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1. Introduction
The imminent rise of autonomous driving, slated
for realization by 2030, promises a transfor-
mative era marked by enhanced safety, com-
fort, and operational efficiency. The journey
from driver assistance to fully autonomous sys-
tems presents challenges, with LiDAR technol-
ogy playing a crucial role.
However, challenges like occlusion and limited
field of view hinder seamless autonomy. Fail-
ures in overcoming these challenges can lead to
dangerous situations, as observed in incidents in-
volving bad weather and detection failures.
To address these challenges and enhance spa-
tial awareness, vehicles can exploit Vehicle-to-
vehicle (V2V) communications to exchange sen-
sory information. This process takes the name
of cooperative perception.
Nevertheless, transmitting vast LiDAR data
poses practical challenges due to the imprac-
ticality of transmitting raw data with exist-
ing communication technologies. This paper
explores the cooperative perception of point
clouds, using a Grid-GCN model for point cloud
segmentation to determine data points crucial
for transmission.
The main contributions of this paper are the fol-

lowing:
• We present a novel deep learning-based co-

operative perception method that, differ-
ently from the existing cooperative percep-
tion approaches, proposes to use a graph
neural network to identify which points be-
longing to a point cloud acquired by a vehi-
cle are worth to be transmitted to another
vehicle. This approach allows the transmis-
sion of valuable raw data without overload-
ing the network.

• We develop a simulation framework for
testing our cooperative perception algo-
rithm. Differently from works that have
already provided a simulator based on
SUMO [1] and CARLA [2], we integrate
these simulators with the GEMV2 [3] to
simulate the V2V communication channel
accounting for the geometry of the urban
scenario.

2. Related Works
This section provides a synthetic but concise
overview of the literature on cooperative percep-
tion.
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2.1. Cooperative Perception Litera-
ture

The literature proposes different approaches for
the cooperative perception task. Each method
has its advantages and disadvantages.
In the late collaboration framework, each ve-
hicle uses the data acquired through its sensors
to perform object detection. Therefore, vehi-
cles cooperate by exchanging the speed and posi-
tion of the detected objects, increasing the over-
all perception. Even though late collaboration
saves bandwidth, it is susceptible to agent posi-
tioning mistakes and experiences estimation er-
rors and noise due to insufficient local observa-
tion.
The early collaboration approach aggregates
raw data from every vehicle to support an in-
tegrated viewpoint. As a result, every vehicle
may carry out the subsequent processing and
complete perception from a holistic viewpoint,
which can effectively resolve the long-range and
occlusion problems that arise in single-agent per-
ception. Arnold et al. [4] demonstrate that early
cooperative perception fusion can recall more
than 95% of objects, contrasting with the 30%
for single-point perception in the most challeng-
ing scenarios. Nevertheless, exchanging raw sen-
sory data needs extensive connection and can
overload the communication network with large
amounts of data, which makes it impractical for
most applications.
The Compression/decompression approach
proposes a setting where each vehicle compresses
its point cloud data to adhere to bandwidth con-
straints. The compressed data is then broad-
cast to other vehicles. Upon reception, vehicles
decompress the message and fuse the received
point cloud with their data.
However, this system assumes all vehicles em-
ploy identical compression and decompression
algorithms. This assumption poses challenges
when establishing communication between ve-
hicles with diverse equipment and cooperation
models.
As a result, we investigate the possibility of
identifying and transmitting only relevant points
from acquired point clouds to the receiver.

2.2. Deep learning for point cloud
analysis

Provided that our goal is to determine which
points belonging to a point cloud are worth the
transmission, we investigate the architectures
that take as input point clouds. Different ap-
proaches are proposed for point cloud process-
ing. Voxel-based models are a family of mod-
els that bring point clouds to spatially quantized
voxel grids. These models apply 3D CNNs to the
volumetric point cloud representation to lever-
age the spatial correlation among close regions
of the point cloud. Nevertheless, to maintain
the granularity of the data placement, high voxel
resolution is necessary. Processing massive point
clouds is expensive because of the cubic growth
in computing and memory requirements with
voxel resolution. Furthermore, as most point
clouds have approximately 90% empty voxels [5],
processing no information may waste a large
amount of computing resources.
Another family of models is Point-based mod-
els. These models achieve permutation invari-
ance of the input by using pooling to aggregate
the point features. Point-based models define
set functions to achieve order invariance. The
computation cost in point-based methods grows
linearly with the number of input points, mak-
ing it appealing for cooperative perception pur-
poses. However, the algorithms used to down-
sample the point cloud become the bottleneck,
making these methods challenging to scale to
large inputs.
An alternative family of models is the Graph
Neural Networks (GNN)-based models.
The point cloud is cast into a graph G(V,E)
with vertices V and edges E. Each point of
the point cloud is a vertex of graph G, while
a directed edge connects each point to all its
neighbors in the geometric space. Graph-based
methods are effective in segmentation tasks as
they can leverage the spatial information intrin-
sic to the graph data structure. Moreover, these
methods have a low memory footprint with re-
spect to voxel-based models. However, as point-
based methods, data structuring poses a com-
putational bottleneck for these algorithms. Xu
et al. [6] propose Grid-GCN (GGCN), which
combines the memory footprint efficiency of
graph-based methods and the data structuring
of volumetric-based methods to increase com-
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puting efficiency. GGCN has been proven to
be computationally efficient. Moreover, it shows
competitive performance in segmentation tasks.
Hence, we decide to employ GGCN architecture
for our architectures.

3. Proposed Method
We consider a vehicular urban setting covered
and served by a single Road Side Unit (RSU),
i.e., a communication node deployed along a
road or on the roadside providing connectivity
with the infrastructure to the vehicles crossing
the scenario.
Let Vt = {1, . . . , Vt} be a set of vehicles v served
by the RSU at time step t.
In our system, vehicles focus their attention on
a specific area within the field of view of sensors
to perform critical decision-making tasks. This
area is called the Region of Interest (RoI).
Each vehicle vrx is interested in pairing with an-
other vehicle vs to extend its environment per-
ception by receiving information from vs. How-
ever, the maximum amount of points that can be
sent is constrained by the maximum bandwidth
available.
Assuming that vrx at timestep t has a position
l(t), speed s and heading h, we aim to determine
if, given this information, vs can learn which are
the points Pmax = {p1, p2, . . . , pm} ⊂ Ps that
maximize the satisfaction of vrx, where Ps is the
point cloud acquired by the vehicle vs.
Given a point p ⊂ Pmax, we define the satisfac-
tion of vrx as:

S(p) = Rvrx(p) · α(p) · η(p), (1)

where Rvrx is the RoI score function, while α is
the Age of Information (AoI) function defining
the elapsed time from the acquisition of point p.
Finally, η(p) is the novelty score associated with
p, and it measures how much information p adds
to the vrx’s point cloud Prx.
Assuming that the vrx position, heading, and
speed are known to vehicle vs and that all vehi-
cles use the same functions R and α, vs can com-
pute both Rvrx(p) and α(p). Hence, the problem
reduces to learning the function η(p).
We model the cooperative point selection prob-
lem as a binary segmentation problem. We aim
to learn a function M : Rm×h ∪ R4 → {0, 1}m,
where m is the number of input points and h is

the number of features per point. The function
M should approximate the function u:

∀p ∈ Ps, u(p,G) =

{
1 if η(p) > β.

0 otherwise.
(2)

where G is a vector containing contextual infor-
mation on the position and heading of vehicle
vrx, while β is a tunable threshold.
In GNNs, it is common to incorporate such infor-
mation in a global node. Nevertheless, GGCN
does not provide this functionality. For this rea-
son, we adapt the GGCN architecture to our
needs.
Since vehicles communicate with a high fre-
quency, the environment does not change
abruptly between two consecutive time slots. In
this situation, we want to avoid the sender vehi-
cle vs sending to vrx the same data sent in the
previous time steps.
For this purpose, we introduce the Age of Trans-
mission (AoT) feature, which is assigned to each
point of the vehicle’s point cloud. The AoT of
a point p is a proxy for the time elapsed from
the last time the point p was sent to vrx. A ve-
hicle assigns the AoT to the point p acquired or
received at time t0 with the following:

αAoT (p, t) =


0 if t = t0.

1 if p is sent at t.

e−λAoT (t−t0) otherwise.

(3)

Assuming that the learned model M captures
the spatial relation between the input points,
we also aim the function M to learn that points
having low AoT close to points with high AoT
should not be sent because the receiver already
has enough information about that specific re-
gion.

4. Results
4.1. Simulation setup
To perform our experiments, we implement a
new simulator providing sensor and communica-
tion data. Our simulator relies on the SUMO [1]
simulator for the microscopic traffic simulation,
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while we employ the CARLA [2] simulator to
simulate the LiDAR acquisitions. Finally, we
exploit GEMV2 [3] to compute comprehensive
information regarding the communication chan-
nels between vehicles. All the mentioned simu-
lators are open source.

4.2. Training procedure
The problem formulated in Section 3 can be split
into two complementary subtasks:
• Spatial task: the aim is to learn the rela-

tionship between the position of the sender
vehicle, the receiver vehicle’s position, and
the sender’s acquired points. In other
words, we are interested in learning which,
among the sensed points by the sender, are
the points the receiver is spatially interested
in.

• Temporal task: the goal is to learn the in-
fluence of points with high AoT on close
points with low AoT. Thus, the sender ve-
hicle should learn to avoid sending points
belonging to the same spatial regions for
consecutive steps.

In the following, we will refer to the whole train-
ing task as joint task. We split the model
training into two distinct training phases: the
first phase involves performing offline training to
learn the spatial task; during the second phase,
we perform online fine-tuning to learn the joint
task.
The reasons behind this decision are multiple.
Firstly, solving the main task can be more chal-
lenging than its subtasks, causing slow conver-
gence during training.
First, learning to solve the main task can be
harder than its subtasks. Thus, the model can
slowly converge when trained to solve the for-
mer. Furthermore, learning the main task can
be time-consuming because the model must be
trained online. In online training, the simula-
tor introduces a nonnegligible overhead, which
slows down the training procedure—a simula-
tion step can require up to 4 times the time
needed for our model forward pass. However,
learning the spatial task does not require on-
line training, as it does not demand a dataset
capturing the temporal correlation between two
consecutive timesteps of a communication.

4.3. Experimental results
To illustrate the significance of learning the joint
task as opposed to just the spatial task, we com-
pare the Transfer Learning (TL) model (trained
only on the spatial task) against the model fine-
tuned on the joint task. Fig. 1 shows that both
models can learn the spatial task. Indeed, dur-
ing the first communication step, the accuracy is
around 83%. In contrast, the fine-tuned model
outperforms the TL model in the next communi-
cation steps, which means the FT model learns
to avoid sending redundant data. Figure 2 con-
firms the accuracy drop is induced by the fact
the number of redundant points sent increases
with the simulation steps for the TL model.
Therefore, the introduction of the Age of In-
formation shows an improvement in the overall
performance of the model.
We notice that the primary challenges involve
the speed of convergence and the time required
for training. Training the model using a Nvidia
Quadro RTX 6000 GPU takes approximately
one hour per epoch for offline training and up
to four hours per epoch for online training. The
difference in computation time between the on-
line and offline train highlights the heavy over-
head introduced by the simulator. Computa-
tional constraints prevent exhaustive research
over hyperparameters to be performed by means
of heuristic approaches.

5. Conclusions
In this paper, we introduced a cooperative per-
ception method wherein connected vehicles ef-
fectively choose LiDAR points to transmit, mit-
igating network overload. Our approach involves
learning the points that the receiving vehicle is
interested in but cannot perceive due to occlu-
sions. Additionally, we proposed the concept of
the Age of Transmission (AoT) to reduce redun-
dant data transmission across multiple commu-
nication steps.
We developed a simulation framework based on
the SUMO vehicular simulator, the CARLA au-
tomotive simulator, and the GEMV2 V2V chan-
nel simulator to generate a realistic synchronized
dataset of LiDAR acquisitions and V2V channel
data.
Experimental results show that our algorithm
can detect important areas that cannot be per-
ceived by the receiver vehicle with mean 81%
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Figure 1: Error bars of Transfer Learning (TL)
model compared to fine-tuned model (FT). The
error bar measures the average accuracy and its
standard deviation, computed for the accuracies
belonging to the 95th percentile. The error bar
is computed for each step of the communication.
Error bars are not perfectly aligned to their cor-
responding step tick. This is intended to make
more clear the comparison of the two models for
the same tick.

validation accuracy over different communica-
tion bandwidths. Furthermore, it is shown that
by introducing the AoT, data redundancy is
minimized as, on average, only 20% of the avail-
able redundant points are sent.
While the findings are promising, certain limita-
tions highlight areas for potential improvement.
Firstly, the model is trained on data from a sin-
gle simulation within the same urban scenario.
Expanding the training to encompass multiple
scenes is expected to enhance the model’s perfor-
mance. Additionally, the substantial overhead
introduced by the simulator prevents on exhaus-
tive exploration of the hyperparameters. As a
prospective work, we suggest a more in-depth
investigation into new hyperparameter settings
and different architectures is warranted.
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