session, the motivational assistant

reminds them to come back later (Figure 8.16).

The expert considers this message effective. The

motivational assistant addresses the patient in a

polite and friendly manner.

8.2. Changes in the leader board

Number 2

| Cognitive Walkthrough 95

Scenario Changes in the leader board

Description The user is a 70-year-old patient who was

prescribed with a Vivifrail exercise programme.

They have been associated with the motivational

trait Competition Seeking. They have been using

the mobile application for a few weeks. They

receive an alert from the motivational assistant

related to changes in the leader board.

96 | Cognitive Walkthrough

Figure 8.17: First interface of

Alert type 6, MA explaining

the changes in the leader

board

Figure 8.17 represents the first screen of the Alert

type 6 (Changes in the leader board). The

motivation assistant first explains the changes in

the ranking. Then, it gives the user a motivational

message to cheer them up.

According to the expert, the quantity of the text

is copious. He suggests splitting the message in

more paragraphs and centering it properly.

Another option is splitting the message into more

screens.

In addition, he proposes to change the title, by

removing the “It’s good to see you again!”

Figure 8.18: Second interface

of Alert type 6, MA asking if

the user wants t osee the

leader board

Once the user is aware of the change in the

standing, the motivational assistant checks

whether the user wants to see the leader board

(Figure 8.18).

The expert believes that a more concise text could

be more effective. He suggests putting simple

“Yes” and “No” buttons, without further text.

| Cognitive Walkthrough 97

Figure 8.19: Second interface

of Alert type 6, after user

interaction

As explained above, when the user interacts with

the system, by choosing among multiple options,

the interface adapts itself. The unselected button

becomes grey with green text. The next button

becomes green, so as to mean that it is now

enabled (Figure 8.19).

The expert does not add further comments.

Figure 8.20: Daily Leader

board interface

The user interface changes and displays the Daily

Leader board (Figure 8.20).

According to the expert, the overall size is good,

and the icons are explanatory enough. He

wonders whether the % might be understood or

not by older adults. In addition, he thinks that the

date of yesterday could lead the patient to think

that it is today's leaderboard, thus leading to

confusion. He proposes further investigations

and solutions, such as, instead of the date,

writing “Yesterday”.

8.3. New challenge and achievement of it

Number 3

98 | Cognitive Walkthrough

Scenario New challenge and achievement of it

Description The user is a 70-year-old patient who was

prescribed with a Vivifrail exercise programme.

They are robust and in an overall good health

condition. They have been associated with the

motivational trait Personal Mastery. They started

the programme some days ago. It’s time for a

new challenge.

| Cognitive Walkthrough 99

Figure 8.21: First interface of

Alert type 4, MA saying it

has a new challenge for the

user

As explained above, a patient with High profile

of Personal Mastery has the Challenges feature

available. When the system has to propose a new

challenge, the motivational assistant sends an

alert to the user. Figure 8.21 shows the first screen

of the dialogue.

The expert suggests minimizing the title,

removing “It’s good to see you again!”. The text

is understandable, and the wording is familiar.

Figure 8.22: First interface of

Alert type 4, after user

interaction

As explained above, when the user interacts with

the system, by choosing among multiple options,

the interface adapts itself. The unselected button

becomes grey with green text. The next button

becomes green, so as to mean that it is now

enabled (Figure 8.22).

The expert does not add further comments.

100 | Cognitive Walkthrough

Figure 8.23: Second interface

of Alert type 4, MA

explaining the new challenge

In order to explain the new challenge, the

following interface is shown to the patient

(Figure 8.23).

The expert points out the following criticism: the

title of the challenge should be in black, maybe in

italic (Two regular weeks). In addition, he suggests

rephrasing the description below. Instead of “If

you are going to do at least one exercise every day for

two weeks, you will achieve this milestone”, he

proposes “You will achieve this award if you exercise

every day during two weeks”. Finally, he would

place everything more centered.

Figure 8.24: Third interface of

Alert type 4, MA proposing

an exercise session

After presenting the challenge, the motivational

assistant asks the patient whether they want to

start an exercise session (Figure 8.24).

The expert recommends increasing the overall

margin.

| Cognitive Walkthrough 101

Figure 8.25: Third interface of

Alert type 4, after user

interaction

As explained above, when the user interacts with

the system, by choosing among multiple options,

the interface adapts itself. The unselected button

becomes grey with green text. The next button

becomes green, so as to mean that it is now

enabled (Figure 8.25).

The expert does not add further comments.

Figure 8.26: Fourth interface

of Alert type 4

As seen above, if the user decides not to continue

with an exercise session, the motivational

assistant reminds them to come back later

(Figure 8.26).

102 | Cognitive Walkthrough

Figure 8.27: Homepage of the

application

Figure 8.27 represents the homepage of the

application. The buttons “My challenges” and

“Statistics” have been added to allow the user to

reach the sections directly from here.

According to the expert, the possibility to have a

direct link is good as long as these are main

functionalities. The title’s color should be set to

green, to be consistent with the whole system. In

addition, the word “Challenges” should be in

lowercase.

Figure 8.28: My challenge

menu

When the user presses “My challenges”, the

interface changes and the menu is displayed

(Figure 8.28).

The expert remarks to change “Challenge” to

lowercase.

The icons are understandable and close to the

meaning.

| Cognitive Walkthrough 103

Figure 8.29: Next challenge

interface

By clicking the “Next challenge” button, the

interface with the pending challenge is shown

(Figure 8.29).

According to the expert, the button does not

seem as such. It is not consistent with the style

used in the rest of the application. For this reason,

he suggests replacing it with a basic button.

In addition, he looks doubtable about the icon. In

his opinion, the meaning of the icon is not clear

at first glance.

Figure 8.30: Specific

challenge description

interface

The expert suggests rephrasing the description

provided in Figure 8.30. Instead of “If you are

going to do at least one exercise every day for two

weeks, you will achieve this milestone”, he proposes

“You will achieve this award if you exercise every day

during two weeks”.

He appreciates the motivational message below,

even if he thinks the font size should be the same

as the description.

Finally, he would place everything more

centered.

104 | Cognitive Walkthrough

Figure 8.31: First interface of

Alert type 5, MA

congratulating to the user

When the user wins the challenge, the

motivational assistant congratulates them. Also,

it asks the user if they want to see which

challenge has been won (Figure 8.31).

The expert suggests removing “Great to see you”

from the title. In addition, the “Not right now,

thank you!” could be more concise, by removing

“thank you!”.

Also, he proposes splitting the text after the first

sentence. In addition, to be consistent, instead of

using the word “achievement”, it would be better

to use “award”.

Figure 8.32: First interface of

Alert type 5, after user

interaction

As explained above, when the user interacts with

the system, by choosing among multiple options,

the interface adapts itself. The unselected button

becomes grey with green text. The next button

becomes green, so as to mean that it is now

enabled (Figure 8.32).

The expert does not add further comments.

Maybe too many colors in the same screen

| Cognitive Walkthrough 105

Figure 8.33: Second interface

of Alert type 5, MA showing

the won challenge

If the user allows the motivational assistant to

show them the won challenge, the interface

represented by Figure 8.33 appears.

According to the expert, the card seems to be an

interactive button. The suggestion is removing

the green background.

Figure 8.34: Third interface of

Alert type 5, MA asking to

the user if they want to see

the award collection

Since the user has earned a new award, the

motivational assistant asks them if they want to

see the award’s collection (Figure 8.34).

The expert reports that unlike the previous

sentences, this one does not use “Do you”. He

suggests adding it.

106 | Cognitive Walkthrough

Figure 8.35: Third interface of

Alert type 5, after user

interaction

As explained above, when the user interacts with

the system, by choosing among multiple options,

the interface adapts itself. The unselected button

becomes grey with green text. The next button

becomes green, so as to mean that it is now

enabled (Figure 8.35).

The expert does not add further comments.

Figure 8.36: Award collection

interface

Figure 8.36 represents the award collection. This

interface displays all the awards earned so far. By

clicking on them a new interface appears.

According to the expert, they do not seem

buttons. The basic user would not understand

them as such. For this reason, he proposes

making them consistent with all the buttons in

the application.

In addition, he is skeptical about the icons. He

does not clearly see the association between the

icon and the challenge.

| Cognitive Walkthrough 107

Figure 8.37: Specific award

interface

Once one of the buttons is pressed, the respective

interface is shown (Figure 8.37).

The expert reports the following issues: the text

“You earned this on” should not be in green. The

date should not be in grey. All the text which is

not title should be in black. In addition, the

motivational message is bigger. He suggests

adapting all the text and putting it vertically

centered.

 109

9 Conclusion and Future Work

9.1. Conclusion

The work presented in this document is part of a research line addressed by the

ActiveUP project, a national initiative created to prevent frailty in older adults. The

pilot results of the previous POSITIVE project highlighted that the proposed solution

had a low rate of adherence to the exercise plan. According to [14], one way to solve

this problem relies on the cooperation between motivation and technology.

The presented tool represents an innovative way of providing support to the elderly,

by involving motivation. It adapts itself according to the user profile by giving

customized messages and featuring ad-hoc functionalities. This way, every patient can

receive tailor-made motivational support.

The following objectives were achieved:

1. Migration to the new server in Python – all the required functionalities are now

implemented and available in the new server.

2. Migration to the new android application – the Vivifrail package is now fully

integrated into the new version of the application for patients.

3. Refactoring of the motivational assistant component done so far – the issues

identified in Section 4.1 are now fixed.

4. Design of new features – Leader board, Challenges, User statistics and Alerts

were designed, prototyped, evaluated by an expert and improved.

5. Implementing the motivational assistant component – the features proposed

by Sokól [3] were implemented. In particular, the component features now the

Leader board, the Challenges, the User statistics, and the Alerts mechanism.

In June 2022, the Cognitive Walkthrough usability evaluation has been performed.

Due to time constraints, it has not been possible to make all the changes suggested

during the Cognitive Walkthrough by the expert.

The effort required for the migration to the new server and the new version of the

mobile application moved the testing out of the scope of the current thesis. In addition,

other features presented by Sokól [3] have not been further considered.

9.2. Future work

The following tasks were identified as future steps to be performed in the next months:

110 | Conclusion and Future Work

1. Further changes to the Python server - the new Python server is still under

development. Some solutions that would optimize the server have already been

identified. It is very likely that new changes will have to be made.

2. Improvements of the Motivational Assistant – during the Cognitive

Walkthrough, the expert pointed at some minor problems and inconsistencies.

These will be solved in the next weeks.

3. Design and development of new features – addition to the motivational

assistant component of new features depicted by Sokól [3]

4. Testing with real users of the Motivational Assistant - in the following

months, the motivational assistant is expected to be tested with real users. In

particular, the Ageing Lab is planning to perform the so-called A/B test. It

consists of providing two different versions of the system to determine which

of them brings more benefits. A testing phase could raise problems or

drawbacks to fix in order to optimize the tool.

 111

Bibliography

[1] World Health Organization, "World report on ageing and health," 2015.

[2] Q.-L. Xue, "The Frailty Syndrome: Definition and Natural History," Clinics in

geriatric medicine, vol. 27, n. 1, pp. 1-15, 2011.

[3] N. Sokól, "Application of Motivational Traits, Motivational State and Stage of

Change Modelling for Frailty Prevention in Older Adults," 2021.

[4] D. F.-A. Pedraza, "Modelado y gestión de la motivación en sistemas

computacionales," 2020.

[5] L. Zorzenon, "Design of a Digital Game for Motivational Profile Detection in the

Elderly Using a Modular Architecture," 2021.

[6] J. Nielsen, "Usability Engineering," San Diego, 1993.

[7] C. L. John D. Gould, "Communications of the ACM," in Designing for usability: key

principles and what designers think, 1985, p. 300–311.

[8] W3, "Notes on User Centered Design Process (UCD)," [Online]. Available:

https://www.w3.org/WAI/redesign/ucd.

[9] A. Smith, "Older Adults and Technology Use," Pew Research Center, 2014.

[10] M. G. Hernandez, Heuristics established by a systematic review of guidelines to design

mobile technology for older adults, 2022.

[11] Vivifrail, "Vivifrail project," [Online]. Available: https://vivifrail.com/.

[12] M. Izquierdo, "Prescripción de ejercicio físico. El programa Vivifrail como

modelo," Nutrición Hospitalaria, p. 50–56, 2019.

[13] POSITIVE, "Maintaining and improving the intrinsic capacity involving primary

care and caregivers," [Online]. Available: https://eithealth.eu/project/positive/.

112 | Bibliography

[14] N. E. Miller, "“Literalization of Basic S-R Concepts: Extensions to Conflict

Behavior, Modification, and Social Learning," in Psychology: A Study of a Science,

New York, S. Koch, 1959, p. 196–202.

[15] R. M. W. G. C. P. H. a. D. E. L. Ryan, "Self-determination Theory and Physical

Activity: the Dynamics of Motivation in Development and Wellness," Hellenic J.

Psychol, 2009, p. 107–124.

[16] T. M. e. a. O’Neil-Pirozzi, The Importance of Motivation to Older Adult Physical

and Cognitive Exercise Program Development, Initiation, and Adherence,

Frontiers, 2022.

[17] S. F. T. D. a. R. M. A. Rivera-Torres, "Adherence to Exercise Programs in Older

Adults: Informative Report. Gerontol," Geriatr. Med. 5, 2019.

[18] RabbitMQ, "Documentation: Table of Contents — RabbitMQ.," [Online].

Available: https://www.rabbitmq.com/documentation.html..

[19] cron-job.org, "Free cronjobs - from minutely to once a year.," [Online]. Available:

https://cron-job.org/en/..

[20] R. &. H. E. D. Kanfer, "Motivational Traits and Skills: A Person- Centered

Approach to Work Motivation”," in Research in Organizational Behavior, 1997, p.

1–56.

[21] A. &. P. H. De Vicente, "Informing the Detection of the Students’ Motivational

State: An Empirical Study”," in Lecture Notes in Computer Science, 2002, p. 933–943.

[22] J. O. &. V. W. F. Prochaska, "The Transtheoretical Model of Health Behavior

Change," American Journal of Health Promotion, p. 38–48., 1997.

[23] S. B. W. R. C. N. &. R. W. A. Czaja, Designing for older adults. Principles and

Creative Human Factors Approaches, Boca Raton: CRC Press, 2019.

[24] Möller, Quality Engineering: Qualität kommunikationstechnischer Systeme,

Berlin: Springer, 2010.

[25] R. M. G. J. B. W. A. S. &. G. S. Baecker, "Chapter 2: Design and Evaluation," in

Readings in Human-Computer Interaction: Toward the Year 2000, San Francisco,

Morgan Kaufmann Publishers, 1995, p. 73–91.

[26] "https://support.microsoft.com/en-us/word," [Online].

 113

 115

A Appendix A

A.1. SQL queries to retrieve the leader board

getClasificacionDiaria performs the following query:

"(SELECT id_paciente, nombre, eval AS eval FROM eval JOIN
paciente ON eval.id_paciente=paciente.id WHERE id_paciente= " +
patient_id + " AND (timestamp>= curdate() OR timestamp>=
DATE_SUB(CURDATE(), INTERVAL 2 DAY)) AND tipo = 1 ORDER BY
timestamp DESC LIMIT 1)" +
"UNION" +
"(SELECT id_paciente, nombre, eval AS eval FROM eval JOIN
paciente ON eval.id_paciente=paciente.id WHERE (id_grupo IN
(SELECT id_grupo as grupo FROM paciente WHERE id = " + patient_id
+ ")) AND (timestamp>= curdate() OR timestamp>=
DATE_SUB(CURDATE(), INTERVAL 2 DAY)) AND tipo = 1 AND
id_paciente !=" + patient_id + " GROUP BY id_paciente)" + "ORDER
BY eval DESC"

It returns an object with patient_id, patient_name, and eval.

getClasificacionSemana performs the following query:

"(SELECT id_paciente AS id_usuario, nombre, eval AS semanal_eval
FROM eval JOIN paciente ON eval.id_paciente=paciente.id WHERE
id_paciente = " + patient_id + " AND tipo = 2 AND
id_index_actividades = 0 ORDER BY timestamp DESC LIMIT 1)" +
"UNION" +
" (SELECT id_paciente AS id_usuario, nombre, eval AS
semanal_eval FROM eval JOIN paciente ON
eval.id_paciente=paciente.id WHERE (id_grupo IN (SELECT
id_grupo as grupo FROM paciente WHERE id = " + patient_id + "))
AND timestamp>=DATE_SUB(CURDATE(), INTERVAL 6 DAY) AND tipo = 2
AND id_paciente !=" + patient_id + ") " + "ORDER BY semanal_eval
DESC"

It returns an object with patient_id, patient_name, and eval.

getClasificacionGlobal performs the following query:

"(SELECT id_paciente AS id_usuario, nombre,
SUM(eval)/COUNT(eval) AS global_eval FROM eval JOIN paciente ON

116 | Appendix A

eval.id_paciente=paciente.id WHERE id_paciente = " + patient_id
+ " AND tipo = 1)" +
"UNION" +
"(SELECT id_paciente, nombre, (SUM(eval)/COUNT(eval)) AS
global_eval FROM eval JOIN paciente AS P ON
eval.id_paciente=P.id WHERE tipo=1 AND (P.id_grupo IN (SELECT
id_grupo FROM paciente AS P WHERE P.id=" + patient_id + "))
GROUP BY id_paciente)" + "ORDER BY global_eval DESC"

It returns an object with patient_id, patient_name, and eval.

A.2. Code to compute changes in the leader board

A.2.1. leaderboard.js

The following functions are in charge of check whether the user has gained or lost

positions in the leader board. According to the result, an alerto f type 6 is generated.

require("dotenv").config();

// Modulo para ejecutar comandos como en el Cron de Linux, pero
desde NodeJS

var CronJob = require("cron").CronJob;

// add timestamps in front of log messages

require("console-stamp")(console, {

 format: ":date(dd/mm/yyyy HH:MM:ss)",

});

var mysql = require("mysql");

//Conexion SQL:

var usuarioDB = process.env.usuarioDB;

var passDB = process.env.passDB; //g3r14tr14 // XvzHjtzDwvtJ7Lcv

var dirDB = process.env.dirDB;

var databaseDB = process.env.databaseDB;

var portDB = process.env.puerto_db;

var db;

| Appendix A 117

function conectarSQL() {

 db = mysql.createPool({

 connectionLimit: 1000,

 host: dirDB,

 user: usuarioDB,

 password: passDB,

 database: databaseDB,

 port: portDB,

 });

}

function computeCambiosLeaderboard() {

 console.log("computeLeaderBoard");

 db.getConnection(function (err, connection) {

 if (err) throw err; // not connected!

 var query = connection.query("SELECT * FROM grupo", function
(error, rows) {

 connection.release();

 if (error) {

 console.log("Error en computar numero de grupos " + error);

 numero = 0;

 } else {

 rows.forEach((resultado) => {

 var group_id = resultado.id;

 clasificacionHoy(group_id);

 });

 }

 });

 });

}

function clasificacionHoy(group_id) {

 console.log("clasificacionHoy for group: " + group_id);

118 | Appendix A

 db.getConnection(function (err, connection) {

 if (err) throw err; // not connected!

 // Generacion de la clasificación

 var query = connection.query(

 "SELECT id_paciente, eval, timestamp FROM eval JOIN paciente
ON eval.id_paciente=paciente.id WHERE tipo=1 AND id_grupo= " +

 group_id +

 " AND timestamp >= DATE_SUB(CURDATE(), INTERVAL 2 DAY) ORDER
BY eval DESC",

 function (error, rows) {

 connection.release();

 if (error) {

 console.log("clasificacionHoy: Error al actualizar " +
error);

 } else {

 console.log("clasificacionHoy: Esta: " + "\n" +
JSON.stringify(rows));

 var lista_hoy = [];

 rows.forEach(function (row) {

 lista_hoy.push(row.id_paciente);

 });

 clasificacionAyer(group_id, lista_hoy);

 }

 }

);

 });

}

function clasificacionAyer(group_id, lista_hoy) {

 db.getConnection(function (err, connection) {

 if (err) throw err; // not connected!

 // Generacion de la clasificación

 var query = connection.query(

 "SELECT id_paciente, eval, timestamp FROM eval JOIN paciente
ON eval.id_paciente=paciente.id WHERE tipo=1 AND id_grupo= " +

| Appendix A 119

 group_id +

 " AND timestamp>= DATE_SUB(CURDATE(), INTERVAL 3 DAY) AND
timestamp< DATE_SUB(CURDATE(), INTERVAL 2 DAY) ORDER BY eval DESC",

 function (error, rows) {

 connection.release();

 if (error) {

 console.log("clasificacionAyer: Error al actualizar " +
error);

 } else {

 console.log(

 "clasificacionAyer: Esta: " + "\n" +
JSON.stringify(rows)

);

 var lista_ayer = [];

 rows.forEach(function (row) {

 lista_ayer.push(row.id_paciente);

 });

 changes(lista_hoy, lista_ayer);

 }

 }

);

 });

}

function changes(lista_ayer, lista_hoy) {

 lista_ayer.forEach((patient_id) => {

 console.log(

 "Change for user " +

 patient_id +

 " : " +

 lista_ayer.indexOf(patient_id) +

 " - " +

 lista_hoy.indexOf(patient_id)

);

 var change = lista_ayer.indexOf(patient_id) -
lista_hoy.indexOf(patient_id);

120 | Appendix A

 console.log("Change value: " + change);

 alertaClasificacion(patient_id, change);

 });

}

function alertaClasificacion(patient_id, change) {

 console.log("alertaClasificacion for user: " + patient_id);

 if (change > 0) {

 db.getConnection(function (err, connection) {

 if (err) throw err; // not connected!

 //Inserta una alerta nueva al eval

 var query = connection.query(

 "INSERT INTO alertas_asistente (id_paciente, id_alerta,
id_contenido, avisada, conclusion) VALUES (" +

 patient_id +

 ", 6, 11, 0, 0)",

 function (error, rows) {

 connection.release();

 if (error) {

 console.log("alertaClasificacion: " + error);

 } else {

 console.log("New alertaClasificacion added");

 }

 }

);

 });

 } else if (change < 0) {

 db.getConnection(function (err, connection) {

 if (err) throw err; // not connected!

 //Inserta una alerta nueva al eval

 var query = connection.query(

 "INSERT INTO alertas_asistente (id_paciente, id_alerta,
id_contenido, avisada, conclusion) VALUES (" +

 patient_id +

 ", 6, 12, 0, 0)",

| Appendix A 121

 function (error, rows) {

 connection.release();

 if (error) {

 console.log("alertaClasificacion: " + error);

 } else {

 console.log("New alertaClasificacion added");

 }

 }

);

 });

 }

}

conectarSQL();

computeCambiosLeaderboard();

 123

B Appendix B

B.1. Code to handle the Challenges feature

B.1.1. check_status_challenges.js

The following code is in charge of checking the status of progress of a challenge.

require("dotenv").config();

// Modulo para ejecutar comandos como en el Cron de Linux, pero
desde NodeJS

var CronJob = require("cron").CronJob;

// add timestamps in front of log messages

require("console-stamp")(console, {

 format: ":date(dd/mm/yyyy HH:MM:ss)",

});

var mysql = require("mysql");

//Conexion SQL:

var usuarioDB = process.env.usuarioDB;

var passDB = process.env.passDB; //g3r14tr14 // XvzHjtzDwvtJ7Lcv

var dirDB = process.env.dirDB;

var databaseDB = process.env.databaseDB;

var portDB = process.env.puerto_db;

var db;

function conectarSQL() {

 db = mysql.createPool({

124 | Appendix B

 connectionLimit: 1000,

 host: dirDB,

 user: usuarioDB,

 password: passDB,

 database: databaseDB,

 port: portDB,

 });

}

function computePatients() {

 console.log("computeWeek");

 db.getConnection(function (err, connection) {

 if (err) throw err; // not connected!

 var query = connection.query(

 "SELECT id_paciente FROM perfil_motivacional WHERE id_perfil =
2 AND valor = 2",

 function (error_id, rows_id) {

 connection.release();

 if (error_id) {

 console.log("No obtenemos el ID de los pacientes");

 } else {

 if (rows_id.length > 0) {

 console.log("Tenemos " + rows_id.length + " usuarios");

 rows_id.forEach((resultado) => {

 var patient_id = resultado.id_paciente;

 console.log("Paciente: " + patient_id);

 checkChallengeInProgress(patient_id);

 });

 }

 }

 }

);

| Appendix B 125

 });

}

function checkChallengeInProgress(patient_id) {

 console.log("checkChallengeInProgress for user: " + patient_id);

 db.getConnection(function (err, connection) {

 if (err) throw err; // not connected!

 var query = connection.query(

 "SELECT id_reto FROM retos WHERE id_paciente = " +

 patient_id +

 " AND status = '0'",

 function (error, rows) {

 connection.release();

 if (error) {

 console.log("Error while retrieving data " + error);

 } else {

 rows.forEach((resultado) => {

 var challenge_id = resultado.id_reto;

 console.log("Challenge: " + challenge_id);

 switch (challenge_id) {

 case 1:

 checkChallenge1(patient_id, challenge_id);

 break;

 case 2:

 checkChallenge2(patient_id, challenge_id);

 break;

 case 3:

 checkChallenge3(patient_id, challenge_id);

 break;

 case 4:

 checkChallenge4(patient_id, challenge_id);

 break;

126 | Appendix B

 case 5:

 checkChallenge5(patient_id, challenge_id);

 break;

 case 6:

 checkChallenge6(patient_id, challenge_id);

 break;

 case 7:

 checkChallenge7(patient_id, challenge_id);

 break;

 }

 });

 }

 }

);

 });

}

function checkChallenge1(patient_id, challenge_id) {

 console.log("checkChallenge1 for user: " + patient_id);

 db.getConnection(function (err, connection) {

 if (err) throw err; // not connected!

 var query = connection.query(

 "SELECT * FROM eval WHERE id_paciente = " +

 patient_id +

 " AND eval > 0 AND tipo = '1' AND
timestamp>=DATE_SUB(CURDATE(), INTERVAL 5 DAY) AND
timestamp<CURDATE()",

 function (error, rows) {

 connection.release();

 if (error) {

 console.log("Error");

 } else {

 if (rows.length > 0) {

| Appendix B 127

 console.log("Challenge1 won");

 updateWonChallenge(patient_id, challenge_id);

 }

 }

 }

);

 });

}

function checkChallenge2(patient_id, challenge_id) {

 console.log("checkChallenge2 for user: " + patient_id);

 db.getConnection(function (err, connection) {

 if (err) throw err; // not connected!

 var query = connection.query(

 "SELECT * FROM eval WHERE id_paciente = " +

 patient_id +

 " AND eval > 0 AND tipo = '1' AND
timestamp>=DATE_SUB(CURDATE(), INTERVAL 5 DAY) AND
timestamp<CURDATE()",

 function (error, rows) {

 connection.release();

 if (error) {

 console.log("Error");

 } else {

 if ((rows.length = 5)) {

 console.log("Challenge2 won");

 updateWonChallenge(patient_id, challenge_id);

 }

 }

 }

);

 });

}

128 | Appendix B

function checkChallenge3(patient_id, challenge_id) {

 console.log("checkChallenge3 for user: " + patient_id);

 db.getConnection(function (err, connection) {

 if (err) throw err; // not connected!

 var query = connection.query(

 "SELECT * FROM eval WHERE id_paciente = " +

 patient_id +

 " AND eval = 1 AND tipo = '2' AND
timestamp>=DATE_SUB(CURDATE(), INTERVAL 5 DAY) AND
timestamp<CURDATE()",

 function (error, rows) {

 connection.release();

 if (error) {

 console.log("Error");

 } else {

 if (rows.length > 0) {

 console.log("Challenge3 won");

 updateWonChallenge(patient_id, challenge_id);

 }

 }

 }

);

 });

}

function checkChallenge4(patient_id, challenge_id) {

 console.log("checkChallenge4 for user: " + patient_id);

 db.getConnection(function (err, connection) {

 if (err) throw err; // not connected!

 var query = connection.query(

| Appendix B 129

 "SELECT * FROM eval WHERE id_paciente = " +

 patient_id +

 " AND eval > 0 AND tipo = '1' AND
timestamp>=DATE_SUB(CURDATE(), INTERVAL 12 DAY) AND
timestamp<CURDATE()",

 function (error, rows) {

 connection.release();

 if (error) {

 console.log("Error");

 } else {

 if (rows.length > 10) {

 console.log("Challenge4 won");

 updateWonChallenge(patient_id, challenge_id);

 }

 }

 }

);

 });

}

function checkChallenge5(patient_id, challenge_id) {

 console.log("checkChallenge5 for user: " + patient_id);

 db.getConnection(function (err, connection) {

 if (err) throw err; // not connected!

 var query = connection.query(

 "SELECT * FROM eval WHERE id_paciente = " +

 patient_id +

 " AND eval = '1' AND tipo = '2' AND
timestamp>=DATE_SUB(CURDATE(), INTERVAL 12 DAY) AND
timestamp<CURDATE()",

 function (error, rows) {

 connection.release();

 if (error) {

130 | Appendix B

 console.log("Error");

 } else {

 if ((rows.length = 2)) {

 console.log("Challenge5 won");

 updateWonChallenge(patient_id, challenge_id);

 }

 }

 }

);

 });

}

function checkChallenge6(patient_id, challenge_id) {

 console.log("checkChallenge6 for user: " + patient_id);

 db.getConnection(function (err, connection) {

 if (err) throw err; // not connected!

 var query = connection.query(

 "SELECT * FROM eval WHERE id_paciente = " +

 patient_id +

 " AND eval = 1 AND tipo = '2' AND
timestamp>=DATE_SUB(CURDATE(), INTERVAL 26 DAY) AND
timestamp<CURDATE()",

 function (error, rows) {

 connection.release();

 if (error) {

 console.log("Error");

 } else {

 if ((rows.length = 4)) {

 console.log("Challenge6 won");

 updateWonChallenge(patient_id, challenge_id);

 }

 }

 }

| Appendix B 131

);

 });

}

function checkChallenge7(patient_id, challenge_id) {

 console.log("checkChallenge7 for user: " + patient_id);

 db.getConnection(function (err, connection) {

 if (err) throw err; // not connected!

 var query = connection.query(

 "SELECT * FROM eval WHERE id_paciente = " +

 patient_id +

 " AND eval = '1' AND tipo = '2' AND
timestamp>=DATE_SUB(CURDATE(), INTERVAL 5 DAY) AND
timestamp<CURDATE()",

 function (error, rows) {

 connection.release();

 if (error) {

 console.log("Error");

 } else {

 if ((rows.length = 1)) {

 console.log("Challenge7 won");

 updateWonChallenge(patient_id, challenge_id);

 }

 }

 }

);

 });

}

function updateWonChallenge(patient_id, challenge_id) {

 console.log(

 "updateWonChallenge : " + challenge_id + " for user: " +
patient_id

132 | Appendix B

);

 db.getConnection(function (err, connection) {

 if (err) throw err; // not connected!

 var query = connection.query(

 "UPDATE retos SET status = '1' WHERE id_paciente = " +

 patient_id +

 " AND id_reto = " +

 challenge_id +

 "",

 function (error, rows) {

 connection.release();

 if (error) {

 console.log("Error");

 } else {

 notifyWonChallenge(patient_id, challenge_id);

 }

 }

);

 });

}

function notifyWonChallenge(patient_id, challenge_id) {

 console.log(

 "notifyWonChallenge to user: " +

 patient_id +

 ", challengeId: " +

 challenge_id

);

 db.getConnection(function (err, connection) {

 if (err) throw err; // not connected!

| Appendix B 133

 var content_id;

 switch (challenge_id) {

 case 1:

 content_id = 4;

 break;

 case 2:

 content_id = 5;

 break;

 case 3:

 content_id = 6;

 break;

 case 4:

 content_id = 7;

 break;

 case 5:

 content_id = 8;

 break;

 case 6:

 content_id = 9;

 break;

 case 7:

 content_id = 10;

 break;

 }

 var query = connection.query(

 "INSERT INTO alertas_asistente (id_alerta, id_paciente,
id_contenido, avisada, conclusion) VALUES ('5', " +

 patient_id +

 ", " +

 content_id +

 ", '0', '0')",

 function (error, rows) {

 connection.release();

134 | Appendix B

 if (error) {

 console.log("Error al insertar alerta " + error);

 } else {

 console.log("Alerta insertada.");

 if (challenge_id != 7) {

 var challenge = challenge_id;

 var new_challenge_id = challenge + 1;

 updateNewChallenge(patient_id, new_challenge_id);

 }

 }

 }

);

 });

}

function updateNewChallenge(patient_id, challenge_id) {

 console.log(

 "updateNewChallenge: " + challenge_id + " for user: " +
patient_id

);

 db.getConnection(function (err, connection) {

 if (err) throw err; // not connected!

 var query = connection.query(

 "UPDATE retos SET status = '0' WHERE id_paciente = " +

 patient_id +

 " AND id_reto = " +

 challenge_id +

 "",

 function (error, rows) {

 connection.release();

 if (error) {

 console.log("Error");

| Appendix B 135

 } else {

 console.log("Alert updated correctly!");

 }

 }

);

 });

}

conectarSQL();

computePatients();

B.1.2. manejador_challenges_to_be_notified.js

The following code manages the queue of the challenges. In particular, it checks

whether a challenge is in progress or not. If not, it changes the status of the next

challenge to ‘to be notified’.

require("dotenv").config();

// Modulo para ejecutar comandos como en el Cron de Linux, pero
desde NodeJS

var CronJob = require("cron").CronJob;

// add timestamps in front of log messages

require("console-stamp")(console, {

 format: ":date(dd/mm/yyyy HH:MM:ss)",

});

var mysql = require("mysql");

//Conexion SQL:

var usuarioDB = process.env.usuarioDB;

var passDB = process.env.passDB; //g3r14tr14 // XvzHjtzDwvtJ7Lcv

var dirDB = process.env.dirDB;

var databaseDB = process.env.databaseDB;

var portDB = process.env.puerto_db;

136 | Appendix B

var db;

function conectarSQL() {

 db = mysql.createPool({

 connectionLimit: 1000,

 host: dirDB,

 user: usuarioDB,

 password: passDB,

 database: databaseDB,

 port: portDB,

 });

}

function computePatients() {

 console.log("computeWeek");

 db.getConnection(function (err, connection) {

 if (err) throw err; // not connected!

 var query = connection.query(

 "SELECT id_paciente FROM perfil_motivacional WHERE id_perfil =
2 AND valor = 2",

 function (error_id, rows_id) {

 connection.release();

 if (error_id) {

 console.log("No obtenemos el ID de los pacientes");

 } else {

 if (rows_id.length > 0) {

 console.log("Tenemos " + rows_id.length + " usuarios");

 rows_id.forEach((resultado) => {

 var patient_id = resultado.id_paciente;

 console.log("Paciente: " + patient_id);

 checkNewChallenge(patient_id);

 });

| Appendix B 137

 }

 }

 }

);

 });

}

function checkNewChallenge(patient_id) {

 console.log("checkNewChallenge for user: " + patient_id);

 db.getConnection(function (err, connection) {

 if (err) throw err; // not connected!

 var query_challenge_to_be_notified =

 "SELECT * FROM retos WHERE id_paciente = " +

 patient_id +

 " AND status = -1";

 var query = connection.query(

 query_challenge_to_be_notified,

 function (error_id, rows_id) {

 connection.release();

 if (error_id) {

 console.log("Error in retrieving data");

 } else {

 if (rows_id.length > 0) {

 console.log("Tenemos " + rows_id.length + " usuarios");

 rows_id.forEach((resultado) => {

 var challenge_id = resultado.id_reto;

 console.log("Challenge: " + challenge_id);

 notifyNewChallenge(patient_id, challenge_id);

 });

 }

 }

138 | Appendix B

 }

);

 });

}

function notifyNewChallenge(patient_id, challenge_id) {

 console.log(

 "notifyNewChallenge to user: " +

 patient_id +

 ", challengeId: " +

 challenge_id

);

 db.getConnection(function (err, connection) {

 if (err) throw err; // not connected!

 var content_id;

 switch (challenge_id) {

 case 1:

 content_id = 4;

 break;

 case 2:

 content_id = 5;

 break;

 case 3:

 content_id = 6;

 break;

 case 4:

 content_id = 7;

 break;

 case 5:

 content_id = 8;

 break;

 case 6:

| Appendix B 139

 content_id = 9;

 break;

 case 7:

 content_id = 10;

 break;

 }

 var query = connection.query(

 "INSERT INTO alertas_asistente (id_alerta, id_paciente,
id_contenido, avisada, conclusion) VALUES ('4', " +

 patient_id +

 ", " +

 content_id +

 ", '0', '0')",

 function (error, rows) {

 connection.release();

 if (error) {

 console.log("Error al insertar alerta " + error);

 } else {

 console.log("Alerta insertada.");

 updateChallenge(patient_id, challenge_id);

 }

 }

);

 });

}

function updateChallenge(patient_id, challenge_id) {

 console.log("updateChallenge: " + challenge_id + " for user: " +
patient_id);

 db.getConnection(function (err, connection) {

 if (err) throw err; // not connected!

 var query = connection.query(

140 | Appendix B

 "UPDATE retos SET status = '0' WHERE id_reto = " +

 challenge_id +

 " AND id_paciente = " +

 patient_id +

 "",

 function (error, rows) {

 if (error) {

 console.log("Error al actualizar alerta " + error);

 } else {

 console.log("Alerta actualizada.");

 }

 }

);

 });

}

conectarSQL();

computePatients();

 141

List of Figures

Figure 2.1: User-centered design definition .. 4

Figure 2.2: User-centered design process... 5

Figure 2.3: POSITIVE conceptual map ... 8

Figure 2.4: ActiveUP ecosystem .. 9

Figure 3.1: POSITIVE Architecture ... 13

Figure 3.2: UML Positive_pacientes_android (February 2022) 15

Figure 3.3: Legacy database architecture ... 16

Figure 3.4: Possible transitions between stages of change and motivational states in the

motivational assistance system proposed by Sokól ... 19

Figure 4.1: Evolution of the POSITIVE - ActiveUP projects ... 23

Figure 5.1: Description of the database schema (February 2022) 28

Figure 6.1: Home page of the new application ... 34

Figure 6.2: My treatment section ... 34

Figure 6.3: My exercises menu .. 35

Figure 6.4: Exercise interface ... 35

Figure 6.5: Interface in case there are no pending exercises ... 35

Figure 6.6: Interface that asks the user how many repetitions they did 35

Figure 6.7: My nutrition menu .. 36

Figure 6.8: My nutrition recipes .. 36

Figure 6.9: My advice menu ... 37

Figure 6.10: Exercise Manual ... 37

Figure 6.11: General Advice ... 37

Figure 7.1: Wireframe of Leader board menu ... 41

Figure 7.2: Wireframe of Leader board activity .. 41

Figure 7.3: New tables added into the database for the Leader board feature. 41

Figure 7.4: UML for the Leader board feature .. 43

142 | List of FiguresError! Use the Home

tab to apply Titolo 1 to the text that

you want to appear here.

Figure 7.5: UI for Leader board menu .. 45

Figure 7.6: UI for Leader board Activity .. 46

Figure 7.7: Leader board activity with CardView .. 47

Figure 7.8: Leader board activity without CardView .. 47

Figure 7.9: Schedule of the challenges during the 12-weeks programme 48

Figure 7.10: Wireframe of Challenges menu ... 49

Figure 7.11: Wireframe of Challenges activity (Won challenges) 49

Figure 7.12: Wireframe of Challenges activity (Next challenge) 50

Figure 7.13: Wireframe of Challenges description activity ... 50

Figure 7.14: New tables added into the database for the Challenges feature 50

Figure 7.15: UML for Challenges .. 54

Figure 7.16: UI of Challenges Menu ... 55

Figure 7.17: UI for Challenges Activity .. 56

Figure 7.18: UI for the awards collection ... 56

Figure 7.19: UI for Challenge description .. 57

Figure 7.20: UI of specific won challenge .. 57

Figure 7.21: UI of specific next challenge with description ... 58

Figure 7.22: Icons of each award ... 58

Figure 7.23: Wireframes of User Statistics menu .. 59

Figure 7.24: Wireframes of User Statistics ... 59

Figure 7.25: UML of User Statistics ... 60

Figure 7.26: UI of Statistics Menu ... 61

Figure 7.27: UI of Statistics Activity.. 62

Figure 7.28: UI of Statistics Activity filled in with data ... 62

Figure 7.29: Low fidelity design of the alerts (before the user interaction) 64

Figure 7.30: Low fidelity design of the alerts (after the user interaction) 64

Figure 7.31: Entity-Relationship diagram for the Alert feature 65

Figure 7.32: Algorithm that computes which features will be displayed to the user, and

consequently which ‘content’ specify in the alert... 69

| Error! Use the Home tab to apply

Titolo 1 to the text that you want to

appear here.List of Figures

143

Figure 7.33: Window that appears to the user when they try to exit from an exercise

session ... 69

Figure 7.34: UML for the Alert feature ... 71

Figure 7.35: UI for Alerts with a plain text message .. 72

Figure 7.36: UI for Alerts with a question and possible answers 73

Figure 7.37: UI for Alerts with a question and one answer selected 74

Figure 7.38: Path to reach the features.. 82

Figure 7.39: Homepage with the buttons at the top ... 83

Figure 7.40: Homepage without the three buttons at the top ... 83

Figure 7.41: Algorithm that computes which button will be shown on the homepage

 .. 83

Figure 7.42: Example of the homepage, the Leader board is displayed because the user

has Competition Seeking as dominant trait .. 84

Figure 8.1: First interface of Alert type 1 .. 87

Figure 8.2: Second interface of Alert type 1 (Competition Seeking) MA introducing the

leader board ... 87

Figure 8.3: Third interface of Alert type 1 (Competition Seeking) MA showing how the

leader board looks like.. 88

Figure 8.4: Fourth interface of Alert type 1, MA asking to start the first exercise session

 .. 88

Figure 8.5: Fourth interface of Alert type 1 after user interaction 89

Figure 8.6: Fifth interface of Alert type 1, MA wishing a pleasant workout 89

Figure 8.7: My exercise menu .. 90

Figure 8.8: Exercise interface ... 90

Figure 8.9: Pop-up window to exit an exercise session ... 91

Figure 8.10: Homepage of the app .. 91

Figure 8.11: First interface of Alert type 2 .. 92

Figure 8.12: Second interface of the Alert type 2, MA asking information about the

interruption .. 92

Figure 8.13: Second interface of Alert type 2 after user interaction 93

Figure 8.14: Third interface of Alert type 2, MA asking to continue with an exercise

session ... 93

144 | List of FiguresError! Use the Home

tab to apply Titolo 1 to the text that

you want to appear here.

Figure 8.15: Third interface of Alert type 2 after user interaction 94

Figure 8.16: Fourth interface of Alert type 2.. 94

Figure 8.17: First interface of Alert type 6, MA explaining the changes in the leader

board ... 96

Figure 8.18: Second interface of Alert type 6, MA asking if the user wants t osee the

leader board ... 96

Figure 8.19: Second interface of Alert type 6, after user interaction 97

Figure 8.20: Daily Leader board interface .. 97

Figure 8.21: First interface of Alert type 4, MA saying it has a new challenge for the

user .. 99

Figure 8.22: First interface of Alert type 4, after user interaction 99

Figure 8.23: Second interface of Alert type 4, MA explaining the new challenge 100

Figure 8.24: Third interface of Alert type 4, MA proposing an exercise session........ 100

Figure 8.25: Third interface of Alert type 4, after user interaction 101

Figure 8.26: Fourth interface of Alert type 4.. 101

Figure 8.27: Homepage of the application ... 102

Figure 8.28: My challenge menu ... 102

Figure 8.29: Next challenge interface .. 103

Figure 8.30: Specific challenge description interface .. 103

Figure 8.31: First interface of Alert type 5, MA congratulating to the user 104

Figure 8.32: First interface of Alert type 5, after user interaction 104

Figure 8.33: Second interface of Alert type 5, MA showing the won challenge 105

Figure 8.34: Third interface of Alert type 5, MA asking to the user if they want to see

the award collection .. 105

Figure 8.35: Third interface of Alert type 5, after user interaction 106

Figure 8.36: Award collection interface .. 106

Figure 8.37: Specific award interface .. 107

 145

List of Tables

Table 2.1: Usability Heuristics for Older Adults [10] ... 5

Table 3.1: The messages designed to give the user positive feedback after a decision to

start exercise depending on user’s motivational traits and stage of change 19

Table 5.1: Example of query in MySQL and Python .. 30

Table 7.1: Table "fake_users" to store daily evaluation of the fake users 42

Table 7.2: Name and description of the challenges .. 47

Table 7.3: Types of Challenges .. 51

Table 7.4: Types of Alerts ... 63

Table 7.5: “index_alerts_assistant” table with id and related name of the type of alert

 .. 66

Table 7.6: “index_alerts_conclusion” table with id and related name of all the possible

conclusions ... 67

Table 7.7: “index_alerts_content” table with id and related name of all the possible

contents ... 67

Table 7.8: Messages the MA shows to the user during the first connection 74

Table 7.9: Messages the MA shows to the user after an interrupted exercise session 75

Table 7.10: Messages the MA shows to the user (Alert Type 3) 75

Table 7.11: Messages the MA shows to the user when explaining a new challenge ... 76

Table 7.12: Messages the MA shows to the user when informing them about a won

challenge ... 77

Table 7.13: Messages the MA shows to the user when notifying them about changes in

the leader board ... 77

Table 7.14: Personalised feedback when the user decides to start an exercise session 78

Table 7.15: Personalised feedback when the user decides not to start an exercise session

 .. 79

Table 7.16: Personalised feedback when the user explains they had a problem 80

 147

Acknowledgments

Eccomi qui, giunto alla fine di un percorso iniziato nel settembre 2020, un periodo che

difficilmente ci scorderemo. Questi due anni mi hanno permesso di crescere sia dal

punto di vista accademico sia dal punto di vista professionale, ma soprattutto come

persona. Come i miei amici sanno, la concisione non è la caratteristica che più mi

distingue. Tuttavia, ritengo giusto ringraziare le persone che mi hanno accompagnato

e supportato lungo questo percorso.

Innanzitutto, un ringraziamento alla mia relatrice, la Professoressa Franca Garzotto, e

a Federico Schiepatti.

Grazie a mio papà Massimo e mio fratello Marco. Papà, sei la mia roccia, il mio

supereroe, la mia ispirazione. Spero di averti reso fiero di me, di continuare a farlo, e

di diventare un grande uomo come te. Marco, sei il miglior fratello che potessi

desiderare. Nonostante le litigate quotidiane, so che ci sarai per sempre. Vi voglio

bene.

Giuditta, la mia migliore amica da che io possa ricordare. Grazie per essere sempre al

mio fianco, per capirmi anche senza troppe parole, e per supportarmi soprattutto nei

momenti difficili.

Sara, la mia partner in crime. Grazie per il tuo supporto costante, i tuoi preziosi

consigli, e per le avventure incredibili che mi hai regato, specialmente nell’ultimo anno

a Madrid.

Jacopo, l’amico da una vita. Grazie per le chiamate di sfogo, i tuoi messaggi

motivazionali, e per spingermi sempre a pensare positivo.

Giulia, la mia dog buddy. Grazie perché mi fai sempre sorridere e divertire, per le

mattinate a passeggiare e per i pomeriggi passati a studiare.

148

Giorgio, il mio compagno di Formula 1. Grazie per le domeniche di gara, per

ascoltarmi sempre e darmi consigli.

Chiara, Filippo, Martina, Sofia. Grazie per la vostra preziosa amicizia e per i momenti

che mi regalate.

Grazie a Andrea, Greta, Luca, Monica, e Silvia, i miei compagni di Milano, che avete

arricchito questi anni di momenti meravigliosi e indimenticabili.

Infine, ringrazio Abel, Dani, Elena, Jose, Manu, e Nate. Sono grato di avervi incontrato

e spero di rivedervi spesso in futuro.

E a voi, mamma e nonna Fausta. Senza di voi, non sarei diventato nemmeno un quarto

della persona che sono ora. Non passa un giorno che non pensi a voi.

	Abstract
	Abstract in italiano
	Contents
	1 Introduction
	1.1. Context
	1.2. Thesis objectives
	1.3. Structure of the document

	2 Theoretical Foundations
	2.1. User-centered design
	2.2. Design for older adults
	1.1.
	2.3. Vivifrail
	2.4. Positive
	2.5. ActiveUP
	2.6. Motivation

	3 Antecedents
	3.1. POSITIVE architecture
	1.1.
	3.2. POSITIVE Patient app
	1.1.
	3.3. POSITIVE server
	1.1.
	3.4. Initial state of the Motivational Assistant

	1
	4 Problem Statement
	4.1. Criticisms
	4.2. Objectives

	1
	5 Migration of the server
	5.1. New server in Python with FastAPI
	5.2. Periodic Jobs
	5.2.1. Cron
	5.2.1.1. eval_asistente_daily.js
	5.2.1.2. eval_asistente_weekly.js

	1
	6 Migration to the new Android application
	6.1. My Exercises section
	6.2. My Nutrition section
	1.1.
	6.3. My Advice section

	7 Development of the new features
	7.1. Leader board
	7.1.1. Description
	7.1.2. Low fidelity design
	1.1.1.
	7.1.3. Implementation
	7.1.3.1. Server-side
	1.1.1.1.
	7.1.3.2. Client-side

	7.1.4. Final User Interfaces

	1.1.
	1.1.
	7.2. Challenges
	7.2.1. Description
	1.1.1.
	7.2.2. Low fidelity design
	1.1.1.
	7.2.3. Implementation
	7.2.3.1. Server-side
	1.1.1.1.
	1.1.1.1.
	1.1.1.1.
	1.1.1.1.
	1.1.1.1.
	7.2.3.2. Client-side

	1.1.1.
	7.2.4. Final User Interfaces

	1.1.
	7.3. User Statistics
	7.3.1. Description
	1.1.1.
	7.3.2. Low fidelity design
	1.1.1.
	7.3.3. Implementation
	7.3.3.1. Server-side
	1.1.1.1.
	7.3.3.2. Client-side

	7.3.4. Final User Interfaces

	7.4. Alerts
	7.4.1. Description
	7.4.2. Low fidelity design
	7.4.3. Implementation
	7.4.3.1. Server-side
	1.1.1.1.1. Generation of the alert

	7.4.3.2. Client-side

	7.4.4. Final User Interfaces
	1.1.1.
	7.4.5. Communication from the Motivational Assistant

	1.1.
	7.5. Further Changes

	8 Cognitive Walkthrough
	8.1. First connection of the user
	8.2. Changes in the leader board
	8.3. New challenge and achievement of it

	1
	9 Conclusion and Future Work
	9.1. Conclusion
	9.2. Future work

	Bibliography
	A Appendix A
	A
	A.1. SQL queries to retrieve the leader board
	A.2. Code to compute changes in the leader board
	A.2.1. leaderboard.js

	B Appendix B
	B.1. Code to handle the Challenges feature
	B.1.1. check_status_challenges.js
	B.1.2. manejador_challenges_to_be_notified.js

	List of Figures
	List of Tables
	Acknowledgments

