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Abstract

Wind is a complex natural phenomenon occurring incessantly everywhere on the globe;
sometimes it can be harmful, while other times it can be used as a precious resource. In
particular, thinking about energy and infrastructures, wind can be disruptive for power
lines but, on the other hand, it can be harnessed to produce energy. With this appli-
cations in mind, this thesis aims at investigating this duality from a mathematical and
statistical point of view, focusing on the area corresponding to the Lombardy region in
Italy for an example of practical results. First of all, the general characterization of wind
speed distribution is discussed. Then, hazard analysis is carried on with the aim of es-
tablishing areas subject to more extreme and dangerous winds. Two clustering strategies
from geostatistical literature are evaluated to group together regions with similar winds.
And finally, a case study regarding wind energy production is investigated. At all stages,
different methods and strategies are compared to determine the most appropriate one
in light of the specific application, and interesting insights on the various mathematical
methods are highlighted.

Keywords: extreme value analysis, hazard analysis, functional data analysis, geosta-
tistical clustering, wind energy



Abstract in lingua italiana

Il vento è un fenomeno naturale che agisce senza sosta in ogni punto del pianeta; se, a
volte, può provocare danni e disagi, altre può essere sfruttato come una preziosa risorsa.
In particolare, se si pensa all’aspetto energetico e infrastrutturale, il vento può rappre-
sentare una forza distruttiva per le linee elettriche ma può anche essere sfruttato per
produrre energia. Alla luce dei suddetti fattori, questa tesi ha lo scopo di investigare
questa dualità da un punto di vista matematico e statistico, concentrando l’attenzione
sull’area lombarda per cui verranno forniti dei risultati pratici. Per prima cosa, viene
discussa la caratterizzazione generale sulle distribuzioni delle velocità del vento. Segue
poi un’analisi sulla pericolosità legata agli eventi ventosi, con l’obiettivo di individuare
le aree soggette ai venti più estremi e pericolosi. Due strategie di clustering tratte dalla
letteratura geostatistica sono valutate per raggruppare insieme aree con venti simili. In
conclusione, vengono investigate le potenzialità di produrre energia eolica. Durante tutti
i passaggi dello studio, metodi e strategie diverse sono confrontati per determinare quelli
più indicati per l’applicazione specifica che si sta analizzando, e, inoltre, vengono sotto-
lineate le osservazioni più interessanti sui metodi matematici adottati.

Parole chiave: teoria dei valori estremi, analisi della pericolosità, analisi dati funzionale,
clustering geostatistico, energia del vento
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Introduction

As the world faces the urgent need of reducing pollution and mitigating the effects of cli-
mate change, renewable energy sources are becoming a more and more critical component
of our energy systems. Among these sources, wind energy has emerged as a promising
solution to help reduce our reliance on fossil fuels and curb greenhouse gas emissions.
Wind is indeed an inexhaustible force, present in every place of our planet, that has been
largely used by humankind, for example to navigate or for wind mills, throughout its
entire history. However, while wind power presents many benefits, it also brings to the
table many threats for both human and infrastructure safety.

Figure 1: While the power of wind can be a precious resource to produce energy, the
climate change brought to a situation with an always increasing number of extreme events
causing infrastructure disruptions.

This thesis aims to investigate this double nature of wind power in the region of Lom-
bardy, Italy. On one hand, wind is a valuable resource that can help generate clean and
sustainable energy and, considering that Lombardy alone produces over 22% of the na-
tional PIL and about 1/6 of the italian population lives here, reaching a certain degree of
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autonomous power generation is for sure in the interest of the region. On the other hand,
wind can also pose a significant threat, among all, to the electrical grid infrastructure,
particularly during extreme weather events. Understanding and addressing this duality
is essential for ensuring the reliability, safety and sustainability of our energy system.

To reach this goal, our study analyses wind data measured over 30 years, with the aim
of achieving a high level of awareness about both the dangers for the electrical grid and
the opportunities to produce clean and renewable energy in Lombardy. The data we
are using are open and provided by the RSE S.p.A group in the MERIDA dataset. By
examining the potential risks and opportunities associated with wind power, the thesis
provides valuable insights for policymakers, energy companies and stakeholders in the
region. Ultimately, the findings of this study can help pave the way for more effective
strategies to harness the potential of wind energy while mitigating its risks.

Of particular importance is the choice of the most appropriate mathematical procedure
to produce proper evaluations. Indeed, in practical applications outdated models or ex-
cessive simplifications are often employed and this may cause incorrect results and wrong
estimations. For instance, in the literature, the Weibull distribution is often taken to
approximate wind speed data (see, for example, Perrin et al. 2006 [34] and Celik 2003
[11]); however, as we will see, not always this model is the best way to proceed and er-
rors on this estimation will cascade down to subsequent steps of any analysis, possibly
invalidating the results. One of the aims of this work is a comparison, in each phase, of
different procedures and the evaluation of their criticalities and benefits.

The thesis is structured as follows. In Chapter 1 a description of the data used and how
they have been collected is given. Chapter 2 illustrates the best fitting distributions for
the data of each site of Lombardy, by discussing all the mathematical methods adopted.
In Chapter 3 classical extreme value analysis is described as the method to tackle ex-
treme wind events, alongside few alternative applicable techniques. In Chapter 4 hazard
assessment is conducted by means of extreme value analysis, with the goal of producing
both local results and groupings based on the the risk for electrical grid infrastructure. In
Chapter 5 functional data analysis tools used are applied to wind time series in Lombardy,
culminating in the definition of a distance that measures the dissimilarities between the
wind regimes in two different sites. In Chapter 6 two clustering algorithms to group areas
with similar wind behaviours and that exploit the distance defined in the previous chap-
ter are presented and discussed. Chapter 7 tackles the criticalities and opportunities of
wind energy production in Lombardy, presenting and analysing in detail the scenario of
small wind turbines application in the region. Finally, in Chapter 8 conclusions and final
remarks are illustrated. Every computation was performed on R (version 4.0.4).



1| Dataset Overview

The MEteorological Reanalysis Italian DAtaset (MERIDA) has been developed by the
"Ricerca Sistema Energetico" (RSE) S.p.A. group to deal with the study of the always
more extreme weather conditions which have caused several disruptions to the italian
electricity system throughout the years. This dataset has been developed following the
indications emerged from the "Working table for resilience" established by the Regulatory
Authority for Energy Networks and the Environment (ARERA).

MERIDA has been further improved, focusing on less variables but on a finer grid in
order to obtain a High Resolution version of MERIDA (MERIDA HRES). If the main
goal of MERIDA is to provide energy stakeholders with meteorological data needed to
plan security routines and to design a reliable electrical grid, MERIDA HRES has been
developed as a tool to study those variables linked mainly to renewable energy.

Both the datasets are the result of a dinamical downscaling starting from global data and
centered on the area of Italy.

1.1. MERIDA

Dataset MERIDA is the first product of RSE group in the field of meteorological analy-
sis. As carefully described in the outline attached to the dataset [8], MERIDA contains
many meteorological indices of interest such as the temperature measured at 2 meters
from the ground, precipitation data, wind velocity, humidity and so on. MERIDA has
been obtained as a downscaling of the ERA5 dataset, the fifth generation of global cli-
mate reanalysis produced by the European Centre for Medium-Range Weather Forecast
(ECMWF) in 2017. ERA5 consists in a dataset of meteorological related variables that
covers all the surface of Earth with a grid of spatial resolution of 31 km (at midlatitudes)
and temporal resolution of 1 hour (see Hòlm et al. (2016) [21]). In order to perform a
dynamical downscaling from ERA5 data and obtain a finer resolution product, it has been
employed the so called Weather Research and Forecasting Model (WRF), and in particu-
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lar one of its dynamical versions, the Advanced Research WRF (ARW). This algorithm is
a numerical weather prediction system designed to serve both atmospheric research and
operational forecasting needs (see Skamarock et al. (2008) [43]).

Therefore, applying the WRF-ARW model to ERA5 as described in Bonanno et al. (2019)
[7], RSE group managed to obtain the MERIDA dataset, which focuses on the area of
Italy. This dataset covers the area between longitudes 5.84 and 18.93, and latitudes 35.37
and 48.25, with a temporal resolution of 1 hour and two types of spatial resolution: the
most coarse consisting in a grid of cells of 21 km and the finer one with 7 km resolution.
Data are collected over the time period spanning from 1990 to 2020 but are constantly
updated and expanded.

1.2. MERIDA HRES

MERIDA HRES is a more refined product produced by RSE group, directly obtained
from the previous version of MERIDA. The new dataset counts a smaller amount of
variables, focusing on indices strictly linked to renewable energy production, but the grid
on which those variables are measured is finer. As highlighted in the dataset description
attached [9], these variables are the temperature at 2 meters from the ground, the U and V
components of the wind (i.e. the longitudinal, from West to East, and the latitudinal, from
South to North, components of the wind vector), measured at both 10 and 100 meters of
altitude, the precipitations and the solar radiance. While the temporal resolution remains
the same, the spatial one increases, getting a grid with cells of 4 km each; also the area
considered and time window of measurements spanned remains the same with respect to
MERIDA.

From MERIDA HRES we extracted and used just the data concerning wind; however, the
computational load was still huge since our raw data consist in a grid of 323× 329 cells,
with each site containing two time series (one for longitudinal direction, or component U,
and one for latitudinal direction, or component V) of 271752 observations, for a total of
over 200 GB of data. Due to the computational load of the entire dataset, in the first
place, we worked on a single cell at a time, especially when testing new methods, and
then enlarged the area considered to an entire region and, in particular, we focused our
attention on the territory of Lombardy.
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Figure 1.1: An example reporting the wind speeds on the whole area covered by the
dataset on the 01/01/1990 at midnight, the first measurement available.



2| Wind Speed Modeling

A first, fundamental, step in every study concerning wind is the assessment of its char-
acteristics and features. Even though the first part of our work will focus mainly on
the extreme values of the phenomenon, a proper introduction on the topic of modelling
wind speed as a whole is needed. Two are the main reasons; first, the importance and
generality of the discussion is so great that, by itself, it has generated uncountable works
in the literature and there is no proper study on the subject of wind, be it a potential
energy resource or a risk for infrastructure, that does not start with it. In the same way,
the second reason is that even our work cannot be completely blind to a characterization
of the total wind series; we will use its features to better understand the underlying phe-
nomenon, it will be used to estimate production of wind energy and, as we will see, it will
be the basis of some of the methods analyzed for the extreme winds.

The statistical analysis of the wind speed series follows a pipeline presented for instance
in Shi et al. (2021) [41]. The main goal is to determine which probability density function
(pdf) better approximates the real distribution of the measured data. Several possible
distributions can be considered and, for each of them, the value of its parameters must be
determined using an appropriate parameter estimation method. Finally, a goodness of fit
criteria must be employed to evaluate the models and choose the most appropriate one.

Previous researches on wind speed distribution have pursued the unification of all exist-
ing wind regimes under a single model but the differences in behaviour at the different
locations seem to show that such a thing cannot exist and, at present time, it has not yet
been proposed a model that can provide a sufficient description at any site. Moreover,
different parameter estimation methods and goodness of fit criteria have advantages and
disadvantages, bringing difficulties to the assessment of wind speeds.

In this chapter we will investigate the most popular strategies and compare their results
on the area of interest.
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2.1. Wind Speed Distribution Models

First of all we need to point out the fact that, at this stage and until differently noticed,
we refer to "wind speed" meaning only the magnitude of the wind vector, disregarding
the direction and considering only the absolute intensity.

Numerous models have been proposed throughout the years but we have chosen to ana-
lyze only 4 of the most popular and promising ones: Weibull, Gamma, Lognormal and
Generalized Extreme Value distribution (GEV) (Figure 2.1). Notice that the support of
the first 3 distributions is (0,+∞) which is a desirable property for the representation of
a physical phenomenon like the wind. The GEV instead may also assume negative values
but its flexibility has been proven fundamental to achieve surprisingly good results.

Figure 2.1: Examples of each distribution as the parameters change. As highlighted, the
GEV distribution is the only one with three parameters, giving her more flexibility with
respect to the others, and a domain that spans all of R.

2.1.1. Weibull Distribution

Probably the most commonly used model in the field, this distribution was promoted
in 1951 by the homonym physicist in Weibull et al. (1951) [52] and, since then, it has
been employed in a variety of fields including physics, geography, economic, etc. Many
variations of it exist but the traditional two-parameter Weibull distribution has been
shown to perform particularly well in wind related application, for instance it was the
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best fit in all sites studied in Alrashidi et al. (2020) [2]. Its pdf is:

f(x) =
κ

ϑ

(x
ϑ

)κ−1

exp
[
−
(x
ϑ

)κ]
(2.1)

while the Cumulative Density Function (CDF) is:

F (x) = 1− exp
(
−
(v
ϑ

)κ)
(2.2)

where ϑ is the scale parameter and κ is the shape parameter.

2.1.2. Gamma Distribution

Another widely used distribution for wind speed modeling is the Gamma distribution.
This model seems to achieve better results in areas characterized by higher wind speeds
(Shi et al. 2021 [41]) and it is often proposed as an alternative to the Weibull distribution.
The pdf is:

f(x) =
1

Γ(κ)ϑκ
xκ−1exp

(
− x

ϑ

)
(2.3)

The CDF is:

F (x) =
Γ x

ϑ
(κ)

Γ(κ)
(2.4)

where ϑ is the scale parameter, κ is the shape parameter and Γ x
ϑ

is the incomplete Gamma
function.

2.1.3. Lognormal Distribution

The third model analyzed is the Lognormal distribution which is almost always proposed
as a candidate distribution in similar studies and can sometimes prove to be the best
choice, see for instance Tosunoğlu (2018) [48]. The pdf is:

f(x) =
1

xκ
√
2π

exp
(
− (ln(x)− ϑ)2

2κ2

)
(2.5)

The CDF is:

F (x) = Φ
( ln(x)− ϑ

κ

)
(2.6)

where ϑ is the scale parameter, κ is the shape parameter and Φ is the cumulative distri-
bution function of the normal standard distribution.
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2.1.4. GEV Distribution

We will dedicate a later chapter (see Subsection 3.1.2) to this distribution in order to
discuss its derivation and principal theoretical properties. For the moment it is sufficient to
know that it can be employed also to model directly the wind speed distribution and that it
can achieve very good results, as shown again in Tosunoğlu (2018) [48], performing better
than distributions, such as Weibull and Gamma, with a more consolidated curriculum.

2.2. Parameter Estimation Methods

All the models seen in the previous section are defined by particular parameters and,
obviously, determining the best values for such parameters has a significant impact on the
fitting of the models. While there exist a plethora of methods for this estimation, just the
two most common and easily applicable ones have been considered in this work: the Max-
imum Likelihood Estimation (MLE) and the Method of Moments (MOM). Indeed, as will
be shown in later sections, we have often worked on a big number of sites simultaneously
to compare results and, for this reason, other parameter estimation methods, maybe more
accurate but more complex and slower, have been discarded for computational reasons.

2.2.1. Maximum Likelihood Estimation

In statistics, the Maximum Likelihood Estimation (MLE) is a method for estimating the
parameters of a probability distribution, given some observed data. This is achieved
by maximizing the so called likelihood function so that, under the assumed statistical
model, the observed data are most probable. In other words, the Maximum Likelihood
Estimation method computes that combination of parameters such that the given data
have the highest possible probability to be sampled from the assumed distribution with
those specific parameters. The point in the parameter space that maximizes the likelihood
function is called maximum likelihood estimate.

Although maximum likelihood was largely used by many mathematicians such as Carl
Friedrich Gauss and Pierre-Simon Laplace, its widespread use rose between 1912 and
1922 when Ronald Fisher carefully analized, and consequently popularized, the maximum
likelihood estimation (see Aldrich (1997) for more informations about Fisher’s analysis on
MLE [1]). However, MLE method was given a rigourous proof and trascended heuristic
justification only in 1938, thanks to Samuel S. Wilks ([53]). The Wilks theorem shows that
the error in the logarithm of likelihood values for estimates from multiple independent
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observations is asymptotically χ2-distributed, enabling the determination of a confidence
region around the estimate of the parameters. Today MLE has become a dominant tech-
nique in the context of statistical inference, mainly thanks to its flexibility and intuitive
logic.

In order to apply MLE, one has to model data as a random sample from an assumed joint
probability distribution with unknown paramaters values. The parameters governing the
distribution are written as a vector ϑ⃗ = [ϑ1, ϑ2, ..., ϑk]

T so that the distribution will fall
within a parametric family {f( · ;ϑ) | ϑ ∈ Θ}, where Θ is the parameter space, a finite-
dimensional subset of a Euclidean space. Evaluating this joint density at the observed
data sample y⃗ = (y1, y2, ..., yn) gives the Likelihood function

Ln(ϑ⃗) = Ln(ϑ⃗; y⃗) = fn(y⃗; ϑ⃗)

The goal of MLE is to find the values of the model parameters that maximize the likelihood
function over the space parameter, that is

ϑ̂ = argmax
ϑ∈Θ

Ln(ϑ⃗; y⃗)

One of the main advantages of MLE method is that, for many distributions, there exists
an analytic solution to the previous optimization problem.

2.2.2. Method of Moments

The method of moments (MoM) is an alternative to the method of maximum likelihood
to estimate the population parameters of a sample of data. Although the idea of matching
empirical moments of a distribution to the sample moments of a population dates back
at least to Karl Pearson, the method of moments was formally introduced by Pafnuty
Chebyshev in 1887 in the proof of the central limit theorem ([13]).

Just like the MLE method, it requires to assume the distribution of the given data but
relies on a much simpler procedure. It starts by expressing the population moments (i.e.
the expected values of powers of the random variable under consideration) as function
of the parameters of interest and then, those expressions, are set equal to the sample
moments computed directly from data. The solutions of this system of equations (note
that the number of equations is equal to the number of parameters to be estimated)
are estimates of the parameters. The method of moments offers a simple procedure and
consistent estimators even if they are often biased; it is quicker than maximum likelihood
method and its equations are much easier to solve even without the use of computers.



11

The idea of a variation of the method of moments was introduced by Greenwood et al.
(1979) [16] and later expanded by Hosking et al. (1985) [20] to estimate the param-
eters of the generalized extreme value distribution (GEVD). This new method, named
probability-weighted moments method, was developed specifically to approach the pa-
rameter estimation of the GEVD and achieves this goal through an iterative procedure.
It starts from the definition of the ijk’th probability-weighted moment:

M(i, j, k) = E[X iF j(1− F )k]

where X is a random variable with cdf F .

Following from the fact that Hosking et al. (1985) [20] defined

βj = M(i, j, 0)

and Greenwood et al. (1979) [16] showed that

βj =
1

j + 1
E[max(X)]

it is possible to estimate the parameters of the GEV distribution (see abstract of Hosking
et al. (1985) [20] for complete procedure).

2.2.3. Other Methods

Another commonly used method for parameter estimation is Least Squares (LS) where
the parameters are estimated by minimizing the sum of squares of the deviation between
the empirical CDF and the CDF of the model. However, because of their form, there is
no estimator for the Lognormal and Gamma distributions and thus we could not apply
this method here.

In addition to this more traditional strategies, some studies like the one conducted by
Jiang et al. (2016) [27] have started to consider metaheuristic optimization methods for
the search of the optimal parameters. These algorithms are inspired by the behaviour
of groups in nature such as ant colonies, predatory behaviours and bat populations and
often are named directly after them. However, because of the scarce literature regarding
their applications in this field we decided not to study them.
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2.3. Goodness of Fit Criteria

After the distribution model and its parameters have been determined, it is necessary to
evaluate how well the model fit the real wind speed data to understand its real applica-
bility. The goodness of fit criteria (GOF) give a measure of the distance between reality
and model but one always needs to be careful since different criteria can lead to different
results.

2.3.1. Root Mean Square Error

The RMSE determines the accuracy of the model through the item-by-item comparison
between the observed probability and the estimated one. In particular, given the CDF,
the formula for it is:

RMSE =
[ 1
n

n∑
i=1

(Fi − F̂i)
2
] 1

2 (2.7)

where Fi is the empirical CDF and F̂i is the estimated CDF.

The closer the RMSE is to 0, the better will be the fitting effect. The main problem of the
RMSE is that it is particularly sensible to big errors because of the squaring factor; thus,
even a few large distances will increase it by a lot. In this case, however, the comparison is
done between two cumulative distribution functions and no big outlier should be present,
making this index very suited for the job.

2.3.2. Coefficient of Determination R2

The R2 is expressed as the square of the correlation coefficient between the observed and
the estimated value: several variants of it exist but the one used here is the one referring
to the CDF:

R2 = 1−
∑n

i=1(Fi − F̂i)
2∑n

i=1(Fi − F̄i)2
(2.8)

where Fi is the empirical CDF, F̄i =
1
n

∑n
i=1 Fi and F̂i is the estimated CDF.

The closer the value of R2 to 1, the better the fit of the model. However, this index
gives more weight to values in the middle part of the distribution and thus cannot reflect
completely the fitting effect of the theoretical distribution.
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2.3.3. Mean Absolute Error

The MAE, similarly to the RMSE, is a measure of error between paired observations
but in this case only the absolute value of the differences is considered. The formula to
compute it is given by:

MAE =
1

n

n∑
i=1

|Fi − F̂i| (2.9)

where, again, Fi is the empirical CDF and F̂i is the estimated CDF.

Also in this case, the closer the MAE is to 0 the better the result.

2.3.4. Wasserstein Distance

The Wasserstein distance, or Kantorovich-Rubinstein metric, is a distance function de-
fined between probability distributions on a given metric space M . Intuitively, if each
distribution is viewed as a unit amount of earth (soil) piled on M , the metric is the min-
imum "cost" of turning one pile into the other, which is assumed to be the amount of
earth that needs to be moved times the mean distance it has to be moved. It was first
presented in Kantorovich (1939) [28].

In particular, the first order Wasserstein distance between one-dimensional distributions
is defined as:

W1 =

∫
R
|F (x)− F̂ (x)|dx (2.10)

where F is the empirical CDF and F̂ is the estimated CDF.

Clearly, the lower the distance between the empirical distribution and the one obtained
from the estimated parameters, the better will be the fitting power of the model.

2.3.5. Other criteria

Numerous other criteria are available, each with advantages and disadvantages but we
decided to limit ourselves to previously cited ones. Just to cite some of them, we have
Kolmogorov-Smirnov Test, Anderson-Darling test, Chi-Square (χ2) Test, Akaike Informa-
tion Criterion and so on.
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2.4. Analysis

Following what has been said up until now, we analysed the wind speed distribution of
the series of data at our disposal.

We need to specify now that temporal dependence has been completely disregarded at this
stage in accordance to the common practice described in the literature; in particular, each
hourly sample is considered to be independent and coming from a common distribution
not changing throughout the years. This may be considered a bit of a stretch since,
clearly, the wind speed at a certain time is dependent on the speed at previous times but
this hypothesis is commonly used in all studies of this kind and deciding not to adopt it
would make the use of certain methods, such as MLE, simply impossible. Moreover, also
the stationarity of data has been taken as an hypothesis for the moment in order to be
able to apply the procedure described.

To determine the best distribution at each site, we compared the fit of the four mod-
els (Weibull, Gamma, Lognormal, GEV) considering two parameter estimation methods
(MLE and MOM) and comparing the results of four GOF criteria (RMSE, R2, MAE and
Wasserstein distance), for a total of 32 indices for each site. In particular, for the estima-
tion of the parameters we exploited egevd, eweibull, egamma and elnormlAlt functions
from the R package EnvStats [31].

Moreover, to avoid overfitting and to follow a more proper procedure, we implemented a
cross validation process in which we left five years (randomly extracted) of data as vali-
dation set; the parameters are estimated on the other 26 years of data and we chose the
model with the best goodness-of-fit evaluated on the validation set. This process is re-
peated 6 times to use (almost) all data as validation and the GOF metrics are averaged for
each combination of distribution and estimation model. Finally, the best couple (distri-
bution - estimation model) is trained again on all the data to recover the best parameters
estimate.

The results for a couple of individual sites are summarised in Tables [2.1], [2.2], [2.3] and
[2.4]. Just from this example, one can find confirmation of what is said in the literature:
there is no "best distribution" to model instantaneous wind speed that always achieve the
best result at each site, but they need to be analyzed case by case. Moreover, also the
technique used for the parameter optimization may affect the results, bringing even more
variability to the table. For instance, Tables [2.3] and [2.4] refer to the same location but,
changing the optimization method results in a change of the chosen distribution according
to 1 of the 4 indices.
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RMSE R2 MAE Wasserstein Distance

GEV 0.02015724 0.9966576 0.01609812 0.3307657

Weibull 0.03668135 0.9929857 0.03164403 0.6789298

Lognormal 0.04258096 0.9855509 0.03658149 0.7595776
Gamma 0.02571846 0.9953128 0.02133410 0.4496034

Table 2.1: Brianza - Maximum Likelihood Estimation

RMSE R2 MAE Wasserstein Distance

GEV 0.01932669 0.9968728 0.01548286 0.3283987

Weibull 0.03891265 0.9924547 0.03399819 0.7179164

Lognormal 0.02996991 0.9911330 0.02528687 0.4128175
Gamma 0.03017341 0.9941592 0.02573078 0.5025506

Table 2.2: Brianza - Method of Moments

RMSE R2 MAE Wasserstein Distance

GEV 0.02399874 0.9954963 0.01936980 2.108358

Weibull 0.03554903 0.9873262 0.02970932 1.442257

Lognormal 0.01584138 0.9978477 0.01312012 1.537694
Gamma 0.03080732 0.9913051 0.02477164 1.244782

Table 2.3: Alps - Maximum Likelihood Estimation

RMSE R2 MAE Wasserstein Distance

GEV 0.02942303 0.9921280 0.02425659 1.596784

Weibull 0.03219626 0.9899551 0.02652980 1.184094

Lognormal 0.04005979 0.9937789 0.03494203 1.815344
Gamma 0.02617657 0.9928818 0.02152196 1.016126

Table 2.4: Alps - Method of Moments
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Figure 2.2: Example of comparison between real data histogram and estimated probability
density function. While the approximation looks overall good, due to a lack of data in
the right tail, this region it’s likely to have a non negligible error.

Something to be happy about is that, as highlighted in Figure 2.2, in general, the results
are convincing, in the sense that the distributions approximate quite well the true wind
speed data. However, keeping an eye on what has to come, this result is biased by the
fact that most of the measurements fall in the middle part of the distribution and, while
in that region the estimation can be very accurate, the fit may be worse on the tails, and
in particular on the right one, where the focus should be in a study regarding extreme
winds. More details and comments on this regard will be given in Chapter 3.

2.5. Extension on a Bigger Area

Having looked at the results obtained on single sites, a natural continuation of the process
is to study the behaviour of wind speed distributions on a bigger area. In particular, for
a number of reasons including the familiarity of the region and the diversified orography,
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we opted into studying the territory corresponding to the Lombardy region (Figure 2.4a).

A first point of interest is to visualize the results of each model on the whole area (Figure
2.3). For the sake of comparison, we have chosen to employ only the Method of Moments as
a parameter estimation method since it is the fastest one and the Wasserstein distance to
compare performances since it is the most appropriate method to deal with distributions.

Figure 2.3: For each one of the 4 considered cases, we computed the best fitting dis-
tribution in each location and measured the Wasserstein distance between that and the
empirical distribution of data in that cell.

Although we once again found confirmation of the fact that there is no "best distribution"
that takes it all, what seems to be a clear result is that the GEV distribution achieves
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better results on the majority of the region. Indeed, in Figure 2.4b, a direct comparison is
reported, showing the supremacy of this model in particular in the area of the Po Valley.
Regarding the other distributions, all the three of them find application over the alpine
arc, with the Gamma and Weibull being more present than the Lognormal, which instead
is outperformed almost everywhere by at least one distribution and, thus, is nearly never
chosen.

(a) Lombardy orography (b) Best distribution for each location

Figure 2.4: While the predominance of the GEV is cristal clear, especially over the Po
Valley, where the land is mountainous and winds are stronger on average, we find all four
distributions.

Referring to Figure 2.5 we can find further insights on where each distribution is chosen.
Starting with the GEV distribution, it is clearly the best performing distribution when it
comes to modeling low wind speed profiles. Furthermore, thanks to the flexibility given by
having three parameters, GEV is sometimes chosen also in northern areas, where winds are
stronger. Coming to Weibull distribution, it finds application in areas with slightly higher
winds than those modeled by GEVD, on hills and mountains, but it is outperformed by
Gamma and Lognormal when average winds are consistently higher. Gamma, confirming
what stated in the literature (Shi et al. (2021) [41]), is an alternative to Weibull that
performs better over high wind speed profiles. Lognormal, on the other hand, finds very
little application in our studies, modeling only areas with extreme average wind speeds.
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Figure 2.5: Boxplots of average wind speeds by best fitting distribution.

2.6. Final Observations

The main point to bring home from this chapter is the importance of an estimation of wind
speed distributions that is the most accurate possible. As we said, this is the cornerstone
on which many procedures, regarding both hazard analysis and energy production, are
based: an error here will flow down to subsequent steps, altering results. The great
number of possible models, estimation methods and goodness of fit criteria presented
here and collected in the literature are proof of its importance and the choice of the most
appropriate strategy to produce this estimation may be vital in many studies, possibly
making the difference with respect to a potential economic loss. In Chapter 7 we will
see a practical example of this, where results coming from different estimations will be
compared to highlight the importance of this step in relation to wind energy production.

Then, we need to remark that, when we first approached this topic, we were well aware of
the fact that the phenomena causing windy perturbations have a continuous nature, in the
sense that measurements taken in locations few meters apart will likely be almost the same.
However, what we could sense from these preliminary analysis is that simple geographical
distance provides too little information to satisfactorily describe winds behaviour. Indeed,
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what we noticed is that, more often than not, geographically close data in mountainous
areas show very different wind distributions (think, for example, of two different sides
of the same mountain), while in the Po Valley we were able to discover many examples
of locations tens of kilometers apart exhibiting very similar distributions. Following this
intuition, we decided to further investigate this path and tried to group the locations of
the region under analysis based on the wind characteristics. This topic will be deeply
examined in Chapter 4, from the point of view of hazard, and in Chapter 6 for what
concerns wind regimes.



3| Extreme Value Analysis

Having studied the behaviour of the wind speed series as a whole, we now move to one of
the cores of this research: the analysis of extreme phenomena.

Extreme wind speeds pose a threat to all infrastructures and in particular to the transmis-
sion network of the electric energy, whose pylons are subject to all kind of meteorological
events. In this context, the study of high speed winds is of paramount importance to im-
prove the reliability of the network; knowing the areas exposed to the greater risk allows
to intervene preventively with appropriate countermeasures, avoiding possible disasters
and saving resources that otherwise would be wasted in reparations.

In general, the main aim is to estimate either the return period T of a certain wind speed,
i.e. given a threshold value defined by some standard, T is the average number of years
before this threshold is excedeed, or, viceversa, the return level over a predetermined
period of time T , i.e. the maximum annual wind speed which are exceeded once every T

years, with T usually ranging from 10 to 100 years. In practice, what one needs are the
1− 1

T
quantiles of the distribution of the annual maximum wind speed.

A more complete description would be given by the so-called exceedance probability
curves, graphs reporting the probability of exceeding each possible wind speed value
(see Figure 3.1). This graphs are easily obtained as 1−CDF (where CDF is the cumula-
tive distribution function of the annual wind speed) but, in return, obtaining this CDF
may be a challenging task and lot of studies have been conducted on which are the most
appropriate strategies to model extreme values.

This chapter will collect a review of many procedures of extreme value analysis coming
from the literature and some proposals from us. The strategies are evaluated on the
dataset to understand the criticalities of each one and determine the most appropriate
way to proceed.
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Figure 3.1: The graph shows an example of exceedance probability curve obtained by
"Terna - Rete Elettrica Nazionale S.p.A." in a previous study they conducted [45]. The
criticality here is that they consider just 6 estimated values, relative to 6 thresholds of
risk (the blue dots in figure) and then they perform an interpolation to create a curve.
As we will see later on, we aimed at recreating these kind of graphs using just our data
and evaluations, obtaining entire curves and not interpolating points.

3.1. Extreme Value Theory

In this section and in the next one, a review of the theory regarding extreme values will
be carried out, following in large part the description provided in "An Introduction to
Statistical Modeling of Extreme Values" by S. Coles (2003) [14].

Consider Mn = max{X1, ..., Xn} where X1, ..., Xn is a sequence of independent random
variables having a common distribution function F . In the applications, Xi usually rep-
resents the value of a process, such as the wind speed series, measured on a regular time
scale, so that Mn represents the maximum of the process over n observation; in particular,
n is usually chosen so that Mn corresponds to the annual maximum.

Then, in theory, the distribution of Mn can be derived exactly for all values of n as:

P(Mn ≤ x) = P(X1 ≤ x, ..., Xn ≤ x) = {F (x)}n (3.1)

However, this is not immediately useful in practice since the distribution F is unknown
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and one would need to estimate it from data, as described in the previous chapter, and
then substitute this estimate into formula 3.1. Unfortunately, as described in Perrin et
al. (2006) [34] and confirmed by the results presented later in this chapter, very small
discrepancies in the estimate of F can lead to substantial discrepancies for F n.

The alternative approach is to accept that F is unknown and to look for approximate
families of models for F n to be estimated on the basis of extreme data only.

As commonly done in mathematics, we proceed by looking at the behaviour of F n for
the limit n → ∞. However, one needs to be careful because for any x < x+ where x+ is
the upper end-point of F , i.e. the smallest value of x such that F (x) = 1, F n(x) → 0 as
n → ∞, so that the distribution of Mn degenerates to a point mass on x+. This difficulty
is avoided by allowing a linear renormalization of the variable Mn:

M∗
n =

Mn − bn
an

for appropriate sequences of constants {an > 0} and {bn} and then by looking for limiting
distributions for M∗

n instead of Mn.

3.1.1. Extreme Value Theorem

The entire range of possible limit distributions for M∗
n is given by the following Extreme

Value Theorem. However, before stating it, it is necessary to define the three distributions
that will come into play:

• Gumbel distribution, or Fisher-Tippett Type 1 distribution (FT1):

PDF : f(x) =
1

σ
exp

{
− x− µ

σ
+ exp

{
− x− µ

σ

}}
CDF : F (x) = exp

{
− exp

{
− x− µ

σ

}}
where µ and σ represent respectively the parameters of location and scale.

• Fréchet distribution, or Fisher-Tippett Type 2 distribution (FT2):

PDF : f(x) =


ξ

σ

(x− µ

σ

)−1−ξ

exp
{
−
(x− µ

σ

)−ξ}
if x > µ

0 if x ≤ µ



24

CDF : F (x) =

exp
{
−
(x− µ

σ

)−ξ}
if x > µ

0 if x ≤ µ

where µ, σ and ξ represent respectively the parameters of location, scale and shape.

• Reverse Weibull distribution, or Fisher-Tippett Type 3 distribution (FT2):

PDF : f(x) =


ξ

σ

(−x+ µ

σ

)−1+ξ

exp
{
−

(−x+ µ

σ

)ξ}
if x < µ

0 if x ≥ µ

CDF : F (x) =

exp
{
−
(x− µ

σ

)−ξ}
if x < µ

0 if x ≥ µ

where µ, σ and ξ represent respectively the parameters of location, scale and shape.

Theorem 3.1 (Extreme Value Theorem). If there exists a sequence of constants {an > 0}
and {bn} s.t.

P
(Mn − bn

an
≤ x

)
→ G(x) as n → ∞, (3.2)

then G belongs to one of the three possible families, namely the Gumbel, the Fréchet and
the Reverse Weibull distribution.

The remarkable feature of this result is that the three types of extreme value distributions
are the only possible limits for the distribution of M∗

n, regardless of the parent distribution
F of the population. In this sense, the theorem provides an extreme value analog of the
central limit theorem.

The complete proof of the theorem can be found, for instance, in "Extremes and Related
Properties of random Sequences and Processes" by M.R. Leadbetter et al. (1983) [29].

3.1.2. Extreme Value Distribution

The three types of limits that arise in theorem 3.1 have distinct shapes, corresponding
to the different behaviours of the tail of the distribution F of the Xi. This can be made
precise by considering the behaviour of the limit distribution G at the upper point x+. For
the Reverse Weibull, x+ is finite while for both the Gumbel and the Fréchet distributions
x+ = ∞. However the density of G decays exponentially for the former and polynomially
for the latter.

In early applications it was common use to adopt a priori one of the three families but this
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strategy required a technique to choose the most appropriate one and did not account for
the uncertainties related to this choice. Later, the three asymptotes have been combined
into a single distribution firstly defined by Von Mises (1936) [49] and known today as
"Generalized Extreme Value" (GEV) distribution:

P(X < x) = e−Λ(x); Λ(x) =


[
1 + ξ

(x− µ)

σ

]− 1
ξ if ξ ̸= 0

exp
{
− (x− µ)

σ

}
if ξ = 0

(3.3)

where µ and σ are, respectively, the location and scale parameters, while ξ is the shape
factor which determines the asymptotic form adopted by the GEV distribution: ξ = 0

corresponds to Gumbel distribution, ξ > 0 to Frechet distribution and ξ < 0 to reverse
Weibull distribution (see Figure 3.2).

Figure 3.2: The three distributions displayed are GEV with location parameter µ = 0

and scale parameter σ = 1.

One thing to keep in mind when using this distribution is that no data fitting can yield
the condition ξ = 0 since it is associated with a singularity of the exponent; this fact
makes it necessary to use a test to verify the shape factor estimated and thus an ad-hoc
Z-test is employed (see zTestGevdShape in R package EnvStats [31]).

The unification of the original three families of extreme value distribution into a single
family greatly simplifies statistical implementation. Through inference on ξ, the data
themselves determine the most appropriate type of tail behavior, and there is no necessity
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to make subjective a priori judgements about which individual extreme value family to
adopt. Moreover, uncertainty in the inferred value of ξ measures the lack of certainty on
which type among the original three is the most appropriate for a given dataset.

Now we can look back at theorem 3.1; combining formula 3.2 with formula 3.3 one can
clearly see the practical meaning of it: the limiting distribution of the maximum of a
process over n observation is the Generalized Extreme Value Distribution. From the
point of view of wind speed analysis, in particular, this translates to the fact that the
wind speed annual maxima can be modeled using the GEV distribution. Thus, one needs
only the extreme values to study their behaviour, without the need of the whole time
series.

3.2. Classical Extensions

Extreme Value Analysis has an inevitable weakness: extreme values, by definition, are
scarce and a small amount of data leads to higher uncertainties in the results (Torrielli
et al. (2013) [46]). This is particularly true in a field like wind series analysis, where
measurements never exceed 40-60 years and often times are much less. For this reason,
there has been a good effort in the literature to find alternative ways to study the annual
maximum wind speed distribution and improve the accuracy on the prediction for design
values.

This section will be dedicated to a theoretical introduction on two of the most famous
of these methods, belonging to the family of thresholding methods: the r largest order
statistic model (r-LOS), which selects the r largest observations per epoch, and the peak
over threshold (POT) method, which analyzes all values exceeding a predefined threshold.

As observed in Palutikof et al. (1999) [33], a main drawback of techniques like these is that
the choice of the censoring greatly affects the estimated parameters of the distribution
and this decision has to be taken by the analyst for each temporal series. This flaw made
these kind of approaches impracticable for our purposes since we will mainly focus on
large areas and the large number of time series involved makes it impossible to tune the
censoring site by site. Therefore, we decided not to travel this path for our studies and
we will just present these methods in a theoretical way because of their scientific interest.
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3.2.1. r-LOS Method

Here we need to extend the result of the previous section by considering M
(k)
n = k-th

largest of {X1..., Xn} and identifying the limiting behaviour of this variable for k fixed
and n → ∞. In particular, we usually require the characterization of the whole vector
M

(r)
n = (M

(1)
n , ...,M

(r)
n ) and its joint distribution is readily given in the following theorem

(see again [14] for the proof).

Theorem 3.2. If there exist sequences of constants {an > 0} and {bn} s.t.

P
(Mn − bn

an
≤ x

)
→ G(x) as n → ∞,

for some non-degenerate distribution function G, then, for fixed r, the limiting distribution
as n → ∞ of

M̃(r)
n =

(M (1)
n − bn
an

, . . . ,
M

(r)
n − bn
an

)
falls within the family having joint probability density function:

f(x(1), ..., x(r)) = exp
{
−

[
1 + ξ

(x(r) − µ

σ

)]− 1
ξ
}
×

r∏
k=1

1

σ

[
1 + ξ

(x(r) − µ

σ

)]− 1
ξ
−1

(3.4)

where −∞ < µ < ∞, σ > 0 and −∞ < ξ < ∞; x(r) ≤ x(r−1) ≤ · · · ≤ x(1); and x(k) is s.t.
1 + ξ x(k)−µ

σ
> 0 for k = 1, . . . , r.

Notice that in the case r = 1, formula 3.4 reduces to the GEV family of density functions
and the case ξ = 0 is to be interpreted as the limiting form ξ → 0 similarly to what has
been done for the Gumbell distribution.

Then, this joint distribution provides the basis for the Maximum Likelihood method.
Consider R years of data with r-LOS values extracted from each year; the likelihood is
simply the product of the R densities:

L(µ, σ, ξ) =
R∏
i=1

fi(x
(1)
i , ..., x

(r)
i )

and the optimal parameters can be recovered by maximizing the log-likelihood as usual.
These parameters correspond to those of a GEV distribution of annual maxima but in-
corporate more of the observed data. Thus, the interpretation is unaltered but precision
should be improved due to the inclusion of extra information.

The difficulty of this method is that the selected r-LOS must be independent events.
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While this is reasonable to assume for annual maxima, in this case a suitable separation
interval should be set between observations of the same year. This issue is strictly related
to the choice of r: a practical criterion is to set it so as to minimize the variance associated
with the parameters but ultimately it must be decided by the analyst and in previous
applications various values between 3 to 10 have been proposed.

3.2.2. POT Method

POT method relies on exctracting the peak values reached in any period of time whose
values exceed a certain threshold. This method allows for the use of sub-annual maxima
but, on the other hand, the analysis involves fitting two distributions: one for the number
of events in a time period and the second for the entity of exceedances.

Consider a variable V having a parent FV (v) such that the distribution of the largest
value in the period T converges to one of the asymptotes combined in equation 3.3. With
this assumption, we can exploit the following theorem:

Theorem 3.3 (Pickhands, Balkerna, De Hann - 1975). Let (V1, V2, ...) be a sequence of
independent and identically-distributed random variables, and let
(X1, X2, ...) = (V1 − u, V2 − u, ...) be the sequence of the excesses beyond threshold u. Let
Fu(x) be the conditional distribution function of the excesses.

Then, for u large enough, Fu(x) is well approximated by the generalized Pareto distribu-
tion, namely:

Fu(x) → Gσ,ξ(x), as u → ∞

where

Gσ,ξ(x) =


1−

[
1− ξ

x

σ

] 1
ξ if ξ ̸= 0

1− exp
{
− x

σ

}
if ξ = 0

where σ is the scale parameter and ξ the shape parameter.

Moreover, under the assumption that the threshold u is large enough, we can consider its
crossings to be independent, and the number N of values over the threshold in a period T

to be Poisson-distributed, with a rate λu/year. A possible unbiased estimate of λu is n/T
where n is the total number of exceedances of u counted directly from the data, and T is
the number of years of the record. In such a case, the distribution of the largest value of
V in T is given by:



29

P(V̂T < v) =


exp

{
− λuT

(
ξ
v − u

σ

) 1
ξ
}

if ξ ̸= 0

exp
{
− λuTexp

{
− v − u

σ

}}
if ξ = 0

(3.5)

From equation 3.5 it is clear that the distribution strictly depends on the value of the
threshold u. When choosing the value of this hyperparameter, one has to carefully evaluate
the trade-off between number of data and independence of them: on one hand, u has to
be set low enough to ensure that a sufficient quantity of data is used to estimate the
distribution parameters, while on the other hand the asymptotic requirement u → ∞
must be satisfied.

Once the value of u is chosen and λu is obtained from data, the POT method reduces the
fitting problem to the estimation of only two parameters instead of the three required by
the GEV approach.

3.3. New Maxima from Data Augmentation

Another possible approach we came up with in order to mitigate the lack of data at our
disposal is data augmentation. Our main idea was to exploit all the analysis previously
conducted to approximate the distribution of instantaneous wind speed data to simulate
new data, sampling new observations directly from the distributions found in Chapter 2.
In our case, we had 31 annual maxima for each site and this number could be in principle
considered sufficient for inference; however, we still tried to apply this method to reduce
the uncertainty.

To this end, for each site, we decided to sample 1000 new simulated years, each one
consisting of 365×24 values, directly from the best approximating distribution associated
to the cell. Then, by extracting the maximum value of each year we created a new pool
of 1000 simulated annual maxima and used them to estimate the parameters of the GEV
distribution approximating the 31 original maxima. One could argue that by proceeding
in this way, the simulated years are not actual time series but only a family of independent
samples and we are aware of this criticality but, since our only interest was to collect the
maxima, we neglected this matter.

This procedure is somewhat similar, even if more simplified, to what is described in
Torrielli et al. (2014) [47] where a more complete characterization of the wind speed series
is produced before simulating the new data. In particular, the probability distribution
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function (pdf) and the power spectral density function (psdf) of the original series are
considered and studied in detail and, then, the simulation algorithm tries to match both
of them to recreate a process as similar as possible to the actual wind speed series.

This method proposed in Torrielli et al. (2014) [46] seems to achieve good results but,
again, it suffers of too much specificity; a precise psdf characterization is needed to produce
accurate results and it is not clear if it could be possible to analyse multiple time series
automatically and quickly. For this reason and because of its overall complexity, we
discarded this method in our comparison, just reporting it here for completeness.

3.4. Results

In this section, a comparison between the methods of Extreme Value Analysis described
up to now will be carried on with the aim to define the best and most practical way to
model extreme values.

In particular, results will be evaluated according to the RMSE obtained from the compar-
ison between the CDF estimated by the method and the empirical CDF coming from the
actual 31 annual maxima extracted from the time series. As usual, the comparison will be
done on the area corresponding to the Lombardy region to underline possible territorial
effects.

The first method is the F n one, meaning that we are using directly formula 3.1 to model
the CDF of the annual maxima. The parent distribution F is obtained as described
in Chapter 2, choosing for each cell the one best approximating real data. Results are
displayed in Figure 3.3: the average RMSE is around 0.4 and some patters can be noticed
in the plain areas.

Confirming what was already to be expected from the theory, Figure 3.4 shows a much
better result for the GEV method, i.e. the direct modelling of the 31 annual maxima
with the GEV distribution. Here the the average RMSE is 0.04, ten times lower, and no
particular pattern can be seen, proving the solidity and generality of this method.

The final technique analysed is the one described in the previous section, consisting in
the simulation of new data. Results (Figure 3.5) are similar to the ones of the F n method
since they both inherently suffer from the same flaw: when approximating the parent
distribution, most of the effort is devoted where the number of data is greater, i.e. in
the middle part, while little accuracy is used in the tails. This then cascades down to



31

(a) Pavia (Lat: 45°11’ N, Lon: 9°09’ E) - Parent
distribution: F ∼ GEV

(b) RMSE computed in each site of Lombardy

Figure 3.3: Performance of F n method when it comes to fitting maxima data. RMSE is
computed comparing real data empirical cdf and the cdf obtained from F n, where F is
the parent distribution (i.e. the distribution that better fits the instantaneous data).

(a) Pavia (Lat: 45°11’ N, Lon: 9°09’ E) - Parent
distribution: F ∼ GEV

(b) RMSE computed in each site of Lombardy

Figure 3.4: Performance of GEV method when it comes to fitting maxima data. RMSE is
computed comparing real data empirical cdf and the cdf of the GEV directly fitted from
the real maximum data.



32

(a) Pavia (Lat: 45°11’ N, Lon: 9°09’ E) - Parent
distribution: F ∼ GEV

(b) RMSE computed in each site of Lombardy

Figure 3.5: Performance of data augmentation method when it comes to fitting maxima
data. RMSE is computed comparing real data empirical cdf and the cdf computed from
the simulated maxima.

the subsequent phases of the procedure and, as a result, maxima estimation is imprecise,
being consistently lower or higher (depending on the cases) than actual values.

In order to improve the performance of this last method we also tried a different opti-
mization approach for computing the best distribution from which to simulate data. Since
our problem was the scarcity of data in the right tail, we tried to implement a weighted
optimization algorithm that gives more relevance to extreme data. In order to do so, we
built a grid of possible values for the parameters of the chosen distribution around the
values of the parameters obtained from classical optimizazion, and evaluated each point
of this grid with a weighted version of RMSE, giving more weight to the errors commit-
ted on the tail data. In this way we managed to replicate better the behaviour of real
data but we decided not to further explore this procedure for a series of criticalities that
affected it. Indeed, first of all the computation load was too heavy and computation time
too long, moreover the choice of the weight was to be evaluated case by case as there is
no "optimal weight" that always works (see Figure 3.6). These two reasons made this
method absolutely inapplicable in our case study, since our goal is to analyse vast areas
and we can’t afford to apply this procedure on such big zones like Lombardy (which is
composed by 3700 sites for example).
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(a) Weibull Case (b) Lognormal Case

Figure 3.6: The two graphs shows the results obtained with same weight in two different
sites that are approximate by two different distributions. This highligths how different
the degrees of accuracy are just based on the starting distribution and how impractical
this method would be on a large scale.



4| Hazard Analysis

The main result to be taken home from the previous chapter is that modelling the annual
maxima by means of the GEV method is the best thing to do in this kind of studies:
indeed, the F n method and data simulation approach both suffer the lack of data in the
right tail when trying to fit the best parent distribution. With this newfound security, in
this chapter we will present some practical results regarding Extreme Value Analysis.

At first we will have a look at some interesting features revealed by the distribution of
maximal values at various scales. Then, the actual hazard analysis will be carried on; the
aim is to understand which areas are more likely to be subject to extreme phenomena
and, to this end, exceedance probabilities curves at different years and return times will
be studied. Notice that there is a difference between "hazard" and "risk" in the sense that
the former indicates something with potential to harm people or structures, like extreme
winds, while the latter is the likelihood of a hazard causing harm and, thus, needs more
data to be investigated, like vulnerability of infrastructures, possibility of people presence
and, in general, data on anything that can be damaged. In this work we are only interested
in the hazard and we will not delve into technical risk analysis.

To conclude the chapter, some grouping attempts will be shown: the goal is to cluster
together those area subject to same risk of extreme events and give a summarizing and
practical feedback for hazard quantification and safety design.

4.1. Extreme Wind Speeds

Once the proper GEV distribution has been recovered from the 31 annual maxima at each
site, it is interesting to observe the behaviour of some of its parameters. We remember
now that we are still working with just the magnitude of the wind vector and that the
optimal parameters for the distributions are computed as described in section 2.4 and,
in particular, using the probability-weighted moments method as described in subsection
2.2.2.
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The first value of interest is the location parameter µ of the GEV. This parameter repre-
sents, to some degree, the "middle value" of the distribution in the sense that the mean,
the median and the mode are all just small variations of it. Indeed we have:

Mean =


µ+ σ

g1 − 1

ξ
if ξ ̸= 0, ξ < 1

µ+ σγ if ξ = 0

∞ if ξ ≥ 1

Median =

µ+ σ
(ln2)−ξ − 1

ξ
if ξ ̸= 0

µ− σln(ln2) if ξ = 0

and

Mode =

µ+ σ
(1 + ξ)−ξ − 1

ξ
if ξ ̸= 0

µ if ξ = 0

where µ is the location, σ is the scale, ξ is the shape parameter, gk = Γ(1− kξ) and γ is
the Euler’s constant.

Figure 4.1 and 4.2 show a comparison between a map of the elevation and one reporting
the location parameter µ of each cell, one at regional level and the other at national
level. As intuitively expected, the similarity is striking: mountainous areas are more
windy in general and they register higher extreme winds due to the higher differences in
temperature (and thus, pressure) in a shorter distance while plains areas have little to no
variations and wind speeds tend to be more uniform and lower.

Something odd, however, is found in Figure 4.1, in the area corresponding to the metropoli-
tan city of Milan. The city rises in the middle of the Po Valley but the extreme wind
speeds recorded in this location are much higher than those measured in the surroundings.
The causes of this peculiar phenomenon are the geographical position of Milan and the
temperature in this area: although Milan rises in a completely plain area, it is located
south of the Alps, not that many kilometers away from them and it is interested by the
Foehn, a typical wind that blows on the Alpine arc, from north to south, descending from
the mountains and reaching also the plain, Milan included.

As highlighted by the italian meteorologist and president of the italian meteorological
society, Luca Mercalli, this kind of phenomenon, as unexpected as it may seem, is ac-
tually ordinary. Indeed, in an interview for the newspaper "Corriere della Sera" [17],
few days after an extreme wind event had unroofed the Central train station of Milan,
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(a) Lombardy orography (b) Location parameters of annual maxima

Figure 4.1: Comparison between orography and location parameters of the GEV distri-
bution fitted on annual maxima in each site of Lombardy.

(a) Italy orography (b) Location parameters of annual maxima

Figure 4.2: Comparison between orography and location parameters of the GEV distri-
bution fitted on annual maxima in each site of Italy.
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Mercalli pointed out that this is quite common, especially during the winter season, and
may happen even more than once each year. The reason why the Foehn reaching Milan
can have such a disrupting behaviour is the climatic situation that can be found in the
metropolitan city. The heavy urbanization of the Lombardy regional capital causes the
creation of a microclimate in the city characterized by temperatures that are considerably
higher than the surroundings. This fact leads to a sudden change in pressure, analogously
to what happens on the mountains, and, consequently, makes the extreme winds stronger.

After the location, also the shape parameter ξ, which determines the type of the distribu-
tion taken by the GEV, represents a value of interest. As cited for instance in Holmes et
al. (1991) [18], the Type 2 GEV distribution predicts unlimited values as the return time
increases; this is obviously unfeasible for a physical phenomenon, such as wind, whose
speed must be limited from above and the cases where the fitting results in this type of
distribution should be considered outliers. Such anomalous results may come from faults
in the original data or possibly if the sample contains mixed populations, for instance two
very different storm types causing extreme wind speeds. In any case, in our study, very
little sites showed this behaviour, confirming the idea of them being outliers with respect
to the expected distributions (see Figure 4.3).

Figure 4.3: As we can see, in the absolute majority of the sites the shape parameter is
ξ = 0, with some cells having a negative shape and just 24 of them having a positive
shape.
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4.2. Hazard Assessment

4.2.1. Exceedance Probability Curve

The natural conclusion of this first part of our study starts with the production of the
so called Exceedance Probability Curves, which summarise the information related to
the hazard. Indeed, these curves describe, for each possible value of the wind speed, the
probability of exceeding that threshold in a year. As already mentioned in the introduction
of Chapter 3, they are easily obtained once the cumulative distribution function for the
annual maxima is available, since they are simply computed as 1−CDF and thus, using
the GEV method, there is no difficulty related to this part once the optimal parameters
are estimated. In Figure 4.4 we can find an example of exceedance probability curves:
once again we wanted to highlight the behaviour of Milan and to do so we compared its
curve of annual risk with the one computed in a location just few kilometers away from
the centre of the regional capital.

Figure 4.4: Paderno Dugnano is a town about 10 kilometers away from the centre of
Milan. As we can see, their exceedance probability curves are very different in terms of
hazard; indeed we highlighted the threshold of 60 km/h which is almost surely surpassed
in the case of Milan while it is quite improbable for Paderno.

Notice that, in this section of our analysis, among all the others, we will focus our attention
on the observation of two particular wind speeds that are 60 km/h and 140 km/h; this
because, as pointed out by Terna (2021) [45], those wind speeds are commonly studied
when analysing the electrical grid resilience. The reason is that above 60 km/h the
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electrical grid starts to be affected by those that are called "failures caused by indirect
effects", while above 140 km/h also the "failures caused by direct effects" come into play.
The first case comprehends all those infrastructure breakdowns due to the action of the
wind on other objects, trees in particular, while the second case includes all the failures
caused by the action of the wind directly on the electrical power grid components.

With this in mind we proceeded to analyse these two thresholds on a larger area and, as
always done so far, we observed what are the areas at risk in Lombardy. In Figure 4.5 we
can observe what are the annual probabilities of exceeding the two thresholds of 60 and
140 km/h for each site in Lombardy. While the first graph highlights the areas exposed to
the risk of indirect effects failures, the second one shows that the probability of extreme
winds over 140 km/h is almost zero everywhere.

Figure 4.5: Annual probabilities of exceeding 60 and 140 km/h in Lombardy. The risk of
experiencing failures due to indirect effects is very high in the mountainous part of the
region while exceeding 140 km/h threshold has nearly null probability everywhere.

4.2.2. Mean Return Time

Another possible approach to quantify the risk of experiencing an extreme wind event
consists in estimating how much time should pass (on average) before a specific threshold
is exceeded. This notation is known as "Mean Return Time" and is computed as

T (v) =
1

1− CDF (v)
(4.1)
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where v is the wind speed relative to which we want to compute the return time.

As highlighted by formula 4.1, the two concepts of Exceedance Probability Curve and
Mean Return Time are strictly related, being one the inverse of the other, but they
provide two different answers to the same question: the first one estimates how probable
it is that, in the time period of one year, there will be a wind event exceeding a certain
threshold, while the latter says how much time we expect to have to wait before a certain
speed will be sampled. Figure 4.6 shows an example of the mean return time computed
on Milan while Table 4.1 shows the values of Exceedance Probability and Mean Return
Time computed on some values for Milan.

Figure 4.6: Once again we compare Milan and Paderno Dugnano, observing that, for
example, if we can expect to have a wind of at least 60 km/h every year in Milan, instead
we can measure a wind of the same speed in Paderno once every 12 years.

Speed threshold 60 km/h 70 km/h 80 km/h 90 km/h 100 km/h

Exceedance Probability 1 0.55 0.055 0.004 0.0003

Mean Return Time [years] 1 1.8 18.2 250 3333

Table 4.1: Numerical Examples for the risk in Milan

Analogously to what done before for Exceedance Probabilities, we can picture the quan-
titative trend of the Mean Return Time on the area of Lombardy (Figure 4.7). Notice
that in both the images of Figure 4.7 all sites with a return time higher or equal to 100
years are represented with the same colour. This choice was taken for graphical reasons
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but also because there is little interest in discriminating cases with return time higher
than 100 years. Moreover, as investigated in Ben Alaya et al. (2021) [5], the cases where
the return time is particularly high require additional attention.

Figure 4.7: Return times of the two thresholds of interest on all the territory of Lombardy.
As we can appreciate, many areas have a short return time for what concern 60 km/h
while on the side of 140 km/h, according to what already seen, almost everywhere we
have very high return time.

4.2.3. Exceedance Probability Curve on Longer Time Window

After having observed these two approaches, we will now discuss exceedance probabilities
for a longer time horizon. Indeed, since we are working under the hypothesis that the
distribution of annual maxima is stationary (i.e. does not change throughout the years)
and that different years are independent, once we have the annual exceedance probability
curves we can trivially compute these curves for any time horizon T of interest just
by taking 1−CDFT . In this way we can obtain accurate estimates of the probability
of exceeding whichever threshold we are interested in, for any time window within the
span of a century; in this way we answer the question: "what is the probability that,
in the period corresponding to the chosen number of years, we exceed at least once the
threshold?".

Once again, let us have a closer look to Milan: in Figure 4.8 we can appreciate how the
exceedance probability curve of Milan evolves by increasing the time window considered.
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Figure 4.8: We represent the exceedance probability curves computed for Milan for the
1 year, 10 years and 30 years time window cases. As we could expect, by increasing the
dimension of the time window considered, the probability of exceeding a given threshold
increases.

To conclude, we computed the probability of exceeding the usual 60 and 140 km/h thresh-
old on the entire region of Lombardy when we increase the time window to 10 and 30
years. For completeness we once again report also the case of a 1 year time window (Fig-
ure 4.9). The evolution of the probability graph in the case of 60 km/h is evident: the
longer the time window, the more numerous are the zones where the risk of surpassing
this threshold becomes very high. On the other side, the cases computed for 140 km/h
look more stable and conservative. However, although the changes in this case seem less
apparent, we can find few areas where the probability of exceeding this crucial threshold
of hazard become less and less negligible.

4.3. Grouping by Hazard Class

After having observed where the probability of extreme events is high and where it is
moderate through the exploitation of Exceedance Probability Curves and of Mean Return
Time, we decided to conclude the hazard analysis by summarizing all these information
collected for each site and by grouping together zones with the same level of hazard.
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Figure 4.9: On the left side the cases for 60 km/h, on the right side, 140 km/h
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4.3.1. Preliminary decisions

The first attempt that we put into practice, following our initial intuition, was to perform
some sort of clustering induced by the three parameters of the GEV fitted in each location.
However, as highlighted by Figure 4.10, utilizing these 3 indices to cluster may not be the
smartest choice.

(a) Scatterplot (b) 3D plot

Figure 4.10: Parameters of the GEV fitted in each site of Lombardy.

First of all, just like the phenomenon of wind itself, also the parameters show a con-
tinuous behaviour (except for the shape parameter that is "conditionally continuous").
Because of that, there is no way that we can find any clear and reasonable division in
data that may induct the definition of clusters. Our only opportunity to do such a thing
is follow the path traced by the discontinuity in the values of the shape parameter pro-
duced by zTestGevdShape; however clustering data in terms of their shape parameter
would produce results that are not only trivial, but also useless under the light of risk
assessment.

For these reasons, we decided to change perspective and so we abandoned the idea of
exploiting automatic clustering algorithms (such as hierarchical ones for instance) and
moved to a procedure in which we were responsible for the clustering produced, by setting
manually the division criterion. One could argue that this way to proceed and the grouping
obtained are totally arbitrary and that’s actually true, but at this stage we are not looking
yet for a "behavioural" clustering of data but we want to group our sites with others that
have the same level of hazard: considering that the literature has already identified some
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thresholds to classify the family of hazard, we deemed that this procedure could actually
work properly for our interests.

4.3.2. Results

Diving into practice, we decided to work with the quantiles of our maxima distributions,
and to group each site based on which interval of wind speed its quantile falls in. We
remind that the quantile of order α is that value of the dominion of the distribution for
which the cumulative distribution function evaluated in that point is equal to α, that is:

P(X < qα) = α

where X is a random variable with a certain distribution and qα is the quantile of order
α.

The reason why we decided to deal with quantiles for the grouping is that, in a sense, the
quantile itself expresses a "confidence margin". Indeed, by considering the α-quantile of
a specific site we are already taking the value of wind speed that has a probability equal
to alpha not to be exceeded. Consider, for example, the distribution of the maxima fitted
for Milan: the quantile of order 95% for Milan is approximately equal to 80 km/h. This
means that, each year, there is a probability of 95% that there will not be any wind of
speed over 80 km/h in Milan. Recalling the concepts of Section 4.2, we have an annual
probability of exceeding 80 km/h equal to 5% and a Mean Return Time equal to 20 years.
In our analysis we evaluated both the 95% and the 99% quantiles of maxima distribution.
In Figure 4.11 we can see the 95-quantiles and 99-quantiles of each site in Lombardy.

From this point on we will focus our attention only on the 99-quantile, as it provides a
larger margin of confidence: indeed, the 99-quantile means looking at that "once in a
century" value. In this way we will perform a grouping based on the value associated
to the 1% annual risk. Having decided to exploit the 99-quantiles, we simply need to
decide how to subdivide the range of wind speeds. In this work we propose two examples
of clustering: a finer grouping and a more coarse one. The first clustering defines 6
intervals, less than 60 km/h, between 60 and 80 km/h, between 80 and 100 km/h, 100-
120 km/h, 120-140 km/h and more than 140 km/h, while the second one focuses more
on the already defined thresholds of hazard, describing 3 clusters, one for values smaller
than 60 km/h (and thus subject to nearly no danger at all), the middle group between 60
and 140 km/h (which means those areas subject to indirect effects), and finally the group
subject also to direct effects with quantiles over 140 km/h. In Figure 4.12 we show the
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two versions of the grouping produced.

Figure 4.11: The quantiles of maxima of each site over Lombardy repeat the same trends
we already found in previous graphs.

(a) 6 clusters (b) 3 clusters

Figure 4.12: We can notice that in Lombardy the majority of the areas are subject to
very low risk or events causing indirect breakdowns.

At this point of the work we managed to produce a useful result in the setting of hazard
assessment. Thanks to this grouping, we have a clear visual tool to immediately identify
which are the more hazardous areas.
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4.3.3. Group distribution

The last question we wanted to answer is if it was possible, once we grouped data, to
model each of the clusters with a single GEV distribution. What we can notice from
Figure 4.13 is that, if we consider data within each of the 6 clusters previously defined as
a whole, they seem to describe very well a single GEV.

Figure 4.13: Comparison between empirical cdf and GEV cdf fitted on all data of each
cluster.

Recalling the criticality of the lack of data highlighted in Section 3.2, this may look as a
possible solution: we grouped together data with the same characteristics and that, for
this reason, may be considered as coming from the same distribution and thus increase
the number of data at our disposal to provide a more accurate estimate of the GEV
parameters. However, if we look closely to data within the same cluster we can notice
that, in there, are grouped curves characterized by very different behaviours (Figure 4.14).

Thinking of summarizing the characterization of a whole function in a single value is a
bit of an optimistic task. For this reason, we gave up the idea of and summing up the
behaviour of all sites in a group into a unique pdf, as it would have resulted in substantial
underestimates or overestimates of risk in many sites.

To support this decision, we also employed a non-parametric technique, performing a
permutation test. The idea at the base of this procedure is that you want to understand
how "special" a particular configuration of samples is with respect to all the other possible
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Figure 4.14: Comparison between GEV cdf fitted on all data of each cluster and some of
GEV cdf fitted in sites of the cluster.

permutations of the data. The first idea for the Permutation tests dates back to Fisher
(1936) [15]; we will report from this article an example made by Fisher that clearly
explains the logic of Permutation Tests:

"Let us suppose, for example, that we have measurements of the stature of a hundred
Englishmen and a hundred Frenchmen. It may be that the first group are, on the average,
an inch taller than the second, although the two sets of heights will overlap widely. [...]
The simplest way of understanding quite rigorously, yet without mathematics, what the
calculations of the test of significance amount to, is to consider what would happen if
our two hundred actual measurements were written on cards, shuffled without regard to
nationality, and divided at random into two new groups of a hundred each. This division
could be done in an enormous number of ways, but though the number is enormous it
is a finite and a calculable number. We may suppose that for each of these ways the
difference between the two average statures is calculated. Sometimes it will be less than an
inch, sometimes greater. If it is very seldom greater than an inch, in only one hundredth,
for example, of the ways in which the sub-division can possibly be made, the statistician
will have been right in saying that the samples differed significantly. For if, in fact, the
two populations were homogeneous, there would be nothing to distinguish the particular
subdivision in which the Frenchmen are separated from the Englishmen from among the
aggregate of the other possible separations which might have been made. Actually, the
statistician does not carry out this very simple and very tedious process, but his conclusions
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have no justification beyond the fact that they agree with those which could have been
arrived at by this elementary method."

Coming to our specific case study, we tried to apply this idea to the data within a cluster:
we considered each site X1, X2, ..., Xn within a group (of numerosity n) as a population
composed by 31 elements (the 31 maxima) and computed the average value mi = E[Xi]

for each site, following the idea described in the example of Fisher. Our aim is to verify
whether or not the hypothesis H0: X1

d
= X2

d
= ...

d
= Xn is true or not.

However, at this point, we could not proceed as in the example because our task is not
to compare just two populations but we have hundreds of them within a cluster. For
this reason, instead of using as test statistic T0 the difference between the mean of the
populations, we used the variance of the mean values computed T0 = V ar(m⃗). The reason
behind this choice is that the variance gives a sufficiently good idea of the dispersion of
our data, indeed, if the variance results to be small, it means that all the means are quite
similar in value, while if the variance starts to raise then it means that the values are
more different from each other.

Having our T0, we are left with the iterative part: it’s enough to shuffle all the maxima
together and create new groups of 31 elements, compute the new means and, then, the
new variance. After doing this procedure for hundreds, or even thousands, of iterations
we want to count how many times we obtained a value of variance greater than T0.
This value divided by the total number of iterations gives an estimate of the p-value for
the test. Table 4.2 highlights that in all 6 clusters the T0 is always considerably higher
than the variance obtained during the iterative steps and, thus, the configuration is a
very particular case and, thus, we have to reject the hypothesis of homogeneity of the
distributions.

Cluster [km/h] < 60 60 - 80 80 - 100 100 - 120 120 - 140 > 140

T0 19.30 23.51 55.63 62.67 38.05 42.68

mean(T1) 1.34 1.77 3.40 4.35 4.37 5.22

p-value 0 0 0 0 0 0

Table 4.2: Permutation test results
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4.4. Final Considerations

In this chapter and in the previous one we confronted some methods to estimate extreme
values of wind speeds, coming to the conclusion that approximating their distribution
by means of a GEV produces the best results in general. Different methods can be more
accurate in specific cases but, neither here nor in the literature, considerable improvements
have been found. Then, once these extreme wind distributions are recovered, it is easy to
produce exceedance probability curves for any value of interest and with any (reasonable)
time span. In particular, we produced estimates for the most common thresholds at
different time horizons and compared results on the region of interest to determine hazard
level on the area.

In conclusion, we can sum up by saying that Lombardy is, for sure, a safe region from the
point of view of extreme winds causing direct infrastructure failures, but, on the other
side, is quite subject to the threat of indirect failures of the electrical grid. If we exclude
the areas around Milan, which we found out to be a peculiar exception characterized by
a high level of hazard with respect to the surroundings, the locations more interested by
the risk of extreme winds are those on the mountains, while plain areas, where most of
the infrastructure is found, are less interested by extreme phenomena.

However, if we consider that, on the mountains, the power grid is also less dense and
connected, we realize that a single fault in a small portion of the grid can mean cutting off
connection in a large geographical area and leaving many people without electricity, even
for a long time. For this reasons, it is of paramount importance to carefully analyze the
wind regime and the related threats when designing the infrastructure or when planning
maintenance on it, so that interventions carry out result adequate and effective to assure
safety and reliability of the service.



5| Meteorological Correlations

This chapter and the next one will work as a bridge between the first part, where wind
has been considered a hazard, and the second one, where it will be evaluated as a possible
resource. In particular, now we are interested in the individuation of meteorological
correlations, i.e. the determination of areas that can be considered to be subject to the
same meteo events and, in particular for our case, to the same wind regimes.

This can be interesting from a climatological point of view per se, as it provides a natural
subdivision of the territory according to the dominant wind regimes; but it is also impor-
tant regarding infrastructural safety, for instance for an electrical line, in the sense that
it allows to know which sections of the grid can be handled and maintained in the same
way.

Here, we are not interested anymore in just the extreme values to determine the hazard
related to a particular site but we want to give a more general characterization to the
wind speed series to understand if the same winds are blowing over different zones. This
means that different hazards can be associated to two sites even if we consider them to
be subject to the same winds: indeed, hazard is related just to the absolute intensity of
the wind speed, while we can consider two locations to be under the same wind regimes
even if this intensity is slightly different. Still, as we said, it can be important to know
for instance the direction of the principal winds in an area and, in general, their main
characteristics to provide appropriate countermeasures regarding safety design.

To better suit this analysis, from this point on, we will change the way we look at our data.
First of all, we now need to consider both the longitudinal and the latitudinal components
of the wind (see the dataset description in Chapter 1), since also the direction is clearly
a relevant factor here. Then, we can’t limit ourselves to a subset of values but we need
the whole time series; to lighten the computational weight we only considered the series
corresponding to one year (2020, the most recent at our disposal) since we can safely
assume that it is a sufficient span of time for this study and encapsulates also possible
seasonal variability.

For these reasons, the approach taken in this chapter and in the next one will be a Func-
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tional Data Analysis (FDA) driven one. This chapter, in particular, will be dedicated
to a throughout study on FDA, where theoretical notions will be alternated with appli-
cations to the case in exam; it will cover topics like smoothing and Functional Principal
Component Analysis (FPCA) and will culminate in the definition of a distance between
wind time series. The next chapter will instead present two clustering algorithms, devel-
oped with the aim of incorporating geographical information to account also for spacial
dependence.

5.1. Introduction on FDA

The discussion carried on in this chapter is mainly based on two books by Ramsay: "Func-
tional Data Analysis" (2005) [25] and "Functional Data Analysis with R and MATLAB"
(2009) [26] with applications referring directly to the case in exam; but, first of all, a small
introduction on Functional Data Analysis as a whole is due.

Figure 5.1: An example of temporal series for the U component of wind in 2020.

Let us have a look for instance at Figure 5.1, where the temporal series of longitudi-
nal winds for a particular site in the year 2020 is reported. While observations in our
possession are actually discrete, it is clear that they reflect a smooth variation of the phe-
nomenon and that there exists an underlying function describing the evolution in time
of the variable of interest. Recovering an approximation of this function allows us to
represent data in a simpler way, displaying their fundamental features and emphasizing
patterns and variations and this is where the power of FDA comes in handy.
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Before starting with the actual analysis we need to understand the context where func-
tional data live. A common choice for the space structure of functional data is the one of
separable Hilbert spaces; even if a discussion on such topics is beyond the scopes of the
present work (and more info can be found for example in "Functional Analysis, Sobolev
Spaces and Partial Differential Equations" by H. Brezis (2010) [10]), we will remind the
basic concepts for convenience.

Definition 1: A (real) Hilbert space H is a vector space equipped with an inner product
that defines a distance function for which the space is a complete metric space.

Definition 2: Let H be a linear space; an inner product on H is a bilinear, symmetric
and positive definite form ⟨· , ·⟩ : H ×H → R.

Definition 3: An Hilbert space (and also a general metric space) is complete if it contains
all the limit points of its Cauchy sequences.

Definition 4: An Hilbert space (and also a general metric space) is separable if it contains
a dense countable subset.

At this point we are ready to give a proper definition of functional data. Let H be an
Hilbert space whose points are functions defined on a closed interval T = [tmin, tmax];
then:

Definition 5: A functional random variable is a random element defined on a probability
space (Ω,F ,P) with values in H: X : Ω → H.

Definition 6: A functional datum x is a realization of a functional random variable:
x = X(ω) : T → R, ∀ ω ∈ Ω.

The most used space for FDA is the space L2 of square-integrable real functions. In
particular, the latter will be our structure of choice since it is separable and perfectly
adequate for unconstrained data analysis. To complete the overview, two more definitions
can be useful: let X : Ω → H be a functional random variable in H.

Definition 7: We call Fréchet mean of X the unique element µ of H that solves
arg inf

x∈H
E[∥ X − x ∥2H ].

Definition 8: We call covariance operator of X the operator C : H → H defined as
Cx = E[⟨X, x⟩X], x ∈ H.

In L2 the Fréchet mean coincides a.e. with the point-wise mean and can be estimated with

the sample estimator: X̄ = 1
N

N∑
i=1

Xi; moreover, the covariance operator can be defined

through a kernel operator [Cx](t) =
∫
T
c(s, t)x(s)ds, x ∈ L2, where the covariance kernel
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c(s, t) is precisely the point-wise covariance c(s, t) = E[X(s)X(t)] and can be estimated

with the sample covariance operator ĉ(s, t) = 1
N

N∑
i=1

Xi(s)Xi(t).

5.2. Smoothing

The first, fundamental, step in any analysis involving functional data consists in turning
raw discrete data into smooth functions. Indeed, the temporal series of discrete data
points often consist in thousands of elements (8784 in our case, 24 hourly measurements
for each of the 366 days of 2020) and we need to find a representation that allows both
to reduce the computational load and to work with the familiar tools of matrix algebra.
Fortunately, we have exactly what we need: basis functions.

A basis function is a set of known functions ϕk that are independent of each other and
have the very convenient property that we can approximate arbitrarily well any function
by taking a linear combination of them. The two most famous basis functions systems
are the monomials: 1, t, t2, . . . , tk, . . . and the Fourier series:

1, sin(ωt), cos(ωt), sin(2ωt), cos(2ωt), . . . , sin(kωt), cos(kωt), . . .

In general, a function f(t) can be represented by means of basis functions as:

f(t) =
K∑
k=1

ckϕk(t)

where {ck} are coefficients to be estimated and {ϕk} is the set of basis functions.

Consider a series of n discrete data {yj}, j = 1, 2, . . . , n; then, an exact interpolation is
always reached when K = n since the coefficients can be chosen to yield f(tj) = yj ∀j.
Therefore, the degree of smoothing in relation to the value of K determines the quality
of the operation: the lower the value of K is, the better the basis functions reflect the
characteristics of the data. In other words, if we consider two different basis systems, the
one that requires the smaller number of basis K to achieve the desired level of smoothing,
is the better choice.

Obviously, many basis systems have been developed, each with its pros and cons and with
specific applications; just to cite some of them, we have the Fourier basis, B-splines (and
splines in general), wavelets, polynomials and many others.
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5.2.1. Choice of the Basis System

In the choice of a basis system for a dataset, one of the most important things to do is to
look whether or not data under analysis are periodic. Natural phenomena, such as wind,
have a degree of periodicity in the sense that there are cycles (daily, seasonal, annual) of
repeating trends and, for this reason, it is common practice to consider them as periodic.

In this case, the undoubtedly best basis system is also one of the most famous one, the
Fourier series, which is given by:

f(t) = c0 + c1sin(ωt) + c2cos(ωt) + c3sin(2ωt) + c4cos(2ωt) + . . . (5.1)

where the period is determined by the parameter ω as T = 2π
ω

.

This basis, in general, is not recommended for unstable data: functions with strong local
features such as spikes or discontinuities (both in the function itself and in its derivatives)
are not good elements to be approximated with a Fourier basis. However, this is not the
case for wind series which, being a natural phenomenon, are never really discontinuous
nor they present extremely sudden changes in intensity and thus, this basis system is
perfect for the job.

5.2.2. Choice of the Number of Basis

Some interesting comments can be done regarding the choice of the number of basis to be
taken to better approximate the temporal series once the Fourier series has been chosen.
Rewriting equation 5.1 expliciting the period T , we have:

f(t) = c0 + c1sin(
2π

T
t) + c2cos(

2π

T
t) + c3sin(2

2π

T
t) + c4cos(2

2π

T
t) + . . . (5.2)

For a function with period T , the frequencies of sines and cosines are 1
T
, 2

T
, 3

T
, . . . , i.e.

integer multiples of the fundamental frequency 1
T
. The frequency n

T
is called the n-th

harmonic and we need to understand up to which value of n we need to encapsulate all
the relevant frequencies of the time series (see, for instance, Majoral et al. (2017) [30]).

The right tool for this job is the periodogram (Schuster (1898) [39]). A periodogram is
an estimate of the spectral density of a signal used to identify its dominant periods (or
frequencies) and to determine dominant cycles in the series. Spikes in the periodogram
represent frequencies of interest and are exactly what we are looking for to decide the
number of basis to be used.
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(a) Periodogram U (b) Periodogram V

Figure 5.2: Periodograms of the U and V components of wind.

Figure 5.2 represents the periodogram, computed with the function periodogram from
the R package TSA [12], for the winds of the same location as in section 5.1, with the
exception that all the 31 years available alongside both U and V components have been
considered. It is clear that, in both cases, there are three main frequencies: the first peak
is at f = 0.000113 or T = 1

f
≃ 8850 which, remembering that we have 24 measurements

for each day and accounting for leap years, correspond to a period of 1 year; the second,
and most prominent, spike is in correspondence of f = 0.041664 and represent the daily
cycle; the third one has f = 0.083332 and accounts for a period of 12h. These results
reflect exactly what we were expecting from the common knowledge on meteorological
phenomena and confirm that wind speeds follow a daily and annual cycles. Moreover,
basically identical results can be retrieved on the whole area in exam, showing that this is
not an isolated exception and the 1 year and 24 hours cycles are the predominant periods
of interest when studying wind speeds.

At this point it is clear that we need to account at least for the 24 hour cycle in the choice
of the number of basis; thus, not forgetting that 2020 was a leap year, we need to take at
least 366 harmonics (remember that, since we are considering just 1 year of measurements
in this section, our total number of values is 8784 and we are taking this value to be equal
to the period T of equation 5.2). The cycle of 12 hours has a much smaller impact and we
don’t want to have too many basis to avoid an excessive interpolation, for these reasons
the total number of basis will be 733: 366 sines, 366 cosines and the constant term.



57

5.2.3. Results

Results of the smoothing for our usual site of reference are represented in Figure 5.3 for the
u and v components where, for a major visual clarity, only the month of January has been
reported. The functional approximation is able to represent the daily behaviour of real
data, following the up and down trends of the 24 hour cycles. This is particularly evident
for the latitudinal component while the longitudinal one presents a more chaotic trend
with many oscillations and no clear daily cycle. This behaviour comes as no surprise and
the reason can be found again looking at the predominant wind regimes in the area in that
time of the year; indeed, the area south of the Alps is mainly subject to North to South
winds while the longitudinal ones are generated by more local and random phenomena,
without a clear, regular regime.

All in all, the approximation is quite satisfactory and we can move on to the next steps.

5.3. Functional Principal Component Analysis

Now that we have our dataset in functional form, Functional Principal Component Analy-
sis (FPCA) is the next key step to take. This technique works exactly like its multivariate
counterpart, allowing the user to explore the data in a simpler way through data reduc-
tion, to see the main features that characterize them and estimating how much of the
total complexity is explained by such features. A principal component analysis provides
a way of looking at the covariance structure that can be much more informative than a
direct examination of the variance-covariance function in the sense that functional prin-
cipal components can be directly interpreted as variations of the mean trend. For this
reason, through the corresponding scores, principal components can be used to charac-
terize the single datum, showing its most distinguishing features, and PCA is often used
as an intermediate step to simplify information before moving onto larger investigations
such as regression and cluster analysis.

5.3.1. Definition of FPCA

First of all we recall the concept of principal components in the traditional multivari-
ate setting (see for instance "Applied Multivariate Statistical Analysis" by Johnson and
Wichern (2007) [35] for a more complete presentation).

Consider a dataset of N multivariate observations in Rp, X1, X2, . . . , XN with sample
mean X̄ and sample covariance S. First, these observations are centered in order to have
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Figure 5.3: In black the original temporal series, in red the result of the smoothing.
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zero mean. Then, the principal components are defined as those linear combinations of
the variables yielding directions a1, a2, . . . , ap of maximum sample variance; moreover,
we want them to be orthonormal, i.e. a′

iaj = 0 ∀i ̸= j and a′
iai = 1. In practice, the

principal components are determined as the eigenvectors of the covariance matrix S, i.e.
for k = 1, 2, . . . , p they are the solution of the eigen-equation:

Sak = λkak

The eigenvalue λk associated with eigenvector ak represents the variability along the
direction ak and we call score xik the projection of variable Xi along the direction ak:
xik = X

′

iak.

In words, principal components are linear combinations of the variables that explain the
highest share of the variability of the dataset; in this way, one can take just few of them
and discard the others and still be able to have insight on the problem while working in
much smaller dimensions.

With some changes to adjust to the structure of Hilbert spaces, we can now give the
definition of PCA in the functional setting. Indeed, consider a dataset of N functional
observations in an Hilbert space H (particularly, in L2) X1, X2, . . . , XN . The objective
is again to find an orthonormal system of "directions" (in the sense of H, directions
are functions) ξ1, ξ2, . . . that maximize the variability of the projections of the actual
observations along them.

Similarly to the multivariate case, the functional principal components, now also called
"harmonics", are defined as the eigenfunctions of the covariance operator C as said in
section 5.1, i.e. the solution of the eigen-equation:

Cξk = λkξk

Again, the eigenvalue λk associated to ξk represents the variability along the "direction"
ξk and we call functional score xik the projection of observation Xi along ξk, i.e. xik =

⟨Xi, ξk⟩.

5.3.2. Number of PCs

An important result in PCA (both multivariate and functional) is that the eigenvalues λk

are proportional to the percentage of variation explained along the corresponding eigen-
direction. In particular, for the multivariate case it holds that

∑p
i=1 V ar(Xi) = λ1+λ2+

· · · + λp and an equivalent relation is true also for the functional case. Consequently,
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the proportion of total variance due to the k-th principal component is λk

λ1+λ2+···+λp
and,

in general, if most of the total variance can be attributed to the first one, two or three
components, then these components can replace the original variables without much loss
of information.

However, in many applications this is not the case and a more accurate analysis is needed
to choose the number of principal components to retain. In these situations, there are
two main graphs that we can look at to decide this number but, unfortunately, there is
no mathematical procedure that tells us the optimal result, and much of the work is left
to the interpretation of the statistician, who will need to take a subjective decision based
on the task and the current objective.

The first one, on the left in Figure 5.4, reports the cumulative variance explained by
subsequent principal components; the second, on the right, represents the eigenvalue
associated with each of them and it is called scree plot. In both cases what we look for is
an "elbow" in the sequence. This elbow shows a point at which the remaining eigenvalues
are small and account for little of the remaining variability.

Figure 5.4: Cumulative variance and eigenvalues associated to each functional principal
component.
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Figure 5.5: In black, the original temporal series; in red, the projection on the first four
principal components.

In both cases of longitudinal and latitudinal winds, no clear elbow can be seen in the
cumulative variance graph, while a more evident reduction is visible in correspondence of
the fourth eigenvalue. The cumulative variance explained by the first four PC would be
around 65% for the U component and around 75% for the V component. Another little
jump can be seen after the 7th or 8th eigenvalues but, taking 8 principal components,
would lead in an increase of explained variability of just 10%, while reducing by a lot
the interpretability; thus, we deemed sufficient, for our interests, the use of four principal
components.

A confirmation of the goodness of this choice comes from figure 5.5, where the projection
on just the four PCs is compared with the original series. In formula this means:

Xi ≃
4∑

k=1

xikξk =
4∑

k=1

⟨Xi, ξk⟩ξk

and we can see that this number of principal components is already sufficient to recover
a good approximation of the trends in the series, showing that four scores should be able
to characterize decently the main features of wind in each site.
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5.3.3. Visualization

At this point, it is of general interest in any study involving PCA to try and give an
interpretation to the principal components, to understand which characteristics of the
phenomenon are represented by them and how they are reflected by the data.

In a functional setting such as the one we are working with, it is helpful to plot the
principal component functions as perturbations of the mean. This is done by multiplying
the harmonic by a fixed value and then summing and subtracting it to the mean. The
fixed value is usually chosen to be the square root of the eigenvalue corresponding to the
harmonic to be represented, but can be chosen subjectively by the user for major clarity.

Figure 5.6 shows the results of this procedure for the first principal component: the mean
is the curve in black, to the green one has been added the first PC, while to the red one it
has been subtracted. Figure 5.7 instead, shows the relative scores in each location, giving
an idea of the behaviour in that site; more positive scores indicate that the trend will
be more similar to the green curve, while negative ones indicate similarities with the red
curve.

Given the quite high number of bases and the consequent difficulties in interpretability,
we will provide comments regarding just the first principal component for U and for V.

For longitudinal winds, the first PC seems to characterize variability mainly during winter
months (remember that the series goes from the first of January to the 31 of December),
with positive scores associated to predominant winds with positive sign (West to East)
while negative scores associated with negative winds (East to West). A score around zero,
as most areas have in Figure 5.7 on the left, indicates that no particular trend can be
seen during winter months.

The first PC for latitudinal winds, instead, shows that positive scores are associated to
generally lower North-South winds throughout the year, while negative scores indicate the
presence of predominant negative (North to South) winds. This is confirmed on the map
where, for instance, we can see a long stripe of positive scores around the 46th parallel;
there, indeed, we find the Valtellina, a long valley extending West to East where we expect
winds to mainly follow this direction and, by contrast, we expect latitudinal winds to be
less evident due to the conformation of the territory.
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Figure 5.6: Behaviour of the first principal component as perturbation of the mean wind
series.
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Figure 5.7: Behaviour of the first principal component as perturbation of the mean wind
series visualized on the map of Lombardy.

5.4. A Distance between Wind Regimes

This section will be devoted to the definition of a metric allowing us to measure when two
wind time series are close and, thus, if the sites interested by them can be considered to
be subject to the same wind regime.

The reasoning is intuitive: as one can guess, temporal series coming from locations that
are close are extremely similar, while if two sites are distant, their temporal series will
look quite different. However, one needs to be careful not to think that geographical
distance alone determines similarity in wind behaviour since, for instance in mountains
areas, wind can change by a lot also in short distances. For this reasons, we want a metric
that accounts just for the temporal series and is able to highlight similarities in the global
trends. If this distance will be good enough, spacial dependence should be recovered
"automatically", in the sense that close locations will have close wind regimes and thus
will be close also according to it.

Considering the procedure followed in the chapter, the most natural idea is to look at the
temporal series as functional data, find their principal components and then compute the
distance between the corresponding scores. In this way, hopefully, we should be able to
recover a measure of similarity between the trends of the series that involves only four
values but that is able to capture the variability along the whole temporal interval.

In particular, we used the euclidean distance between scores in the four-dimensional space
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generated by them and, then, we considered the sum of the distances between longitudinal
components and between latitudinal components to define a distance between two sites; in
this way, differences in the angle of blowing are automatically accounted for. In formula:

D(i, j) =

√√√√ K∑
k=0

(scoresu,k(i)− scoresu,k(j))2 +

√√√√ K∑
k=0

(scoresv,k(i)− scoresv,k(j))2 (5.3)

where i and j are the indices of the two sites we are considering, K is the number of
scores we take into account, and scoresu,k and scoresv,k represent, respectively, the k-th
score value of the component U and of the component V of the wind.

Figures 5.8 and 5.9 report two examples of application of this metric on the dataset. In
both cases, in the left panel are shown the distances of all cells from a predetermined one,
represented with a black square while, on the right, the temporal series of U component
for the reference site (in black) is confronted with the ones of two other sites with similar
geographic distance but with very different behaviours: one (in lightblue) similar to the
first one and the other (in red) very different. For major visual clarity, only the series
relative to the month of January is reported.

The first figure shows that, in a plain area, wind series can be quite close even at long
geographical distances since there is no obstacle for the wind, which can blow unaltered
through the whole plain. The second figure chooses as a point of reference a mountain and
it clearly shows that wind patterns can change very rapidly in such areas. Interestingly,
some mountain sites quite far away seem to have similar behaviour; this is not to be
considered an oddity since it is very possible that two different locations present similar
patterns in the time series. The quality of this distance in measuring the dissimilarity
between wind regimes of two sites is portrayed also in the right panels of Figures 5.8 and
5.9: areas that are close with respect to this distance have also similar trends in the wind
time series, while areas that are distant show also very different wind behaviours.

Overall, it seems that this distance is quite suited for the job and we will use it in the
next chapter as a foundation for a clustering algorithm able to identify areas with the
highest similarity and produce a grouping based on wind correlation.
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Figure 5.8: Example of distance between wind regimes measured taking a location in the
Po Valley (black square) as reference point.

Figure 5.9: Example of distance between wind regimes measured taking a location in the
Alps (black square) as reference point.



6| Clustering Algorithms

Having defined a distance to measure how similar or different the wind events recorded in
two sites are, we now aim at providing a new kind of clustering that, differently from the
one presented in chapter 4, which focused on the risk of infrastructure failures, will group
our sites based on the whole characteristics of wind. As previously mentioned, we will
look at our data as functions and try to exploit the features captured using the techniques
described in chapter 5.

To this end, we employed two different clustering algorithms, characterized by two dif-
ferent approaches to accomplish the task: the first and more immediate one, the Geo-
statistical Hierarchical Clustering algorithm, keeps into account the spatial adjacency of
every site with each other, while the second one, the so called Bagging-Voronoi Classifier,
is based on a bagging strategy followed by a phase of aggregation of all the information
into a single result. Both these algorithms will be described into details in the following
sections and for each one of them we will present the results obtained.

6.1. Geostatistical Hierarchical Clustering

The Geostatistical Hierarchical Clustering has been presented in the Romary et al. (2015)
[36] as a possible solution to take into account the spatial structure of data when it
comes to cluster them. When analysing data which it is safe to assume that are spatially
correlated or even dependent like in our specific case, it is crucial to define the notion of
neighborhood: data sampled in a geospatial setting define a geometrical set, namely a
set of points in the geographical space. We can represent this structure as an undirected
graph in which each node represents an observation and each edge represents the existence
of an adjacency relation between the nodes that it connects. In this way we can say that
the set of observations linked to a given datum represents its neighborhood.

Coming to our case study, a geometrical structure is already present since we are working
on a grid, and the concept of adjacency follows trivially. The choice we can make (see
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Figure 6.1 for a graphical explanation) is to consider adjacent two sites only if they share
an entire edge in the grid (4 neighbors) or to consider adjacent also those sites that share
only a vertex with each other (8 neighbors). We opted for the 8 neighbors structure to
give a bit more flexibility to the algorithm and because of the nature of the phenomenon
we are studying (since it is obvious that the wind does not blow only in four cardinal
directions).

Figure 6.1: Example of 4 and 8 neighbors structure.

The concept of neighborhood comes into play because, at each iteration, the algorithm
is allowed to cluster together only those sites that are adjacent. In this way we will be
able to divide the territory under analysis in the chosen number of clusters and those
will be continuous in the space. Except for this additional constraint, this method works
as a common hierarchical clustering algorithm and thus requires the choice of a distance
d(x, y) (Euclidean for instance). In our application we will exploit the distance we have
defined in Section 5.4 since it captures well the differences between wind functions.

Having defined both the distance and the adjacency structure to employ, the algorithm
starts with the computations of the matrix of distances between sites and of the binary
matrix attesting which sites are adjacent to each others, and then proceed iteratively
clustering together the sites that are both adjacent and the closest in terms of the distance
chosen.

Notice that we are going to change the notation used to address a site in this section:
indeed so far, since we are working on a grid, to denote a site we used two indices (one
for longitudinal and the other for latitudinal component). Now we are going to move to
a single index notation, counting by row top to bottom and by column left to right: for
example, in the case of Lombardy with 50 rows and 74 columns, site in row 5 and column
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54 will be indexed with 74× (5− 1)+54 = 350 (see Figure 6.2). The reason why we need
to perform this shift in notation is that, in the Geostatistical Hierarchical Clustering, the
two matrices of distances and adjacencies need to compare each single site to each other
and thus these two matrices will have dimension 3700× 3700 (where 3700 = 74× 50) and
will be symmetric.

Figure 6.2: Example of the new indexing system.

Having clarified the new indexing system, we will proceed by reporting the pseudocode
of this algorithm (Algorithm 6.1) and, in the next section, describe in detail each step of
the procedure.

Algorithm 6.1 Geostatistical Hierarchical Clustering
1: Initialize the matrix of distances D between each site using the chosen distance d(x, y).
2: Initialize the binary matrix of adjacency A: A(i, j) = 1 if sites with indices i and j

are adjacent following the chosen definition of adjacency, 0 otherwise.
3: repeat
4: Identify which adjacent sites (or clusters) are the closest by means of matrix D and

group them together
5: Update both matrices A and D to take into account which sites or clusters have

been grouped together.
6: until There is only one cluster with all the sites in it
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6.1.1. Details of the Algorithm

1: Initialization of the matrix of distances D

The distance matrix is initialized as a square and symmetric matrix of dimension N ×N

where N is the total number of sites in the area we area considering. In our specific case,
when we analyse Lombardy territory, N is equal to 74× 50 = 3700. All we have to do is
to simply compute the distance between each site. The distance we employed is the one
defined in Section 5.4 in formula 5.3.

Notice that the main diagonal of this matrix is composed of zeros only (since on the diag-
onal we measure the distance of a site from itself) and that the matrix is symmetric, thus
we can lower the computational cost of this part by simply calculating only a triangular
matrix, halving the number of operations.

2: Initialization of the matrix of adjacency A

Once again, the matrix under consideration is square, symmetric and has only zeros on the
main diagonal. It is, moreover, binary. Differently from the computation of the distance
matrix, however, the adjacency A(i, j) is a bit more tricky to compile, since there exist
different cases based on the position of the sites into the grid. Indeed, there are three of
them, as highlighted in Figure 6.3:

1. the site i is placed in one of the four corners of the grid: in this case its neighborhood
is composed by only 3 other sites.

2. the site i is placed on one of the edges of the grid; in this case its neighborhood is
composed by 5 other sites.

3. the site i is in the interior of the grid: in this case its neighborhood is composed by
all the 8 sites around it.

3: Identification of closest adjacent clusters and grouping

Having initialized all the principal quantities we need, we enter in the iterative part: steps
3 and 4 regard all commands that are computed inside a "while" loop. The first step of
each iteration is to compute the auxiliary matrix C. Each element of C is obtained as the
product of the corresponding elements in the matrices of adjacency A and of distances D:

C(i, j) = A(i, j)×D(i, j) ∀ i, j ∈ {1, 2, ...,M}

where M is the size of the matrices A and D.
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Figure 6.3: From left to right, examples of the 3, 5 and 8 neighbors cases.

The auxiliary matrix C obtained in this way is, then, a square and symmetric matrix with,
at each iteration, the same dimension of A and D. This matrix resume the information
brought by both A and D since each elements C(i, j) is equal to zero if the two sites (or
clusters) are not adjacent while is positive if i and j are actually neighbors and, thus, the
value C(i, j) is equal to the distance between the two of them. For faster computations,
we then reduced the matrix C to a upper triangular matrix (since it is symmetric).

To find which are the two clusters that are going to be grouped together at each iteration
it’s enough to look for the smallest value greater than zero in C and get the indices of
the corresponding sites or clusters (notice that if we don’t consider only the triangular
matrix we would get two pairs of the same indices). At this point we just need to assign
each element of cluster j to cluster i, creating a bigger new cluster.

4: Update of the matrices A and D

Once we grouped together two clusters in a new one, we have to update both matrices A
and D to reflect the changes in the clustering structure.

First of all, the adjacency matrix changes because every time two clusters merge together,
we have to compute the neighborhood of the new group and, to this end, it’s sufficient to
do the union of the neighborhoods of the two old clusters.

For what concerns D, instead, the situation is a bit more convoluted: as long as we are
evaluating two simple sites, computing the distance between them is straightforward since
we proceed as done in the initialization of matrix D, but when it comes to evaluate how far
two clusters composed by more than one site each are, we have to decide a new standard.
There are several techniques adopted in hierarchical clustering applications but the most
commonly used are:
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• Single Linkage: measures the distance between two clusters as the minimum of the
distances between each element of the first cluster and each element of the second
one:

d(c1, c2) = min d(x, y) with x ∈ c1, y ∈ c2

Single linkage tends to cause what is called a "chain effect" for which the clusters
produced look like long chains of elements, grouping together elements that are
actually very different or far away from each other.

• Complete Linkage: measures the distance between two clusters as the maximum
of the distances between each element of the first cluster and each element of the
second one:

d(c1, c2) = max d(x, y) with x ∈ c1, y ∈ c2

Differently from the single linkage, complete linkage produces ellipsoidal clusters.

• Average Linkage: measures the distance between two clusters as the mean of the
distances between each element of the first cluster and each element of the second
one:

d(c1, c2) =
1

|c1||c2|
∑

x∈c1,y∈c2

d(x, y)

Also average linkage tends to produce ellipsoidal clusters.

• Centroid Linkage: measures the distance between two clusters as the distance
between the centroids of the two clusters:

d(c1, c2) = d(x̄, ȳ)

where x̄ and ȳ are respectively the centroids of c1 and c2. With the term centroid we
can address many objects, like the barycenter of the set for instance. With respect
to the previously mentioned techniques, this one is more rarely used.

To best meet our needs, we decided to employ the complete linkage: first of all we avoided
the flaw of the chain effect connected to single linkage, so that we discarded this method,
the computational load is lower than that of average linkage and centroid linkage, and,
moreover, we wanted the data in our clusters to be as close as possible (in terms of distance
D(i, j), not geographical distance) to each other and we thought that complete linkage
was the best one to pursue this goal. Following this decision, to update the matrix D,
at each iteration we have to substitute the two rows and two columns corresponding to
clusters i and j with a row and a column compiled with the maximum distance between
clusters i and j, and every other cluster in the matrix:
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D(c1, k) = max[D(i, k), D(j, k)] ∀k

where c1 is the new cluster formed by the union of clusters i and j. Figure 6.4 shows an
example of this operation.

Figure 6.4: In this example, clusters 1 and 2 are the closest and, thus, are grouped: the
distance of the new cluster {1,2} from the clusters 3 and 4 are respectively max[5, 6] and
max[4, 8].

Notice that, following this procedure, the size of A and D, and thus the size of the auxiliary
matrix C, shrinks by 1 at each iteration.

Additional details

To conclude the detailed description of the algorithm, we want to highlight the fact that
this method have been built in order to allow the user to travel backwards into the
clustering steps and observe the evolution of the grid. Indeed, the output is structured in
two elements:

• Clusters Matrix: this item is a N ×N square matrix where N is the total number
of sites composing the grid considered. Each row of this matrix is filled with indices
denoting the cluster to which the site has been assigned at that step, with the last
row representing the starting situation (when all sites are independent from each
other and form a single site cluster) and the first row being the case where all the
sites are clustered together. In this way, users have a nice and easy way to observe
the clustering situation that they are interested into: if they are looking for the
grouping with n clusters, it’s enough to look at the n-th row of this matrix. Notice
that the choice of always proceeding with clustering until we get a single group
is not demanding in terms of computational cost since the time needed for each
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iteration is proportional to M2 where M is the size of the matrices A and D at
that specific iteration. So, the time needed to complete an iteration decreases at
each step since the size of those matrices shrinks by 1 every time. For this reason,
unless we are interested in a huge number of final clusters (which is not the case
in our applications), the gain in comfort is largely greater than the computational
drawbacks.

• Merging Distances Vector: with "merging distance" we refer to the distance
measure between the two clusters that, at each iteration, are grouped in the same
cluster. In other words, it’s the minimum distance discovered in matrix C (and
thus the minimum distance measured between adjacent elements) at each iteration.
Notice that another quality of complete linkage is that it guaranties that the merging
distance is a strictly non-decreasing quantity. This very desirable feature of the
merging distance comes into play when we need a visual tool to decide how many
clusters to consider. A reasonable common practice in this kind of applications,
is to look for the largest jump in the sequence of merging distances because that
represents the moment where two clusters quite different from each other have been
grouped together. An example of merging distances curve is shown in Figure 6.5.
Once again, since our algorithm proceeds until it clusters together all the sites,
having at disposal the merging distances sequence may help in identifying which are
the clustering steps to look at.

Notice that, after having chosen how many clusters we want, it may be reasonable or
necessary (based on the specific needs or on the code following this run) to relabel the
clusters in order to assign them indices that go from 1 to K, where K is the total number
of clusters chosen. This because the algorithm assigns to each cluster a unique index but
not necessarily in the former range.

Moreover, also a procedure to return to a double index notation is suggested: we recall
that each clustering is denoted by a vector of dimension N , where N is the total number
of sites in the area. By reverting the conversion done at the beginning, it is possible to
return to a matrix in which each cell contains the label associated to the cluster that
site belongs to. This configuration is much better for plotting purposes and representing
results.
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Figure 6.5: This toy example suggests that there are 3 main candidates for the number of
clusters: 2, 3 and 6. It is choice of the user which number to adopt based on the specific
necessities.

6.2. Bagging Voronoi Classifier

The Bagging Voronoi Classifier is an algorithm proposed in Secchi et al. (2012) [40] as a
method to perform clustering of spatially dependent data. The algorithm is composed of
two main parts: the first one, the Bootstrap phase, in which the grid is divided in many
sets just on the base of geographical information, a representative is computed for each set
and then this sets are clustered together on the basis of the representatives similarities.
The second phase is devoted to performing cluster matching and, thus, produce the final
grouping that will represent the output of the algorithm.

The main feature of this method is its bootstrap nature and what the algorithm does in
the iterative part. This phase starts by producing what is called a Voronoi tessellation
of the grid, which is nothing different from a partition of the plane into regions. Given a
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set of points, named centres or nuclei, to produce a Voronoi tessellation we have to assign
each point of the plane to the region corresponding to the closest centre (see Figure 6.6
for an example of this structure). An informal use of Voronoi tessellation can be traced
back to Descartes [32] but these diagrams take name from Georgy Feodosievych Voronoy,
who defined and studied the general n-dimensional case in 1908 [50] [51].

Figure 6.6: Example of Voronoi Tessellation with 20 nuclei.

After having produced the Voronoi Tessellation, a representative quantity is computed for
each one of the elements and, based on these representatives, the clustering is obtained,
measuring the differences between them and grouping the most similar ones. The main
difference between the Geostatistical Hierarchical Clustering and the Bagging Voronoi
stands right in this part: while the first method defined a concept of adjacency to cluster
together only areas that are actually close both in space and in "behaviour" of the phe-
nomenon studied, the Bagging Voronoi does not impose any constraint of neighborhood
and let the data free to act for themselves: the idea is that those regions that are similar in
behaviour are also close in space and, thus, will form compact clusters and not scattered
ones.
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The main reason why we decided to test Bagging Voronoi on our dataset is that this
algorithm is thought for functional data. Indeed, once the Voronoi tessellation is formed,
each representative is computed as the "weighted mean" of all the curves included in
the subset (we will see later what we intend by means of weighted mean). This, with
respect to Geostatistical Hierarchical Clustering, represent for sure an improvement for
our purposes since it allows to capture more information in intermediate steps of the
procedure.

As done before we now proceed to report the pseudocode of the algorithm (Algorithm
6.2) and, in the next section, describe in detail every step of the method.

Algorithm 6.2 Bagging Voronoi Classifier
1: Initialize the hyperparameters of the algorithm: B, n, p, K and choose the distance

d(·, ·) used in the Voronoi Tessellation.
2: for b := 1 to B do
3: Choose a set of n sites Φb

n = {Zb
1, ..., Z

b
n} of the starting grid S0 to play the role of

centres and compute the Voronoi Tessellation with these nuclei.
4: Compute the representative gbi for each element i of the tessellation.
5: Perform dimensional reduction of the representatives by projecting them on the

space spanned by a proper p-dimensional orthogonal basis and, thus, obtaining the
p-dimensional scores.

6: Cluster the scores in K groups according to a chosen unsupervised method.
7: end for
8: Perform cluster matching, i.e. match the labels across the B bootstrap replicates of

the clusters, to ensure identifiability.
9: for all x ∈ S0 do

10: Calculate the frequencies of assignment of the site x to each one of the K clusters
and assign the site under consideration to the most frequent group.

11: Compute spatial entropy for the site x

12: end for

6.2.1. Details of the Algorithm

1: Initialization of the Hyperparameters

• B: the number of bootstrap replicates to produce. This number should be set high
enough to obtain reliable results but consider that the computational cost increases
with the number of iterations.
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• n: the number of elements that constitute the Voronoi tessellation. The choice
of this hyperparameter is crucial and when choosing it, it is necessary to evaluate
a trade-off: on one side, if we set n too low we will get elements of tessellation
that are too big and, thus, group together sites that are fairly different. On the
other side, if n is, instead, too large, we risk to obtain a final result with extremely
scattered clusters since we are not imposing adjacency in this algorithm. Moreover
the computational cost in this case would increase drastically. When setting n we
have to keep an eye on the structure of data we are working with: in our case,
applying this method to Lombardy, we have a big uniform area corresponding to Po
Valley, that will likely require few clusters, and the other half with mountains and
hills, characterized by wind regimes changing every few kilometers.

• p: the dimension of the orthogonal space where we project the representatives. This
choice depends strictly on the method used. In our case, we used the most classical
projection method for functional data, i.e. the functional Principal Component
Analysis, and thus we set p by observing the curves of variance explained by the
method. Referring to Figure 5.4 in Section 5.3, we opted for the first 4 principal
components and, thus, set p = 4.

• K: the number of clusters in the final result. Differently from the Geostatistical
Hierarchical Clustering, we have to choose this number a priori and not after running
the algorithm and, because of this, we have to carefully set it exploiting preliminary
information at our disposal.

• d(·, ·): distance utilized to perform the Voronoi Tessellation. Since we are working
on a grid of data described on the surface of Earth, the most obvious choice is to
compute the distance between each cell of the grid as the geodesic distance between
their centres. Another possibility, which simplifies the computation, is to exploit the
Pythagoras theorem and use the differences of the rows indices and of the columns
indices. In other words:

d(X1, X2) =
√
(r1 − r2)2 + (c1 − c2)2

where r1 and r2 are the row indices for sites X1 and X2 and c1 and c2 are the column
indices for sites X1 and X2.

2: Voronoi Tessellation

First of all, we have to select the nuclei for this step and notice that they must not be
same at each iteration; indeed the meaning of the bootstrapping procedure is to change at
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each iteration the starting point of the algorithm but, hopefully, get to similar conclusions
every time at the end. So, a possibility for the selection of centres is to sample them from
a Uniform distribution defined on the bidimensional grid S0:

Φb
n = {Zb

1, ..., Z
b
n} with Zb

i ∼ U(S0) ∀i ∈ {1, ..., n}

The uniform distribution is the most general and simple way to sample the centres but,
if we have any reason to think that it is present any sort of structure in the grid we are
considering, it may be appropriate to employ a different distribution, placing more nuclei
in some areas. For example, in our case we have seen that Lombardy is basically split in
two parts: Alps and Po Valley. About the plain, based on what we have observed so far,
we can say that it is a very steady area, with a uniform wind behaviour and thus we may
need to place less nuclei in this area with respect to the mountainous area where, instead,
wind changes quickly and substantially in just few kilometers of distance. For this reason,
we set the probability of placing centres on the Alps higher to the one assigned to plain,
to have more flexibility where it is needed without increasing the computational cost.
To do so, in particular, we exploited a feature offered by the R function sample, which
allow to set the probability of extracting each element of the pool. In practice, we set the
probability of extracting the first 25 rows (corresponding to the mountainous area) four
times higher than that of sampling the other rows (corresponding to the plain). In this
way, in the end, about 80% of the nuclei are placed in the northern part of the region
while only the remaining 20% in the south.

Once the nuclei are sampled, the Voronoi tessellation can be computed by simply assigning
each site x ∈ S0 to the nearest nucleus Zb

i according to the specified distance d(·, ·).

3: Compute Representatives

Now, for each element i of the tessellation it is required to compute the representative gbi .
We remind that, in this part of the analysis we are considering separately the two com-
ponents (longitudinal and latitudinal) of the wind vector because we want to maintain a
certain degree of information also under the light of the direction in which the wind blows.
So that, at this step, we are actually computing two representatives for each element of
the tessellation: one for component U and one for component V. The representatives gbi

have the role of capturing the "average" behaviour of data contained in each element of
the tessellation and can be computed in any way that satisfies the needs of the specific
problem.

In our case study, we employed a weighted mean with weights that are functions of the
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distance from the nucleus. In other words, the more a site is far away from the centre it has
been assigned to, the less its "importance" is in the computation of the representative,
while cells that are close to the nucleus will have greater relevance. In particular the
weights we adopted are computed as:

wi(x) =
1

1 + d(x, Zb
i )

where wi(x) denotes the distance of site x assigned to i-th nucleus. In this way, the
nucleus itself will have wi(Z

b
i ) = 1, the weight will be 1

2
for sites with distance equal to 1

and so on.

In practice, the representatives we computed for each element of the tessellation are the
two weighted averages (one for component U and one for component V) of the temporal
series of data in the subset. At this point, we managed to sum up the information of the
N sites composing the grid S0 into 2n representatives.

4: Projection on the p-dimensional space of the representatives

At this point, the algorithm performs a step of dimensional reduction: the goal is to
concentrate the information contained in the functional data that are the representatives
into multivariate data. In our specific case, we simply followed the same procedure of
smoothing and Functional Principal Component Analysis described in Section 5.1. First
of all we performed a smoothing with Fourier basis on both the representatives of each
element of the tessellation and then projected them on the 4 dimensional space of the
principal components. This because we aim at applying the distance defined in formula
5.3 to perform the clustering between the elements of tessellation.

5: Clustering into K groups

To end the bagging part of the algorithm, we need to cluster the n elements of the Voronoi
tessellation into K clusters. To do so, any unsupervised clustering method can work: the
authors of the algorithm proposed, for example, to apply K-mean clustering but, for
our purposes, we applied a hierarchical clustering procedure using (5.3) to compute the
distance between each element of the tessellation. In particular, first of all, we produced
the n × n distance matrix D, symmetric and with each element on the main diagonal
equal to zero.

Once the matrix of distances D is computed we proceed like in a common hierarchical
clustering procedure: at each iteration, find the smallest value (greater than zero) in D

and identify the corresponding elements or clusters. Assign them to the same cluster
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and update the distance matrix D to keep into account the fact that two clusters have
been merged together. In an analogous way to what was done in the Geostatistical
Hierarchical Clustering, we once again adopt the max to measure the distance between
clusters composed of more than an element. Indeed, when it is needed to compare the
similarity between clusters, we have to choose a linkage approach, as already described at
point 4 of Subsection 6.1.1, and also in this case we deemed better for our needs to use
the max:

D(c1, k) = max[D(i, k), D(j, k)] ∀k

where c1 is the new cluster formed by the union of clusters i and j.

Notice that, after each iteration, the dimension of D decreases to reflect the fact that two
elements have been merged together. These steps are repeated until the dimension of D
is reduced to K and, in other words, until we are left with the chosen number of clusters.

6: Cluster matching

The points from 1 to 5 represent the bagging part of the algorithm and, thus, have to
be repeated B times in order to obtain, at the end, B different clustering. The fact
that the centres are sampled randomly at each iteration, leads to the fact that these B

resulting clustering are likely different from each other, both in the grouping produced
and in the labeling. For this reason, the following steps are needed to exploit all the
information extracted in the bagging part of the algorithm and produce, in the end, a
single clustering.

First of all, we need to perform what is called a "cluster matching" step, to match the
cluster labels across bootstrap replicates and ensure identifiability. In other words, we
need that all the clustering produced in each bootstrap iteration are coherent and, thus,
"agree" on which one is cluster 1, which one is cluster 2 and so on to cluster K. To do so,
we first have to choose how to perform the comparisons to make the labeling coherent:
one possibility is to compare subsequent clustering replicates (c1 with c2, then c2 with c3

and so on). Another possible comparison routine is to choose one replicate as reference
(say the first one) and then compare each other clustering with that. Once the strategy is
chosen, to compare two clustering one has to first compute a contingency matrix H. This
K×K matrix measures how coherent the labeling of the two clustering considered are by
counting how many times the same label is assigned to each site in both clustering and
how many times instead two different labels are related to the same site. In particular:
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H(i, j) = c(i, j)

where c(i, j) is equal to the number of times that a site with label i in the first clustering
has label j in the second clustering under consideration. This means that the diagonal
elements of this matrix tell us how many times the labeling is coherent across the two
replicates (see Figure 6.7 for a graphical example).

Figure 6.7: In this example of contingency matrix we can see that the clusters that have
formed are quite similar but in some cases the labels assigned are different.

Once the contingency matrix has been computed we have to perform the relabeling in
order to ensure identifiability. As shown in the example of Figure 6.7, it may happen
that the cluster produced are very similar but the labeling is different in some cases.
The idea behind cluster matching is to maximize the total number of times the same
label is assigned to a site in both the clustering. In terms of contingency matrix, then,
the goal is to minimize the sum of the elements out of the main diagonal or, in other
words, maximize the sum of the elements on the diagonal. To do the job, we employed
the function solve_LSAP in the R package clue [19] which computes the permutation of
labels maximizing the sum of the elements on the diagonal of the contingency matrix.

7: Resulting clustering computation

The only thing left to do is the computation of the final clustering. To do so, we look
at each cell of the grid one by one, and count how many times each label was assigned
to it (after cluster matching of course) across all the replicates. In this way we want to
compute the frequencies of assignment of each of the K clusters to the site along iterations
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πk
x = #{b ∈ {1, ..., B}|x ∈ Cb

k}/B ∀k = 1, ..., K, where Cb
k is the set of sites whose label

is equal to k at replicate b. The most frequent label will be the one assigned to the
considered site in the final clustering.

In this last phase we compute also another quantity for each site of the grid, called spatial
entropy, which tells us how much "stable" or not our labeling is. This is a fact that we
want to study to understand if, in any site, we have a much more frequent label with
respect to others, which is the best case scenario, or all the labels are more or less equally
probable, which instead is bad. The spatial entropy is computed as:

ηkx = −
K∑
k=1

πk
x log(π

k
x) (6.1)

Notice that the minimum of expression 6.1 is equal to zero and is achieved when the
frequency of a single label is equal to 1 while equal to zero for all other labels; the
maximum, instead, is obtained when all the labels have frequency equal to 1

K
and, thus,

the maximum value for the spatial entropy is equal − log( 1
K
). This means that when we

have little uncertainty on the label to be assigned to a site, the spatial entropy is low while
when frequencies are more uniformly spread the spatial entropy reaches higher values.
Since the spatial entropy is a quantity with range that varies based on the number K of
clusters we choose, it is not easily interpretable, while it may be a good idea to normalize
the values of spatial entropy on the interval [0,1] to get a more understandable index.

6.3. Results

In this section we will present the results obtained employing the two algorithms in the
context of grouping areas with the same "meteorological regime". First, we will show the
results separately and, then, compare their performance.

6.3.1. Geostatistical Hierarchical Clustering

The geostatistical hierarchical clustering relies on a simple but effective idea and this fact
makes the algorithm easy to understand and quite fast in the computation. Its main
merit, however, is for sure the fact that you need to run it only once and then can retrieve
every result possible by just setting the desired number of clusters.

Also under the light of the results produced, the algorithm looks robust: in Figure 6.8
we show the results related to 6, 7, 12 and 28 clusters, while in Figure 6.9 we show the
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Figure 6.8: Results of the geostatistical hierarchical clustering with 6, 7, 12 and 28 clusters.
The higher the number of clusters, the more areas of interest are depicted in the graph.

related curve of merging distances.

There are many things to highlight concerning the results shown in Figure 6.8, the first
of them being the stability of the cluster covering the entirety of the Po Valley: across
all the examples shown it is needed just one cluster to group basically the southern half
of sites we are considering. This is clearly in accordance with what we expected since
the plain area is much more uniform than the Alps, thus the wind regimes across all
the Po Valley are very similar to each other and can be grouped all together. On the
other side, mountainous part of Lombardy is very heterogeneous, both in geographical
characteristics, with frequent alternation of peaks and valleys, and in wind behaviour.
Because of this, we see that in the northern part of Lombardy more and more groups are
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Figure 6.9: The merging distances curve relative to the application of the geostatistical
hierarchical clustering to the area of Lombardy. The cases shown in Figure 6.8 are high-
lighted here.

represented as we increase the number of clusters. The groups that we can see in the
various examples of clustering can have three different kind of nature.

The first case is the one characterized by big clusters like the one covering all the Po
Valley or the big one that we can always see represented on the Alps. While this first
case shows those more uniform areas, the more interesting ones are the other two, both
highlighting some details of the territory.

Indeed the second case groups together areas characterized by very peculiar wind regimes;
if we look at the example with 7 clusters of Figure 6.8, we can appreciate the clusters
covering the shape of the Valtellina and part of the Como Lake in red and of the Garda
Lake in dark blue, one with very low winds blowing mostly from East to West, and
the other showing mid to high winds with very sudden daily changes in direction, a
phenomenon typical of areas with large stretches of water. Another example of this case
is the small lightblue cluster under the Po Valley, appearing for the first time in the case
with 28 clusters and representing a small tract of Appennines.

The third case shows, again, areas with strong local characteristics but with generally
little spatial extension like all the small clusters appearing in the case with 28 groups.

To prove the quality of the grouping produced, Figure 6.10 reports the (smoothed) trends
of the average winds in three of the most recognisable clusters; colors are taken to match
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the ones relative to the 7 clusters case in Figure 6.8. For the Po valley, we can see
that both U and V components are low throughout the year, with almost no seasonal
difference; regarding Valtellina, we can notice once again its low latitudinal winds while,
for the Garda Lake, we have more intense winds, especially during winter months.

Figure 6.10: The two images show the smoothed average trends of the U and V compo-
nents of wind for the clusters of Po Valley, Garda Lake and Valtellina.

This behaviour also confirms the results obtained in Chapter 5 regarding principal com-
ponent analysis; indeed, here we can appreciate some examples of the interpretations of
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the principal components (see Figure 5.7). For instance, in correspondence of the Garda
Lake, we could see strongly negative scores for the first PC of the longitudinal winds; like
we said, this translates into very negative winds, especially during winter months, as we
can see from the average trend for the cluster reported here.

To conclude, in Figure 6.11, we report a comparison between the results with the Geo-
statistical Hierarchical Clustering and the grouping produced in Section 4.3 where we
analyzed the hazard linked to high winds for each cell of the grid.

Figure 6.11: While they are very different, some areas are recognisable in both the graphs.

Of course the two graphs show very different characteristics, since they capture different
kind of information (one the hazard, the other groups together areas with similar wind
behaviours), however we are able to recognize, in both images, few areas of interest like
Valtellina, the Garda Lake or the very high risk areas in the north-east part of the region.

6.3.2. Bagging Voronoi

Coming to Bagging Voronoi, this algorithm has for sure many desireable features for our
analysis and a quite convoluted procedure that brought us think that it would have been
a promising and more sophisticated alternative to Geostatistical Hierarchical Clustering.
Moreover, consisting of many steps, the Bagging Voronoi is quite open to modification
of the original structure and allows the user to apply the techniques he deems more
appropriate for the situation. In our specific case, we tried many ways of personalization
of the algorithm, like non-uniformly distributed nuclei for the Voronoi tessellation or
an unsupervised procedure that drifts from the original K-means suggested. Here we
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will report an example of the results obtained with each variation together with the
corresponding spatial entropy graph, and then dive deeper into details of the best case.
In Figure 6.12 are shown the original case, with uniform tessellation and k-means, the
case with uniform tessellation and an unsupervised clustering procedure based on (5.3),
and finally the case with both non-uniform tessellation and clustering with (5.3), all three
with their respective graphs of normalized spatial entropy.

We can see that in all the three cases the results are not so appealing at a first look.
The main issue is that the clusters are quite scattered all around the grid: in the first
place this is caused by the fact that the Bagging Voronoi algorithm does not introduce
anywhere the concept of adjacency and, thus, the clusters that form are allowed not to be
connected. On the other side, we can see many isolated pixels in the middle of clustering
to which they do not belong and that is because of the cluster matching part.

Another thing to notice is the graph of spatial entropy; as already said, the spatial entropy
gives an idea of the uncertainty linked to the assignment of a label to a given cell of the grid.
The ideal behaviour would be to have low spatial entropy in the middle of the clusters and
high on the borders of between clusters, but in our cases we see that the spatial entropy
is actually pretty high everywhere. We can appreciate, however, an improvement in the
performance when we drift from the original model towards the non-uniform tessellation
with hierarchical clustering case, in which at least the Po Valley shows a less uncertain
profile.

Based on this last insight due to spatial entropy, confirmed by the first panel of Figure
6.13 where we confront the mean spatial entropy of the three cases, we decided to further
analyze the third case shown in Figure 6.12 and hopefully retrieve better results. For this
reason we performed some attempts with different values of the hyperparameter n, the
number of nuclei for the Voronoi tessellation; in particular, we computed clustering for n
= 100, 500, 1000, applying the non-uniform tessellation described in subsection 6.2.1, 12
clusters and hierarchical clustering based on (5.3). The results are portrayed in Figure
6.14 with their respective spatial entropy.

It is quite apparent that, by increasing the number of elements in the Voronoi tessellation,
both the clustering and the spatial entropy improve. About the clustering, in the cases
with higher n we lose the sharp division between mountainous and plain areas that we
see with n = 100 but we can appreciate the presence of those features highlighted by the
Geostatistical Hierarchical Clustering, like Valtellina and Garda Lake. On the side of the
spatial entropy, while the case with n = 500 is slightly worse than n = 100, the case with
n = 1000 shows a huge improvement, as highlighted in the right panel of Figure 6.13.
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Figure 6.12: Examples with number of clusters K=12 for the three cases of Bagging
Voronoi considered with respective normalized spatial entropy.
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Figure 6.13: In the first graph we show the values of mean spatial entropy for the three
possible cases, with the same value of n. In the second one, the case of non-uniform
tessellation with hierarchical clustering for different values of n.

While this last case with a lot of elements in the tessellation shows encouraging results, we
have to point out the fact that, by increasing significantly the number of starting nuclei we
get closer and closer to what Geostatistical Hierarchical Clustering does, basically: we lack
the adjacency concept and have the boostrap steps but, with a lot of subsets composing
the tessellation, the variations obtainable in the phase of tessellation are limited and the
representatives computed are not so different from the single site’s time series (since each
one of these subsets will be small).

6.3.3. Comparing the two algorithms

To conclude this part of analysis we want to compare the performances of the two algo-
rithms described in this chapter. In our opinion, the Geostatistical Hierarchical Clustering
is much better suited than Bagging Voronoi for this case study. The results are more con-
vincing, more coherent and, considered the high spatial entropy shown by the Bagging
Voronoi, does not depend on the initialization like the counterpart. The appealing results
of the Geostatistical Hierarchical Clustering are for sure due to the constrain of adjacency,
which makes totally sense since we are looking for areas with the same wind regime. The
Bagging Voronoi, which instead lack this concept but relies on the bootstrap strategy,
shows scattered clusters and does not seem to highlight areas of interest like the Geosta-
tistical Clustering, unless we set a very high value for n. Moreover, the Bagging Voronoi
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Figure 6.14: Bagging Voronoi results relative to different values of n.
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is much heavier than the other one also from the point of view of code and computational
costs. We estimated that the Bagging Voronoi requires, with B = 100 iterations in the
bootstrap phase, on average, 10 to 15 times more time to finish with respect to the time
needed by the Geostatistical Hierarchical Clustering. One can argue that the Bagging
Voronoi computational time can be significantly decreased exploiting parallelization, and
this is for sure true, but the great number of hyperparameters makes this algorithm really
demanding in terms of tuning. Each time we want to change, for example, the number of
clusters to be produced, we have to run the entire routine from the beginning. Conversely,
the Geostatistical Hierarchical Clustering requires just a single run from which we can
retrieve all the possible results we may want, thanks to its hierarchical nature.

In conclusion, for this specific purpose, we felt that the Geostatistical Hierarchical Clus-
tering was better suited than its counterpart; the Bagging Voronoi, we deem, shows to
have difficulties in performing on such heterogeneous areas and it’s probably thought for
application on small uniform areas or on low resolution, very large areas, while it struggle
in this mid scale applications.



7| Energy from Wind

In this final chapter we will look at the wind from a different perspective. Indeed, if up
until now wind has been considered as a threat and the effort has been focused on the
understanding of the risks related to it, from this point on we will consider it as a possible
resource, investigating its capability of producing renewable energy.

After an introduction on wind energy in the world and in Italy, we will take a look
specifically at the Lombardy region, where the possibility of producing energy from wind
is notoriously almost non-existent. The major drawbacks will be presented also in light
of what has emerged in past chapters and we will try to investigate the applicability of
small scale wind turbines which, necessitating of lower wind speeds, may offer a solution
to produce sustainable energy in this region.

Throughout the chapter, we will use notions taken mainly from "L’energia elettrica dal
vento" (2017) [37], a publication, in Italian, by RSE (Ricerca sul Sistema Energetico), the
same Italian research society that produced the dataset we are using.

Notice that the work done in past chapters will show to be related to this topic and many
mathematical procedures can be useful also from this point of view. Take for instance
the assessment of wind characteristics and modeling done in Chapter 2, knowing precisely
wind features of a site is of paramount importance in determining its value from an
energetic point of view. Indeed, efficiency of wind power generation is a key factor in
the development of this technology; wind energy resource assessment is an essential part
of the feasibility of wind farm projects and whether this assessment is reasonable or not
directly impacts the cost/benefits analysis (see Shi et al. 2021 [41]). Therefore, to reduce
the uncertainty of wind power estimation, it is necessary to accurately understand the
distribution characteristics of wind speed and the work done in Chapter 2 will come in
handy to properly estimate distributions.

Similarly, clustering algorithms presented in chapter 6 will be reconsidered to form clusters
with similar wind energy productivity, highlighting their flexibility and wide range of
applicability once the proper precautions have been taken.
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7.1. Wind Energy in the World

Since ancient times, humankind has used wind as a resource, exploiting eolic energy for
its benefits in applications like sail navigation and windmills. The importance of this
resource has become even more evident in recent years, when energy demand has become
a more and more pressing problem. With the continuous growth of the population and the
rapid development of the global economy, energy demand is also increasing. Traditional
fossil fuels (such as coal, oil, natural gas, etc.) have been widely used in almost all areas
of daily life; however, fossil fuel reserves are limited and their excessive usage is leading
to climate change, with the well known possibility of disastrous consequences.

For these reasons, a great effort is being made to develop sustainable alternatives aimed
at environmental protection, emission reduction and social development; finding energy
sources more broadly available and with less negative impact on the environment. Wind
energy is one of the potential renewable energy sources that can be used for commercial
purposes and many countries have started to move towards this direction to improve their
energy production.

As reported by the International Energy Agency (IEA) in their last report [23] (relative
to the year 2021), wind remains the leading non-hydro renewable technology, generating
1870 TWh in 2021, almost as much as all the others combined, with a growth of 17%
with respect to the previous year. However, they underline the necessity to accelerate
even more this growth in order to reach the objective of the Net Zero Emission by 2050
scenario, which has established the need to reach 7900 TWh of wind electricity generation
by 2030 (Figure 7.1).

The leading country in the world for wind energy production is China, with over one third
of the whole wind capacity installed, while Italy figures at the 11th place (data from the
IRENA report of 2021 [24]). Moreover, China is also the country with the biggest growth
in capacity in the last years, showing a positive leading attitude in the development of
renewable energy and a commitment towards sustainability.

Wind keeps being exploited mainly by means of wind farms of big dimensions, both on
shore and off shore but also the diffusion of wind turbines of small dimensions is slowly
increasing.

7.1.1. Wind Energy in Italy

Italy is on a good track regarding renewable energy: objectives for production have been
reached some years earlier than expected, reaching the pre-established goal of 17% of the
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Figure 7.1: Wind power generation in the Net Zero Scenario, 2010-2030 (IEA report 2022
[23]).

total consumption in 2017 instead of 2020. In particular, wind energy was responsible for
15-20% of the total production from clean sources in the last years (see ANEV report of
2022 [3]). Now, the "Piano Nazionale Integrato Energia e Clima" (PNIEC), asks for an
even bigger effort for 2030, with 30% of energy from renewable sources and, in particular,
41.5 TWh coming from wind.

To aid this effort, the Wind Atlas of Italy (ATLAEOLICO [38]) has been produced with
the help of various research institutes. It offers an interactive online tool where average
speeds at different heights is reported, producibility is analysed both on shore and off
shore and already existing wind parks are reported.

Unsurprisingly, most of the productivity is found in the southern regions of the peninsula,
where winds are, on average, stronger due to the proximity with the sea. Consequently,
most of the wind turbines are found there while northern region produce little to no energy.
Figure 7.2 shows data of 2022 collected by ANEV (Associazione Nazionale Energia del
Vento) and relative to the production of wind energy in each region of Italy [3].

In particular, Lombardy, which has been the main subject of this work, produce basically
zero wind energy. This is due, on one side, to the low average wind speeds in the region
but, on the other side, also to its conformation: plain areas are densely inhabited and
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wind turbines cannot be placed too close to cities, while mountain areas (where also wind
speeds are more promising) lack sufficient open spaces where there is enough room to
build wind farms and are, again, inadequate for turbines.

Figure 7.2: Energy power produced in each region of Italy (ANEV report 2022 [3]).

For these reasons, we wanted to try to investigate a different way of producing energy
from wind in the form of small wind turbines (known as "mini eolico" in Italy). This kind
of turbines require lower wind speeds to work and don’t need big open spaces but can be
installed potentially everywhere, making them interesting for applications in Lombardy.

7.2. Small Wind Turbines

Internationally, are classified as small wind turbines the ones up to 100 kW of power, even
if, formally, according to the normative IEC 61400-2 (Design requirements for small wind
turbines), are part of this category systems with swept area less than or equal to 200m2,
corresponding to a diameter of less than 16m and a power of no more than 50-60 kW.
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(a) Horizontal axis (b) Vertical axis

Figure 7.3: Two examples of small wind turbines.

In the last years, technological innovation has had a key role in the commercial evolution
of the sector, which has seen a real impact in the generation of energy. Indeed, recent
machines have inherited components and technologies that have determined the success
of bigger turbines, with important results from the point of view of reliability and perfor-
mance. Importantly, in its Wind Implementing Agreement [42], IEA has set the target
to develop an international standard on quality of small wind turbines in order to further
help the development of the sector.

However, absolutely central in market orientation, is the role of an incentive system which
can pull producer towards one kind of turbines more than another. In particular, in Italy,
after some year of advantageous incentives for small wind turbines, the DM 4/7/2019 has
changed the situation, reducing economical help and pivoting the operators towards the
installation of bigger scale models, in general between 500 and 1000 kW.

Small wind turbines can be divided into two groups: horizontal axis (Figure 7.3a) and
vertical axis (Figure 7.3b). The most commonly used turbine in today’s market is the
horizontal-axis wind turbine which, typically, have two or three blades that are usually
made of a composite material such as fiberglass. However, also vertical axis one are
starting to see some diffusion and we will take one of this kind as example to evaluate
their applicability in Lombardy. Contrary to horizontal-axis turbines that can produce
energy only thanks to winds blowing according to their optimal direction, the vertical-axis
ones are actually independent on the direction of the wind, making them suited for many
more cases.
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Figure 7.4: An example of power curve of a wind turbine (Sohoni et al 2016 [44]).

The great advantage of small scale turbines is their reduced requirements from the point
of view of finding a suitable site for installation with respect to traditional, bigger models.
While large turbines require careful planning, investigating many more factors than just
wind speeds such as conformation of the territory on a large area, visual impact, ecolog-
ical impact, noise evaluation, etc., small models have much less limitations and can be
installed even in domestic contexts or in more remote areas, such as mountain villages,
where connection to the electrical grid may be more difficult, and thus offer energetic in-
dependence. The next section will be devoted to a case study to evaluate their potential
in the region.

7.3. Case Study

To evaluate the potential energy produced by a turbine we mainly need two things: the
distribution of wind speeds, which we have analysed in chapter 2, and the power curve
specific to the turbine (Figure 7.4).

The power curve must be made public by the producer as it summarize the fundamental
features of the turbine. It shows, for each speed of the wind at rotor height, the electrical
power (in kW) produced by the machine. One can notice that, to start production, it
is necessary for wind speed to be higher than a threshold called cut-in, which is usually
around 5 m/s for a large turbine and less for a small one. For growing speeds, power
increases until reaching nominal power; at this point, in most machines, the control system
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regulate power emission, producing a flat stretch in the power curve. For wind speeds
above the maximum (cut-out speeds), the system shut off the turbine for safety reasons
and no energy is produced until wind does not go back down to lower speeds.

Once we have both the wind speed distribution f(v) and the power curve P (v) we can
compute the theoretical producibility of the turbine. We remark theoretical, since compu-
tations are always done assuming that there are no major turbulence effects changing the
power curve and that the machine is always available for production. Under these assump-
tions, the total energy producible by a single turbine in one year, E, can be computed
as:

E = 8760

∫ ∞

0

P (v)f(v)dv (7.1)

where 8760 are the hours in one year (indeed, energy is measured in kWh).

7.3.1. Ecolibrì 10 kW Generator in Lombardy

For a practical example of application, we have chosen to study the energy produced by
the 10kW turbine developed by the Italian manufacturer Ecolibrì and to compare results
across Lombardy.

The turbine has vertical axis and an height of 10m. It occupies an area of just 100
m2 making it ideal for domestic use or installation in industrial areas and can be easily
combined in small grid systems made of multiple turbines, solar panel and batteries. The
power curve of this machine is reported in Figure 7.5. The cut-in speed is 3.5 m/s but
production does not start until wind speed is at least 5 m/s; cut-of speed is 15 m/s.

Figure 7.5: Power curve of the Ecolibrì 10 kW generator.
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Annual power producible has then been computed starting from the temporal series of
measured values of the wind; all 31 years available have been taken in consideration
and the final result is the average of the theoretical production computed in these years.
Computations have been done using a numerical approximation of equation 7.1 with linear
interpolation.

Results are presented in Figure 7.6. Unsurprisingly, this graph is very similar to the ones
produced in chapter 4, and it shows again that mountain areas, with higher winds, also
have higher capability of producing wind energy.

To evaluate performance, the index of interest is the capacity factor, a parameter repre-
senting the fraction of energy generated with respect to the one producible if the turbine
would have worked at nominal power for all the 8760 hours of the year. For the Ecolibrì
generator, this value is 87.6 MWh since, indeed, its nominal power is 10 kW.

Figure 7.6: Average power produced in Lombardy.

Results are not particularly excellent: the highest capacity factor in the whole area of
interest is 33.23%, which is in line with values for on shore wind farm according to IEA
measures [22]. However, only 14% of locations achieve a capacity factor of at least 10%
(i.e. they can produce at least 8.76 MWh) and most of them are located in mountain.
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7.3.2. Comparison of Results Obtained with Different Estima-

tion Methods

An interesting observation can be made on this topic regarding the choice of the best
approximation method.

Indeed, for practical reasons, in most productivity analysis for wind energy, estimation
of wind speeds distribution is done using directly a Weibull model (see Celik 2003 [11],
Bilang et al. 2021 [6], Zagubien et al. 2022 [54]) or, in some cases, even a Rayleigh one,
which corresponds to a Weibull with shape k = 2 and, thus, has even less flexibility. This
is done mainly because a sufficiently long series of in-loco observations is not available and
some kind of approximation must be done. As it turns out from our analysis, however,
this procedure may be imprecise and return results that overestimate or underestimate
production possibilities of a site.

To compare precision in the estimations, we established, as a point of reference, the results
obtained in the previous subsection, i.e. using measurements directly from the whole
temporal series and then averaging by year. Then, this was confronted with values of
produced energy obtained starting from an approximation of the wind speed distribution
made using a Weibull model and parameters estimated with the method of moments (see
Chapter 2).

Results are in Figure 7.7a, where the percentage differences between the two methods
have been reported. The mean error across the whole region, in absolute value, is around
20.34% but this number is greatly inflated by those locations where production is partic-
ularly scarce (sometimes as low as few hundreds of kWh) and thus percentage variation is
greater. Still, if we consider only sites with at least 10% capacity factor, the mean error
of the Weibull approximation method is 10.35%.

However, as the careful reader would remember, always in chapter 2, we determined
the best approximating distribution for each site between GEV, Weibull, Gamma and
Lognormal distributions and the Weibull model had this title only on a minority of them
(see figure 2.4b). For this reason, here, we tried to approximate wind speeds using the
probability function of the best fitting distribution and then we repeated computations
as before to obtain producibility.

Figure 7.7b reports the results of this new procedure and shows that choosing a more
appropriate distribution to model data translates also in a more accurate estimation of
the energy producible. Indeed, now, the mean error on the whole region is 9.76% and the
one computed only on the most potentially productive sites is down to just 3.79%.
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(a) Weibull model (b) Best fitting distribution

Figure 7.7: Percentage error with respect to the value computed from the temporal series.

These results underline once again two important points. On one side, they highlight the
need of data; as in every other field, more data means better models and approximations,
while having few of them leads to great uncertainties in the results. On the other hand,
they work as a real and practical example for the importance of proper mathematical
analysis and estimations in the process of developing new power production plants and,
in general, in the installation of wind turbines. A too large approximation in any part of
the cost-benefit estimation procedure may lead to wrong decisions with potential economic
repercussions and it is fundamental that, at every stage, the most accurate strategy (in
relation to the available data) is followed.

In particular, of great importance is the correct estimation of wind speed distributions
and model parameters, a field already flourishing with researches which should be con-
sidered more in practical applications. Indeed, our work has studied and compared some
estimation methods which have shown to achieve better results and many more are avail-
able in the literature but, as it has always been, translating research results into common
practice for applications require time.

7.3.3. Clustering based on Potential Productivity

When we think about how much wind energy a specific site would be able to produce the
first thing to observe is for sure how strong the wind blows there and this translates in
observing the wind annual distribution. Although the perspectives of producing energy
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thanks to the wind in Lombardy does not look very promising for the time being, the
scientific development in the field of renewable energy production is proceeding at very
high rate, and we don’t have to exclude that, in the future, there will be technologies
better suited also for Lombardy.

For this reason we want to produce a new clustering, based on the information brought
by the pdf and that aims at grouping together those areas with the same potential at
producing wind energy. To this end, we thought that, conversely from what seen previ-
ously in Chapter 6, the idea behind Bagging Voronoi algorithm could work fairly well.
So we decided not to use the algorithm as it was presented, but to take inspiration from
it, maintaining the bootstrap approach and simplifying the clustering phase; to do so,
in particular, we did not computed functional representatives to later project them on
a p-dimensional space, but we decided to directly build the representative of each ele-
ment of the tessellation by means of the densities computed with the function hist on
R. In practice, we set M = max(winds) (i.e. the maximum value recorded over the entire
grid), divided the interval [0,M ] into bins 0.1 km/h wide and, then, for each element of
the tessellation, saved the term density of function hist which measures the fraction of
data falling into each bin. Basically, to measure the distance between two elements of
the tessellation we measure the l1 distance between the vectors containing the computed
densities. An example of this comparison between histograms can be found in Figure 7.8.

Figure 7.8: In this example we compare the histogram densities of two elements of the
tessellation. Here the bins are 1 km/h wide for the sake of interpretability. The distance
between two elements of the tessellation is the sum of all the differences between columns
of the histograms.
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Thanks to this slight simplification in code, we managed to reduce dramatically the com-
putational load and speed up by at least 10 times the algorithm and, consequently, we
could afford computing many tries to better tune our hyperparameters.

Starting from the number of clusters K, we didn’t want to explore those cases with high
number of groups because we are not interested in discriminating too many cases. In
particular, we compared the cases with 3, 4, 5 and 6 clusters, for which we report the
results in Figure 7.9.

Figure 7.9: 4 examples of clustering, using K = 3, 4, 5 and 6.

By looking at this graphs, we notice that in the cases of K = 5 and K = 6, respectively 1
and 2 clusters are extremely marginal and actually hard to find on the grid. This means
that their role is negligible and, thus, more than 4 clusters are redundant. On the other
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side, while both 3 and 4 clusters cases look good, if we look at the data that are clustered
together in the case of K = 3, we can see that the red group contains in itself sites with
very different characteristics (see Figure 7.10).

Figure 7.10: In black the pdf of data in the cluster, in red the average curve. It is clear
that the data within this group show at least two very different behaviour.

For this reason we opted for K = 4 and analyzed deeper this case by tuning the optimal
value for the number of elements of the Voronoi Tessellation n.

To do so, we tested the performance of the simplified version of Bagging Voronoi described
before with many different values of n through the observation of the spatial entropy; in
particular, for each n we computed the average spatial entropy computed over the entire
grid. The values we considered in the first place for n are 100, 200, 400, 700, 1000 and 1500:
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remember that the total number of sites in our grid is 3700 and that we are employing
the same non-uniform tessellation described in subsection 6.2.1, which translates in the
fact that about 80% of nuclei are placed on the mountainous area and only 20% on the
Po Valley. Since we noticed that both n = 400 and n = 1000 gave similarly good results,
we explored also the cases around this two values: 350 and 450, and 900 and 1100. The
average spatial entropy is displayed in Figure 7.11 for each of the said values of n.

Figure 7.11: The graph shows the trend of the average spatial entropy as the value of n
varies. As we can see, n = 400 and n = 1000 show the best performances among all.

Since n = 400 and n = 1000 confirm to be the two best performing cases, we now report
their respective clustering results and spatial entropy on the grid. As we can see in Figure
7.12, both the cases achieve satisfying results both from the point of view of clustering
and of spatial entropy. Starting from the clustering we confirm what already noticed: the
major part of Lombardy is not so windy and, thus, at the moment, not really suitable
for the production of energy thanks to the wind. But on the mountainous areas or on
the Garda lake, as we said, the situation is much more promising and the clustering
manages to capture this behaviour. In particular, the case with n = 1000, thanks to the
higher "spatial resolution" given by the larger number of elements in the starting Voronoi
tessellation, manages to portray also those small isolated areas of higher winds like the
Appennines in the south and the surrounding of Milan.

Coming to the analysis of spatial entropy, again, both the graphs show good looking
behaviours, as we can find that desirable pattern for which the spatial entropy is actually
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pretty high just where we find the boundary between two clusters. This phenomenon can
be seen especially in the areas corresponding to Alps, where clusters alternates rapidly
and, once again, it is more pronounced in the case with n = 1000. So, while the case
with higher number of nuclei has a slightly larger average spatial entropy, the results it
achieves look actually better.

Figure 7.12: Results with the related spatial entropy for the cases with n = 400 and
n = 1000.

To sum up, in Table 7.1 and Table 7.2 we report, for the two cases n = 400 and n = 1000

and for each cluster, the average number of hours during which the wind blew with speeds
in the interval of production of Ecolibrì 10kW and the average energy that could have
been produced in a year by a single turbine, alongside the numerosity of each one of the
clusters.
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Red Green Purple Cyan

Number of sites 2830 290 327 253

Time Useful [hours] 612 257 2224 3363

Energy Producible [kWh] 2140 734 10264 18006

Table 7.1: Results for energy clustering, n = 400. The values of Time Useful and Energy
Producible are computed as the average computed over all the sites of the same cluster.

Red Green Purple Cyan

Number of sites 2596 165 317 622

Time Useful [hours] 464 175 1750 2566

Energy Producible [kWh] 1505 440 7409 12624

Table 7.2: Results for energy clustering, n = 1000. The values of Time Useful and Energy
Producible are computed as the average computed over all the sites of the same cluster.

As we can notice in these two tables and in the previous graphs, the case with n = 1000 has
a much bigger cluster (the cyan one) of high productivity and because of this the average
energy producible is lower, since it contains also sites with lower winds. In general, the
result with n = 400 highlights smaller area with higher average productivity while the
n = 1000 clustering shows that the number of sites with a good prospective in wind energy
production is actually larger.

7.4. Final Remarks

All things considered, the situation in Lombardy is not as bad as we were expecting.
According to ARERA (Autorità di Regolazione per Energia Reti e Ambiente) [4], on
average, a family composed of 3 people consumes 2700 kWh per year, with a total expense
of almost 1000 euros per year only to buy electricity. If we look closer to our results, we
can see that slightly more than 30% of the sites of the grid could actually produce this
amount of energy thanks to the employment of an Ecolibrì wind turbine. This is a very
encouraging result: 1/3 of the territory is already eligible, thanks to this technologies, to
produce domestically the electric energy needed to satisfy the household needs, and an
even larger percentage will when new and more efficient turbines will be developed.
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However, considering that most of the population lives in urban areas where wind speeds
are low and installation of a turbine is difficult for reasons of space, the possibility of
wind energy as a primary source of power seems still a distant future. Probably, at the
moment, these application are a reasonable investment only for more isolated locations in
high wind sites, for instance mountain farms or small villages, which are ideal in term of
requirements and where the installation of autonomous source of power can help achieve
energetic independence.

Finally, we remark that before installing a wind turbine, one needs to conduct an accurate
analysis of the site at small scale, to confirm that there are no local impediments and
obstructions to the wind flow.



8| Conclusions

With this work we were able to perform a throughout analysis of winds in Lombardy,
underlying the dual nature of this phenomenon and studying the mathematical and sta-
tistical procedures to better understand and analyse it. During the whole process we
looked at wind from many points of view, asking ourselves different questions and trying
to find an answer to each of them.

In the first place, regarding the statistical modeling of wind speeds, we confirmed that
always using the Weibull distribution regardless of the case in exam, as commonly done
in the state of the art, may lead to substantial approximation errors and, in many cases,
one can find distributions that better fit the real measurements. Indeed, in locations with
generally low wind speeds, we have found out that the Generalized Extreme Value distri-
bution achieves better results and, even with higher speeds, the Gamma and Lognormal
models may outperform the Weibull. A practical example of this fact has been displayed
under the light of energy production, where we showed that estimates obtained using the
best approximating distribution were more accurate, achieving an average error of less
than half the one of the Weibull.

Then, we quantified the hazard level in the whole region, focusing in particular on the
threat that wind represents for the electrical infrastructure. As it turns out, the majority
of the region is subject to low risk of extreme events; in particular, the plain area, where
most of the population lives and most of the infrastructures are situated, has consistently
low winds, associated with a low hazard level. Higher hazard can be, instead, found in
mountain area where, on the other hand, there are also less people and infrastructures.
However, here, the very same high wind speeds that can cause disruption to the power grid,
can be used to produce renewable energy: on one side we have higher risk for the electrical
infrastructure, while, on the other these, high winds translate into an opportunity to
generate power and a higher value for the inhabitants of these areas to produce energy in
an autonomous way.

In light of a characterization of wind regimes, we managed to produce clusters that group
areas of Lombardy that are subject to similar wind phenomena. In particular, we com-
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pared two different clustering methods and analysed their respective strengths and weak-
nesses, finding out, in the end, that the Geostatistical Hierarchical Clustering algorithm
was the better suited one. The good quality of the results produced is confirmed by two
aspects: on one side, we observed directly the characteristics of the average wind regime
of each cluster, finding out that they were clearly different one from another. On the
other hand, the clusters often matched well defined geographical areas, and the trends
shown were coherent with what we could anticipate knowing the general features of the
area.

Noticeably, the area of Milan, which had peculiar characteristics from the point of view
of hazard, under the light of wind regime, did not constitute a separate cluster but was
grouped with surrounding areas. Indeed, while the average wind in Milan is higher, the
trend is pretty similar to the rest of plain and, thus, needs to be placed in the same
cluster.

Finally, regarding wind energy, previous studies have largely demonstrated that Lombardy
is not suitable for the installation of "traditional" wind farms of big dimensions; for this
reason we explored the applicability of the rising technology of small wind turbines. We
were able to perform a large scale study covering the whole region, following the standard
procedure to estimate energy production but exploiting methods and results obtained in
previous chapters. Also in this case, Lombardy shows to be divided in two parts: on one
side, plain areas are not particularly suitable for wind energy production, both because
of lower wind speeds and also because dense urbanization imposes more constraints on
turbine installation, although this technology can still be applied. On the other hand,
mountainous areas are much more promising and the application of this rising technology
can help remote sites solving the problems of energy supply. In general, we can say that
the application of small wind turbines, although the favorable cases are still limited, can
be very helpful in some areas.

In conclusion, throughout this thesis, we worked on Lombardy to have a practical case
study but we remark that all the methods applied and all the analysis conducted can
be extended to whichever area one can be interested in. In particular, our research
demonstrated the validity of the techniques exploited in studying the dual nature of
wind, allowing for broader applications beyond Lombardy and paving the way for other
analysis on the topic.
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