
Politecnico di Milano

School of Industrial and Information Engineering
Master of Science in Aeronautical Engineering

Autonomous landing of an UAV on a moving
ground vehicle

Advisor: Prof. Marco LOVERA
Co-Advisor: Prof. Jérôme LE NY

Thesis by:
CINELLI Tommaso Matr. 918809

Academic Year 2019–2020

Ai miei genitori e ai miei fratelli.

Acknowledgments

Nulla v’è infatti che allieti tanto
l’animo quanto gli esempi delle
virtù che brillano nel carattere
delle persone con cui viviamo.

Marco Aurelio

Firstly, I would like to express my thanks to Prof. Jérôme Le Ny for his help
and guidance during all the work and Prof. Marco Lovera for the support.

I would like to thank all the people that have been part of this last incredible
year in Montreal. To all the “ZUM family”, Bea, Carla, Eloy, Giuseppe, Jeremy,
Silvia, Miriam, Ilaria, Marta, Sara, Marina, Paricia and Julia, with whom I spent
one of the most amazing years of my life and that made the cold canadian winter
seem to be warmer. To the Polytechnique friend and project mate Marc, that I
would like to thank for introducing me to the topic of this thesis.

Uno dei più grandi ringraziamenti ai miei amici nonché coinquilini Carlo e
Carlo (a voi scegliere l’ordine), con la quale ho condiviso ogni giorno e notte, studio
e vacanza, lavoro e svago in questi anni universitari, e che sono stati fondamentali
nella mia crescita non solo accademica, ma soprattutto come persona.

All’incredibile team Move-ez, con la quale abbiamo passato gioie, soddisfazioni,
ansie e traguardi in una delle esperienze che rimarrà sempre con noi. A Daniela,
instancabile ottimista e lavoratrice, sempre pronta a tirare su il morale del gruppo,
Vittorio, con la testa sempre da qualche parte in giro per il mondo e col pensiero
costantemente a qualche idea nuova, e Mario, compagno simbiotico di università,
esempio di come con creatività e tenacità si possa arrivare ovunque.

Allo zio Rocco, ovvero lo zio ingegnere, che ha sempre creduto e supportato
questa carriera nel mestiere che spero essere all’altezza di ereditare e continuare,
seguendo le orme del patriarca.

Ai miei fratelli, che, anche se in diverse parti del mondo, mi sono sempre stati
vicini e che rappresentano da sempre un modello. A Eleonora, costante e tenace,
sempre alla ricerca della conoscenza profonda delle cose, a Lorenzo, inarrestabile
e dinamico, sempre capace di mettersi in gioco con nuove sfide, e a Francesco, alla
quale passo il testimone universitario, coraggioso e determinato nelle cose che gli
piacciono.

II

Alla fine perché più importante, il ringraziamento più sentito va ai miei genitori
che hanno permesso tutto questo. A mia madre, esempio di come perseveranza,
passione e dedizione debbano essere le doti che ci guidano costantemente nella
nostra vita, sia nel lavoro che nella famiglia. A mio padre, che mi ha trasmesso
l’interesse per le gioie della vita e l’importanza di espandere sempre gli orizzonti
della cultura.

Abstract

The recent progress in drone technology has fostered interest towards Unmanned
Aerial Vehicles (UAVs). However, the relatively short battery life limits their
adoption for some activities. Hence, deploying and recovering UAVs from ground
vehicles (GVs) could extend vehicle’s authonomy and open up more efficient and
innovative applications. Drones could be carried by trucks, take-off when close to
the location of reconnaissance or delivery, and autonomously land on the carrier,
with the possibility of being recharged between operations sites. Landing on a
small available area represents the most critical phase, thus requiring a precise
and reliably system for the localization of the landing pad. Current standard out-
door UAV’s navigation systems, based on Inertial Measurement Unit (IMU) and
Ground Navigation Satellite Systems (GNSS), may not result to be as accurate
as desired, thus opening the possibility of a vision-based system for locating the
landing site.

The purpose of this thesis is to investigate the problem of the autonomous
landing of an UAV on top of a moving ground vehicle, using commercially avail-
able and relatively low-cost sensors. The study is focused on providing a guidance
law to perform the mission, as well as a navigation system which uses visual infor-
mation to support the estimation of position and velocity. Finally, the system is
tested and validated through computer simulation using MATLAB and Simulink.

IV

Sommario

Recenti sviluppi tecnologici e una lunga lista di potenziali applicazioni, che in-
cludono la consegna tramite droni, sorveglianza, ricerca e soccorso, hanno portato
ad un crescente interesse per gli aeromobili a pilotaggio remoto (UAV). Tuttavia,
la limitata autonomia della batteria rappresenta una grande sfida per la possibilità
di operazioni di lunghe distanze. Per questo motivo, il rilascio e recupero da parte
di veicoli di terra potrebbe permettere l’estensione della durata della missione
degli UAV e un loro impiego più efficiente. Il drone potrebbe essere trasportato
da un furgone, decollare quando vicino alla posizione di ricognizione o consegna,
dopodiché atterrare autonomamente sul veicolo che li ha portati e possibilmente
essere ricaricato durante il trasporto tra le varie zone di operazione. La fase più
critica della missione è rappresentata dall’atterraggio sulla limitata area del fur-
gone, necessitando un sistema sufficientemente preciso e affidabile per localizzare
la zona di atterraggio. Attuali sistemi di navigazione, basati su piattaforme in-
erziali (IMU) o sistemi di navigazione satellitare (GNSS), potrebbero non risultare
abbastanza accurati questo compito, aprendo perciò la possibilità dell’utilizzo di
un sistema di visione per localizzare il sito di atterraggio.

Lo scopo di questa tesi è investigare il problema dell’atterraggio autonomo
di un UAV sopra di un veicolo di terra in movimento, utilizzando sensori già
disponibili nel mercato e di basso costo. Lo studio è focalizzato nel presentare un
sistema di guida che possa svolgere la missione e un sistema di navigazione che
utilizza informazioni visive per stimare posizione e velocità. Infine, il sistema è
testato e validato attraverso una simulazione al computer, utilizzando MATLAB
e Simulink.

VI

Contents

Acknowledgments I

Abstract III

Sommario V

List of figures XI

List of tables XIII

Introduction 1

1 Problem statement 5

1.1 Definitions of reference frames . 5

1.1.1 ECI and ECEF frames . 5

1.1.2 Local geodetic NED frame 6

1.1.3 Body frame . 6

1.1.4 Sensors and camera frames 7

1.2 Reference frame transformation 7

1.2.1 Direction cosine matrix . 7

1.2.2 Euler angles . 8

1.3 Alternative coordinate representations 9

1.3.1 Augmented coordinates . 9

1.3.2 Homogeneous coordinates 11

1.4 Quadrotor and ground vehicle models 12

1.4.1 Kinematic and dynamic model of a quadrotor 12

1.4.2 Ground vehicle model . 13

1.5 Control system architecture . 14

1.5.1 Tracking control module 15

1.5.2 Trajectory generation module 16

1.5.3 Navigation system . 16

1.6 Notation . 17

VIII CONTENTS

2 Computer vision 19
2.1 Overview . 19

2.1.1 Fiducial tag . 20
2.2 Image acquisition . 21

2.2.1 Camera central projection model 21
2.2.2 Camera rotation and translation 23

2.3 Projective transformation . 24
2.3.1 Checkerboard detection . 24
2.3.2 Homography transformation 26
2.3.3 Direct linear transformation 26

2.4 Extrinsic position estimation . 27
2.4.1 Relation between tag image and real checkerboard 27
2.4.2 Position and attitude estimation 29

3 Integrated navigation system principles 31
3.1 Types of navigation system . 31
3.2 Sensors . 32

3.2.1 Sensor’s errors . 32
3.2.2 Sensor models . 33

3.3 Discrete time Kalman filter . 35
3.3.1 Elements of the Kalman filter 36
3.3.2 Kalman filter algorithm 37

3.4 Extended Kalman filter . 38
3.4.1 EKF algorithm . 39

3.5 Navigation system setup . 40
3.5.1 System model . 41
3.5.2 Measurement model . 43

4 Control system 45
4.1 Trajectory generation module . 45

4.1.1 Horizontal control . 46
4.1.2 Vertical control . 46

4.2 Gains control tuning . 50
4.2.1 Second order approximation 50
4.2.2 Pole placement . 51

4.3 Gimballed camera control . 52

5 Simulation results 55
5.1 Simulation set-up . 55

5.1.1 UAV and ground vehicle 56
5.1.2 Sensors . 57
5.1.3 Camera and computer vision 59
5.1.4 Extended Kalman filter . 61

CONTENTS IX

5.1.5 Trajectory control module 63
5.2 Results . 64

5.2.1 Straight line . 64
5.2.2 Change of direction . 70

Conclusions 77

X CONTENTS

List of Figures

1 UPS drone delivery service (from [1]) 1

1.1 Reference frames ECI, ECEF and NED 7
1.2 Body and camera reference frames 8
1.3 Drone’s scheme, note that the values of thrust fi are negative in

the illustration . 13
1.4 Ackermann vehicle scheme . 15
1.5 Control system architecture . 15
1.6 Tracking control module scheme 16

2.1 Computer vision strategy . 20
2.2 Checkerboard used for landing . 21
2.3 Central Projection model (from [2]) 21
2.4 Reference frame transformation 23
2.5 Checkerboard on a generic landing scene (on the left) and checker-

board tag image (on the right) . 25
2.6 Order of detected checkerboard tag points 25
2.7 Aiding reference frame for image (on the left) and checkerboard

reference frame (on the right) . 28

3.1 Systematic errors: bias and scale factor 33
3.2 RF distance module architecture 36
3.3 Comparison between discrete Kalman filter and Extended Kalman

filter . 41
3.4 Scheme of the EKF . 43

4.1 Trajectory module for horizontal control 47
4.2 Safety cone . 48
4.3 Imposed relative down trajectory 49
4.4 Feedback control scheme . 52
4.5 Unit step response of the approximated and complete system . . . 53
4.6 Ramp response of the approximated and complete system 53
4.7 Gimballed camera rotation angles 54

5.1 Simulink model . 56

XII LIST OF FIGURES

5.2 UAV of reference for the simulation 57
5.3 Sensors subsystem block . 57
5.4 Camera Simulink block . 59
5.5 Camera frames simulation . 60
5.6 Tag and camera movement for vision test 61
5.7 Camera position estimation . 62
5.8 Camera position estimation error for distance up to 2.5m 62
5.9 3D straight line landing trajectory in ENU 65
5.10 Camera position estimation . 66
5.11 North and East relative position estimates 66
5.12 Down relative position estimates 67
5.13 NED estimate errors . 67
5.14 Horizontal path estimate . 68
5.15 North and East relative velocity estimates 68
5.16 Down relative velocity estimates 69
5.17 NED relative velocity errors . 69
5.18 3D landing trajectory in ENU . 71
5.19 3D landing trajectory in ENU - side view 71
5.20 Horizontal landing trajectory . 72
5.21 North and East relative position estimates 72
5.22 Down relative position estimates 73
5.23 Horizontal relative trajectory estimate 73
5.24 North and East relative velocity estimates 74
5.25 Down relative velocity estimates 74
5.26 North absolute UAV trajectory 75
5.27 East absolute UAV trajectory . 75
5.28 Down absolute UAV trajectory 76

List of Tables

5.1 ANT-R drone characteristics . 56
5.2 UAV’s accelerometer parameters 58
5.3 GV’s sensors noise parameters (from iPhone 6) 58
5.4 DJI Zenmuse X3 camera parameters 59
5.5 Mean and standard deviation of the camera error 61

XIV LIST OF TABLES

Introduction

The interest for Unmanned Aerial Vehicles (UAVs) has increasingly grown in
recent years due to their variety of applications, e.g., site surveillance, aerial
monitoring or search-and-rescue operations. In particular, one of the promis-
ing perspectives is their use related to parcel delivery for commercial purposes:
Amazon, the world’s largest online retailer, has been working on the Prime Air
project since 2016 [3], aiming to develop an innovative drone delivery service with
operations starting in the next few years. However, the UAVs’ short battery
autonomy restricts the service only to areas relatively close to dedicated Prime
Air warehouses. This opens the possibility for new hybrid solutions, such as the
combination of UAVs and mobile ground vehicles (GVs). Most notably, UPS,
the American multinational package delivery company, tested in 2017 a shipment
using a drone deployed and recovered from the roof of a delivery truck [1] and
illustrated at Figure 1. It was shown how the versatility of UAVs can be combined
with the longer range autonomy of a truck. Nevertheless, the recovery could have
been made only with the vehicle stopped at the side of the road and waiting for
the drone.

Figure 1: UPS drone delivery service (from [1])

A huge potential of time optimization could be made if the UAV could return
to the GV still moving along the street and going to the next delivery place. This

2 Introduction

is the starting point of this work, where the strategy of a system that can be used
for an application of this type is going to be studied.

In this thesis, the objective is to develop a set of guidance, navigation and
control laws enabling an autonomous landing of an UAV on top of a moving ground
vehicle. This is going to be achieved considering only commercially available
and relatively low-cost sensors. In particular, a vision system using a camera
installed on the UAV will provide position information used to locate the GV.
Moreover, the system should be able to perform state estimation even in the
case of temporarily loss of information from the camera, integrating other sensors
through an Extended Kalman filter.

The system is finally tested by means of a computer simulation, that tries to
simulate in the most precise way a possible real application of the system.

State of the art

In the literature there are many existing works concerning the autonomous land-
ing of UAVs on marine, ground vehicle or air moving platforms. In this section,
an overview of some recent studies is provided.

Borowczyk et al. [4] investigated the problem of autonomous landing of a quad-
copter on a high speed moving ground vehicle, equipped with a landing pad, on
which a visual fiducial AprilTag [5] was placed. The system architecture to achieve
this goal consisted in:

• a Kalman filter for relative position and velocity estimation, using commer-
cially available and relatively low-cost sensors. This allowed the integration
of the six-degrees-of-freedom visual estimate given by the detection of the
AprilTag from a gimballed camera, GPS data and IMU;

• a Proportional Navigation (PN) based guidance law, commonly used to
guide missile trajectories, for the long range approach phase;

• a Proportional-Derivative (PD) controller for the terminal landing phase,
using acceleration and attitude controls.

The system was experimentally tested for the landing of a micro aerial vehicle
(MAV) on a moving car travelling at a speed of 50 km/h.

Gozzini [6] investigated the problem of automatic landing of a small UAV on a
multi rotor carrier drone moving along a circular trajectory with constant speed.
A trajectory generation module provided the reference set-points for the UAV to
track, ensuring the horizontal alignment with the landing pad and a time-optimal
vertical trajectory, through a bang-zero-bang algorithm. The autonomous landing
was successfully validated through experimental activity in the Flying Arena for

Introduction 3

Rotorcraft Technologies (FlyART) of the Aerospace Systems and Control Labo-
ratory (ASCL) of Politecnico di Milano.

Gonçalves et al. [7] proposed an approach for an autonomous UAV landing using
velocity vector field as closed-loop strategy to guide the drone towards the landing
point. The method did not require global localization, but relative position esti-
mation using two nested ArUco [8] markers, which were identified using a vehicle’s
on-board down-facing camera.

Kim, Jung et al. [9] proposed a vision-based landing system for a quadrotor on
a moving platform. An Unscented Kalman filter estimated position and velocity
of the target using simple color blob detection by a smartphone as viable on-
board image acquisition and computation platform. The system was validated by
outdoor flight test.

Thesis structure

The thesis is organized as follows:

• In Chapter 1, modeling and simulation of a multirotor UAV and a GV is
presented; in particular reference frames, rotation formalism, flight dynamics
of the UAV and kinematic model of the GV are described. Finally, the
notation used for the rest of the work is presented.

• In Chapter 2, the camera model and the computer vision algorithm used to
estimate relative position between UAV and GV is discussed. The mathe-
matical formulation used to simulate and process the frames seen from the
camera is described.

• In Chapter 3, the basic principles of the integrated navigation system are
provided. Sensors’ models, Kalman filter algorithm and navigation system
set-up are presented.

• In Chapter 4, the control system architecture to perform the autonomous
landing is described. The attention is focused on the trajectory generation
module responsible for generating the set-points to be tracked by the UAV.

• In Chapter 5, a description of the simulation environment in MATLAB and
Simulink is presented. Finally, the results of the simulation are reported
and discussed.

4 Introduction

Chapter 1

Problem statement

This first chapter introduces the adopted conventions and formalisms used in this
work in order to avoid ambiguities. Although mathematical symbols, notations
and definitions are more or less standardized in literature, many authors differ in
terminologies: for this reason, frames of reference, coordinate systems and rotation
formalisms are presented. Therefore, models for a multirotor Unmanned Aerial
Vehicle (UAV) and a Ground Vehicle (GV) are described and finally architectures
of the navigation and the control system used for the landing problem are shown.

1.1 Definitions of reference frames

In order to describe the dynamics of a rigid body, at least an inertial and a body
frame are needed. In addition to these last, sensor’s frame with respect to which
instruments express their measurements should be presented as well.

A generic reference frame in R3, characterized by 3 orthonormal axis (x̂, ŷ, ẑ)
and origin O will be denoted by the notation in brackets {a}. Quantities measured
with respect to that specific frame are indicated by a superscript (.)a. Definitions
of adopted reference frames are presented in this section.

1.1.1 ECI and ECEF frames

An inertial frame is a reference frame in which Newton’s laws of motion apply. It
is therefore not in acceleration, but may be in uniform linear motion. The Earth
Centered Inertial (ECI) can be considered of this class. It has its origin in the
center of the Earth, x-axis pointing toward the vernal equinox (the intersection
between the equatorial plane and the orbit plane around the Sun), and z-axis
along the Earth’s spin axis. The y-axis completes the right-handed coordinate
system.

The Earth Centered Earth Fixed (ECEF) is the frame defined up to a rotation
of the ECI around the z-axis with the same Earth’s rotation rate of

6 Problem statement

ωie ≈
(

1 + 365.25 cycle

(365.25)(24)hr

)(
2πrad/cycle

3600sec/hr

)
= 7.292115× 10−5 rad

sec
,

considering both the daily rotation around the Earth and the year revolution
around the Sun. The ECEF frame results to be more practical to express a point
lying on a fixed position of the Earth’s surface.

The x-axis of the ECEF points the intersection between the Greenwich merid-
ian and the equatorial plane. Coordinates with respect to ECEF frame are often
expressed using geodetic coordinates of longitude, latitude and altitude (φ, λ, h).
These last are ellipsoidal coordinates that use the approximation of the Earth as a
geoid (i.e. the rotation of an ellipse around its minor axis). The geodetic surface
of the Earth can be imagined as the mean shape that the Earth would take if the
solid surface would be completely covered with sea water.

Although the real shape of the Earth is not a geoid, it represents a good
approximation of its shape. One of the most used world geodetic model is the
WGS84, which is also the model used for the Global Positioning System (GPS).

1.1.2 Local geodetic NED frame

The North-East-Down (NED) frame conventionally expresses the coordinates of
points that remain in a delimited region on the surface of the Earth. It is de-
termined by fitting a tangent plane to the geodetic reference ellipsoid at a point
of interest (the origin). The x-axis points to true North, the z-axis points to the
ground and perpendicular to the tangent plane, the y-axis is determined accord-
ingly and points East. For applications that involve local navigation over a short
time interval of seconds, like the problem under study, the assumption of flat,
non-rotating Earth can be made. This helps to simplify equations because NED
is considered as inertial reference frame. It will be denoted by {i} and with origin
O. Illustration of ECI, ECEF and NED frames are shown in Figure 1.1.

1.1.3 Body frame

It is a frame rigidly attached at a fixed point to the vehicle of interest. The x-
axis points towards the forward direction of the vehicle, the z-axis points to the
bottom of the vehicle making the xz plane coincident with the symmetry plane,
the y-axis completes the right-handed orthogonal coordinate system.

Since the landing problem considers two moving vehicles, we define:

• {d} : the frame of the drone with origin at point D (the center of gravity
of the UAV),

• {t} : the frame of the target ground vehicle with origin at point T (the
center of gravity of the car).

1.2 Reference frame transformation 7

Figure 1.1: Reference frames ECI, ECEF and NED

1.1.4 Sensors and camera frames

Sensors of a moving vehicle can have their own reference frame that may differ in
orientation and position from the body frame. In the case of strap down sensors,
they are rigidly attached to the vehicle and it is sufficient to know position and
rotation from body frame when installed. This will be the case of all the sensors
that will be considered from now on, except for the camera imaging sensor.

The camera is installed on the UAV and is supposed to be gimballed, with
three-axis rotation degree of freedom. The camera reference frame is denoted {c},
centered at origin C with z-axis pointing towards the direction of sight of the
camera and x-axis always parallel to the North-East plane.

The illustration of body frames and camera frame can be seen in Figure 1.2.

1.2 Reference frame transformation

This section presents the methods to transform vectors in different coordinate
systems.

1.2.1 Direction cosine matrix

Let v be a generic vector, {a} a frame with origin O and axis (i, j,k) and {b}
a frame with origin O′ and axis (I,J,K). The vector v can be expressed as

8 Problem statement

Figure 1.2: Body and camera reference frames

va = [xa, ya, za]T in coordinates of {a} or vb = [xb, yb, zb]T in coordinates of {b}.
Hence, vector vb can be written as

vb = xbI + ybJ + zbK.

To write vb of last equation in coordinates of {a}, it is sufficient to express vectors
(I,J,K) with respect to {a}

va = xbIa + ybJa + zbKa = [Ia Ja Ka]vb

= Ra
bv

b.
(1.1)

Matrix Ra
b = [Ia Ja Ka] is called direction cosine matrix (or rotation matrix)

and it allows to pass from coordinate representation of a vector in frame {b} to
{a}. An interesting aspect of the notation of Ra

b is that it has a quite intuitive
mnemonic aspect: symbols that appear both as subscript in matrix and super-
script in adjacent vector cancel each other.

1.2.2 Euler angles

Euler angles constitute a practical parametrization of rotation matrices to pass
from inertial {i} to a generic body frame {b}. Rotation matrix Ri

b is obtained by
the multiplication of three standard rotation matrices around (x, y, z) axis, given

1.3 Alternative coordinate representations 9

by

Rx =

 1 0 0
0 cosφ − sinφ
0 sinφ − cosφ

 , Ry =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 , Rz =

 cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 .
Euler angles (φ, θ, ψ) are commonly known as roll, pitch and yaw, respectively.
There are many possible choices on the order of rotation, for this work it is used
the ZY X sequence given by Ri

b = RzRyRx, so

Ri
b =

 cψcθ −cθsψ sθ
cφsψ + cψsφsθ cφcψ − sφsψsθ −cθsφ
sφsψ − cφcψsθ cψsφ+ cφsψsθ cφcθ

 , (1.2)

where, for compactness of notation cα = cosα and sα = sinα.
The derivatives of the Euler angles are defined as Euler rates (φ̇, θ̇, ψ̇). The

relation between Euler rates and angular rates in body frame Ωb = [p, q, r]T is
given by pq

r

 =

 1 0 − sin θ
0 cosφ cos θ sinφ
0 − sinφ cos θ cosφ

φ̇θ̇
ψ̇

 ,
where matrix on the right will be denoted Wn

Wn =

 1 0 − sin θ
0 cosφ cos θ sinφ
0 − sinφ cos θ cosφ

 . (1.3)

1.3 Alternative coordinate representations

Coordinates of points and vectors in R3 are commonly expressed by means of
3-dimensional column vectors. Two alternative representations using augmented
and homogeneous coordinates are presented, as they will be particularly useful
for the rest of the discussion of the thesis.

1.3.1 Augmented coordinates

The definition of a vector v in the Euclidean sense in physics (sometimes referred
as free vector), is an entity endowed with a magnitude and a direction, but not
located at a specific place. For example, velocity, forces and accelerations are
described by vectors. Thus, if va and vb represent the same vector expressed
in two different reference frames related by pure translation, va = vb since the
rotation matrix Ra

b is equal to the identity matrix.
A point in the Euclidean space (sometimes referred as bounded vector), is an

entity defined by a magnitude, a direction and also an origin. Hence, if {a} is a an

10 Problem statement

orthonormal coordinate system with origin O and axis (i, j,k), the point P a is the
unique triplet (xP , yP , zP) that allows to express point P as a linear combination
of the basis vector of {a}

P a = (P −O)a = xP i + yP j + zPk.

Its definition is strictly related to the origin of the coordinate system with respect
to which the point is described. If considering another coordinate system {b}
characterized by a translation of the origin to point O′ and rotation of the axis
by matrix Rb

a, point P is described by coordinates P b = [x′P , y
′
P , z

′
P]T related with

P a by the expression

P b = (P −O′)b = Rb
a(P −O′)a = Rb

a(P −O)a +Rb
a(O −O′)a

= Rb
aP

a +Ob.
(1.4)

Unlike vectors, the geometric transformation between reference frames of points
requires not only the application of a matrix multiplication, but also a vector
addition Ob = (O −O′)b.

It would be convenient to handle points and vectors in the same way by using
only one operator. This can be achieved by using a different set of coordinates,
called the augmented coordinates. In robotics literature they are often called
homogeneous coordinates, however it won’t be used this notation as not to confuse
with homogeneous coordinates described at Section 1.3.2 used for the projective
model of the camera [10].

Taking a point P = [x, y, z]T and a vector v = [vx, vy, vz]
T in cartesian coordi-

nates, their expression in augmented coordinates is defined as

P̄ := [x, y, z, 1]T , (1.5)

v̄ := [vx, vy, vz, 0]T , (1.6)

obtained by adding a fourth dimension coordinate with value 1 if expressing a
point or value 0 if a vector. From now on, elements in augmented coordinates
are denoted by the bar symbol (̄.). Points and vectors expressed in this set of
coordinates keep the following properties:

• Sums and differences of vectors are vectors

• The sum of a vector and a point is a point

• The difference between two points is a vector

• The sum of two points is meaningless

1.3 Alternative coordinate representations 11

Considering the frame transformation from {a} to {b} discussed previously the
augmented representation (4x4) matrix is defined as

T ba =

[
Rb
a Ob

01x3 1

]
.

Hence, the transformation of a point like in equation (1.4) can be easily represented
using augmented coordinates

P̄ b =

[
P b

1

]
=

[
Rb
aP

a +Ob

1

]
=

[
Rb
a Ob

01x3 1

] [
P a

1

]
= T ba P̄

a.

For a generic vector v, the transformation will be

v̄b =

[
vb

0

]
=

[
Rb
a Ob

01x3 1

] [
va

0

]
= T ba v̄

a.

Augmented coordinates represent a unified tool to operate with both points and
vectors using the same transformation (a matrix multiplication).

1.3.2 Homogeneous coordinates

Homogeneous coordinates (or projective coordinates) are a special set of coordi-
nates used in projective geometry and with particular importance for computer
vision. Projective geometry will be discussed in Section 2.2.1 to explain the image
creation process of a standard camera and homogenous coordinates will consti-
tute an useful representation to write projective transformations (non-linear in
Euclidean space) by means of linear matrix multiplications.

A point p = [x, y]T in the Euclidean space R2 is expressed in projective space
P2 as a new set of homogeneous coordinates defined as p̃ = [x, y, 1]T . The main

property of homogeneous coordinates, denoted by the upper tilde symbol (̃.), is
that two points related up to a scale factor represent the same point. Hence, it
is said that point p̃1 = [x, y, 1]T is equivalent to point p̃2 = [2x, 2y, 2]T , and more
generally, for any scalar k 6= 0

p̃1 = [x, y, 1]T ∼ [kx, ky, k]T = p̃2,

where symbol (∼) represents the equivalent relation.
To notice that to retrieve a point from the Projective space to the Euclidean

space, it is only needed the division of the third component of the homogeneous
vector. Another useful property of homogeneous coordinates is that if the third
component is zero [x, y, 0]T , dividing by the last coordinate the corresponding
Euclidean point has infinite value. This shows how finite points in the Projective
space can represent points in the Euclidean space at infinity.

12 Problem statement

1.4 Quadrotor and ground vehicle models

In this section the models for the dynamics of the two vehicles under study are
presented.

1.4.1 Kinematic and dynamic model of a quadrotor

A quadrotor UAV can be represented as a rigid body with constant mass m and
inertia matrix J (expressed in body frame) affected by gravitational and propulsive
forces, moving in 3D space. Its movement is achieved by the combination of
angular velocities ωi of four propellers. This results in four different thrusts that
produce a main force F applied in the centre of mass and angular moments along
the three body axis τ = [τφ, τθ, τψ]T . Position in inertial coordinates of the UAV
is denoted ξ = [x, y, z]T , its Euler angles as η = [φ, θ, ψ]T , linear and angular
velocities in body frame V = [u, v, w]T and Ω = [p, q, r]T respectively.

As seen in Sections 1.2.1 and 1.2.2, linear and angular velocities are related by

ξ̇ = Ri
bV,

η̇ = W−1
n Ω.

Newton’s second law for linear and angular motion in body frame states

mξ̈ = Ri
b

 0
0
F

+

 0
0
mg

 , (1.7)

JΩ̇ = −Ω× JΩ + τ , (1.8)

where symbol (×) is used for the cross product and g is the gravitational constant.
Every propeller located as in Figure 1.3 provides a thrust force fi for i = 1, ..., 4

in body frame with direction along z-axis (note that to have a thrust pointing
upwards, the values of fi should be negative). Each of these forces depends on
the angular velocity of the propellers ωi by

fi = cTω
2
i ,

where cT is a constant lumped thrust parameter that takes into account the prop-
erties of the propeller (e.g. disk area, radius, thrust coefficient). A reaction torque
along z due to propeller drag acting on the airframe may be modeled as

qi = cQω
2
i ,

where coefficient cQ is a constant torque drag parameter which also depends on
similar properties as cT .

The contribution of each propeller to the main thrust is given by

F = f1 + f2 + f3 + f4.

1.4 Quadrotor and ground vehicle models 13

The distance between rotor 1-2 and 3-4 along y and distance between rotor 2-3
and 1-4 along x, is equal to d. Therefore, the contribution on torques τφ, τθ and
τψ is

τφ =
d

2
(f1 − f2 − f3 + f4),

τθ =
d

2
(−f1 − f2 + f3 + f4),

τψ =
cQ
cT

(f1 − f2 + f3 − f4).

Summarizing, the relation of individual rotor angular speeds and the system inputs
of (1.7)-(1.8) can be written in matrix form as

[
F
τ

]
=


cT cT cT cT
d
2
cT −d

2
cT −d

2
cT

d
2
cT

−d
2
cT −d

2
cT

d
2
cT

d
2
cT

cQ −cQ cQ −cQ



ω2

1

ω2
2

ω2
3

ω2
4

 . (1.9)

Figure 1.3: Drone’s scheme, note that the values of thrust fi are negative in the
illustration

1.4.2 Ground vehicle model

An Ackermann steering vehicle model was chosen to simulate the kinematics of the
ground vehicle on top of which the UAV should land. It consists on a rigid body
moving on the horizontal North-East plane, composed by 4 wheels, two steerable
with angle θst on front and two non-steerable on the rear. A scheme of the vehicle
can be found at Figure 1.4. Denoting vF and vR the velocity of the point in the

14 Problem statement

middle of the front and rear axle respectively, two non-holonomic constraint are
imposed,

vbR =

uR0
0

 , vbF =

VF cos θst
VF sin θst

0

 , (1.10)

where velocities are expressed in body frame and VF is the module of velocity of
the front wheels. From the rigid body constraint, it follows that

uR = VF cos θst,

ψ̇ =
VF
L

sin θst,
(1.11)

where ψ is the yaw angle of the GV and L is the distance between front and rear
wheels axles. The velocity in body frame of the center of gravity, located in the
point on the middle between front and rear axles is

vbCG =

VF cos θst
VF
2

sin θst
0

 . (1.12)

The kinematics equations for position ξCG = [xCG, yCG, zCG]T of the center of
gravity in inertial frame is

ξ̇CG = Ri
bv

b
CG,

ψ̇ =
VF
L

sin θst,
(1.13)

where Ri
b is the rotation matrix

Ri
b =

 cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 .
To notice that the inputs of the model are front wheel’s speed VF and steering
angle θst.

1.5 Control system architecture

The objective of this thesis is to provide a simulation of the landing of an UAV on
top of a ground vehicle, reproducing in a similar way the experiment of Borowczyk
et al. [4]. In order to perform this, a control system architecture is proposed and
it is composed of:

• a tracking control module,

1.5 Control system architecture 15

Figure 1.4: Ackermann vehicle scheme

• a trajectory generation module,

• a navigation system module,

each of these components is reproduced in Figure 1.5 and described in the this
section.

Figure 1.5: Control system architecture

1.5.1 Tracking control module

The tracking control module is a built-in controller running on the Flight Control
Unit (FCU) of the drone performing the landing, which can be found schematized
in Figure 1.6. Its purpose is to generate the values of desired angular speed of
the four rotors (ωi) from the input of setpoint position (ξo) and yaw angle (ψ0).
This is achieved by a sequence of three blocks in order: a position controller, an
attitude controller and a mixer.

16 Problem statement

The position controller is the outer loop with feedback in position (ξ̂) and linear
velocity (V̂) that returns set-point attitude (η0) and thrust (Fc) from desired
position and yaw input. Afterwards, the attitude controller, an inner loop on
attitude (η̂) and angular velocity (Ω̂), generates the required set-point moments
(τ c) to achieve the tracking. Finally, the mixer returns angular speed ωi for the
electric motors of the four rotors.

The design of a tracking control module is beyond the scope of this thesis,
so the simulation uses a discrete time linear model of the dynamics of an UAV
equipped with a tracking control module based on the thesis work of Gozzini G.
[6]. It consists in a model identified by a black-box method based on a Predictor
Based Subspace Identification PBSID algorithm using closed-loop experimental
data (more details can be found in [6]). This model provides the decoupled dy-
namics on the North, East and Down directions.

Figure 1.6: Tracking control module scheme

1.5.2 Trajectory generation module

The trajectory generation module is a Proportional Derivative (PD) controller
located before the tracking module. It generates set-point positions for the track-
ing module from relative position and velocity of UAV and GV estimated by the
navigation system.

The trajectory is generated in both horizontal and vertical direction. On the
horizontal plane, a North-East set-point acceleration is computed by means of
strategy described in Section 4.1.1 and integrated twice to get the horizontal
trajectory position. On vertical direction, a third order polynomial trajectory is
imposed and vertical set-point acceleration is calculated accordingly as presented
in Section 4.1.2. This last is integrated twice to obtain the desired vertical position
as well.

Details on the trajectory generation module can all be found in Chapter 4.

1.5.3 Navigation system

The navigation system is responsible for the estimation of relative position and
velocity between UAV and GV from measurements coming from different sensors

1.6 Notation 17

and needed for the trajectory generation module. The sensors used are: UAV
and GV accelerometers, camera imaging sensor mounted on the UAV, a radio-
frequency range measurements module and a compass on the GV, all described
in Section 3.2.

An Extended Kalman filter (EKF) algorithm was chosen as strategy for the
sensor fusion of all the measurements coming at different frequencies. One of the
advantages of the EKF choice is that it allows to estimate also the sensors’ error
states, resulting in a more accurate estimation of relative position and velocity.

All the details on the navigation system are found in Chapter 3.

1.6 Notation

It is going to be presented the notation that will be used from now until the rest
of the work.

We define position, velocity and acceleration of the UAV with respect to the
NED inertial frame

pd =

Nd

Ed
Dd

 , vd =

Ṅd

Ėd
Ḋd

 , ad =

N̈d

Ëd
D̈d

 . (1.14)

with subscript (.)d that refers to “drone”, and position of the GV with respect to
NED frame

pt =

Nt

Et
Dt

 , vt =

Ṅt

Ėt
Ḋt

 , at =

N̈t

Ët
D̈t

 , (1.15)

with subscript (.)t that refers to “target”. The relative position of GV with respect
to the UAV is

pr = pt − pd,

vr = vt − vd,

ar = at − ad,

(1.16)

with subscript (.)r that refers to “relative”

18 Problem statement

Chapter 2

Computer vision

In this chapter, a model used to simulate the frames of the camera mounted on
the UAV is presented, as well as a computer vision method to reconstruct UAV’s
position and attitude from a tag detected in the image.

2.1 Overview

As already mentioned in Section 1.5.3, the integrated navigation system of the
UAV combines information coming from multiple sensors, one of which is a camera
installed on the UAV.

The purpose of the camera is to observe the landing scene and reproduce im-
ages that will be processed by a real-time computer vision algorithm, responsible
to identify the landing point and derive information on the position of the UAV
relative to the landing target, later used from the navigation system.

The overall strategy for the image simulation and position estimation can be
summarized in the following points:

1. Image acquisition: the process of 2D projection of the observed 3D scene.
It will be shown how frames are created under the assumption of a pinhole
camera model.

2. Projective transformation: reconstruction of the transformation matrix
that describes the projective process of the camera.

3. Position estimation: the projective transformation matrix is used to ob-
tain information on the position of the camera.

Each point is schematized at Figure 2.1 and will be discussed in detail in the
following sections.

During the work, a series of assumptions are made. First, the camera is as-
sumed to be gimballed, which means it has three-axis rotational degree of freedom
in order to be able to point any direction of space, the strategy for the control of

20 Computer vision

the camera angles will be discussed in Section 4.3. The image is assumed to be
not distorted by lens effects and last, the GV is assumed to be equipped on top
by an image of a tag described in the next section. The theory presented in this
chapter follows the Hartley and Zisserman Multiple View Geometry in computer
vision [2] textbook.

Figure 2.1: Computer vision strategy

2.1.1 Fiducial tag

Fiducial tags are artificial landmarks designed to be easily recognised in an im-
age from a computer vision algorithm. They are specifically created to be auto-
matically detected and localized even in low resolution or cluttered images and
sometimes in case of partial object obstruction of the tag. An important aspect of
fiducial tags is that they can provide relative position and orientation of camera
with respect to the tag. They were first developed for applications for augmented
reality, where several popular systems include ARToolkit [11] and ARTag [12].
Later they have been widely adopted also by the robotics community where a
notable system is AprilTag [5], developed by the University of Michigan.

For the purpose of this thesis a basic fiducial tag constituted by a flat (4x5)
black-and-white checkerboard was chosen. The reason for this choice is that an
already implemented library for the detection of a checkerboard can be found
in the software used for the simulation (MATLAB), whereas the examples cited
above are written in C++.

It is then supposed that a checkerboard of dimensions Lx = 50 cm wide and
Ly = 40 cm high (depicted at Figure 2.2), is printed on top of the GV and its
center is located in the desired landing point.

2.2 Image acquisition 21

Figure 2.2: Checkerboard used for landing

2.2 Image acquisition

A camera sensor is a device capable to transform a 3D scene to a 2D projection
by capturing the field of light emanating from the scene itself. In this section the
geometric principles describing the process of creation of an image and used to
simulate the camera frames are explained.

2.2.1 Camera central projection model

One of the most common camera models used in computer vision is the central
projection model. Recalling the camera reference frame described in Section 1.1.4,
the z-axis represents the direction of sight of the camera and is usually called
optical axis. At focal distance z = f is located the so called image plane and origin
C is the camera center. The process of creation of an image can be described as
the intersection between the image plane and the lines connecting points on the
scene to the camera center. For this reason, this model is also often called pinhole
model. An illustration is shown at Figure 2.3.

Figure 2.3: Central Projection model (from [2])

22 Computer vision

The relation between 3D-scene world coordinates (X, Y, Z) in the camera refer-
ence frame and 2D-image plane coordinates (x, y) can be expressed by considering
similar triangles as seen from Figure 2.3, thus

x = f
X

Z
,

y = f
Y

Z
.

(2.1)

Formula (2.1) describes the central projection model equations. Writing image
coordinates p̃ = [x, y, 1]T and world coordinates P̄ c = [X, Y, Z, 1]T by means of
homogeneous and augmented vectors respectively, the central projection is simply
a linear expression of the type,

p̃ =

xy
1

 =

f XZf Y
Z

1

 ∼
fXfY
Z

 =

f 0 0 0
0 f 0 0
0 0 1 0


︸ ︷︷ ︸

Π̃


X
Y
Z
1

 = Π̃P̄ c, (2.2)

recalling that homogeneous vectors are equivalent (sign ∼ as explained in Section
1.3.2) up to a scale factor (in this case Z). What is convenient and useful about
this representation is that the central projection equations from a non-linear ex-
pression of equation (2.1) are now expressed by a linear matrix multiplication.
There is no explicit division by Z because it is implicit in writing the equations
in homogeneous coordinates.

Matrix Π̃ can be further factored into

Π̃ =

f 0 0
0 f 0
0 0 1

1 0 0 0
0 1 0 0
0 0 1 0

 . (2.3)

So far, the image plane was assumed to be continuous, however in reality
the image plane is quantized. It consists of arrays and columns of light sensing
elements which correspond to the pixels in the output image. The dimension of
each pixel in this grid is denoted by ρu along x and ρv along y. Vector p̃ = [x, y, 1]T

in units of meters computed previously needs to be converted into p̄ = [u, v, 1]T

in units of pixels. Pixel coordinates have a different origin and are measured from
the corner of the image, hence a scaling and a shifting is done by the operation

u =
x

ρu
+ u0, v =

y

ρv
+ v0.

Which can be expressed in matrix form and homogeneous coordinates as

p̄ =

uv
1

 =

 1
ρu

0 u0

0 1
ρv

v0

0 0 1

xy
1

 . (2.4)

2.2 Image acquisition 23

The elements of the matrix in (2.4) are the dimensions of the pixel (ρu, ρv) and the
coordinates of the so called principal point (u0, v0), defined as the pixel coordinate
of the intersection of the principal axis and image plane. It is worth noting that
coordinates (u, v) are defined from zero to the pixel resolution value along (x, y).

From equations (2.2), (2.4) and using the factorization in (2.3) we get the
expression of pixel coordinates as a function of 3D-world points,

p̄ =

uv
1

 ∼
 1

ρu
0 u0

0 1
ρv

v0

0 0 1

f 0 0
0 f 0
0 0 1


︸ ︷︷ ︸

K

1 0 0 0
0 1 0 0
0 0 1 0


︸ ︷︷ ︸

Π0


X
Y
Z
1

 = KΠ0P̄
c. (2.5)

As a result, the complete camera model is described by three matrices. The
product of the first two matrices is typically denoted as the camera calibration
matrix K and is a function of the intrinsic parameters, the quantities strictly
related to the sensor’s parameters like focal length and pixel dimensions. The
(3x4) matrix Π0 on the right is responsible for the dimensional reduction of a
point from 3D to 2D, for this reason is often called the standard projection matrix.

2.2.2 Camera rotation and translation

It would be preferable to express coordinates of point P̄ c not in terms of the
camera reference frame {c}, but in GV’s coordinate frame {t}. The two frames
are related by a rotation Rc

t and a translation (T − C) as shown in Figure 2.4.

Figure 2.4: Reference frame transformation

24 Computer vision

The change of coordinates is performed by the augmented representation ma-
trix T ct ,

P̄ c =

[
Rc
t T c

01x3 1

]
P̄ t = T ct P̄

t, (2.6)

where T c = (T − C)c represents the coordinate of GV’s origin in the camera
reference frame. Substituting equation (2.6) in (2.5), we get

p̄ =

uv
1

 ∼ KΠ0T
c
t P̄

t = ΠT P̄
t. (2.7)

The parameters of T ct depend on the camera orientation and position with re-
spect to the GV, for this reason they are called extrinsic parameters. Matrix
ΠT = KΠ0T

c
t is the projection matrix that includes both intrinsic and extrinsic

parameters. Writing the three rows of ΠT as πT1 , πT2 , πT3 , the expression in pixels
of a generic point in GV’s coordinates is

u =
πT1 P̄

t

πT3 P̄
t
,

v =
πT2 P̄

t

πT3 P̄
t
.

(2.8)

2.3 Projective transformation

One of the effects of the image projection process described above, is that a regular
and flat element can be seen from the camera as distorted and scaled, depending
on the orientation of the camera with respect to this object. Figure 2.5 on the left
shows a simulated frame during a generic moment of the landing approach. It can
be noticed that in this image, the shape of the checkerboard on top of the vehicle
is not anymore a perfect rectangle like its orthogonal representation at Figure 2.5
on the right. However, it will be demonstrated how the distortion that occurred
between those two images will be the source of information for the estimation of
position and attitude of the camera. In this section, a method to reconstruct the
transformation of the tag that occurred between the two generic images at Figure
2.5 is presented.

2.3.1 Checkerboard detection

First, an algorithm to detect the checkerboard in the image should be addressed.
The MATLAB function detectCheckerboardPoints in the Computer Vision
Toolbox [13] was used for this purpose: the function takes as input a truecolor
or grayscale image and returns the coordinates of the intersection points between
columns and rows of a black and white checkerboard in the scene. These points

2.3 Projective transformation 25

Figure 2.5: Checkerboard on a generic landing scene (on the left) and checkerboard
tag image (on the right)

are returned in the ordered pattern shown in Figure 2.6. A test for the correct
detection of the tag was set by checking that the number of output points was
precisely N = 12, otherwise the frame was not considered.

This algorithm is based on the work of A. Geiger [14], developed originally
with the aim of providing a way to use a checkerboard to calibrate a camera (i.e.,
finding its intrinsic parameters) with a single shot frame. It is a robust system,
however it may have slower processing times (around 100ms for a 640x480 image)
with respect to other systems optimized for real time applications, like AprilTags
(mean processing time of 22ms for an image with the same resolution) and thus
may result of better performance for an experimental application.

However, the checkerboard detection time was considered sufficient and adopted
as fiducial tag. Future developments could be the implementation of alternative
techniques like Apriltags, ARTags or ARToolkit fiducials.

Figure 2.6: Order of detected checkerboard tag points

26 Computer vision

2.3.2 Homography transformation

The detectCheckerboardPoints function applied to an orthogonal reference im-
age like in Figure 2.6 returns 12 tag points in homogeneous image coordinates
u′i = [u′i, v

′
i, 1]T , whereas applied to the landing scene obseved by the camera re-

turns points of different coordinates ui = [ui, vi, 1]T , where i = 1, ...N . The same
convention of image coordinates as in MATLAB is used, with origin on top-left
corner, x-axis pointing right, y-axis pointing down.

An homography matrix H, describing the transformation that occured between
ui and u′i can be written as

Hui = u′i,

which sets the univocal transformation that occured in the checkerboard image
between two frames like in Figure 2.5. The objective then, is to find an expression
of H from the correspondece of points ui and u′i.

A first consideration should be on the minimum number of points needed to
solve the problem: matrix H is a (3x3) composed by 9 elements, but homogeneous
coordinates are defined up to scale, so there are 8 unknowns. Each point ui is
defined by two coordinates (ui, vi), so the minimum number of points needed is 4.

2.3.3 Direct linear transformation

A simple linear algorithm that allows to find matrix H is the Direct Linear Trans-
formation (DLT) algorithm. The transformation Hui = u′i can be rewritten as a
cross product u′i ×Hui = 0. If hTj is the j -th row of matrix H, we get

Hui =

hT1
hT2
hT3

ui =

hT1 ui
hT2 ui
hT3 ui

 .
Hence, the cross product becomes,

u′i ×Hui =

 v′ih
T
3 ui − hT2 ui

hT1 ui − uihT3 ui
u′ih

T
2 ui − vihT1 ui

 = 0. (2.9)

Collecting the elements of the unknown rows hTj into a column vector of dimension
(9x1),

h =

h1

h2

h3

 .
Writing equation (2.9) as a linear expression with respect to h, 0> −u>i v′iu

>
i

u>i 0> −u′iu>i
−v′iu>i u′iu

>
i 0>

h1

h2

h3

 = 0.

2.4 Extrinsic position estimation 27

The last row of the matrix on the left is a linear combination of the upper two,
so it is discarded. Thus, the set of equation becomes

[
0> −u>i v′iu

>
i

u>i 0> −u′iu>i

]h1

h2

h3

 = Aih = 0. (2.10)

Matrix Ai is function of the points u′i and ui and results to be a (2x9) matrix.
In the hypothetical case of having 4 different points’ correspondences, we can

build 4 independent Ai matrices, obtain the matrix A made by stacking the rows
of each Ai and get the problem in the compact form of finding the non-trivial
solution h of Ah = 0 . Matrix A results to be a 8x9 matrix, so exists a null-space
solution of h defined up to a non-zero scale factor. As discussed before, matrix
H is defined up to scale, so it can be arbitrarily added a constraint on h such as
‖h‖ = 1.

However, since 12 points’ correspondences were found, the equation Ah = 0
turns out to be overdetermined. In the ideal case where the correspondences are
exact, the rank of matrix A should be still 8. However, since the correspondences
are always disturbed by some noise and errors, the problem does not have an exact
solution. A least-squares solution is then addressed by minimizing the norm ‖Ah‖
and adding again the condition of ‖h‖ = 1. The solution is equal to the eigenvector
of ATA with least eigenvalue. In practice, a singular value decomposition (SVD)
of the type A = UDV T is performed, where D is a diagonal matrix with non-
negative elements, U and V are orthonormal matrices. The diagonal elements of
D are sorted in descending order down the diagonal and h is the last column of
V .

2.4 Extrinsic position estimation

In this last section is shown how from homography matrixH, position and attitude
of the camera with respect to the GV can be reconstructed.

2.4.1 Relation between tag image and real checkerboard

An auxiliary checkerboard frame denoted {a} with origin located at the center of
the tag on top of the GV, xy plane on the tag plane and z-axis pointing upwards
is introduced to facilitate the discussion. An illustration is found at Figure 2.7 on
the right. Each tag point i lying on the xy plane of {a} is identified by augmented
coordinates P̄ a

i = [Xa
i , Y

a
i , 0, 1]T .

Points u′i can be expressed from another image coordinate system centered at
the middle of the tag image (u′0, v

′
0), by coordinates u′′i = [u′′i , v

′′
i , 1]T described as

u′′i = u′i − u′0, v′′i = −(v′i − v′0), (2.11)

28 Computer vision

Figure 2.7: Aiding reference frame for image (on the left) and checkerboard ref-
erence frame (on the right)

and illustrated at Figure 2.7 on the left.

Comparing points u′′i on the image and P̄ a
i , it can be noticed that they are

related by a simple scaling along x and y direction by a factor λx = Lx
`x

and λy =
Ly
`y

, where (Lx, Ly) are the real width and height in meters of the checkerboard

and (`x, `y) are the width and height in pixels of the checkerboard in the tag
image. Hence, using relation (2.11) we get,

Xa
i = λxu

′′
i = λx(u

′
i − u′0),

Y a
i = λyv

′′
i = −λy(v′i − v′0).

The relation between real and image checkerboard points can also be written in
matrix form,

P̄ a
i =


Xa
i

Y a
i

0
1

 =


λx 0 −λxu′0
0 −λy λyv

′
0

0 0 0
0 0 1


u′iv′i

1

 , (2.12)

and by factorization of the matrix on the right

P̄ a
i =


Xa
i

Y a
i

0
1

 =


1 0 0
0 1 0
0 0 0
0 0 1


︸ ︷︷ ︸

Q

λx 0 −λxu′0
0 −λy λyv

′
0

0 0 1


︸ ︷︷ ︸

L

u′iv′i
1

 = QL u′i. (2.13)

2.4 Extrinsic position estimation 29

2.4.2 Position and attitude estimation

The checkerboard frame is rigidly attached to the GV, so the transformation
between {t} and {a} is set by a constant augmented representation matrix T ta,

P̄ t
i = T taP̄

a
i . (2.14)

Introducing equation (2.13) in (2.7) and using (2.14), the correspondence between
the detected points ui on the landing scene image and the tag points on the
orthogonal reference image u′i is,

ui =

uivi
1

 ∼ KΠ0T
c
t T

t
aQLu′i. (2.15)

Moreover, the homography matrix H obtained from the DLT algorithm is,

ui =

uivi
1

 =

h11 h12 h13

h21 h22 h23

h31 h32 h33

u′iv′i
1

 = Hu′i, (2.16)

where each element of H is explicitly denoted as hij.
As (2.15) is an equivalent relation, it is defined up to a scalar factor equal to

s, comparing (2.15) with (2.16) we get,

s(KΠ0T
c
aQL) = H.

The aim is to recover matrix T ca , hence,

s(Π0T
c
aQ) = K−1HL−1. (2.17)

The term on the right H̃ = K−1HL−1 is composed by the camera parameters
matrix K, the homographic matrix H and matrix L which is function of the
parameters of the real tag and the image tag.

The term on the left of (2.17) is,

Π0T
c
aQ =

1 0
1 0

1 0



R11 R12 R13 Acx
R21 R22 R23 Acy
R31 R32 R33 Acz
0 0 0 1




1 0 0
0 1 0
0 0 0
0 0 1

 =

R11 R12 Acx
R21 R22 Acy
R31 R32 Acz

 ,
where Rij are the elements of the rotation matrix Rc

a and Ac = (A − C)c is the
center point of the checkerboard in the camera’s reference frame.

Expressing h̃ij the elements of matrix H̃, we finally obtain,R11 R12 Acx
R21 R22 Acy
R31 R32 Acz

 =
1

s

h̃11 h̃12 h̃13

h̃21 h̃22 h̃23

h̃31 h̃32 h̃33

 . (2.18)

30 Computer vision

Elements Rij and Ac can be solved in the following way. Since the columns of a
rotation matrix must all be unit magnitude, the value of s is found by computing
the geometric average of the norm of the first two columns, explicitly

s = ±
√

(h̃2
11 + h̃2

21 + h̃2
31)(h̃2

12 + h̃2
22 + h̃2

32).

The sign of s is recovered by requiring that the tag appears in front of the camera,
i.e., that Acz > 0. At this point, the first two columns of Rc

a can be calculated and
the third column can be found by computing the cross product of the first two
columns (as the rotation matrix should be orthonormal).

The position of the center of the tag is then Ac = (h̃13/s, h̃23/s, h̃33/s) in
camera’s coordinates, however the aim is expressing the position of the camera
center, so

Ca = (C − A)a = −(A− C)a = −Ra
c A

c, (2.19)

recalling that {a} is rigidly attached to {t},[
Ct

1

]
= T ta

[
Ca

1.

]
(2.20)

Thus, the output from the camera will be denoted by

pcam = Ct.

Finally the relative position of the camera with respect to GV in inertial coordi-
nates is

(C − T)i = Ri
t C

t = Ri
t pcam, (2.21)

where Ri
t is calculated from the Euler Angles of the GV. To obtain the relative

position pr between UAV and GV defined in Section 1.6,

pr = pt − pd = (T −D)i = (T − C)i + (C −D)i

= −Ri
t pcam +Ri

d (C −D)d
(2.22)

where Ri
d is the rotation matrix from inertial to UAV body frame and (C −D)d

is a constant vector that describes the position of the camera rigidly attached to
the UAV body frame.

Chapter 3

Integrated navigation system
principles

This chapter describes the basic principles of the integrated navigation system
responsible for the estimation of the relative position and velocity of the UAV
with respect to the GV and required by the control system of the UAV for the
landing guidance.

The main concepts behind integrated navigation, Kalman filter and Extended
Kalman filter (EKF) are presented and their application for the landing problem
is shown.

3.1 Types of navigation system

Navigation is the discipline that studies the determination of position and velocity
of a moving body with respect to a known reference point [15]. Its applications
are everywhere such as cars, airplanes, spacecrafts, ships and robotics. There are
many navigation techniques, however two main cathegories can be identified. Po-
sition fixing uses identifiable external information to determine position directly.
They can be man-made signals like Global Navigation Satellite Systems (GNSSs)
or environmental features at known locations identified by a pilot or by a ma-
chine vision system. The main advantage is that the error in the determination
of position does not depend on navigation time, but with the main drawback of
depending on external factors and infrastructures.

The second system is dead reckoning that measures distance and direction
traveled from an initial position by motion sensors like accelerometers. These
sensors may be self-contained on-board the vehicle, requiring no external infras-
tructures and usually are a source of direct acceleration and velocity estimates
at high update rates, information often necessary for the guidance and control
modules. In contrast, acceleration and velocity obtained by differentiation of po-
sition fixing measures are less reliable because very sensitive to noise. The error

32 Integrated navigation system principles

on position estimated by dead reckoning, however, grows with time because the
sequence of distance measurements errors accumulate.

An integrated navigation system determines position using more than one tech-
nology and can combine the advantages of both types of navigation methods. This
is the approach followed in this work, where a dead reckoning system based on
accelerometers mounted on the UAV and GV is integrated with position fixing
measurements of a camera, a compass and a radio-frequency (RF) range system.

The sensor fusion is performed by an Extended Kalman filter described in
Section 3.4. A series of considerations on sensors’ models and errors is addressed
in the next section.

3.2 Sensors

Sensors are devices of primary importance for navigation as they detect physical
quantities and return variables on the state of motion or position of the vehicle.
Ideal sensors would return the exact measure that we want to know, however in
reality they are affected by a series of errors due to the technological realization
of the instrument itself.

3.2.1 Sensor’s errors

Navigation systems can reach high performances if sensors are modeled as precisely
as possible, by estimating their deviation with respect to ideal sensors and improve
the quality of the vehicle kinematic state estimate. Sensors’ errors can be classified
into two main categories. Systematic errors are deterministic and they are usually
a bias or constant offset of the instrument that, for example, does not read zero
when the quantity to be measured is zero, or a scale factor when the instrument
constantly reads changes in quantity greater or lower than the actual changes.
These errors are repeatable and can tried to be predicted; their representation is
shown at Figure 3.1.

Random errors are caused by unknown and unpredictable changes on the
instrument measure that may come, for example, from electronic noise in the
circuit of the sensor. Due to their intrinsic stochastic nature, they cannot be
predicted, however they may be described by means of their statistical properties.

A large class of random errors can be classified as white gaussian noise (WGN),
defined as a process with constant value of power spectral density (PSD) in the
frequency spectrum. In discrete time, a white noise sequence is a series of mutually
uncorrelated random variables with zero-mean distribution. Taking samples wi at
time ti, we have that

E(wiwj) =

{
σ2
w for i = j,
0 for i 6= 0,

3.2 Sensors 33

Figure 3.1: Systematic errors: bias and scale factor

where E is the expectation operator and σ2
w is the variance. All random errors

assumed for the rest of the work are WGN: in general it is a strong assumption,
since not all random errors fall necessarily into this category. However, this hy-
pothesis is intrinsic in the Kalman filter formulation and it can be demonstrated
that the filter keeps a good performance even if the system is affected by errors
that are not exactly WGN, but similar.

3.2.2 Sensor models

The models for non-ideal sensors mounted on the GV and UAV are presented in
this section.

Accelerometers and gyroscopes

Accelerometers and gyroscopes (or gyros) are electromechanical motion sensing
devices used to measure linear acceleration forces and angular velocities respec-
tively, used to sense movements of the vehicle on which they are mounted. Accel-
erations and angular rate measurements are provided in the three body axis of the
vehicle in case of strap-down configurations. To retrieve these values in inertial
frame, a change of coordinates should be performed, for example by means of
Euler angles parameterization.

Many commercial UAVs include an inertial measurement unit (IMU) within
the flight control unit which comprises already an assembly of gyroscopes and
accelerometers. In this work, it is assumed that the measures of linear acceler-
ation of the drone are already expressed in inertial coordinates and are gravity
compensated. In fact, the FCU is able to transform the accelerations from body
to inertial, using the estimation of roll, pitch and yaw angles obtained from gyro-

34 Integrated navigation system principles

scopes and needed also by the control system. The model for the drone’s linear
acceleration measurement is

ãd = (1− sd)ad + bd + wad , (3.1)

where ãd is the measured acceleration in NED axis, sd is a constant offset, bd is
a constant random bias of variance equal to σ2

bd
and wad is a WGN of PSD equal

to σ2
ad

.

The movement of the GV is considered as two dimensional acting on the
North-East plane. For this reason, a 2-sensitivity axis accelerometer is used for
the determination of the accelerations µt along x and y axis of GV’s body frame.
The measurement model is

µ̃t = (1− st)µt + bt + wat , (3.2)

where µ̃t is the measured acceleration in GV’s body axis, st is a constant offset,
bt is a constant bias of variance equal to σ2

bt
and wat is a WGN of PSD equal to

σ2
at .

The 2D navigation assumption implies that the acceleration of gravity vector
g does not affect GV’s accelerometer’s measures because always parallel to z. In
practice, a small tilt of the GV in pitch and roll, introduces the projection of
the gravity vector on the xy plane, which is measured by the accelerometers and
interpreted as a fictitious movement, source of significant errors over time. For this
reason, usuallly a 3-axis accelerometer is still used to capture this phenomenon,
which for semplicity was assumed as not affecting the measures of the GV.

The GV is also equipped with a gyro with sensitive axis along z on GV’s frame
to measure angular velocity rt and the sensor measurement is modeled as

r̃t = (1− sr)rt + br + wr, (3.3)

where r̃t is the measured yaw rate, sr is a constant offset, br is a constant bias of
variance equal to σ2

br
and wr a WGN with PSD equal to σ2

rt .

GV’s compass

The estimation of the yaw angle ψt of the GV is made by integration of the gyro’s
yaw rate r̃t and an attitude fixing measurement coming from a compass installed
on the GV and modeled as

ψcomp = ψt + vcomp, (3.4)

where ψcomp is the yaw angle measured by the compass and vcomp is a WGN with
PSD of σ2

comp.

3.3 Discrete time Kalman filter 35

Camera sensor

The gimballed camera installed on the UAV, discussed in Chapter 2, is a position
fixing aiding measurement which provides the measurement pr of relative position
of UAV and GV as shown in Section 2.4.2. The measure is affected by a series of
errors in the computer vision algorithm and camera’s parameters that are difficult
to model, but that can be interpreted as WGN as well. From equation (2.22), the
measurement of the camera is written as

pcam = −Rt
i(ψt) pr + vcam, (3.5)

where, for sake of simplicity, points D and C are considered coincident. Rotation
matrix Rt

i transforms from inertial to GV’s reference frame, pcam is the relative
position computed by the computer vision algorithm and vcam is a WGN of PSD
σ2
cam.

RF distance module

During the last moments of the landing approach, the detection of the checker-
board by the camera results to be compromised because the UAV flies too close
to the tag, which goes outside the field of view of the camera. For this reason,
an additional radio-frequency (RF) distance module is used to locate the UAV in
the final steps of the landing, when camera information is not anymore available.

The UAV is equipped with a transceiver which emits RF signals that are
received by other 4 transceivers located at the extremities of the tag (like in
Figure 3.2) and that re-emit the same signal. By evaluating the time occurred
between transmission and reception of the signal by the sensor on the UAV, and
considering a constant speed of propagation of the RF wave, it is possible to
reconstruct 4 range measures between the UAV and each of the 4 transceivers on
the GV.

These 4 sensors are located at points P t
RFi

= (PRFi − T)t for i = 1, ..., 4 with
respect to GV’s frame. The range between UAV and transceiver i is given by

ρRFi = ||(PRFi −D)|| = ||(PRFi −D)i||
= ||(PRFi − T)i + (T −D)i|| = ||Ri

tP
t
RFi

+ pr||
(3.6)

The actual measurements ρ̃RFi from the RF distance module are affected by ran-
dom errors vRFi described as WGN with PSD σ2

RF , thus written as

ρ̃RFi = ρRFi + vRFi (3.7)

3.3 Discrete time Kalman filter

The Kalman filter is a sensor fusion algorithm that takes multiple measurements
observed over time and produces estimates of unknown states of a system. It

36 Integrated navigation system principles

Figure 3.2: RF distance module architecture

uses the knowledge of deterministic and stochastic properties of the system and
measurements in order to perform an optimal state estimation. The filter is named
after Rudolf E. Kalman, which published this theory for the first time in 1960
[16]. Since then, the algorithm has seen its application in many fields, from the
navigation computer for the Apollo program, to current smartphone technologies,
but also in computer vision and finance.

In this section, the fundamental real-time and discrete form of the Kalman
filter is explained.

3.3.1 Elements of the Kalman filter

The state vector x is a set of parameters describing the system (i.e., the states)
which the Kalman filter aims to estimate. It can be constant or time varying and
it usually includes position, velocity or attitude of the vehicle with respect to a
particular frame of reference. It may also contain the states of the systematic
errors introduced by sensors such as biases or scale factors. The Kalman filter
estimate of the state vector is denoted x̂, whereas the state vector residual δx =
x− x̂ is the difference between the state vector and its estimate.

The error covariance matrix Σ is the expectation of the square of the deviation
of the state vector estimate from its true value, thus Σ = E(δxδxT). The elements
on the diagonal Σii are the variances of the corresponding states xi, whereas the
non-diagonal elements Σij are the covariances between errors of xi and xj states.

The system noise vector w represents the uncertainties that may affect the
system. It is defined by statistical properties of a zero-mean white gaussian noise,
hence by a system noise covariance matrix Q = E(wwT). Matrix Q is diagonal if
each noise element is uncorrelated from the others.

3.3 Discrete time Kalman filter 37

The system model describes how the Kalman filter states vary with time: it
includes the kinematics of the vehicle under study, for example the velocity as
derivative of position, or the dynamics of the sensors’ errors.

The measurement vector z is a set of measures from position fixing aids (e.g.,
information coming from a camera, GPS or compass). The measurement model
describes how z varies as a function of the true state x and affected by a mea-
surement noise vector v. The measurement noise covariance matrix R defines the
expectation of the square of the measurement noise vector, hence R = E(vvT).

In the discrete time Kalman filter, only linear time invariant system and mea-
surement models are considered, described by

xk+1 = Fkxk +Bkuk + wk, (3.8)

zk = Hkxk + vk, (3.9)

where u is the input vector containing dead reckoning measurements and Fk, Bk,
Hk are linear time invariant matrices. The subscript (.)k denotes each vector or
matrix evaluated at time t = tk.

3.3.2 Kalman filter algorithm

The discrete time Kalman filter algorithm is recursively performed by a navigation
system at a rate which is usually equal to the frequency of the dead reckoning
sensors. Each iteration is divided into two different phases:

1. System propagation: the prediction of the state vector and error covari-
ance matrix from the last vector estimate and dead reckoning measurements.
The state and covariance estimates performed during this stage are denoted
with the superscript (.)−.

2. Measurement update: the correction of the state estimate based on the
position fixing measurements zk if they are available at iteration time tk. The
state and covariance estimates in this phase are denoted with the superscript
(.)+.

Both phases are described by a series of equations in state space form that achieve
an optimal estimation.

System propagation

The first step is the prediction of the state vector at time tk based on previous
estimates x̂+

k−1 , Σ+
k−1 and dead reckoning measurement uk−1. Using the discrete-

time system model of (3.8) and considering a null noise w, the state prediction is

x̂−k = Fk−1x̂
+
k−1 +Bk−1uk−1. (3.10)

38 Integrated navigation system principles

It can be demonstrated that the error covariance matrix can be computed by

Σ−k = Fk−1Σ+
k−1F

T
k−1 +Qk−1, (3.11)

where Qk−1 is the discrete-time system noise covariance matrix.

Measurement update

In general, the rate at which position fixing measures are available is lower than
the filter’s frequency. This leads to two different cases, if measure vector zk is
not available at instant tk, the state estimate at iteration k is the one computed
by the system propagation step, hence x+

k = x−k . In the case of zk available, an
update in x−k can be performed using the measurement innovation δz−k = zk− ẑ−k ,
where ẑ−k = Hkx̂

−
k is the predicted position fixing measurement using model (3.9).

The new estimate is then

x̂+
k = x̂−k +Kkδz

−
k , (3.12)

where Kk is the Kalman gain matrix, representing the weight of the measurement
innovation in the state vector update. The criteria for computing Kk is by mini-
mizing the error in the estimate x̂+

k , resulting from the minimization of the trace
of Σ+

k . It can be demonstrated that this leads to the formula for the Kalman gain
of the type

Kk = Σ−kH
T
k (HkΣ

−
kH

T
k +Rk)

−1, (3.13)

where Rk is the discrete-time measurement noise covariance matrix. The correc-
tion of the covariance matrix is

Σ+
k = (I −KkHk)Σ

−
k . (3.14)

It can be noticed that in the expression of the Kalman gain of equation (3.13),
there is an inverse dependency on the noise covariance matrix Rk, which is related
to the uncertainty on the information of position fixing sensors at instant tk.
Considering Rk diagonal (each measure error is uncorrelated from the others), the
less reliabile the position fixing measure zi, the higher its variance (element Rkii

of the matrix), and the less its contribution on Kk. Hence, the weight of zi on the
state update x̂+

k results to be small due to the uncertainty of the the measure. The
same reasoning can be inversely made for an high reliable position fixing measure.

3.4 Extended Kalman filter

The basic Kalman filter described in previous section has the limitation of being
applied only to linear models. More complex systems, however, can present a
nonlinearity associated either with the system model or with the measurement
model or with both. The Extended Kalman Filter (EKF) is a version of the

3.4 Extended Kalman filter 39

Kalman filter which can be applied to continuous time nonlinear systems and
measurement models of the type

ẋ(t) = f(x(t),u(t),w(t)), (3.15)

z(t) = h(x(t),v(t)), (3.16)

where f and g are two differentiable functions.

3.4.1 EKF algorithm

This section presents how a slight modification on the system propagation and
measurement update steps of the Kalman filter leads to the algorithm of the EKF.

System propagation

Function f of (3.15) is used to compute the predicted state from previous estimate
x̂+
k−1 and dead reckoning measures uk−1 using a standard Euler method of the type

x̂−k = x̂+
k−1 + f(x̂+

k−1,uk−1, 0)∆t, (3.17)

where ∆t = tk − tk−1 is the time interval of iteration k. Assuming that the error
in the state vector estimate is small, a linearization can be applied to the state
vector residual

δẋ(t) = A(t)δx(t) +B(t)w, (3.18)

where

A(t) :=
∂f

∂x

∣∣∣∣
(x(t),u(t),0)

, B(t) :=
∂f

∂w

∣∣∣∣
(x(t),u(t),0)

,

Calculating Ak−1, Bk−1 and Qk−1 as A(t), B(t) and Q respectively, evaluated at
x̂+
k−1 and uk−1, we can write

δxk = Φk−1δxk−1 + ηk−1 (3.19)

with Φk−1 = eAk−1∆t and ηk−1 is a zero-mean white gaussian noise of covariance

Nk−1 = E(ηk−1η
T
k−1) =

∫ ∆t

0

eAk−1tBk−1Qk−1B
T
k−1e

ATk−1tdt, (3.20)

which can be approximated for small time steps as

Nk−1 ≈ ∆t Bk−1Qk−1B
T
k−1. (3.21)

Hence, the predicted covariance matrix is found by

Σ−k = Φk−1Σ+
k−1Φk−1 +Nk−1 (3.22)

40 Integrated navigation system principles

Measurement update

The measurement innovation δz−k = zk− ẑ−k , where ẑ−k = h(x̂−k , 0) is the predicted
position fixing measurement, is assumed to be small. Thus, it can be approximated
as a linear function of the state vector by

δz−k ≈ Ckδx
−
k +Dkvk, (3.23)

where Ck and Dk are obtained by linearization

Ck :=
∂h

∂x

∣∣∣∣
(x̂−
k ,0)

, Dk :=
∂h

∂v

∣∣∣∣
(x̂−
k ,0)

,

The new Kalman filter gain for the EKF is

Kk = Σ−k C
T
k (CkΣ

−
k C

T
k +DkRkD

T
k)−1,

and the correction on the state vector estimation results to be

x̂+
k = x̂−k +Kkδz

−
k , (3.24)

whereas the covariance matrix update is

Σ+
k = (I −KkCk)Σ

−
k . (3.25)

It was shown how, through linearization of functions f and g, the algorithm for
the Kalman filter can be extended to nonlinear systems. A comparison between
the two types of filters is shown at Figure 3.3.

3.5 Navigation system setup

The navigation system of the UAV uses an EKF algorithm for state estimation.
Hence, two main elements that should be defined are the system model and the
measurement model in the form of (3.15)-(3.16). Let’s consider first what are the
states that should be estimated. Since we are considering a landing problem, the
interest is in the reconstruction of relative position and velocity of the UAV with
respect to GV, rather than their absolute states. Moreover, having defined the
models of the sensors in Section 3.2, it can be addressed also the estimation of
the biases and scale factors errors.

In this section, the system and measurement models used by the EKF of the
UAV is presented.

3.5 Navigation system setup 41

Figure 3.3: Comparison between discrete Kalman filter and Extended Kalman
filter

3.5.1 System model

The kinematic equations for the relative position pr and velocity vr expressed in
inertial coordinates are given by the differential equations

ṗr = ṗt − ṗd = vr,

v̇r = v̇t − v̇d = at − af .
(3.26)

Acceleration of UAV and GV are obtained by the accelerometers described in Sec-
tion 3.2. From UAV’s accelerometer model of equation (3.1), the true acceleration
expressed in inertial coordinates can be written as

ad =
ãd − bd −wad

1− sd
.

The GV’s accelerometer measures its values in body frame, thus a change of
coordinates by means of rotation matrix Ri

t should be performed

at = Ri
t(ψt)µt, (3.27)

where rotation matrix is

Ri
t =

cosψt − sinψt 0
sinψt cosψt 0

0 0 1

 .
Using (3.27) and sensor model of equation (3.2) , the acceleration of the GV in
inertial frame is written as

at = Ri
t(ψt)

µ̃t − bt −wat

1− st

42 Integrated navigation system principles

The yaw angle ψt of the GV should be estimated as well. Since roll and pitch are
always null, its dynamics equation is

ψ̇t = rt,

where information on the angular rate rt is obtained from the GV’s z-axis gyro-
scope, described by (3.3), hence

ψ̇t =
r̃t − br − wr

1− sr
.

The derivative of the biases and scale factor errors are constant for all the sensors.
Writing all the navigation equations together, the state model ẋ = f(x,u,w)

results to be

ṗr = vr,

v̇r = Ri
t(ψt)

µ̃t − bt −wat

1− st
− ãd − bd −wad

1− sd
,

ψ̇t =
r̃t − br − wr

1− sr
,

ḃt = 0,

ḃd = 0,

ḃr = 0,

ṡt = 0,

ṡd = 0,

ṡr = 0.

(3.28)

where the state vector is

x = [pr vr ψt bt bd br st sd sr]
T ,

the accelerometer measurement input is

u = [ãt µ̃d]
T ,

and the noise vector,
w = [wat wad wr]

T

The state covariance matrix Q is the diagonal matrix

Q =

σ2
at I3

σ2
ad
I3

σ2
br

 ,
where σ2

i are the PSDs related to noise state i and I3 is the identity matrix.
The EKF algorithm is performed at the same frequency of the accelerometers and
gyro which is set to fEKF = 100Hz.

It can be noticed that the state model is nonlinear, aspect that justifies the
choice of using an EKF and not the possibility for a standard Kalman filter.

3.5 Navigation system setup 43

3.5.2 Measurement model

The position fixing aiding measurement are given by the compass, the gimballed
camera and the RF range system. Recalling their expression from Section 3.2, and
writing them as function of the state vector x, we can express the measurement
model z = h(x,v) as

ψcomp = ψt + vcomp

pcam = −Rt
i(ψt) pr + vcam,

ρ̃RF,i = ||Ri
t(ψt)P

t
RFi

+ pr||+ vRF for i = 1, ...4.

(3.29)

The measurement vector is then,

z = [ψcomp pcam ρ̃RF,1 ρ̃RF,2 ρ̃RF,3 ρ̃RF,4],

the noise vecotr is
v = [vcomp vcam vRF]T ,

And the measurement noise covariance matrix is

R =

σ2
comp

σ2
cam I3

σ2
RF I4


Also the measurement model is nonlinear, so the EKF choice is again justified.

The scheme of the EKF can be found at Figure 3.4.

Figure 3.4: Scheme of the EKF

44 Integrated navigation system principles

Chapter 4

Control system

The objective of this chapter is to present the control system architecture for an
UAV capable to autonomously land on top of a moving GV. As already mentioned
in Section 1.5, the control system consists in three main modules:

1. Integrated navigation system: widely discussed in Chapter 3, it is re-
sponsible to locate the UAV with respect to the GV’s landing target and
returns the states of relative position and velocity.

2. Trajectory generation module: from the state estimate of the navigation
system, it generates set-point positions describing the nominal trajectory
that the UAV should follow.

3. Tracking control module: a built-in controller running in the flight con-
trol unit that tracks the set-point position coming from the trajectory gen-
eration module. It consists in a Proportional Integral Derivative (PID)
controller that uses estimations of position, velocity and attitude performed
by an inner integrated navigation system.

The design of the tracking module is beyond the purpose of this thesis, hence a
discrete-time linear system obtained by black box model identification of the UAV
equipped with a tracking controller unit was used. This chapter is focused on the
description of the trajectory generation module, the tuning of its parameters and
finally a discussion on the control of the gimballed camera.

4.1 Trajectory generation module

The trajectory generation module provides the input for the tracking controller
in terms of set-point position pod = [N o

d , E
o
d, D

o
d]
T of the UAV in NED coordinates.

The problem is three-dimensional, but, for sake of simplicity, it can be decou-
pled in: horizontal control for set-point generation in North-East coordinates and
vertical control for trajectory along the Down axis.

46 Control system

4.1.1 Horizontal control

The strategy adopted for the trajectory generation in North-East coordinates
follows the work of G. Gozzini [6] of the landing problem of a drone above another
moving target drone. Set-point positions are obtained from the value of desired

acceleration aoNE computed using the EKF estimates of North (N̂r,
ˆ̇Nr) and East

(Êr,
ˆ̇Er) states, and it follows a Proportional-Derivative (PD) law of the type

aoNE(t) =

[
aoN(t)
aoE(t)

]
= Kp,NE

[
N̂r(t)

Êr(t)

]
+Kd,NE

[
ˆ̇Nr(t)
ˆ̇Er(t)

]
,

where Kp,NE and Kd,NE are the proportional and derivative gains. A saturation
on maximum horizontal acceleration module amax can be imposed, as well as a
deceleration if the UAV going faster than an horizontal speed limit vmax, resulting
in a modified acceleration input uNE = [uN uE]T . This last is integrated twice
and position set-point for the tracking control module is obtained by

Ṅ o
d (t) = Ṅd (t0) +

∫ t

t0

uN(τ)dτ,

Ėo
d(t) = Ėo

d (t0) +

∫ t

t0

uE(τ)dτ,

N o
d (t) = Nd (t0) +

∫ t

t0

Ṅ o
d (τ)dτ,

Eo
d(t) = Ed (t0) +

∫ t

t0

Ėo
d(τ)dτ.

(4.1)

In discrete time it is computed as

Ṅ o
d (k) = Ṅd(k − 1) + uN(k)Tint,

Ėo
d(k) = Ėd(k − 1) + uE(k)Tint,

N o
d (k) = Nd(k − 1) + Ṅ o

d (k)Tint,

Eo
d(k) = Ed(k − 1) + Ėo

d(k)Tint,

(4.2)

where, Tint is the integration time-step and the integration initial conditions are
the initial position and velocity of the UAV at time t0 = 0 s.

The horizontal control scheme can be found at Figure 4.1.

4.1.2 Vertical control

The entire landing manoeuvre can be split into two phases. An approach phase
is done keeping the drone at a constant altitude and terminates when the UAV
has stabilized over the landing target; afterwards, a descend phase can start and

4.1 Trajectory generation module 47

Figure 4.1: Trajectory module for horizontal control

terminates when the UAV touches the landing pad. The switch between the two
phases is done by means of a safety check that guarantees the drone to be at
a sufficiently close position with respect to the landing target in the horizontal
direction.

Safety zone area

The descend phase can start only when the UAV satisfies the horizontal relative
distance condition

S(t) =

√
N̂2
r (t) + Ê2

r (t) ≤ So(D̂r), (4.3)

which uses a safety objective parameter So that depends on relative altitude D̂r

and defined as
So(D̂r) = ms D̂r + qs. (4.4)

Coefficients ms and qs are computed by

ms =
d2 − d1

2hs
,

qs =
d1

2
,

where d1 = 0.5m, d2 = 1m and hs = 2m. This condition is interpreted by the
fact that the descend starts only when the UAV is inside an area delimited by a
truncated cone with lower base circle diameter d1 at the landing target height and
upper base circle diameter d2 located at a distance hs above. A representation
can be found at Figure 4.2.

Descend algorithm

During the approach phase, a relative altitude of hs = 2m is kept constant. When
the UAV satisfies the safety condition (4.3), a third order polynomial trajectory
on relative Down direction D̃r is imposed and illustrated at Figure 4.3.

48 Control system

Figure 4.2: Safety cone

The trajectory has been chosen to perform a smooth and continuous descend,
with final vertical speed equal to zero as to limit the landing impact. In practice,
an engine cut-off is imposed when the UAV reaches a relative vertical distance of
5 cm.

Denoting tstart the time at which the UAV enters the safety area and ttouch the
time at which the UAV should touch the landing pad, the desired time interval
of the descend phase ∆tland = ttouch − tstart = 10 s is imposed. The expression of
trajectory D̃r results to be

D̃r(t) = a∆t3 + b∆t2 + c∆t+ d

where ∆t = t− tstart and (a, b, c, d) are the coefficients of the third order polyno-
mial. These coefficients are computed by imposing the following constraints

D̃r(tstart) = hs,

D̃r(tland) = 0,

˙̃Dr(tstart) = 0,

˙̃Dr(tland) = 0,

which represent, in order, the constraint of initial relative height when starting
the descend, the trivial height at landing moment, initial and final speed of the

4.1 Trajectory generation module 49

Figure 4.3: Imposed relative down trajectory

descend phase (both equal to zero). Thus, the values (a, b, c, d) result to be

a =
2hs

∆t3land
,

b = − 3hs
∆t2land

,

c = 0,

d = hs.

Following a similar strategy of the horizontal control, a vertical set-point accel-
eration aoD is computed from a PD law that uses EKF estimates and desired
trajectory of the type

aoD(t) = Kp,D(D̂r(t)− D̃r(t)) +Kd,D(
˙̂
Dr(t)− ˙̃Dr(t)), (4.5)

where Kp,D and Kd,D are the proportional and derivative gains. Acceleration is
then integrated twice to obtain vertical position set-point for the vertical tracking
control module Do

d by

Ḋo
d(t) = Ḋd (t0) +

∫ t

t0

aoD(τ)dτ,

Do
d(t) = Dd (t0) +

∫ t

t0

Ḋo
d(τ)dτ.

(4.6)

In discrete time it is computed as

Ḋo
d(k) = Ḋd(k − 1) + aoD(k)Tint,

Do
d(k) = Dd(k − 1) + Ḋo

d(k)Tint,
(4.7)

50 Control system

where integration initial condition is the initial vertical position of the UAV at
time t0.

Alternative techniques for the descend algorithm like bang-zero-bang [6], con-
stant vertical speed [4] or an imposed vector field [7] can be thought as well.

4.2 Gains control tuning

In this section, a methodology to compute the values of the trajectory control
module gains (Kp,NE, Kd,NE, Kp,D, Kd,D) based on a pole placement approach is
proposed.

For sake of simplicity, and considering the dynamics on the three axis decou-
pled, the discussion will be made on the dynamics along the North axis. The
same principles, however, are applied to East and Down direction. Let’s consider
a generic expression of the dynamics along North direction of the UAV equipped
with the tracking control module, described by the differential equation

ẋN = fN(xN , N
o
d),

yN =

[
Nd

Ṅd

]
= hN(xN , N

o
d),

(4.8)

where fN , gN are generic functions, xN is the dynamic state, N o
d is the desired

set-point position input and yN is the output.
In this work, system (4.8) is described by a discrete-time linear system obtained

by model identification. In general, fN and gN can also be unknown functions,
but with the possibility to measure output responses yN from imposed step input
as we will see later.

In this section, the approximation of (4.8) by a linear second order system and
the pole placement approach to compute the PD gains of the trajectory control
module are presented.

4.2.1 Second order approximation

A generic asymptotically stable system of the second order is described by

N̈d + 2ωNξNṄd + ω2
NNd = ω2

NN
o
d (4.9)

where ωN and ξN are the natural frequency and the damping factor, Nd is the
state and N o

d is the input. The response in time domain of (4.9) to a step input
of magnitude µ is

Nd(t) = µ

[
1− 1√

1− ξ2
N

e−ξNωN t sin

(
ωN

√
1− ξ2

N t+ α

)]
, (4.10)

where ξ = cos(α).

4.2 Gains control tuning 51

The percentage overshoot PO% is defined as the percentage difference between
the maximum value of Nd,max and final value µ. It can be demonstrated that it
depends only by the damping factor and its expression is

PO% = 100
Nd,max − µ

µ
= 100e

− ξNπ√
1−ξ2

N .

The settling time Ta2 is defined as the time in which the value Nd(t) reaches and
stays at ±2% of its final value µ. From an approximation of formula (4.10) we
get

Nd(t = Ta2) ≈ µ
(
1− e−ξNωNTa2

)
= 0.98µ, (4.11)

Even if system (4.8) is not of the second order, but is asymptotically stable and
with a response similar to a second order one, we can compute ωN and ξN from
PO% and Ta2 of its step resonse by

ξN =
− ln

(
PO%

100

)
√
π2 + ln2

(
PO%

100

) ,
ωN =

− ln(0.02
√

1− ξ2
N)

ξNTa2

,

(4.12)

and thus obtain an approximation of (4.8) as a second order system described by
(ωN , ξN). In Laplace domain, the UAV dynamics can be characterized by a SISO
transfer function of the type:

F (s) =
Nd(s)

N o
d (s)

=
ω2
N

s2 + 2ξNωNs+ ω2
N

, (4.13)

where s is the complex variable.

4.2.2 Pole placement

Pole placement is a method employed in control system theory to place the closed-
loop poles of a system in pre-determined conditions in the s-plane. This permits
to locate directly the eigenvectors of the system, which control the characteristics
of the response of the system.

It was chosen this method for tuning the PD gains of the trajectory generation
module for the North direction, applied to the second order approximation of the
UAV system of equation (4.13). It was assumed to have directly access to state
Nd(s), thus neglecting the navigation system and sensors dynamics. The feedback
control scheme can be found at Figure 4.4.

The trajectory control module in Laplace domain is written as

PD(s) =
Kp,N +Kd,N s

s2
(4.14)

52 Control system

Figure 4.4: Feedback control scheme

where Kp,N and Kd,N are the proportional and derivative gains. The denominator
of (4.14) represents the double integration that transforms desired acceleration
aoN in set-point position output N o

d of (4.1).
In practice, values of Kp,N and Kd,N were found by using the rltool root

locus design GUI of the Control System Toolbox [17] in MATLAB, that allows to
select the feedback gains of a closed loop plant by visualizing both the location
of the poles and the step response. It was imposed the introduction of a zero at
z0 = 0.4, thus resulting in Kp,N = 0.4Kd,N . Then, the value of Kp,N was chosen
as the one giving the smallest settling time of the closed loop system to the step
input, which resulted to be Ta2 = 7.4 s. The values of the gains found are

Kp,N = 0.32,

Kd,N = 0.8.
(4.15)

Finally, these gains were tested on the trajectory control module applied on
the complete system of the UAV for the North direction and the results are shown
in Figure 4.5. It can be noticed that the second order approximation reproduces
in a quite accurate way the complete system response. In Figure 4.6 is reported
the response of the system to the ramp and it shows that the steady state error
is equal to zero, which is essential for the UAV to track the GV.

The gains of (4.15) are also used for the trajectory control in East direction.
For the gains in Down direction, it was followed the same procedure as de-

scribed in this section and the final results are

Kp,D = 3,

Kd,D = 2.2.
(4.16)

4.3 Gimballed camera control

As mentioned in Section 1.1.4, the camera which is used for the detection of the
checkerboard is gimballed, which means it has three-axis degree of freedom that

4.3 Gimballed camera control 53

Figure 4.5: Unit step response of the approximated and complete system

Figure 4.6: Ramp response of the approximated and complete system

54 Control system

allows to point any direction of space (up to limitation of maximum angle rotations
of the camera). The advantage of being gimballed comes from the fact that tag
detection is not influenced by the attitude of the UAV, because it does not show
problems of a downward facing camera which can lose track of the visual target
when the drone pitches forward to follow the GV [18].

The two angles used to control the orientation of sight of the camera are the
pitch angle θc and yaw angle ψc of reference frame {c} (the roll angle φc is con-
stantly kept equal to zero). These angles should be as such that the camera keeps
constantly track of the tag and they are evaluated from the estimated relative
position p̂r coming from the EKF. Without loss of generality, it is assumed that
point C and D are coincident, as well as point A and T . Recalling that S(t)
defined in equation (4.3) represents the horizontal distance between UAV and
landing target, the desired camera gimbal pitch and yaw angles can be computed
by

θc = − arctan 2(D̂r, S)

ψc = arctan 2(Êr, N̂r)

An illustration of the camera rotation angles can be found in Figure 4.7.

Figure 4.7: Gimballed camera rotation angles

Chapter 5

Simulation results

In this chapter, an overview of the simulation set-up is presented. Then, the results
for two different scenarios of the landing approach are provided and discussed.

5.1 Simulation set-up

The period of work of this thesis unfortunately coincided with the worldwide
pandemic of Covid-19 which restricted the accessibility to laboratories and com-
promised the possibility of developing an experimental verification of the theory
presented in this work. For this reason, a computer simulation that tries to rep-
resent at best a real experimental application is addressed.

The software used was MATLAB [19] and Simulink [20]. In particular, Simulink
enables a model-based integration of all the parts involved in the landing problem
and the test of the design of the system. The overall simulation architecture re-
sults to be a combination of sub-systems represented by single Simulink “blocks”
which can be found at the scheme in Figure 5.1 and that are:

1. UAV and ground vehicle model,

2. sensors module,

3. camera and computer vision system,

4. Extended Kalman filter,

5. trajectory control module.

The system was tested and results were analyzed and visualized in MATLAB. In
this section, the description of each of sub-system block is presented.

56 Simulation results

Figure 5.1: Simulink model

Feature ANT-R

Weight 0.73kg
Dimensions 19× 17× 8.5cm
Propellers 3 blades 5045
Motors Emax RS2205-2300KV

Table 5.1: ANT-R drone characteristics

5.1.1 UAV and ground vehicle

As mentioned in Section 1.5.1, the model used for the simulation of the UAV is
a discrete-time linear model obtained by black box identification of the drone in
Figure 5.2 (codename ANT-R). It is a smaller drone with respect to the M100
quadcopter which was used by Borowczyk [4] in the main reference experiment for
this thesis, however the model of the ANT-R was chosen because it had already
demonstrated to be sufficiently accurate from past works [6]. The characteristics
of the ANT-R can be found in Table 5.1.1.

The model for the ground vehicle is the same as presented in 1.4.2. Even if it is
a simple kinematic model that does not consider the complexity of the dynamics
of the vehicle (e.g., mass, engine performance), it is sufficient to describe the
trajectory of a generic car or truck. It is important to notice that the GV does
not collaborate with the UAV by adjusting its speed to “help” the drone to land,
but follows an independent trajectory which is set by imposing front wheel speed
and steering angle. Future work could be the study of a possible collaborative
situation, where control of the UAV and GV are synchronized [21]. The only
parameter of the GV, which is axle length L, was set to 3m.

5.1 Simulation set-up 57

Figure 5.2: UAV of reference for the simulation

5.1.2 Sensors

The sensors block, schematized in Figure 5.3, simulates the measures coming
from all the instruments mounted on the UAV and GV which are affected by
noise. It takes as input the real states of the two vehicles, then it adds bias and
random errors as described in Section 3.2.2, which makes them deviate from ideal
sensors. The values of noise parameters were chosen from commercially available
and relative low-cost sensors data-sheets in order to be as realistic as possible.

Figure 5.3: Sensors subsystem block

For the IMU installed on the drone, the reference instrument was the Ellipse
2 Micro Series from SBG systems [22], which combines good performance, low
weight and cost-effectiveness. The values for this sensor should represent a realistic

58 Simulation results

Sensor Parameter Symbol Technical data

Accelerometer Noise density σad 57µg/
√
Hz

Bias stability σbd 5mg
Scale factor σsd 1000 ppm
Frequency fa 100Hz

Table 5.2: UAV’s accelerometer parameters

Sensor Parameter Symbol Technical data

Accelerometer Noise density σat 120µg/
√
Hz

Bias stability σbd 50mg
Scale factor σsd 1000 ppm
Frequency fa 100Hz

Gyroscope Noise density σwr 0.01◦ /
√
s

Bias stability σbr 0.6◦ /s
Scale factor σsr 500 ppm
Frequency fa 100Hz

Compass Noise density σcomp 0.1◦

Frequency fcomp 10Hz
RF range module Noise density σRF 0.01m

Frequency fcomp 20Hz

Table 5.3: GV’s sensors noise parameters (from iPhone 6)

benchmark for general IMUs used for small drones. Its specifications are found in
Table 5.2.

The measurements of accelerometers, gyroscopes and compass of the GV are
assumed to be derived from a commercial smartphone. The advantage of this
choice is the low-cost and accessibility to smartphones which already comprise
sensors needed, together with a system that can be used to transmit data to
the UAV (e.g.,Wi-Fi, Bluetooth). These self-contained sensors have lower grade
of performance with respect to drone’s one, but we want to demonstrate the
effectiveness of the navigation system even if using a simple mobile phone as
source of information for the GV. The accelerometer’s and gyro of reference are
respectively the Bosch BMA280 [23] and an InvenSense MPU-6500 [24] mounted
on the Apple iPhone 6 and whose characteristics are found in Table 5.3. The noise
density of the compass was arbitrarily set to 0.1◦.

A commercially available example for the RF range distance sensor is the
DW1000 Module [25]. It was not possible to have directly the value of the noise
density, thus its value was assumed to be σRF = 0.01m.

5.1 Simulation set-up 59

Parameter Symbol Technical data

Focal length flen 20mm
Field of view FOV 94◦

Horizontal resolution ρu 640 pixels
Vertical resolution ρv 360 pixels
Frequency fc 5Hz

Table 5.4: DJI Zenmuse X3 camera parameters

5.1.3 Camera and computer vision

The Camera block is responsible for image simulation and relative position recon-
struction between GV and UAV. Its scheme can be found in Figure 5.4.

Figure 5.4: Camera Simulink block

First, the camera is pointed in space accordingly to the gimball rotation angles
calculated from the estimated relative position p̂r and described in Section 4.3.
Rotation is subjected to the dynamics of the electric motors that orient the cam-
era and represented by the Gimball dynamics block. Then, Camera subsystem
simulates the frames consistently to the camera center projection model, using
the real relative position pr and camera angles. A representation of some instants
seen from the camera is shown in Figure 5.5.

The camera parameters were chosen from the DJI Zenmuse X3 [26] three-
axis gimballed camera, simulating frames at 5Hz frequency and 640x360 pixels
resolution. All the specifications of the camera can be found in Table 5.4.

It should be noticed that, since the start of the simulation, the camera is
oriented towards the tag and never loses track of the checkerboard. In a real
application it may be possible that the gimballed camera loses track of the tag
and, for this, a wide angle downward facing camera could be used to assist the
gimballed camera.

The Tag detection block comprises the detectCheckerboardPoints function
that finds the 12 intersection points of the squares of the (4x5) chessboard tag. If
the algorithms returns exactly 12 points the image is considered and processed in

60 Simulation results

Figure 5.5: Camera frames simulation

the next steps, otherwise the measure is discarded.

The DLT algorithm subsystem computes the homography matrix H that is
sent as input to the Position estimation block that finally calculates the transfor-
mation and finds the value of the relative position pcam.

Computer vision performance

The performance of the camera vision algorithm was addressed by capturing some
frames of the tag, following a generic trajectory in the North-East plane described
by

Nt(t) =


vt t if t ≤ 5 s

1 if 5 s < t ≤ 15 s

1− vt(t− 15) if t > 15 s

,

Et(t) =


1 if t ≤ 5 s

1− vt(t− 5) if 5 s < t ≤ 15 s

−1 if t > 15 s

,

Dt(t) = 0,

5.1 Simulation set-up 61

North error [m] East error [m] Down error [m]
Mean -0.0019 -0.0027 0.0031
Std. dev. 0.0220 0.0172 0.0167

Table 5.5: Mean and standard deviation of the camera error

where vt = 0.2 m/s is the speed at which the tag moves along a Γ-shape path
that can be visualized in Figure 5.6. The camera, initially located at pc(0 s) =
[0, 0,−1]T , points the tag during all the time and moves away from the horizontal
plane, describing a trajectory on the vertical axis

Dc(t) = −1− vc t, (5.1)

where vc = 0.0286 m/s is the vertical speed.

Figure 5.6: Tag and camera movement for vision test

The results of the test are shown in Figure 5.7. We can notice that until
25 s, which corresponds at a line-of-sight distance of approximately 2.50m, the
camera detects accurately the position of the tag (errors are shown in Figure
5.8). After this distance, the position estimation is abruptly imprecise; this is
interpreted as a consequence on the ambiguity of detection of the points from
the detectCheckerboardPoints algorithm. In reality, a smoother degradation
of the results is rather expected, given also from the uncertainties of the camera
parameters, which in this work were assumed as precisely known.

The results in terms of error’s mean and standard deviation on NED position
estimation until 25 s of the test are collected in Table 5.5.

5.1.4 Extended Kalman filter

The integration and sensor fusion of all the measurements was done by the Ex-
tended Kalman filter block. It is a built-in Simulink subsystem that uses non-

62 Simulation results

Figure 5.7: Camera position estimation

Figure 5.8: Camera position estimation error for distance up to 2.5m

5.1 Simulation set-up 63

linear state transition and measurements functions and performs an estimation
algorithm as presented in Section 3.4. The state model is the one of equation
(3.28) and the measurement model is (3.29).

The discrete-time system noise covariance matrix Qk is

Qk =

σ2
at I3

σ2
ad
I3

σ2
wr

 ,
where I3 and I4 are the identity matrices and covariance values on the diagonal
were taken from the noise parameters of the accelerometers and gyros described
above. The measurement noise covariance matrix is

R =

σ2
comp

σ2
cam I3

σ2
RF I4


where values of covariances of compass and RF range module are the same as the
one in Table 5.3. From the camera performance test discussed in the previous
section, the camera covariance is set to σ2

cam = (0.02)2m2. The EKF block is
capable to manage up to 5 position fixing measurements coming at different sample
rates.

A set of conditions are required for the initialization of the EKF algorithm,
more specifically initial state and covariance estimates. The initial state estimate
x̂0 is composed by the real position, velocity and GV’s yaw, added with noise to
simulate the uncertainties on the knowledge of the initial real state (respectively
p̃r, ṽr and ψ̃t), whereas for the biases and scale factors, they were initially set as
zero. Thus the initial state estimate results to be

x̂0 = [p̃r ṽr ψ̃t 01x9]T .

The initial covariance is used to express the confidence in the initial state vector;
more we trust in the initial guess and smaller the initial covariance values will be;
on the contrary if we don’t have prior knowledge about the initial state variables,
the values of Σ0 may be higher [27]. The chosen value for the simulation was

Σ0 = 10−2I16. (5.2)

5.1.5 Trajectory control module

The PD controller that generates the desired trajectory points [N o
d , E

o
d, D

o
d]
T fol-

lows the strategy presented in 4.1. It comprises also the algorithm that checks if
the UAV is inside the safety area for starting the descent and defines if the land
on the GV has occurred from evaluating the relative Down position, thus stopping
the simulation.

64 Simulation results

5.2 Results

In this section, the simulation results for the landing approach of the drone on
top of the GV is presented. Two different scenarios of possible trajectories are
going to be discussed:

1. Straight line: from stop position, the GV accelerates until reaching a
desired speed, keeping a constant direction of the GV during all the time.

2. Change of direction: the GV accelerates, then performs a turn of 90◦.

The first case was chosen to test the overall system performance and the behaviour
of the navigation system for a simple situation.

The second case was addressed to validate the robustness of the system even
in case of abrupt changes of direction and check if the UAV can still keep track
of the GV.

5.2.1 Straight line

In this first case, the landing of the UAV on the GV moving in a straight path is
tested. The GV is initially located at position pt = [0, 1,−0.5]T , then accelerates
with a constant value asl = 0.5m/s2, until reaching the maximum speed of vsl =
5m/s, keeping during all the procedure a null steering angle and a constant yaw
of ψt = 30◦.

The initial location of the UAV is at pd = [0, 0,−2.5]T and it has null velocity,
thus meaning it is hovering above the GV in a position not too far from the landing
target, which makes the camera capable to detect the position of the tag since the
beginning. This work does not consider the approach phase of the UAV which
may start from a far distance where the tag is not visible. Further developments
can be the implementation of a navigation system that may use other information
(e.g., GPS) when vision is not available, simulating an approach of the GV even
from far. In this case, other types of control system could be used, for example
Proportional-Navigation [4].

The 3D trajectory is visualized in Figure 5.9. Figure 5.10 shows the estimation
of NED relative position from the camera that detects the tag until approximately
instant t = 19 s, when the checkerboard goes outside the field of view because the
camera is too close to it. After that moment, the only position fixing measures
comes from the RF range module.

The results for the position estimates of the navigation system are shown
in Figure 5.11 and 5.12, with corresponding errors collected in 5.13. We notice
that the error in the estimation of relative position remains under the value of
approximately 10 cm, which seems to be enough for the landing manoeuvre to
be performed (in Figure 5.14 the horizontal relative trajectory). As expected,
the error decrease when the UAV moves closer to the landing point because the

5.2 Results 65

accuracy of the camera grows (the checkerboard is “bigger” in the image, thus
with better resolution) and the RF range measurement is added in the EKF.
Velocity estimates are shown in Figure 5.15 and 5.16, with corresponding errors
in 5.17.

The results show that the descend starts at approximately t = 13 s, when
the GV is moving at maximum speed vsl and the UAV has stabilized above the
target. The landing is positively tested and the accuracy of the navigation system
is validated.

Figure 5.9: 3D straight line landing trajectory in ENU

66 Simulation results

Figure 5.10: Camera position estimation

Figure 5.11: North and East relative position estimates

5.2 Results 67

Figure 5.12: Down relative position estimates

Figure 5.13: NED estimate errors

68 Simulation results

Figure 5.14: Horizontal path estimate

Figure 5.15: North and East relative velocity estimates

5.2 Results 69

Figure 5.16: Down relative velocity estimates

Figure 5.17: NED relative velocity errors

70 Simulation results

5.2.2 Change of direction

In the second case, the landing of the UAV on the GV which performs a turn
of approximately 90◦ is tested. The GV is initially pointing North, located at
pt = [0, 1,−0.5]T and accelerates of acd = 0.4m/s2 until reaching a maximum
speed of vcd = 2m/s, . Afterwards, an input of steering angle θst = 40◦ is given
from instant t = 8 s until t = 13 s, which causes a turn of the GV of almost
90◦ and makes it point East. The initial position of the UAV is the same of the
previous case.

The 3D trajectory of both vehicles is shown in Figures 5.18 and 5.19. In Figure
5.20 is visualized the trajectory from top-view. We notice that the UAV aligns
with the GV in the first moments. When the GV start to turn, the UAV is capable
to keep track of it, even if with some misalignment on the horizontal plane. When
the GV returns to follow the straight path, the UAV re-aligns and can perform
the land.

At approximately t = 7 s a first attempt of the descend is performed, but the
start of the turn of the GV makes the UAV go outside the safety area and return
to a relative height of 2m. The drone is not capable to keep a sufficient track of
the GV to perform the landing during the turn, but it was demonstrated that it
can continue following the target during the moments when it changes direction,
then land when the GV returns in a straight line.

In Figure 5.21 and 5.22 are presented the results for the position estimation
of the navigation system and in Figure 5.23 the horizontal trajectory estimate.
Results in terms of velocity estimates are in Figure 5.24 and 5.25.

The inputs from the trajectory control module in terms of [N o
d , E

o
d, D

o
d]
T are

compared with the real absolute NED positions of the drone and GV in Figures
5.26, 5.27 and 5.28.

Also in this case, the landing is performed and the validation of the system is
confirmed.

5.2 Results 71

Figure 5.18: 3D landing trajectory in ENU

Figure 5.19: 3D landing trajectory in ENU - side view

72 Simulation results

Figure 5.20: Horizontal landing trajectory

Figure 5.21: North and East relative position estimates

5.2 Results 73

Figure 5.22: Down relative position estimates

Figure 5.23: Horizontal relative trajectory estimate

74 Simulation results

Figure 5.24: North and East relative velocity estimates

Figure 5.25: Down relative velocity estimates

5.2 Results 75

Figure 5.26: North absolute UAV trajectory

Figure 5.27: East absolute UAV trajectory

76 Simulation results

Figure 5.28: Down absolute UAV trajectory

Conclusions

The aim of this thesis was to study the autonomous landing of a multirotor UAV
on top of a moving ground vehicle.

The conducted activity is mainly inspired by the work of Borowczyk et al. [4],
who demonstrated the possibility to land an UAV on a GV moving at the very
high speed of 50 km/h. Starting from this, the purpose of the work was to develop
a simulation using MATLAB and Simulink for a guidance and navigation system
of a drone performing the landing, potentially using low cost and off-the-shelf
sensors.

A computer vision algorithm for relative position estimation between UAV and
GV was presented; the central projection model was used to simulate the frames
seen from the gimballed camera mounted on the UAV. The images showed the
fiducial tag consisting in a (4x5) checkerboard of known dimensions which was
positioned on top of the vehicle. From these frames, it was possible to reconstruct
the position of the GV by means of the calculation of the Homography matrix.
A test on the accuracy of the visual information showed a precise estimation of
the order of magnitude of centimeters, until approximately 3m of line-of-sight
distance, after that, the vision algorithm was not able anymore to detect the tag.

An Extended Kalman filter, using on a series of sensors mounted both on the
UAV (IMU and camera) and the GV (accelerometers, gyro and RF distance mod-
ule), has been implemented. It was responsible to estimate relative position and
velocity based on the non-linear system and measurement models of the dynamics
of the vehicles and sensors, eventually managing multi-rate measures. The tuning
of the EKF has been executed using the variances of the errors of the involved
sensors, which have been found through data-sheets of commercially available
sensors. In particular, values of sensors mounted on the GV were taken from a
smartphone model’s ones. The filter was able to give a continuous state estimate
even in the case of unavailability of measures in some instants, like the camera in
the last moments of the manoeuvre. The accuracy of the navigation system was
demonstrated to be precise enough for the landing to be performed.

A PD trajectory controller, for the three NED directions of motion, was specif-
ically designed to generate set-points to be tracked by the UAV. A third order
polynomial descent trajectory was imposed after the UAV aligned with the GV in
the horizontal plane. The gains of the controller were found by means of a pole

78 Conclusions

placement approach applied to a second order system dynamics approximation of
the UAV.

Conluding, some considerations about the future developments of the simula-
tion could be done:

• other fiducial tag libraries could be used instead of the detection of the
checkerboard, such as AprilTag, ArUco or ARToolKit,

• a more precise model of the vehicles could be implemented, possibly consid-
ering the aerodynamic interaction between the moving GV and the UAV,

• a distant approach phase could be considered, where vision may not be
available because the UAV too far from the GV, thus using GNSS to locate
the landing target until the camera could finally detect the landing pad.

Bibliography

[1] UPS - Drone meets delivery truck. https://www.ups.com/us/en/services/
knowledge-center/article.page?kid=cd18bdc2.

[2] R Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.
Cambridge University Press, 2 edition, 2004.

[3] Amazon Prime Air. https://www.amazon.com/Amazon-Prime-Air/b?ie=

UTF8&node=8037720011.

[4] A. Borowczyk, D.-T. Nguyen, A. Phu-Van Nguyen, D. Q. Nguyen, D. Saussié,
and J. Le Ny. Autonomous landing of a multirotor micro air vehicle on a high
velocity ground vehicle. IFAC-PapersOnLine, 50(1):10488 – 10494, 2017.

[5] J. Wang and E. Olson. AprilTag 2: Efficient and robust fiducial detection. In
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), October 2016.

[6] G. Gozzini. Uav autonomous landing on moving aerial vehicle. Master’s
thesis, Politecnico di Milano, 2019.

[7] V. M. Gonçalves, R. McLaughlin, and G. A. S. Pereira. Precise landing of au-
tonomous aerial vehicles using vector fields. IEEE Robotics and Automation
Letters, 5(3):4337–4344, 2020.

[8] F. J. Romero-Ramirez, R. Muñoz-Salinas, and R. Medina-Carnicer. Speeded
up detection of squared fiducial markers. Image and Vision Computing, 76:38
– 47, 2018.

[9] J. Kim, Y. Jung, D. Lee, and D. H. Shim. Outdoor autonomous landing on
a moving platform for quadrotors using an omnidirectional camera. In 2014
International Conference on Unmanned Aircraft Systems (ICUAS), pages
1243–1252, 2014.

[10] J. Le Ny. ELE6209A Navigation systems - Lecture notes. Polytechnique
Montréal, 2020.

https://www.ups.com/us/en/services/knowledge-center/article.page?kid=cd18bdc2
https://www.ups.com/us/en/services/knowledge-center/article.page?kid=cd18bdc2
https://www.amazon.com/Amazon-Prime-Air/b?ie=UTF8&node=8037720011
https://www.amazon.com/Amazon-Prime-Air/b?ie=UTF8&node=8037720011

80 BIBLIOGRAPHY

[11] D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond, and D. Schmal-
stieg. Pose tracking from natural features on mobile phones. In 2008
7th IEEE/ACM International Symposium on Mixed and Augmented Reality,
pages 125–134, 2008.

[12] M. Fiala. Artag, a fiducial marker system using digital techniques. page
590–596, 2005.

[13] MATLAB - computer vision toolbox. https://www.mathworks.com/

products/computer-vision.html.

[14] A. Geiger, F. Moosmann, Ö. Car, and B. Schuster. Automatic camera and
range sensor calibration using a single shot. In 2012 IEEE International
Conference on Robotics and Automation, pages 3936–3943, 2012.

[15] P.D. Groves. Principles of GNSS, Inertial, and Multisensor Integrated Nav-
igation Systems. GNSS technology and applications series. Artech House,
2008.

[16] R. E. Kalman. A new approach to linear filtering and prediction problems.
Transactions of the ASME — Journal of Basic Engineering, Vol. 82, No. 1,
pages 35 – 45, 1960.

[17] MATLAB - Control System Toolbox. https://www.mathworks.com/

products/control.html.

[18] K. Ling. Precision landing of a quadrotor uav on a moving target using
low-cost sensors. Master’s thesis, Univ. of Waterloo, Waterloo, ON, Canada,
2014.

[19] MATLAB. https://www.mathworks.com/products/matlab.html.

[20] Simulink. https://www.mathworks.com/products/simulink.html.

[21] T. Muskardin, G. Balmer, S. Wlach, K. Kondak, M. Laiacker, and A. Ollero.
Landing of a fixed-wing uav on a mobile ground vehicle. In 2016 IEEE
International Conference on Robotics and Automation (ICRA), pages 1237–
1242, 2016.

[22] SBG systems ellipse 2 micro series. https://www.sbg-systems.com/

products/ellipse-micro-series/.

[23] Bosh accelereration sensor bma280. https://www.bosch-sensortec.com/

products/motion-sensors/accelerometers/bma280.html.

[24] TDK mpu-6500 six-axis (gyro + accelerometer) mems motiontrack-
ing. https://invensense.tdk.com/products/motion-tracking/6-axis/

mpu-6500/.

https://www.mathworks.com/products/computer-vision.html
https://www.mathworks.com/products/computer-vision.html
https://www.mathworks.com/products/control.html
https://www.mathworks.com/products/control.html
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/simulink.html
https://www.sbg-systems.com/products/ellipse-micro-series/
https://www.sbg-systems.com/products/ellipse-micro-series/
https://www.bosch-sensortec.com/products/motion-sensors/accelerometers/bma280.html
https://www.bosch-sensortec.com/products/motion-sensors/accelerometers/bma280.html
https://invensense.tdk.com/products/motion-tracking/6-axis/mpu-6500/
https://invensense.tdk.com/products/motion-tracking/6-axis/mpu-6500/

BIBLIOGRAPHY 81

[25] DecaWave dwm1000 module. https://www.decawave.com/product/

dwm1000-module/.

[26] DJI zenmuse x3. https://www.dji.com/it/zenmuse-x3.

[27] S. Musacchio. Optimal and robust uav state estimation based on gps and
optical flow. Master’s thesis, Politecnico di Milano, 2018.

https://www.decawave.com/product/dwm1000-module/
https://www.decawave.com/product/dwm1000-module/
https://www.dji.com/it/zenmuse-x3

82 BIBLIOGRAPHY

	Acknowledgments
	Abstract
	Sommario
	List of figures
	List of tables
	Introduction
	Problem statement
	Definitions of reference frames
	ECI and ECEF frames
	Local geodetic NED frame
	Body frame
	Sensors and camera frames

	Reference frame transformation
	Direction cosine matrix
	Euler angles

	Alternative coordinate representations
	Augmented coordinates
	Homogeneous coordinates

	Quadrotor and ground vehicle models
	Kinematic and dynamic model of a quadrotor
	Ground vehicle model

	Control system architecture
	Tracking control module
	Trajectory generation module
	Navigation system

	Notation

	Computer vision
	Overview
	Fiducial tag

	Image acquisition
	Camera central projection model
	Camera rotation and translation

	Projective transformation
	Checkerboard detection
	Homography transformation
	Direct linear transformation

	Extrinsic position estimation
	Relation between tag image and real checkerboard
	Position and attitude estimation

	Integrated navigation system principles
	Types of navigation system
	Sensors
	Sensor's errors
	Sensor models

	Discrete time Kalman filter
	Elements of the Kalman filter
	Kalman filter algorithm

	Extended Kalman filter
	EKF algorithm

	Navigation system setup
	System model
	Measurement model

	Control system
	Trajectory generation module
	Horizontal control
	Vertical control

	Gains control tuning
	Second order approximation
	Pole placement

	Gimballed camera control

	Simulation results
	Simulation set-up
	UAV and ground vehicle
	Sensors
	Camera and computer vision
	Extended Kalman filter
	Trajectory control module

	Results
	Straight line
	Change of direction

	Conclusions

