
Executive Summary of the Thesis

Exploiting FX Trading Patterns at Multiple Time-Scales with Hierar-
chical Reinforcement Learning

Laurea Magistrale in Mathematical Engineering - Ingegneria Matematica

Author: Luca Zerman

Advisor: Prof. Marcello Restelli

Co-advisor: Pierre Liotet

Academic year: 2021-2022

1. Introduction
The Foreign Exchange Market (FX) is a de-
centralized market for the trading of national
currencies made up of a network of banks, in-
stitutions and individual traders who operate
from all around the world. The FX market is
the largest financial market in the world with a
daily volume of $7.5 trillion, ensuring FX and
especially EUR/USD traders several advantages
that range from high liquidity to low bid-ask
spreads. Technology became increasingly im-
portant in FX trading in the 1990s with the rise
of electronic trading platforms and sophisticated
computer systems that allowed traders to access
real-time market data and to develop algorith-
mic trading strategies. Given that the trading
process can be modeled as a Markov Decision
Process and that the dynamics of the FX mar-
ket are unknown, Reinforcement Learning (RL)
becomes an excellent candidate to design au-
tonomous trading agents. RL has been used
in trading since the early 2000s, predominantly
in algorithmic trading for options, futures and
portfolio management.
In FX, the choice of the trading frequency is
an important issue. Actually, the optimal fre-
quency might depend on the market conditions

and this is the basis of our work. Indeed, in
our thesis we aim to apply Hierarchical Rein-
forcement Learning (HRL), conceived to learn
policies at different acting scales, to FX trading.
Our work begins with the implementation of a
batch RL algorithm from the literature called
Persistent Fitted Q-Iteration (PFQI) [2], which
allows to tune the control frequency. After-
wards, PFQI is revisited in what we call Adapted
Persistent Fitted Q-Iteration, that represents
the fundamental element of the novel algorithm
we propose: Hierarchical Persistent Fitted Q-
Iteration (HPFQI). HPFQI allows to consider
different frequencies simultaneously, training an
agent who is able to understand, at each time-
step, which frequency is the best, therefore ex-
ploiting signals at different scales while keep-
ing a high control on its actions. We first test
HPFQI on the Mountain Car, an environment
commonly used as a benchmark in RL, and
then, after having performed some exploration
on our data, we backtest the algorithm on the
EUR/USD market. In particular, we consider
the highly-liquid EUR/USD currency pair and a
relatively small trading size to assume the possi-
bility of quickly going long or short without any
market impact and slippage issues. Our results

1

Executive summary Luca Zerman

confirm the critical importance of the possibility
to constantly change frequency, but also high-
light where some improvements could be made.

2. Reinforcement Learning
Reinforcement Learning (RL) is an automatic
learning technique that focuses on solving prob-
lems where an agent interacts with an environ-
ment, learning to make decisions by performing
actions and observing the resulting rewards.

2.1. Markov Decision Process
The above scheme is formally representable
through a Markov Decision Process (MDP). A
discrete MDP is defined asM = ⟨S,A, P,R, γ⟩,
where S is the space of the possible states of the
environment while A is the space that contains
the actions that the agent can perform. The
transition probability function P (s′|s, a) gives
the probability of reaching a new state s′ from
the state-action pair (s, a) and it must be sat-
isfied that the future is not influenced by past
history if the present is known, i.e. the environ-
ment response at step t+1 depends only on state
and action at time t (Markov Property). The
reward function manages the rewards the agent
collects for that transition and γ ∈ [0, 1) is the
discount factor, which determines how much im-
portance is given to future rewards. The agent
acts through the policy π(·|s), which associates
a distribution over the action space A to each
state s. Therefore, the agent’s goal is to find the
policy that maximizes the expected discounted
sum of future rewards defined as:

Jπ := Eπ

[
T∑

k=0

γkRk+1

]
,

where T is the final trajectory time-step. A
useful quantity linked to the expected return
is the action-value function Qπ(s, a), which de-
notes the expected return starting from state s,
taking action a and then following policy π:

Qπ(s, a) := Eπ

[
T∑

k=0

γkRt+k+1|St = s,At = a

]
.

Starting from Qπ(s, a), we can define the opti-
mal value function

Q∗(s, a) := max
π

Qπ(s, a), ∀s ∈ S ∀a ∈ A .

The policy that selects the action that maxi-
mizes Q∗(s, a) is π∗. Q∗(s, a) satisfies the Bell-
man equation:

Q∗(s, a) = E
[
Rt+1 + γ max

a′∈A(s′)
Q∗(St+1, a

′)|s, a
]

This equation is useful because it allows us
to create algorithms that find the optimal Q-
function.

2.2. Fitted Q-Iteration
FQI is a model-free, off-policy and offline algo-
rithm designed to learn an approximation of the
optimal action-value function without knowing
the transition probability. FQI trains a regressor
to fit the Q-function from a dataset D composed
a tuples of state, action, reward and next state,
with the aim of generalising over the outcomes
not contained in D. In brief:

D = {(s(i)t , a
(i)
t , r

(i)
t+1, s

(i)
t+1)}

|D|
i=1.

Being FQI offline and off-policy, D can be col-
lected in a previous phase using any policy.
Knowing QN−1 from the previous iteration, QN

is trained on:

QN (st, at)← rt+1 + γ max
a∈A(s)

QN−1(st+1, a),

where (st, at, rt+1, st+1) is a tuple in D. Specifi-
cally, at each iteration of the algorithm, the hori-
zon considered increases by one step. A higher
number of iterations, even if it guarantees that
the agent optimizes for a longer horizon in the
future, introduces an overestimation bias: in-
deed, each FQI iteration implies taking the max-
imum of an approximated quantity, therefore the
Q-function tends to increase artificially with the
iterations. For this reason, the number of itera-
tions must be chosen carefully.

2.3. Persistent Fitted Q-Iteration
In RL, continuous-time problems are usually
transposed into a discrete-time framework by in-
troducing a time discretization based on a cer-
tain control frequency. Clearly, since it is not
known which frequency is best a priori, there
is a risk that it will be chosen incorrectly. In
order to avoid so, the concept of persistence is
introduced [2], with the aim of finding the opti-
mal control frequency in the trade-off created
by the desire of having a high control and a

2

Executive summary Luca Zerman

low sample complexity. Indeed, when increas-
ing the control frequency, the advantage of in-
dividual actions becomes infinitesimal; as a con-
sequence, the sample complexity increases. In-
stead, low frequencies allow the environment to
evolve longer, making the effect of individual ac-
tions more easily detectable. More practically,
persistence consists in the repetition of an action
for a fixed number of decision steps. If we con-
sider a discrete-time MDP M = ⟨S,A, P,R, γ⟩,
persistence can be seen as an environmental
parameter k that transforms M into Mk =
⟨S,A, Pk, Rk, γ

k⟩ in which, whenever the agent
takes an action, the resulting transition lasts for
k steps, with all the one-step rewards collected
(with discount) in the new distribution Rk. Ap-
plied to FQI gives rise to Persistent Fitted Q-
Iteration (PFQI) algorithm.

2.4. Regressors
We consider two regressors in this work: Extra-
Trees and XGBoost.
Extra-Trees essentially builds an ensemble of un-
pruned regression trees. Its two main differences
with other tree-based methods are that it splits
nodes by choosing cut-points fully at random
and that it uses the whole learning sample to
grow the trees. The parameters to be tuned
have different effects: the number of attributes
randomly selected at each node determines the
strength of the attribute selection process; the
minimum sample size for splitting a node and
the minimum sample size for a node to be a leaf
node determine the strength of averaging out-
put noise; the number of trees determines the
strength of the variance reduction of the ensem-
ble model aggregation.
XGBoost is a decision-tree-based ensemble
method based on gradient boosting. Boost-
ing is an ensemble technique that consists in
adding new models sequentially to correct the
errors made by the old ones until no further
improvements can be made. Gradient boost-
ing is a boosting approach where new mod-
els are created in order to predict the resid-
uals of prior models and then added together
to make the final prediction; the loss gener-
ated is minimized through a gradient descent
algorithm. XGBoost differs because it sup-
ports stochastic and regularized gradient boost-
ing forms. The most important parameters to

be tuned are min_child_weight, which controls
the minimum number of samples required to be
present in each leaf of a tree, and max_depth,
which controls the maximum depth of each tree.

3. Related Works
3.1. Deep RL for Finance
Deep reinforcement learning (Deep RL) is a
promising field of RL for trading due to its ca-
pacity to handle complex and high-dimensional
data. An example is DeepScalper [4], a deep
RL framework for intraday trading that, to effi-
ciently incorporate both micro-level and macro-
level market information, proposes an encoder-
decoder architecture to learn robust market em-
bedding. To capture the overall price trend,
a novel hindsight reward function is designed
with a long-term profit regularizer to provide the
agent with the long-term horizon.

3.2. Hierarchical RL
The Hierarchical RL was designed with the
aim of autonomously decomposing long-horizon
decision-making tasks into simpler subtasks. In
the general structure, there is a higher-level pol-
icy which learns to perform the task by choosing
optimal subtasks which in turn may themselves
be RL or just primitive actions. The hierar-
chy of policies obtained in this way collectively
determines the behavior of the agent. HRL is
formalized on the basis of the theory of Semi-
Markov Decision Process (SMDP) which, unlike
MDP, it also involves the concept of time for
which an action is executed after it has been
chosen. More formally, we can define two impor-
tant components of the hierarchical framework:
the subtask space ΩH and the hierarchical policy
πH . The former identifies the super-set of all
the subtasks used in a hierarchy, while the lat-
ter represents the complete state-to-subtask-to-
action mapping from the lowest level policy, i.e.
the policy that selects primitive actions. Thus,
the goal of HRL is to find the optimal hierar-
chical policy π∗

H given a task. HRL has so far
churned out few finance-related works, but one
is of considerable interest. In [1] the structure
is made by a behaviour policy that determines
the action to be played given the current state
and a skip policy that determines how long to

3

Executive summary Luca Zerman

commit to this behaviour. This approach is very
similar to ours but actually there is a big differ-
ence: by introducing a skip-policy, there is no
explicit comparison between the different per-
sistences that can be chosen.

4. Hierarchical Persistent Fit-
ted Q-Iteration

Considering the concept of persistence certainly
helps in trading, but we feel that it is not
enough: in fact, very often the market abruptly
alternates behaviour, making it necessary for the
agent to be aware of several frequencies at once.
Taking our cue from [5], we decided to create a
structure consisting of several hierarchical steps,
each of which provides an estimate of Q(s, a)
that is increasingly refined with the help of the
previous steps.
To achieve so we first define an auxiliary
algorithm: Adapted Persistent Fitted Q-
Iteration (APFQI). This algorithm differs from
PFQI in the definition of the target QN .
In particular, the term that in PFQI was
maxa∈AQ

(K)
N−1

(
s
(i)
t+K , a

)
now becomes:

max

max
a∈A

Q
(K)
N−1

(
s
(i)
t+K , a

)
,max
a∈A
Q∈Q

Q
(
s
(i)
t+K , a

)
where Q represents a set of pre-trained action-
value functions. At this point, the deriva-
tion of HPFQI (Algorithm 1) is as follows:
given a set of persistences K = {k1, k2, . . . , kp}
s.t. k1 > k2 > . . . > kp, a set of iter-
ations N = {N1, N2, . . . , Np} and a dataset
D = {(s(i)t , a(i), r

(i)
t+1, s

(i)
t+1, . . . , r

(i)
t+k1

, s
(i)
t+k1

)}|D|
i=1,

HPFQI starts training APFQI at persistence k1
with N1 iterations and Q = ∅, obtaining Q

(k1)
N1

and adding it to Q. At the second step, it trains
APFQI with k2, N2 and Q = {Q(k1)

N1
}, obtaining

Q
(k2)
N2

and adding it to Q and so on. Eventually,

the policy πH is retrieved by Q
(kp)
Np

. The decreas-
ing order of the persistences is chosen in order to
both learn the trend easily and eventually have
a policy with a high control power.

5. HPFQI on Mountain Car
5.1. Problem Formulation
Although our main goal is to use the HPFQI
in the FX market, we decided to test it first in

Algorithm 1 HPFQI
1: Input:
K = {k1, k2, . . . , kp} k1 > k2 > . . . > kp
N = {N1, N2, . . . , Np}
D = {(s(i)t , a(i), r

(i)
t+1, . . . , r

(i)
t+k1

, s
(i)
t+k1

)}|D|
i=1

Q = ∅
2: Output:

Greedy hierarchical policy πH
3: for k ∈ K do
4: APFQI(k, Q)
5: Q ← Q∪Q

(k)
Nk

6: end for
7: πH(s) = argmax

a∈A(s)
Q

kp
Np

(s, a) ∀s ∈ S

the Mountain Car (MtCar) setting, an environ-
ment commonly used as a benchmark in RL. The
problem involves a car positioned between two
hills with the goal of reaching the top of the one
on the right. The car is subject to gravity, thus
must build up momentum by repeatedly driving
up the left hill and then coasting back down to-
wards the right one. MtCar is easily declinable
as an MDP. The state is made of car’s position
and velocity. The possible actions are: acceler-
ate to the left (−1), to the right (1) or do nothing
(0). The reward function assumes value 0 if the
agent reaches the goal, −1 otherwise. Finally,
the transition probability is deterministic.
MtCar has an episodic structure: specifically,
each episode begins with the agent being in a
random location within its domain at zero ve-
locity and ends either when the maximum num-
ber of steps (lep) is reached or when the agent
reaches the goal within this limit; we set lep =
256. The dataset collected at persistence k at
each episode is represented as follows:

Dep =

{(
skt′ , akt′ ,

k∑
i=1

γi−1rkt′+i, sk(t′+1)

)}g/k−1

t′=0

where g stands for the minimum between lep and
the time-step, if any, in which the goal is reached
and the original time-step is nothing more than
t = kt′. In other words, in each episode, g/k
tuples are sampled where in each one the agent
repeats the same action for k steps. If the goal
is reached in the middle of a persistence step,
i.e. in a t ∈ (kt′, k(t′ + 1)), the reward of the
last tuple sums up to t − kt′. The initial train-
ing dataset is formed by the union of a certain

4

Executive summary Luca Zerman

Figure 1: HPFQI vs PFQI in MtCar. The x -axis represents the product between the persistence and
the iteration.

number (nep) of Dep, each one gathered by an
agent following a random policy.

5.2. Results
We trained both HPFQI and PFQI in order to
compare their results. We chose as persistences
K = {32, 16, 8, 4} and as respective number of it-
erations N = {8, 16, 32, 64} so that each combi-
nation has the same level of approximation. To
ensure that enough trajectories reach the goal,
with k ∈ {32, 16} we considered nep = 1000,
whereas with k ∈ {8, 4} we considered nep =
5000; we made this distinction because lower
persistences are less likely to reach the goal with
random policies. We used Extra-Trees to fit the
Q-function. For each k ∈ K, we retrieved the re-
gressor’s best parameters validating PFQI over
20 episodes and used them for training and test-
ing both PFQI and HPFQI.
Ten HPFQI models were trained with k ∈ K,
n ∈ N and with an initial dataset collected at
persistence 32, all of them tested on 20 episodes.
The results are not particularly encouraging,
as the expected return decreases as persistence
goes by. Specifically, at the immediate jump
between two persistences there is a noticeable
performance loss, while as the number of iter-
ations of a single persistence increases the ex-
pected return remains about the same/slightly
worsens, except of course for the first one. To
better understand these results, for each k ∈ K
ten PFQI models were trained on their respec-
tive datasets and tested on 20 episodes. From
a comparison of the results (Figure 1), we no-
tice two main behaviours: in the initial itera-
tions, HPFQI reaches a higher expected return
than PFQI, which states that HPFQI is able
to exploit the knowledge of the higher persis-

Figure 2: Density representation of the Q-
function at the last iteration of each persistence
of HPFQI.

tences. At the final iterations, instead, almost
always PFQI performs better than HPFQI. No-
tably, with k = 4 HPFQI at each iteration is
better than PFQI for both return and variance,
symptom that the hierarchy makes the algo-
rithm more robust to noisy situations.
To understand more deeply these results, we per-
formed further analyses that brought interesting
considerations (Figure 2): firstly, at the transi-
tion between two persistences, many new states
are seen on which the previous Q-function strug-
gles to adapt. The main cause is probably that
most of the new states are inevitably far from the
goal, thus lowering the proportion of states close
to it. Secondly, as persistence decreases, the val-
ues assumed by the Q-function on average both
increase and accumulate in a central area: this
may happen due to the overestimation of the Q-
function along the iterations. Despite the poor
results of HPFQI on MtCar, we believe that the
FX environment might be a better evaluation
task for HPFQI given that sampling is not nec-
essary as we use historical data and the rewards

5

Executive summary Luca Zerman

are not sparse as in MtCar.

6. HPFQI on FX
6.1. Problem Formulation
The original dataset we were able to retrieve
from HistData online platform is made of market
observations collected every minute from Mon-
day to Friday. In addition to the date and time,
each observation included the mid price pt, i.e.
the average between the bid price, the high-
est price a buyer will pay, and the ask price,
the lowest price a seller will accept, and the
value of the bid-ask spread σ, i.e. the differ-
ence between the bid price and the ask price.
To avoid overnight fees and to parallelize envi-
ronment sampling, we decided to represent the
trading framework as an episodic task, where
each episode is composed of daily data between
8:00 CET and 18:00 CET. Since we assume that
the agent can only deal with a fixed quantity
of asset, the possible actions are: buy (1), sell
(−1) or be flat (0). The state is composed of
the minute of the day, the day of the week, the
spread σt and the portfolio position xt. It also
contains the last 60 normalized exchange rate
differences, defined as dkt =

pt−k+1−pt−k

pt−k
for

k = 1, 2, . . . , 60 . Finally, the reward function is
Rt+1 = At(pt+1−pt)− 1

2σt|At−xt|: the first term
represents the pure profit/loss that the agent in-
curs taking action At, whereas the second one
indicates the costs associated to that transac-
tion. The sampling method differs from MtCar’s
on-policy one. Here, the uncontrollable part of
the state comes from historical data, while the
controllable part is the portfolio xt, which cor-
responds to the last action at−1. Having three
possible actions, there exist only nine combina-
tions of (xt, at). Therefore, one can collect an
extensive dataset:

Dep =

{(
st, at,

k∑
i=1

rt+i, st+k

)}g−k−1

t=0

,

where, in our case, g = 600.

6.2. Data Exploration
Before training our model, we wanted to check
the stationarity of dkt on the years 2018 and
2019. To do so, we computed the autocorrela-
tion of the average of dkt , without normalization,
over the days. Since the autocorrelation showed

Figure 3: HPFQI(K3) P&L obtained in test after
training on 2018/2019.

significant dangerous repetitive patterns, we de-
cided to check more carefully whether this spu-
rious signal could actually affect our agent or
not. To recover the exact size of the spurious
signal, we retrieved the square root of the ab-
solute value of the autocovariance K. On the
other hand, the agent’s training is affected if the
reward function is significantly altered by the
signal, i.e. if pt+1 − pt ≫ 1

2σt. Fortunately,
given that

√
|K| < 1

2E[σt], this does not occur.
Furthermore, we computed the average volatil-
ity of the data over the days: firstly, the evi-
dence of higher volatility between 8:00 and 18:00
CET positively supports our choice for the con-
sidered trading period. Secondly, some repeti-
tive volatility spikes are shown, probably caused
both by the openings/closings of international
markets and by automated traders. Whatever
the reason, we believe that HPFQI can be influ-
enced by these only when working at persistence
1, since with higher persistences often they will
not be considered in the dataset tuples. In con-
clusion, we believe that the dataset cannot ad-
versely affect the performance of our algorithm,
thus we can proceed with the HPFQI experi-
ments on FX.

6.3. Results
The parameters used for training both PFQI
and HPFQI were obtained by training PFQI on
2018/2019 and validating on 2020, not consider-
ing the months of March and April which, be-
cause of the COVID19, generated an anoma-
lous pattern. Specifically, the parameters we
varied were min_child_weight and max_depth.

6

Executive summary Luca Zerman

Figure 4: HPFQI(K3) vs PFQI P&L obtained in test after training on 2018/2019.

The combinations of persistences considered are
K1 = {10, 5, 1}, K2 = {15, 10, 5, 1} and K3 =
{30, 15, 10, 5, 1}, whereas we set the same num-
ber of iterations (N = 8) for each of them.
To avoid validated parameters being affected by
a change in dataset length, both HPFQI (Fig-
ure 3) and PFQI were trained on 2018/2019 and
tested on 2021; in all the cases three seeds were
used. In all three cases, we found similar behav-
iors: at the first one/two persistences of the hier-
archical chain, the profit obtained outperformed
PFQI’s at the respective persistence (Figure 4).
Indeed, HPFQI profit almost always shows an
upward trend, whereas PFQI’s more often flat-
tens out. However, after taking several hier-
archical steps, HPFQI loses all the advantages
gained from transferring Q-function and some-
times even performs worse than PFQI. Look-
ing at the actions performed by the agents, sev-
eral interesting aspects can be seen (Figure 5).
Firstly, HPFQI agent tends to buy more. Sec-
ondly, HPFQI policy is always more organized
than PFQI’s: indeed, the former displays repet-
itive patterns both hourly-wise and daily-wise,
while the latter is more chaotic. This difference
is probably the main cause of the results, both
positive and negative, obtained by HPFQI: in-
deed, at the earliest persistences HPFQI’s policy

is certainly structured but still leaves room for
improvisation in case of anomalous trends. At
the latest ones, instead, the hierarchy imposes
an over-structured policy. This last aspect is
confirmed by the feature importance analysis:
at the latest persistences, the HPFQI agent ex-
ploits almost only date and time variables with-
out looking at the actual exchange rate itself.

7. Conclusions
In this thesis, we have implemented a novel al-
gorithm called Hierarchical Persistent Fitted-Q
Iteration (HPFQI) to train an artificial agent to
autonomously trade in the FX market. Three
are the main advantages with respect to [3]: the
introduction of a new HRL algorithm (HPFQI)
that allows the agent to encapsulate both lower
and higher-frequency information, the former fa-
cilitating the understanding of the effect of an
action and the latter giving more control to
the agent; the detailed quantitative inspection
of the FX data used for training and testing
our algorithm; the implementation of the XG-
Boost algorithm as the regressor used to ap-
proximate the Q-function in PFQI. HPFQI was
designed to exploit a hierarchy of auxiliary al-
gorithms, APFQI, sequentially trained at differ-

7

Executive summary Luca Zerman

Figure 5: Heatmaps of the actions taken by
HPFQI(K3) (above) and PFQI (below) with k =
10. Each row represents a trading day and each
column a minute. Blue = buy; light-blue = flat;
yellow = sell. It is evident that HPFQI’s agent
has a policy more organized and buys more than
PFQI.

ent frequencies. First, we tested HPFQI on the
Mountain Car environment, where we had mixed
results: it is evident that the passage of informa-
tion between the various frequencies has taken
place but the overall performance deteriorates
as the number of iterations performed by the
algorithm increases. Therefore we carried out
more in-depth analyses, which showed that the
performance drops are probably caused both by
the difficult adaptation of the Q-function to the
many new states introduced and by the overes-
timation of the Q-function after many iterations
of PFQI are performed.
However negative the empirical results have
been, they were very informative. Moreover,
we believed that the FX environment might be
a better evaluation task for HPFQI given that
sampling is not necessary as we use historical
data and the rewards are not sparse as in Moun-

tain Car. Before getting the results, we decided
to do some analyses on the specific EUR/USD
dataset. In particular, we noticed unexpected
autocovariance patterns in the dataset that were
shown however to not give lucrative information
to the agent.
Training and testing HPFQI on different FX
frameworks we have noticed how, in general, it
is able to exploit information from previous per-
sistences to better organise its policy. In sev-
eral cases, this factor resulted in a sometimes re-
markable improvement in the P&L with respect
to PFQI. However, when the hierarchical chain
becomes too long, the policy often becomes over-
structured, generating profits lower than PFQI
ones.
Regarding potential future research directions,
one way to reduce the overestimation problem
could be to use the Double Q-Learning method
within the hierarchical algorithm. Another ap-
proach might be to include information from
higher persistences’ actions in the state.

References
[1] André Biedenkapp et al. Temporl: Learning

when to act. CoRR, 2021.

[2] Metelli et al. Control frequency adaptation
via action persistence in batch reinforcement
learning. In Proceedings of the 37th Inter-
national Conference on Machine Learning,
ICML’20. JMLR.org, 2020.

[3] Riva et al. Learning fx trading strategies
with fqi and persistent actions. In Proceed-
ings of the Second ACM International Con-
ference on AI in Finance. Association for
Computing Machinery, 2022.

[4] Sun et al. Deepscalper: A risk-aware re-
inforcement learning framework to capture
fleeting intraday trading opportunities. In
Proceedings of the 31st ACM International
Conference on Information & Knowl-
edge Management. Association for Comput-
ing Machinery, 2022.

[5] Tiancheng Zhao and Mohammad Gowayyed.
Algorithms for batch hierarchical reinforce-
ment learning. CoRR, 2016.

8

	Introduction
	Reinforcement Learning
	Markov Decision Process
	Fitted Q-Iteration
	Persistent Fitted Q-Iteration
	Regressors
	Related Works
	Deep RL for Finance
	Hierarchical RL
	Hierarchical Persistent Fitted Q-Iteration
	HPFQI on Mountain Car
	Problem Formulation
	Results
	HPFQI on FX
	Problem Formulation
	Data Exploration
	Results
	Conclusions

