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Abstract

The Artemis program is just the beginning of a new era of lunar exploration, wherein
mankind will not only be engaged in discovering new frontiers but also exploiting the
resources from space. Within this framework, improving lunar transfer trajectories is a
fundamental measure towards achieving more economical and efficient missions. Particu-
larly, the aim of this thesis is to minimize the fuel consumption of Earth–Moon transfer
trajectories in high-fidelity models, by means of a semi-analytical approach.
In the first part of the thesis, the possibility of reducing the fuel cost of two-impulse
Earth–Moon transfers in a four-body model is addressed. Primer Vector theory is ap-
plied to identify which trajectories could benefit from the introduction of an additional
intermediate impulse. Then, three-impulse transfers are computed with a direct numer-
ical optimization method. Despite the majority of the trajectories being improved by a
negligible amount, the cost of the transfers characterized by an initial gravity assist at the
Moon is reduced by tens of m/s placing a corrective maneuver after the lunar encounter.
The second part of the thesis deals with the problem of continuing multi-impulse Earth–
Moon transfers from a four-body model to a complete ephemeris-based model of the solar
system, written in a rotopulsating frame. The innovative algorithm presented, based on a
direct transcription and multiple shooting strategy, successfully transform in the real solar
system different families of Earth–Moon trajectories. In particular, the focus is on ballistic
low-energy Earth–Moon transfers, due to their numerous advantages. The methodology
described is suitable for generating nominal trajectories for real missions starting from
solutions obtained with simplified, but still meaningful, astrodynamical models.

Keywords: Space trajectory optimization · Earth–Moon transfers · Primer Vector theory
· Four-body problem · Rotopulsating n-body problem · Low-energy transfers
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Sommario

Il programma Artemis è solo l’inizio di una nuova era di esplorazione in cui l’umanità non
solo si impegnerà a scoprire nuove frontiere, ma anche a sfruttare le risorse dello spazio.
Di conseguenza, migliorare le traiettorie di trasferimento lunare è un passo fondamentale
per la realizzazione di missioni spaziali sempre più economiche ed efficienti. In particolare,
l’obiettivo di questa tesi è minimizzare il consumo di carburante di traiettorie lunari in
modelli astrodinamici ad alta fedeltà, utilizzando un approccio semi-analitico.
Nella prima parte, si discute la possibilità di ridurre il consumo di carburante per trasferi-
menti Terra-Luna a due impulsi in un modello a quattro corpi. La teoria del Vettore Primo
viene applicata per identificare quali traiettorie potrebbero beneficiare dell’introduzione di
un ulteriore impulso. Successivamente, i trasferimenti a tre impulsi sono calcolati con un
metodo di ottimizzazione numerica diretta. Nonostante la maggior parte delle traiettorie
siano migliorate di un fattore trascurabile, il costo dei trasferimenti che sfruttano l’effetto
fionda gravitazionale della Luna, è ridotto di decine di m/s inserendo una manovra cor-
rettiva successiva al sorvolo lunare.
La seconda parte della tesi affronta il problema della continuazione di trasferimenti lunari
multi-impulso da un modello a quattro corpi ad uno completo del sistema solare, descritto
dalle effemeridi in un sistema di riferimento rotopulsante. L’algoritmo presentato, basato
su una strategia di trascrizione diretta e di shooting multiplo, adatta con successo diverse
famiglie di traiettorie Terra–Luna nel sistema solare. In particolare, l’attenzione è posta
sui trasferimenti balistici a bassa energia, dotati di numerosi vantaggi. La procedura
descritta è atta a generare traiettorie nominali di missioni reali partendo da soluzioni
ottenute in modelli astrodinamici semplificati, ma comunque significativi.

Parole chiave: Ottimizzazione di traiettorie spaziali · Trasferimenti Terra-Luna · Teoria
del Vettore Primo · Problema dei quattro corpi · Problema degli n corpi · Trasferimenti
a bassa energia
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1| Introduction

The history of lunar transfers is a rich and captivating story that has fascinated people
for decades. The challenge of reaching the Moon has inspired generations of scientists,
engineers, and space enthusiasts, and marked the first great step in space exploration.
From the first successful robotic missions to the Moon in the late 1950s to the historic
Apollo program and the recent resurgence of interest in lunar exploration, the story of
lunar transfers is one of human achievement and exploration. The quest to explore and
study the Moon has led to many technological advancements and scientific discoveries.
However, reaching the Moon still remains a difficult and costly task, and optimizing
transfer trajectories is a crucial step towards making lunar exploration more accessible and
sustainable. In the past, simplified models have been widely used to study the dynamics of
the cislunar environment, and continue to play a crucial role in the preliminary phases of
space missions. Nonetheless, with the increasing understanding of the solar system, it has
become clear that these simplified models are inadequate for accurately planning complex
missions. To address these limitations, more realistic models based on ephemerides have
been developed. They opened up new avenues of research into more complex dynamics
and trajectories that are not present in simplified models. The transition from easier
formulations to more complete models is a crucial step in guaranteeing the success of
future lunar missions, while also preserving the accumulated knowledge of the dynamics
of the cislunar environment over time.
The focus of this thesis is to refine optimal lunar transfer trajectories in high-fidelity
models using a semi-analytical approach and advanced optimization algorithms.

1.1. Context

Exploration of the Moon has been an area of interest for many years, with the Apollo
missions paving the way for further study and research. Nowadays, the perspective on
lunar missions has shifted, including not only scientific research and human exploration,
but also resource utilization.
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A cornerstone of this new era of lunar exploration is the Artemis program1, led by NASA,
which aims to land the first woman and the next man on the Moon by 2024. The primary
goal of the program is to establish a sustainable human presence on the Moon and to
develop new technologies that will enable future missions to explore deeper into the solar
system. To achieve this, Artemis will leverage the Lunar Gateway2, a small space station
that will orbit the Moon and serve as a staging point for lunar landings and deep space
exploration. The station will also serve as a platform for scientific research and technology
demonstrations, facilitating international cooperation in space exploration.
One crucial factor for the incoming era of space utilization and exploration will be maxi-
mizing the payload mass of each transfer. The first approach to increase the useful mass
consists in reducing the propulsion system requirements in terms of fuel. Therefore, find-
ing optimal transfer trajectories is essential for maximizing the scientific and exploratory
potential of future missions.

1.1.1. Earth to Moon Transfers

Several established techniques exist for transferring a spacecraft from a low Earth orbit
(LEO) to a lunar orbit [10]. These include direct transfers, low-thrust transfers, and
low-energy ballistic transfers. Direct transfers, such as those used in the Apollo program,
have the advantage of a short transfer time (3-6 days) but require a high amount of fuel.
A second class of transfers makes use of low-thrust propulsion to spiral away from the
Earth and toward the Moon [33]. A low-thrust transfer involves employing engines that
use fuel more efficiently but requires longer transfer times (many months) and complex
mission design. Low-energy ballistic trajectories are also of great interest, as they offer a
balance between the advantages and disadvantages of the first two methods: they require
less fuel than a direct transfer and less time than a low-thrust transfer [48].
In an exterior low-energy transfer the spacecraft is injected into an orbit having the
apogee at approximately four Earth–Moon distances. In this region, called weak stability
boundary, the perturbation of the Sun can be exploited to approach the Moon from
the exterior, and to perform a lunar ballistic capture [3–6, 11]. Specifically, the gravity
gradient of the Sun can be used in a favorable way only when the orbit is properly
oriented with respect to the Sun, the Earth, and the Moon [8, 12]. Many strategies have
been studied to design low energy transfers [20, 49], and also some missions have already
flight on these trajectories [2, 31, 57]. For example, Koon showed in [38] how it is possible
using invariant manifold techniques to construct low energy transfer paths to the Moon.

1https://www.nasa.gov/specials/artemis/, retrieved on March 20, 2023.
2https://www.nasa.gov/gateway/overview, retrieved on March 20, 2023.

https://www.nasa.gov/specials/artemis/
https://www.nasa.gov/gateway/overview
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Also, the performances of the transfer can be improved by introducing a lunar gravity
assist at departure [45, 55].
Since the discovery of low-energy transfers, the problem of finding alternative, efficient
Earth–Moon transfers has been approached with a focus on a small class of solutions,
typically compared only to the Hohmann transfer. Topputo in [62] answered the question
on the existence of other solutions, possibly having intermediate features between the
solution at hand and the Hohmann transfer. The paper succeeded in framing all these
kinds of transfers and many others as special points of a more general picture. This
global set of solutions for the two-impulse Earth–Moon transfers in a four-body model is
the starting point for the first part of the thesis.

1.1.2. High-Fidelity Models and Trajectory Continuation

As space missions become more complex, the trajectory design must meet increasingly
stringent requirements. Accordingly, high-fidelity models are employed in the early stages
of trajectory design to exploit their unique features [19]. Moreover, as the complexity of
such models increases, new solutions appear due to the richer content of the vector field
and open up new scenarios for spacecraft characterized by very limited thrust authority
(e.g., interplanetary CubeSats). The drawback is that no analytical solution is available,
and consequently it is very difficult to have a general insight into the dynamics. Fur-
thermore, they are less prone to the extensive computational searches which are usually
required to design an optimal trajectory.
The most popular model for designing orbits in the cislunar environment is the restricted
three-body model [61]. However, when the three-body orbits are reproduced in more com-
prehensive gravitational models, large errors emerge. Especially if orbits are defined in the
regions of phase space where two main gravitational accelerations balance, the sensitivity
is high and any additional perturbation produces large effects. The first extension to the
three-body model is the four-body model, which accounts also for the perturbations of a
fourth body [59, 67]. It was shown that this model is deemed appropriate to catch the
basic dynamics characterizing the Sun–Earth–Moon problem [44, 62].
By the way, in turn, the mission will eventually have to fly in the real scenario. Hence,
flying orbits must be studied, tested and validated in the real dynamics, that is the solar
system n-body problem modeled through precise ephemeris data. Therefore continuation
from simplified to more complex models is a critical step in trajectory design [18]. Gómez
succeeded in describing the complete solar system dynamics in a co-rotating Earth–Moon
system, which is a direct extension of the simplified models with three and four bodies
[26]. Dei Tos in [17] established a clear hierarchy in the gravitational models available to
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the designer, and shows that the equations for the spacecraft motion in simpler models
can be readily obtained as particular cases of the most complete model. Additionally, the
study proved that a gradual increase in the dynamics complexity benefits accuracy, the
chances of success and the convergence rate of a continuation algorithm.

1.1.3. Trajectory Optimization

At its core, the optimization of spacecraft trajectories involves finding a trajectory that
fulfills specified starting and ending conditions while accomplishing a given mission and
minimizing a chosen significant factor. Typically, the primary goal is to reduce propellant
usage or maximize the amount of the spacecraft not used for propellant. However, there
are other scenarios where minimizing flight time is paramount or where minimizing both
propellant usage and flight time are equivalent (e.g., low thrust trajectories).
Space trajectory optimization typically falls in the class of convoluted continuous opti-
mization problems. The complexities involved are numerous, including [16]: nonlinear
dynamical systems; potential discontinuities in state variables; unclear explicit knowledge
of terminal conditions; presence of time-dependent forces; fundamental structure of the
optimal trajectory unknown a priori.
In addition, as there exist various kinds of spacecraft trajectories (such as those propelled
impulsively with chemical rockets or those with low-thrust electric propulsion) distinct
solution methods must be explored, that are best suited to the unique characteristics
of each trajectory [41]. For instance, impulsive transfer scenarios, even including flybys,
are frequently translated into a parameter optimization problem. Conversely, continuous
thrust situations require an optimal control approach, as both the thrust magnitude and
direction have time histories that are continuous and must be modeled and determined.
The calculus of variations can be used to derive some necessary optimality conditions for
each type of spacecraft trajectory optimization problem. Unfortunately, solving the result-
ing system of equations and boundary conditions is usually difficult or even impossible.
For certain simplified but still valuable cases of either impulsive-thrust or continuous-
thrust transfers, analytical necessary conditions can be described using Primer Vector
theory. This was first formulated by Lawden [39], then Lion extended the definition of
the primer vector to include nonoptimal trajectory [40], and Jezewski showed under which
conditions an optimal impulsive trajectory could be improved by the addition of another
impulse or by allowing a terminal coast [37].

Nonetheless, the vast majority of researchers today use numerical optimization, which,
for continuous optimal control problems, can be generally classified into two types:
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• Indirect solutions use the analytical necessary conditions from the calculus of
variations, requiring the addition of costate variables equal in number to the state
variables, and their governing equations. This doubles the size of the dynamical
system, making it more challenging to solve. Other drawbacks include: optimality
conditions must be analytically derived for each problem; the domain of convergence
is small; construction of an initial guess solution may not be intuitive.

• Direct solutions, on the other hand, convert the continuous optimal control prob-
lem into a parameter optimization problem. To satisfy the system equations, the
parameters are integrated stepwise using either implicit or explicit rules. This gen-
erates nonlinear constraint equations that must be fulfilled by the parameters, which
are the discrete representations of the state and control time histories. The problem
is thus transformed into a nonlinear programming (NLP) problem. The method
is relatively robust and simpler for implementation. Nonetheless, a disadvantage
can originate from the definition of an objective function. Indeed, NLP solvers uti-
lize the gradient of the objective function with respect to NLP variables and its
computation would fail when the derivatives face a singularity.

Although Betts presents in [9] a comprehensive survey on the relationship and evolution
of both direct and indirect optimization, it should be noted that significant advancements
have been made in direct numerical solutions for optimal control problems. One such
approach that has become popular is the use of evolutionary algorithms (e.g., genetic
algorithms and Particle Swarm Optimizer) which offers a qualitatively different solution
to these problems [50]. Additionally, progress has been made in analytical solutions,
including "shape-based" trajectories [64].

1.2. Motivations

Optimizing lunar transfer trajectories is a crucial step towards enabling more efficient and
cost-effective lunar missions. The Artemis program and the Lunar Gateway are just the
beginning of a new era of lunar exploration, wherein mankind will not only be engaged
in discovering new frontiers but also exploiting the resources from space. The ultimate
aim of this thesis is to contribute to the development of new and improved methods for
designing optimal lunar transfers in high-fidelity models and to profit from their complex
dynamics to get unique trajectories.
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1.2.1. Research Questions

The first part of the work focuses on refining the rich database of two-impulse lunar
transfers built up by Topputo in [62]. Indeed, these trajectories were obtained using a
direct method, so the local optimality of each solution was proved only from a numerical
viewpoint and against the same class of transfers. This last is actually a crucial point, and
it is reasonable to think that enlarging the class of solutions should bring benefits in terms
of fuel-efficiency. For instance, if some necessary conditions suggest that an additional
maneuver could lower the overall cost of a transfer, then the two-impulse solution is no
more optimal. For this reason, Lawden’s Primer Vector theory is used to develop this kind
of necessary conditions, which are applied together with a direct optimization method to
obtain optimal three-impulse transfers.
All in all, the first part of this work aims to answer the following research question:

Research Question I:

To what extent does the addition of a midcourse-impulse through a semi-analytical
approach can bring improvements to the global picture of two-impulse Earth–Moon
transfers in a four-body model?

In order to give a proper answer, some intermediate steps should be covered:

1. Use an analytical approach (i.e., Primer Vector theory) to develop a set of first-order
optimality necessary conditions for a lunar transfer in the four-body model;

2. Check whether each solution from the database of two-impulse transfers satisfies
the previous necessary conditions;

3. Built an automated process able to refine sub-optimal solutions by adding a mid-
course impulse, such that the final three-impulse trajectory is more cost-effective.

The second part of the thesis concerns the use of a high-fidelity ephemeris-based model
of the solar system written in a rotopulsating Earth–Moon frame. The aim is to design
an algorithm that transforms the multi-impulse transfers from the four-body model to an
n-body model, retaining as far as possible their particular geometrical features. Given the
unique advantages offered by exterior low-energy transfers, the focus of this second part
is mainly on this particular family (see Fig. 1.1a). Moreover, here the perturbation of the
Sun plays a more relevant role with respect to interior ones, where most of the trajectory
is defined within the Moon orbit, and the solar effect is not crucial (Fig. 1.1b). Thus,
the transition between the two paradigms wherein Sun’s effects are modeled differently is
expected to be more challenging and impactful on the final solution.
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Figure 1.1: Sample solutions of exterior and interior Earth–Moon transfers in a restricted
four-body model. The trajectories are represented in an inertial, Earth-centered, reference
frame, and the Moon’s orbit is depicted with a gray, dashed line

The second research question can be resumed in:

Research Question II:

How does an impulsive low-energy Earth–Moon transfer can be designed in an
ephemeris-based model of the solar system, starting from a trajectory in a simplified
four-body model?

Again, some intermediate steps are necessarily embedded:

1. Define the new boundary conditions for the transfer in the real solar system;

2. Analyze the main differences between the two models and exploit their similarities
to get a reliable initial seed orbit;

3. Built an algorithm to import the geometry of the four-body trajectory to a more
complete model;

4. Refine automatically the trajectory until a desired feasible transfer is achieved and
the fuel consumption is locally minimized.

1.2.2. Expected Results

The expected result of Part I is to provide an updated global picture of optimal multi-
impulse Earth–Moon transfers in a four-body model, and to asses in which families of
trajectories the addition of a third impulse is beneficial for the total cost of the mission.
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Concerning Part II, the final aim is to design an algorithm that takes a trajectory from
the four-body model, and returns a similar transfer in the most complete astrodynamical
model, based on real ephemerides.

1.3. Structure of the Thesis

The thesis is divided into two parts: the first is devoted to the application of the primer
vector theory to impulsive Earth–Moon transfer in a four-body model, whilst the second
concerns the continuation of multi-impulse trajectories from the four-body model to a full-
ephemeris model of the solar system. If the first part is intended to have a more theoretical
orientation, dealing with basic research, the second part is more geared towards practical
real-world application.

Part I

Chapter 2 deals with the detailed description of the Planar Bicircular Four Body Problem.
Subsequently, the reference two-impulse Earth–Moon transfers are defined and classified.
Finally, Lawden’s Primer Vector theory is recalled and adapted to a four-body model.

Chapter 3 presents the methodology used to reduce the cost of two-impulse Earth–Moon
transfers with an additional midcourse impulse. Two main phases are individuated: the
construction of a perturbed trajectory with the addition of the midcourse impulse, and
the iterative refinement of this last until a local minimum of the cost function is achieved.

Chapter 4 discusses how the methodology is implemented within a numerical framework,
and shows the results obtained. Importance is given to the flexibility and efficiency of the
algorithm, which must optimize thousands of different transfers in an automatic fashion.

Part II

Chapter 5 introduces a high-fidelity ephemeris-based model of the solar system and shifts
the focus to low-energy Earth–Moon transfers, describing their main features.

Chapter 6 gives a definition of the trajectory continuation problem and describes the orig-
inal methodology used to obtain an initial seed orbit in the n-body model. Subsequently,
an automated procedure refines the initial guess solution until a feasible transfer is found.

Chapter 7 deals with the numerical implementation and solution to the continuation
problem. Some final trajectories in the real solar system are shown and discussed, with
emphasis on low-energy transfers.
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Chapter 8 concludes the thesis with a summary of the results. Critical evaluation is
provided for the adopted strategies and some hints for further developments are given.

1.4. Conventions

For clarity, the conventions used in the thesis are listed in this remainder.

• Scalar quantities are in italic and lower or upper case letters (e.g., m or M).
Barred letters (e.g., T ) are used for mean values and reference quantities.

• Vectors and matrices: vectors (and vectorial functions) are assembled column-
wise and are written in bold and lower case letters (e.g., r). Upper case bold letters
are used only for vectorial quantities view from an inertial system (e.g., R). Matrices
are indicated with capital letters (e.g., A).

• Vectorial operations: vectorial scalar product is indicated either transposing the
first vector (e.g., r⊤v) or using the symbol ‘·’. Vectorial cross product is indicated
by ‘×’. Euclidean vectorial norm (2-norm) is denoted as ∥·∥.

• Special matrices: the identity matrix and null matrix of dimensions (n × n) are
denoted as In and 0n, respectively.

• Derivatives: conventional time derivatives are indicated by dots (e.g., k̇, k̈).
Derivatives of column-vectors with respect to scalars are organized in row-vectors
(e.g., v⊤ = dx/dt). Accordingly, gradient matrices are assembled row-wise.

• Class of functions: the class of continuous real functions is indicated by C[·], where
the domain of the function might be specified between parentheses. C1 and Ĉ are
used for continuously differentiable and piecewise continuous functions, respectively.

1.5. Hardware and Software Specifications

Data processing and implementations are performed using the commercial software Matlab®

by MathWorks, version Matlab 2022b. Precise data about the celestial bodies are retrieved
from the planetary and lunar ephemerides DE432 of the JPL [21]. Access to these is pro-
vided through the JPL’s SPICE toolkit [1].
Serial calculations are carried out on a MacBookPro (2017), with macOS 13.2.1 operating
system and powered by an Intel® Core i7 quad-core CPU @2.90 GHz with 16 GB of
RAM. Parallel computations are run on a Dell XPS 9550 with Windows 10 Pro 22H2 and
powered by an Intel® Core i7 quad-core CPU @2.60 GHz with 32 GB of RAM.
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In this second chapter, the main peculiarities of the Planar Bicircular Restricted Four
Body Problem are reviewed. Then, Earth–Moon transfers in the planar bicircular re-
stricted four-body model are defined. Finally, the Primer Vector Theory is recalled and
applied to derive the analytical conditions for the optimality of a trajectory.

2.1. Planar Bicircular Restricted Four Body Problem

In the hierarchy of the astrodynamical models, the Planar Bicircular Restricted Four-Body
Problem (PBRFBP) occupies a medium position on a scale of complexity and fidelity. The
bicircular problem is a simplified version of the restricted four-body problem. This model
is used to describe the motion of a maleness particle under the gravitational attraction
of the Earth, Moon and Sun, whose orbits are assumed to be circular. Many of its
characteristics are inherited from the Circular Restricted Three Body Problem, to which
the perturbations of the Sun is superposed. In this section, the geometry of the model is
outlined, together with the equations of motion.

2.1.1. Geometry of the Model

In the paradigm of the PBRFBP, there are two celestial bodies that move under their
mutual gravity on co-planar circular orbits about their common center of mass. These two
primaries, P1 and P2, with masses M1 > M2, rotates counterclockwise with a constant
angular velocity ω. On the same plane, the model also incorporates the periodic pertur-
bation of a third celestial body, P3, that is assumed to revolve in a circular orbit around
the center of mass of the primaries. In the present case, P1 represents the Earth, P2 the
Moon and P3 the Sun. All these three are assumed to be point masses and to possess
spherically symmetric gravity fields. The last body, P , represents the spacecraft (SC)
and moves under the gravity of the other three bodies. In reason of the large difference
between the masses of the probe and the celestial bodies, the problem is restricted : the
infinitesimal mass of P does not affect the motions of the other bodies. The geometry
of the problem is depicted in Fig. 2.1, where evidently neither the distances between the
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bodies nor their sizes are to scale. Despite the model is not coherent, i.e., the motion does
not satisfy Newton’s equations, it catches the insights of the real four-body dynamics [59]
and it allows to design some particular orbits, such as low-energy transfers [67]. The rea-
son why, is that the previous assumptions are actually well justified, since they represent
a good approximation of the real environment. In fact, the eccentricities of the Earth and
Moon orbits are 0.0167 and 0.0549, respectively, and the Moon orbit inclination on the
ecliptic is about 5 deg.

Figure 2.1: Geometry of the PBRFBP in rotating Earth–Moon coordinates, drawing not
to scale; here a positive ωS is represented, but for the Earth–Moon–Sun system its value
is negative (see Table 1)

2.1.2. Nondimensionalization

A nondimensional formulation of the problem accomplishes both the generalization of
results to any primary system and the simplification of subsequent mathematical devel-
opments [35]. A characteristic value is assigned to each one of the basic quantities of the
problem: length, mass and time. The reference length L is set equal to ℓEM, the mean
distance between the two primaries, and the characteristic mass M is selected as the sum
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of M1 and M2. The nondimensional time is chosen as

T =

√
ℓEM

3

G (M1 +M2)
=

√
L
3

GM
. (2.1)

G is the universal gravitational constant, and from Eq. (2.1), its nondimensional value is
unity. Moreover, from Kepler’s equation, the mean motion ωEM of the primaries is

ωEM =

√
G (M1 +M2)

ℓEM
3 . (2.2)

Note that ωEM coincides with the angular velocity of the synodic reference frame. As the
nondimensional value of G, ℓEM and M1 +M2 is one, ω, the nondimensional counterpart
of ωEM, inherits a unitary value. Also, let define the mass ratio of P2 to the total mass of
the two primaries as the mass-ratio parameter of the problem:

µ ≡ M2

M1 +M2

. (2.3)

It follows that the nondimensional masses of the primaries can be written as

m1 = 1− µ ,

m2 = µ .

(2.4a)

(2.4b)

The main consequence of this formulation is the advantage of having the Earth and the
Moon at two fixed points on the rotating x-axis, at nondimensional coordinates (−µ, 0)
for the Earth and (1− µ, 0) for the Moon (see Fig. 2.1).
Concerning the third body P3, its orbital radius ρ is a mean value of the distance between
the Sun and the Earth–Moon barycenter. Its mean angular velocity ωS relative to the
rotating frame is negative, so it rotates clockwise, and the Sun’s angle with respect to the
x-axis is denoted as θ = ωSt.

The values of the physical quantities used in this study are taken from [59], and are
collected in Table 1, together with the associated units of distance, time, mass and velocity
(this last defined as V = L/T ).
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Table 1: Physical and characteristic quantities used in the PBRFBP

Symbol Value Units Meaning

µ 1.21506683× 10−2 - Earth–Moon mass parameter

mS 3.28900541× 105 - Scaled mass of the Sun⋆

ρ 3.88811143× 105 - Scaled Sun–(Earth–Moon) distance⋆

ωS −9.25195985× 10−1 - Scaled angular velocity of the Sun⋆

ℓEM 3.84405000× 105 km Mean Earth–Moon distance

ωEM 2.66186135× 10−6 s−1 Mean Earth–Moon angular velocity

L 3.84405000× 105 km Reference distance

M 6.04765089× 1024 kg Reference mass

T 4.34811305 days Reference time

V 1.02323281 km s −1 Reference velocity
⋆ The constants used to describe the Sun perturbation meet the length, time, and mass nor-

malization of the PBRFBP

2.1.3. Coordinate Systems

An advantageous frame for describing the motion of P rotates together with the two
primaries. Nonetheless, sometimes also an inertial frame is needed. These coordinate
systems are defined hereafter.

Synodic Frame

A co-rotating coordinate system (x,y, z) can be adopted to describe the motion of P .
This reference frame has its origin at the center of mass of the Earth–Moon system. The
x-axis is parallel to the line joining the two primaries and is directed from the barycenter
to P2. The z-axis is perpendicular to the plane of motion of the primaries. Finally, the
y-axis completes the right-handed trial. As the frame rotates with an angular velocity
equal to that of the Earth–Moon system, it is also called synodic.

Sidereal Frame

For the subsequent discussion, it is useful also to introduce a frame that does not rotate
and is centered in one of the two primaries. Actually, two inertial coordinate systems
(X1,Y1,Z1) and (X2,Y2,Z2), called sidereal frames, are defined. The origin is either the
Earth P1 or the Moon P2, while the directions of the axes are fixed, and coincide with
those of the synodic frame at the time t = 0 (see Fig. 2.2).
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Figure 2.2: Synodic (x,y, z) and sidereal (X1,Y1,Z1), (X2,Y2,Z2) coordinate systems

Coordinate Transformation

Let (x, y, ẋ, ẏ) be the nondimensional position and velocity of P in the synodic frame1.
The position in the P1-centered sidereal frame is obtained by subtracting the coordinates
of the Earth from those of P , and by applying the following rotation matrix (remember
that the dimensionless angular velocity is ω is unitary)

C =

cos t − sin t 0

sin t cos t 0

0 0 1

 . (2.5)

As a consequence, the corresponding state (X1, Y1, Ẋ1, Ẏ1) is

X1(t) = (x(t) + µ) cos t− y(t) sin t ,

Y1(t) = (x(t) + µ) sin t+ y(t) cos t ,

Ẋ1(t) = (ẋ(t)− y(t)) cos t− (ẏ(t) + x(t) + µ) sin t ,

Ẏ1(t) = (ẋ(t)− y(t)) sin t+ (ẏ(t) + x(t) + µ) cos t ;

(2.6)

where t is the present, scaled time and the last two equations are the time derivatives
of the first two. The transformation into the P2-centered inertial frame is attained from
Eq. (2.6) by replacing ‘µ’ with ‘µ− 1’.

1The third coordinate z and its derivative ż are not considered due to the planar nature of the model.
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2.1.4. Equations of Motion

The complete derivation of the equations of motion through a Newtonian formalism in the
absence of the perturbation of the Sun, so for the Planar Circular Restricted Three-Body
Problem (PCRTBP), can be found in [61]. Indeed, this is the starting point also for the
case of four bodies, to which the perturbation of the Sun is added.
According to [62, 67], the set of two, second-order, scalar, differential equations describing
the motion of a massless particle in the PBRFBP are

ẍ− 2ẏ =
∂Ω

∂x

ÿ + 2ẋ =
∂Ω

∂y

(2.7a)

(2.7b)

where Ω is a pseudo-potential of the model, defined as

Ω(x, y, t) :=
1

2

(
x2 + y2

)
+

1− µ

d1
+

µ

d2
+

1

2
µ (1− µ)

+
mS

d3
− mS

ρ2
(x cos (ωSt) + y sin (ωSt)) . (2.8)

Moreover, the distances of P from P1 and P2 are, respectively,

d1(t) =

√
(x(t) + µ)2 + y(t)2 ,

d2(t) =

√
(x(t) + µ− 1)2 + y(t)2 .

(2.9)

(2.10)

Instead, differently from the two primaries, the present location of the Sun is time-
dependent, P3 = (ρ cos(ωSt), ρ sin(ωSt)), and therefore the Sun-spacecraft distance is

d3(t) =

√
(x(t)− ρ cos(ωSt))

2 + (y(t)− ρ sin(ωSt))
2 . (2.11)

Let the state vector of P in dimensionless rotating coordinates be

x(t) ≡ (r(t),v(t))⊤ = (x(t), y(t), ẋ(t), ẏ(t))⊤ , (2.12)

where r(t) is the SC position vector and v(t) is its velocity vector. For the subsequent
analysis, it is convenient to express Eq. (2.7) in a first order form

ẋ(t) ≡

[
ṙ(t)

v̇(t)

]
=

[
v(t)

g(x, t)

]
; (2.13)
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where the coastal acceleration g is defined as

g(x, t) ≡

+2ẏ +
∂Ω

∂x

−2ẋ+
∂Ω

∂y

 , (2.14)

and contains both the gravitational acceleration as well as the terms due to the relative
motion of the rotating frame with respect to an inertial one. The partial derivatives
of Ω with respect to x and y are computed analytically; they are not reported here for
conciseness but they can be found in appendix A.1. The dynamics may be written also
with a general and compact notation

ẋ = f4(x, t) , (2.15)

where the subscript indicates the number of bodies taken into account by the model. Even
though Eq. (2.15) does not possess an analytical solution, the system can be integrated
numerically. Provided an initial condition of the states xi = (ri,vi)

⊤ at a time ti, the
flow of the PBRFBP, i.e., the solution of Eq. (2.7), is indicated by φ(xi, ti; t)

2.

Before continuing, some remarks can be done. First of all, one notes that, even if the
potential forces of the model are functions only of the position (gravitational forces),
the acceleration g depends on the velocity due to the non-inertial nature of the synodic
frame. Secondly, being the Sun not at rest in the reference frame adopted, the autonomy
of the problem is lost, and thus the PBRFBP becomes a time-dependent model. Finally,
regarding Ω, it is worth noticing that the perturbations due to the Sun represent a great
departure from the PCRTBP as both the equilibrium points and the Jacobi integral that
were present in the three-body model vanish [62].

2.1.5. Variational Equations

The variational equations are associated with the equations of motion. They express a
sensitivity analysis of how the final integrated state can have a variation caused by little
perturbations on the initial state. In particular, the state transition matrix (STM) is a
key result which provides fast and accurate (up to the first-order) information on how the
system responds to changes in the initial conditions. Indeed, differential information is of
paramount importance for convergence and numerical efficiency of optimization processes.
Also, the STM will play a relevant role in the Primer Vector theory.

2In the second part of the thesis the symbol φ4 is used to distinguish from the flows of other models.
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Consider a reference trajectory x(t) = φ(xi, ti; t). The variational analysis aims to study
the behavior of the state x(t) when a small perturbation δxi is applied to the initial
condition xi. The new trajectory x(t) will deviate from the reference one by a quantity
δx(t), so it can be expressed as

x(t) = x(t) + δx(t) = φ(xi + δxi, ti; t) . (2.16)

If x(t) and x(t) are sufficiently close such that a linear analysis is justified, substituting
in Eq. (2.16) the first order expansion of φ with respect to δxi leads to

δx(t) =
∂φ

∂xi

(xi, ti; t) δxi . (2.17)

Equation (2.17) is often written in terms of the state transition matrix :

δx(t) = Φ(ti, t) δxi , (2.18)

where each element Φ(ti, t) represents the variation of a final state due to a change in one
of the initial states. Thus, by definition, the STM is the jacobian of the flow:

Φ(ti, t) ≡
∂φ

∂xi

(xi, ti; t) . (2.19)

Sometimes it may be useful to partition the STM into four blocks

Φ(ti, t) =

Φrr(ti, t) Φrv(ti, t)

Φvr(ti, t) Φvv(ti, t)

 =


∂φr

∂ri
(xi, ti; t)

∂φr

∂vi

(xi, ti; t)

∂φv

∂ri
(xi, ti; t)

∂φv

∂vi

(xi, ti; t)

 . (2.20)

where φr and φv are the position and velocity components of φ. The dynamics of δx(t)
is attained from Eq. (2.15), taking the first order Taylor expansion of f with respect to x

about the reference trajectory x. This leads to the variational state equations

δẋ(t) = A(t) δxi , (2.21)

where A(t), usually referred to as state propagation matrix (SPM), is

A(t) ≡ d

dt

(
∂φ

∂xi

(xi, ti; t)

)
=

∂f(x, t)

∂x

∣∣∣∣
x=x

. (2.22)
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Putting together Eq. (2.18) and Eq. (2.21), it can be shown that the dynamics of Φ(ti, t)
is described by the first order variational equation

Φ̇(ti, t) = A(t) Φ(ti, t) . (2.23)

Eq. (2.23) represents a set of 16 differential equations, because the dimension of the state
vector is 4 (the problem is planar). Recalling the definition of Φ(ti, t), its initial condition
cannot be else than the identity matrix: Φ(ti, ti) = I4. Moreover, being the SPM a
time dependent function, it is evident that the variational equation cannot be integrated
independently from the equations of motion (2.7). Thus, a total number of 20 first-order
differential equations must be solved. Note also, that Eq. (2.18) is actually the solution
of the variational equation (2.21) in terms of the STM.

In the case of the PBRFBP, the jacobian of the dynamics is

A4(t) =
∂f4(x, t)

∂x
=

[
03 I3

Gr Gv

]
, (2.24)

where Gr, known as gravity-gradient matrix, is

Gr(x, t) ≡
∂g(x, t)

∂r
=

∂2Ω

∂r2
=


∂2Ω

∂x2

∂2Ω

∂x∂y

∂2Ω

∂y∂x

∂2Ω

∂y2

 (2.25)

and

Gv(x, t) ≡
∂g(x, t)

∂v
=

[
0 +2

−2 0

]
. (2.26)

The pseudo-potential Ω, defined in Eq. (2.8), is a continuous function in its domain, i.e.,
the entire space except the coordinates occupied by the celestial bodies P1, P2 and P3.
Moreover, this property is inhered by its partial derivatives with respect to x and y. Thus,
from a known theorem of calculus, being the second partial derivatives continuous (where
they are defined), the Hessian matrix is a symmetric matrix: Gr = Gr

⊤ The reader can
refer to appendix A.1 for the analytical expressions of the components of Gr.
Finally, it is convenient to express the variational state equations (2.21) of the PBRFBP
in a second-order form:

δr̈ = Grδr+Gvδṙ . (2.27)

Indeed, as a similar equation will emerge during the derivation of the primer vector
dynamics, the same results concerning its solution in terms of the STM will be employed.
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2.2. Earth–Moon Transfers in a Four-Body Model

In the first part of this thesis, Primer Vector theory is applied to refine Earth–Moon
transfers. However, before entering the details of the methodology, it is convenient to
introduce here the kind of transfers that will be analyzed. The problem of transferring
a spacecraft from an orbit around the Earth to the Moon represents a main challenge
from the origin of space exploration and many approaches have been studied till today
(a complete survey can be found in [20, 49]). The complexity of these ranges from simple
Hohmann transfers in a two-body model to complex weak stability boundary transfers
with ballistic capture at the Moon in high-fidelity solar system models [2–4, 12, 31, 47].
Also the nature of the propulsion technology of the spacecraft plays an important role
during the design of a transfer. Indeed, the assumption of either low- or high-thrust
propulsion generates very different solutions [16, 33].

2.2.1. Reference Earth–Moon Trajectories

The present work will discuss exclusively high-thrust missions, where impulsive maneuvers
are separated by ballistic arcs, i.e., phases during which the spacecraft is subject to
the coastal acceleration of the gravitational model only. The main starting point is the
results in [62]. Here, two-impulse Earth–Moon transfers are treated in the restricted
four-body problem with the Sun, the Earth, and the Moon as primaries (i.e., the present
PBRFBP). The optimization problem is solved through direct transcription and multiple
shooting strategy, and thousands of (locally) optimal solutions are found. Also, the author
succeeded in framing known cases as special points of a more general picture, and in
classifying many families of solutions depending on their features (e.g., cost, time of
flight, number of revolutions and gravity assists, interior- and exterior-like transfers).

The transfers found by Topputo in [62] are actually the seeding trajectories of this thesis,
and thus they will be named reference trajectories. These are obtained in the same
PBRFBP presented in section 2.1, and are defined as follows.

1. The spacecraft is initially in a circular, low-altitude, parking orbit around the Earth,
whose altitude is hi = 167 km;

2. At the initial time ti, a first impulse ∆vi parallel to the velocity of the parking orbit,
places the spacecraft on the transfer orbit;

3. At the final time tf , a second impulse ∆vf parallel to the local velocity inserts the
spacecraft into a circular lunar orbit, of altitude hf = 100 km;



2| Background 23

Note that maneuvering in the direction of the local velocity is a requirement consistent
with a fuel-optimal problem as it maximizes the variations of spacecraft energy [51]. As
reported in [62], the altitude of the departure and arrival orbits are chosen consistently
with the existing literature [2–4, 12, 31, 47–49]. In fact, the paper aims to frame existing
Earth–Moon transfers depending on their time of flight and cost, and this is a meaningful
operation only if the compared trajectories share equal initial and final energies (i.e.,
same altitude assuming circular orbits). Moreover, a mission profile including a low-
Earth orbit is consistent with major architecture requirements (e.g., use of small/medium
size launchers, in-orbit assembly of large structures, etc.) [52]. Instead, concerning the
orientation of the parking obits in [62], they all lie on the (x, y)-plane of the synodic frame
(see section 2.1.3). Similarly, also the transfers discussed in the first part of this thesis
will inherit the same boundary conditions to allow a significant comparison with other
previous works, especially with [62].

The solution database of [62] is made of almost 300 000 trajectories, many of which are
reported in Fig. 2.3. Solutions with a time-of-flight of up to 200 days exist in literature
[46], and also Earth–Moon transfers requiring as much as 2 years have been found [11].
However, in this work, a lunar transfer requiring hundreds of days is not deemed a viable
option for real missions, and thus an upper bound on the maximum transfer duration of
100 days is applied. Each point of Fig. 2.3 is associated to a locally optimal solution with
duration ∆t = tf − ti and cost ∆v = ∥∆vi∥ + ∥∆vf∥. In particular, only transfers with
∆t < 100 days and ∆v < 4150 m/s are reported in Fig. 2.3.
This general picture suggests that the solutions are organized into families, which consti-
tute a well-defined structure in the (∆t, ∆v) plane. To ease the analysis, the total set
of solutions is subdivided into two regions that enclose “Short” and “Long” transfers (‘S’
and ‘L’ squares in Fig. 2.3). The same distinction will be maintained in the present work.
Short transfers are characterized by a time of flight lower than 50 days, and a cost below
4150 m/s. Instead, long transfers have a time of flight between 50 and 100 days, and a
cost lower than 3950 m/s. Note that, as the cost tends to reduce for increasing transfer
time, only solutions of practical interest (with ∆v < 3950 m/s) are included within the L
region. Indeed, it is reasonable that a higher ∆t is justified by a lower cost.

It is evident, that the reference transfers are accomplished in a purely ballistic fashion,
so neither mid-course maneuvers nor other means of propulsion are considered during the
cruise. Therefore, the following theory and the methodology presented will explore when
and how an intermediate impulse could improve such trajectories.
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Figure 2.3: Two-impulse Earth–Moon transfers of [62] shown in the (∆t, ∆v) plane. The
two regions S and L enclose “Short” and “Long” transfer solutions, respectively

2.3. Primer Vector Theory

This section presents the derivation of a theory for trajectory optimization through an
indirect method. The optimal trajectory is determined by meeting a set of necessary
conditions (NC), obtained with an analytical approach. In fact, even when a direct
method is employed (e.g., in [62]), it is beneficial to verify if the solution satisfies the NC;
otherwise, it cannot be considered an optimal solution.

Hereafter, the set of NC are derived using the optimal control theory, a generalization of
the calculus of variations. This theory deals with problems of infinite dimensions where
the parameters and the unknowns are time-dependent functions, and aims to find a multi-
dimensional vector that minimizes a specified functional. In space applications, of special
concern are minimum fuel trajectories: if less propellant can be carried, then more pay-
load weight can be thrust into orbit, or a smaller spacecraft can be used.
In 1963, D. F. Lawden first formulated, in his pioneering work [39], the general opti-
mization problem in space navigation as a problem of Mayer. He developed the so-called
Primer Vector Theory : a collection of first-order necessary conditions for optimality of
both impulsive and continuous-thrust trajectories. These conditions are expressed in
terms of a particular vector comprised of the adjoin variables associated with the velocity,
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denoted as primer vector. The most completely developed theory is for impulsive and
fixed-time trajectories, where the primer vector can indicate the appropriate timing for
the addition of midcourse impulses or terminal coasting periods to minimize fuel con-
sumption. The purpose of this section is to recall the derivation of Lawden’s necessary
conditions for an impulsive trajectory with fixed initial and final times, positions and
velocities. The novelty is that Lawden’s theory was derived in the framework Restricted
Two-Body Problem, but here is extended to the PBRFBP.

First, the fuel-optimal problem of interest is described. Then, the necessary conditions
for a generic thrust profile are obtained by means of Pontryagin’s Maximum Principle (a
key result of optimal control theory). Lastly, NC are adapted to the specific case of an
impulsive mission and are expressed in terms of the primer vector only.

2.3.1. Fuel-Optimal Problem Formulation

Consider a spacecraft equipped with an engine and immersed in a perfectly general grav-
itational field, where neither the thrust direction nor thrust magnitude programs are
predetermined. The motion is assumed to take place in vacuum. Two classes of variables
are identified: the state variables, x(t) ∈ Rnx and the control variables u(t) ∈ Rnu , where
nx and nu are the dimensions of the vectors x and u, respectively. Let the state vector
at the time t be

x(t) ≡ (r(t),v(t),m(t))⊤ , (2.28)

where r(t) and v(t) are the SC position and velocity vectors, respectively, while m(t) is
the mass of the probe. The control variables u(t) are related to the action of the engine

u(t) ≡ (T(t),α(t), q)⊤ , (2.29)

where T(t) is the thrust magnitude produced by the engine and α(t), also known as
thrust pointing vector, is a unitary vector whose components are in the direction of the
thrust. Lastly, q is a slack variable, whose role will be clarified later. Depending on the
astrodynamical model, the dynamics of the state variables is a function of x(t), u(t) and
the time t. In a generic compact notation it can be expressed as

ẋ(t) = f(x(t),u(t), t) . (2.30)
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Alternatively, the equations of motion written in a state-space form read

ẋ(t) =


ṙ(t)

v̇(t)

ṁ(t)

 =


v(t)

g(x, t) +
T(t)

m(t)
α(t)

−T(t)

Ispg0

 , (2.31)

where g(x, t) is the coastal acceleration of the gravitational model. The last equation is
needed to express the change in mass of the spacecraft due to the generation of thrust.
Indeed, from the conservation of the mass, the mass variation is equal end opposite to
the mass flow rate of the engine β:

ṁ(t) = −β(t) ≡ −T(t)

Ispg0
, (2.32)

where Isp is the specific impulse of the engine, while g0 = 9.807 m/s2 is the standard
gravitational acceleration. The problem to be solved is to minimize a specific performance
criterion J ∈ R, also called cost functional, or simply cost, representing the minimum
propellant consumption. This can be expressed by the integral of the thrust acceleration
(thrust per unit mass) in time Γ(t) ≡ T(t)/m(t)

J =

∫ tf

ti

Γ(t) dt,=

∫ tf

ti

T(t)

m(t)
dt . (2.33)

In the case of a constant specific impulse (CSI) engine, using the equation of mass con-
servation (2.32), the cost can be written also as

J = −c
∫ tf

ti

ṁ(t)

m(t)
dt , (2.34)

where c = Ispg0 is the effective exhaust velocity relative to the engine. Let mi = m(ti) and
mf = m(tf ) be the initial and final mass of the probe, respectively. Integrating Eq. (2.34)
yields the final expression of the cost function for a fuel-optimal problem

J = c ln

(
mi

mf

)
. (2.35)

It is evinced that, for a fixed initial mass, minimizing the integral of the thrust acceleration
in time, is equivalent to minimizing the mass of propellant consumed. It will be shown
later, that this particular definition of the cost function is advantageous as, assuming only
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impulsive maneuvers are permitted, the cost is equivalent to the sum of the maneuvers’
magnitudes (

∑
k ∥∆vk∥). Note also, that J is a function only of the final value of the

state variable m (still assuming prescribed initial conditions on the mass).

In finding the histories of the state and control variables minimizing the cost, one must
also take into account the finite authority of the engine. So, the values that u(t) is
allowed to assume are actually bounded by the state-of-the-art technology. In particular,
for a CSI engine, the expelled mass flow rate is assumed to be limited. This reflects in
a constant maximum thrust magnitude allowable (i.e., Tmax = Isp g0 βmax). Hence, the
control function T(t) is subject to the inequality constraints

0 ≤ T(t) ≤ Tmax . (2.36)

In order to transform the constraints (2.36) into equality constraints, another control
variable, known as slack variable, q ∈ R is introduced. As a consequence, T(t) is required
to satisfy the following equation

T(t) (Tmax−T(t))− q(t)2 = 0 . (2.37)

One notes that, since q2 ≥ 0, Eq. (2.36) is equivalent to Eq. (2.37). Also, by its definition,
the thrust direction α(t) is constrained to have unit magnitude:

α(t)⊤α(t) = 1 . (2.38)

Therefore, the values that can be assumed by the control variables of Eq. (2.29) are
restricted to a specific region U ∈ Rnu

U :=
{
u ∈ Rnu : T (Tmax−T)− q2 = 0, α(t)⊤α(t)− 1 = 0

}
. (2.39)

A continuous (or piecewise continuous) control u(t) ∈ Ĉ [ti, tf ] satisfying Eq. (2.37) and
Eq. (2.38) is said to be an admissible control. The class of admissible control functions in
the time interval between ti and tf , is indicated by U [ti, tf ].

U [ti, tf ] :=
{
u(t) ∈ Ĉ [ti, tf ] : u(t) ∈ U for ti ≤ t ≤ tf

}
. (2.40)

As this theory will be applied to Earth–Moon transfers discussed in section 2.2.1, it
is pertinent to maintain consistent boundary conditions. Consequently, the problem of
minimizing the fuel consumption is formulated for a spacecraft path between two specific
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times, with assigned initial state and certain final states (position and velocity).

Problem 2.1 (Fuel-Optimal Problem). — Let the state and control variables of a
spacecraft be defined in Eqs. (2.28) and (2.29), and let the dynamics ẋ(t) = f(x(t),u(t), t)

be governed by the equations of motion Eq. (2.31). Given an initial state xi at time ti and
a final position and velocity {rf ,vf} at time tf , the cost functional J = c ln (mi/mf ) must
be minimized over the set of admissible controls u(t) ∈ U [ti, tf ], defined in Eq. (2.40).

min
u(t)∈ U[ti,tf ]

J = c ln

(
mi

mf

)
, subject to


ẋ(t) = f(x(t),u(t), t)

x(ti) = xi

r(tf ) = rf

v(tf ) = vf

.

2.3.2. First-Order Necessary Conditions

The kind of problem described in the previous section falls under the class of optimal
control problems with control equality constraints. This family of problems is notoriously
hard to solve, and even the theory is not unambiguous, since there exist many forms of
necessary conditions for optimality [41].

Lawden derived the first-order necessary conditions for a fuel-optimal CSI trajectory using
classical calculus of variations. Despite that, an optimal control theory formulation is
used in the subsequent derivation, but the final conclusions are analogous to those of
Lawden. The following discussion is mainly inspired by Hiday, who developed in 1992
the primer vector necessary conditions for an impulsive, fuel-optimal, trajectory in the
Elliptic Restricted Three-Body Problem [35]. Together with it, also the works of Bell [7],
Jezewski [36] and Guzman [27] are used for an exhaustive derivation. Specifically, the
Pontryagin Maximum Principle [22, 54] is employed to derive the first-order necessary
conditions for optimality. The reader is referred to [30] for a survey of the various forms
of the maximum principle.
For the sake of completeness, it must be pointed out that also other approaches are found
in literature. For example, one significant difference is that in [16, 32, 41] the mass is not
considered a state variable, but is kept track of separately.

In order to threaten the state equations (2.31) as differential constraints, a new set of
variables λ(t) ∈ Rnx is introduced. These are called Lagrange multiplier, or adjoint
variables, or costates, and are defined as λ(t) ≡ (λr(t),λv(t), λm(t))

⊤. The vectorial
functions λr(t) and λv(t) and the scalar function λm(t) are the adjoint to the spacecraft
position, velocity and mass, respectively. Additionally, other two Lagrange multipliers
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σ1(t) and σ2(t) are introduced in conjunction with the thrust constraints of Eqs. (2.37)
and (2.38). One possible approach to derive the first-order conditions of Problem 2.1 is
by means of the Lagrangian and Hamiltonian functions. The Hamiltonian H is defined
as the summation of the path-dependent terms of J , and each adjoint variable multiplied
by the right-hand side of the corresponding state equation. In the present case, since J

is a function only of the final state, the Hamiltonian is

H(x,u,λ, t) := λ⊤f = λ⊤
r v + λ⊤

v

[
g +

T
m

α

]
− λm

T
c
. (2.41)

Note, that on the right side, the dependence upon the time and the state vector is omitted
in favor of a more compact notation. The Lagrange expression F is defined by the
subtraction of the Hamiltonian from the sum of the products of each σ variable with the
corresponding control constraint

F(x,u,λ, t) := σ1

[
T (Tmax−T)− q2

]
+ σ2

(
α⊤α− 1

)
−H . (2.42)

The necessary conditions for the optimality of a solution are stated in the following the-
orem, which here is adapted to the fuel-optimal case described in Problem 2.1. Many
proofs of Pontryagin’s Principle exist in literature, but in general they are very long and
technically difficult (see [34] or [54]).

Theorem 2.1 (Maximum Principle). — Consider Problem 2.1. Suppose that u⋆(t) ∈
U is a minimizer for the cost function J , and let x⋆(t) denote the state vector associ-
ated with the optimal trajectory. Then, there exist a nx-dimensional vectorial function
λ⋆(t) ∈ Ĉ1[ti, tf ] and a nu-dimensional vectorial function σ⋆(t) ∈ Ĉ1[ti, tf ], such that
(λ⋆(t),σ⋆(t)) ̸= 0 ∀ t ∈ [ti, tf ], and:

(a) the quadruple {u⋆,x⋆,λ⋆,σ⋆} verifies the equations

ẋ⋆(t)⊤ =
∂F
∂λ

(t,x⋆,u⋆,λ⋆,σ⋆)

λ̇⋆(t)
⊤
= −∂F

∂x
(t,x⋆,u⋆,λ⋆,σ⋆)

0⊤ =
∂F
∂u

(t,x⋆,u⋆,λ⋆,σ⋆)

(2.43a)

(2.43b)

(2.43c)

at each instant t of continuity of u⋆, and the following transversal conditions hold:

λ⋆⊤(tf ) = −
∂J

∂x
(tf ,x

⋆(tf )). (2.44)
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(b) the function H(x⋆,u,λ⋆, t) defined in Eq. (2.41) attains its maximum on U [ti, tf ] at
u(t) = u⋆(t) for every t ∈ [ti, tf ]:

H(x⋆,u⋆,λ⋆, t) ≥ H(x⋆,u,λ⋆, t) ∀ u(t) ∈ U [ti, tf ] , (2.45)

where U [ti, tf ] is the class of admissible control functions defined in Eq. (2.40).

Equation (2.43) is a system of differential algbraic equations (DAE), because Eqs. (2.43a)
and (2.43b) represent 2nx first-order differential equations and Eq. (2.43c) is a set of nu

algebraic equations. This kind of problem is known as two point boundary value problem
(TPBVP), because the boundary conditions for the state vector are assigned both at the
initial and final time, whilst the boundary conditions for the adjoint vector are given only
at the final time. The adjoint differential equations (2.43b) originate from the Euler-
Lagrange equations of optimal control [41]. For the present case, in a more explicit form,
they read (superscript ‘⋆’ is dropped to ease notation)

λ̇⊤
r = −∂H

∂r
= −λ⊤

v Gr ,

λ̇⊤
v = −∂H

∂v
= −λ⊤

r − λ⊤
v Gv ,

λ̇m = −∂H
∂m

=
T
m2

λ⊤
v α .

(2.46a)

(2.46b)

(2.46c)

where the two matrices Gr and Gv were defined in Eqs. (2.25) and (2.26). Lawden
developed the solution to the problem in terms of inertial coordinates, therefore the vector
g in his derivation is a function only of position and time, so Gv = 0nx . However, this
term is nonzero in the general case, as the motion may be described in a rotating frame.
Concerning Eq. (2.43c), the components of the vectorial algebraic equation are

0 =
∂F
∂ T

= σ⋆
1 (Tmax−2T⋆)− 1

m⋆
λ⋆

v
⊤α⋆ +

λ⋆
m

c
,

0⊤ =
∂F
∂α

= 2σ⋆
2α

⋆⊤ − T⋆

m⋆
λ⋆

v
⊤ ,

0 =
∂F
∂q

= −2σ⋆
1q

⋆ .

(2.47a)

(2.47b)

(2.47c)

The state and control variables that satisfy Eqs. (2.43b) and (2.43c) are termed extremals
[35], for these solutions render the cost function an extremum. However, by the nature
of the space trajectory problem, there is clearly no upper bound to the fuel that could
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be consumed on a feasible trajectory. So, one may be confident that a solution is a local
minimum and not a local maximum [16].

Equation (2.47c) requires either σ⋆
1, q⋆, or both should vanish. If q⋆ = 0, then, in accor-

dance with Eq. (2.37), either T⋆ = 0 or T⋆ = Tmax. If σ⋆
1 = 0, the thrust magnitude

can assume intermediate values. Thus, the optimal trajectory may be comprised of the
following types of arcs:

(i) Null Thrust Arcs (NT-arcs) when T⋆ = 0,

(ii) Intermediate Thrust Arcs (IT-arcs) when 0 < T⋆ < Tmax,

(iii) Maximum Thrust Arcs (MT-arcs) when T⋆ = Tmax.

Consider now Eq. (2.47b). Provided that σ⋆
2 and T⋆ are both non-zero, α⋆ and λ⋆

v must be
parallel. Let the adjoint vector to the velocity be termed the primer vector and, hereafter,
be denoted as

p(t) ≡ λv(t) . (2.48)

Then, the optimal thrust direction is always parallel to the primer, and since ∥α⋆∥ = 1

α⋆(t) =
p⋆(t)

∥p⋆(t)∥
. (2.49)

As it will be clearer later, the renaming of λv is not arbitrary, but rather this distinc-
tive vector plays a relevant role in facilitating the understanding of optimal trajectories.
If T⋆ = 0, the motor is not operating, and the components of α⋆ are indeterminate;
additionally, if σ⋆

2 = 0, the primer vanishes.

The optimal control is now chosen according to Pontryagin’s Maximum Principle stated in
(2.45), and affirming that the Hamiltonian should be maximized over the choice of admis-
sible control variables in order to minimize the cost function. Note that, as empathized
by [53], the inequality (2.45) does not imply H(x,u⋆,λ, t) ≥ H(x,u,λ, t) for arbitrary
(i.e., non-optimal) x(t), λ(t). Substituting the definition of H reported in Eq. (2.41) into
Eq. (2.45), utilizing the definition of the primer and simplifying,[

1

m
p⋆⊤α⋆ − 1

c
λ⋆
m

]
T⋆ ≥

[
1

m
p⋆⊤α− 1

c
λ⋆
m

]
T , (2.50)

where superscript ‘⋆’ still denotes the value that a quantity assumes on the minimal cost
trajectory. Inequality Eq. (2.50) is also recognized as the Weierstrass necessary conditions
in calculus of variations, and it is the starting point employed by Lawden in [39]. At every
point on the optimal trajectory, condition (2.50) must be valid for all possible values of α
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and T satisfying constraints (2.37) and (2.38). Hence, following Hilday [35], Weierstrass
inequality can be analyzed in each extremal of the optimal trajectory.

• Over an NT-arc, T⋆ = 0, and inequality (2.50) reduces to

1

c
λ⋆
m ≥

1

m
p⋆⊤α . (2.51)

Imposing the greatest restriction on the above necessary conditions, the upper bound
on the right-hand side of (2.51) is sought. The maximum value of the quantity p⋆⊤α

is obtained when α is aligned with the primer vector; consequently, this maximum
value is just the magnitude of the primer. Hence, the Weierstrass necessary condition
on an NT-arc simplifies to

λ⋆
m ≥

c ∥p⋆∥
m

. (2.52)

• Over a MT-arc, T⋆ = Tmax, and (2.50) becomes[
1

m
p⋆⊤α⋆ − 1

c
λ⋆
m

]
Tmax ≥

[
1

m
p⋆⊤α− 1

c
λ⋆
m

]
T . (2.53)

Taking T = Tmax in order to maximize the right side of (2.53) requires that

p⋆⊤α⋆ ≥ p⋆⊤α . (2.54)

Additionally, taking α = α⋆ to determine an upper bound on the right side of (2.53)[
1

m
p⋆⊤α⋆ − 1

c
λ⋆
m

]
Tmax ≥

[
1

m
p⋆⊤α⋆ − 1

c
λ⋆
m

]
T ; (2.55)

moreover, since T ≤ Tmax, the quantity in parentheses must be positive in order for
the necessary condition to be satisfied. Thus,

λm
⋆ ≤ c

m
p⋆⊤α⋆ . (2.56)

Conditions (2.54) and (2.56) are sufficient to ensure the validity of necessary condi-
tion (2.50). Inequality (2.54) will be satisfied for all α if, and only if, p⋆⊤α⋆ assumes
its maximum value. Hence, in agreement with the early results for the NT-arc, p⋆

and α⋆ must be aligned. Conditions (2.56) then reduces to

λ⋆
m ≤

c ∥p⋆∥
m

. (2.57)
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• Over an IT-arc, the optimal thrust magnitude T⋆ can assume values either greater
or lower then T. Taking α = α⋆ in condition (2.50) makes clear that the inequality[

1

m
p⋆⊤α⋆ − 1

c
λ⋆
m

]
T⋆ ≥

[
1

m
p⋆⊤α⋆ − 1

c
λ⋆
m

]
T (2.58)

cannot be valid fo all permissible T; however, equality is possible provided

λm
⋆ =

c

m
p⋆⊤α⋆ . (2.59)

Substituting the value of λ⋆
m from Eq. (2.59) into condition (2.50) and rearranging

further, requires that

λm
⋆ ≥ c

m
p⋆⊤α (2.60)

for all permissible values of α. An upper bound on the right side of (2.60) is ob-
tained when the primer and thrust directions are identical; consequently, necessary
condition (2.60) becomes

λ⋆
m ≥

c ∥p⋆∥
m

. (2.61)

Note, however, that (2.59) implies that

λ⋆
m ≤

c ∥p⋆∥
m

, (2.62)

where equality occurs only when the primer and thrust directions are aligned.
Hence, in order for both to be valid,

λ⋆
m =

c ∥p⋆∥
m

, (2.63)

and the thrust must be parallel to the primer vector. In the special case when the
primer vanishes, Eq. (2.63) is still valid.

Consideration of the necessary conditions on each of the three extremal arcs is concluded;
hence, the superscript ‘⋆’ will henceforth be dropped, and the subsequent states, controls
and Lagrange multipliers are assumed to be evaluated on the optimal trajectory.
The results obtained from the Maximum Principle can be summarized as follows:

1. Whenever the thrust is operative and ∥p∥ ≠ 0, the thrust must act in the direction
and sense of the primer vector

α =
p

∥p∥
; (2.64)
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2. Defining the function S as

S :=
c ∥p∥
m
− λm , (2.65)

then it is necessary that

• S ≤ 0 over an NT-arc;

• S ≥ 0 over a MT-arc;

• S = 0 over an IT-arc.

Because the function S delineates the amount of thrust on extremal arcs, S is identified
as the thrust magnitude switching function.

It remains to take into account Eqs. (2.46c) and (2.47a). They are employed to eliminate
the adjoint λm from consideration, by expressing it in terms of the thrust magnitude
switching function. Differentiating Eq. (2.65) and solving for the derivative of the adjoint,

λ̇m =
c

m
∥ṗ∥ − c ∥p∥

m2
ṁ− Ṡ . (2.66)

Equating the two expressions of λ̇m in Eqs. (2.46c) and (2.66) produces

c

m
∥ṗ∥ − c ∥p∥

m2
ṁ− Ṡ =

T
m2
∥p∥ . (2.67)

Utilizing the conservation of mass expression (2.32) for the term ṁ, renders

Ṡ =
c

m
∥ṗ∥ − c ∥p∥

m2

(
−T

c

)
− T

m2
∥p∥ , (2.68)

which reduces to

Ṡ =
c

m
∥ṗ∥ . (2.69)

Also, substituting Eq. (2.65) into Eq. (2.47a)

0 = σ1 (Tmax−2T)− ∥p∥
m

+
1

c

(
c ∥p∥
m
− S

)
, (2.70)

simplifying and rearranging

S = c σ1 (Tmax−2T) . (2.71)

Hence, the constraints on the Lagrange multipliers λm and σ1 have been replaced by
the specification of the switching function and its derivative according to Eqs. (2.69)
and (2.71). On NT- and MT-arcs, Eq. (2.71) serves only to determine the value of σ1.
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Since the spacecraft mass is constant on an NT-arc, Eq. (2.69) is integrable to yield

S =
c

m
∥p∥+ constant . (2.72)

Instead, on an IT-arc the conditions about S further simplify. Recall that for an IT-arc,
σ1 = 0; therefore, from Eq. (2.71), S = 0. In order for the switching function to remain
zero throughout the duration of the IT-arc, the derivative of the switching function must
also be identically zero. Accordingly, Eq. (2.69) implies that ∥ṗ∥ = 0 or ∥p∥ = constant.

The results of this section will now be collected together. The necessary conditions for an
optimal solution of Problem 2.1, which are also expressed by Theorem 2.1, can be stated
in terms of the primer vector p and the thrust magnitude switching function S.

Proposition 2.1 (Necessary Conditions for a General Fuel-Optimal Tra-
jectory). — An optimal trajectory for Problem 2.1 is such that:

1. Whenever the engine of the spacecraft is operative and ∥p∥ ̸= 0, the thrust
must act in the direction and sense of the primer vector

α =
p

∥p∥
.

2. S must respect the following specification on the three types of extremal arcs:
(i) On a NT-arc, S is negative and is determined by Eq. (2.72)

S =
c

m
∥p∥+ constant and S ≤ 0 ;

(ii) On a MT-arc, S is positive and it respects Eq. (2.69)

Ṡ =
c

m
∥ṗ∥ and S ≥ 0 ;

(iii) On an IT-arc, S is identically zero and the primer magnitude is constant

S = Ṡ = 0 and ∥ṗ∥ = 0 .

Note that these conditions apply for either high- or low-thrust engines, as no assumption
has been made on the thrust profile. Moreover, their validity holds irrespective of the
astrodynamical model employed.
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2.3.3. Primer Differential Equations

Before discussing further the necessary conditions for optimality, it is useful to develop
the differential equations for the primer vector. Writing the second adjoint differential
equation (2.46b) in terms of p and differentiating

p̈⊤ = −λ̇⊤
r − ṗ⊤Gv − p⊤Ġv . (2.73)

Then, substituting the first adjoint differential equation (2.46a) inside Eq. (2.73) and
simplifying, yields to

p̈⊤ = p⊤
(
Gr − Ġv

)
− ṗ⊤Gv , (2.74)

which, transposed, results in

p̈ =
(
Gr − Ġv

)⊤
p−G⊤

v ṗ . (2.75)

Eq. (2.75) is valid for every astrodynamical model, but in the framework of the PBRFBP,
it reduces even more. Indeed, being Gv, defined in Eq. (2.26), a constant matrix, Ġv is
identically zero. Moreover, it was already pointed out, that owing to the regularity of the
pseudo-potential Ω, Gr is symmetric. Thus, in the present case:

(
Gr − Ġv

)⊤
= Gr . (2.76)

Furthermore, it should be observed that Gv is an antisymmetric matrix

−G⊤
v =

[
0 +2

−2 0

]
= Gv . (2.77)

The second order differential equation for the primer vector in a PBRFBP simplifies to

p̈ = Grp+Gvṗ . (2.78)

Lawden’s approach to the primer differential equation for transfers in the two-body prob-
lem results in a matrix Gv that is always zero. However, in the PBRFBP, the second
derivative of the primer vector depends also on its first derivative. A notable advantage
of the primer vector equation, is that it obviates the need for simultaneous integration of
Eq. (2.78) and both the state and the variational dynamics, Eqs. (2.7) and (2.23), respec-
tively. Indeed, Eq. (2.78) and Eq. (2.27) are actually the same second-order differential
equation. Hence, if the initial conditions for p and ṗ are known, the history of the primer
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vector in time can be computed by means of the STM:p(t)
ṗ(t)

 =

Φrr(ti, t) Φrv(ti, t)

Φvr(ti, t) Φvv(ti, t)

p(ti)
ṗ(ti)

 . (2.79)

Unfortunately, instead of ṗ(ti), the values of p at the initial and final times are very
often available (especially for a trajectory with two impulsive maneuvers at the ending
points). Nevertheless, if matrix equation (2.79) is evaluated at t = tf , and the sub-matrix
Φrv(ti, tf ) is nonsingular, the first equation of (2.79) can be rearranged to have:

ṗ(ti) = Φ−1
rv (ti, tf ) [p(tf )− Φrr(ti, tf )p(ti)] . (2.80)

Thus, knowing the values of the primer vector at the endpoints of the trajectory (pi =

p(ti), pf = p(tf )), the solution for the primer is given by Eqs. (2.79) and (2.80):

p(t) =
[
Φrr(ti, t)− Φrv(ti, t) Φ

−1
rv (ti, tf ) Φrr(ti, tf )

]
pi + Φrv(ti, t) Φ

−1
rv (ti, tf )pf . (2.81)

2.3.4. Adjoint Equation

When a system possess an integral of motion, theoretical developments are facilitated and
also checks on the accuracy of numerical computations can be performed. For instance, in
the two-body problem or in the circular three-body problem, the Hamiltonian is constant
on a coastal arc. However, in the case of the planar bicircular rotating four-body problem,
the Hamiltonian is time varying (Ḣ(t) ̸= 0) and so it does not represent an integral
of motion. The main reason for this is that the system is non-autonomous, therefore
g(x, t), and consequently H(t), are explicit functions of time. The extension of the primer
vector theory to the PBRFBP is complicated by the non-constancy of the Hamiltonian.
Nonetheless, a useful variational expression can be rendered constant by contemporaneous
variations between a perturbed and a reference trajectory. Once again, the following
derivation is inspired by [35].

Let γ and γ represent a reference trajectory and a trajectory slightly perturbed from the
reference, respectively. Assume also, that both trajectories satisfy the same boundary
conditions. If δ symbolizes a contemporaneous variation, then the difference between the
states on the perturbed and reference trajectory is:

δx(t) = x(t)− x(t) , (2.82)
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where x(t) = (r(t),v(t))⊤ and x(t) = (r(t),v(t))⊤ denote the state vectors of γ and γ,
respectively. The equations of motion of a spacecraft on a coastal arc are obtained by
setting T = 0 in Eq. (2.31). If γ and γ are sufficiently close such that a linear analysis is
justified, then the contemporaneous variation in the velocity and in the accelerations on
the null-thrust arc can be expressed as

δṙ(t) = ṙ(t)− ṙ(t) = δv ,

δv̇(t) = v̇(t)− v̇(t) = δg =
∂g

∂r
δr+

∂g

∂v
δv .

(2.83)

(2.84)

Substituting the definitions of Eqs. (2.25) and (2.26), the state variational equations (2.83)
and (2.84) can be written in a second order form as

δr̈ = δv̇ = Grδr+Gvδv . (2.85)

Equation (2.85) is equivalent to the variational equation (2.27), therefore its solution can
be written in terms of the STM[

δr(t)

δv(t)

]
=

[
Φrr(τ, t) Φrv(τ, t)

Φvr(τ, t) Φvv(τ, t)

][
δr(τ)

δv(τ)

]
. (2.86)

Recall now from Eq. (2.75), that the second order differential equation for the primer
vector on the reference trajectory is

p̈ =
(
Gr − Ġv

)⊤
p−G⊤

v ṗ . (2.87)

Pre-multiplying Eq. (2.85) by p⊤ and Eq. (2.75) by δr⊤ and subtracting,

p⊤δr̈− δr⊤p̈ = p⊤Grδr+ p⊤Gvδv − δr⊤G⊤
r p+ δr⊤Ġ⊤

v p+ δr⊤G⊤
v ṗ . (2.88)

Canceling the first and third terms on the right side

p⊤δr̈− δr⊤p̈− p⊤Gvδv − δr⊤Ġ⊤
v p− δr⊤G⊤

v ṗ = 0 . (2.89)

Adding and subtracting the quantity ṗ
⊤
δv

p⊤δr̈+ ṗ
⊤
δv − δr⊤p̈− ṗ

⊤
δv − p⊤Gvδv − δr⊤Ġ⊤

v p− δr⊤G⊤
v ṗ = 0 . (2.90)
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Recalling that δṙ = δv and δr̈ = δv̇ and transposing the third, sixth and last terms, yield

(
p⊤δv̇ + ṗ

⊤
δv
)
−
(
p̈
⊤
δr+ ṗ

⊤
δṙ
)
−
(
ṗ
⊤
Gvδr+ p⊤Ġvδr+ p⊤Gvδṙ

)
= 0 . (2.91)

At this point, one can note that the left side is an exact differential; hence,

d

dt

(
p⊤δv − ṗ

⊤
δr− p⊤Gvδr

)
= 0 , (2.92)

which can be integrated to yield

p⊤δv −
(
ṗ
⊤
+ p⊤Gv

)
δr = constant . (2.93)

Equation (2.93) is named adjoint equation: it is the basis for the analysis in [40] and it
will be used extensively in the subsequent derivations.

2.3.5. Impulsive Thrust

Consider a high-thrust CSI engine, which, for instance, employs conventional chemical
propulsion. On such a transfer, the duration of an arc of maximum thrust is negligible
if compared to the total time of the mission. Accordingly, for the purpose of finding an
optimal trajectory, the motion of the spacecraft during a MT-arc can be neglected. So, a
MT-arc can be approximated as an impulse (i.e., Dirac delta function δD) useful to change
the velocity of the probe, without affecting its position. Such (ideal) impulsive maneuver,
is modeled by allowing the maximum thrust magnitude to be infinite: Tmax → ∞. It is
shown hereafter, how this assumption simplifies the necessary conditions just found.

Cost Function

In the case of impulsive trajectory, Γ(t) = ∥∆v(t)∥ δD(t− tk), where tk is the time of the
k-th impulse and ∥∆v(t)∥ is the variation of the velocity achieved. From Eq. (2.33)

J =

∫ tf

ti

Γ(t) dt =

∫ tf

ti

∥∆v(t)∥ δD(t− tk) dt =

nk∑
k=1

∥∆vk∥ . (2.94)

where nk is the number of impulsive maneuvers. J is referred to as the characteristic
velocity of the transfer. Therefore, minimizing the fuel expenditure, and minimizing the
characteristic velocity (i.e., the sum of the magnitude of the velocity changes), are equiv-
alent optimization criteria for the impulsive thrust problem. Furthermore, by definition,
the velocity change ∥∆vk∥ is aligned to the thrust direction α at time tk.
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Corner Conditions

Consider a MT-arc which is preceded and succeeded by NT-arcs. As determined at the
end of section 2.3.2, a MT-arc is characterized by S ≥ 0, and a NT-arc by S ≤ 0. In
the case of a MT-arc of non-negligible duration (finite Tmax), the graph of the thrust
magnitude switching function has the form illustrated in Fig. 2.4a. Instead, if the thrust
is impulsive (Tmax → ∞) and the duration of the MT-arc is negligible, then the graph
of S resembles the one reported in Fig. 2.4b. It is evident that the switching function
attains its maximum value, equal to zero, at the instant of application of the impulsive
thrust, denoted as t = tk. Hence, the shape of Fig. 2.4b necessarily implies that

S(tk) = Ṡ(tk) = 0 . (2.95)

Moreover, if either or both the NT-arcs are replaced by IT-arcs, over which S = 0, the
conclusion (2.95) is unaltered. Summarizing, for the case of impulsive thrust maneuvers,
T = 0 when S < 0 and the impulses occur when S is maximum and tangent to S = 0.

(a) General thrust: MT-arc of finite duration (b) Impulsive thrust case: MT-arc of infinites-
imal duration and Ṡ continuous at t = tk

(c) Impulsive thrust case: MT-arc of infinites-
imal duration with a cusp (Ṡ discontinuous)

Figure 2.4: Switching function of a NT-arcs preceding and succeeding a MT-arc
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However, as the preceding arguments do not preclude the existence of a cusp at t = tk in
the S-graph (see Fig. 2.4c), a more rigorous demonstration of Eq. (2.95) is needed.
According to the calculus of variations terminology, a corner exists if an instantaneous
change in the control variable (i.e., an impulse) causes some or all of the state variables to
experience a discontinuity. The theorem that follows, from calculus of variations, outlines
the conditions that must be met at the corner points of an optimal solution.

Theorem 2.2 (Weierstrass-Erdmann Corner Conditions). — Consider the fuel-
optimal problem described in Problem 2.1, and suppose that the quadruple {u⋆,x⋆,λ⋆,σ⋆}
are associated to the optimal trajectory (i.e., they satisfy the necessary conditions reported
in Theorem 2.1). At every possible corner point tk ∈ (ti, tf ) of u⋆(t) ∈ U [ti, tf ], the
following conditions must hold:

λ⋆(t−k ) = λ⋆(t+k ) ,

H
(
t−k ,x

⋆(t−k ),u
⋆(t−k ),λ

⋆(t−k )
)
= H

(
t+k ,x

⋆(t+k ),u
⋆(t+k ),λ

⋆(t+k )
)
.

(2.96)

(2.97)

where H is defined by Eq. (2.41), and t−k , t+k denote the time instant just before and after
the corner, respectively.

Conditions (2.96) stipulate that the adjoint variables must be continuous at a corner. As
a consequence, also the primer vector p ≡ λv must be continuous across the impulse

p− = p+ , (2.98)

where the superscripts ‘+’ and ‘−’ denote the evaluation of the quantity prior to and
subsequent to the corner, respectively. Furthermore, using the definition of p, the second
adjoint equation (2.46b) becomes

ṗ⊤ = −λ⊤
r − p⊤Gv . (2.99)

The derivative of the primer is expressed solely in terms of the continuous adjoint variables
λr and p, and the matrix Gv, which is a constant in the PBRFBP. Hence, another outcome
of the Weierstrass-Erdmann corner conditions is that also the derivative of the primer must
be continuous at a corner

ṗ− = ṗ+ . (2.100)

A further consequence, from Eq. (2.69), is that the derivative of the switching function is
continuous across the impulse

Ṡ− = Ṡ+ . (2.101)
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This, for an optimal trajectory, excludes the existence of a cusp in the graph of S, which
was present in Fig. 2.4c.

The second corner condition requires that the Hamiltonian is continuous across the dis-
continuity of the control variable:

H− = H+ . (2.102)

The Hamiltonian defined in Eq. (2.41) can be rewritten in terms of p and ṗ by using the
second adjoint equation (2.46b)

H = p⊤g −
(
ṗ⊤ + p⊤Gv

)
v +

(
c ∥p∥
m
− λm

)
T
c
. (2.103)

As T is discontinuous at a corner, the only possibility for H to be continuous is that

c ∥p∥
m
− λm = 0 , (2.104)

which, from the definition of S in Eq. (2.65), is equivalent to state that

S(tk) = S− = S+ = 0 . (2.105)

Up to this point, it was proved rigorously that S and Ṡ are continuous at a corner, and
S = 0. In order to demonstrate all the results obtained by geometrical considerations, it
is still needed to show that also Ṡ = 0.

To this aim, leave aside for a moment the corner conditions and consider the following
case where a NT-arc joins two impulsive thrusts. Let P denote the magnitude of the
primer vector at the instant of one of the two maneuvers. Equation (2.72) is valid over
the entire NT-arc. Because at the boundaries of the arc S = 0 and S ∈ C, evaluating
Eq. (2.72) at an extreme point yields

S = 0 =
c

m
P + constant . (2.106)

So, the values of the constant are determined to be equal to − c

m
P, and Eq. (2.72) becomes

S =
c

m
(∥p∥ − P) . (2.107)

From Eq. (2.107), valid over the entire NT-arc, the magnitude of p must equal P at the
other terminal as well (where still S = 0). Hence, if an optimal trajectory is composed
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of NT-arcs separated by impulsive maneuvers, then ∥p∥ = P at every application of an
impulsive thrust. If one or both of the impulsive maneuvers is replaced by an IT-arc, the
previous conclusion is unaffected. Indeed, over an IT-arc, S = Ṡ = ∥ṗ∥ = 0; therefore, an
IT-arc on an optimal trajectory behaves exactly as an impulsive maneuver. Consequently,
at all impulsive maneuvers and over all IT-arcs ∥p∥ = P; also, over all NT-arcs ∥p∥ ≤ P.
The value of P can be computed applying the transversality conditions (2.44). According
to Problem 2.1, the only state variable unspecified at the final time is the mass. The
missing boundary condition for the final mass is

λm(tf ) = −
∂J

∂mf

=
c

mf

. (2.108)

Using the definition of S (Eq. (2.65)) the final value of the switching function is

S(tf ) =
c

mf

(∥pf∥ − 1) . (2.109)

If the final arc of the trajectory is a NT-arc, Eq. (2.107) can be evaluated at t = tf

S =
c

m
(∥pf∥ − P) . (2.110)

The value of the constant P is inferred comparing Eqs. (2.109) and (2.110), resulting in

P = 1 . (2.111)

Alternatively, if the final arc is an IT-arc, then S(tf ) = 0 and condition (2.109) is satisfied
provided ∥p∥ = P = 1. Recalling that ∥p∥ = P at every application of an impulsive thrust,
the following conclusions can be drawn: on a fuel-optimal trajectory, the magnitude of
the primer must not exceed unity on any NT-arc (where S < 0), and, whenever the engine
is operative, the primer is a unit vector aligned in the thrust direction α.

It is now possible to investigate further the second Weierstrass-Erdmann corner conditions,
and to prove that at a corner Ṡ = 0. According to the result of Eqs. (2.103) and (2.104),
the second corner condition H+ −H− = 0 is

p−⊤
g− −

(
ṗ−⊤ + p−⊤Gv

−)v− − p+⊤g+ −
(
ṗ+⊤ + p+⊤Gv

+
)
v+ = 0 . (2.112)

Re-grouping terms and using Eqs. (2.98) and (2.100), the previous equation simplifies to

p⊤ [(g+ −Gvv
+
)
−
(
g− −Gvv

−)]− ṗ⊤ [v+ − v−] = 0 , (2.113)
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where the superscripts of Gv are removed as it is a constant matrix in the present case.
In the PBRFBP, the quantity (g −Gvv) is evaluated employing Eqs. (2.14) and (2.26).

g −Gvv =

+2ẏ +
∂Ω

∂x

−2ẋ+
∂Ω

∂y

−
 0 +2

−2 0

ẋ
ẏ

 =


∂Ω

∂x

∂Ω

∂y

 . (2.114)

From the definition of the pseudo-potential in Eq. (2.8), it is evident that Ω is a function
only of the time t and the position vector r. Similarly, its partial derivatives are dependent
solely on the position coordinates of the spacecraft (see appendix A.1). Since these last
are continuous across an impulsive maneuver so does the quantity (g −Gvv). Thus, the
corresponding term in Eq. (2.113) vanishes, yielding to

H+ −H− = −ṗ⊤∆v = 0 , (2.115)

where ∆v = v+ − v− is the velocity discontinuity at the corner. As ∥∆v∥ ≠ 0 at
an impulse, Eq. (2.115) is satisfied either if ∥ṗ∥ = 0 or if ṗ and ∆v are orthogonal
each other. Recalling the first necessary condition stated in Proposition 2.1, the thrust
direction, which in turn is parallel to ∆v, is aligned with the primer vector at the instant
of the impulsive maneuver. Thus, Eq. (2.115) is equivalent to

ṗ⊤p = 0 . (2.116)

Remember also that the magnitude of p has been previously determined to equal unity
at the instant of an impulsive maneuver. Then, Eq. (2.116) is met when the derivative
of the magnitude of the primer vector is zero at a corner. Moreover, from Eq. (2.69), the
derivative of the switching function must also vanish at a corner.

This concludes the proof that, what was observed from graphical considerations (i.e., S
and Ṡ vanish and Ṡ is continuous at a corner) is actually an outgrowth of the Weierstrass-
Erdmann corner conditions.

Lawden’s Impulsive Necessary Conditions

Finally, the first-order necessary conditions for an optimal impulsive transfer in the
PBRFBP can be expressed entirely in terms of the primer vector.
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Proposition 2.2 (Necessary Conditions for an Impulsive Fuel-Optimal
Trajectory in the PBRFBP). — Consider the Problem 2.1 in a planar bicircular
rotating four-body model, where only impulsive maneuvers are allowed. Denote with
tk the instants when the impulses are applied, and so ∆v(tk) ̸= 0. The necessary
conditions for an optimal trajectory, i.e., satisfying Theorem 2.1, require that:

1. The primer vector is continuous, has a continuous first derivative and satisfies
the second order differential equation (2.78)

p(t) ∈ C1[ti, tf ] and p̈ = Grp+Gvṗ ;

2. The magnitude of the primer vector is always less or equal than one, with
impulses occurring at those instants when the magnitude of the primer is one

∥p(t)∥ ≤ 1 ∀ t ∈ [ti, tf ] and ∥p(tk)∥ = 1 ∀ tk ∈ [ti, tf ] ;

3. At all impulses, the primer is a unit vector aligned in the thrust direction

p(tk) =
∆v(tk)

∥∆v(tk)∥
∀ tk ∈ [ti, tf ] ;

4. At all interior impulses (not at the initial or final time), the scalar product
between the primer vector and its first derivative is null; so, either the two are
orthogonal or the magnitude of the primer vector derivative is null

ṗ(tk)
⊤p(tk) = 0 ∀ tk ∈ (ti, tf ) .

The previous conditions coincide with those derived by [7, 35, 36]. Also, except for the
inclusion of the matrix Gv in the differential primer equation, the necessary conditions
in Proposition 2.2 are identical to those obtained by Lawden for optimal transfers in a
two-body problem [39]. Because of this, henceforward they will be referred to as Lawden’s
necessary conditions (LNC).

Only now, the renaming of the velocity adjoint variable is justified because of the key
role played in this theory. Lawden explained the origin of the term primer vector in a
personal letter in 1990: “In regard to the term primer vector, you are quite correct in your
supposition. I served in the artillery during the war [World War II] and became familiar
with the initiation of the burning of cordite by means of a primer charge. Thus, p = 1 is
the signal for the rocket motor to be ignited.”
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3| Methodology

In this chapter, Primer Vector theory is applied to the two-impulse Earth–Moon transfers
described in section 2.2.1. Starting from an analytical result, a procedure is developed
to further optimize the solutions that do not meet LNC. The selected trajectories are
modified by adding a midcourse impulse such that the new three-impulse transfers are
less expensive than the reference ones.

3.1. Non-Optimal Trajectories

It was already pointed out the difference between direct and indirect methods for space-
trajectory optimization and the importance of checking whether some necessary conditions
for optimality are met or not. The reference trajectories of [62] are computed with a
direct method and the NLP problem is solved with a sequential quadratic programming
algorithm implementing an active-set strategy (see [23] for details). The convergence of
the algorithm guarantees local optimality (up to a fixed tolerance) but it is not known if
these solutions also satisfy the analytical necessary conditions. Presumably, among the
thousand reference solutions, some of them already meet LNC, but others can be further
optimized. The litmus paper is the history of the primer vector associated with each
reference trajectory. If a transfer path does not comply with the conditions stipulated
for a fuel-optimal trajectory, ways of improving the non-optimal path are sought. Note
that, henceforward, the term "optimal" is used as a substitute for "meets the first-order
Lawden’s necessary conditions".
The following methodology to improve non-optimal trajectories in the PBRFBP is inspired
by [35], and it parallels Lion and Handselman’s extension of primer vector theory to non-
optimal trajectories in the two-body problem [40].

3.1.1. Primer Vector Magnitude

Let γ(xi, ti) = {φ(xi, ti; t) ∀t ∈ [ti, tf ]} be a two-impulse reference trajectory, which con-
nects two given states xi and xf . The impulses are provided at the initial and final times:
∆vi at t = ti and ∆vf at t = tf . The primer p is defined as the solution to Eq. (2.81)
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which satisfies the following boundary conditions (from LNC)

p(ti) = pi =
∆vi

∥∆vi∥
, p(tf ) = pf =

∆vf

∥∆vf∥
. (3.1)

Lion and Handselman showed in [40] that the primer vector gives a clear indication of
how a trajectory can be improved. They observed from numerical results [29, 40] that
the primer magnitude behavior falls into one of the first five categories shown in Fig. 3.1.
These categories are meant to be representative of the qualitative history of the primer
rather than exhaustive. It can be noted that each of the first four graphs (Figs. 3.1a to
3.1d) violates the second LNC reported in Proposition 2.2, according to which the mag-
nitude of the primer must not exceed unity. Consequently, the corresponding trajectories
for sure will not be optimal. Instead, Fig. 3.1e and Fig. 3.1f satisfy LNC. In particular,
Fig. 3.1f represents an optimal three-impulse trajectory, because at the time of the mid-
course impulse, both the primer and its derivative are continuous, the primer magnitude
is unitary and its derivative is zero (in agreement with LNC).

Figure 3.1: Different cases of primer vector qualitative behavior according to [40]; note
that only case (e) and (f) satisfy LNC; this last is also the only one with three impulses

Given a specific set of boundary conditions and a fixed transfer time, an impulsive tra-
jectory can be modified in two ways. One method involves allowing for a terminal coast,
while the other entails incorporating a midcourse impulse.
An initial coast may be employed in the case of the former, where the first impulse takes
place after the initial time, and the spacecraft coasts along its original trajectory until
the initial impulse is executed. Alternatively, a final coast may be utilized, which involves
the spacecraft reaching its destination before the final time, followed by coasting along its
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final orbit until the designated endpoint is reached. Since it is wanted to keep the same
boundary conditions, the addition of a terminal coast is not the focus of the present work.
However, further discussions about this approach can be found in [7, 16, 27, 35, 36, 40],
but the criteria for adding a terminal coast are reported for the sake of completeness.

Proposition 3.1 (Criteria for a Terminal Coast). — If ∥ṗ(ti)∥ > 0, an initial coast
will lower the total cost. Similarly, if ∥ṗ(tf )∥ < 0, a final coast will diminish the cost.

Fore instance, these principles may be employed to lower the cost of the trajectories in
Figs. 3.1a to 3.1c. Nevertheless, the current analysis aims to post-process a two-impulse
reference solution whose primer behavior resembles the one in Fig. 3.1d, and to compute
a neighboring three-impulse reference solution with a primer history similar to Fig. 3.1f.
The problem of adding a new midcourse impulse to γ is addressed in the following section.

3.2. Criterion for an Additional Impulse

Besides terminal coasts, the addition of one or more midcourse impulses is another po-
tential way of lowering the cost of an impulsive trajectory. First, an analytical criterion
is developed to determine if adding an impulse will reduce the cost. Then, the optimal
location and timing for the new impulse are computed in two steps: identifying a first
initial guess for the position and time of the third impulse; iterating on these values until
a minimum in the cost is achieved.

3.2.1. Definition of Perturbed Three-Impulse Trajectory

In order to investigate the effect of an additional impulse on the cost of the transfer, the
reference two-impulse trajectory γ is compared with a neighboring trajectory γ, named
perturbed trajectory, to which an interior impulse is added (see Fig. 3.2). Let indicate
with the subscripts i− and i+ a quantity evaluated just before and after the first impulse,
respectively. Analogously, f− and f+ represent a quantity across the final impulse. Both
trajectories connects the same terminal states: xi− = xi− at t = ti− and xf+ = xf+ at
t = tf+ . However, at an intermediate time t = tm, γ and γ pass thorough two different
midpoints: xm and xm, respectively. Of course, this is possible only assuming different
terminal impulses, so also vi+ ̸= vi+ and vf− ̸= vf− . Note that, as the maneuvers
are impulsive, the positions are always continuous and do not necessitate the previous
notation (e.g., ri = ri+ = ri−).

Consider the first segment of γ, denoted as γ(1), which originates at {xi+ , ti+} and ter-
minates at {xm− , tm−}. The position vector on γ(1) can be described as a Taylor series
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Figure 3.2: Two-impulse reference and three-impulse perturbed transfers (in black and
red, respectively); the two trajectories share the same terminal conditions and transfer
time, the midcourse impulse of the latter is located at time tm

expansion, which, to the first order, reads

r(t) = r(t) +
∂r(t)

∂ri
δri +

∂r(t)

∂vi+
δvi+ , (3.2)

where it is recalled that the symbol δ is used to express the difference between the per-
turbed and the reference trajectory (e.g., δr(t) = r(t) − r(t)). Since γ(1) and γ have the
same initial position, then δri(t) = 0; therefore Eq. (3.2) can be evaluated at t = tm− and
rearranged to yield

δvi+ =

[
∂rm−

∂vi+

]−1

δrm− . (3.3)

Next, consider the second segment γ(2), which originates at {xm+ , tm+} and terminates
at {xf− , tf−}. Once again, the position vector of γ(2) can be expressed with a first-order
Taylor expansion with respect to the final state xf−

r(t) = r(t) +
∂r(t)

∂rf
δrf +

∂r(t)

∂vf−
δvf− , (3.4)

Now, γ(2) and γ have the same final position, so δrf (t) = 0; Eq. (3.4), evaluated at t = tm+

and rearranged, results in
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δvf− =

[
∂rm+

∂vf−

]−1

δrm+ . (3.5)

The partial derivatives in Equations (3.3) and (3.5) coincide with the sub-matrices of the
STM associated to γ:

δvi+ = Φ
−1

rv (ti+ , tm−)δrm− ,

δvf− = Φ
−1

rv (tf− , tm+)δrm+ .

(3.6a)

(3.6b)

Thus, a neighboring three-impulse trajectory exists if both Φrv(ti+ , tm−) and Φrv(tf− , tm+)

are nonsingular. Their values are evaluated integrating together Eqs. (2.7) and (2.23)
forward in time from ti+ → tm− and backward in time from tf− → tm+ .

3.2.2. Cost Function

Suppose that the reference trajectory γ is one of the Earth–Moon transfers described in
section 2.2.1; its cost is

Jγ = ∥∆vi∥+ ∥∆vf∥ , (3.7)

where ∆vi and ∆vf are the impulsive maneuvers at the initial and final time, respectively.
Instead, the perturbed trajectory γ is composed of three impulses:

Jγ = ∥∆vi∥+ ∥∆vm∥+ ∥∆vf∥ , (3.8)

with the intermediate impulse occurring at time t = tm. The cost Jγ can be written in
terms of the variations with respect to the reference trajectory

Jγ = ∥∆vi + δ∆vi∥+ ∥∆vm + δ∆vm∥+ ∥∆vf + δ∆vf∥ . (3.9)

However, as long as the two trajectories share the same terminal states (before the initial
impulse and after the final impulse): vi− = vi− and vf+ = vf+ . Thus

δ∆vi = ∆vi −∆vi = (vi+ − vi−)− (vi+ − vi−) = vi+ − vi+ = δvi+ ,

δ∆vf = ∆vf −∆vf = (vf+ − vf−)− (vf+ − vf−) = −vf− + vf− = −δvf− .

(3.10a)

(3.10b)

Moreover, being the velocity of the reference trajectory continuous at t = tm, ∆vm = 0.
Accordingly, the cost of the perturbed trajectory simplifies to

Jγ = ∥∆vi + δvi+∥+ ∥δ∆vm∥+ ∥∆vf − δvf−∥ . (3.11)
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The difference in cost, indicated with ∆J , is computed subtracting Eq. (3.7) to Eq. (3.11)

∆J = Jγ − Jγ = ∥∆vi + δvi+∥ − ∥∆vi∥+ ∥δ∆vm∥+ ∥∆vf − δvf−∥ − ∥∆vf∥ . (3.12)

Let denote with δJ the first-order approximation of the cost variation ∆J . The analytical
expression of δJ is hereafter derived in order to examine the feasibility of implementing
an additional impulse such that the overall fuel expenditure is reduced. First, note that
Eq. (3.12) contains the differences between the magnitudes of some vectors. It is proved
in appendix A.2, that these differences can be written, to the first order, as

∥∆vi + δvi+∥ − ∥∆vi∥ =
∆v⊤

i

∥∆vi∥
δvi+ ,

∥∆vf − δvf−∥ − ∥∆vf∥ = −
∆v⊤

f

∥∆vf∥
δvf− .

(3.13a)

(3.13b)

Substituting Eqs. (3.13a) and (3.13b) into Eq. (3.12), and renaming ∆J into δJ

δJ =
∆v⊤

i

∥∆vi∥
δvi+ + ∥δ∆vm∥ −

∆v⊤
f

∥∆vf∥
δvf− . (3.14)

From Eq. (3.1), at the endpoints of the reference trajectory, the primer is a unit vector
aligned with the velocity increments; hence, the cost variation results in

δJ = p⊤
i+δvi+ + ∥δ∆vm∥ − p⊤

f−δvf− . (3.15)

Recall, that the adjoint equation (2.93) was previously determined to be valid everywhere
on a coastal arc of a perturbed trajectory. Therefore it can be evaluated at the boundaries
of the two coastal arcs of γ.

• On the first arc, γ(1):

for t = ti+ p⊤
i+δvi+ −

(
ṗ
⊤
i+ + p⊤

i+Gvi+

)
δri+ = c1 ,

for t = tm− p⊤
m−δvm− −

(
ṗ
⊤
m− + p⊤

m−Gvm−

)
δrm− = c1 ,

(3.16a)

(3.16b)

where c1 is a constant. Recalling that δri+ = 0 and equating the two expressions

p⊤
i+δvi+ = p⊤

m−δvm− −
(
ṗ
⊤
m− + p⊤

m−Gvm−

)
δrm− . (3.17)
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• On the second arc, γ(2):

for t = tm+ p⊤
m+δvm+ −

(
ṗ
⊤
m+ + p⊤

m+Gvm+

)
δrm+ = c2 ,

for t = tf− p⊤
f−δvf− −

(
ṗ
⊤
f− + p⊤

f−Gvf−

)
δrf− = c2 ,

(3.18a)

(3.18b)

where c2 is another constant. Since δrf− = 0, equating the two expressions yields

p⊤
f−δvf− = p⊤

m+δvm+ −
(
ṗ
⊤
m+ + p⊤

m+Gvm+

)
δrm+ . (3.19)

Subtracting Eq. (3.19) from Eq. (3.17)

p⊤
i+δvi+ − p⊤

f−δvf− =
[
p⊤
mδvm −

(
ṗ
⊤
m + p⊤

mGvm

)
δrm

]−
+

. (3.20)

Since the primer vector and its derivative are evaluated on the reference trajectory γ,
which is a coastal arc (i.e., no impulses exist interior to the terminal impulses), pm and
ṗm are continuous. Additionally, also Gv is computed on the reference trajectory, and
being the state x continuous at t = tm, also Gvm must be continuous. Thus, for these
three quantities the ‘+’ and ‘–’ subscripts can be dropped and Eq. (3.20) simplifies to

p⊤
i+δvi+ − p⊤

f−δvf− = p⊤
m (δvm− − δvm+) +

(
ṗ
⊤
m + p⊤

mGvm

)
(δrm+ − δrm−) . (3.21)

Moreover, despite a discontinuity in the velocity is allowed for γ at t = tm, the position on
the perturbed trajectory still requires to be continuous at such instant (i.e., δrm+ = δrm−);
thus, the last term of Eq. (3.21) vanishes and the previous equation becomes

p⊤
i+δvi+ − p⊤

f−δvf− = p⊤
m (δvm− − δvm+) . (3.22)

At this point, Eq. (3.22) is replaced into the first-order variation of the cost (Eq. (3.15)):

δJ = −p⊤
m (δvm+ − δvm−) + ∥δvm+ − δvm−∥ . (3.23)

Equation (3.23) expresses δJ solely in terms of the primer vector at the interior impulse,
and the intermediate velocity increment, but this last coincides with ∆vm. Indeed,

δvm+ − δvm− = δ∆vm = ∆vm −∆vm = ∆vm , (3.24)
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because in the reference trajectory no mid-course impulse is present (∆vm = 0). Let κ

denote the magnitude of the intermediate impulse, and κ̂ be a unit vector in the direction
of the impulse. Substituting δvm+ − δvm− = ∆vm ≡ κκ̂ into Equation (3.23)

δJ = κ
(
1− p⊤

mκ̂
)
. (3.25)

If δJ can be made negative, then γ represents an improvement in the cost over γ. Looking
at Eq. (3.25), this is possible only if the magnitude of the primer vector at t = tm is
greater than unity. Therefore, Eq. (3.25) can be interpreted as an alternate proof of
LNC for γ to be optimal. Indeed, if ∥pm∥ is always less than unity, there is no chance
that a neighboring three-impulse trajectory presents a lower cost; thus γ itself is already
optimal. Furthermore, Eq. (3.25) is used to develop the criterion for the inclusion of an
intermediate impulse on a reference trajectory in order to reduce the overall cost.

Proposition 3.2 (Criterion for an Additional Midcourse Impulse). —
Consider a reference trajectory γ, generated by an initial and a final impulsive ma-
neuver, whose total characteristic velocity is Jγ. Let γ be a neighboring perturbed
trajectory, with the same terminal conditions of γ but with an additional interme-
diate impulse. A perturbed trajectory γ with a cost Jγ lower than Jγ exists if the
primer vector magnitude evaluated over γ exceeds unity at an intermediate time.

If ∃ tm ∈ (ti, tf ) s.t. ∥p(tm)∥ > 1, then ∃ γ s.t. Jγ < Jγ .

Moreover, the cost difference between the two is, to the first-order:

δJ = κ
(
1− p⊤

mκ̂
)
,

where κ denotes the magnitude of the intermediate maneuver, and κ̂ its direction.

Equation (3.25) suggests that the greatest improvement in cost, to first-order, is obtained
when the product p⊤

mκ̂ is maximum. This can be obtained by applying the intermediate
impulse in the direction of the primer, at the instant when the primer magnitude is
maximum. However, the position, as well as the magnitude of the interior impulse, are
yet to be determined. The location of the new impulse in space and time is done in two
steps. The first step is to determine initial values for position and time midcourse impulse
that will lower the cost. The second step is to iterate on the values of position and time
until a minimum in the cost is achieved.
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3.2.3. Insertion of a Midcourse Impulse

In order to build a perturbed-three impulse trajectory, a first guess for the position and
time of the midcourse impulse is necessary. The time of maximum primer magnitude
is selected as an initial estimate of tm. Note, that this choice does not guarantee that
the decrease in cost is maximized, because the value of ∆vm in the expression for δJ

depends on the value of tm. However, what is needed is just an initial position and time
of the midcourse impulse to begin an iteration process. So, as long as the initial choice
represents a decrease in the cost, it is decided for the simple device of choosing tm as the
time of maximum primer magnitude. Instead, the initial position of the impulse, namely
the value δrm to be added to rm, is chosen so that the velocity change is in the direction
of the primer vector. Indeed, this sounds familiar because it is one of the LNC derived
previously, but how to determine rm is not straightforward.

First, let investigate the effect that the initial and final impulses have on the position and
velocity of the mid-course impulse. Using the results of Eq. (2.86), the state transition
matrix can be evaluated on the reference trajectory from ti+ → tm− , yielding to

δrm− = Φrv(ti+ , tm−)δvi+ ,

δvm− = Φvv(ti+ , tm−)δvi+ ,

(3.26a)

(3.26b)

where it is also used that δri = 0. Again, evaluating Eq. (2.86) from tf− → tm+ and
recalling that δrf = 0,

δrm+ = Φrv(tf− , tm+)δvf− ,

δvm+ = Φvv(tf− , tm+)δvf− .

(3.27a)

(3.27b)

Equations (3.26b) and (3.27b) are substituted into Eq. (3.24):

∆vm = δvm+ − δvm− = Φvv(tf− , tm+)δvf− − Φvv(ti+ , tm−)δvi+ . (3.28)

The values of δvf− and δvi+ can be expressed by inverting Eqs. (3.26a) and (3.27a), and
noting that the position continuity requires δrm− = δrm+ = δrm. It results

∆vm =
[
Φvv(tf− , tm+)Φ

−1

rv (tf− , tm+)− Φvv(ti+ , tm−)Φ
−1

rv (ti+ , tm−)
]
δrm . (3.29)

Hence, the variation of the position of the mid-course maneuver can be written as a
function of the intermediate impulse itself:

δrm = K−1∆vm , (3.30)
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where the matrix K must be nonsingular and is defined as

K ≡ Φvv(tf− , tm+)Φ
−1

rv (tf− , tm+)− Φvv(ti+ , tm−)Φ
−1

rv (ti+ , tm−) . (3.31)

For the maximum improvement in cost ∆vm ≡ κκ̂ should be aligned with pm. Hence

δrm = κK−1 pm

∥pm∥
. (3.32)

If the value of κ is selected small enough to justify a first order analysis, the previous choice
for δrm ensures that ∆vm and pm are aligned at the time tm when ∥p(t)∥ is maximum,
which is compliant with the third LNC.

3.2.4. Building a Perturbed Three-Impulse Trajectory

Once the location in time and space of the midcourse impulse is determined, it is needed
to build a trajectory connecting the prescribed initial and final states with the newly
computed position of the intermediate maneuver. Therefore, a double shooting problem
must be set up, which consists in solving two Lambert’s problems:

• connecting the states {ri, ti} with {rm + δrm, tm};

• connecting the states {rf , tf} with {rm + δrm, tm};

where δrm is chosen accordingly to Eq. (3.32), and tm is the time on the reference trajec-
tory when the primer magnitude attains its maximum.
As the terminal positions and times must coincide with those of the reference trajectory,
the only unknowns of the problem are the initial velocity just after the first impulse
vi+ , and the final one before the last maneuver vf− . Indeed, as the states xi− and xf+

are prescribed and coincide with those of γ, the values of the new impulses (∆vi,∆vf )

can be recovered later. Note, that the shooting problem could also have been set up
with the velocity variations as unknowns, but this would have implied more cumbersome
computations of the jacobian of the objective function.

The idea of the solution method, represented in Fig. 3.3, consists in guessing the values
of vi+ and vf− and propagating the two states (forward and backward in time) until the
continuity on the position is satisfied. Moreover, the two red arcs of Fig. 3.3 must meet
at a precise position specified by δrm. The problem is actually a root-finding problem
with 4 unknowns and a 4-dimensional objective function (recall that the current model is
planar, so only two coordinates are of interest), and it can be stated as follows.
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Figure 3.3: Representation of the forward-backward shooting problem solved to build the
perturbed trajectory (in red), whose midcourse impulse occurs at t = tm and is located
at rm = rm + δrm; the unknowns of the problem are the velocities vi+ and vf−

Problem 3.1 (Forward-Backward Shooting). — Consider a two-impulse reference
trajectory γ connecting the states {xi, ti} and {xf , tf}. Find vi+ and vf− such that
their propagation forward and backward in time, respectively, have a position matching
rm = rm + δrm at time t = tm.

Given rm, find {vi+ , vf−} s.t. F :=

[
φr(ri,vi+ , ti; tm)− rm

φr(rf ,vf− , tf ; tm)− rm

]
= 0 .

Once the values of the unknowns are found, the perturbed trajectory is completely deter-
mined, and its cost can be computed:

Jγ = ∥vi+ − vi−∥+ κ+ ∥vf+ − vf−∥ (3.33)

As it will be described in section 4.3.1, Problem 3.1 is solved by means of an iterative
procedure; so the values for the first guess of the unknowns are needed. These are com-
puted from the velocities of the reference trajectory, to which the first order variations
generated by δrm are added:

v
(0)

i+ = vi+ + Φ
−1

rv (ti, tm)δrm , v
(0)

f− = vf− + Φ
−1

rv (tf , tm)δrm . (3.34a)
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Moreover, as a gradient-based algorithm will be employed, the jacobian of the objective
function F is computed analytically for higher computational efficiency. Thanks to the
choice of the unknowns, the expressions of the derivatives are quite simple:

∂F

∂vi+
=

[
Φrv(ti, tm)

02

]
,

∂F

∂vf−
=

[
02

Φrv(tf , tm)

]
. (3.35)

3.2.5. Movement of the Interior Impulse

It was previously mentioned, that the primer magnitude on a reference two-impulse tra-
jectory that requires an additional impulse may resemble qualitatively the behavior of
Fig. 3.4a. However, the inclusion of an additional impulse (as it was discussed up to this
point) does not necessarily yield an optimal three-impulse trajectory. The time history of
the primer vector magnitude on the newly computed perturbed trajectory must be exam-
ined again, in order to verify the compliance with LNC. Although the primer is continuous
and is a unit vector at each impulse, a typical non-optimal trajectory is characterized by a
cusp at the location of the intermediate impulse, as in Fig. 3.4b. Therefore, the necessary
condition for optimality which requires ṗ to be continuous at each interior impulse is not
met, and a neighboring three-impulse solution with a lower cost must exist (see Fig. 3.4c).
This optimal solution is named refined trajectory, and hereafter the second and last step
for the optimization procedure is described.

Figure 3.4: Primer vector magnitude on a reference two-impulsive trajectory (a), a per-
turbed three-impulse trajectory (b), and an optimal three-impulse trajectory (c)

Let γ̃ denote a refined three-impulse trajectory, that shares the same terminal conditions
with γ and γ, but, differently from the perturbed trajectory, the midcourse impulse is
allowed to be located at t̃m ̸= tm. γ̃ consists of two ballistic arcs connecting the states

{ri, ti} →
{
r̃m t̃m

}
,{

r̃m t̃m
}
→ {rf , tf} .

If the symbol ‘d’ indicates a non-contemporaneous variation, then the position and time
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of the intermediate maneuver on the refined trajectory can be expressed as

t̃m = tm + dtm = tm + dtm ,

r̃m = rm + drm .

(3.36a)

(3.36b)

As usual, the cost of γ̃ is the sum of the velocity increments of all the maneuvers

Jγ̃ = ∥∆ṽi∥+ ∥∆ṽm∥+ ∥∆ṽf∥ . (3.37)

The following expression for the cost difference between the refined and the reference
three-impulse trajectory is developed in [35] and [37]:

dJ = Jγ̃ − Jγ =
[
ṗ⊤
m+ − ṗ⊤

m−

]
drm + [Hm+ −Hm− ] dtm . (3.38)

If the refined trajectory is an optimum, dJ = 0; consequently both the Hamiltonian
and the primer derivative must be continuous across the intermediate impulse. This is
consistent with the results of Weierstrass-Erdmann conditions for an optimal trajectory
and constitutes an alternate proof of the last LNC.

3.2.6. Building a Refined Three-Impulse Trajectory

The idea now is to iterate on the position and time of the mid-course impulse, in the
neighborhood of the perturbed trajectory γ, until a local minimum of Jγ̃ is reached (see
Fig. 3.5). This can be done by setting up a NLP problem, whose unknowns are r̃m and
t̃m. However, the two arcs of the solution must meet at the position of the second impulse
(i.e., it must be r̃m− = r̃m+ in Fig. 3.5) and this depends on the velocities just after the
initial impulse, and before the last one. Therefore, to avoid solving a shooting problem at
each iteration of the NLP problem, both ṽi+ and ṽf− are considered among the unknowns
of the problem. These are collected in a vector of NLP variables y ∈ R7

y ≡
(
ṽi+ , ṽf− , r̃m, t̃m

)⊤
. (3.39)

In such a way, the continuity on the position at t̃m is treated as a nonlinear equality
constraint. Also, the time of the midcourse impulse must be within the interval delimited
by ti and tf . Theoretically, one could also think to include some constraints about ṗm

and Hm in order to respect LNC. Unfortunately, with this choice, it would not possible to
compute analytically the jacobians of the constraints, and the required calculations would
burden the numerical resolution.
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Figure 3.5: Optimization problem solved to compute the three-impulse refined trajectory
(red), starting from a three-impulse perturbed trajectory (black)

So, the problem is converted into a parameter optimization problem, with a scalar objec-
tive function, four scalar equality constraints and two inequality constraints.

Problem 3.2 (Three-Impulse Trajectory Optimization). — Consider a three-
impulse trajectory γ connecting the states {xi, ti} and {xf , tf}. Find the location in
time and space of the midcourse impulse

{
r̃m, t̃m

}
, and the values of the initial and final

velocities {ṽm+ , ṽf−}, such that the two ballistic arcs of the refined three-impulse trajectory
meet at r̃m, and its cost Jγ̃ is (locally) minimized.

min
y

Jγ̃(y) := ∥∆ṽi∥+ ∥∆ṽm∥+ ∥∆ṽf∥

subject to the constraints
hm−(y) := φr(ri, ṽi+ , ti; t̃m)− r̃m = 0 ,

hm+(y) := φr(rf , ṽf−, tf ; t̃f )− r̃m = 0 ,

ti < t̃m < tf .

Problem 3.2 will be solved numerically, with an iterative approach (see section 4.4). The
components of the first guess solution y(0) are taken from the perturbed three-impulse
trajectory γ: y(0) = (vm+ , vf− , rm, tm)

⊤ .
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Analytical Computation of the Jacobians

Also in this case, the analytical computation of the derivatives of the cost Jγ̃ and the non-
linear equality constraints hm− , hm+ is of paramount importance for numerical efficiency.

Consider the cost function in Eq. (3.37); recalling that the terminal velocities are pre-
scribed and coincide with those of the nominal and reference trajectories (i.e., ṽi− =

vi− = vi− and ṽf+ = vf+ = vf+), the characteristic velocity can be written as

Jγ̃ = ∥ṽi+ − vi−∥+ ∥ṽm+ − ṽm−∥+ ∥ṽf+ − vf−∥ . (3.40)

The velocities at the intermediate impulses are obtained propagating the states at the
times ti− and tf+ forward and backward in time, respectively

vm− = φv(ri, ṽi+ , ti; t̃m) , vm+ = φv(rf , ṽf− , tf ; t̃m) . (3.41a)

The jacobian of Jγ̃ with respect to the NLP variables of Problem 3.2 is

∂Jγ̃
∂y
≡
(

∂Jγ̃
∂ṽi+

,
∂Jγ̃
∂ṽf−

,
∂Jγ̃
∂r̃m

,
∂Jγ̃

∂t̃m

)
. (3.42)

Hereafter, the analytical expression of each component of ∂Jγ̃/∂y is developed.
Recalling the chain rule for the partial derivatives, the first quantity in Eq. (3.42) is

∂Jγ̃
∂ṽi+

=
∂Jγ̃
∂∆ṽi

· ∂∆ṽi+

∂ṽi+
+

∂Jγ̃
∂∆ṽm

· ∂∆ṽm

∂ṽi+

=
∂ ∥∆ṽi∥
∂∆ṽi

· ∂∆ṽi+

∂ṽi+
+

∂ ∥∆ṽm∥
∂∆ṽm

· ∂∆ṽm

∂ṽi+
. (3.43)

Using the argument that
d ∥x∥
dx

=
x

∥x∥
(3.44)

where x is a generic vector, Eq. (3.43) reduces to

∂Jγ̃
∂ṽi+

=
∆ṽi

∥∆ṽi∥
· ∂∆ṽi+

∂ṽi+
+

∆ṽm

∥∆ṽm∥
· ∂∆ṽm

∂ṽi+
. (3.45)

Since ∆ṽi+ = ṽi+ − vi− , the first partial derivatives remaining in Eq. (3.45) is simply

∂∆ṽi+

∂ṽi+
= I2 . (3.46)
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Instead, as ∆ṽm = ṽm+ − ṽm− but only ṽm− depends upon ṽi+ , the second derivative in
Eq. (3.45) reduces to

∂∆ṽm

∂ṽi+
= −∂ṽm−

∂ṽi+
= −Φ̃vv(ti; t̃m) , (3.47)

where Φ̃vv(ti; t̃m) is a partition of the state transition matrix associated with the refined
three-impulse trajectory. Thus, the analytical expression for the first component of the
jacobian of Jγ̃ is

∂Jγ̃
∂ṽi+

=
∆ṽ⊤

i

∥∆ṽi∥
− ∆ṽ⊤

m

∥∆ṽm∥
Φ̃vv(ti; t̃m) . (3.48)

With similar reasoning, it can be shown that the derivative of Jγ̃ with respect to ṽf− is

∂Jγ̃
∂ṽf−

= −
∆ṽ⊤

f

∥∆ṽf∥
+

∆ṽ⊤
m

∥∆ṽm∥
Φ̃vv(tf ; t̃m) . (3.49)

Concerning the derivative with respect to r̃m, this is identically null

∂Jγ̃
∂r̃m

= 0⊤ . (3.50)

Indeed, it is evident also from Eq. (3.41), that none of the quantities appearing in
Eq. (3.40) depends directly upon r̃m. The last component of the jacobian can be ex-
pressed using the chain rule and the result of Eq. (3.44)

∂Jγ̃

∂t̃m
=

∂Jγ̃
∂∆ṽm

· ∂∆ṽm

∂t̃m
=

∆ṽm

∥∆ṽm∥
· ∂∆ṽm

∂t̃m
. (3.51)

The derivative of ∆ṽm with respect to t̃m can be developed using Eq. (3.41):

∆ṽm = ṽm+ − ṽm− = φv(rf , ṽf− , ti; t̃m)− φv(ri, ṽi+ , ti; t̃m) . (3.52)

Then, recalling the definition of the flow (i.e., the integral of the dynamics), one notes
that the derivative of the flow with respect to the final time of the integration (t̃m in the
present case) is actually the dynamical field f(x, t) evaluated at the ending state of the
flow [19]. In particular, the derivatives of the last two components of the flow coincide
with the gravitational acceleration g(x, t)

∂

∂t̃m
φv(ri, ṽi+ , ti; t̃m) = g(φ(ri, ṽi+ , ti; t̃m), t̃m) = g(x̃m− , t̃m) ,

∂

∂t̃m
φv(rf , ṽf− , tf ; t̃m) = g(φ(rf , ṽf− , tf ; t̃m), t̃m) = g(x̃m+ , t̃m) .

(3.53a)

(3.53b)
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Thus,
∂Jγ̃

∂t̃m
=

∆ṽ⊤
m

∥∆ṽm∥
(
g(x̃m+ , t̃m)− g(x̃m− , t̃m)

)
. (3.54)

Putting together Eqs. (3.48) to (3.50) and (3.54), the jacobian of the objective function
with respect to the NLP variable y is

∂Jγ̃
∂y

=



∆ṽi

∥∆ṽi∥
− Φ̃vv(ti; t̃m)

∆ṽm

∥∆ṽm∥

− ∆ṽf

∥∆ṽf∥
+ Φ̃vv(tf ; t̃m)

∆ṽm

∥∆ṽm∥

0(
g(x̃m+ , t̃m)− g(x̃m− , t̃m)

)⊤ ∆ṽm

∥∆ṽm∥



⊤

, (3.55)

where one notes that the components computed previously are transposed and the trans-
pose symbol is taken out of the vector parentheses.

Consider now the derivatives of the constraints hm− and hm+ defined in Problem 3.2.
Their jacobians are two (2× 7)-dimensional matrices defined as

∂hm−

∂y
≡
(
∂hm−

∂ṽi+
,
∂hm−

∂ṽf−
,
∂hm−

∂r̃m
,
∂hm−

∂t̃m

)
,

∂hm+

∂y
≡
(
∂hm+

∂ṽi+
,
∂hm+

∂ṽf−
,
∂hm+

∂r̃m
,
∂hm+

∂t̃m

)
.

(3.56a)

(3.56b)

Since each constraint concerns one arc of the three-impulse trajectory (see Fig. 3.5), it is
evident that the components of hm− are not influenced by the values taken by ṽf− and
similarly hm+ does not depend upon ṽi+ . Hence, two quantities in Eq. (3.56) are null

∂hm−

∂ṽf−
=

∂hm+

∂ṽi+
= 02 . (3.57)

Moreover, both hm− and hm+ depend linearly upon r̃m and so

∂hm−

∂r̃m
=

∂hm+

∂r̃m
= −I2 . (3.58)

Concerning the quantities ∂hm−/∂ṽi+ and ∂hm+/∂ṽf− , these are the derivatives of the
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flow with respect to the initial states, which, by definition, are the elements of the STM

∂hm−

∂ṽi+
=

∂

∂ṽi+
φr(ri, ṽi+ , ti; t̃m) = Φ̃rv(ti; t̃m) ,

∂hm+

∂ṽf−
=

∂

∂ṽf−
φr(rf , ṽf− , tf ; t̃m) = Φ̃rv(tf ; t̃m) .

(3.59a)

(3.59b)

The last two terms in Eq. (3.56), ∂hm−
/
∂t̃m and ∂hm+

/
∂t̃m , are, once again, the deriva-

tive of the flow with respect to the final time at which the flow is evaluated. Therefore,
they coincide with the dynamical field evaluated at the state of the intermediate impulse.
Since the interest is on the first two components of f(x, t), and these are the velocities:

∂hm−

∂t̃m
=

∂

∂t̃m
φr(ri, ṽi+ , ti; t̃m) = φv(ri, ṽi+ , ti; t̃m) = ṽm− ,

∂hm+

∂t̃m
=

∂

∂t̃m
φr(rf , ṽf− , tf ; t̃m) = φv(rf , ṽf− , tf ; t̃m) = ṽm+ .

(3.60a)

(3.60b)

Finally, combining Eqs. (3.57) to (3.60), the jacobians of the constraints read

∂hm−

∂y
=


Φ̃rv(ti; t̃m)

02

−I2
ṽm−


⊤

,
∂hm+

∂y
=


02

Φ̃rv(tf ; t̃m)

−I2
ṽm+


⊤

. (3.61a)



65

4| Simulations and Results

This chapter illustrates the results of the optimization process that takes a non-optimal
two-impulse Earth–Moon transfer of [62], and adds an intermediate impulse to get an
improved three-impulse trajectory.

4.1. Numerical Integration

It was anticipated in section 2.1.4 that the equations of motion of the PBRFBP do not
possess an analytical solution; therefore, Eq. (2.15) must be integrated numerically, and
the Matlab® suite ode113 is used to this aim. This integration scheme is a variable-
step, variable-order Adams-Bashforth-Moulton PECE (predict, evaluate, correct, evalu-
ate) solver of orders 1 to 13 [58]. Both absolute and relative error tolerances1 are set to
10×10−12. Recalling that all variables are nondimensional, this corresponds to a tolerance
on the position lower than 1 mm.
Very often, the equations of motion are integrated together with the variational equation
for the state transition matrix (Eq. (2.23)), and the resulting system of twenty first-order
ODEs is solved by means of ode113. Once the history of the STM is known (at some
discrete time instants), the values for the primer vector and its derivatives can be obtained
by solving the algebraic equation (2.79), and using the boundary conditions in Eq. (3.1).
However, another way to compute p(t) is necessary if the primer is required at a specific
time when the STM is not available, or if the variational equation has not been solved yet.
In these cases, both the dynamics of the states and the primer, Eq. (2.15) and Eq. (2.78),
respectively, should be integrated together. So, an augmented state vector collecting the
components of the states, the primer, and the primer derivative, is assembled

z(t) ≡ (r(t),v(t),p(t), ṗ(t))⊤ . (4.1)

Then, Eq. (2.15) and Eq. (2.78) (written in a first-order form) compose a system of eight
first-order ODEs, that, again, is solved with ode113.

1Relative and absolute tolerances are defined at https://www.mathworks.com/help/matlab/ref/
odeset.html, retrieved on March 06, 2023.

https://www.mathworks.com/help/matlab/ref/odeset.html
https://www.mathworks.com/help/matlab/ref/odeset.html
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4.1.1. Model Verification

The Earth–Moon transfers of [62] serve also as a solid benchmark to validate the correct
implementation of the PBRFBP. Indeed, the database provided contains much informa-
tion about each of the almost 300 000 transfers, including the total cost, the initial state,
and the final one. Each initial state xi at the time ti is propagated numerically up to
the corresponding final time tf ; then, the final states obtained, as well as the costs of
the transfers, are compared with the values reported in the database. An almost perfect
match is found, validating the implementation of the four-body dynamics. Consider, for
instance, the difference between the costs of the data set and the costs of the trajectories
just propagated. As an illustrative example, none of the almost 80 thousand trajectories
in the L region, shows a cost discrepancy higher than 0.1 m/s (when the cost of each
transfer is in the order of 4× 103 m/s). Moreover, after the propagation of each solution
it is verified that, on its path, the spacecraft does not impact any celestial body.
Hereafter, Fig. 4.1 shows the geometry of some samples taken from different families of
[62], both prograde and retrograde. Family a, b, c, and d collect interior transfers, while
family o and p contain exterior transfer solutions. These last, as it will be shown later,
are the solutions of interest for the second part of the present work.
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Figure 4.1: Samples of two-impulse Earth–Moon transfers from different families in the
synodic frame; coordinates are nondimensional according to the PBRFBP; the Earth and
the Moon are located at (−µ, 0) and (1− µ, 0), respectively
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4.2. Non-Optimal Two-Impulse Transfers

The primer magnitude associated with each of the reference trajectories can be analyzed
to verify the optimality of the solutions according to the LNC. Consider for example the
solution sample in Fig. 4.2a. The transfer is represented in the synodic frame (top-left)
and in the Earth-sidereal frame (top-right). Besides the SC trajectory, these two plots
report the apparent orbit of the Sun (orange dashed line, not to scale). The initial and
final positions of the Sun are labeled with a filled and an empty circle, respectively. Note
also, that in the synodic frame, the Sun moves clockwise, whilst in the Earth-centered
inertial frame it rotates counterclockwise.
The bottom graph represents the history of the primer magnitude during the transfer. It is
evident that in this specific case, LNC are not satisfied. Indeed, the maximum magnitude
of the primer, indicated by a red cross, exceeds unity. Figure 4.2a is an example of a
reference transfer belonging to the L region that is not optimal and therefore can be
improved with an additional midcourse impulse. On the contrary, Fig. 4.1b represents a
sample solution that respects LNC, and so the two-impulse transfer is already optimal.
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(a) Non-optimal two-impulse transfer
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Figure 4.1: Geometry of samples reference transfers in both synodic (top-left) and Earth-
sidereal (top-right) frame, together with the primer magnitude history (bottom graph);
Moon’s orbit is depicted with a dashed-gray line in the sidereal frame; the apparent orbit
of the Sun (not to scale) is represented in orange; the initial and final position of the Sun
are indicated by a filled and an empty circle, respectively; the red cross in Fig. 4.2a denotes
the instant when the primer magnitude is maximum, and the orange cross specifies the
position of the Sun at that time

4.2.1. Filtered Two-Impulse Transfers

Instead of focusing on single samples, it is more interesting to look at the global picture
(Fig. 2.3), and to have an overall view of the trajectories that do not satisfy LNC. However,
since the total number of solutions is very high (284 013, to be exact) some preliminary
remarks must be made. First, it is decided to focus only on the transfers inside the S and L
regions, due to their more interesting characteristics from the viewpoint of a real mission.
Then, with the aim of finding more non-optimal solutions, the L region is enlarged with
respect to that of [62], and transfers with a cost up to 4000 m/s are included (instead of
3950 m/s). Finally, for numerical reasons, the threshold for the primer magnitude that
discriminates the optimality of a solution is set to 1.01. An automated algorithm verifies



4| Simulations and Results 69

the maximum primer magnitude for all the previous transfers. All the colored (gray, red,
and blue) points in Fig. 4.2 correspond to the short and long transfers whose primer
vector magnitude exceeds 1.01.

Actually, not all these trajectories will be further improved with a midcourse impulse.
Many of them are still not of practical interest for a real-life mission to the Moon (gray
points in Fig. 4.2). For instance, long transfers that perform many flybys at the Earth are
never implemented, as the recursive passage inside the Van Allen belts must be avoided
to preserve the hardware of the spacecraft. Moreover, it is observed that the maximum
primer magnitude of these trajectories occurs in the vicinity of the Earth. Here the
pseudo-potential of the PBRFBP shows very high gradients [17], and thus a first-order
analysis based on the STM loses accuracy (this has also repercussions on numerical com-
putations). Hence, non-optimal transfers are further filtered and only solutions respecting
the following requirements are retained:

1. the trajectory must pass at a distance lower than 40 000 km from the Earth (esti-
mated extension of the outer Van Allen belt) only once, at the departure;

2. during long transfers the spacecraft must not perform more than 2 revolutions about
the Earth, while for short transfers the threshold is lowered to 1.5 revolutions.

Red and blue dots reported in Fig. 4.2 are the retained solutions to which a further impulse
is added, whilst the gray dots are the non-optimal solution discarded by the filter.

• The solutions contained in the S region are 166 813. Almost 35 % of them do not
respect LNC, but only 1.5 % (2355 solutions) are retained after the filtering. This
happens because, in the center of this area, many transfers belonging to families
b and c perform Earth flybys, and so are discarded (note the high number of gray
dots at the middle of the red rectangle in Fig. 4.2). Moreover, looking at Fig. 4.2
one notes that none of the direct transfers (solutions with ∆t < 10 day, family a)
requires an additional impulse, as they are already optimal.

• The solutions within the L region are 76 392, and 13 % of them do not respect
LNC. In this case, many of these last pass the filter (8218 solutions), corresponding
to 10.7 % of the total number inside the region. However, the majority of the most
interesting solutions (Pareto-efficient front with ∆v < 3850 m/s and ∆t > 70 days,
made of low energy transfers with ballistic capture) do not require a third-maneuver.
On the contrary, the bigger cluster of improvable solutions is shifted to the top-left
corner of the L region. Additionally, there are two vertical blue arcs on the left side
of the L region, made of solutions which perform an initial lunar gravity assist.
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Figure 4.2: Earth–Moon transfers of [62] shown in the (∆t, ∆v). Black dots represent
solutions that already satisfy LNC; red and blue points denote non-optimal trajectories
belonging to the S and L region that will be improved with a midcourse impulse; gray
dots indicate non-optimal transfers that are filtered out due to their geometry

4.3. Perturbed Three-Impulse Transfers

Once a non-optimal reference transfer is individuated, a perturbed three-impulse trajec-
tory is built by adding a midcourse impulse. Recalling the discussion in section 3.2.3,
the only parameter that is still to be chosen is the magnitude of the midcourse impulse
κ. Indeed, once this is fixed, the position of the midcourse impulse is obtained through
Eq. (3.32). Then, Problem 3.1 can be solved to connect the two ballistic arcs and obtain
a continuous trajectory.

4.3.1. Solution to the Forward-Backward Shooting Problem

For a given value of κ, the forward-backward shooting problem is solved by means of
Matlab®’s suite fsolve, implementing a trust-region algorithm. The tolerance on the
minimum step, as well as the termination tolerance on the function value, are both set to
10×10−10; consequently, the maximum error accepted on the midcourse position is about
0.04 m. Moreover, to improve numerical efficiency and convergence performances, the
algorithm is provided with the analytical expression for the derivatives of the objective
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function, reported in Eq. (3.35). It is also checked that the analytical gradients match the
ones computed numerically by the solver using a central finite difference scheme. Relative
errors obtained are in the order of 10−7 adimensional units.
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Figure 4.3: Primer magnitude on some perturbed trajectories obtained from the same
reference transfer, but for different values of κ

Fig. 4.3 shows the primer magnitude on some perturbed trajectories obtained from the
same reference transfer, but for different values of κ. It is pointed out that these tra-
jectories do not satisfy LNC, because either the primer magnitude exceeds unity or the
primer derivative is discontinuous at the intermediate impulse. However, this must not
surprise, as it was already anticipated that a perturbed trajectory is not necessarily op-
timal. Together with the primer, it is reported also the gain G, in m/s, associated with
each solution. The gain is defined as the opposite of ∆J :

G ≡ −∆J = Jγ − Jγ . (4.2)

In such a way, intuitively, a positive gain indicates that a perturbed trajectory is more
convenient. In agreement with the first-order cost variation in Eq. (3.25), Fig. 4.3 shows
that the gain is proportional to the value of κ.
Of course, the solution with the highest gain is desirable, as it represents the best first-
guess trajectory for the subsequent optimization problem. Thus, one can think of using
always the same (high) κ for all the trajectories of the global picture. Nevertheless, still
from Fig. 4.3, it can be noticed that too high values for the magnitude of the midcourse
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impulse generate negative gains2, and this must be avoided. Furthermore, thousands of
trajectories must be processed, and the same value for κ might produce a positive gain for
some solutions and a negative one for others. In short, an algorithm is needed to select
κ for each solution, keeping in mind that, as reported in [16], one should never accept a
midcourse impulse position that does not decrease the cost, because a sufficiently small κ
will always provide a lower cost.

4.3.2. Magnitude of the Intermediate Impulse

The idea to compute a perturbed trajectory, sketched in Algorithm 1, is to solve Prob-
lem 3.1 starting with a high value of κ, which is the same for all the trajectories and is
indicated with κmax. If the cost of the perturbed trajectory is lower than the reference
one (i.e., G > 0), then a suitable three-impulse trajectory is found. On the contrary, if G
is negative, κ is reduced and the forward-backward shooting problem is solved again; this
is repeated until a positive gain is obtained. κ is reduced also when the function fsolve

used to solve the shooting problem does not converge (i.e., the perturbed trajectory γ has
a discontinuity on the position at t = tm).

Algorithm 1 Perturbed Trajectory Computation
1: Initialize G = 0 and κ = κmax

2: while G ≤ 0 do
3: Compute δrm(κ) using Eq. (3.32)
4: Compute γ solving the shooting problem, with rm = rm + δrm(κ)
5: Update the gain G
6: if G ≤ 0 or γ is not continuous at tm then
7: Reduce κ ▷ γ is continuous if the shooting problem converged
8: end if
9: end while

At this point, it remains to select κmax and to decide how to reduce κ at each iteration. It
was observed that high values for κmax, such as 10 m/s, might yield positive gains in some
cases. Even so, in these cases, a first-order analysis is no more justified, and consequently,
∆vm and pm are no more aligned at the time tm (in contrast with LNC). Furthermore,
since δrm is proportional to κ, the bigger κ, the longer the convergence of the shooting
algorithm. Thus, a conservative choice is made, setting the value of κmax to 1 m/s.
Concerning the reduction of κ, on the one hand, a broader decrease might generate large
steps in the gain, losing useful solutions; but on the other hand, a finer decrement might
result in a waste of computational time and resources (especially for solutions that need

2This result is not related to the particular sample solution in Fig. 4.3, but has general validity.
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many iterations). A compromise must be reached, and it has opted for a 10 % reduction
at each step, so that at the k-th iteration κk = 0.9κk−1.

Nevertheless, it is recalled that the perturbed trajectory serves as the initial guess for
Problem 3.2, so it is unnecessary to put a lot of effort into finding the best value of κ for
each solution. Rather, as a large number of solutions must be processed automatically
(and this is not the last step of the optimization), fast computations were preferred. For
the same reason, also the maximum number of the iterations for the fsolve algorithm is
kept small (just 50 iterations) to avoid the algorithm to stuck at this preliminary step.

4.4. Refined Three-Impulse Transfers

Problem 3.2 is solved by means of Matlab®’s routine fmincon3. The tolerances about the
objective function value, the constraints functions, and the first-order optimality are set
to 10−9 adimensional units, while the tolerance on the minimum step-size is an order of
magnitude lower4. The solver is provided with the analytical expressions of the jacobians
derived in section 3.2.6. Also in this case, once and for all, they are compared with those
computed with a central finite difference scheme, and the resulting discrepancy is in the
order of 10−7 adimensional units.
Two optimization algorithms are used for a performing and robust code. The first 1000
iterations are carried out implementing an active-set algorithm. Then, the trajectories
that do not reach convergence are further optimized with an interior-point algorithm.
Indeed, the active-set scheme allows for larger steps in the variables space, which adds
speed. However, a too-large step may make the solution diverge, especially in proximity
to high-gradients of the pseudo-potential. In these cases, an interior-point method could
recover a feasible solution, as it takes smaller steps and satisfies bounds at all iterations.
For its part, interior-point algorithm often gets stuck taking smaller and smaller steps
in the attempt to satisfy the constraints.

Figure 4.4 shows an illustrative example of a refined transfer returned by the optimization
algorithm. In particular, an exterior low-energy transfer with an initial flyby at the Moon
is reported. The asterisk on each three-impulse trajectory highlights the instant of the
midcourse impulse. One can appreciate how the NLP solver modified the location of the
intermediate maneuver of the perturbed trajectory.

3For more details about the optimization method implemented by each algorithm visit: https://it.
mathworks.com/help/optim/ug/constrained-nonlinear-optimization-algorithms.html, retrieved
on March 08, 2023.

4Definitions of tolerances and stopping criteria can be found at https://it.mathworks.com/help/
optim/ug/tolerances-and-stopping-criteria.html, retrieved on March 08, 2023.

https://it.mathworks.com/help/optim/ug/constrained-nonlinear-optimization-algorithms.html
https://it.mathworks.com/help/optim/ug/constrained-nonlinear-optimization-algorithms.html
https://it.mathworks.com/help/optim/ug/tolerances-and-stopping-criteria.html
https://it.mathworks.com/help/optim/ug/tolerances-and-stopping-criteria.html
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In order to assess the optimality of the final solution, the history of the primer vector
magnitude is represented in Fig. 4.5. Evidently, the original two-impulse trajectory is not
optimal, as the primer magnitude exceeds one. In this case, also the perturbed trajectory
does not satisfy LNC, because either the primer exceeds unity and also a cusp is present
at tm. Nonetheless, the refined trajectory is optimal, as all LNC are met.
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The same conclusion is also confirmed by Fig. 4.6. Here, the Hamiltonian function and
the magnitude of the primer derivative are reported for each transfer. Even if both H and
∥ṗ∥ are discontinuous in γ, Weierstrass-Erdmann corner conditions are satisfied by γ̃ (see
Theorem 2.2). The noteworthy aspect is that this outcome is achieved autonomously by
the optimization algorithm, without any specific constraints on H or ∥ṗ∥.
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Figure 4.6: Hamiltonian function and magnitude of the primer vector derivative evaluated
on a reference, perturbed and refined transfer

Finally, Fig. 4.7 shows the absolute value of each impulsive maneuver for all three transfers.
The most relevant part of the budget is spent to leave the initial orbit around the Earth,
and its absolute value is similar for all the trajectories. Instead, in the refined transfer, a
little intermediate maneuver allows for saving fuel at the arrival, as the spacecraft velocity
is closer to that of the Moon. Consequently, in this specific case, ballistic capture at the
Moon is more efficient.
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Figure 4.7: Cost breakdown for a reference, perturbed and refined transfer
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4.5. Global Results

A total number of 10 573 trajectories are automatically optimized by utilizing the Parallel
Computing Toolbox of Matlab®, which reduces the computation time by almost four
times. All the solutions reach convergence, and, to analyze the improvement of each
refined three-impulse transfer, the gain G̃ is defined as

G̃ ≡ Jγ − Jγ̃ , (4.3)

where the reference is still the two-impulse trajectory γ.

Figure 4.8 shows the updated global picture of [62], where nonoptimal two-impulse solu-
tions are replaced with improved three-impulse transfers. These are represented by colors
associated with the value of the gain in Fig. 4.8a and with the magnitude of the midcourse
impulse in Fig. 4.8b.

The gain G̃ ranges from values as low as 10−6 m/s, up to the maximum improvement of
63 m/s. While the most efficient trajectories (Pareto-optimal region) are not modified
appreciably, some other trajectories are notably improved. In particular, the family of
transfers where an additional impulse provides a real benefit (represented by the two
vertical arcs of red dots in Fig. 4.8a) are characterized by an initial flyby at the Moon.
This was already proved to be a key feature to obtain an Earth–Moon transfer with a cost
that approaches the theoretical minimum of 3726 m/s estimated by [60]. For example, the
best trajectories found in literature, with costs lower than 3800 m/s [45, 68], exploit the
presence of the Moon to achieve an exterior low-energy transfer. However, the current
results show that inserting an additional maneuver after the lunar gravity assist could
reduce the cost of the transfer by tens of m/s. A possible interpretation is that the
extra degree of freedom represented by ∆vm allows for more effective use of the flyby,
because modification of the spacecraft path after the Moon encounter is beneficial to
recover a feasible transfer. Conversely, in the absence of an intermediate maneuver, the
lunar gravity assist is utilized as much as possible to enable a workable transfer.

Figure 4.8b shows the same graph of Fig. 4.8a but this time the color of the three-impulse
trajectories is associated with the magnitude of the midcourse impulse ∥∆vm∥. The first
aspect that leaps out is the similarity between the values of ∥∆vm∥ and G̃: as predicted
by the theoretical discussion, the more consistent the intermediate maneuver, the more
affected the cost of the final trajectory. It is important to note that extremely low values
of ∥∆vm∥ are not practically feasible in an real mission due, for example, to the limitations
on the minimum impulse bit of a chemical thruster. Therefore, when examining Fig. 4.8b,
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values that are too low must be considered with caution, but are still part to the results
of the present analysis.

0 10 20 30 40 50
"t [days]

3850

3900

3950

4000

4050

4100

4150

"
v

[m
/s

]

S region

50 60 70 80 90 100
"t [days]

3800

3850

3900

3950

4000
L region

10-6 10-5 10-4 10-3 10-2 10-1 100 101 102

~G [m/s]

(a) Colors of three-impulse transfer associated with the gain G̃

0 10 20 30 40 50
"t [days]

3850

3900

3950

4000

4050

4100

4150

"
v

[m
/s

]

S region

50 60 70 80 90 100
"t [days]

3800

3850

3900

3950

4000
L region

10-6 10-5 10-4 10-3 10-2 10-1 100 101 102

kvmk [m/s]

(b) Colors of three-impulse transfer associated with the intermediate impulse ∥∆vm∥

Figure 4.8: Optimal multi-impulse Earth–Moon in a (∆t, ∆v) graph. Black and gray
dots represent two-impulse solutions; the former do not necessitate an additional impulse,
and the latter are not of interest to the present analysts (because discarded by the filter);
colored dots are refined-three impulse transfers, whose color is associated with some pa-
rameter of the trajectory, such as the gain with respect to the reference trajectory and
the magnitude of the intermediate impulse
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The significance of the optimization process in obtaining a refined transfer from a per-
turbed one is emphasized in Fig. 4.9. The graphs present the difference in gain between
the two trajectories. Note also, that since κmax = 1 m/s, the absolute values for G are
limited, particularly the maximum found is about 4 m/s. Hence, the optimization algo-
rithm brings significant improvement, especially for solutions with gains up to tens m/s.
However, this fact does not question the importance of selecting a suitable initial guess
solution, which is already an improvement on its own.
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Figure 4.9: Differential gain between the perturbed trajectory and the refined trajectory

Lastly, Fig. 4.10 shows the final gain of the refined trajectories. It can be appreciated
that the melioration is, on average, more relevant in the L region, as the denser part of
the point cloud in Fig. 4.10b has a slightly higher gain compared to Fig. 4.10a.
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Figure 4.10: Gain of the refined trajectory for each solution modified with a third impulse
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5| Background

The first chapter of the second part of the thesis is devoted to the description of the
Rotopulsating Restricted n-Body Problem, which is used to model the real solar sys-
tem environment. Furthermore, low-energy transfers from the Earth to the Moon are
described, together with their main advantages.

5.1. Rotopulsating Restricted n-Body Problem

In the last part of the present study, it is required to describe the motion of a spacecraft in
the real solar system. The astrodynamical model selected for this aim is the Rotopulsating
Restricted n-Body Problem (RPRnBP). This originates from the Inertial Restricted n-
Body Model (IRnBM), which describes the motion of n bodies subjected to their mutual
gravitational interaction with respect to an inertial reference frame. However, since the
aim is to adapt to the real environment the trajectories obtained in the PBRFBP, while
retaining as much as possible their features, an inertial model is not indicated. Instead,
it would be optimal if the motion were described in a local system which rotates with the
Earth and the Moon. Here the RPRnBP comes into play. Indeed, in the RPRnBP, the
solar system n-body problem is written as a perturbation of the Circular Restricted Three
Body Problem (CRTBP), by means of a time-dependent transformation [26]. However,
before describing this model, it is convenient to introduce the IRnBM.

5.1.1. Inertial Restricted n-Body Problem

In the framework of the Inertial Restricted n-Body Problem, the motion of a massless
particle P (i.e., the spacecraft) is described under the gravitational attraction of n − 1

celestial bodies Pj, whose motions are not affected by P . Through the full work, the set
of bodies considered to model the solar system environment will be denoted as

S = {P1, . . . , P11} , (5.1)
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where, in continuation with the PBRFBP, P1 denotes the Earth, P2 the Moon, P3 the
Sun, and from P4 to P11 the remaining planets (Pluto included). The mass of the i-th
celestial body mi is retrieved through JPL’s SPICE.
The motion of the spacecraft is described in the International Celestial Reference Frame
(ICRF), also called J2000 frame (see Fig. 5.1). This is an inertial reference frame whose
axes (X,Y ,Z) are defined as follows:

• the X-axis points the Vernal Equinox, the intersection between the celestial equator
and the ecliptic on January 01, 2000, 12:00 Barycentric Dynamical Time (TDB);

• the Z-axis is normal to the Earth equatorial plane on January 01, 2000, 12:00 TDB,
which is approximately Earth’s spin axis orientation at that epoch;

• the Y -axis completes the right-handed orthonormal reference frame.

If not specified, the origin of this frame is the Solar System Barycenter (SSB). However, it
is also possible to choose the Earth as the center for the reference system, and this frame
takes the name of Earth-Centered Inertial frame (ECI2000).

Figure 5.1: Sketch of the Inertial Restricted n-Body Model in the ICRF frame

Let indicate with Ri = (Xi, Yi, Zi)
⊤ and Vi = (Ẋi, Ẏi, Żi)

⊤ the position and the velocity
of the i-th celestial body in the ICRF frame; SPICE toolkit is used to read the states of
the celestial bodies from the JPL ephemeris data DE432 at any epoch.
The equations of motion of a massless particle, derived through a Lagrangian formalism,
can be written in a very compact form as [19]

R̈+∇V = aSRP , (5.2)
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where R = (X, Y, Z)⊤ is the position of P in the inertial frame. ∇V appearing in Eq. (5.2)
is the gradient of the gravitational potential V derived from Newton’s equation (so it is
a function only of the positions of the bodies). In the PBRFBP presented before, the
attractors have been considered as point masses. Actually, in the real world, all bodies
have a distributed mass. This fact must be taken into account in a high-fidelity model,
and thus there is the need to define a potential that accounts for the oblateness of the
celestial bodies. According to [19], ∇V is equal to

∇V =
∑
i∈S

µi

[
R−Ri

∥R−Ri∥3
+

3

2
J2iR

2
Bi

(
I3 + 2Iz

∥R−Ri∥5

− 5I3(R−Ri)
⊤Iz(R−Ri)

∥R−Ri∥7

)
(R−Ri)

]
. (5.3)

where µi is the gravitational parameter of the i-th primary, RBi
its mean equatorial radius,

and J2i is the second harmonic coefficient related to inhomogeneous mass distribution
(accurate values for these physical parameters are provided by SPICE); instead, Iz is a
3× 3 null matrix except for the third diagonal component, which is one.
On top of the conservative terms in Eq. (5.2), a high-fidelity model also requires the
inclusion of nonconservative forces. In this work, the effect of solar radiation pressure
(SRP) is considered, which imparts a net acceleration aSRP to the spacecraft. Using a
simple model where the flux decreases with the square of the distance from the source,
the perturbation (aligned with the Sun-SC direction) can be estimated as

aSRP = SP0
R−R3

∥R−R3∥3
. (5.4)

SP0 is the SRP parameter, defined as

SP0 ≡ (1 + cr)
A

m

Φ0d
2
0

c
, (5.5)

where Φ0 is the solar flux intensity at a distance d0 from the Sun, c is the speed of light,
cr is the reflectivity coefficient of the spacecraft, and A/m its area to mass ratio. In this
work d0 corresponds to 1 AU, Φ0 is a constant equal to 1368 W/m2 and the values for cr
and A/m are taken from the ESA mission LUMIO [13]. In particular it is used cr = 0.3,
and A/m = 0.00958 m2/kg.
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5.1.2. Definition of the Rotopulsating Frame

Inertial frames represent a comfortable reference to write equations of motion, however,
these frames are not always the most appropriate choice. The idea developed by the
Barcelona group [25, 26] is to introduce a suitable reference system and units such that,
after selecting two bodies of the Solar System as primaries, the complete n-body equations
of the Solar System are set as a perturbation of the CRTBP. This new set of coordinates,
named rotopulsating frame (RPF), is chosen such that its origin always coincide with the
barycenter of the two primaries, and the three axes are hereafter defined.

• The x-axis is aligned, at every time, with the conjunction of the two bodies, and
originates from the more massive body (assume m1 > m2);

• the z-axis is aligned with the relative angular momentum of the two primaries, so
it is perpendicular to their common instantaneous plane of motion;

• the y-axis completes the right-handed orthonormal reference frame.

In the present case, the two primaries are the Earth and the Moon (see Fig. 5.1), and now
the analogy with the PBRFBP is evident. Indeed, the rotating frame follows the motion
of the primaries around their common barycenter. Moreover, with proper adimensional-
ization, the two bodies always occupy the same positions on the x-axis. In particular, the
scaling factor k, which is the actual distance between the primaries, adjusts their positions
so that P1 is fixed at (−µ, 0, 0), and P2 at (1 − µ, 0, 0), where the mass parameter µ is
defined as in the PBRFBP (see Eq. (2.3)). Hence, the new frame rotates and pulsates in
a non-uniform fashion (this explains the name of the frame).

5.1.3. Coordinate Transformation and Adimensionalization

In order to describe the motion of P in a rotating frame, that by definition is no more
inertial, it is useful to define some new adimensional quantities. Let {ε, R, V} be the
dimensional time1, position, and velocity of P in the inertial frame, respectively, and let
{τ, ρ, η} be their nondimensional counterparts in the RPF. Following [26], the transfor-
mation between sidereal coordinates (inertial), and synodic ones (non-inertial) is:

R(ε) = b(ε) + k(ε)C(ε)ρ(τ) , (5.6)

1The symbol ε is used to represent a dimensional epoch expressed in TDB, and to distinguish from the
symbol t used for the adimensional time of the PBRFBP. In the context of the RPRnBP, dots indicate
derivation with respect to ε.
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where the quantities appearing in Eq. (5.6) are defined as follows:

• b(ε) represents the translation from the SSB to the Earth–Moon barycenter (EMB),
and it is defined as

b(ε) =
m1R1(ε) +m2R2(ε)

m1 +m2

; (5.7)

• k(ε) is the space adimensionalization factor and coincides with the instantaneous
distance between the primaries

k(ε) = ∥R2(ε)−R1(ε)∥ ; (5.8)

• C(ε) = [e1(ε), e2(ε), e3(ε)] is an orthonormal rotation matrix, whose components
are the unit vectors aligned with the axes of the RPF but seen from the ICRF:

e1(ε) =
R2(ε)−R1(ε)

k(ε)
,

e2(ε) = e3(ε)× e1(ε) ,

e3(ε) =
(R2(ε)−R1(ε))× (V2(ε)−V1(ε))

∥(R2(ε)−R1(ε))× (V2(ε)−V1(ε))∥
.

(5.9a)

(5.9b)

(5.9c)

It is important to remark that this change of coordinates is non-autonomous since b, k
and C depend on time through the components of R1 and R2, which, in turns, are read
from ephemeris data. Note, also, that the definition of the cosine matrix C is consistent
with the description of the RPF. In fact, it sets the primaries on the x–axis and rotates the
instantaneous plane of motion into the (x, y)-plane by requiring that the relative velocity
between the primaries has its third component equal to zero (see Fig. 5.2).

The relation linking the velocities V and η can be obtained deriving in time Eq. (5.6):

V(ε) = ḃ(ε) + k̇(ε)C(ε)ρ(τ) + k(ε)Ċ(ε)ρ(τ) + k(ε)C(ε)η(τ)τ̇ . (5.10)

In Eq. (5.10) it is used that η = ρ′ := dρ/dτ (where ′ indicates the derivative with respect
to the nondimensional time τ), together with the chain rule

dρ

dt
=

dρ

dτ

dτ

dε
= ητ̇ . (5.11)
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Finally, a change of independent variables from some dynamical time ε to the adimensional
time τ is expressed as

τ = ω(ε− ε0) , (5.12)

where ω is the mean motion of P2 with respect to P1, and ε0 is a fixed epoch2, used to
shift the non-autonomous problem to a null initial nondimensional time [17]. With this
choice of the scaling factor ω, the revolution period of the primaries is 2π time units, like
in the PBRFBP. The numerical value used for the mean motion is 2.6653143788e-06 s−1,
estimated from the mean distance between the primaries (a) using Kepler’s third law:

ω =

√
G(m1 +m2)

a3
. (5.13)

G is the universal gravitational constant and the mean distance, in turn, is obtained by
averaging ephemeris data over a long time window (e.g., 400 years). Finally, note that
τ̇ = ω is a constant, and this will simplify substantially the following computations.

5.1.4. Equations of Motion and Variational Equation

Once the new adimensional quantities have been introduced, the next step is to derive the
equations for the restricted n-body model in the RPF. These can be obtained substituting
the coordinate transformations of Eqs. (5.6), (5.10) and (5.12) into Eq. (5.2), and by using
the definitions of ∇V and aSRP (Eqs. (5.3) and (5.4)). After some manipulations, the
equations of motion for the RPRnBM are [19]

ρ′′ +
1

ω

(
2k̇

k
I3 + 2C⊤Ċ

)
ρ′ +

1

ω2

(
k̈

k
I3 + 2

k̇

k
C⊤Ċ + C⊤C̈

)
ρ

+
C⊤b̈

kω2 = ∇Ω +
SP0

ω2k3

δ3

∥δ3∥3
,

(5.14)

where ∇Ω = ∂Ω/∂ρ is the gradient of the pseudopotential

Ω =
∑
i∈S

mi

(m1 +m2) ∥δi∥

[
1 +

J2iR
2
Bi

2k2 ∥δi∥2

(
1− 3δ⊤

i C
⊤IzCδi

∥δi∥2

)]
. (5.15)

As can be seen from the sketch of the RPRnBP in Fig. 5.2, δi = ρ − ρi is the distance
between the spacecraft and the i-th celestial body in the RPF. Appendix A.3 reports the
analytical expressions for the derivatives of k, C, and b appearing in Eq. (5.14).

2The reference epoch ε0 is set arbitrarily to January 01, 2025.
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Let x ≡ (ρ ,η)⊤ be the state vector of P in the RPRnBP3. Equation (5.14) can be written
in a first-order form as

x′ = fn(x, τ) =

[
fnρ

fnη

]
=

[
η

ρ′′

]
, (5.16)

where ρ′′ can be isolated from Eq. (5.14) itself.
The solution of Eq. (5.16) at time τ starting from an initial condition xi at τi is indicated
by x(τ) = φn(xi, τi; τ) and is referred to as the flow of the RPRnBP. Analogously to
what has been done for the PBRFBP, the STM of Eq. (5.16), i.e., Φ(τi, τ) ≡ ∂φn/∂xi,
can be obtained integrating the variational equation Eq. (2.23), always with the same
initial conditions Φ(τi, τi) = I6.
For the sake of completeness, the jacobian of the dynamical field fn is hereafter reported:

∂fn
∂x

=

 03 I3

∂fnη
∂ρ

∂fnη
∂η

 , (5.17)

where, it can be shown, that the last two components are [19]

∂fnη
∂ρ

= − 1

ω2

(
k̈

k
I3 + 2

k̇

k
C⊤Ċ + C⊤C̈

)

−
∑
i∈S

mi

(m1 +m2)

{
1

∥δi∥3
− 3

δ⊤
i δi
∥δi∥5 +

3J2iR
2
Bi

2k2

[
I3 + 2C⊤IzC

∥δi∥5

− (5I3 + 10C⊤IzC)δiδ
⊤
i

∥δi∥7
− 5δ⊤

i C
⊤IzCδiI3

∥δi∥7
− 10δiδ

⊤
i C

⊤IzC

∥δi∥7
+

35δiC
⊤IzCδ⊤

i

δiδ
⊤
i

∥δi∥9

]}
+

SP0

ω2k3

[
I3

∥δ3∥3
− δ3δ

⊤
3

∥δ3∥5

]
, (5.18)

and
∂fnη
∂η

= − 2

ω

(
k̇

k
I3 + C⊤Ċ

)
. (5.19)

Also in this case the variational equation must be integrated together with the state
equation, yielding a system of 42 first-order differential equations. Being this model
based on ephemerides data, the solution to the equations of motion must be obtained
numerically. Furthermore, the computational heaviness of this problem is much higher
compared to the PBRFBP due to, at least, three reasons: first, the problem is no longer

3Differently from the PBRFBP, where the state vector is represented by x, in the RPRnBP the symbol
x is used.
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planar and the number of equations is more than double (42 versus 20); then, the analytical
expression of the right-hand side of the dynamics is much involved; lastly, data must be
retrieved from ephemerides at each integration step, and this absorbs many resources.

Figure 5.2: Sketch of the Rotopulsating Restricted n-Body Model

5.2. Low-Energy Transfers

The advancement of trajectory design techniques has made it possible to create novel
categories of low-energy Earth–Moon transfers. These involve trajectories that put the
spacecraft beyond the orbit of the Moon, and take advantage of the Sun’s gravity to
reduce the transfer fuel costs [48]. Indeed, when the spacecraft falls back toward the
Earth, it arrives at the Moon with a velocity that closely matches the Moon’s orbital
velocity and it is ballistically captured by the Moon (i.e., the spacecraft two-body energy
becomes negative). The result is that the lunar orbit insertion requires much less fuel
compared with a conventional, direct transfer. The interested reader can find a review of
low-energy transfer in [20].
The main theory to construct this kind of transfer was developed during the late 1980s and
early 1990s by Belbruno and Miller, and is called weak stability boundary (WSB) theory
[2–4]. The method involves targeting a specific area in space where the gravitational
forces of the Sun, Earth, and Moon are in balance [5, 6], without utilizing any three-body
periodic orbits or other dynamic structures.
Many approaches can be found in literature about designing low-energy transfers to low-
altitude lunar orbits [12, 14, 15, 47, 66], and some missions have already flown on such
trajectories (e.g., the Japanese Hiten Mission in 1991, NASA’s ARTEMIS in 2009 and
NASA’s GRAIL in 2011).
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Nevertheless, also [62] found a high number of exterior transfers which can be classified
as low-energy transfers4. These can be easily identified, and are characterized by:

• a cost lower than the Hohmann Earth–Moon Transfer, that is about 3950 m/s with
the present orbits (167 km at the Earth, 100 km for the Moon);

• a transfer time of about three months;

• a ballistic capture at the Moon.

The algorithm that will be developed in the second part of the thesis is mainly employed to
continue these low-energy transfers in the real solar system, due to their more challenging
and innovative nature. Indeed, for such trajectories, the Sun’s effect is of paramount
importance, and it is much more interesting to assess how these are modified once adapted
to a full-ephemeris model.

5.2.1. Features of Low-Energy Transfers

Low-energy transfers provide many benefits to missions when compared with conventional
transfers. Some example advantages include the following [48]:

1. They require less fuel to achieve the same orbit than it would be following a con-
ventional, 3–6 day direct transfer (for example the lunar orbit insertion maneuver is
at least 100 m/s smaller when the spacecraft destination is a 100 km circular orbit
about the Moon [49]).

2. Low-energy transfers are more flexible than conventional transfers and may be used
to transfer spacecraft to many more orbits on a given date.

3. They have extended launch periods: very little fuel is required to establish a launch
period of 21 days or more for a mission to the Moon [47].

4. Low-energy transfers have a relaxed operational timeline. A spacecraft may typically
wait a week before performing a maneuver, giving ample time to be checked out and
prepare for its cruise operations.

5. Low-energy transfers may place several vehicles into very different orbits at the Moon
using a single launch vehicle (the GRAIL mission [31, 57] separated two lunar-orbit
insertions by over a day using very little fuel, see Fig. 5.3).

6. Low-energy trajectories may be used to transfer a spacecraft from the Moon directly
to any location on the surface of the Earth using relatively small quantities of fuel.

4For example both the solutions reported in Figs. 4.1b and 4.2a are low-energy transfers.
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The typical drawbacks of low-energy transfers between the Earth and the Moon are the
longer transfer duration (making them not suitable for very time-critical missions, e.g.,
missions with human passengers) and the longer link distances, as the spacecraft travels
as far as 2 million kilometers away from the Earth.

Figure 5.3: GRAIL-A and GRAIL-B trajectories for a launch at the open and close of
the launch period (from [20]); note how the two orbits separate at the arrival even if they
were lunched together
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Nowadays there are numerous astrodynamical models at the disposal of designers. As
these models become more intricate, they offer new solutions resulting from a more com-
prehensive vector field. However, since there is no analytical solution, gaining a compre-
hensive understanding of the dynamics is challenging. Typically, simplified models are
employed in the early design phases of space missions. Indeed, they offer a deeper grasp
of the dynamics of the system, and also the lighter computational effort required is more
suitable to perform extensive optimization searches. By the way, a real mission will even-
tually fly in the real scenario, so the ultimate nominal trajectory must be studied, tested,
and validate in a real solar system model.

The primary aim of the algorithm developed in the second part of this study is to facilitate
the transition from orbits in a simplified model to more complex environments (this is
what is intended for "continuation"). In particular, the present chapter describes the
procedure adopted to import an Earth–Moon transfer from a simplified four-body model
to a high-fidelity, ephemeris-based model of the solar system. The analysis carried out in
this chapter is inspired by the works by Dei Tos and Topputo [17–19].

6.1. Description of the Continuation Problem

Before discussing the solution method, it is convenient to state the continuation problem
and to describe the starting point as well as the expected final solution. Special attention
is also given to the boundary conditions of the trajectory in the solar system.

6.1.1. Initial Trajectory in the Four-Body Model

Let γ4
1 be an Earth–Moon transfer in the PBRFBP that embeds either two or three

impulsive maneuvers, depending on whether it has been improved or not by means of the
Primer Vector theory. As the starting point of each trajectory is a solution of [62], γ4
satisfies the following conditions on the initial and final state:

1The subscript indicates the number of bodies in the model used to design the trajectory.
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• at the departure time ti the spacecraft is in a circular orbit around the Earth, at an
altitude of 167 km;

• at the arrival time tf an impulse of magnitude ∆vf inserts the spacecraft in a circular
orbit around the Moon, whose altitude is 100 km.

Moreover, if γ4 is an optimal two-impulse trajectory, i.e., it has not been further optimized
with a mid-course impulse, then the two impulses are aligned with the local circular
velocities of the initial and final orbits.

6.1.2. Final Trajectory in the n-Body Model

Analogously, let γn denote an impulsive trajectory in the RPRnBP made of an initial
impulse in the proximity of the Earth, a final impulse at the Moon, and, in case, an
intermediate maneuver.
Let xi be the state of the spacecraft before the first maneuver, at the departure from the
Earth, and xf be the very last state at the arrival to the Moon, after the final impulse. In
the original PBRFBP, these positions and velocities belong to the aforementioned initial
and final circular orbits. However, the boundary conditions of the transfer in the n-body
model still need to be specified. To this aim, let D ∈ R6 andA ∈ R6 be two sets containing
the admissible states at the departure and arrival, respectively. They are defined as:

D ≡
{
x ∈ R6 : hD(x) = 0

}
, A ≡

{
x ∈ R6 : hA(x) = 0

}
, (6.1)

where hD and hA are two vectorial functions collecting the conditions, yet to be defined,
that x must respect in order to belong to D and A. Moreover, let denote with nD and
nA the number of scalar equations of the two sets.

The following paragraphs aim to discuss which is the most suitable frame where these
constraints can be written. Many possibilities exist, but three general strategies can be
identified: fixing the boundary conditions in an inertial frame (centered at the Earth or
the Moon), writing them directly in the rotopulsating frame, or using both the previous
approaches at the same time for different constraints.

Inertial Boundary Conditions

The boundary conditions of the transfer might be expressed in a local-inertial frame cen-
tered at the Earth or the Moon, for instance defining the altitude and orientation of two
circular orbits. The first advantage that leaps out is the physical meaning of the boundary
conditions: it is clear to see and it is the same during all the possible epochs. In fact,
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independently of the departure and arrival dates, the initial and final states are fixed with
respect to the two primaries. So, the convergence of the optimization algorithm intrinsi-
cally guarantees compliance with two a priori well-known conditions.
This approach is almost mandatory when the aim is to compare the costs of many tra-
jectories that must share the same ending conditions. Moreover, it should be applied to a
real mission wherein, either there are few available initial parking orbits, or there are very
strict requirements (e.g., for scientific purposes) on the arriving orbit around the Moon.
In this case, the two orbits are fixed and must be specified in an inertial frame.
The disadvantages are mainly from a numerical implementation viewpoint. Indeed, the
optimization is performed in the RPRnBP and therefore the inertial boundary con-
straints must be converted into the RPF, becoming functions of the current epoch:
hD = hD(x, τ), hA = hA(x, τ). Consequently, the sensitivity of the constraint func-
tions with respect to the optimization variables is more involved.

Rotopulsating Boundary Conditions

On the other hand, the boundary conditions might be specified in the RPF from the
beginning. The advantage is that no transformation is needed, because the states are
already written in the reference system of the problem. Unfortunately, a direct physical
meaning is lost, because the frame is rotating and pulsating in a non-uniform fashion;
thus the reference distance and velocity used for the adimensionalization change with
time. For instance, fixing a dimensionless final distance from one of the two primaries
is like allowing the actual dimensional distance from the celestial body to vary over a
bounded range. Again, because the orientation of the RPF changes with time, a constant
orientation of the orbital plane (e.g., the (x, y)-plane) means that the inertial orientation
of the final orbit around the celestial body is allowed to vary.
In such a way, the boundary conditions, seen from an interesting viewpoint (i.e., an
inertial frame), change with the date and could not be known a priori (as the epoch of the
transfer will be itself an optimization variable). This makes also more difficult to compare
the costs of different transfers because their initial and final Kepler energies relative to
the Earth and the Moon could be different.

Mixed Boundary Conditions

The last possibility is to write some conditions in an inertial frame and others in the
RPF. This approach could be useful when some mission requirements are more strict,
while others are less severe. An example is when the arrival orbit around the Moon is
specified and it is an important requirement for the mission, whilst there are more degrees
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of freedom in choosing the departure orbit around the Earth. In this case, the initial
constraints can be written in the RPF and the final ones in the inertial frame. Actually,
the meaning of these mixed conditions can be also extended to different quantities at the
same boundary. For instance, fixing the size of the orbit from an inertial viewpoint but
allowing the orbital plane to vary with time.

Recalling that the focus of this part of the thesis is to produce nominal trajectories for
potential future missions, the approach chosen for the present work is to use inertial
boundary conditions. Indeed, in a real-life scenario, it is likely that, depending on the
mission goals, specific requirements are imposed on the altitude and the inclination of the
lunar orbit, and these are defined in a local inertial frame.
Section 6.4 will be devoted to the detailed description of such boundary conditions. It
will be also shown that the transformation between the RPF and the inertial frame is
linear, so it does not introduce notable difficulties from a computational viewpoint.

6.1.3. Statement of the Problem

For the time being, leave aside the detailed definition of the boundary conditions, and
focus on the continuation problem sketched in Fig. 6.1, which can be stated as follow.

Problem 6.1 (Trajectory Continuation Problem). — Given an Earth–Moon trans-
fer γ4 in the PBRFBM, find its continuation γn in the RPRnBM, such that:

• the geometrical features of γ4 are retained by γn;

• the spacecraft departs from an orbit around the Earth and arrives to an orbit around
the Moon (specified by given boundary conditions);

• the same number of impulsive maneuvers of γ4 is used;

• the total characteristic velocity (or cost) of γn is locally minimized.

Problem 6.1 consists in an optimal control problem [16]. In this thesis, it is solved with
a direct transcription and multiple shooting technique. Accordingly, the optimization is
transcribed into a NLP problem and solved for a finite set of variables [9]. The algorithm
presented is a versatile and effective method, providing improved accuracy, robustness,
parallel computing, and ease of implementation. Especially in the case of high-sensitive
nonlinear dynamics, multiple shooting is more reliable than simple shooting, where all
the degrees of freedom are related to the initial conditions.
Indeed, the basic concept of the multiple shooting is to subdivide a trajectory into intervals
and for each of them to solve a TPBVP, with successive iterations until the boundary
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conditions and some continuity properties are satisfied. The higher number of decision
variables is beneficial, as the sensitivity of the cost function is shared between more degrees
of freedom; however, one must also consider the computational load required to handle
large-scale optimization problems.
The methodology presented in this thesis to tackle Problem 6.1 consists of two steps, that
will be described in detail in the following sections:

1. the generation of an initial seed trajectory;

2. the recursive correction of this last with a modified multiple shooting.

Figure 6.1: Continuation problem from the PBRFBM (left) to the RPRnBP (right)

6.2. Generation of an Initial Seed Trajectory

The initial guess for the multiple shooting algorithm is generated from the trajectory γ4.
First, a suitable epoch must be computed to define the RPF. Then, a method to transform
the states of γ4 into the nondimensional quantities of the RPRnBP is described. However,
the representation of γ4 in the solar system is no more a trajectory in the narrowest sense
of the term. In fact, a (feasible) trajectory is defined as a series of positions and velocities
obtained by solving the equations of motion. But when the states of γ4 are adapted to
the RPF, the current dynamics is that of the n-body model. Thus, the new series of
states should be indicated as a curve (recalling the geometrical acceptance of the world)
rather than a trajectory. To this aim, the symbol Γn is used, where the capital letter
stresses that this sequence of positions and velocities is no more justified by the current
astrodynamical model (expressed by the subscript).
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6.2.1. Frames Alignment Problem

Henceforth, let rename the reference frame of the PBRFBP as rotating frame (RF). The
positions of the Earth, the Moon, and the Sun (the celestial bodies shared between the
models) in the RF of the PBRFBP and in the RPF of the RPRnBP are reported in
Table 2. The way the axes of the two frames were defined, would allow for a perfect
overlap of the two frames, at least for what concerns the two primaries. However, the
position of the Sun is modeled in two different ways, and its effects are not negligible
as the Sun’s gravity is the main perturbation for a transfer in the Earth–Moon system
(especially for exterior transfers).

Table 2: Position of the two primaries and the Sun in the PBRFBM and RPRnBM
(coordinates are nondimensional according to the paradigm of each model)

Model Earth Moon Sun

PBRFBM (−µ, 0, 0) (1− µ, 0, 0) (ρ cos (ωst), ρ sin (ωst), 0)

RPRnBM (−µ, 0, 0) (1− µ, 0, 0) ρ3(τ) from ephemeris data

Sun’s Trajectories

Fig. 6.2 shows the trajectory of the Sun during one year in both models.

• On the one hand, in the PBRFBP, the Sun rotates with a constant radius on the
(x, y)-plane and with a constant angular velocity (see Table 1). The time needed
for the Sun to take a complete revolution is 29.53 days, which coincides with the
mean Earth–Moon synodic month. Hence, the Sun repeats almost 12.4 times the
same trajectory over a solar year (remember the motion is clockwise), so the left
graph of Fig. 6.2 is a perfect circle.

• On the other, the position of the Sun depends only on the epoch at which it is
observed, and things are less regular in the RPRnBP. The right graph of Fig. 6.2
shows that Sun’s position from Jan 01, 2022, to Jan 01, 2023 (TDB), draws a
spiraling trajectory. Here, the synodic period (the frequency associated with the
in-plane circular motion) is on average 29.5 days but depends on the precise time
window on which it is computed. Differently than before, also the distance of the
Sun from the EMB changes depending on the epoch. Furthermore, an out-of-plane
motion is present due to the relative inclination between the instantaneous Earth–
Moon plane (i.e., the (x, y)-plane of the RPF) and the ecliptic. This angle changes
with time, and in particular it oscillates between ±5 deg over one year.
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Figure 6.2: Sun’s trajectory during a year in both the PBRFBP (left) and the PRPRnBP
(right), where ephemerides are read from Jan 01 2022 to Jan 01 2023 TDB

Alignment Time and Alignment Epoch

Since a perfect overlap between the two models is not possible, an approach based on
Sun’s position is hereafter developed to find a satisfactory correspondence. This is de-
sired because, the more the two astrodynamical models overlap, the more the curve Γn

represents a advantageous initial seed orbit for the shooting problem, as it is closer to a
real trajectory in the PBRFBP.

Unfortunately, the possibility for a precise alignment of the models during all the time
of a transfer must be discarded. Indeed, the axes of the two frames rotate with different
velocities: in the RF, ω is constant and always aligned with the z-axis (that consequently
is fixed), whilst in the RPF, the axes are computed from the instantaneous position
and velocity of the primaries. Nonetheless, this must not discourage from searching a
dimensionless time ta and an epoch εa when the configurations of P1, P2 and P3 in the
two models are as coincident as possible. Let define this time and this epoch as alignment
time and alignment epoch, respectively. For a given ta, one must find the epoch εa when
the difference in the position of the three primaries is minimum. To this aim, a parameter
is needed to quantify how much the two configurations are similar.
As the main discrepancies between the models were due to the Sun’s trajectory, this
parameter must be a function of the Sun’s position at the generic time t and epoch ε.
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Let denote with r̂3 and ρ̂3 the directions of the Sun in the two models (see Fig. 6.1):

r̂3(t) ≡
r3(t)

∥r3(t)∥
, ρ̂3 ≡

ρ3(ε)

∥ρ3(ε)∥
. (6.2)

Now think of representing these directions in the same reference system, whose axes
coincide with those of the RF and RPF. If a time ta, and an epoch εa are found such that
r̂3 and ρ̂3 coincide, the two configurations overlap. Therefore, the parameter required is
the angle σ between the two directions: σ ≡ cos−1(r̂3 · ρ̂3). By the way, a more convenient
quantity that introduces fewer nonlinearities can be used:

σcos ≡ cos(σ) = r̂3 · ρ̂3 . (6.3)

Indeed, maximizing σcos is equivalent to minimizing σ, but σcos is a linear function of
r̂3 and ρ̂3, that is advantageous in view of a numerical optimization. At this point, the
Frames Alignment Problem can be stated as:

Problem 6.2 (Frames Alignment Problem). — Given a time ta in the PBRFBP,
find an epoch εa such that the angular distance between the direction of the Sun in the
PBRFBP at time ta and the Sun’s direction in the RPRnBP at the epoch εa is minimized.

Given ta, find εa = argmax
ε

σcos(ta, ε), where:


σcos = r̂3 · ρ̂3 ,

r̂3(ta) = (cos (ωsta), sin (ωsta), 0) ,

ρ3(ε) is the direction of the Sun in the RPF at the epoch ε .

In order to solve Problem 6.2, one must select before the alignment time ta ∈ [ti, tf ] for
each transfer. By definition, ta is the time when the Sun’s positions in the two models
coincide (in the ideal case when σcos = 1) and so also the Sun’s gravitational attraction is
the same (at least its direction). For all the other times t ∈ [ti, tf ]\{ta}, the directions of
the two perturbations do not coincide. Therefore, a careful choice is to set the alignment
time when the Sun’s effects on the trajectories are more relevant (relative to the attraction
of the two primaries). For this reason, the alignment time on each transfer γ4 is selected
as the time when the SC distance from the EMB is maximum

ta = argmax
t∈[titf ]

∥r(t)∥ . (6.4)
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6.2.2. Transformation Between Reference Systems

Once the Frames Alignment Problem is solved, the initial guess trajectory for the multiple
shooting method can be built. As it will be described detailed in the next section, this
consists of a series of states (position and velocities) at some discrete instants of time. So,
the problem now is to transform γ4 into Γn, or, alternatively, to convert each the state
{t, r, v} of γ4 into the triplet {τ, ρ, η}. Then, once the curve Γn is computed, it can be
sampled to obtain a starting solution for the NLP algorithm.

The only way to represent a state in the RPF is to use the transformations in Eqs. (5.6),
(5.10) and (5.12). Hence, one must necessarily pass through the ICRF. The missing link
between the RF and the ICRF is named Initial Inertial frame (IIF). The origin of this
frame is still the EMB, but its axes, (i, j,k), are fixed and coincide with those of the RF
at the initial time of the transfer ti. Therefore, as depicted in see Fig. 6.3a, the IIF is
an inertial frame defined for each transfer γ4, that coincides with the RF at t = ti. The
conversion from the RF to the IIF is obtained using the time-dependent matrix C1(t)

C1(t) =

cos (t− ti) − sin (t− ti) 0

sin (t− ti) cos (t− ti) 0

0 0 1

 . (6.5)

The advantage of this frame is that the direction cosines of (i, j,k) in the ICRF, denoted
as (e(i)

1 , e
(i)
2 , e

(i)
3 ), are constant and can be computed evaluating Eq. (5.9) at the departure

epoch εi. Indeed, after solving the frame alignment problem εi can be computed assuming
that the transfer time of γn is the same as γ4, and so

εi = εa − (ta − ti)T , (6.6)

where T is the nondimensional time of the PBRFBP (see Eq. (2.1)), and it is needed to
match the measurement unit of the epoch ε. Then, the change of coordinates from the
IIF to the ICRF is done by means of b and the constant rotation matrix C2 (see Fig. 6.3b)

C2 = [e
(i)
1 , e

(i)
2 , e

(i)
3 ] . (6.7)
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(a) RF (x,y, z) and IIF (i, j,k) (b) IIF (e
(i)
1 , e

(i)
2 , e

(i)
3 ) and ICRF (X,Y ,Z)

Figure 6.3: Graphical representation of the transformations between the reference frames;
b is the position of the EMB in the ICRF, read from ephemeris data

Now that all the ingredients are defined, each step of the process to transform a state
from the RF to the RPF is described.
Given a state {t, r(t), v(t)} in the RF and an alignment time ta, the corresponding state
in the RPF is computed with the following procedure:

1. write the state vector in the IIF:r(IIF)(t) = C1(t) r(t)

v(IIF)(t) = C1(t) (v(t) + ω × r(t))
, (6.8)

where C1(t) is computed with Eq. (6.5) and ω = [0, 0, ω]⊤ ;

2. restore the dimensional units of t, ta, r(IIF)(t) and v(IIF)(t) multiply by the reference
quantities T , L, V ;

3. solve the Frames Alignment problem and compute ε = εa + (t− ta)T ;

4. calculate εi = εa + (ti − ta)T and C2 = [e1(εi), e2(εi) , e3(εi)] ;

5. write the state vector in the ICRF:R(ε) = b(ε) + C2 r
(IIF)(t)

V(ε) = ḃ(ε) + C2 v
(IIF)(t)

; (6.9)

6. compute {τ, ρ(τ), η(τ)} from {ε, R(ε), V(ε)} using Eqs. (5.6), (5.10) and (5.12).
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6.3. Multiple-Burn, Multiple-Shooting Formulation

A direct multiple shooting technique is developed, which accommodates two or three
maneuvers (depending on the initial guess in the PBRFBP) to drive x(τ) from D to A
hypersurfaces, while respecting some continuity requirements.
The trajectory is sampled at a finite number of points, called nodes, where the state vector
is taken as an unknown variable. An arc is defined as the ballistic portion of the trajectory
separated by maneuvers and a segment is the portion of the trajectory separated by two
consecutive nodes. With m number of maneuvers and s nodes between two maneuvers,
there are m− 1 arcs and s− 1 segments within each arc. In particular, due to the nature
of the original problem, only the cases with m = 2 and m = 3 are discussed.

Let τ
(j)
i and τ

(j)
f be the initial and final time of the j-th arc, with j = 1, . . . ,m − 1.

The time interval [τ (j)i , τ
(j)
f ] is discretized over a uniform time grid, made up by s points

τ
(j)
i = τ

(j)
1 < . . . < τ

(j)
k < . . . < τ

(j)
s = τ

(j)
f , with

τ
(j)
k = τ

(j)
i +

k − 1

s− 1

(
τ
(j)
f − τ

(j)
i

)
, k = 1, . . . , s . (6.10)

The solution is sampled at each node, and the state vector is denoted as x
(j)
k = x(τ

(j)
k ).

Recalling the definitions of xi and xf in section 6.1.2, the node x
(1)
1 is placed after the

initial impulse, while the final node x
(m−1)
s is located before the final impulse.

Let define the defect vector as

ζ
(j)
k := φn(x

(j)
k , τ

(j)
k ; τ

(j)
k+1)− x

(j)
k+1 ,

k = 1, . . . , s− 1

j = 1, . . . ,m− 1
. (6.11)

Despite the division into segments, the continuity of the solution must be respected within
each arc, therefore the problem is to determine x(j)

k such that ζ(j)
k = 0. Moreover, focusing

on a three-impulse trajectory (m = 3), time and position continuity must be guaranteed
also at the mid-course impulse

Ψρm := ρ
(2)
1 − ρ(1)

s = 0 , ξm := τ
(2)
1 − τ (1)s = 0 . (6.12)

Note, that the constraint Ψρm leaves the door open to a possible discontinuity on the
velocity, namely

∆η2 = η
(2)
1 − η(1)

s . (6.13)

This is consistent with the fact that arcs are separated by impulsive maneuvers, and the
cost of these will contribute to the overall cost of the transfer.
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However, another scalar constraint is considered at the time of the midcourse impulse. It
is required that η

(1)
s and η

(2)
1 are aligned, and so that

Ψηm := η
(2)
1 · η(1)

s −
∥∥η1

(2)
∥∥ ∥∥ηs

(1)
∥∥ = 0 . (6.14)

If the two velocities are parallel, then also their difference ∆η2 is in the same direction.
This fact plays a crucial role in formulating the cost function for the problem, as it will
be shown. Additionally, from an energetic perspective, it is desirable to maneuver in
the direction of the local velocity as this maximizes the spacecraft energy variations [51].
Therefore, the constraints at the midcourse impulse are collected in a single vector:

Ψm :=

Ψρm

Ψηm

 =

 ρ
(2)
1 − ρ

(1)
s

η
(2)
1 · η

(1)
s −

∥∥η1
(2)
∥∥ ∥∥ηs

(1)
∥∥
 = 0 . (6.15)

Moreover, the boundary conditions at the departure and the arrival must be enforced

hD(xi, τi) = 0 , hA(xf , τf ) = 0 . (6.16)

Finally, position continuity must be imposed again behind the initial and final impulses:

Ψi := ρ
(1)
1 − ρi = 0 , Ψf := ρf − ρ(2)

s = 0 . (6.17)

Fig. 6.4 shows a schematic representation of the multiple-burn, multiple-shooting strategy
in the case of three impulsive maneuvers (m = 3).

6.3.1. Statement of the Optimization Problem

Within each arc there are s six-dimensional unknowns, x(j)
k , as well as the initial and final

time τ
(j)
i , τ

(j)
f , for a total of 6s + 2 scalar variables. The overall NLP variables vector,

y, is made of the collection of the free variables of each arc together with the initial and
final states, xi and xf :

y :=
{
xi, x

(j)
k , xf , τ

(j)
i , τ

(j)
f

}
,

k = 1, . . . , s

j = 1, . . . ,m− 1
. (6.18)

The vector of equality constraints h is defined as:

h(y) :=
{
ζ
(j)
k , hD , hA, Ψi, Ψf , Ψm, ξm

}
,

k = 1, . . . , s− 1

j = 1, . . . ,m− 1
, (6.19)
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Figure 6.4: Schematic representation of the multiple-burn, multiple-shooting strategy in
the case of three impulsive maneuvers (m = 3)

where the last two entries are present only if m = 3. The components of h are vector-
valued functions and, in particular, Ψi, Ψf , Ψρm , ξm are linear functions of y. hD and
hA are still undefined and could be linear as well as nonlinear functions of y. A set of
linear inequality constraints is assembled to limit the terminal times of each arc:

g(y) :=
{
τ
(j)
i − τ

(j)
f

}
≤ 0 , j = 1, . . . ,m− 1 . (6.20)

g(y) is made of m − 1 scalar linear functions, but if necessary, it could be expanded by
adding other constraints, for instance on the maximum transfer duration as well as on the
∆v budget of a single maneuver (maximum and minimum values), or about the minimum
distance from a planet.

At this point the impulsive trajectory optimization can be stated as a NLP problem,
where the cost function J to be minimized is defined in the following section, as it needs
a dedicated discussion.

Problem 6.3 (Multiple Shooting NLP Problem). — Optimal, multi-impulse Earth
to Moon transfers are found by solving the NLP problem:

min
y

J(y) subject to h(y) = 0 and g(y) ≤ 0 .
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Of course, the size of the problem depends on m and s. In the case of a two-impulse
transfer (m = 2): y ∈ R6s+14, h is made of 6s+nD+nA scalar functions, and g is a single
scalar function; whereas, for a three-impulse transfer (m = 3): y ∈ R12s+16, the number
of equality constraints is 12s− 1 + nD + nA, and g is composed by two scalar functions.

6.3.2. Cost Function

The purpose of the optimization process is to minimize the total characteristic velocity,
i.e., the sum of the impulses ∥∆vi∥, ∥∆vf∥ and, if present, ∥∆vm∥. This is related
to the onboard propellant consumption through the Tsiolkovsky equation. Anyway, the
velocity variation is a meaningful parameter only if written in an inertial frame and with
the classical measurement units (e.g., m/s). Therefore the dimensional velocity should
be recovered from the adimensional state x = {ρ,η} of the RPRnBP. The following
equations express this link between adimensional and dimensional velocity variations.
At first, the dimensional velocity variation is transformed into the RPF using Eq. (5.10)

∥∆v∥ = ∥v+ − v−∥

=

∥∥∥∥[ḃ+
(
k̇C + kĊ

)
ρ+ kτ̇Cη

]
+
−
[
ḃ+

(
k̇C + kĊ

)
ρ+ kτ̇Cη

]
−

∥∥∥∥ , (6.21)

where the subscripts ‘−’ and ‘+’ indicate quantities evaluated before and after the ma-
neuver, respectively. Assuming that the maneuver is impulsive, τ+ = τ− = τ , and the
position across the impulse is continuous: ρ+ = ρ− = ρ. Moreover, also the quantities ḃ,
k, k̇, C and Ċ are equal before and after the impulse, as they depend only on the epoch
(see appendix A.3). Thus Eq. (6.21) simplifies, yielding to

∥∆v∥ = ∥kτ̇C (η+ − η−)∥ . (6.22)

Note, that C is a rotation cosine matrix and hence it does not introduce a variation in
the modulus of a vector:

∥∆v∥ = kτ̇ ∥η+ − η−∥ = kω ∥∆η∥ . (6.23)

Equation (6.23) represents the relation needed to express ∥∆v∥ as a function of ∆η. Now,
the objective function of the problem can be written as:

J(y) :=
m∑
j=1

∥∆vj∥ , (6.24)
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where the epoch of each node ε
(j)
k is recovered using Eq. (5.11) and

∥∆v1∥ = ωk(ε
(1)
i )
∥∥∥η(1)

1 − ηi

∥∥∥ , ∥∆v2∥ = ωk(ε
(m−1)
f )

∥∥ηf − η(m−1)
s

∥∥ , (6.25)

and, when m = 3 the midcourse impulse is

∥∆v3∥ = ω
∥∥∥k(ε(2)i )η

(2)
1 − k(ε

(1)
f )η(1)

s

∥∥∥ . (6.26)

Nevertheless, this expression for ∥∆v3∥ conceals an issue, as the difference between η
(2)
1

and η
(1)
s appears at the denominator of some derivatives with respect to y. This represents

a problem in all those solutions with a continuous velocity at τm because the gradient of
the objective function (used by NLP solvers) would be singular, yielding numerical errors.
Indeed, note that the algorithm is not constrained to put a midcourse maneuver: it should
be recovered only if necessary to further minimize the objective function. Therefore, one
could think of some alternative objective functions.
In literature, this issue is often overcome using the squared magnitude of the ∆v in the
objective function, which can be expressed as the sum of all the ∆v⊤∆v. Even so, this is
not strictly equivalent to minimizing the fuel consumption, and it was observed from nu-
merical examples that in some cases solutions with a lower cost function J =

∑
∆v⊤∆v

have instead a higher J =
∑
∥∆v∥ (related to the real fuel expenditure).

Alternatively, a regularization method could be employed to remove the notorious singu-
larities of the equations of motion. For example, some regularized variables, based on the
Levi–Civita transformation, are used in literature [56].

Despite that, in the present case, a simpler solution can be adopted to face the singular-
ities of ∂J/∂y. In particular, the constraint Ψηm can be exploited to rewrite Eq. (6.26).
Recalling that if two vectors are parallel then the magnitude of their difference coincides
with the difference of their magnitudes, provided that Ψηm = 0, then

∥∆v3∥ = ω
∥∥∥k(ε(2)i )η

(2)
1

∥∥∥− ω
∥∥∥k(ε(1)f )η(1)

s

∥∥∥ . (6.27)

In such a way, the singularities in the objective function gradient are prevented also when
η
(2)
1 = η

(1)
s , as only the magnitude of one velocity at a time (that is never null) appears

at the denominator. Note, also, that it is not necessary to modify Eq. (6.25), because
nonzero initial and final impulses are always necessary to perform a transfer.
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6.3.3. Objective Functions and Constraints Jacobians

To set up an efficient multiple shooting method, the derivatives of the objective function
and the constraints with respect to the NLP variables are computed analytically. When
possible, the derivatives are extracted from the STM, which in turn is computed by
integrating the variational equations (2.23) with the gradient of the vector field reported
in Eq. (5.17). The STM provides fast and accurate information, and avoids using finite
difference methods. Moreover, it allows for increased accuracy in the computation and
thus enhanced robustness of the algorithm itself.
The objective function and constraints possess simple derivative expressions, except the
jacobian of defect constraints, where the derivative of φn(xk, τk; τk+1) with respect to xk,
τk and τk+1 are required. The following analytical results have a key role in the next
computations [17, 43, 65]:

∂φn

∂xk

= Φ(τk, τk+1) ,

∂φn

∂τk
= −Φ(τk, τk+1) fn(xk, τk) ,

∂φn

∂τk+1

= fn(φn(xk, τk; τk+1), τk+1) ,

(6.28)

where fn is the vector field reported in Eq. (5.16). Furthermore, it must be pointed
out that in this context all the NLP variables y are independent. Thus, every time the
variation of one component of y is computed with respect to another NLP variable, the
resulting sensitivity is zero (for example ∂ρk/∂τi = 0).

Jacobian of the Objective Functions

Before listing all the derivatives of J with respect to y it is useful to compute the derivative
of k with respect to the dimensionless time:

k′ :=
dk

dτ
=

dk

dε

dε

dτ
=

k̇

ω
=

(R2 −R1) · (V2 −V1)

k ω
, (6.29)

where {R1,V1} and {R2,V2} are the state vectors of the two primaries in the ICRF at
the epoch ε. At this point the jacobian of J (for m = 2, superscripts are dropped to ease
notation) is straightforward:
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∂J

∂ηi

= −ω k(εi)
(η1 − ηi)

⊤

∥η1 − ηi∥

∂J

∂η1

= ω k(εi)
(η1 − ηi)

⊤

∥η1 − ηi∥

∂J

∂ηs

= −ω k(εf )
(ηf − ηs)

⊤

∥ηf − ηs∥

∂J

∂ηf

= ω k(εf )
(ηf − ηs)

⊤

∥ηf − ηs∥

∂J

∂τi
= ω k′(εi) ∥η1 − ηi∥

∂J

∂τf
= ω k′(εf ) ∥ηf − ηs∥

(6.30)

where also the result in Eq. (3.44) was used. The other derivatives of J with respect to
ρi, ρf , ρk ∀k = 1, . . . , s and ηk ∀k = 2, . . . , s− 1 are all equal to zero.

In the case, m = 3, the derivatives of the midcourse impulse are added to Eq. (6.30).
Exploiting the expression for ∥∆v3∥ in Eq. (6.29), the jacobian of J is expanded with

∂J

∂η
(1)
s

= −ω k(ε
(1)
s )

η
(1)
s

⊤∥∥∥η(1)
s

∥∥∥
∂J

∂η
(2)
1

= ω k(ε
(2)
1 )

η
(2)
1

⊤∥∥∥η(2)
1

∥∥∥
∂J

∂τ
(1)
s

= −ω k′(ε
(1)
s )
∥∥∥η(1)

s

∥∥∥
∂J

∂τ
(2)
1

= −ω k′(ε
(2)
1 )
∥∥∥η(2)

1

∥∥∥

. (6.31)

One notes that, differently from Eq. (6.30), where the magnitude of a velocity increment
appears in some denominators, here there is just the velocity magnitude, preventing in
this way possible nonsingularities.
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Jacobian of the Constraints

Some of the constraints are linear functions of y and thus their derivatives have simple
expressions (not reported for brevity). This is the case of the inequality constraints g, and
the following equality constraints: Ψi, Ψf , Ψρm , ξm. The remaining functions (ζk, Ψηm ,
hD, hA) are nonlinear in the NLP variables and so their derivatives must be discussed.

For what concerns the defect vectors ζk, with k = 1, . . . , s− 1, their variations are more
involved, and the results of Eq. (6.28) are crucial. Together with them, another remark
must be done. Because among the NLP variables of each arc, there are only τi and τf , it
is better to explicit the variation of the generic time τk with respect to them. Recalling
the definition of τk in Eq. (6.10), its derivatives read:

∂τk
∂τi

=
s− k

s− 1
,

∂τk
∂τf

=
k − 1

s− 1
. (6.32)

At this point, all the nonzero variations of ζk with respect to y can be computed.

∂ζk
∂xk

= Φ(τk, τk+1)

∂ζk
∂xk+1

= −I6

∂ζk
∂τi

=
∂φn

∂τk

∂τk
∂τi

+
∂φn

∂τk+1

∂τk+1

∂τi
=

= −s− k

s− 1
Φ(τk, τk+1) fn(xk, τk) +

s− k − 1

s− 1
fn(φn(xk, τk; τk+1), τk+1)

∂ζk
∂τf

=
∂φn

∂τk

∂τk
∂τf

+
∂φn

∂τk+1

∂τk+1

∂τf
=

= −k − 1

s− 1
Φ(τk, τk+1) fn(xk, τk) +

k

s− 1
fn(φn(xk, τk; τk+1), τk+1)

(6.33)

The derivatives of Ψηm with respect to the NLP variables are all null but those with
respect to η

(1)
s and η

(2)
1 : 

∂Ψηm

∂η
(1)
s

= η
(2)
1

⊤
−
∥∥η1

(2)
∥∥

∥ηs
(1)∥

ηs
(1)⊤

∂Ψηm

∂η
(2)
1

= η
(1)
s

⊤
−
∥∥ηs

(1)
∥∥

∥η1
(2)∥

η1
(2)⊤

. (6.34)
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Instead, the initial and final constraints hD(xi, τi) and hA(xf , τf ) require a dedicated
analysis (see section 6.4) and can be discussed only on a case by case basis, depending
on their particular definition. However, it can be anticipated that in general the only
nonzero derivatives of hD are those with respect to xi and τi, whilst for hA are those with
respect to xf and τf .

In Fig. 6.5 the structure of the jacobian of the nonlinear equality constraints is reported for
s = 5 and m = 3 (4 segments, 2 arcs). The choice of repeating the node at arc interfaces
is a common technique used in the construction of arc-wise structured jacobians, where
the entries in each arc correspond only to the variables associated with that particular
arc. The main advantage is that the construction of the jacobian matrix can be done
recursively once the number of arcs m and the number of nodes per arc s are given.

Figure 6.5: Structure of the jacobian of the nonlinear equality constraints, with s = 5 and
m = 3; black dots indicates nonzero elements; the sparse and regular structure allows for
a recursive construction; for the sake of generality the nonzero derivatives of hD and hA

are represented as full matrices and vectors
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6.4. Boundary Conditions

As it was anticipated, the boundary conditions for the Earth–Moon transfers in the real
solar system model are described in an inertial frame. Actually, two of them are used: the
ECI2000 for the departure conditions, and the Moon-centered Moon-equatorial at date
(MCME2000) reference frame for the arrival conditions.

6.4.1. Departure from the Earth

In continuation with [62] and the existing literature, let the departure parking orbit be
a circular orbit around the Earth with an altitude of hi = 167 km. Concerning the
orientation of the orbital plane it is decided not to put any constraint on it. This is done
to limit the component of the initial impulse used to change the initial plane, which, in
some cases, represents a relevant portion of the total cost of the transfer, producing final
results that are strongly affected by the initial orbit inclination. Such an assumption
might be justified by the extended injection capabilities of modern launch vehicles.

Let xi = {ρi,ηi} be a state vector in the RPF at the initial time τi, and Xi = Xi(xi, τi) =

{Ri,Vi} its equivalent in the ICRF at the epoch εi (obtained by means of the transfor-
mation from RPF to ICRF). The radius of the orbit is imposed by requiring that

∥Ri −R1∥ = RB1 + hi , (6.35)

where RB1 is the Earth’s mean radius and R1 is the position of the Earth in the ICRF
at the epoch εi. The magnitude of the relative velocity with respect to the Earth on the
departure circular orbit can be computed with a two-body approximation:

∥Vi −V1∥ =
√

µ1

RB1 + hi

, (6.36)

where V1 is the velocity of the Earth in the ICRF at the epoch εi. Regarding the
direction of the relative velocity, on a circular orbit this must be perpendicular to the
radial direction. Thus, the constraint function hD can be assembled as:

hD(xi, τi) =


hD1

hD2

hD3

 =


(Ri −R1)

⊤ (Ri −R1)− (RB1 + hi)
2

(Vi −V1)
⊤ (Vi −V1)−

µ1

RB1 + hi

(Ri −R1)
⊤ (Vi −V1)

 . (6.37)

Particularly, hD1 defines the radius of the orbit, while hD2 and hD3 its circular shape.
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6.4.2. Arrival at the Moon

Analogously to the departure parking orbit, also the arrival one is a circular orbit with
the same altitude of [62], i.e., hf = 100 km.

However, to simulate some real mission requirements, here the orbital plane is assigned,
and defined by two Keplerian elements: the inclination iM and the right ascension of the
ascending note ΩM . These Keplerian parameters are given in MCME2000, see Fig. 6.6.
The origin of this inertial frame is the Moon, and its axes are such that [24]:

• the Z-axis is aligned with the Moon’s spin axis on January 01, 2000, TDB;

• the X-axis is aligned with the Earth mean equinox (i.e., the X-axis of the ICRF);

• the Y -axis completes the right-handed reference frame.

Therefore, the (X, Y )-plane of this frame coincides (on average) with the lunar equator,
and its axes are obtained rotating the ICRF around the X-axis about i% = 24 deg [42].

Let denote with ĥM the unit vector in the direction of the specific angular momentum of
the arrival orbit (i.e., the normal direction to the orbital plane). The components of ĥM

in the MCME2000 are defined by means of the Keplerian elements:

ĥM = (sin (iM) sin(ΩM), − sin (iM) cos(ΩM), cos (iM))⊤ . (6.38)

Figure 6.6: Orbital plane at the arrival date in the J2000 and MCME2000 reference
frames; ĥM is the direction of the specific angular, perpendicular to the orbital plane; the
dashed gray line is the intersection between the orbital plane and the (X, Y )-J2000 plane
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For example, since ĥM is defined in the MCME2000, an equatorial lunar orbit is obtained
setting iM = 0. Then, this direction can be expressed in the ICRF with the rotation
matrix T , defined as

T =

1 0 0

0 + cos (i%) − sin (i%)

0 + sin (i%) + cos (i%)

 . (6.39)

Hence, the arrival constraints can be organized in the vector hA

hA(xf , τf ) =



hA1

hA2

hA3

hA4

hA5


=



(Rf −R2)
⊤ (Rf −R2)− (RB2 + hf )

2

(Vf −V2)
⊤ (Vf −V2)−

µ2

RB2 + hf

(Rf −R2)
⊤ (Vf −V2)

(Rf −R2)
⊤ T ĥM

(Vf −V2)
⊤ T ĥM


, (6.40)

where RB2 is the mean lunar radius, {Rf ,Vf} and {R2,V2} are the position and the
velocity of the spacecraft and the Moon, respectively, at the arrival epoch εf in the ICRF.
The meaning of the first three components of hA is analogous to the one of hD. Instead,
differently from the departure conditions, here the last two components of hA guarantee
that the final state belongs to a specific orbital plane, defined by iM and ΩM .

Arrival to a Polar Lunar Orbit

Consider the case when the target orbit is a polar lunar orbit, without any prescribed
right ascension of the ascending node. The formulation of the constraints in Eq. (6.40)
is no more adequate because ĥM cannot be computed without a value for ΩM . However,
especially due to the mapping properties offered by a polar orbit, this is a frequent target
employed in literature, so some new constraints must be written.
The specific angular momentum hM of a polar orbit must be perpendicular to the z-axis
of the MCME2000 reference frame, so

e⊤
3 hM = 0 , (6.41)

where e3 = (0, 0, 1)⊤. By definition, the specific angular momentum is the cross product
between the relative position and the relative velocity, but since they are defined in the
ICRF, a transformation is needed

hM = T⊤ [(Rf −R2)× (Vf −V2)] . (6.42)
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Note that in Eq. (6.42), the rotation matrix from the ICRF to the MCME2000 is simply
T⊤, because T is an orthonormal matrix. Hence, the condition to have a polar orbit is

e⊤
3 T⊤ [(Rf −R2)× (Vf −V2)] = 0 . (6.43)

Finally, the constraint vector for a generic polar orbit h
(p)
A is

h
(p)
A (xf , τf ) =


h
(p)
A1

h
(p)
A2

h
(p)
A3

h
(p)
A4

 =


(Rf −R2)

⊤ (Rf −R2)− (RB2 + hf )
2

(Vf −V2)
⊤ (Vf −V2)−

µ2

RB2 + hf

(Rf −R2)
⊤ (Vf −V2)

e⊤
3 T⊤ [(Rf −R2)× (Vf −V2)] .

 . (6.44)

Once again the first three components of h(p)
A are used to define the altitude, velocity, and

shape of the orbit, whilst the last component, h(p)
A4 is responsible for the orbit orientation.

Additionally, it is worth mentioning that, h(p)
A1,2,3 coincide with hA1,2,3.

6.4.3. Jacobian of the Boundary Conditions

Also for the boundary constraints hD and hA, the variations with respect to the NLP
variables are computed analytically. The two constraint functions are expressed in terms
of inertial quantities, so the linear transformation made of Eqs. (5.6), (5.10) and (5.12)
and the derivative reported in appendix A.3 are employed. Additionally, it is useful to
compute the following variations:

∂Ri

∂τi
=

∂Ri

∂εi

∂εi
∂τi

=
1

ω

(
ḃi +

(
k̇iCi + kiĊi

)
ρi

)
∂Rf

∂τf
=

∂Rf

∂εf

∂εf
∂τf

=
1

ω

(
ḃf +

(
k̇fCf + kf Ċf

)
ρf

)
∂Vi

∂τi
=

∂Vi

∂εi

∂εi
∂τi

=
1

ω

(
b̈i +

(
k̈iCi + kiC̈i + 2k̇iĊi

)
ρi

)
+
(
k̇iCi + kiĊi

)
ηi

∂Vf

∂τf
=

∂Vf

∂εf

∂εf
∂τf

=
1

ω

(
b̈f +

(
k̈fCf + kf C̈f + 2k̇f Ċf

)
ρf

)
+
(
k̇fCf + kf Ċf

)
ηf

(6.45a)

(6.45b)

(6.45c)

(6.45d)

where it is recalled that ρi, ρf , ηi ,ηf are independent variables, so their derivatives with
respect to any other quantity are null.
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The nonzero derivatives of hD1(xi, τi) and hA1(xf , τf ) are:

∂hD1

∂xi

=

2kiCi (Ri −R1)

03×1

⊤

∂hA1

∂xf

=

2kfCf (Rf −R2)

03×1

⊤

∂hD1

∂τi
= 2 (Ri −R1)

⊤
(
∂Ri

∂τi
− V1

ω

)
∂hA1

∂τf
= 2 (Rf −R2)

⊤
(
∂Rf

∂τf
− V2

ω

)

. (6.46)

The nonzero variations of hD2(xi, τi) and hA2(xf , τf ) are:

∂hD2

∂xi

⊤
= 2

k̇iCi + kiĊi

ωkiCi

 (Vi −V1)

∂hA2

∂xf

⊤
= 2

k̇fCf + kf Ċf

ωkfCf

 (Vf −V2)

∂hD2

∂τi
= 2 (Vi −V1)

⊤
(
∂Vi

∂τi
− A1

ω

)
∂hA2

∂τf
= 2 (Vf −V2)

⊤
(
∂Vf

∂τf
− A2

ω

)

. (6.47)

Then, the only derivatives of hD3(xi, τi) and hA3(xf , τf ) different from zero are:

∂hD3

∂xi

⊤
=

k̇iCi + kiĊi

ωkiCi

 (Ri −R1) +

kiCi (Vi −V1)

03×1


∂hA3

∂xf

⊤
=

k̇fCf + kf Ċf

ωkfCf

 (Rf −R2) +

kfCf (Vf −V2)

03×1


∂hD3

∂τi
= (Ri −R1)

⊤
(
∂Vi

∂τi
− A1

ω

)
+ (Vi −V1)

⊤
(
∂Ri

∂τi
− V1

ω

)
∂hA3

∂τf
= (Rf −R2)

⊤
(
∂Vf

∂τf
− A2

ω

)
+ (Vf −V2)

⊤
(
∂Rf

∂τf
− V2

ω

)

. (6.48)
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The derivatives of hA4(xf , τf ) and hA5(xf , τf ) are shorter, because T ĥM is a constant

∂hA4

∂xf

⊤
=

kfCfT ĥM

03×1


∂hA5

∂xf

⊤
=

(k̇fCf + kf Ċf )T ĥM

ωkfCfT ĥM


∂hA4

∂τf
=

(
∂Rf

∂τf
− V2

ω

)⊤

T ĥM

∂hA5

∂τf
=

(
∂Vf

∂τf
− A2

ω

)⊤

T ĥM

. (6.49)

Finally, also the derivatives of h
(p)
A4 are reported, but, due to the presence of the cross

product, these are computed component-wise, with k = 1, 2, 3:

∂h
(p)
A4

∂ρfk
= e⊤

3 T
⊤
(
(kfCfk)× (Vf −V2) + (k̇fCfk + kf Ċfk)× (Rf −R2)

)
∂h

(p)
A4

∂ηfk
= e⊤

3 T
⊤ ((kfCfk)×Rf )

∂h
(p)
A4

∂τf
= e⊤

3 T
⊤
(
Vf ×

(
∂Rf

∂τf
− V2

ω

)
+Rf ×

(
∂Vf

∂τf
− A2

ω

))
, (6.50)

where Cfk and Ċfk are the k-th column of Cf and Ċf , respectively.
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This chapter explains how the continuation problem to a high-fidelity model is imple-
mented and solved. Also, some results are presented and discussed.

7.1. Numerical Implementation

The initial seed trajectory for the multiple shooting problem is computed starting from a
transfer γ4 in the PBRFBP. First, the Frames Alignment problem is solved and a suitable
departure epoch is computed. Then γ4 is transformed into Γn and this last is sampled
at some specific instants of time (depending on the parameters s and m of the multiple
shooting). Finally, a NLP optimization is carried out to obtain a feasible trajectory.

7.1.1. Numerical Integration of the n-Body Model

The RP-RnBP code included in the ULTIMAT software, initially developed under an ESA
contract and subsequently improved internally [63], is used to implement the equations of
motion and the variational equation of the RPRnBP. Despite in the original codes used
a seventh/eight-order variable-step Dorman-Prince integration scheme [28], in this work
the equations are integrated with the Matlab® suite ode113, with absolute and relative
tolerances set to 2.5× 10−14 (adimensional units). Due to the computational heaviness of
the right-hand side of these 42 differential equations, a Matlab® mex file is used. Even
so, emphasis is put on the running time required, much longer than the one needed to
integrate the equations of the PBRFBP.

7.1.2. Solution to the Frames Alignment Problem

The solution to Problem 6.2 is strongly inspired by the considerations about the Sun’s
trajectories reported in section 6.2.1. In addition to the angle σ, it is useful also to
consider the in-plane and out-of-plane angles between r̂3 and ρ̂3 (see Fig. 7.1), denoted
as σi and σo, respectively.
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Figure 7.1: Angles between the Sun’s directions in the RPF and RF; σ is the angle
between the two position vector, σi is the angle between r3 and the projection of ρ3 onto
the (x, y)-plane, while σo is the elevation angle of the real Sun (from the solar system
model), still with respect to the (x, y)-plane

According to the PBRFBP, for a given time t = ta, r̂3 is a constant direction belonging to
the (x, y)-plane. Figure 7.2 shows how the three angles change with time over a year, for a
fixed r̂3 and reading ρ3 from ephemeris data. As expected, the in-plane distance between
the two directions has a frequency of about 29.5 days. Therefore, approximately once per
synodic month, the projection of ρ̂3 coincides with r̂3, and σ has local minimum where
σi is null. However, from Fig. 7.2b (which is an enlargement of Fig. 7.2a), it is evident
that the local minima are not all the same; so another frequency affects the behavior of
σ. This is due to the spiraling trajectory that the Sun draws in the RPF (see Fig. 6.2).
Indeed, σo is strongly related to the z-component of ρ3, and it shows an oscillation period
of about one year, with a 5 deg amplitude1.
In principle, one could sift the entire ephemeris catalog looking for the best epoch when σ

is minimum. Actually, rather than being a waste of computational time and resources, this
is also pointless from the practical viewpoint of a real mission, whose timeline is influenced
by many others factors. Furthermore, it must be recalled that this problem serves just to
obtain an initial guess solution, that will be modified by the multiple shooting algorithm.
For these reasons, it is chosen to focus the research on a single year, being sure that at
least two minima are much smaller than the others (see Fig. 7.2b).

The idea for solving the Frame Alignment problem is to compute all the twelve local
minima that σ exhibits during a year, and then to select the epoch corresponding to the
absolute minimum. Algorithm 2 is a pseudo code that explains the procedure followed

1This explains why the hypothesis of planar motion for the celestial bodies in the PBRFBP is actually
a good assumption, from the moment that the maximum inclination between the Earth–Moon plane and
the ecliptic is limited to 5 deg.
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to find the best alignment epoch and to compute the corresponding departure epoch.
The heart of the algorithm consists in locally minimizing −σcos, which is equivalent to
maximizing σcos. This last is computed at each time t and epoch ε through Algorithm 3.
The optimization process is solved efficiently with Matlab® suite fminunc, implementing
a quasi-Newton algorithm2.
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Figure 7.2: Angles between the Sun’s positions in the PBRFBP and in the RPRnBP over
the course of a year; the angles are computed for a fixed value of t, and so r̂3; Fig. 7.2b
shows an enlarged view of Fig. 7.2a

Algorithm 2 Frames Alignment Problem
1: Input: Alignment time ta ∈ [ti, tf ] of a trajectory in the PBRFBP
2: Output: Alignment epoch εa and departure epoch εi
3: Initialize: εg ← ε0 ▷ Initialize guess solution with reference epoch
4: For: m← 1 to 12 do ▷ Loop over each month of a year
5: σcos, εa ← fminunc(-AngularDistance(ε, ta), εg) ▷ Minimization
6: E[m]← εa ▷ Store the current solution in a vector
7: σ[m]← acos(σcos) ▷ Compute and store the angular distance
8: eg ← E[m] + 29.5 days ▷ Update guess solution for the next month
9: End For

10: M ← arg min(σ[m]) ▷ Select the month with the minimum angle
11: εa ← E[M ] ▷ Compute alignment epoch
12: εi ← εa − (ta − ti)T ▷ Compute departure epoch

2Refer to https://it.mathworks.com/help/optim/ug/fminunc.html for more details, retrieved on
March 16, 2023.

https://it.mathworks.com/help/optim/ug/fminunc.html
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Algorithm 3 AngularDistance Function
1: Input: Time t and epoch ε

2: Output: σcos, cosine of the angular distance
3: Function: AngularDistance(ε, t)
4: r̂3 ← (cos(ωst), sin(ωst), 0) ▷ Direction of the Sun in the RF
5: R3 ← Position of the Sun in the ICRF at epoch ε ▷ Read from ephemerides
6: ρ̂3 ← Convert R3 into the RPF an normalize
7: σcos ← r̂3 · ρ̂3 ▷ Cosine of the angle between the two directions
8: End

An illustrative example of the results obtained with this algorithm is shown in Fig. 7.3.
In the left graph the twelve local minima of σ are reported with also the corresponding
value of σi (note the different scales in the values of the angles). On the right instead,
the out-of-plane coordinate of the Sun, (i.e., ρ3z) is reported. The red squares highlight
the absolute minimum of σ, so the solution to the problem. Observe that, according to
the previous considerations, this occurs when the Sun is crossing the Earth–Moon plane
(ρ3z is close to 0).
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Figure 7.3: Typical solution to the Frames Alignment problem during the course of a year
(red square), in terms of the angles σ and σi (left), and the Sun’s out-of-plane coordinate
ρ3z (right); asterisks denote the local minima of σ within each month

Figure 7.4 represents the trajectories of the Sun in the two models, where also the positions
at the departure and at the alignment time are spotted, with a circle and an asterisk,
respectively. It is evident, that even if an almost perfect match is achieved at the alignment
epoch, an error is present at the departure, where both σo and σi are not negligible.
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The nonzero out-of-plane angle is due to the spiraling trajectory of the Sun, whilst the
in-plane error is mainly caused by the different angular velocities of the RPF and the RF.
Nonetheless, Fig. 7.4 also points out another advantage of choosing the alignment time as
the time of maximum distance from the EMB. In fact, this typically takes place halfway
through the transfer, guaranteeing that during all the time of flight, the Sun is close to
the Earth–Moon plane. Therefore, the hypothesis of planar geometry of the PBRFBP is
justified, making the dynamics of the four-body model a reasonable approximation of the
complete n-body model. In turn, this increases the quality of the initial seed trajectory.
On the contrary, for example, setting ta = ti would mean that the Sun will be far from the
(x, y)-plane in the final phase of the transfer, with negative consequences on the quality
of the first guess orbit.
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Figure 7.4: Trajectories of the Sun in the two models during the time of a transfer;
departure and alignment times are spotted with a circle and an asterisk, respectively

7.1.3. Building the Initial Seed Trajectory

The first guess solution for the multiple shooting problem Γn is obtained by transforming
γ4, so converting the states {t, r, v} into {τ, ρ, η} by means of the procedure explained in
section 6.2.2. Then, the states composing Γn are propagated in the solar system dynamics.

Figure 7.5 shows the four transformations necessary to pass from the RF to the RPF. Here,
the conversion is applied to all the states forming the trajectory for a better representation
but actually is sufficient to transform s states evenly spaced in time.
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Figure 7.5: Transformations used to modify a trajectory from the RF to the RPF. The
first step is to define the trajectory γ4 in the RF (top-left); then the transfer is expressed
in an inertial frame (top-right); subsequently the Frames Alignment problem is solved
and the states composing Γn are represented in the ICRF (bottom-left); ultimately Γn is
converted to the RPF (bottom-right) using the transformation in section 5.1.3

An initial seed trajectory generated by propagating s nodes of Γn in the n-body model is
depicted in Fig. 7.6. The states at each node (black dot) are integrated up to the time
of the next node; for easier interpretation, the color of each segment is associated with
the time of its initial condition. It is evident that the seed trajectory is not continuous
(i.e., unfeasible), and it also departs from the curve Γn (continuous black line, obtained by
transforming all the states of γ4). Indeed, the underlying dynamical models are different,
and the major dissimilarities are at the departure and arrival, where the gradient of the
pseudopotential is highly nonlinear.
Even so, note that the in-plane behavior of the four-body model is very similar to the
one of the complete model (left graph), and also the scale of the z-axis in the right graph
is enlarged. Therefore, one can confirm that the PBRFBP is appropriate to catch the
basic dynamics characterizing the Sun–Earth–Moon problem. Moreover, the more nodes
are considered, the shorter the propagation time of each state, and the two trajectories
(colored and black curves) progressively overlap; however, the cost for this is a higher
number of variables in the following NLP algorithm.
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7.1.4. Multiple Shooting Implementation

The multiple shooting formulation is employed to iteratively modify the initial seed trajec-
tory until a feasible transfer is obtained. Problem 6.3 is implemented within a numerical
framework and solved with Matlab® built-in function fmincon.
The tolerances on the minimum step and the constraints are set to 10−9 adimensional
units so that the maximum discontinuity on the position at a node is less than 0.5 m.
Instead, the values for the first-optimality and function tolerance are both set to 10−5

adimensional units, corresponding to ∼ 0.01 m/s.
The jacobians of the nonlinear equality constraints and the objective function are cheeked
against Matlab® central finite differences. The worst case relative error is in the order of
10−5 adimensional units3, but the computational time required to evaluate the analytical
gradients is much lower. Moreover, since the departure and arrival constraints hD and
hA are expressed in terms of inertial dimensional quantities, they are opportunely divided
by a reference length and velocity (see Table 1) to make their scale comparable with the
other dimensionless quantities of the problem.
For the same reasons reported in the section 4.4, an active-set algorithm is used first,

3The higher differences are found in the STM where the dynamics is highly nonlinear, i.e., in the
proximity of a primary body.
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and then an interior-point strategy is employed to refine a solution that did not con-
verge. Nonetheless, it is observed that sometimes the solver takes too large steps, so a
relative bound of 0.3 is set on the line search step length. This prevents the final solutions
from being much different from the initial guesses, or that the cost diverges because the
spacecraft escapes definitely the Earth–Moon system.

Concerning the number of nodes s used to sample a trajectory, a strict rule is not defined.
Despite this, as the number of nodes gets lower, the chances of convergence decrease,
especially when flybys are performed. On the contrary, a high number of unknowns
should be avoided for numerical efficiency. Experimental evidence suggested that a good
compromise is to place a node every two or three days of transfer time. Thus, for the
solution of interest (i.e., low-energy transfers), a total number of nodes ranging from 30
to 40 is commonly used.

7.2. Analysis of the Results

Finally, some examples of Earth–Moon trajectories in the real solar system are presented.
All the following figures show the initial guess solution together with the final feasible4

transfer returned by the multiple shooting algorithm. Additionally, also the values of the
cost and the time of flight of the two trajectories are reported, where the parameters of
the initial solution are those of the transfer in the four-body model. The nodes of the
solutions are marked with dots, and the trajectories are reported both in the RPF and
the ECI2000 frame. The former highlights the variations in the NLP variables produced
by the multiple shooting method, while the latter is more suitable to clearly identify the
nature of each transfer (direct, exterior, with lunar gravity assist, etc).

Before analyzing some sample solutions, the crucial role of the Frames Alignment problem
is emphasized. Indeed, numerical results confirm that the convergence of the algorithm is
strictly dependent on the quality of the initial seed trajectory. For instance, even just by
choosing an alignment epoch corresponding to a local minimum of σ (and not the absolute
minimum, see Fig. 7.3), could make the algorithm converge to a pointless solution, either
unfeasible or with a very high cost.

7.2.1. Exterior Transfers

Figure 7.7 shows a low-energy transfer targeting a polar orbit around the Moon without
any prescribed right ascension of the ascending node. The SC path is made of an initial

4The feasibility of a solution is related not only to the constraints of the NLP problem, but it is also
checked that the spacecraft does not impact either the Earth or the Moon.
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lunar flyby, a corrective maneuver and a final ballistic capture at the Moon. Note how
the continuation algorithm preserves both the geometrical features of the trajectory as
well as its time of flight and cost. Here, in particular, the cost of the final solution is even
lower than the one of the initial transfer in the four-body model.
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Figure 7.7: Low-energy transfer in the RPRnBP with an initial lunar gravity assist; the
asterisks denote the positions of the midcourse maneuvers

Consider now a low-energy WSB transfer without any lunar gravity assist or intermediate
maneuver. In theory, this class of transfers is the hardest to be adapted to the n-body
model, because the Sun’s perturbation plays a key role in determining the path of the
spacecraft, and small variations could produce large discrepancies.
Nevertheless, the multiple shooting scheme successfully transforms also this kind of tra-
jectories, as shown in Fig. 7.8. Here the same seed orbit is employed to generate a WSB
transfer to a polar lunar orbit (Fig. 7.8a) and to an equatorial lunar orbit (Fig. 7.8b). The
costs of the two solutions also highlight the flexibility of low-energy transfers, which can
target very different lunar orbits at the same departure epoch and use little difference in
fuel (∼ 8 m/s). Furthermore, the similarity of two paths provides several opportunities
to utilize a single launch vehicle for placing various spacecrafts into distinct orbits around
the Moon, as in the GRAIL mission [31].
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Figure 7.8: Low-energy WSB transfers in the RPRnBP targeting different lunar orbits
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7.2.2. Interior Transfers

For the sake of completeness, hereafter two samples of interior transfers successfully con-
tinued by the algorithm are also reported. Figure 7.9 shows a direct transfer, while the
spacecraft performs an Earth flyby in Fig. 7.10.
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Figure 7.9: Direct interior transfer to a polar lunar orbit in the RPRnBP
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8| Conclusions

To conclude, the outcomes of this study are employed to address the research questions
outlined in the introduction. Furthermore, critical evaluations are made, and potential
prospects for future improvements are explored.

8.1. Part I

With the beginning of a new phase of lunar exploration, improving transfer trajectories
is a crucial measure towards achieving more cost-effective and fuel-efficient missions.
In the first part of the thesis, Primer Vector theory was successfully applied to refine
time-fixed, two-impulse, Earth–Moon transfers. For the first time, a set of analytical
necessary conditions for the optimality of a fuel-efficient solution was derived in a four-
body model (Chapter 2). These were applied to over 280 000 transfers from [62], to
identify sub-optimal solutions which deserve improvement. In addition, a criterion for
the insertion of a midcourse impulse was stated, and employed to generate several three-
impulse trajectories, which resulted in lower fuel consumption compared to the original
two-impulse transfers (Chapter 3). Then, a parameter optimization problem was solved
to refine each three-impulse solution in the neighborhood of each reference trajectory.
The entire process was implemented in a numerical framework, and more than 10 000

trajectories were successfully improved using an automated procedure (Chapter 4).

8.1.1. Summary of the Results

A summary of the results pertaining to the first research question, covered in the first
part of the thesis, is presented in Fig. 8.1. Here, three-impulse transfers are reported in
the (∆t, ∆v) plane, with the color of each point indicating the improvement achieved by
adding a midcourse impulse. Instead, black dots represent two-impulse transfers that were
not optimized further, either because they were already optimal, or their trajectories were
deemed irrelevant for a real mission to the Moon. To answer the research question, the
incorporation of a third impulse generally leads to a small percentage variation in the total
cost of the final solutions. Additionally, some families of highly intriguing trajectories,



130 8| Conclusions

such as direct-interior transfers and very efficient low-energy exterior transfers (top-left
and bottom-right corners of Fig. 8.1), were already optimal and did not require a third
impulse. Nonetheless, intermediate maneuvers are beneficial for transfers with a moderate
time of flight (e.g., 50-60 days) that involve an initial lunar flyby. In these cases, the
additional degrees of freedom allow the spacecraft to take full advantage of the lunar
gravity assist, and still to achieve a feasible transfer by modifying the SC path after the
Moon encounter. As a result, in such scenarios, the largest improvements in the cost are
obtained, which are in the range of tens m/s (red dots in Fig. 8.1).
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Figure 8.1: Multi-impulse Earth–Moon transfers shown in a (∆t, ∆v) graph. Black dots
represent two-impulse solutions, while colored dots are three-impulse trajectories; the
color is related to the improvement provided by the additional impulse with respect to
the original two-impulse transfer

8.2. Part II

As space missions become more complex, high-fidelity models are employed to design
unique trajectories. However, simplified models offer a deeper grasp of the dynamics
of the cislunar environment, and are more suitable to perform extensive optimization
searches. Hence, transition from easier formulations to more complete models is a crucial
step in planning future lunar missions.
The second part of the thesis described a procedure to continue a multi-impulsive trajec-
tory from a four-body model to an ephemerides-based model of the complete solar system.
The continuation problem described in Chapter 6 was adapted to a real mission to a lunar
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circular orbit, whose radius, inclination and right ascension can be selected in advance.
It was shown how obtaining a feasible final trajectory heavily relies on the quality of
the initial guess. For this reason, an algorithm based on the Sun’s positions in the two
models was developed to find a proper epoch when to plant the initial seed orbit (see
Chapter 7). Then, with a series of transformations through different reference frames,
the initial guess trajectory was built. Lastly, a direct multiple-burn, multiple-shooting
method was applied to refine the orbit until a desired transfer was achieved. Importance
was given to the numerical efficiency of the algorithm, so all jacobians of the objective
functions as well as the constraints were derived analytically.

8.2.1. Summary of the Results

The overall process was applied to address the second research question, and thus to
design Earth–Moon low-energy transfers in a complete model of the solar system, starting
from some trajectories in a four-body model. The sample solutions reported in Chapter 7
show how this procedure was successful in generating various kinds of low-energy transfer,
including exterior long transfers with a duration of almost 90 days, and more complicated
trajectories with an initial lunar gravity assist and an intermediate correcting maneuver
after the Moon encounter. The main attractive feature of these trajectories, i.e., the lower
cost compared to direct ones, was preserved during the transformation to the ephemeris-
based model. For instance, Fig. 7.7 represents an exterior transfer with ∆v = 3805 m/s
(almost 150 m/s cheaper than a Hohmann transfer). The similarity in the cost, time of
flight and geometry of the transfer between the two models is a further proof that the
PBRFBP is an accurate approximation of the complete cislunar environment, and could
be employed to design nominal low-energy trajectories for real missions to the Moon.

8.3. Limitations and Future Work

Some of the limitations of the present thesis, which pave the way for future works, are
stated in the following.

Primer Vector Theory Only some outcomes of the Primer Vector theory were em-
ployed in this study to optimize Earth–Moon transfers. Future works could expand the
class of solutions including transfers with terminal costs and more than three-impulsive
maneuvers. Indeed, the procedure presented in the thesis could be employed iteratively
until the primer vector satisfies all Lawden’s necessary conditions. In this case, the imple-
mentation of a direct multiple shooting approach could be beneficial to move efficiently
in space and time the intermediate impulses as well as the departure and arrival state.



132 8| Conclusions

Multiple Shooting Algorithm The multiple shooting algorithm could be easily ex-
tended to a higher number of intermediate maneuvers. In this case, a regularization
method could be employed to remove the singularities of the objective function gradi-
ent. Moreover, other constraints could be included, for example due to the particular
propulsion system of the spacecraft, or to accommodate any mission requirement. Also
the nature of the boundary conditions could be modified as desired (changing the orbital
plane, the altitude, etc) and a comparative analysis on the different departure or arrival
orbits could be conduced to test some features of low-energy transfers.

Design of Earth–Moon Transfers The procedure presented consists in picking up a
specific trajectory from the four-body model and reproducing it in the real solar system,
looking for the best epoch when the configurations of the celestial bodies are similar in
the two models. Consequently, this approach is not suitable when the mission must be
launched within a prescribed time window. By the way, without upsetting the entire
procedure, a method could be implemented to design a transfer at a prescribednt epoch
by exploiting the rich database of solutions provided by [62]. Indeed, the Frame Alignment
problem could be reversed, and solved to find the geometry which best overlaps a given
configuration in the real solar system among all the thousands of solutions in the four-
body model. Moreover, the research area in the (∆t, ∆v) plane could be restricted by
choosing specific ranges of cost and transfer duration (e.g., to target an exterior low-
energy transfer). Finally, once the best trajectory is identified, this can be continued to
the n-body model with the same multiple shooting method, adding some constraints on
the departure or arrival epochs.
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This appendix collects the analytical expressions of some important derivatives used in
the thesis, as well as the proof of a result used in Chapter 3.

A.1. Four-Body Pseudopotential Derivatives

Hereafter, the analytical expression of the partial derivatives of the pseudo-potential Ω of
the PBRFBP, defined in Eq. (2.8), are reported.

The first-order partial derivatives of Ω appearing at the right-hand side of the equation
of motions (see Eq. (2.7)) are:

∂Ω

∂x
= x− 1− µ

d1
3 (x+ µ)− µ

d2
3 (x+ µ− 1)− mS

d3
3 (x− ρ cos (ωSt))−

mS

ρ2
cos (ωSt)

∂Ω

∂y
= y − 1− µ

d1
3 y − µ

d2
3y −

mS

d3
3 (y − ρ sin (ωSt))−

mS

ρ2
sin (ωSt).

(A.1)

(A.2)

Together with them, also the second-order partial derivatives of Ω, useful for the compu-
tation of the state transition matrix, are reported:

∂2Ω

∂x2
= 1 +

1− µ

d1
3 −

µ

d2
3 +

3µ

2d2
5 (x+ µ− 1)2 +

3

2d1
5 (1− µ)(x+ µ)2

− mS

d3
3 +

3mS

d3
5 (x− ρ cos (ωSt))

2

∂2Ω

∂y2
= 1− 1− µ

d1
3 −

µ

d2
3 +

3µy2

2d2
5 +

3y2

2d1
5 (1− µ)− mS

d3
3 +

3mS

d3
5 (y − ρ sin (ωSt))

2

∂2Ω

∂x ∂y
=

∂2Ω

∂y ∂x
=

3y

d1
5 (1− µ)(x+ µ) +

3µy

d2
5 (x+ µ− 1)

+
3mS

d3
5 (x− ρ cos (ωSt))(y − ρ sin (ωSt)).

(A.3)

(A.4)

(A.5)
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A.2. First-Order Magnitude Difference

This section aims to demonstrate that the first-order difference between the magnitudes
of an arbitrary vector on a perturbed and reference path is

dx = ±x⊤δx

∥x∥
. (A.6)

Proof. Let the scalar quantity dx represent this difference:

dx = ∥x∥ − ∥x∥ , (A.7)

where x and x are the quantities evaluated on the perturbed and reference trajectories,
respectively. Assuming small perturbations, the difference between the two is indicated
by δx = x± x. Hence,

dx = ∥x± δx∥ − ∥x∥

=
[
(x± δx)⊤ (x± δx)

] 1
2 −

[
x⊤x

] 1
2

=
[
x⊤x

] 1
2


[
(x± δx)⊤ (x± δx)

x⊤x

] 1
2

− 1


= ∥x∥

{[
x⊤x

∥x∥2
± 2

δx⊤x

∥x∥2
+

δx⊤δx

∥x∥2

] 1
2

− 1

}
.

(A.8)

(A.9)

(A.10)

(A.11)

Neglecting second and higher-order terms in the small perturbation quantity δx,

dx = ∥x∥

{[
1± 2

δx⊤x

∥x∥2
+ . . .

] 1
2

− 1

}
. (A.12)

Utilizing a binomial expansion to simplify,

dx = ∥x∥
{
1± 1

2

2δx⊤x

∥x∥2
+ . . .− 1

}
. (A.13)

Finally, truncating dx in order to retain only first-order terms, yields the final result

dx ≈ ±x⊤δx

∥x∥
. (A.14)
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A.3. Parameters of the Rotopulsating Frame

Hereafter, the analytical expressions for the first and second time derivatives of Eqs. (5.6),
(5.8) and (5.9) used to describe the RPF are reported. Recall, that the state of each
celestial body Ri, Vi are discrete numerical values and are taken from ephemerides at a
specific epoch ε. Nonetheless, for brevity, the dependence upon the epoch is omitted, and
it is also useful to define the relative states between the two primaries as

R21 = R2 −R1 ,

V21 = V2 −V1 ,

A21 = A2 −A1 ,

J21 = J2 − J1 ,

(A.15a)

(A.15b)

(A.15c)

(A.15d)

where the quantities Ai and Ji are the acceleration and the jerk (i.e., the third time
derivative of the position Ri) of the i-th celestial bodies in the ICRF. These last can be
computed from the universal gravitational law:

Ai =
∑

j∈S, j ̸=i

µj
Rj −Ri

∥Rj −Ri∥3
,

Ji =
∑

j∈S, j ̸=i

µj

(
Vj −Vi

∥Rj −Ri∥3
− (Rj −Ri)

⊤(Vj −Vi)

∥Rj −Ri∥5
(Rj −Ri)

)
.

(A.16a)

(A.16b)

The derivatives of the relative Earth–Moon distance b are:

ḃ =
m1V1 +m2V2

m1 +m2

,

b̈ =
m1A1 +m2A2

m1 +m2

.

(A.17a)

(A.17b)

The derivatives of the adimensionalization factor k are:

k̇ =
R⊤

21V21

k
,

k̈ =
k(V⊤

21V21 +R⊤
21A21)− k̇R⊤

21V21

k2
.

(A.18a)

(A.18b)
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Let define the relative angular momentum h21 as

h21 = R21 ×V21 . (A.19)

The derivatives of its modulus h21 ≡ ∥h21∥ are

ḣ21 =
(R21 ×V21)

⊤(R21 ×A21)

h12

,

ḧ21 =
h21

[
(R21 ×A21)

2 + (R21 ×V21)
⊤(V21 ×A21 +R21 × J21)

]
h2
12

− ḣ21(R21 ×V21)
⊤(R21 ×A21)

h2
12

.

(A.20a)

(A.20b)

The first derivatives of the rotation matrix C are:

ė1 =
kV21 − k̇Ṙ21

k2
,

ė2 = ė3 × e1 + e3 × ė1 ,

ė3 =
h21(R21 ×A21)− ḣ21(R21 ×V21)

h2
21

.

(A.21a)

(A.21b)

(A.21c)

The second derivatives of the rotation matrix C are:

ë1 =
(2k̇2 − kk̈)R21 − 2kk̇V21 + k2A21

k3
,

ë2 = ë3 × e1 + 2(ė3 × ė1) + e3 × ë1 ,

ë3 =
(2ḣ2

21 − h21ḧ21)R21 ×V21 − 2h21ḣ21R21 ×A21

h3
21

+
h2
21(R21 × J21 +V21 ×A21)

h3
21

.

(A.22a)

(A.22b)

(A.22c)
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