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Abstract

Nowadays, the scientific interest concerning asteroids and their environmental features
keeps growing. These bodies provide hints on the primordial Solar System and, not less
important, they could represent a valuable source of metals, silicates and water. Several
missions, such as Deep Impact (NASA), OSIRIS-REx (NASA), Hayabusa and Hayabusa2
(JAXA), in the past few years were aimed to improve and better identifying the main
properties of these yet poorly known celestial bodies. Asteroids, in fact, grant also the
possibility to conduct space exploration at reasonable costs, representing therefore the
perfect targets for the next space achievements. Within this context, the goal of this
work is to assess the feasibility of an in-orbit asteroid samples collection mission, applied
in this scenario to the asteroid Ryugu. This will be of huge importance since not only
it will prevent any complication related to landing maneuvers, but also it will avoid
all the dead times present in a landing mission. According to the Circular Restricted
Three-Body dynamics, which considers also the effects of solar radiation and asteroid
aspherical potential, particles of different sizes ejecting from different longitudes and with
different ejection angles are then classified according to their evolution, finally building
a database. In doing this, bouncing behavior is investigated, applying, for each impact
angle, restitution coefficients arising from the interpolation of previously available data,
analysing the cases of rigid body model and point mass approximation for two different
sites on the asteroid. Then, through Hill’s equations, trajectories around the second
Libration Point L2 are studied, to understand the best possible solution for an orbiting
spacecraft. Finally, an aerogel-based collection strategy, already used in Stardust-NExT
(NASA), is here studied, initialising a preliminary design for such a collection mechanism.

Keywords: three-body problem, ejecta dynamics, bouncing behavior, Libration point
orbits, asteroid sample collection, aerogel capture





Abstract in lingua italiana

Al giorno d’oggi, l’interesse scientifico per gli asteroidi e le loro caratteristiche ambien-
tali continua a crescere. Si ritiene infatti che questi corpi forniscano importanti indizi
sul Sistema Solare primordiale e, non meno importante, potrebbero rappresentare una
preziosa fonte di metalli, silicati e acqua. Diverse missioni, come Deep Impact (NASA),
OSIRIS-REx (NASA), Hayabusa e Hayabusa2 (JAXA), negli ultimi anni hanno portato
avanti sforzi volti a identificare meglio le principali caratteristiche di questi corpi celesti
ancora poco conosciuti. Gli asteroidi, infatti, garantiscono anche la possibilità di condurre
esplorazioni spaziali a costi ragionevoli, rappresentando quindi i bersagli perfetti per le
prossime conquiste spaziali. In questo contesto, l’obiettivo del lavoro proposto è quello
di valutare la fattibilità di una missione di raccolta di campioni di asteroide rimanendo
in orbita, studiando in questo caso l’asteroide Ryugu. Ciò potrebbe essere di grande
importanza poiché non solo eviterebbe qualsiasi complicazione legata alle manovre di at-
terraggio, ma anche tutti i tempi morti presenti in una missione che lo preveda. Secondo
la dinamica del Problema dei Tre Corpi Circolare Ristretto, e considerando anche gli ef-
fetti della radiazione solare e del potenziale asferico dell’asteroide, particelle di diverse
dimensioni espulse da diverse longitudini e con diversi angoli di eiezione sono classificate
in base al loro destino, costruendo infine un database. Nel fare ciò, viene indagato il
meccanismo di rimbalzo, applicando, per ogni angolo di impatto con Ryugu, coefficienti
di restituzione derivanti dall’interpolazione dei dati precedentemente disponibili, sia ap-
plicando il modello di corpo rigido sia quello di corpo puntiforme, per due diversi siti
sull’asteroide. Quindi, attraverso le equazioni di Hill, vengono trovate e studiate le trai-
ettorie attorno al secondo Punto di Librazione L2, indagando sulla migliore soluzione
possibile per un satellite in orbita. Infine, viene studiata una strategia di raccolta basata
sull’aerogel, già utilizzata in Stardust-NExT (NASA), inizializzando il design preliminare
per tale sistema di raccolta.

Parole chiave: problema dei 3 corpi, dinamica attorno agli asteroidi, meccanismo di
rimbalzo, Orbite ai punti lagrangiani, raccolta campioni di asteroide, cattura con aerogel
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1

Introduction

An asteroid is a rocky body orbiting the Sun as also planets do, but it is much smaller
than them. Asteroids are leftovers from the formation of our solar system, which hap-
pened about 4.6 billion years ago: some of the condensing dust in the primitive cloud
became planets, while part of the material never had the chance to coalesce into planets
but rather it formed asteroids.
This origin makes it easy to understand that different asteroids were formed in different
moments under a wide variety of conditions, therefore each one presents its own features in
terms of shape, dimension, speed, material and orbit, that evolved in time. For example,
in the category known as Apollo asteroids1 (see Table 1.1) it is possible to find both the
satellites Didymos and Ryugu: the former is mainly composed of silicates while the latter
of carbonaceous rocks, therefore falling into class S and class C respectively (see Chapter
1.2). Both these asteroids are classified as Near Earth Objects (NEO), meaning that they
can represent an ideal target for space exploration, since their proximity to Earth allows
to plan a ground-controlled mission at a reasonable cost [1]. In fact, Ryugu has been
already targeted in the mission Hayabusa2 (JAXA), which successfully touched-down on
the asteroid to collect samples of the soil to be analysed on Earth. Such a mission has
to deal with small bodies with properties and environments that are mostly unknown or
unfamiliar. Their irregular shape, for instance, causes a non-uniform gravitational po-
tential, and this aspect gets worse considering also a non-uniform unknown density and
compactness.
Nevertheless, this kind of asteroid exploration mission is crucial to better characterise
the physical composition of asteroids, which are rich in valuable resources such as met-
als, silicates, and water. These could be exploited not only for planning future mining
missions but also can be useful for potential In-Situ Resource Utilization (ISRU), such
as extraction of water to be used for rocket fuel. Furthermore, asteroid exploration is
the key factor to mitigate the impact risk: improving our knowledge, in fact, will lead
to increased efficiency of asteroid deflection techniques to enable planetary protection if
and when a possible collision is detected. To underline the importance of this, the recent

1https://scienceworld.wolfram.com/astronomy/ApolloAsteroid.html
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NASA’s Dart mission proved that it is possible to change the path of an asteroid through
an impactor hitting the celestial body.
Moreover, a less practical aspect, but not less important, that pushes towards an active
and energetic asteroid exploration, is represented by the sake of knowledge. For what
has been previously said, in fact, asteroids are remnants of our early Solar System and
likely they carry fundamental information on its evolution: a detailed investigation of
their composition provides insight into the origins of life and the formation of the planets.
These motivations justify the willingness for detailed asteroid characterization and there-
fore the development of missions to send a spacecraft to an asteroid [2][3][4].

Thesis objectives

The final goal of this work is to perform a feasibility analysis in view of an on-orbit
collection of the ejecta from an asteroid. The collection, in fact, is thought to occur
by keeping the satellite on orbit about the second lagrangian point of the Sun-Asteroid
system, therefore falling in the domain of the three-body problem. Specifically, this will be
investigated considering the third body having a negligible mass when compared with the
primaries that, furthermore, are assumed to follow circular paths: these approximations
lead to the study of the so-called Circular Restricted Three-Body Problem (CR3BP).
The chosen approach concerns the ejecta energy level: starting from that, it is possible
to recover the so-called Zero Velocity Curves (ZVC), which are able to clearly separate
zones in the space that are naturally accessible to the ejecta during their motion and the
ones that are not: this, in the end, means that for a given energy and position, the ejecta
velocity will be uniquely defined as well [2].
Assessing the feasibility of such a collection strategy will imply understanding how many
particles will pass through the L2 gap which opens in the ZVC for certain energy levels.
The main difficulties, in fact, are to understand if an ejecta particle, once left the asteroid’s
soil, will escape through the L2 gap, permanently orbit the asteroid itself, or re-impact on
it. According to this, each ejecta particle can be classified into five classes, as suggested
by Scheeres et al. [5]: in class I the re-impact is immediate, occurring prior to the first
periapsis passage; class II features an eventual re-impact after the first periapsis passage;
in class III it is possible to find all those ejecta captured into a long-term stable orbit
about the asteroid; the ejecta in class IV eventually present at least one periapsis passage
before the escape; finally, in class V the escape is immediate, prior to the first periapsis
passage. It is easy to understand how most of the ejecta are expected to fall within the
first and fifth classes [5].
Furthermore, this study aims to define a reasonable threshold value below which the
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collection is said to be non-feasible and, equally important if not more, the amount of
time required to collect a sufficient number of items. This last aspect is a key parameter
to understanding and assessing the feasibility and the efficiency of a collection mission.

Thesis novelties

The novelties that this work aims to introduce are a few. One of the most important
features that this thesis wants to add is to expand the region of interest from just the
libration point, as already done by Latino et al. in [1], to a suitable halo orbit around it.
This will return a more realistic and useful point of view on the portion of space where
the ejecta can be captured. Moreover, this will increase the area of interest, likely leading
to more ejecta transits at the same time, finally increasing the feasibility of this collection
strategy. The second contribution is to perform a preliminary design of the satellite in
the Halo orbit around the libration point. In particular, a study on the possible capturing
mechanisms will be performed. As stated by Zhai et al. [6], for this kind of operation a
flexible capture is preferred with respect to a rigid system. Contrarily, a robotic-based
on-orbit service (OOS), implies an attitude disturbance to the satellite’s base caused by
the physical interception between the robot and the target object, as reported by Flores-
Abad et al. [7].
However, both these techniques are not suitable for the capture of multiple particles
having also a wide size range. The most adapt capture mechanism is found to be based
on aerogel, a novel material developed in the past few years. Aerogel has been already
used for the Stardust-NeXT mission (NASA), which therefore will be used as a guide to
take the first steps of the capture preliminary design.

Thesis outcomes

The outcomes of this thesis will be crucial to push forward and better understand the
technology and the tools required to perform an efficient asteroid exploration. This work
in fact will understand the behavior of halo orbits and where to put the satellite and will
better identify the requirements of the aerogel collection system.
Moreover, assessing the feasibility of an on-orbit collection of asteroid samples will lead
to the complete removal of the closing maneuver needed to land on the soil, which, in the
case of on-orbit capture, will be unnecessary. This is a pivotal aspect since it not only
mitigates the risk related to the landing phases but also avoids the dead times that in
a landing-mission will be present. Considering again the case of the mission Hayabusa2,
in fact, since each operation starts and finishes with the satellite at Home Position, it is
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required, in order to grant a safe landing of the spacecraft, to wait for the dissipation of
the generated ejecta plume around the asteroid (∼ 2 weeks for 1 mm size particles) [8].
Overall, the aim here is to increase our knowledge and experience with these celestial
bodies: being able to complete the program of this work, apart from its intrinsic goal,
would make the asteroid’s environment more familiar, moving closer to the prospects
introduced until now.

Thesis outline

The thesis is organised as described in the following lines. In Chapter 1, a brief summary
of asteroid’s distribution and main properties are reported. Then, a recap of the main
missions performing samples collection of asteroids and comets. Within these, Hayabusa2
will be the most investigated since, as clarified later on, Ryugu is the target of the mission
proposed. Chapter 2, instead, introduces the Circular Restricted Three-Body Problem,
at first in sidereal frame but then expressed in the synodic one, to be then reformulated
as adimensional. The Jacobi Constant and the Lagrangian points are then introduced,
and their behavior with respect to the perturbations considered, i.e. asteroid’s aspherical
potential and solar radiation, will be analyzed. In this chapter, also the recovery of the
so-called Hill’s problem, useful to study the periodic orbits around libration points, is
exposed. In Chapter 3 the actual work starts. Here, in fact, the procedure to obtain a
database reporting the final fate of the ejecta dependently on their initial conditions, is
presented. Specifically, after discussing how to recover the ejection conditions, this chapter
explains how the restitution coefficients are found, which category are defined and what
are the ranges considered for the longitude, ejection angle and size for an ejecting particle.
In Chapter 4 takes place the dissertation regarding the periodic orbits around L2. After
introducing the families of orbits, the chapter will introduce the differential corrections
and the continuation method used to recover those families. Finally, the trajectories in
the neck region are recovered for two different scenarios. In Chapter 5 the post-processing
of the work is carried on, analysing the results obtained, i.e. trends, behaviors and the
amount of particles that fall back on Ryugu, orbit it or leave its system., and establishing
a threshold to recover the minimum amount of time required to consider the collection
feasible. This, of course, will consider just the time spent in the asteroid’s system, without
taking into account the duration of the travel to reach the target. Chapter 6, instead,
deals with the identification of the best possible technique with which actually perform the
capture. This is found out to be an aerogel based mechanism, for which, a preliminary
design is carried on, approximating the dimensions needed and defining the main first
requirements involving the main sub-systems. Finally, in Chapter 7 the work is briefly
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summarised, underlining the principal outcomes of the work proposed.





7

1| Literature review

In this chapter, the asteroids’ main features will be introduced, in terms of orbital charac-
teristics, and therefore their distribution within the Solar System; and in terms of physical
features, which are size, mass, shape, rotation rate and spin axis. Furthermore, this sec-
tion will also analyze the techniques used to model the shape of an asteroid, a task which
becomes crucial to recover the gravitational field of the body and therefore to understand
the dynamics of the ejecta moving around it. Finally, a brief summary of past missions
concerning asteroid exploration will be presented. Specifically, JAXA’s missions Hayabusa
and Hayabusa2 will be here reviewed more in detail, particularly highlighting the aspects
that this last mission revealed about Ryugu, since it will represent the target of this work.

1.1. Asteroids distribution within the Solar System

Asteroids form a large and scattered group of Sun-orbiting bodies. The oldest and the
vast majority of them rotate around the Sun between the orbits of Mars and Jupiter,
in the so-called Asteroid Belt, with distances of 2.2-3.5 AU from the star, generally in
relatively low-eccentricity orbits. Asteroids in this region range in size from Vesta, with
530 kilometers of diameter, to bodies that are less than 10 meters across. The total mass
of all the bodies belonging to the asteroid belt is less than that of Earth’s Moon: the most
likely value on the total mass of the asteroid belt is estimated to be ∼ 2440 kg, which is
only about 4% of the mass of the Moon. The four largest objects, Ceres, Vesta, Pallas,
and Hygiea, account for approximately 62% of the belt’s total mass, with 25% accounted
for by Ceres alone. All these data can be easily found on NASA’s website, highlighting
how this belt represents the oldest and most studied group of asteroids and therefore,
in general, they represent the best-known category when compared with other asteroid
groups.
At the end of 2016 there were more than 750.000 cataloged asteroids, a number that is
currently increasing by thousands every month: to give an idea, the belt is now estimated
to contain between 1.1 and 1.9 million asteroids larger than 1 km in diameter, and millions
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of smaller ones. These asteroids probably were formed simultaneously with the major
planets from the protoplanetary disk, but in this region, the accretion of planetesimals
into planets was prevented by large gravitational perturbations imposed by Jupiter.
Despite what has been said, the main belt is mostly empty since the asteroids are spread
over such a large volume that reaching an asteroid without aiming carefully would be
improbable: therefore there is no worry about space probes hitting an asteroid on their
way to the outer Solar System but, contrarily, to get even close to an asteroid takes a
great deal of effort [9].
Another main group of asteroids takes the name of Trojans. A trojan is an asteroid that
shares the orbit of a larger body, remaining in a stable orbit approximately 60° ahead or
behind the main body near one of its Lagrangian points L4 and L5. In the Solar System,
most known trojans share the orbit of Jupiter and are divided into the Greek camp and
Trojan camp: the former is at L4 (ahead of Jupiter), and the latter is at L5 (trailing
Jupiter). More than a million Jupiter trojans larger than one kilometer are thought to
exist, especially in the Trojan camp, which is the most numerous.
Finally, the most interesting class of asteroids is represented by the Near Earth Asteroids
(NEAs). These bodies have orbits that pass close to that of Earth, having a semi-major
axis smaller than 1.3 AU. Sometimes, they can take the name of Earth-crossers in all those
cases in which the asteroid’s trajectory crosses Earth’s orbital path. A small number of
NEAs are actually extinct comets, while the rest, the bigger part, are asteroids driven
out of the main belt by gravitational interactions with Jupiter. Depending on their semi-
major axis (a), perihelion (rp) and aphelion distances (ra), NEAs are classified as stated
in Table 1.11.

Class Description Parameters

Atiras Orbits strictly inside Earth’s orbit a < 1 AU; ra < 0.983 AU
Atens Earth-crossers with SMA smaller than 1AU a < 1 AU; ra > 0.983 AU

Apollos Earth-crossers with SMA bigger than 1AU a > 1 AU; rp < 1.017 AU
Amors Orbits strictly outside Earth’s orbit a > 1 AU; 1.017 < rp < 1.3 AU

Table 1.1: NEAs classification.

In addition to this classification, another distinction can be done on the so-called Poten-
tially Hazardous Asteroids (PHAs). These bodies are near-Earth objects with trajectories
presenting close approaches to Earth and, simultaneously, large enough to cause signifi-
cant damage if an impact occurs. The key parameter is the Minimum Orbit Intersection

1Credits: NASA NEO Groups.
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Distance (MOID) with Earth that, for PHAs, is less than 0.05 AU [1].
Although potentially dangerous for Earth, as aforementioned, their proximity to the
planet allows planning missions at a low cost, meaning that NEAs represent an ideal
target for space exploration. This aspect has been particularly well highlighted by Tur-
coni [10], from which Figure 1.1 comes.

Figure 1.1: ∆V from LEO to closest NEAs, compared to the Moon and Mars [10]

Finally, a clear vision of the distribution of the asteroids within the Solar System is
reported in Figure 1.2.

Figure 1.2: Distribution of asteroids within our Solar System. Credits: Pablo Carlos
Budassi.
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1.2. Asteroids physical characteristics

Despite knowing the orbital parameters of thousands of asteroids, only for a few tens
of them the masses are also known. The only way to accurately estimate their masses
is to evaluate the effects of their perturbations on other objects thanks to observations.
This method, even though does not depend on the angle between the orbital plane and
the line of sight, can be considered a valid approach only for the most massive asteroids,
otherwise the disturbing action would be too small. Nowadays, thanks to more accurate
telescopes, interferometry and star occultations (or transit) have become the best methods
to determine the asteroids’ shapes and dimensions. Actually, the most precise results are
obtained through spacecraft flybys, which is clearly not feasible for all existing asteroids.
Regarding asteroids’ size, also this varies greatly for each asteroid, from almost 1000 km
for the largest down to rocks just 1 meter across. The biggest asteroids are very much like
miniature planets: they are roughly spherical, have at least partly differentiated interiors
and are thought to be surviving protoplanets. The vast majority, however, is much smaller
and irregularly shaped.

Concerning asteroids’ rotation, the spin is usually about the axis of their maximum mo-
ment of inertia, which is stable and it offers the minimum energy for a rotating body.
The rotation rates, instead, are typically of the order of some hours. This, as reported
by Johansson et al. [11], is related to the diameter of the asteroid itself. As shown in
Figure 1.3, in fact, the rotation period Trot shows a remarkably sharp cutoff which lies
very close to 2 hours for asteroids with diameters bigger than ∼ 150 m. Shorter periods
are associated with diameters smaller than 0.5 km. This is because most of the asteroids
are composed of material kept together by gravity rather than by cohesive bonds; then,
to rotate faster, the small body is forced to split into binary asteroids. In agreement with
this, in the same figure can be seen how smaller asteroids can rotate faster but are rela-
tively rarer. Of course, it must be underlined that smaller bodies are also more difficult
to detect and study, then this information could be partial or suffering by this bias.

Concerning instead the composition, which is widely differentiated and in most cases
poorly understood, asteroids can be classified by their characteristic emission spectra.
The majority falls into the C-type, X-type, or S-type classes, being mainly composed
of carbon, metals, or silicates respectively. Within the X-type class, it is possible to
further distinguish, according to their albedo, between P-type (the darkest), M-type and
E-type (the brightest), as already described by Tholen’s classification in 1984 [12]. The
modern classification takes the name of Small Main-Belt Asteroid Spectroscopic Survey
(SMASS): this includes several smaller classes, ending up defining 24 different types of
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Figure 1.3: Asteroids’ rotation period vs size [11]

asteroids. However, a deep discussion about the different classes of asteroids is outside
the aim of this work therefore, if interested, please refer to [13], which provides also the
clear plot shown in Figure 1.4: this reports asteroids’ mass as function of their density,
distinguishing between six different taxonomic groups. The figure shows how these bodies
lay around a mass value equal to 1019 kg, having larger dimensions for lower densities.

Figure 1.4: Density vs Mass for different taxonomic groups. Bodies with unknown tax-
onomy are plotted in black [13].



12 1| Literature review

1.2.1. How to model asteroids’ shape to recover the gravity field

Maintaining missions in the proximity of small bodies requires extensive orbit determina-
tion, which implies the use of more and more accurate models to approximate the shape
of an asteroid, to finally recover its gravity field. The most used techniques nowadays are
[14][5][10]:

• The tri-axial ellipsoid;

• The mascons model (multi-point mass);

• The polyhedral model.

The first approximates the shape of the asteroid with a simple geometric body. It is useful
for situations when a precise model of the gravity field is not needed, since it is obvious
that a basic geometric shape cannot describe the irregular surface of the asteroid, which
shows also asymmetries. Its advantages are that it is relatively simple to code and does
not present singularities.
The representation of a body with mascons, instead, compromises simplicity with ad-
equate fidelity. Assuming that observations can provide a good representation of the
asteroid’s surface, this method fills entirely its volume with non-overlapping spheres, each
one with a particular mass density and size assigned to it. This approach can lead to
regions of poor gravity field computation on the surface and it is inefficient if a high res-
olution is desired. Nevertheless, with this model, a Shape Continuation Method (SCM)
can be applied [15]. This method refers to the sequential approximation of the potential
of an asteroid, adding at each step one or more mascons to the simpler starting shape,
which is usually an ellipsoid.
Last, with the polyhedral model, the overall efficiency is usually higher than in the pre-
vious method, since this approach must only sum over the surface elements of the body,
rather than over the overall volume as in the mascons technique. This model also has
the advantage of giving a direct indication of whether the point is inside or outside the
asteroid. However, a large number of elements are required for an accurate field recovery,
thus increase of computational demand could represent a limit .

1.3. Asteroid exploration review

In this section, a review of past asteroid exploration missions is carried on. In particular,
the main focus will be on missions that performed impact with asteroid or sample collec-
tion landing on it rather than missions that have "just" performed a flyby or an imaging
study. This choice comes out directly from the purpose of this work.
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For all the followings, the main sources come directly from the mission agency’s website.

1.3.1. Deep Impact (NASA)

Deep Impact is a NASA Discovery Mission and represents the first space mission to
search beneath the surface of a comet, trying to reveal the secrets of its interior. The
target chosen for its objective was the comet Tempel1, which takes the name from its
first discovery attributed to Ernst Tempel in 1867. The comet represented a well-known
subject that had made many passages through the inner solar system, orbiting the Sun
every 5.5 years. This aspect makes Tempel1 a good target to study the evolutionary
change in the mantle or upper crust.
The mission involved a two-part spacecraft: a projectile body of about 370 kg and a
fly-by probe. After 174 days from departure, which happened on January 12th, 2005, the
spacecraft reached its target. On July 3rd, the separation between the two parts occurred.
The projectile impacted with the comet’s sunlit side surface only 24 hours later, releasing
∼ 1.96 · 1010 J of kinetic energy, equivalent to 4.5 tons of TNT: the so-formed crater
presented about 200 m of diameter and a depth of 30-50m but, anyway, this was not
enough to cause an appreciable change in the comet’s orbital path around the Sun. After
the release of the impactor, the flyby spacecraft maneuvered to a new path featuring a
closest approach from the comet of about 500 km. This enabled the spacecraft to observe
and record the impact, the ejected material blasted from the crater, and the structure and
composition of the crater’s interior. Astronomers, helped with data from Deep Impact,
came up with a list of compounds thought to be the recipe for planets, comets and other
bodies in the solar system. These include silicates, or sand, clay, carbonates, iron-bearing
compounds and even aromatic hydrocarbons. Finally, in February 2006, Deep Impact
team was able to discover water ice on comet Tempel1, marking the complete success of
the mission.

1.3.2. Stardust-NExT (NASA)

Stardust-NExT is a low-cost mission that aimed to expand the investigation of comet
Tempel1 initiated by NASA’s Deep Impact mission herein-above. Launched on February
7th, 1999, the probe successfully collected samples and fragments of the comet Wild2,
before arriving at Tempel1 on February 14th, 2011. En route to Wild2, the spacecraft
flew past asteroid 5535 Annefrank in 2002, where it performed a flyby at very high speed.
This was enough to derive an estimation of the asteroid’s shape and albedo. On the
contrary, due to the short time window, the spacecraft could not estimate the rotation
rate of the body. This was consistent with the very slow rotation period supposedly owned
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Figure 1.5: Artist’s concept of Deep Impact. Credits: NASA

by the body.
On March 24th, 2011, the mission ended since all the propellant was consumed. The
gathered material was therefore sent by means of a special capsule back to Earth, where it
landed on January 15th, 2006. The main novelties of this mission regarded the technique
exploited for the collection: Stardust in fact used a special low-density aerogel where
fragments remained stuck. This approach is perfectly suitable also for the kind of on-
orbit capture studied in this thesis, and therefore will be later examined in more details
(see Chapter 6).

1.3.3. OSIRIS-REx (NASA)

OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, Security, Regolith
Explorer) is NASA’s first asteroid sample return mission. The mission was designed with
the aim of collecting at least 60g of soil samples from the asteroid 101955 Bennu, an apollo
asteroid of type B, and returning them on Earth for detailed analysis. The selection of
Bennu as the target body is made possible by the regular encounters of the asteroid with
the Earth. Moreover, the similarity of their orbits, it is responsible for a higher collision
probability by the end of the 22nd century, increasing the interest regarding this celestial
object.
NASA launched OSIRIS-REx on September 8th, 2016 and it arrived at Bennu in Decem-
ber 2018. After this, the spacecraft surveyed the asteroid for more than two years in order
to observe Bennu and, on October 20th, 2020 it landed to collect samples, stowing them
in its sample return capsule. The re-entry of the gathered material on Earth is thought to
occur during 2023 but this represents one of the most critical tasks. The delivery itself,
in fact, is not simple: OSIRIS-REx must approach Earth at a precise speed and direction
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Figure 1.6: Artist concept of NASA’s Stardust-NExT mission. Credits: NASA/JPL-
Caltech/LMSS.

to deliver its sample return capsule into Earth’s atmosphere. If the capsule is angled
too high, it will skip off the atmosphere, and contrarily, if angled too low it will burn
up in Earth’s atmosphere. For this reason, OSIRIS-REx team changed the spacecraft’s
trajectory since it left Bennu on May 10th, 2021. Following this course adjustment as
well as a series of maneuvers planned for July 2023, the spacecraft will arrive at altitude
of about 250 km from Earth’s surface, close enough to release the capsule for a precise
parachute landing.

.

1.3.4. Hayabusa (JAXA)

The Japanese mission was the first asteroid sample-return mission ever attempted, aiming
to experimentally research new engineering technologies necessary for returning planetary
samples to Earth. The mission’s target was the asteroid Itokawa, a strange peanut-
shaped S-type asteroid with a rubble-pile structure. The launch was performed on May
9, 2003, and, after a swing-by of the Earth in May 2004, it reached the celestial body on
September 12, 2005, after traveling about 2 billion kilometers. After rendezvoused with
Itokawa, Hayabusa studied the asteroid’s shape, spin, topography, color, composition
and density by means of remote-sensing techniques such as high-resolution imaging and
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Figure 1.7: Asteroid Bennu ejected particles from its surface on Jan. 6, 2019,
as seen by NavCam1 imager aboard NASA’s OSIRIS-REx spacecraft. Credits:
NASA/Goddard/University of Arizona/Lockheed Martin.

LIDAR sensing. This first phase ended in October of the same year. Due to the extremely
weak gravitational pull of the small body and non-negligible Solar Radiation Pressure
disturbance, the spacecraft actually did not achieve a proper orbit about the asteroid but
rather was forced to use a hovering approach exploiting its thrusters to perform an active
control, keeping the desired position with respect to Itokawa. Nevertheless, in November
2005, the probe successfully landed twice on the asteroid to collect samples in the form of
tiny grains of material, which returned to Earth aboard the spacecraft on 13 June 2010.
The results of the mission were then published in a special edition of the U.S. scientific
journal "Science", marking the first successful sample return from an asteroid.

Figure 1.8: Rendering of Hayabusa
Credits: JAXA website

Figure 1.9: Two Itokawa’s samples
Credits: JAXA website
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1.3.5. Hayabusa2 (JAXA)

This sequel mission, Hayabusa2 (Figure 1.10), aimed to investigate Ryugu, an asteroid
that follows an orbit with an eccentricity of 0.19 and an inclination of 6° with respect to
the ecliptic.
Ryugu is a different type of asteroid with respect to Itokawa, being a type C asteroid. The
experience gained with the previous mission has been exploited here: Hayabusa2, in fact,
followed the same method performed by the first Hayabusa mission, exploiting a hovering
approach to match the trajectory of the small body orbiting around the Sun rather than
the asteroid itself. The selection of the target asteroid was driven by the belief that the
composition of C-type asteroids still includes organic matter and water from when the
Solar System was forming. Moreover, this mission wanted to investigate the origin of the
Earth’s water and the origin of the organic matter that initially formed life. A further
aspect was to examine how the planets were formed through the collision, destruction,
and combination of planetesimals. "In short - as declared by JAXA itself on its website -
Hayabusa2 is a mission designed to elucidate the creation of life and the birth of the Solar
System".
The main payloads based on remote sensing operations were:

• The Optical Navigation Cameras (ONCs), used for navigation and proximity oper-
ation, as well as to search for interplanetary dust around the asteroid;

• The LIght Detection And Ranging (LIDAR) altimeter, which, scanning the distance
between the spacecraft and the asteroid’s soil, determined in detail the dimensions
and shape of Ryugu.

However, Hayabusa2 carried and deployed many other payloads, such as Rover-1A (HI-
BOU) and Rover-1B (OWL) that landed on the asteroid providing the world’s first photo-
graph from the surface of an asteroid; and the Mobile Asteroid Surface Scout (MASCOT)
which included an infrared spectrometer, a magnetometer, a radiometer and a camera
able to image the small-scale structure of regolith material. A further payload, actually
one of the most important, was the SmallCarry-on Impactor (SCI), consisting of a 2.5 kg
copper projectile shot to the surface by an explosive propellant charge (Figure 1.11). It
was used to excavate a crater revealing the inner layers of the asteroid.

The probe arrived at Ryugu on June 27, 2018, collected samples from the asteroid during
two touchdowns in 2019, and finally delivered the sample capsule back to the Earth on
December 6, 2020.
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Figure 1.10: Rendering of Hayabusa2
Credits: JAXA website

Figure 1.11: Photo of the impact of the SCI with Ryugu’s surface. Credits: JAXA website

Hayabusa2 results

The samples gathered were stored in two different chambers. Chamber A stored the
samples collected during the first touch-down sampling, for a total of 3.237 ± 0.002 g of
material. This was assumed to represent the surface material of Ryugu at the uppermost
centimeter-scale layer, which is the one more influenced by Sun, radiations, temperature
cycling and micrometeoritic impacts. Chamber C, instead, picked up the samples during
the second touch-down sampling, collecting 2.025± 0.003 g. The second touchdown was
close to the artificial crater excavated by the SCI and therefore these samples are assumed
to be representative of subsurface materials, that have not experienced long-term exposure
to space [16].
The samples obtained have sizes ranging from ∼ 8 mm, the largest average diameter,
down to fine sub-millimeter dust, with millimeter-scale particles being the most common.
Figure 1.12 shows the size distribution of the collected material for both chambers.

Figure 1.12 highlights a power index for chamber A+C steeper than the global average
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Figure 1.12: Size distributions of Ryugu’s particles [16].

index observed by the ONCs, underlining a higher relative abundance of the smaller par-
ticles [16]. There are several possible interpretations for this, among which a further
fragmentation during sampling impacts or the shocks and vibrations experienced during
Earth re-entry are the more convincing ones.
Concluding, all the features examined indicate that Ryugu is most similar to C1 chon-
drites2 but have a lower albedo, higher porosity and more fragile characteristics. However,
for further clarifications and details, if interested please refer to [16].
Table 1.2 summarises the main properties of Ryugu [8][16][17].

Property Value
Rotational Period 7.631h

Orbital Period 1.3years
Effective Radius 440m
Ellipsoid Axis a = 446.5m; b = 439.7m; c = 433.9m

µa 32m3/s2

Density (Bulk) 1282kg/m3

Mass (4.50± 0.06) · 1011kg

Table 1.2: Main properties of Ryugu.

2C1 chondrites are a group of rare carbonaceous chondrite, a type of stony meteorite. They are rich
in volatiles-water, organics, and other light elements/compounds.
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equations

Being involved in the study of a Sun-Asteroid system implies, of course, that this work is
inserted in the context of the so-called Three-Body Problem. A spacecraft, therefore, will
be subjected to the gravitational attraction of the two primaries, which move along their
orbits around the system’s barycentre by virtue of their mutual attraction. Moreover,
indicating with ms, ma and mS/C the masses of Sun, asteroid and spacecraft respectively,
it will hold that ms > ma >> mS/C : this means that the third body can be considered
as a "mass-less" object that cannot affect the motion of the other bodies of the system.
With this consideration, and assuming also that the primaries follow circular paths, it is
possible to reduce the problem to the so-called Circular Restricted Three Body Problem
(CR3BP), whose equations of motion are :

r̈ =
µ1

|A− r|3
(A− r) +

µ2

|B − r|3
(B − r) (2.1)

In the previous equation, centered in the system’s center of mass, µi represents the grav-
itational constant of the ith body (i = 1 for the biggest primary, i = 2 for the smallest),
A is the distance from the origin to the biggest primary, B is the distance from the origin
to the smallest primary and r is the position vector of the third body. In particular, A
and B can be expressed as follow:

A = A(t) = −A cos(ωt)i− A sin(ωt)j

B = B(t) = B cos(ωt)i+ A sin(ωt)j
(2.2)

In Equation 2.2, ω is the rotational velocity of the system around its barycentre, which
coincides with the origin of the system, while i and j are the axis of the so-called sidereal
frame. This frame is fixed in space, leading therefore to the description of non-autonomous
systems. As a consequence of this, in fact, in Equation 2.2 the time appears as an inde-
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pendent variable.

2.1. From sidereal to the synodic reference frame

Nevertheless, in the study of the CR3BP, it is much more convenient to work with au-
tonomous systems, which are all those systems that do not depend explicitly on time.
The biggest advantage arising from this is that all the features investigated and studied
within this context will be valid at any time instant. Basically, the aim here is to trans-
form the description of the problem from ẋ = f(x, t) to ẋ = f(x), deleting the explicit
time-dependence. In the previous expressions, x is the vector containing the states of the
problem. In this case, the motion of the third "mass-less" body, i.e. the spacecraft, can be
completely described through its position and velocity, meaning that ẋ can be expressed
as stated in Equation 2.3.

x =



x

y

z

ẋ

ẏ

ż


=⇒ ẋ =



ẋ

ẏ

ż

ẍ

ÿ

z̈


(2.3)

To reach this goal, it is possible to pass from an inertial frame, the sidereal one, to the
so-called synodic frame. This frame rotates in the x-y plane with the same angular rate
as the system, with the outcome that the position of the two primaries remains fixed with
respect to the origin, located at the system’s barycenter. Identifying as {̂i, ĵ, k̂} the base
of this new rotating system, the absolute velocity can be expressed as follow [18]:

v =
dr

dt
= ẋî+ x

d̂i

dt
+ ẏĵ + y

dĵ

dt
+ żk̂ = ẋî+ ẏĵ + żk̂ +

(
x
d̂i

dt
+ y

dĵ

dt

)
(2.4)

Defining now a vector Ω=[0 0 ω], Equation 2.4 can be modified into

v =
δr

dt
+ (Ω× r) (2.5)

Deriving again in time Equation 2.5 it is possible to recover the absolute acceleration,
expressed as reported in Equation 2.6.
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a =
dv

dt
=

δv

δt
+ (Ω× v) =

δ2r

δt2
+ (Ω̇× r) + 2Ω× δr

δt
+Ω× (Ω× r) (2.6)

For the circular problem, however, Ω̇ = 0, therefore the second term of the right-hand
side of Equation 2.6 vanishes.
It can be noticed that, up to now, the discussion regarded just mechanical transformations.
The CR3BP dynamics is introduced only now, using the definition of the gravitational
forces acting on the third body. Exploiting a new variable µ, defined in Equation 2.7, it
is possible to write the gravitational force as expressed in Equation 2.8.

µ =
m2

m1 +m2

(2.7)

F = −G
m1mS/C

r31
r1 −G

m2mS/C

r32
r2 (2.8)

In Equation 2.8, G is the universal gravitational constant while, calling R the distance
between the two primaries, r1 and r2 can be found as stated in the following expressions:

r1 = (x+ µR)̂i+ yĵ + zk̂ (2.9)

r2 = (x+ (µ− 1)R)̂i+ yĵ + zk̂ (2.10)

From the second law of dynamics, however, it is known that a = F /m therefore, equating
Equation 2.6 to Equation 2.8 divided by mS/C , it is possible to obtain the equations of
motion for the CR3BP expressed in the synodic frame (Equation 2.11).

δ2r

δt2
= −G

(
m1

r31
r1 +

m2

r32
r2

)
−Ω× (Ω× r)− 2Ω× δr

δt
(2.11)

At this point, it is useful to define the potential energy of the system. In particular, start-
ing from the gravitational contribution (Equation 2.12) and the rotational one (Equation
2.13), it is possible to recover the total potential energy of the three-body problem as
reported in Equation 2.14.

Ugrav = −G

(
m1

r1
+

m2

r2

)
(2.12)
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Urot = −1

2
Ω2(x2 + y2) (2.13)

U = Ugrav + Upot = −G

(
m1

r1
+

m2

r2

)
− 1

2
Ω2(x2 + y2) (2.14)

It can be shown that the gradient of U is equal to the first two terms of the right-hand
side of Equation 2.11, therefore the equations of motion become:

δ2r

δt2
= −∇U − 2Ω× δr

δt
(2.15)

The dynamics expressed in this is useful to reveal information otherwise hidden. For
example, such a dissertation is able to drive to the definition of an integral of motion, the
so-called Jacobi constant, and the identification of five equilibrium points in space, the
Lagrangian points. These arguments will be discussed in sections 2.3 and 2.4.

2.2. Adimensional equations of motion

The equations of motion in the synodic frame were already introduced with Equation
2.11. However, what is typically done is to adimensionalise the problem, transforming
it in order to work with non-dimensional quantities. This leads to the advantage of
dealing with more familiar numbers, as well as improving the efficiency and accuracy of
computational and numerical methods applied to study the problem. To make Equation
2.11 adimensional, a proper choice of the reference length, mass and time must be done.
Usually [19]:

• the reference mass is chosen equal to Mref = m1 +m2;

• the most natural choice for the reference length is represented by the distance be-
tween the two primaries, called R in Equations 2.9 and 2.10;

• the chosen time unit τ is such that the frequency of the system is 2π, driving to an
unit angular rate (Ω = 1).

These considerations will also fix the numerical value of G to one, as demonstrated in
with the following expression [1]:

Ω = 1 =

√
G(m1 +m2)

R3
=

√
GMref

R3
=

√
G · 1
13

→ G = 1 (2.16)
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The adimensional equations of motion, expressed in the synodic frame, become:



ẍ− 2ẏ = x− (1− µ)(x+ µ)

r3sp
− µ(x+ µ− 1)

r3ap

ÿ + 2ẋ = y − (1− µ)

r3sp
y − µ

r3ap
y

z̈ = −(1− µ)

r3sp
z − µ

r3ap
z

(2.17)

In Equation 2.17 appear the terms rsp and rap: they coincide with the adimensional
formulation of r1 and r2 already defined in relations 2.9 and 2.10. They can be expressed
as follow:

rsp =
√

(x+ µ)2 + y2 + z2 (2.18)

rap =
√

(x+ µ− 1)2 + y2 + z2 (2.19)

2.3. Jacobi constant

Analysing Equation 2.15, it is possible to take the dot product with
δr

δt
:

δr

δt
· δ

2r

δt2
= −δr

δt
· ∇U − 2

δr

δt
·
(
Ω× δr

δt

)
(2.20)

In the previous equation:

• −2
δr

δt
· (Ω × δr

δt
) = 0, since the dot product is performed between two vectors

perpendicular to each other;

•
δr

δt
· δ

2r

δt2
= v · v̇ =

1

2

d

dt
v2;

•
δr

δt
· ∇U =

δx

δt
· δU
δx

+
δy

δt
· δU
δy

+
δz

δt
· δU
δz

=
dU

dt

These considerations lead to:

1

2

d

dt
v2 +

dU

dt
= 0 =⇒ v2 + 2U = −C (2.21)

Equation 2.21 defines the so-called Jacobi constant, indicated with C. This quantity, by
definition, is half and opposite in sign with respect to the total energy of the system,
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expressed in Equation 2.22.

E =
1

2
v2 + U = −1

2
C (2.22)

This quantity, as can be understood by Equation 2.21, is conserved in time and through
the motion of the particle defining the only integral of motion of the system. Nevertheless,
since this is the only quantity conserved, the 3BP can not be solved in close form.
The Jacobi constant is important since it can be used as a check during computational
integration of the equations of motion but, more importantly, also because it can be used
to bound the motion of the third body within a prescribed region. In fact, if an energy
level and an initial position are fixed, then the magnitude of the velocity at any point is
uniquely determined as well but, on the other hand, if the velocity is set to be zero at a
given energy, the possible natural motion is bounded within space region that must solve
the following equation [1]:

−2U − C = 2G

(
m1

r1
+

m2

r2

)
+ Ω2(x2 + y2)− C = 0 (2.23)y[adimensionalized]

−2U − C = 2

(
1− µ

rsp
+

µ

rap

)
+ (x2 + y2) = 0 (2.24)

Equation 2.23 defines the so-called Zero Velocity Curves (ZVC), given by the intersection
of an object’s energy, which is constant, with the potential energy. In particular, an object
will be able to move inside the ZVC but never to go outside it (or vice versa) since, as
the name suggests, it will arrive on this surface with null velocity. In particular, defining
a critical Jacobi constant C∗ = −2U , the forbidden regions will be all those that feature
C ≥ C∗, since this leads to v2 < 0 that is physically unfeasible. Moreover, the ZVCs
define, with their surfaces, the boundaries of the so-called Hill’s Region. To be clearer,
Figure 2.1 shows the ZVC for the Eart-Moon system obtained fixing C = −1.5061: after
the definition of the Lagrangian points in section 2.4, it will be highlighted how the ZVCs
vary dependently on the energy level of a body (see Figure 2.6).
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Figure 2.1: Earth-Moon system ZVC for C=-1.5061.

2.4. Lagrangian points

Another piece of information that comes out of writing the problem in the synodic frame
is related to the existence of five equilibrium points fixed relatively to the rotating line
linking the primaries of the system. These points the name Lagrangian or Libration
points and represent the region in space where the centrifugal force is balanced by the
gravitational attractions of the primaries. Recalling Equation 2.15, it is possible to write

δ2r

δt2
+ 2Ω× δr

δt
= −∇U (2.25)

This expression, expressed component-wise, can be transformed into1:

ẍÿ
z̈

+ 2

00
Ω

×

ẋẏ
ż

 = −



∂U

∂x

∂U

∂y

∂U

∂z


=⇒



ẍ− 2Ωẏ = −∂U

∂x

ÿ + 2Ωẋ = −∂U

∂y

z̈ = −∂U

∂z

(2.26)

A static equilibrium, such as the condition that Lagrangian points provide, it is necessary
1For sake of simplicity and conciseness, eq. 2.26 shows only the three equations for the acceleration.



28 2| Dynamical model and equations

to force that ẋ = ẏ = ż = ẍ = ÿ = z̈ = 0. Feeding Equation 2.26 with these conditions
leads to:



0 = −∂U

∂x

0 = −∂U

∂y

0 = −∂U

∂z

(2.27)

This expression makes evident how the Lagrangian points coincide with critical points of
the total potential energy, shown in Figure 2.2 for the Earth-Moon system.

Figure 2.2: Total potential energy for PCR3BP having Earth and Moon as primaries.

2.4.1. How to locate the Lagrangian points

As already said, the Lagrangian points are five equilibrium solutions of the Planar Cir-
cular Restricted Three-Body Problem (PCR3BP). They can be divided into the so-called
collinear points, which are three unstable equilibrium points (L1, L2, L3) all located along
the line connecting the primaries, i.e. the x-axis; and the so-called equilateral points, two
points of stable equilibrium called L4 and L5.
Following Westra [20], let first seek for the point that does not lie along the x-axis, i.e.
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the equilateral points. Denoting with r1 and r2 the distances from the CoM of the biggest
and smallest primary respectively, the balance of forces leads to:

α(r − r1) + β(r − r2) = r (2.28)

where α and β are coefficients depending on r through |r−r1| and |r−r2|, respectively.
Rearranging Equation 2.28 it is possible to conclude that αr1 + βr2 has to be parallel to
r. Since by construction both r1 and r2 lie along the y-axis, this means that a solution
is possible only for αr1 + βr2 = 0 (excluding y = 0). From the property of the center
of mass it is known that M1r1 +M2r2 = 0, meaning that αr1 + βr2 = 0 if and only if
α : β = M1 : M2. Precisely, α and β will take the form of


α =

M1

|r − r1|
β =

M2

|r − r2|

(2.29)

The proportional relation therefore will be satisfied only if |r − r1| = |r − r2| = s. The
balance of forces expressed 2.28 becomes:

M1

s3
(r − r1) +

M2

s3
(r − r2) =

M1 +M2

|r1 − r2|
r (2.30)

Straightforwardly, this equation is satisfied only if s = |r1 − r2|. Finally, this means that
the two Lagrangian points searched are two points in the xy-plane, equally distant from
the two primaries. These solutions, therefore, lie on the vertex of equilateral triangles
whose base is the segment linking the two primaries. By convention, the point that is 60◦

ahead with respect to the smallest primary along its orbit is called L4, while L5 is the
one trailing the smallest primary 60◦ behind it.
Let now focus instead on the research of the collinear Lagrangian points, therefore fixing
y = 0. Following Koon et al. [21], it is possible to write the adimensional potential for
the PCR3BP as:

U(x, 0) = −1

2
x2 − 1− µ

|x+ µ|
− µ

|x+ µ− 1|
(2.31)

Referring to Koon et al. it is possible to say that U(x, 0) shall present one critical point
(i.e. one Lagrangian point) in each of the intervals reported in brackets in relation 2.32.
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L1 −→ x ∈ (−µ, 1− µ)

L2 −→ x ∈ (1− µ,∞)

L3 −→ x ∈ (−∞,−µ)

(2.32)

Furthermore, from 2.31, it is straightforward to compute the second derivative of the
potential with respect to the x-coordinate, reported in 2.33.

d2U

dx2
(x, 0) = −1− 1− µ

|x+ µ|3
− µ

|x+ µ− 1|3
(2.33)

Expression 2.33 is always negative, meaning that U(x, 0) is always concave in each of the
intervals reported in 2.32, therefore it will present precisely one critical point within each
interval. This is clearly highlighted in Figure 2.3, where the potential function is depicted
for µ = 0.1.

Figure 2.3: Critical points of the potential function with µ = 0.1, fixing y = 0. This
image clearly shows how each point falls within one of the intervals expressed in 2.32.

At this point, in order to locate the collinear points, it is easy to understand from Figure
2.3 that is required to compute the local maxima of the potential function, i.e. forcing
d
dx
U(x, 0) = 0. Defining as γ the distance between the ith Lagrangian point and the closest

primary from it, it will hold that [21][22]:
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L1 : γ5 − (3− µ)γ4 + (3− 2µ)γ3 − µγ2 + 2µγ − µ = 0

L2 : γ5 + (3− µ)γ4 + (3− 2µ)γ3 − µγ2 − 2µγ − µ = 0

L3 : γ5 + (2 + µ)γ4 + (1 + 2µ)γ3 − (1− µ)γ2 − 2(1− µ)γ − (1− µ) = 0

(2.34)

The series expansion of these solutions is provided by Szabehely et al. [22] and Moulton
et al. [23]. The expressions are stated in 2.35. It is then possible to feed those solutions
into a numerical solver, exploiting for example a Newton method, in order to retrieve the
exact solution of the quintic equations reported in 2.34. Finally from them, it is easy to
recover the positions of the collinear Lagrangian points from relation 2.36.

γ1 = rh

(
1− 1

3
rh −

1

9
r2h + ...

)
γ2 = rh

(
1 +

1

3
rh −

1

9
r2h + ...

)
(2.35)

γ3 =
7

12
µ+

23 · 72

124
µ3 + ...


L1 = (1− µ)− γ1

L2 = γ2 + (1− µ)

L3 = −µ− γ3

(2.36)

In 2.35, the term rh is called Hill radius, which can be computed as rh = (µ
3
)η, with η = 1

3
.

In fact, η = 1
3

corresponds to the spherical volume within which the effects of the biggest
primary are of the same order of magnitude with respect to the ones given by the smaller
primary [24]. This, in particular, is defined as Hill’s sphere, an argument that will be
discussed in more detail in section 2.5.
The following figures represent the positions of the Lagrangian points found following
the procedure described until now, in the case of the Earth-Moon three-body problem.
Figure 2.5 reports a contour plot of the potential in Figure 2.2: this highlights particularly
well the absolute dependence of these equilibrium points from the potential energy of the
system. From Figures 2.4 and 2.5 is also evident how, due to Moon’s gravitational effect,
the point L1 is able to rotate with the same angular rate (its position must remain fixed
in the synodic frame) even though it is closer to Earth.

Finally, the numerical coordinates of the Lagrangian points, for the Earth-Moon system,
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Figure 2.4: Position of the Lagrangian points in the Earth-Moon system.

are reported in Table 2.1.

Point x [-] y [-]
L1 0.836905544208351 0
L2 1.155683393219745 0
L3 -1.005062645554134 0
L4 0.487849413370501 0.866025403784439
L5 0.487849413370501 -0.866025403784439

Table 2.1: Earth-Moon system LP’s coordinates.

Once introduced the Lagrangian points, following [21], it is possible to distinguish the
five cases of the Hill’s region, the region bounded by the ZVCs. Calling Ei the energy
associated to the ith Lagrangian points, the possible scenarios are here below enumerated
and shown in Figure 2.6.

1. E < E1 : the particle can not freely move from one primary to the other. The two
realms are completely disconnected each other and also with the external one.

2. E1 < E < E2 : a neck region around the first Lagrangian point opens, enabling a
particle to pass from the bigger primary to the other and vice-versa but could never
reach the external realm.

3. E2 < E < E3 : at this energy level, not only the two realms are connected each
other, but a particle can potentially escape from the system through the bottleneck
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Figure 2.5: Position of the Lagrangian points in the Earth-Moon system. This plot clearly
highlights the dependence of these equilibrium points on the potential function.

that opens at L2.

4. E3 < E < E4 = E5 = −3/2 : also a "backdoor" passage is opened for this energetic
range. A neck opened at L3, in fact, enables the particle to escape form the system
without passing for L1 and L2 bottlenecks. Note that E4 is always equal to E5,
corresponding to -3/2.

5. E > E4 = E5 : in this case, the particle is completely free to move everywhere. The
forbidden realm has disappeared.

2.5. Hill’s problem

Since this work is focused on the study of a Sun-Asteroid three-body system, it is conve-
nient to make use of the so-called Hill’s approximation, originally introduced for the study
of lunar motion (Hill, 1878). Citing Batkhin [25], this approach can be seen as a limit-
ing case of the R3BP for cases in which the smaller primary is vanishingly less massive
than the bigger one, a condition that is perfectly suitable for the asteroid’s case. From
Equation 2.7, it is easy to understand that 0 ≤ µ ≤ 1/2 always, limits that correspond to
m1 >> m2 and m1 = m2 respectively. This means that Hill’s approximation is non-other
than the study of the first limiting case, having µ −→ 0 ([26]). Quoting Henon [27], the
case of µ = 0 can seem trivial: in this case, in fact, a third body feels the attraction of
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Figure 2.6: Cases for the Hill’s Region: the results shown are completely in accordance
with theory [21].

the bigger primary only, having therefore its motion described by the simple Keplerian
two-body problem. However Hill, in 1886 [28], found a way to reach a non-trivial formula-
tion for such a problem. Starting from a small value of µ but anyway different from zero,
there will be a region in the neighborhood of the second primary within which its effect is
not negligible but rather comparable with the one carried out by the biggest body. If at
this point, it is let µ −→ 0, i.e. making the second primary smaller and smaller, and, at
the same time, the third body is moved closer and closer to it by an appropriate change
of scale, the result will be a non-trivial system providing results different with respect to
the ones of the two-body problem. The main advantages arising from such a formulation
are the following [29][30]:

• the relative and the center of mass motions can be separated and the equation for
the motion of the center of mass can be integrated analytically;

• it is an invariant model that does not depend on any parameter, thus resulting in
broad generality for the results, whose application to different systems becomes a
simple matter of scaling;
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• the Jacobi constant is preserved;

• when numerically treated, the equations of motion of this formulation (see Equation
2.42) are not dependent on µ, avoiding numerical-related issues that would arise.

• it is a model that can be applied assuming that the distance between the Sun and
the asteroid is much larger than the distance between the spacecraft and asteroid
[3], which is a likely situation .

Following [27], it is possible to re-scale the coordinates as follows:

x = 1− µ+ µ1/3xHill

y = µ1/3yHill

(2.37)

Substituting 2.37 into 2.17 and letting µ −→ 0, the result is the Hill’s equations :


ẍHill − 2ẏHill = −xHill

r3
+ 3xHill

ÿHill + 2ẋHill = −yHill

r3

(2.38)

where r =
√

x2
Hill + y2Hill.

The Jacobi constant itself, even though still conserved, must be subjected to a re-scale
as well. In particular, feeding 2.40 into 2.39 and making µ going towards 0, the re-scaled
Jacobi constant can be expressed as stated in 2.41.

C = 2

(
1− µ

rsp
+

µ

rap

)
+ (x2 + y2)− ẋ− ẏ (2.39)

C = 3 + µ(2/3)Γ (2.40)

Γ = 3x2
Hill +

2

r
− ẋHill − ẏHill (2.41)

Once achieved this, highlighting the difference of the coordinates used in this new ap-
proach, for sake of brevity the subscript "Hill" will be no more reported from here on.
Extending now the dissertation also along the third coordinate, the equations of motion
and the Jacobi constant become [31]:
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ẍ− 2ẏ = − x

r3
+ 3x

ÿ + 2ẋ = − y

r3

z̈ = − z

r3
− z

(2.42)

Γ = 3x2 +
2

r
− z2 − (ẋ2 + ẏ2 + ż2) (2.43)

where r =
√

x2 + y2 + z2.

2.6. Perturbations Affecting the Dynamics

The discussion done until now does not include any perturbation affecting the motion of
the third body. However, in general, this is not true. In particular, there are different
kinds of forces that need to be taken into account to model the dynamics of asteroid ejecta,
and several of them strongly depend on the size of the ejecta itself. Referring to Gustafson
[32], identifying with s the linear dimension of a particle, while gravity is proportional to
s3 and pressure forces to s2, electromagnetic Lorentz forces are proportional to s. The
result is that this last action can usually be neglected for micrometer-sized particles,
at least within Jupiter’s orbit (that is the case of this work). For these reasons, the
disturbances considered will be the ones due to the solar radiation and the aspherical
harmonics gravitational perturbation.

2.6.1. Solar Radiation Pressure (SRP)

The effect of SRP is also in this case, as usually done, considered through a cannon-
ball model. This method describes how spherical objects with equally distributed optical
properties are affected by solar pressure [1]. These are all features that fit well with the
problem considered. Moreover, in this way, the force due to SRP is systematically directed
in the opposite direction of the Sun [33] and can be treated as conservative. This implies
that the SRP contribution can be expressed as a potential [2]. Going into more details,
from [19]:

F =
Gmsm

r2sp
β

((
1− γ

ṙ

c

)
r̂ − γ

v

c

)
(2.44)
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where r̂ = r/r is the radial versor, ṙ = dr/dt is the radial velocity of the system, v =

dr/dt is the instantaneous velocity of the particle, c is the speedlight, γ = 1 + FSW/FPR

2. If for γ = 1 the effect of the solar wind is neglected, for γ = 0 the only contribution
considered is the SRP, ignoring therefore also the Pointing-Robertson effect. This, in fact,
acts on time scales way larger than the ones of interest in this work and thus can be safely
neglected [24].
Equation 2.44 presents also the term β, the so-called lightness parameter. This is the real
key parameter in the study of the SRP effect and can be written as follows [2] [1]:

β = P0
AU2

µsun

3cR
2ρpdp

(2.45)

In 2.45:

• AU is the astronomic units, equal to 1.496 · 108km

• P0 is the solar flux at 1AU, equal to 1367W/m2;

• cR is the particle reflectivity coefficient;

• ρp is the particle density;

• dp is the particle diameter;

Finally, from Equation 2.44 with γ = 0 and VSRP = −β
µSun

rsp
, the SRP contribute on

acceleration can be written as:

aSRP =
βµSun

r2sp
r̂ = ∇VSRP r̂ (2.46)

From 2.45 it is possible to see how β can be defined as the ratio between the SRP
acceleration and the solar gravity acceleration. Even though, however, here P0 is treated
as a constant it should be noted that, for a fixed position in space, the solar flux is actually
a time-dependent variable ruled by the solar cycle [1]. This results in a no-more strictly
autonomous system whenever SRP is considered.
The equations of motion and the Jacobi constant become [31]:

2SW stands for Solar wind while PR for Pointing-Robertson.
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ẍ− 2ẏ = − x

r3
+ 3x+ β

ÿ + 2ẋ = − y

r3

z̈ = − z

r3
− z

(2.47)

Γ = 3x2 + 2βx+
2

r
− z2 − (ẋ2 + ẏ2 + ż2) (2.48)

The system of equations 2.47, that takes the name of Photo-gravitational Hill Problem,
highlights how, whenever considering the SRP, i.e. β ̸= 0, the dynamics of a particle
will be strongly dependent on it dimensions. This means that SRP can be used a passive
in-situ mass spectrometer (the larger the grain, the lower the β) [34]. Alternatively, after
a grinding process to reduce all materials to a similar grain size, SRP can be exploited
to sort particles by their density. Such opportunities are crucial to assess the dimensions
and properties of the particles that will be gathered in a collection mission.

2.6.2. Gravitational perturbation

When dealing with irregularly shaped bodies, such as asteroids, it becomes crucial to
model the gravitational potential, but, since very little information are usually known
concerning these bodies, this task is far from being trivial. The standard tool used for
this goal is the spherical harmonics expansion: since it models the distribution of mass
inside a sphere circumscribing the body, the method is suitable to describe small deviations
from a spherical shape. This, at the end, means that in the case of strongly irregular and
inhomogeneous bodies, expansions up to, usually, 24 degrees and orders are needed in
order to match the irregular features of their gravitational potentials [10]. Nevertheless,
the series will converge to the true gravity field only outside the chosen circumscribing
sphere. Considering an Asteroid-Centred-Asteroid-Fixed (ACAF) reference frame, and
defining the radial distance (r), the latitude (δ) and the longitude (λ) as shown in Equation
2.49, the general formulation of the potential3 can be transformed into 2.50 [1].

3Note that V = −U .
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r =

√
x2
ACAF + y2ACAF + z2ACAF

sin δ =
z

r

tanλ =
y

x

(2.49)

V (r, δ, λ) =
µ

r

∞∑
l=0

l∑
m=0

(
Rref

r

)l

Plm sin δ [Clm cos(mλ) + Slm sin(mλ)] (2.50)

In 2.50:

• µ is the gravitational parameter of the asteroid;

• Rref is the reference radius (i.e. the maximum or the mean radius) of the asteroid;

• Plm sin δ represent the associated Legendre polynomial (for m = 0 it becomes the
conventional Legendre polynomials);

• Clm and Slm are the gravity field coefficients that identify the body studied. As a
convention Jl = −Cl.

Since this work aims to just consider the J2 perturbation, it is necessary to write down
the conventional (i.e. m = 0) Legendre polynomials, with l = 2. These orthogonal
polynomials Pl,0(ν) must satisfy 2.51 that, when solved, can be written as 2.52, known as
Rodrigues’ formula from the mathematician that first recovered it [35].

(1− 2νx+ x2)−1/2 =
∞∑
l=0

Pl(ν)x
l (2.51)

Pl(ν) =
1

cll!

dl

dνl
(ν2 − 1)l (2.52)

For l = 2, Equation 2.52 becomes:

P2 = P2,0 =
1

2
(3ν2 − 1) (2.53)

Substituting ν = sin δ, after some manipulations the gravitational potential becomes:

VJ2 =
µ

r

[
1− 1

2
J2

(
Rref

r

)2 (
3 sin2 δ − 1

)]
(2.54)
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J2 = −C2,0 =
1

5Rref

(
c2 − a2 + b2

b

)
= 0.008347066115702 (2.55)

where a, b and c are shown in table 1.2.
A deeper dissertation is outside the aim of this work, thus if interested please refer to [1].
The conclusion is that, after some processes, the total potential V can be written as:

V =
1

2
n̄2(x2 + y2) +

(1− µ)(1− β)

rsp
+

µ

rap

[
1− 1

2
J2

(
ā

rap

)2(
3
z2

r2sp
− 1

)]
(2.56)

with ā = Rref/R and n̄2 = 1 +
3

2
J2ā

2. Writing than the equations of motion as stated
in 2.57, the dynamics of a particle affected by both SRP and aspherical potential can be
described by 2.58.


ẍ− 2n̄ẏ = Vx

ÿ + 2n̄ẋ = Vy

z̈ = Vz

(2.57)



ẍ− 2n̄ẏ = n̄2x− (1− β)(1− µ)(x+ µ)

r3sp
− µ

r3ap

[
1− 3

2
J2

(
ā

rap

)2(
5
z2

r2ap
− 1

)]
(x+ µ− 1)

ÿ + 2n̄ẋ = n̄2y − (1− β)(1− µ)

r3sp
y − µ

r3ap

[
1− 3

2
J2

(
ā

rap

)2(
5
z2

r2ap
− 1

)]
y

z̈ = −(1− β)(1− µ)

r3sp
z − µ

r3ap

[
1− 3

2
J2

(
ā

rap

)2(
5
z2

r2ap
− 3

)]
z

(2.58)

2.6.3. How disturbances affect lagrangian points

This section it is shown how the perturbation discussed above affects the location of the
collinear Lagrangian points (since the focus of this study is on L2) and the zero velocity
curves.
In particular, when taking into account SRP, the quintic expressions shown 2.34 become:
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L1 : γ
5
1 − (3− µ)γ4

1 + (3− 2µ)γ3
1 − (µ+ (1− µ)β)γ2

1 + 2µγ1 − µ = 0

L2 : γ
2
2 + (3− µ)γ4

2 + (3− 2µ)γ3
2 − (µ− (1− µ)β)γ2

2 − 2µγ2 − µ = 0 (2.59)

L3 : γ
5
3 + (2 + µ)γ4

3 + (1 + 2µ)γ3
3 − (1− β)(1− µ)γ2

3 − 2(1− β)(1− µ)γ3 − (1− β)(1− µ) = 0

Solving these relations for the distance γi, it is then possible to find how the distances of
the Lagrangian points from the center of mass of the system vary with β: Figure 2.7 shows
these trends for the Earth-Moon system. In this case β goes from 0 to 1, corresponding
to aSRP = 0 and aSRP = aSolarGravity respectively.
As can be seen, L2 moves closer and closer to the Moon but, of course, it never approaches
distances within the interval (0, 1 − µ). Both L1 and L3 instead, move towards the
barycentre of the system.

Figure 2.7: Variation of LPi coordinate for increasing β

These results can of course be generalized to every three-body system. In particular, since,
as previously said, L2 moves towards the smaller body for bigger values of the lightness
parameter, there will be a value of β for which the Lagrangian point coincides with the
surface of the second primary. Following the analytical approximation of the position of
L2 realized by Latino et al. [1], the position of the coordinate of the second Lagrangian
point can be obtained as:

x2 = 1− µ+

√
α

β
(2.60)
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with α = µ/(1− µ).
Reversing 2.60, it is therefore possible to find the value of β for which the Lagrangian
point touches the surface of the second primary, i.e. γ2 = R, with R being its radius
(Equation 2.61).

β =
α

(x2 − 1 + µ)2
(2.61)

This approximation holds under the assumption that m2 << m1, i.e. for very low values
of µ. Such a condition is always true for the Sun-Asteroid system, while could be less
accurate for a more proportional system such as the Earth-Moon one. The following lines
will be devoted to investigating different errors committed applying Equation 2.60 for two
different systems. In particular the focus will be on:

1. Earth-Moon system −→ µ = 0.01215;

2. Sun-Ryugu system −→ µ = 2.27847 · 10−19.

Figure 2.8: Behavior of L2 analytical and nu-
merical for Earth-Moon system

Figure 2.9: Behavior of L2 analytical and nu-
merical for Sun-Ryugu system

Even though Figures 2.8 and 2.9 present almost the same trend, the scale to which they
refer is completely unbalanced. In fact, observing Figures 2.10 and 2.11 it is possible
to see that, while the maximum error for the Sun-Ryugu case is around 1 km, for the
Earth-Moon system the error is of the order of 105 km, meaning that the approximation
applied is totally unsuitable for this kind of systems.
Up to this point, to make graphs, trends and behaves, it has always been shown the Earth-
Moon case, since its higher µ granted a clearer vision of what was explained. Nevertheless,
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Figure 2.10: Error made between L2 analyt-
ical and numerical for Earth-Moon system

Figure 2.11: Error made between L2 analyt-
ical and numerical for Sun-Ryugu system

for the reasons discussed now, in order to show how ZVCs behave for different values of β
and from here on, the reference system will be the Sun-Ryugu three-body system, finally
entering into the study of a Sun-asteroid system as foreseen by this work.
Including now also the effect of the body’s oblateness, the Equation 2.59 can be written,
for the cases of L1 and L2, as follows [36]:

±2n2γ7
i + (2n2µ− 6n2)γ6

i ± (6n2 − 4n2µ)γ5
i + (2n2µ− 2qµ− 2n2 + 2q ∓ 2µ)γ4

i

+4µγ3
i ∓ (2µ+ 3Aµ)γ2

i + 6Aµγi ∓ 3Aµ = 0
(2.62)

for j = 1, 2. In Equation 2.62 q = 1 − β, A = J2R
2
ref and n is the rotation rate,

equal to 1 when using the adimensional formulation. By solving it, it is possible to
retrieve the positions of the first and second Lagrangian points modified by the effect
of the asteroid’s oblateness. In particular, the difference between their coordinate with
or without considering J2 versus β is shown in Figure 2.12. The plot is completely in
accordance with the effects caused by the SRP. The behavior of L1, in fact, shows that,
since it moves towards the barycentre of the system, initially there will be a difference
between L1J2 and L1 but, after a certain threshold, the asteroid is so far that the effect of
its oblateness becomes negligible, therefore L1J2−L1 = 0. Contrarily, for L2 the situation
is different: this Lagrangian point, in fact, shifts towards the asteroid for increasing values
of β. This means that, for higher values of β, L2 will move closer and closer to the asteroid
therefore feeling more and more the effect of its oblateness. The difference L2J2 −L2 will
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then increase for higher β, as clearly shown in Figure 2.12. Nevertheless, this shift is of
the order of centimeters, being therefore practically negligible.

Figure 2.12: Position shift for L1 and L2 when considering SRP+J2 or SRP only [1]

2.6.4. How disturbances affect the zero velocity curves

Now that the behavior of the Lagrangian points including the different disturbances is
known, it is possible to study how this will affect the ZVCs.
As understood, L2 shifts towards the asteroid as β increases: therefore, there will be a
value for which the Lagrangian point is located on Ryugu’s surface. Recalling Equation
2.61 and imposing x2 = RRyugu, the value of the lightness parameter for which this
happens is βcrit = 0.0372972. At this point, in the Equation 2.45 it is possible to impose
the:

• cR = 0.07 [31], avoiding the assumption of ideal specular reflection (i.e. cR = 2) as
done in [1];

• approximating the ejecta density with the one of the bulk of Ryugu, ρp = 1282kg/m3

(see table 1.2);

Being the other terms constants, the only parameter left is the ejecta size dP . It is
therefore possible to understand for which size, under these conditions, L2 will approach
Ryugu’s surface. In particular:

dP = P0
AU2

µsun

3cR
2ρpβcrit

=∼ 1.689µm

Figure 2.13 shows the ZVC associated with such values of particle size. According to the
dissertation done, L2, represented by the red dot, is located on the surface of Ryugu.
From the same plot, it is evident how part of the allowed region falls inside the asteroid,
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being therefore impossible to exploit. The region on the asteroid’s dark side (towards
the right), i.e. the one opposite to the Sun, is almost completely allowed. In such a
scenario, all the particles ejecting from that side of the asteroid will then escape through
heliocentric trajectories. It is therefore useful to impose a lower limit to the particle
size and consequently on the maximum value of β, in order to study cases in which
ejecta actually have some closed region in the neighborhood of the asteroid within which
they can freely move. Fixing a distance of 3km from Ryugu, it is found β = 8.02315 ·
10−4 corresponding to a size particle rP ≃ 78.5µm. This case is shown in Figure 2.14.
Contrarily, there is no upper limit defined by the physics of the problem. This is then
assessed by imposing a maximum size for asteroid ejecta equal to rP = 10mm, i.e. β =

6.29804 · 10−6. Figure 2.15 shows the ZVC for this scenario, highlighting a position for
L2 equal to 32.48km.

Figure 2.13: ZVC for critical lightness parameter, corresponding to dP = 1.689µm
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Figure 2.14: ZVC for rP = 78.5µm, locating the LP at 3km from Ryugu.

Figure 2.15: ZVC for rP = 10mm, corresponding to a position for the LP of 32.48km
from Ryugu.
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In this chapter the motion of the ejecta particles will be analyzed, identifying the number
of particles falling within one of the following categories:

1. particles that re-impact on the asteroid shortly after their ejection;

2. particles that after an imposed time window are still orbiting around the asteroid;

3. particles that are able to escape from the system through the bottleneck opened at
L2.

Only the ejecta of the third class will be the ones considered as collectible from a satellite
orbiting a halo.
Following the example of the Hayabusa2 mission, the ejecta are assumed to be produced
by a kinetic impactor that, creating a crater on the asteroid’s soil, will push the so-
formed particles away from its surface. Quoting Buhl et al. [37], ejecta size is much
more correlated with the characteristics of the material rather than the impact energy,
therefore it is hard to clearly understand a particle’s dimension and velocity after the
collision. For this reason, Housen & Holsapple [38] performed laboratory measurements
of impact crater ejecta from 18 different studies. These are used from them to assess the
dependence of ejecta velocity and mass distributions on the conditions of the impact event.
They successfully recover point-source scaling laws to distinguish ejection properties for
several classes of materials having different porosity. The outcome of these works gives the
relation between the ejecta speed and mass with respect to the impactor characteristics,
and it is reported in Equations 3.1 and 3.2 [24].

v

U
= C1

[x
a

(ρ
δ

)ν]−1/µ
(
1− x

n2R

)p

n1a ≤ x ≤ n2R (3.1)

M = MP
3k

4π

ρ

δ

[(x
a

)3
− n3

1

]
n1a ≤ x ≤ n2R (3.2)
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In these equations v, U are the velocities of ejecta and projectile respectively; M,MP are
the masses of ejecta and projectile respectively; R, a are the radii of the crater and projec-
tile respectively; ρ, δ are the densities of the soil surface and projectile respectively; x is the
radial distance from the center of the crater while C1, ν, µ, p, n1, n2, k are non-dimensional
constants depending on the material properties of the projectile and the target.
However, even though an impact on Ryugu already happened, meaning that such coeffi-
cients are quite well estimated, these parameters are difficult to retrieve in a general case,
especially for poorly known asteroids. For this reason, this work approaches the problem
the other way around, flipping over the point of view. Similarly to what has been done
by Latino et al. [1], in fact, in this thesis the initial conditions relative to the ejecta are
retrieved by discretizing on longitude and ejection angle, retrieving in this way the initial
condition at each iteration of the loop.
First, it is required to recover of the magnitude of the particles’ ejection velocity. Re-
calling what has been previously said, due to the presence of an integral of motion (i.e.
the Jacobi constant) if the position and the energy level are fixed, then the velocity is
unequivocally determined as well. This allows to exploitation of an energetic approach
to find its value. In particular, from the definition of the Jacobi constant expressed in
Equation 2.21 it is possible to compute the magnitude of the ejecta velocity with respect
to a prescribed energy level. It has been chosen for this purpose the level corresponding
to the second Lagrangian point since it represents the threshold value required in order
to open a bottleneck in the ZVC and escape from the system. The velocity, therefore, can
be written as follows:

vej(x, y, β) =
√

C(x, y, β)− C2 (3.3)

The position, i.e. the x and y coordinates, depends of course on the longitude θ, while β

is directly linked with the size of the particle (see Equation 2.45). The procedure to find
vej therefore is:

1. initialisation of a loop on the particle size rP ;

2. for each value of rP the β parameter is computed;

3. from β the analytical position of L2 is recovered according to Equation 2.60;

4. use that position as a guess to numerically solve the equation providing the correct
coordinate of L2, then used to compute C2;

5. initialization of a loop on the longitude θ;
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6. for each value of θ compute x = r cos θ

y = r sin θ

with r being the adimensional radius of Ryugu. Use together x, y and β to find
C = −2U(x, y, β);

7. recover vej according to Equation 3.3.

The two nested cycles will scan all the possible rP − θ combinations, having 78.5 µm ≤
rP ≤ 10 mm (see Figures 2.14 and 2.15) and 0◦ ≤ θ ≤ 360◦. A contour of the result is
depicted in Figure 3.1.

Figure 3.1: Contour plot of particles’ ejection velocity as function of their size and ejection
site longitude.

It is interesting to note that for the same vej, the corresponding particle’s size reaches its
maximum around θ = 180◦. Furthermore, fixing vej, i.e. following a contour line, bigger
particles will re-impact while smaller ones can potentially escape. This is in accordance
with theory and is particularly well explained by Figure 3.2. Fixing vej = 35.59 cm/s,
represented by the red line in Figure 3.1, and θ = 0, the energy associated with a particle
on Ryugu’s soil and to L2 have been recovered for increasing values of ejecta sizes. The
graph shows how, as rP increases, the difference E2 − E passes from being negative
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(i.e. E > E2) to be positive (i.e. E < E2). As previously explained (see Figure 2.6),
whenever E < E2 the ZVC bottleneck at L2 closes. This, therefore, explains that for fixed
ejection velocity and position, bigger particles surely will not escape from the system.
Furthermore, in this example, E = E2 for rP ≃ 1.05715 mm, corresponding to the region
just above the red line shown in the contour plot. Thus, by fixing vej, the plot will be
divided into two regions: for the upper one, the ZVC will be closed while, for conditions
falling in the lower region, the particles can potentially escape.

Figure 3.2: Difference between E2 and E for increasing particles’ size, keeping fixed
ejection velocity and longitude.

However, Equation 3.3 is an expression that does not consider the asteroid’s rotational
contribute. Defining as ωrot the rotational velocity of Ryugu around its z-axis and ωrev

the revolutionary velocity of Ryugu, i.e. the one with which the asteroid rotates around
the Sun, the expression of the velocity is transformed into:

v20 = v2ej + ∥Ω× r∥ = v2rad +

(
ωrot

ωrev

r

)2

(3.4)

where r is the asteroid’s adimensional radius, Ω is the vector [0 0 ωrot/ωrev] and r =[r cos θ
r sin θ 0].
Applying this, Equation 3.3 becomes:
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v2ej +

(
ωrot

ωrev

r

)2

= C(x, y, β)− C2 =⇒ vej =

√
C(x, y, β)− (

ωrot

ωrev

r)2 − C2 (3.5)

This discussion allows to comprehend that velocity will no longer be perfectly radial, since
the asteroid’s rotation will deflect its direction. Calling therefore γ the angle between the
local normal direction n̂ and the velocity direction, following Latino et al. [1], it is possible
to retrieve the initial velocity expressed in the cartesian frame as stated in Equation 3.6.

v0 =

vγ cos(γ + θ)− vω sin θ

vγ sin(γ + θ) + vω cos θ

0

 (3.6)

with vω =
ωrot

ωrev

r

vγ = −vw sin γ +
√

v2ω sin
2 γ + v2ej

(3.7)

This dissertation gives the possibility to add to the vej portrayed in Figure 3.1 the aster-
oid’s rotation contribute. The aim now, is to compute all the trajectories arising from
the initial conditions coming from the nested cycles on rP , θ and γ. The equations of
motion to be integrated are the ones reported in 2.58 and the propagation of each IC
is then stopped whenever the particle hits again the surface of Ryugu or whenever it

goes outside the Hill’s region, i.e. for r ≤ rRyugu and r ≥ rHill =
(µ
3

)(1/3)
respectively.

When these occurrences are spotted, by means of an event function, two cases have to be
distinguished:

1. if the particle is escaped from the system, the iteration stops and the next one
begins;

2. if the particle has hit once again Ryugu’s surface, then the bouncing behavior has
to be studied.

Therefore, the discussion will now focus on the second case here highlighted. Firstly, it
is important to introduce the restitution coefficient, which is defined as the ratio between
the relative velocities of two colliding bodies after and before the impact. In this case,
however, one of the bodies is the asteroid, which represents an immovable surface to the
particle. Therefore, the restitution coefficient is just

e =
vf
v0

(3.8)
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being vf the particle velocity after the impact and v0 the one right before. Moreover,
from this definition it is possible to understand how, due to energy dissipation occurring
throughout any collision, it is always true that 0 ≤ e ≤ 1. Of course, re-impacts will likely
occur at oblique angles, meaning that there is the necessity of identifying two separate
coefficients, reported in Equation 3.9. In the relation, en represents the normal restitution
coefficient, while et is the tangential.


en =

vnf
vn0

et =
vtf
vt0

(3.9)

In particular:

• 0 ≤ en < 1, with 0 indicating a completely anelastic collision and 1 being the
theoretical value representative of a completely elastic collision. However, usually
en is found to be < 0.6.

• −1 ≤ et ≤ 1, where -1 means complete tangential reversal, 0 is associated with
complete damping and 1 implies tangential decoupling.

Following Kikuchi et al. [17] however, it is possible to define other two parameters, called
impulse ratio (ζ) and critical impulse ratio (ζ∗), defined as follows:



ζ =
1− et
1 + en

tanα

ζ∗ =
tanα

(1 +
mr2P
I

)(1 + en)

(I =
2

5
mr2P )

−−−−−−−−−−−−−−−→
assuming spherical particles

ζ∗ =
tanα

7

2
(1 + en)

(3.10)

with α begin the impact angle. Quoting the same paper, it is always true also that ζ ≤ ζ∗.
This restricts the possible impact angles that, specifically, shall guarantee [17]:

ARB = {α ∈ R|0 ≤ ζ(α) ≤ ζ∗(α)}

APM = {α ∈ R|0 ≤ ζ(α) ≤ 1}
(3.11)

An impact angle too high or too small would mean, in fact, almost-normal or almost-
tangential collisions, therefore likely leading to rolling or frontal impact respectively, both
unlikely to result in rebounds. Moreover, the previous formulations are related to the rigid
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body (RB) and point mass (PM) approximations. The former is obtained by applying
the rigid-body theory, but this is reasonable only for a first-step analysis. In fact, this
does not allow taking into account tangential compliance which would result in elastic
deformation, finally affecting ζ∗. For this reason, also the point mass approximation
is given since, not requiring the rigid-body assumption, it leads to a more conservative
formulation. Spanning through a set of alpha, Kikuchi recovered the feasible impact
angles, i.e. the ones verifying relation 3.11. This procedure has been followed for both the
artificial landmarks, called target markers (TM) deployed with success on Ryugu during
the Hayabusa2 mission. From here on they will be referred to as TDM1 and TDM2, the
former being representative of surface material, while the latter being representative of
subsurface material brought out by the small carry-on impact [16][17]. Apart from that,
the main distinction between them is the site they targeted, shown in Figure 3.3.

Figure 3.3: Target sites for the TDMs of the Hayabusa2 mission [17].

The results that Kikuchi found are reported in Figures 3.4 and 3.5, both for rigid body
and point mass cases.

As can be seen, in both cases, the rigid body model provides a wider range of feasible
impact angles. This is strictly related to the realms defined by Equation 3.11, reflecting
the more conservative nature of the point mass model.
Furthermore, the values shown in these figures are then used to perform an interpolation
exploiting the Matlab commands polyfit and polyval : the polynomial coefficients found in
this way will enable to compute, at each impact, the approximated en and et for the impact
angle of that specific collision if, of course, it is inside the feasible range. However, this
procedure requires imposing the order nord which approximates the trend of the function
to be interpolated. Thus, in order to obtain the best possible results, nord has been
made to vary between 1 and nmax, where nmax represents the maximum order suitable for
the interpolation, beyond which the polynomial arising results undetermined or poorly
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Figure 3.4: Restitution coefficients for TDM1, applying the point mass model (left) and
the rigid body assumption (right).

Figure 3.5: Restitution coefficients for TDM2, applying the point mass model (left) and
the rigid body assumption (right).

conditioned. In particular, its value depends on the number of nodes provided by Kikuchi
et al. [17]. The trends of the error on en and et, for both rigid body and point mass
models, are shown in Figures 3.6 and 3.7. These show only the case of TDM1, while the
one associated with TDM2 has been omitted for sake of brevity. However, the conclusions
are the very same for both the TDMs.
As can be already seen from the pictures, the error tends to drop for increasing values
of nord, as confirmed by the study of the minimum squared distance (msd) computed
for each interpolation order. Concluding, this dissertation is able to provide the best
orders of interpolation for the data available, and these are reported in table 3.1. This
highlights how et will be approximated worse than en in all the cases. Furthermore, the
table underlines that, in the case of rigid body, the coefficients are better estimated: this
is due to the higher ratio between the number of data given and the range of the suitable
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impact angles provided.

Figure 3.6: Error committed on en (left) and et (right) due to the interpolation applied
to the TDM1-PM case.

Figure 3.7: The error committed on en (left) and et (right) due to the interpolation applied
to the TDM1-RB case.

Once characterized with this approach the restitution coefficients, which reproduce the
damping occurring during a collision, the bouncing behavior can be analyzed. Of course,
there will be the necessity of differentiating between ejecta that, once collided with
Ryugu’s surface, are actually bouncing back to orbit around the asteroid with those
that start rolling on its soil, basically landing on it. To achieve this, two approaches are
possible. The first one, proposed by Raducan et al. [39], is to impose a minimum velocity
threshold after the impact. The second method, proposed by Yu et al. [40], is instead to
fix a height beyond which the rebounding particle can be considered to actually bounce
rather than roll. This method was the one selected for this work, applied by means of
the energetic balance shown in Equation 3.12. The particle is considered to bounce if,
when the energy is completely transformed into potential energy, the altitude with respect
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TDM Model nord msqen msqet
TDM1 PM 10 1.5474 · 10−11 6.4770 · 10−07

TDM2 PM 10 4.2685 · 10−11 5.4987 · 10−08

TDM1 RB 5 4.7519 · 10−13 1.6428 · 10−12

TDM2 RB 5 4.0090 · 10−12 2.9390 · 10−11

Table 3.1: Table summarising the interpolation quality. The first row refers to the TDM
considered, the second to the model applied, the third reports the best interpolation
order (nord = nmax in all the cases), fourth and fifth columns show the minimum squared
distance on en and et respectively.

asteroid’s surface is larger than the threshold chosen.

1

2
v2n =

1

2�
�v2nf + gh =⇒ h =

v2n
2g

(3.12)

The possibilities are then:

• h > lthreshold, the particle goes back into orbit. New ICs are generated and the prop-
agation is carried on until the next event or the end of the time window considered.

• h < lthreshold, the particle lands on the asteroid. Simulation stops and the next
iteration begins.

The value of lthreshold should be reasonably low, and is set in this case to 10 cm [1].
The next step required to implement the whole is to understand how to rotate from
the cartesian frame {i, j,k} to the local tangent-normal frame {t,n,k}: this is needed
since the former is the frame in which the equations of motion are expressed and thus
propagated, while the latter is required since the restitution coefficients are expressed
through normal and tangential velocity components. To reach this goal, first ξ, the angle
between i and t shall be computed. In particular, its expression changes depending on
the longitude at which the impact occurs. They are shown in Figure 3.8 for each quarter.

Recovered ξ, this can be used to rotate the impact velocity obtained by the propaga-
tion, and therefore expressed in the cartesian frame, to the local tangent-normal frame.
Mathematically:

R =

 cos ξ sin ξ 0

− sin ξ cos ξ 0

0 0 1

 (3.13)
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Figure 3.8: The different relations between ξ and θ depend on the quadrant where the
particle impacts.

vtn = R vij (3.14)

Of course, matrix R shown in Equation 3.13 can be used to pass from cartesian to local
frame and vice versa.
Once expressed the velocity in the {t,n} frame, it is possible to apply on it the dissipation
by means of the restitution coefficients. In particular, the velocity after the collision,
expressed in the local frame, can be computed as stated by Equation 3.16.

E =

et 0 0

0 −en 0

0 0 −1

 (3.15)

vEtn = E vtn (3.16)

When vEtn
is retrieved, its component along the normal direction will be known, enabling

to exploit relation 3.12 to understand the bouncing behavior. In the case in which the
particle actually bounces back in orbit, according to the threshold height established,
the damped velocity vector found through Equation 3.16 can be then rotated back to
cartesian frame vout = RT vEtn

. To this value, the asteroid’s rotational contribution must
be added, following the previous dissertation, thus obtaining the new initial conditions
for the propagation of the post-rebound trajectory.
The whole procedure here above described is iterated, by means of three nested cycles, on
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particle size rP , longitude θ, and ejection angles γ. However, for clarity, the code block
diagram has been reported in Appendix A.
As done by Latino et al. [1], the results are then stored in a table having nine columns
forming in this way a database describing the ejecta dynamics and fate. An example
of it is shown in Table 3.2. This will enable not only to manage easily the information
found but also gives the opportunity to "search" for specific initial conditions and directly
recover the final state without any further process or integration.

rP [mm] θ [°] vej [cm/s] γ [°] θimp [°] vimp [cm/s] γimp [°] tof [days] Condition
... ... ... ... ... ... ... ... ...

Table 3.2: Basic scheme of the database built.

In the so-built database, tof highlights the time of flight of that particular trajectory:
this value will be equal to the maximum time window imposed whenever none of the
events occur, i.e. if the particle is still on-orbit around the asteroid after the prescribed
maximum time that, in this case, has been fixed to 90 days. The column Condition,
instead, will highlight the final fate of that particular trajectory. The possible options are
the following:

• Escape: the ejecta particle has been able to escape from the system through the L2
bottleneck.

• Impact : after orbiting around the asteroid for a timespan equal to tof , the ejecta
particle hit on Ryugu’s surface, with an impact angle within the feasible range.

• OutRange: after orbiting around the asteroid for a timespan equal to tof , the ejecta
particle hit on Ryugu’s surface, with an impact angle outside the feasible range. The
particle here is considered as landed on the surface, unable to bounce back into orbit.

• Orbit : in this case tof = tmax, therefore ejecta has orbited around the asteroid
without impact again on it or escape from the system. In this case, the ejecta is
assumed to be still in orbit around Ryugu.

• Escapereb: the ejecta particle has been able to escape from the system through the
L2 bottleneck after a previous collision with Ryugu and consequent rebound.
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• Impactreb: after a collision with Ryugu and a consequent rebound, the particle has
been orbiting around the asteroid for a timespan equal to tof before hitting again
Ryugu’s surface, with an impact angle within the feasible range.

• OutRangereb: after a collision with Ryugu and a consequent rebound, the particle
has been orbiting around the asteroid for a timespan equal to tof before hitting
again Ryugu’s surface, with an impact angle outside the feasible range.

• Orbitreb: after a collision with Ryugu and a consequent rebound, the ejecta has
orbited for tof = tmax without impacting again on the asteroid’s surface or escaping
from the system. Also in this case, the ejecta is assumed to be still in orbit around
Ryugu.

According to the discussion relative to Figures 2.14 and 2.15, the particle size has been
made to vary from 78.5µm to 10 mm. Following Trisolini et al. [2], γ has been considered
to range from −65◦ to −25◦ and from 25◦ to 65◦ (see Figure 3.9). Finally, θ has been
discretised once per degree, going from 0◦ to 360◦.

Figure 3.9: Orange regions identify the range of possible γ [2].

Knowing that Latino et al., in their work [1], considered et and en as constants, in the
order, equal to 0.714 and 0.6, it is now possible to investigate what are the differences
arising exploiting the new approach previously described to recover the coefficients of
restitution. In particular, Figure 3.10 returns a global view about the sample trajectories
distribution within the different categories. For sake of brevity, this is just shown for the
case of TDM1 and PM model.

Of course, the first trivial observation regards the categories OutRange and OutRangereb:
since in [1] is not imposed any boundary to the impact angles suitable for rebound, when
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Figure 3.10: Comparison between sample trajectories fate applying Latino and Kikuchi’s
approaches.

studying the dynamics through this approach these categories will be empty. Another
interesting point concerns the number of bouncing occurring for these simulations. With
Latino’s method, in fact, the sample trajectories arising from a rebound are found to be
522349, way higher than the 131853 recovered interpolating the data coming from Kikuchi
et al. as proposed in this work. Such a trend is a direct consequence of the fact that, for
Latino, any rebound is considered to be possible. Furthermore, the restitution coefficients
used by Latino et al. are way higher, especially for en, than those retrieved in the PM
case of Figure 3.4. This, at the end, returns a lower energy dissipation during a collision,
leading to more particles having velocity enough to bounce again from Ryugu after the
impact: as visible from the figure, the outcome is that almost all the Impact trajectories
are followed by a successful rebound. Moreover, it can be seen that the three populated
categories for Latino’s scenario present almost the same amount of samples, meaning that
a large part of the trajectories falling into the Impactreb lead to a particle injected in orbit
around Ryugu after a second rebound. To be more precise, of the 263728 trajectories
in Impactreb, about the 98% drives to an orbit after a second rebound: once again, this
underlines how the damping assumed by this scenario is not realistic. Moreover, Impactreb
is the only category filling Orbitreb, in which no trajectories are found to directly arrive
from the Impact category. All these analysis explicate the necessity of introducing the
novel approach proposed.
However, the results obtained in this way are totally unsatisfactory from the on-orbit
collection viewpoint. As can be seen from Figure 3.10, in fact, even with the new approach,
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no particles are found able to escape from the system, resulting in the conclusion of an
unfeasible collection strategy for the kind of mission treated. For this reason, the next
step is to expand the study to the halo region rather than strictly to the lagrangian
point itself, enlarging the region of interest of the work. This means change the reference
energetic level chosen during the dissertation that concluded with Figure 3.1, referring vej

no longer to C2 but to a C ′ < C2. Thus, the analysis of halo orbits and particularly of
periodic orbits in the neck region becomes crucial for the development of the work, and
will be discussed in the next chapter.





63

4| Calculation of periodic orbits

Once understood the trends for the ejecta dynamics, the next step is to recover the so-
called Halo Orbits, which are the orbits where the spacecraft shall be injected in order
to perform the actual collecting mission. This can be found by studying the linearised
dynamics close to the libration point of interest. Due to the existence of the integral of
motion, these periodic orbits can be grouped in one-parameter families, each one con-
taining a simple infinity of periodic orbits and symmetric to the x-axis [27]. This, can
be easily understood by analysing Equation 2.41. Remaining into the planar case (i.e.
z = ż = 0), in fact, it is trivial to understand that, once fixed gamma, there will be a
given ẏ for each x. This is guaranteed by the knowledge that ẏ > 0 ([41], Figure 2). The
planar hypothesis will be assumed from here on since, even though not rigorous, simplifies
the dissertation carried on without threaten the validity and the results of the discourse.
Moving forward, there are five main families of periodic orbits to be distinguished. They
are [27][42]:

• a, which originates around L2 and presents a close approach to the second primary.
Since, as previously reported, including the SRP perturbation will shift L1 towards
the biggest primary and L2 closer to the asteroid, L2 will be the most adapt to
perform a collection such as the one thought for this work: this family will be
therefore the main focus of this thesis;

• c, unstable-retrograde orbits originating around L1;

• f, family of stable retrograde orbits around the secondary primary;

• g, family of direct orbits around the smaller primary, presenting a double close
approach with it;

• g’ and g”, stable-unstable direct orbits which bifurcate from g.

However, the research of such periodic orbits is far from being trivial, especially since
the initial conditions are hard to be recovered from and the problem is very stiff and
IC-sensitive. The first consideration to be done is linked with the periodicity conditions.
Analysing, in fact, Hill’s equations (Equation 2.42), it comes out that the system presents
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the symmetric relation state in Equation 4.1. This defines the so-called Mirror configu-
ration [42]. The outcome of this is that, for a periodic orbit lying on the xy-plane with
y0 = 0, it must hold that ẋ0 = 0. Therefore, the initial condition will show the form
reported in expression 4.2.

(x, y, t) −→ (x,−y,−t) (4.1)

x0 =
[
x0 0 0 ẏ0

]
(4.2)

Once assessed, the main approach to obtain approximated ICs is to use the third-order
expansion proposed by Richardson in 1979 [43]. The idea here is to recover a third-order
analytical solution for the periodic motion around the collinear points. Another technique
following the work of Richardson is the polynomial approach proposed by Kim [44], in
which the third-order approximation of the ICs is then reformulated as polynomials by
means of MATLAB functions such as polyfit and polyval. Kin stated that for Halo, in
fact, polynomial expressions lead to more accurate computations also quicker to drive to
convergence. However, since this work is discussing only the planar case, good initial
conditions can be already found in Henon [27] or in Kalantonis [45]. These, will be then
refined by means of a variational approach, through the so-called differential correction
method.

4.1. Differential Correction to refine the initial con-

ditions

A differential correction method can be used to improve the initial conditions to be then
integrated. Recalling Equation 2.47, it is possible to write:

ẍ− 2ẏ = Wx(x, y, β)

ÿ + 2ẋ = Wy(x, y, β)
(4.3)

with W =
3x2

2
+

1

r
+ βx.

Defining the new set of variables reported in 4.4, the equations of motion of the problem
can be written as stated by Equation 4.5.
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x = x1

y = x2

ẋ = x3

ẏ = x4

(4.4)

ẋi = fi(x1, x2, x3, x4) i = 1, ..., 4

f1 = x3

f2 = x4

f4 = 2x4 −
x1

r3
+ 3x1 + β

f5 = −2x3 −
x2

r3

(4.5)

with r = (x2
1 + x2

2)
(1/2).

Let now the term ϕ(x, t) represent a solution of Equation 4.5, it is possible to write
ϕ(x, 0) = x0, i.e. ϕ(x, 0) can be seen as an initial condition for a periodic orbit. This
term represents the flow of the system, which can be used to map how perturbation on
the initial conditions will affect the state at t = tf . If the displace trajectory passes close
to the reference one, it is then possible to perform a linearisation of the flow as follows:

ϕ(x0 + δx0, t) ≃ ϕ(x0, t) +
∂ϕ

∂x0

(x0, t)δx0 (4.6)

As previously said, ϕ can map the perturbations up to the final state, meaning that:

x+ δx = ϕ(x0 + δx0, t) (4.7)

Substituting Equation 4.7 into 4.6, and recalling that by definition x = ϕ(x0, t), it is
possible to obtain relation 4.8.

δx =
∂ϕ

∂x0

(x0, t)δx0 (4.8)

In Equation 4.8 the term
∂ϕ

∂x0

(x0, t) is a matrix representing the Jacobian of the flow. It

takes the name of State Transition Matrix (Φ) and can be used to correct the guess on
the initial state for a periodic orbit. Furthermore, for t = T , the state transition matrix
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is called instead Monodromy matrix. This is of particular importance since it, by means
of its eigenvalues, rules the stability of the periodic orbit that it describes. Specifically,
since the system is autonomous, there will be two unit eigenvalues and the rest forming
reciprocal pairs [15]: a periodic orbit will be stable if all its eigenvalues are situated on the
unit circle. In particular, introducing the parameters ki computed from the eigenvalues
of the monodromy matrix (λi in Equation 4.9), the periodic orbit will be stable if ki is
real and |ki| < 2. This is known as the Broucke’s stability condition [15][31].

ki =
1

λi

+ λi with i = 1, 2 (4.9)

In addition to this, its properties can be exploited to verify if the variational equations
have been well written and propagated. The monodromy matrix, in fact, not only must
present two unit eigenvalues, but also its determinant must be unitary as well. Then, the
monodromy matrix must also be symplectic, i.e. it shall grant the relations reported in
Equation 4.10.

Φ∗T

(
02×2 I2×2

-I2×2 02×2

)
Φ∗ =

(
02×2 I2×2

-I2×2 02×2

)
(4.10)

with

(
I2×2 02×2

-Ω I2×2

)
Φ(t, 0)

(
I2×2 02×2

Ω I2×2

)
= Φ∗ (4.11)

Ω =

[
0 1

−1 0

]
(4.12)

All these properties (and the constancy of the Jacobi constant within the same propaga-
tion) have been verified, proving the validity of the work done.
Making a step forward, hereafter the procedure to correct the initial conditions generating
a periodic orbit will be explained.
First, considering an initial guess x = [x0 0 0 y0], the trajectory is propagated for half the
orbital period. This, can be recovered through two different approaches:

1. Implement an event function able to stop the integration whenever y = 0 for the
first time after the initial condition. This, named Lindstend-Poincarè technique,
identifies the so-called Poincarè map or first-return map [44], and the time for which
this occurs defines the semi-period of the orbit.
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2. The period of known periodic orbits can be found in literature and therefore can be
provided as the initial guess for the propagation time span.

In this work, the second option has been followed. Due to periodicity constraints, when the
trajectory crosses again the y-axis, it must be perpendicular to it, maintaining therefore
the form x = [x̃ 0 0 ṽy]. However, in general, for T = T1/2, the resulting state will have
ṽx ̸= 0, therefore ϕ(x, T1/2) = [x̃f 0 ṽx ṽy]. At this point, since, as stated before, ϕ is a
solution of Equation 4.5, it will hold that

∂ϕ(x, t)

∂t
= f(ϕ(x, t)) (4.13)

Analysing then a first-order expansion of the flow map, expressed as reported in Equation
4.14, on the right hand side it is possible to recognize both Φ and fi (the terms in
the squared brackets in Equation 4.14). Therefore, the relationships arising from the
linearisation is the one expressed in Equation 4.15.

ϕ(x+ δx, T1/2 + δt) = ϕ(x, T1/2) +

[
∂ϕ(x, T1/2)

∂x

]
δx+

[
∂ϕ(x, T1/2)

∂t

]
δt (4.14)


x̄

0

0

v̄y

 =


x̃

0

ṽx

ṽy

+Φ(x, T1/2)


δx

0

0

δvy

+ f(x, T1/2)δt (4.15)

Rearranging this relation and considering just the second and third rows, the system will
result in [42] [46]:

Φ21δx+ Φ24δvy + f2δt = 0

Φ31δx+ Φ34δvy + f3δt = −ṽx
(4.16)

As can be easily deduced, this relation presents three unknowns in two equations, leading
to an indeterminate system: this agrees with theory, of course, since the family that will
come out will be then parameterised by one parameter, i.e. the one that is chosen to keep
fixed. Imposing δx = 0, the corrective terms can be recovered as:

[
δvy

δt

]
=

[
Φ24 f2

Φ34 f3

]−1 [
0

−ṽx

]
(4.17)
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Thus, the new IC will be x0 = [x̃0 0 0 ṽy + δvy] while Thalf = Thalf + δt. This procedure
will iterate until ṽx < tol.
The point still open is how to compute the state transition matrix. Even though ap-
proaches exploiting finite differences techniques have been developed, these are not suit-
able for the computational recovery of periodic orbits. The variational approach is instead
the one used in this field, and will be explained hereafter. Taking the first order expansion
of f with respect to x, it will result that:

ẋ = f(x∗, t) +
∂f(x∗, t)

∂x
(x− x∗) (4.18)

Defining the displacement as δx = x− x∗, it will hold that

δẋ = ẋ− ẋ∗ −→ ẋ = ẋ∗ + δẋ (4.19)

Replacing this into 4.18, the outcome is

��̇x∗ + δẋ =�����f(x∗, t) +
∂f(x∗, t)

∂x
δx (4.20)

where the term
∂f(x∗, t)

∂x
can be expressed as follow:

∂f(x∗, t)

∂x
= A =


0 0 1 0

0 0 0 1

W/xx W/xy 0 2

W/yx W/yy −2 0

 (4.21)

At this point, from Equations 4.20 and 4.8, in overall it is known that:

δẋ = Aδx

δx = Φδx0

(4.22)

Rearranging system 4.22, finally it is recovered that:

Φ̇ = AΦ (4.23)

Relation 4.23 shall therefore be integrated together with the equations of motion, resulting
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in a system of 42 ODEs. In particular, the initial conditions on Φ is easily recovered from
Equation 4.8 with t = t0, as reported in Equation 4.24

δx = Φ(t, t0)δx0
[t = t0]−−−−→�

��δx0 = Φ(t0, t0)���δx0 −→ Φ(t0, t0) = I (4.24)

where I is the identity matrix.
The problem is thus transformed into:



ẋ = f(x)

Φ̇ = AΦ

x(0) = x0

Φ(0) = I

(4.25)

Applying this procedure to some of the initial conditions provided by Henon (table I,
[27]), the periodic orbits found (see Figure 4.1) have the second intersection with x-axis
at the same values reported in the paper: this assesses again the correctness of the work
done up to this point.

Figure 4.1: Some periodic orbits ∈ family a found starting from ICs provided in [27].

4.2. Continuation method to obtain a Halo family

In order to then retrieve a complete family of periodic orbits, with different amplitude and
therefore energy, it is possible to apply the continuation method. This approach aims to
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recover more orbits starting from two initial conditions proved to generate periodic orbits.
Specifically, once one solution is found exploiting the method herein-above explained, the
procedure to be followed to generate a family is the following [42]:

1. perturbing the known solution x1 = [x1 0 0 vy1], a new initial guess x2 = [x1 +

dx 0 0 vy1] is obtained;

2. x2 can be then improved exploiting the differential correction method;

3. being now x2 and x1 two known correct solutions, it is possible to write ∆x =

x2 − x1 = [dx 0 0 dvy];

4. the new initial guess is then x3 = x2+∆x = [x2+dx 0 0 vy2+dvy] = [x3 0 0 vy3];

5. x3 can be then corrected using the differential correction method generating a new
accurate solution;

6. the process is then iterated until a family is generated.

The crucial parameter of this method is the dx applied to x1 on step 1. If this is too
large, in fact, the differential correction will not be able to find any solution if not one
completely divergent: this, once again, underlines the large sensitivity of the problem.
Following this approach, the halo families a, c, g and f of the Sun-Ryugu system have
been found and are shown in Figures 4.2 and 4.3.

Figure 4.2: Halo families a and c were found with the continuation method, starting from
an initial guess provided by [45] and [27]. From this image, it is clear the symmetry
between the two families.
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Figure 4.3: Halo families f and g found with the continuation method, starting from an
initial guess provided by [45] and [27]. Family f is shown on the left while family g on the
right.

4.3. Trajectory in the Neck Region

In this section, it will be analyzed the motion in the neck region, required due to the
expansion of the portion of space of interest to the neighboring zones of L2. Firstly,
it is necessary to introduce the lagrangian function L that, in a rotating frame, can be
expressed as stated in Equation 4.26 [21].

L(x, y, ẋ, ẏ) =
1

2
((ẋ− y)2 + (ẏ + x)2)− U(x, y) (4.26)

with U(x, y) = −µ1

r1
− µ2

r2
− 1

2
µ1µ2, being r21 = (x+ µ2)

2 + y2 and r22 = (x− µ1)
2 + y2.

Once introduced this quantity, it is possible to transform the lagrangian system into the
Hamiltonian form by means of the Legendre transformation applied in Equation 4.27.
From this, the Hamiltonian equations of motion take the form shown in expression 4.28
[21].

pi =
∂L

∂q̇i
, H(qi, pi) =

n∑
i=1

piq̇
i − L(qi, pi) (4.27)


q̇i =

∂H

∂pi

ṗi = −∂H

∂qi

(4.28)
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In this case, the Legendre transformation is given by Equation 4.29, leading to the Hamil-
tonian function expressed in Equation 4.30.


px =

∂L

∂ẋ
= ẋ− y

py =
∂L

∂ẏ
= ẏ + x

(4.29)

H(x, y, px, py) = pxẋ+ pyẏ − L =
1

2
((px + y)2 + (py − x)2) + Ū (4.30)

Now, aiming to study the linearised motion around the lagrangian point as done pre-
viously, the quadratic terms of H will be necessary. To achieve this, an expansion of
H about the equilibrium point is performed, obtaining the Hamiltonian function for the
linearised equations (Hl), which are shown in Equation 4.32 [21].

Hl =
1

2

[
(px + y)2 + (py − x)2 − ax2 + by2

]
(4.31)



ẋ =
∂Hl

∂px
= px + y

ẏ =
∂Hl

∂py
= py − x

ṗx = −∂Hl

∂x
= py − x+ ax

ṗy = −∂Hl

∂y
= −px − y − by

(4.32)

In Equation 4.31, a = 2µ̄+1 and b = µ̄− 1, where µ̄ can be recovered from relation 4.33,
where xe in this case shall be replaced with the abscissa of L2.

µ̄ = µ|xe − 1 + µ|−3 + (1− µ)|xe + µ|−3 (4.33)

Having defined these quantities, it is then possible to return back to lagrangian form
by means of the inverse Legendre transformation. This enables to recover the linearised
lagrangian equations of motion, reported in relation 4.34.
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ẋ = vx

ẏ = vy

ẍ = v̇x = 2vy + ax

ÿ = v̇y = −2vx − by

(4.34)

Equation 4.34 can be written in a vector-matrix form as follow:


ẋ

ẏ

v̇x

v̇y

 =


0 0 1 0

0 0 0 1

a 0 0 2

0 −b −2 0



x

y

vx

vy

 (4.35)

Calling the matrix on the right-hand side of relation 4.35 as M , it is easy to find out that it
presents two real and two imaginary eigenvalues, ±λ and ±iν respectively corresponding
to the eigenvectors u1,u2,ω1,ω2. From this consideration it is possible to deduce that
the general solution will have the form reported in Equation 4.36

x = (x, y, ẋ, ẏ) = α1e
λtu1 + α2e

−λtu2 + 2Re(βeiνtω1) (4.36)

where α1, α2 are real while β = α2
1 + iα2

2 is complex. It is easy to understand how the
solution is thus strongly dependent on αi and, in fact, following Koon et al. [21], nine
different classes of orbits comes out for different combinations of αi signs. Nevertheless, the
one of particular interest for this work is the Lyapunov orbit that arises for α1 = α2 = 0.
According to Conley [47], this periodic orbit projects onto the xy-plane as an ellipse
centered at L2, having major and minor axis of length equal to 2τ

√
ϵ/k and 2

√
ϵ/k

respectively. While ϵ is a variable that rules the amplitude of the orbit, k is a constant
that can be computed as:

k = −a+ bτ 2 + ν2 + ν2τ 2 with τ = −
(
ν2 + a

2ν

)
(4.37)

Aiming to extend the region of interest to a halo neighborhood, it is required to decrease
the energy level to which the ZVC are referred. In particular, it will be no longer consid-
ered the energetic level C2 but one slightly smaller, called C ′ (C ′ = 0.9999999999997C2,
highlighting once again how sensitive this problem really is). Such a value is imposed
taking care of how the ZVC will be affected by it. The new ZVC, shown in Figure 4.4 for
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both rP = 78.5 µm and rP = 10 mm, shall still present a shape giving important hints
on the direction from where the particles are escaping. To evidence this concept, Figure
4.5 portrays the ZVC for C ′′ (= 0.999999999999C2): as can be seen, the accessible realm
becomes too wide to provide functional indication of where the particles are escaping from
the system.

Figure 4.4: Zero velocity curve for energy level fixed at C ′ for rP = 10 mm (left) and
rP = 78.5µm (right).

Figure 4.5: Zero velocity curve for energy level fixed at C ′′ for rP = 10 mm.

Assuming this new energetic level as the level of interest, it is then possible to design the
motion in the neck region, i.e. in the region corresponding to the bottleneck opened at L2.
This has been done for both the values of rP , in order to underline all the advantages or
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drawbacks arising from them. Assuming for rP = 78.5 µm and rP = 10 mm a semi-major
axis (SMA) of 0.75 km and 28.5 km respectively, through Equation 4.38 it is possible to
retrieve the adimensional values of ϵ, which are reported in Table 4.1.

ϵ =

(
SMAadim

τ

)2

k with SMAadim =
SMA

lref
(4.38)

- rP = 78.5µm rP = 10 mm
ϵ 1.6902 · 10−12 1.9452 · 10−12

Table 4.1: ϵ values for cases with rP = 78.5µm and rP = 10 mm.

The resulting orbits are shown in Figure 4.6. It is evident how, in the case of rP = 78.5

µm, the small orbit resulting enables the spacecraft to fast "survey" around the whole
bottleneck opened. In this scenario, therefore, almost all the ejecta escaping through the
bottleneck having sizes close 78.5 µm can be assumed to be captured. Contrarily, the
biggest particles will not have to pass through that same aperture, therefore just a tiny
portion of this kind of ejecta can be considered to be actually gathered. On the other
hand, a bigger orbit such as the one obtained for rP = 10 mm enables the capture of a
wider range of particles. In fact, pretty much all the ejecta escaping from the system will
pass throughout that portion of space. However, since the orbit is much bigger, it can
not be ensured that, when an ejecta is escaping, the spacecraft will be there and not in
another tract of its path.

Figure 4.6: Periodic orbit in the neck region formed by the ZVC with C = C ′ for rP = 78.5

µm (left) and rP = 10 mm (right).
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In this section, finally the results obtained by fixing the energetic level of interest to
C = C ′ will be analysed. Firstly, it is interesting to understand the number of particles
falling within each category, important to have a quick and general impression of the
feasibility of the mission. This, achieved by counting the trajectories falling into each
category in the obtained database, is shown in Figures 5.1 and 5.2 for point mass and
rigid body respectively and, in percentage terms, in Table 5.1.

Figure 5.1: Histogram representative of the number of ejecta falling within each category
for the point mass model.

It can be noticed from the figures that the number of particles escaping the system does
not change when considering PM or RB approximation. For both TDM1 and TDM2,
in fact, independently of the model exploited, the number of ejecta able to leave the
interior realm of the ZVC is found to be 16610: This is simply explained by recalling
the real difference between PM and RB models, i.e. the range of allowed impact angles.
From this consideration it is straightforward to understand that, whatever the chosen
approach, it will not affect the behavior of particles that do not impact back on Ryugu,
neither for Escape nor Orbit categories. This last, in fact, counts in all the cases of 5588
ejecta. Nevertheless, even though these numbers remain the same, what changes is the
percentage corresponding to them, as highlighted in Table 5.1, which therefore can be
seen as data able to better reflect the conduct of the system.
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Figure 5.2: Histogram representative of the number of ejecta falling within each category
for the rigid body approximation.

TDM1 TDM2
PM RB PM RB

Escape 4.2820 6.1476 4.0390 6.1717
Impact 25.5078 1.6058 28.2682 3.3291
Orbit 1.4408 2.0686 1.3591 2.0767

OutRange 27.2735 88.5271 30.9506 87.1572
Escapereb 0 0 0 0
Impactreb 9.4676 0.0470 12.3214 0.03939
Orbitreb 5.9877 0.0448 8.4655 0

OutRangereb 16.0400 1.5588 14.5960 1.2256

Table 5.1: Percentages of ejecta falling inside each category with respect to the total
trajectories computed for each scenario.

Contrarily, as can be seen, changing the model will of course result in a drastic change
in the number of the ejecta categorized as Out Range. Reflecting the more conservative
nature of the PM model, in fact, Figure 5.1 shows a more proportioned number of ejecta
between the categories Impact and Out Range. At the same time Figure 5.2, due to
the huge amount of particles falling within the category Out Range, evidence how all
the categories linked to a previous rebound feature an important drop in the number of
particles. Specifically, for Impactreb and Orbitreb the percentage drops below the 0.05%.
In such a scenario, the most probable fate for a particle is therefore to escape or to re-
impact on Ryugu1, a result completely in accordance with what was assessed by Scheeres
et al. in [5]. One more interesting outcome is that analysing TDM2, the data available
for this site led to a higher impact on the asteroid’s soil with respect to the TDM1 case.
Moreover, with PM model, these collisions will more likely occur with impact angles inside

1Note that also the Out Range category implies an impact.



5| Results of ejecta dynamics 79

the feasible range, therefore increasing not only the successive rebounds (i.e. categories
Impactreb and OutRangereb), but also the number of ejecta that can be found orbiting
the asteroid, populating in this way the Orbitreb category.
Finally, a consideration on the category Escapereb that seems obvious: no particle is found
to be able to escape from the system after an impact with Ryugu and the consequent
rebound. The trivial indication, here, is that if a particle is ejected from Ryugu in
conditions that do not permit a direct escape, that particle will never be able to leave the
system neither after a sort of "re-tuning" of its initial conditions by means of an impact
on Ryugu. This, of course, is a consequence of the dissipation of energy occurring during
the collision with the asteroid’s soil.
However, since the differences between TDM1 and TDM2 are found to be low, from here on
just the TDM1 case will be shown given that, differently from TDM2, it is representative
of the surface material [17], which is the one of interest in this work. Due to its more
conservative formulation then, the PM approximation will be the baseline of the discussion
even though the RB model could represent a better approximation of a real scenario: only
in the cases where important differences arise from the use of the different models also
RB will be shown. However, for completeness, all the graphs and figures described in this
section will be reported, for all the cases, in Appendix B.
Studying at first the behavior of the particles impacting again on Ryugu, i.e. belonging
to the 2nd-4th-6th-8th columns of Table 5.1, image 5.3 is able to return a global idea on
which is the time required for this ejecta to collide with the soil. In the figure, blue is for
Impact, green is for Impactreb, red is for OutRange and magenta is for OutRangereb.

Figure 5.3: Time of flight for impacting particles for PM (left) and for RB (right). Both
are representative of TDM1.

As visible, the larger the ejecta the higher will be the number of particles impacting again
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with the asteroid. Contemporary, the plot shows also that the time that ejecta will take
to collide again with the soil grows with rP as well. This means that, for larger particles,
a higher percentage will stay detached from the surface for a larger time. Therefore, these
ejecta will likely interact with the particles found to escape, which will be actually fewer.
The graph, then, highlights how, applying RB model rather than the PM one, the global
trend is the very same, but much more particles fall within both the OutRange categories.
The number of collisions occurring with impact angles within the suitable range, in fact,
drastically passes from 39.61% for PM to 1.80% for RB.
For the same reason, it is important to understand what are the conditions that more likely
will put ejecta into orbit around Ryugu: these, in fact, could represent a non-negligible
source of "traffic" that escaping particles will have to overcome before successfully leaving
the system. Figure 5.4 relates rP , θ and vej able to inject a particle in orbit: specifically,
blue stays for direct orbit while red for orbiting after a previous rebound.

Figure 5.4: Plot highlighting how rP , θ and vej are related for particles injected on orbit.

Looking at the graph, firstly it is possible to note how the conditions for having a direct
or indirect orbit are well decoupled. For direct orbit, in fact, vej shall be slightly higher
than 36 cm/s. Furthermore, for higher rP the range of longitude able to inject a particle
in orbit becomes wider, leading therefore to the observation that the higher rP , the higher
will be the probability of having a particle able to directly orbit the asteroid. It is also
curious the fact that no conditions can directly inject into orbit the smallest particles.
Contrarily, with low rP the number of indirect orbits is large, then dropping for increasing
particles’ size. Interesting is the fact that all the indirect orbits found in this work were
born from previous impacts occurring at a longitude between 0 and 6 degrees. From the



5| Results of ejecta dynamics 81

moment that the number of orbits presents a different trend with rP between direct and
indirect, it can be interesting to study which particles’ dimension leads to the highest
number of orbiting ejecta. This, is clearly shown in Figure 5.5.

Figure 5.5: Number of orbits (direct+indirect) sorted by size.

The bar graph highlights that for central values of rP the number of orbits found is lower,
but this increases both for smaller and larger particles. However, the most common orbits
will regard the biggest particles: these orbits therefore represent even more severe obstacle
for ejecta that is running away from Ryugu’s system. However, these interactions are not
retained to be particularly relevant, also since all the ejecta will be generated from the
same initial plume, meaning that once the remaining particles start orbiting for some
revolutions, the smaller particles will have already left the neighborhood of the asteroid.
For these reasons, such inter-particles are considered to be safely neglected and therefore
the dissertation will continue without taking into account the "traffic" that an escaping
particle could face, both from orbiting particles and for particles that have not impacted
yet.
Focusing at this point on the escaped ejecta themselves, these are the ones that really rule
the feasibility of the mission. Figure 5.6 evidence the number of ejecta escaped depending
on their size and on the ejection longitude.

The figure, shows that the conditions that make a particle able to escape can be divided
in two groups: one having θ < 100◦ and another with 200◦ < θ < 350◦. This division will
be present and reflected in all the analyses performed in this work. A further observation
highlights how increasing rP , the range θ allowing particle escape grows. Linked to this,
in the figure it is also visible how the number of escaping ejecta increases for higher values
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Figure 5.6: Contour plot on the sample trajectories found to escape depending on rP and
θ.

of rP . This is intuitive since, for larger particles, the bottleneck of the ZVC grows in
size (see Figure 4.6). However, the trend shown is a bit different: in fact, a higher rP

will correspond to a relevant rise of the escaping sample trajectories only for longitudes
around the central region of each one of the groups mentioned before. Anyway, from
Figure 5.6 it is possible to conclude that the biggest part of the ejecta able to escape
comes from the upper group, departing therefore from longitudes between 200 and 350
degrees, especially for larger sizes . No particles passing throughout the neck region are
found for 100◦ < θ < 200◦. A more quantitative analysis is depicted in Figure 5.7: once,
again the number of sample trajectories that successfully escape from the system increases
with rP . Interestingly, no particles having rP = 78.5 µm are found to successfully escape.

Similarly, another plot has been recovered analysing this time the behavior with γej rather
than rP (see Figure 5.8).

Correctly, due to problem’s geometry, the plot does not show any symmetric behavior on
γej. In addition, once again, the figure distinguishes the same two groups highlighted in
Figure 5.6. The group on the left, i.e. the lower on Figure 5.6, shows that most of the
escaping trajectories comes from the lowest longitude and the highest (γej here is negative)
ejection angles while, as θ increases, not only the escapes are less but also require lower
γej. Contrarily, the other group exhibits the opposite trend: the number of escaped orbits,
in fact, is higher for lower positive values of γej and increases with θ. This is of course a
consequence of the geometry of the problem, as can be seen in Figure 5.9. The conditions
highlighted by Figure 5.8 as the ones providing the larger number of ran away ejecta, in
fact, are those driving the particle to be ejected towards the direction of the bottleneck.
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Figure 5.7: Sample trajectories leaving the system sorted by size for PM and TDM1

Another crucial variable able to assess or negate the feasibility of the mission is the time
required to perform the collection. Specifically, for this preliminary study, the time of
flight of each particle is assumed as the time at which the ejecta leaves the Hill’s sphere.
Visually it is shown in Figure 5.10 with respect to rP and θ.

The very first observation to be done here is to evidence how smaller particles are able
to escape quicker than the larger ones. This is connected to the fact the smaller particles
experience a higher acceleration due to SRP and it is in agreement with the findings in
[31] and [34]. Furthermore, the plot shows that, for the same rP , particles leaving from
Ryugu with 200◦ < θ < 350◦, i.e. the ones belonging to the upper group in Figure 5.6, will
be able to escape from the system, on average, in less time: this can represent valuable
information on the ejection behavior.
As already said, the feasibility of the mission will be strongly dependent on the time
window fixed for the mission itself. Analysing how the percentage of ejecta escaped (and
potentially collected) with respect to the total number found with this analysis versus the
possible time spans of the mission, the plot obtained is the one reported in Figure 5.11.
Then, fixing time spans from 1 to 3 months, the percentage values found are reported in
Table 5.2. From this analysis, it is possible to conclude that this kind of mission will have
to last more than one month.

1 month 2 months 3 months
% 12.176 95.972 100

Table 5.2: Variation of % of ejecta escaped for time windows fixed to 1-2-3 month(s).

To better assess the required time span, it is possible to follow another approach. Specif-
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Figure 5.8: Contour plot on the number of escaped sample trajectories depending on θ

and γej.

ically, from Figure 5.7 and knowing the density of the particles, it is then possible to
retrieve the mass escaped, and therefore possibly collected, sorted by size. The mass
escaped for each particle’s dimension is reported in Figure 5.12, leading to a total mass
equal to mtot = 36.2683 kg. Note that, even though for scale reasons the second and
third columns (rP ≃ 1.181 mm and rP ≃ 2.283 mm) seem empty, the result is that they
actually provide about 1.8040 and 60.343 g respectively.

Of course, the biggest portion of mass that can be gathered comes from the larger ejecta
but, for what has been previously explained and highlighted when dealing with advantages
and disadvantages between the possible neck orbits (see Figure 4.6), the larger the ejecta
of interest, the lower the capture probability will be. For this reason, in order to maximise
the collection probability, it is possible to choose as a reference scenario the one having
the neck orbit shown in Figure 4.6 on the left. The threshold value on the gathered
mass, able to determine the feasibility of the mission, is here imposed as the same mass
collected on Hayabusa2 mission, that is about 5.262 g [16]. Such a value is retained
suitable to give a preliminary hint on the feasibility for the kind of mission here proposed,
since being able to collect the same amount of material but without any landing can be
considered a complete success. Stated this, the procedure followed has been, summing
the masses corresponding to each particle’s size starting from the smallest, to understand
which particles could have been neglected. All this reasoning can be applied from the
moment that the smallest particles feature the lowest tof before escape. The result is
that, for 78.5µm < rP ≤ 2.283 mm, the total mass is found to be ≃ 62.15 g. This
value comprehends 1.8040 g deriving from particles having rP = 1.181 mm, while the
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Figure 5.9: The simplified sketch on the left (not in scale) evidences how the best con-
ditions for particle escape highlighted in Figure 5.8 represent the situation for which the
particle "points" towards L2. On the right is thus reported an example of few escaping
trajectories that support what said.

rest is attributed to ejecta with rP = 2.283 mm. Assuming, for the reasons explained
herein above and relatively to Figure 4.6, that in such a scenario the particles can be
all considered to be collected, it is now possible to understand how long should be the
mission time span in order to gather the remaining 5.262− 1.8040 = 3.458 g coming only
from the ejecta with rP = 2.283 mm. Following this approach, it is found that the ejecta
having rP = 2.283 mm are able to provide the required mass after 22.48 days, as shown
in Figure 5.13. This is therefore the minimum mission duration (excluding travel time to
get to Ryugu’s system) proposed at the end of this work.

The next step it to estimate the velocity at which the collection will occur. This is fun-
damental information necessary to start a preliminary design of the capture mechanism,
that will be introduced in Chapter 6. In this work, the capture velocity will be assumed
to be the velocity with which the particle run away from the Hill’s sphere, i.e. when it
is assumed to be successfully escaped. Actually, to this purpose, the velocity that should
be considered is the relative speed between the ejecta and the spacecraft. However, the
assumption explained before shall be enough to start a preliminary design. Following
this idea, the capture velocity is easily recovered propagating the conditions stored in the
database leading to the condition Escape for t = tof . The result obtained can be seen in
Figure 5.14 .

From it, it is clear that the smaller the ejecta, the higher will be the velocity with which
it will escape and therefore assumed to be captured. This is a positive aspect since,
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Figure 5.10: Time of flight of escaping particles with respect to rP and θ.

otherwise, the kinetic energy recovered for the ejecta would grow both with rP and Vcapture,
likely touching prohibitive values. Moreover, it is possible to see how, for ejecta belonging
to the upper group defined in Figure 5.6, the capture velocity is found to be slightly
inferior on average with respect to the ejecta of the second group. Knowing from Figure
5.6 that the biggest part of the ejecta escapes from the first group, this graph is telling
that the majority of the ejecta is arriving at lower velocities, especially for high rP . In
addition to this, from Figure 3.1 it is known that bigger particles feature a higher vej: this
means that, contrarily to what could be thought, particles departing from Ryugu with
the highest velocities are the same that could be collected at a lower capture speed. To
conclude, this plot also shows that, apart for some isolated case, almost all the particle
will arrive with a velocity between 100 and 300 m/s. It is therefore interesting now to
analyze the kinetic energy with which the particle would be captured, that corresponds
to the one that the collection mechanism will have to dissipate. From Vcapture, the kinetic
energy can be computed as:

Ekin =
1

2
mV 2

cap =
1

2
ρP

(
4

3
πr3P

)
V 2
cap (5.1)

Picture 5.15 shows the result as function of Vcapture and rP .

The graph clearly shows how the larger particles are the ones with the higher kinetic energy
even when they present a lower capture velocity, meaning that rP "weights" more than
the velocity. This not only agrees with the exponents of relation 5.1, but also underlines
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Figure 5.11: Trend of the % of ejecta escaped with respect to the time window.

the dissertation done earlier regarding the relation between vej and Vcapture: correlated to
this, it is also found that the larger the ejecta dimension, the lower the minimum capture
speed. Furthermore, one of the most important outcomes of this explanation regards the
maximum kinetic energy that should be dissipated by the collection mechanism. Specif-
ically, its value is found to be Ekinmax = 1.9258 · 10−4J and will be used to impose a
preliminary design concerning the collection technique.
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Figure 5.12: Distribution of the mass possible to gather sorted by size.

Figure 5.13: Mass granted by particles with rP = 2.28 mm over time.
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Figure 5.14: Capture velocity expressed as function of rP and θ.

Figure 5.15: Ejecta’s kinetic energy when exiting from the system throughout the L2
bottleneck.
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This section will discuss the main strategies adopted until now to perform on-orbit cap-
tures, then highlight advantages, disadvantages and modifications needed to complete the
task required for this mission. Finally, some guidelines and indications for a preliminary
design will be provided.
Concerning the possible approaches deriving for debris removal around Earth, the main
possibilities are based on the use of a robotic-base on-orbit service (OOS) or on flexi-
ble tether nets, even though different systems have been thought in the past few years.
The RemoveDEBRIS mission in fact, was a satellite research project, carried on by the
University of Surrey, which aimed to demonstrate various space debris removals technolo-
gies such as net systems, harpoons, vision-based navigation (VBN) and a dragsail [48].
However, these are not adapted to be exploited for a collection mission of multiple parti-
cles that, moreover, foresees a re-entry phase for sample analysis rather than de-orbiting
as planned for Earth debris removal operations. Regarding instead a robotic OOS, the
major problem encountered is the attitude disturbance provoked to the spacecraft base
when robotic arm and target particle physically intercept, causing destabilization or severe
hardware damage [7]. Even though these aspects could be partially overcome throughout
the Reaction-Null Space concept introduced by Yoshida and Nenchev [49], this solution
remains unsuitable for the capture of multiple particles at a time, considering also the
wide size range of the ejecta.
The conclusion is that, for this work’s scenario, the most suitable technology is repre-
sented by the so-called aerogel capture, already introduced in section 1.3.2 talking about
the Stardust-NExT mission but then improved for the Tanpopo Cosmic Dust Collector
mission. Such a capture mechanism is based on the use of silica aerogel. This, is con-
sidered to be the world’s lightest solid and, to give an idea of its particularity, NASA’s
website says that "it is probably not possible to make aerogel any lighter because then it
would not gel - the molecules of silicon would not connect". For this reason aerogel is
sometimes referred to as a "solid smoke" being formed for 99.8% of air, resulting in an
ultra-low density material. This is a fundamental property, since, for the same internal
structure, lower density yields lower pressure shock levels at impact [50].
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Furthermore, this highly porous material based on silicon dioxide (of which production
procedure is briefly sketched in Figure 6.1) presents a mesostructure that resembles strings
of pearls with sizes from 10 to 100 Å: this also grants an high emissivity for the material,
which is therefore able to dissipate heat, avoiding any issue related to the thermal cycles
felt in space [50]. Aerogel, in fact, was also exploited as lightweight thermal insulator on
one of the Mars Pathfinder’s rovers.
For several decades, it was believed that an intact capture of a "cosmic projectile" was not
possible without converting the particle into plasma, in order to then collect the vapor-
ized condensates, i.e. without atomizing the ejecta . The development of this technology,
instead, enables intact particle capture, preserving therefore not only its elemental com-
position but also its structural phases, morphology and chemical isotopic composition as
well.

Figure 6.1: Simplified scheme of aerogel
production [51].

Figure 6.2: During a capture, aerogel
melts around the particle trapping it.
Credits: NASA/JPL.

Aerogel, in fact, slows down gradually the colliding particle: in this way, the ejecta is not
vaporized or melted but, contrarily, the dissipation of energy caused by their interaction
will raise the temperature, melting aerogel around the particle trapping it inside the
mesostructure (see Figure 6.2). Up to date, this is achieved by creating aerogel tiles
that comprise two layers with densities of 0.01 and 0.03 g/cm3. The top layer of the
panel features a lower density and it is designed to minimize the initial impact shock,
while the dense layer can stop the most-energetic particles hitting the aerogel panel. This
configuration enables the capture of particles having a wider energy range without the
necessity of increasing the panel’s thickness to stop them [52]. This double-layer structure
is perfectly visible in Figure 6.4. In the picture, a particle with rP = 30 µm and ρP = 2.44

g/cm3 impacting at a velocity equal to 5.97 km/s is able to reach depth inside the aerogel
of 13 mm [51]. These measures have to be re-scaled to particle sizes and impact velocities
characteristics of the capture problem described in this work. Assuming that the aerogel
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carried aboard for this mission will have the same properties of the one used for the test, it
is possible to approximate the thickness that the aerogel tiles shall have from the capacity
of dissipating kinetic energy. In particular, recovering the dissipation per unit length that
the panel is able to grant as reported in Equation 6.1, the length required for the mission
can be approximated as done in Equation 6.2:

Ē =

1

2

(
4

3
πr3P

)
ρPv

2

ldepth
= 3.7828 · 10−7 J/m (6.1)

lthick =
Ekinmax

Ē
≃ 509 m (6.2)

Such a value is completely unfeasible for the kind of mission proposed, therefore another
approach shall be considered. Specifically, from Burchell et al. [53], a relation between
track length and aerogel density is available. The figure of interest is the one reported in
Figure 6.3.

Figure 6.3: Track length over particle diameter VS aerogel density [53].

Considering the mean density between the layers as the aerogel density (i.e. 20 kg/m3),
it is possible to find that a track length over the ejecta diameter equal to ∼ 182.64 1.
Following this approach, the estimated track length enabling to collection also the biggest
particles is l = 3.6528 m. Moreover, in NASA/JPL Return Capsule press-kit2 it is assessed
that the sizes of the particles that Stardust-NeXT was expecting to collect ranged mostly
from less than a micron to nearly a millimeter. This interval is close to the one proposed

1To recover this value the open source WebPlotDigitizer available online has been exploited.
2https://www.jpl.nasa.gov/missions/stardust
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for this new mission, which expects sizes up to 10 mm. Moreover, in the same paper, it is
said that the carrot-shaped track created by the impacting particle can reach up to 200
times the dimension of the particle itself (thus close to the one found following Burchell
et al.) leading in this case to l = 4m. However, these data were provided for different
sizes and impact velocities (5− 6 km/s), evidencing how these values are not possible to
be clearly understood but rather they have to be simulated again in laboratory to grant
the effectiveness and efficiency of the capture.

Figure 6.4: Track of a projectile with rP = 30µm and ρP = 2.44g/cm3 impacting at a
velocity equal to 5.97km/s. The particle penetrates up to 13mm [51].

Another important feature that can be deduced from Figure 6.4 regards the transparency
of the medium. This grants the ability to easily localize and remove capture particles,
tasks that can be considered as important as the capture itself since, of course, not finding
a captured particle is equivalent to no capture at all. Localizing µm − mm particles in
a wide enough collecting surface is already a cumbersome task; with an opaque medium
this will become nearly impossible. Sticking into this, it is now evident the importance
of both capture efficiency and extractability. This is why transparency of aerogel is an
important property to not be underestimated. For this purpose NASA’s Johnson Space
Center (Houston, Texas) has a laboratory with specially designed equipment to optically
scan the aerogel and locate captured grains within it, already used for the Stardust-NExT
mission. Therefore, this step does not represent a novelty nor a demand for any technology
development but could be directly applied also for the mission proposed in this thesis.
Another main aspect of such collection strategy is its simplicity: being a passive technique,
in fact, aerogel capture does not require precision pointing, mechanisms to warm up or
any other kind of devices [50]. This finally results in high simplicity and reliability for the
technology.
Once in position, similar to what happened in Stardust-NeXT, the spacecraft shall open
a kind of tennis-racket-shaped catcher filled with aerogel, shown in Figure 6.5. Finished
the capture, this device will fold down into a return capsule, enclosing the sample for its
safe delivery to Earth.
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Figure 6.5: Stardust spacecraft. The red circle evidences the tennis-racket-shaped deploy-
able collector filled with aerogel.

Such a device shall of course be linked to a holder rather than directly in contact with
the aerogel. This shall be designed accordingly to aerogel panel dimensions and must
maximise the exposure area. The most widely used approach is to fabricate a body case
with aluminum alloy A7075, shaping it as a gridded lid (see Figure 6.6). In particular,
Tabata et al. [54] reports that, for an aerogel of 92 mm× 92 mm, the final exposure area
is approximately 56 cm2, therefore having the holder covering about the 33.84% of the
aerogel surface. This means that if, as in the case of Stardust-NeXT, the exposure area
wanted is around 1040 cm2, the actual surface considering also the holder is ≃ 1392 cm2.

Figure 6.6: Holder mounted on a prototype aerogel [54].

Regarding instead the other subsystems, the main requirements on them will be:

• Propulsion subsystem: the thrusters shall be located on the opposite side of the
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spacecraft with respect to the one where the collector will be deployed. Moreover,
monopropellant systems are preferred for this kind of application and therefore this
solution could represent a good baseline.

• Attitude control subsystem: shall be able to fix the spacecraft’s orientation in
space, keeping constantly the aerogel collector pointed towards the ejecta arriving
direction.

• Thermal control subsystem: exploiting louvers, coatings and MLI, this sub-
systems shall be able to maintain the spacecraft and all its elements within their
temperature ranges. The collector, being external to the actual S/C (when de-
ployed) and due to the fact that aerogel is a thermal insulator, can be initially
studied through a 1-node approximation.

• Power subsystems: shall be able to provide at each component the power needed
for it to work. The principal solution for this kind of mission is represented by the
use of solar arrays.

To summarise everything up, the main advantages of the use of aerogel for this type of
on-orbit capture are:

• aerogel is an already tested and space-proven technology.

• aerogel passed both pressurization/re-pressurization and vibration tests [54].

• due to its mesostructure, aerogel features and high emissivity. It therefore does not
trap heat and is insensitive to the thermal cycles proper of space environment.

• aerogel’s transparency grants traceability of trapped particles., which can be then
detected and extracted with relative ease.

• aerogel capture is relatively simple, therefore improving simplicity and reliability.

• being inorganic, aerogel is impervious to radiation and to ionic erosion [50].

• having an ultra-low density, even for a very large collector no mass constraints will
arise.

• aerogel enables intact particle capture, preserving particles’ elemental composition,
structural phases, morphology and chemical isotopic composition.

On the other hand, aerogel have never been used for this range of velocities. In fact, it
is generally adopted to stop cosmic dust impacting with hypervelocities (km/s) while in
this mission’s scenario, with the assumptions explained earlier, the velocities considered
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are one order of magnitude lower. Capture efficiency in these conditions still has to be
proven.
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developments

In this chapter, the most relevant outcomes of the work will be exposed but, at the mean-
time, its limits will be highlighted in terms of assumptions and future developments to be
done. Having assessed in Chapter 3 the necessity to surpass the approach carried on by
Latino et al. in [1], the interpolation approached proposed in this work will be the matter
of the discussion.
First of all, the number of sample trajectories found to escape propagating each initial
condition for a maximum of 90 days is 16610. This number does not change when con-
sidering point mass or rigid body approximation, since it does not depend on the number
of collision occurring. A data that can be partially seen as a confirmation of the work
carried on, regards the category Escapereb which, due to the energy dissipated within
each collision, is empty. This means that all the 16610 found to escape comes from a
direct run away of the ejecta. Furthermore, these trajectories are found able to escape
for θ < 100◦ and 200◦ < θ < 350◦, identifying two distinct groups of initial conditions
enabling a particle to leave the system. Even though the second is the one providing the
vast majority of ejecta, for both these groups the amount of escaping orbits grows with
the size: interestingly, no particles with rP = 78.5 µm are found able to leave Ryugu
independently of the ejection conditions. This behavior can be probably attributed to
the tightness of the bottleneck shown in Figure 4.4 (on the right) and to the value chosen
for C ′. Moreover, studying how γej affects this behavior, it is found out that that the
best possible conditions to grant an escape are the ones that make a particle ejecting
towards the bottleneck. Although, considering TDM1 and PM, the trajectories orbiting
Ryugu are 28810 (of which 23222 orbit after a rebound) and those that have not im-
pacted yet with it are 135645 (of which 36718 impact after a rebound) and 206766 (of
which 62208 impact after a rebound) for in-range and out-range collision respectively,
their inter-particle effects have been here considered to be safely negligible. Nevertheless,
other inter-particle effects ignored in this dissertation such as the ejecta electrostatic cou-
pling and the particle-particle collisions have actually a relevant influence: these, even
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tough not so crucial in the advanced ejecta plume behavior, represent a crucial aspect
to define the particles’ dimension and velocity distributions which characterize the firsts
instants of the ejecta plume. Quoting Larson and Sarid [55], the distribution will either
experience an increased particle’s size due to accretion or a decreased dimension due to
ejecta break up during collisions. This, as underlined in the whole work presented, will
strongly affect the perturbation induced by the SRP. Concerning again SRP, in this work
the succession of the eclipses, i.e. moments in which β = 0, have not been considered,
therefore leading to important differences in the dynamics. Moreover, the propagation
of the sample trajectories are not proportional to the actual number of particles ejected
from a crater, therefore requiring a more detailed investigation.
Apart from the number of escaped ejecta, the other key parameter is the time required
to perform the collection. In particular, it is found that, experiencing a higher SRP ac-
celeration, the dynamics of smaller particles will be faster, meaning that the larger an
ejecta the longer it will take to leave the system. In order to quantify then the amount
of time needed to retain the mission successful, only particles having rP = 1.181 mm and
rP = 2.283 mm are considered. This derive from the choice of the smaller neck orbit
between those considered in Figure 4.6 which, granting a fast scanning of the bottleneck,
is here assumed to maximise the capture probability. All the particles exiting having the
dimensions previously reported are in fact considered to be all captured. This not only
is not completely true, but also the neck orbit itself will require to be better identified.
However, with these simplifications, after 22.48 days (i.e. 23 days), the mission is found
able to gather 1.8040 g and 3.458 g from particles having, in the order, rP = 1.181 mm
and rP = 2.283 mm. The total mass accumulated found with this approach is therefore
equal to 5.262 g, equal to the one collected by Hayabusa2 according to [16]. This has
been considered a good baseline threshold able to identify a satisfying amount of material
required to gather.
Concerning instead the preliminary design of the capture mechanism, the optimal strat-
egy is to exploit a silica-based aerogel able to trap the particles inside its mesostructure.
At first, a study on the kinetic energy of the ejecta when colliding with aerogel has been
performed. However, the energy has been recovered assuming as impact velocity the one
that the ejecta will have at t = tof , suggesting that the capture occurs at the same instant
that the simulation found the particle escapes from the Hill’s sphere. This is a huge sim-
plification of the problem which, furthermore, takes as impact velocity just the one of the
ejecta instead of the relative speed between the satellite and the particle itself. Anyway,
besides all these hypothesis, it is found that the maximum kinetic energy required to be
dissipated by the aerogel is equal to Ekinmax = 1.9258·10−4. Note that, even though is said
that the capture would interest only ejecta with rP ≤ 2.283 mm, this value corresponds
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to a particle having rP = 10 mm, that is not excluded here to stay as conservative as
possible. Moreover, this quantity has been found to be physically limited since for larger
dimensions, that are those presenting the higher vej, Vcap will be the lower. In any case,
capture velocity is between 100 and 300 m/s.
Knowing the maximum kinetic energy, this work assessed, exploiting reference trends
found in literature, a minimum thickness of the aerogel tiles of about 4 m: this values
is however not reliable since those studies were carried on for different particle’s sizes
and velocity. The best option would be to simulate again in laboratory to assess the
effectiveness, efficiency and quality of the capture. When the capture-phase begins, the
aerogel tiles are exposed to space deploying a racket-shaped catcher as the one used in
the Stardust-NeXT mission. This must be attached to a gridded aluminum-based holder:
investigating Tanpopo and Stardust-NeXT mission the preliminary analysis returns a sur-
face area ≃ 1392 cm2.
Apart from those already exposed, two other main future studies would strongly improve
the quality of the dissertation: first, the dynamics shall be expanded to the elliptical case,
analysing the Elliptical Restricted Three-Body Problem; second, the point mass model,
here assumed as the baseline due to its more conservative nature, shall be refined not
by a rigid body assumption, but rather considering the tangential compliance caused by
the elastic deformation that would take place during the impact. Although its effect is
expected to be negligible for a low-velocity impact, it might be a subject of interest for
future research [17].
To conclude, the submitted work, even though with several simplifying assumptions, has
been able to assess the feasibility of an on-orbit asteroid’s sample collection by means of a
satellite orbiting around a libration point. Exploiting an aerogel-based capture strategy,
in fact, the proposed mission is able to collect 5.262 g of Ryugu’s ejecta in 23 days from
the arrive at the asteroid.
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Figure A.1: Block diagram representative of the database code. Green represents the
starting block, red the final one. In blue are highlighted all the blocks assessing a final
condition to the ejecta, which is then added to the database.
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Figure B.1: Relation between rP , θ, vej for orbiting trajectories, assuming RB and TDM1.

Figure B.2: Number of orbits sorted by size for RB and TDM1.
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Figure B.3: Contour plot on the sample trajectories found to escape depending on rP and
θ for RB and TDM1.

Figure B.4: Escaping sample trajectories sorted by rP for RB and TDM1.

Figure B.5: Contour plot on the sample trajectories found to escape depending on θ and
γej for RB and TDM1.
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Figure B.6: Time of flight for escaping trajectories with respect to rP , θ for RB and
TDM1.

Figure B.7: Capture velocity expressed as function of rP and θ for RB and TDM1.

Figure B.8: Ejecta’s kinetic energy when exiting from the system throughout the L2
bottleneck for RB and TDM1.
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Figure B.9: Time of flight of impacting trajectories as function of rP , θ, assuming PM
and TDM2.

Figure B.10: Relation between rP , θ, vej for orbiting trajectories, assuming PM and
TDM2.

Figure B.11: Number of orbits sorted by size for PM and TDM2.
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Figure B.12: Contour plot on the sample trajectories found to escape depending on rP

and θ for PM and TDM2.

Figure B.13: Escaping sample trajectories sorted by rP for PM and TDM2.

Figure B.14: Contour plot on the sample trajectories found to escape depending on θ and
γej for PM and TDM2.
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Figure B.15: Time of flight for escaping trajectories with respect to rP , θ for PM and
TDM2.

Figure B.16: Capture velocity expressed as function of rP and θ for PM and TDM2.

Figure B.17: Ejecta’s kinetic energy when exiting from the system throughout the L2
bottleneck for PM and TDM2.
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Figure B.18: Time of flight of impacting trajectories as function of rP , θ, assuming RB
and TDM2.

Figure B.19: Relation between rP , θ, vej for orbiting trajectories, assuming RB and TDM2.

Figure B.20: Number of orbits sorted by size for RB and TDM2.
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Figure B.21: Contour plot on the sample trajectories found to escape depending on rP

and θ for RB and TDM2.

Figure B.22: Escaping sample trajectories sorted by rP for RB and TDM2.

Figure B.23: Contour plot on the sample trajectories found to escape depending on θ and
γej for RB and TDM2.
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Figure B.24: Time of flight for escaping trajectories with respect to rP , θ for RB and
TDM2.

Figure B.25: Capture velocity expressed as function of rP and θ for RB and TDM2.

Figure B.26: Ejecta’s kinetic energy when exiting from the system throughout the L2
bottleneck for RB and TDM2.
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