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Abstract

Non-idealities and vibrations of rolls cause periodical variation of paper quality parame-
ters during the production process. The frequency of the variation is strictly related to
the rotational frequency of the rotating components. This thesis investigates the appli-
cation of an optimal filter as a method to estimate the impact of rotating components of
a paper machine on the quality of the final product. The proposed method is a suitable
procedure to extract periodic patterns from a noisy mixture, i.e., a signal composed of
different harmonic series and noise, and presents some advantages over the classical usage
of the Fourier transform. To verify the possibility of using the method as a monitoring
tool for paper quality, tests are first performed on an artificially generated signal and
finally on data measured on a strip of cardboard. The artificially generated signal was
built to reproduce a signal of caliper variation measured in the laboratory on a strip of
cardboard. When applied to a synthetic signal composed of 9 harmonic series with a sig-
nal to noise ratio close to 1.5, the filter returned a maximum average error of 0.014 µm in
the amplitude values of the harmonic components of the extracted series. Moreover, the
filter showed a comparable result with the software currently used in laboratory analysis.
The software detects the frequencies of the machine components that are causing a high
quality variation. The result obtained with the filter can be considered even more accu-
rate. Indeed, the difference between the frequency extracted by the software and that of
the machine component was 0.074 Hz, whereas it was only 0.006 Hz with the optimal filter.
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Abstract in lingua italiana

I componenti rotanti di una macchina adibita alla produzione di carta hanno un elevato
impatto sulla qualità del prodotto finale. Le non idealità e le vibrazioni dei rulli cau-
sano variazioni periodiche dei parametri di qualità della carta, con una frequenza che è
strettamente correlata alla frequenza di rotazione dei componenti. In questa tesi un filtro
ottimo viene proposto come metodo per stimare l’impatto dei componenti rotanti di un
impianto di produzione sulla qualità del prodotto finale. Il metodo proposto è in grado
di estrarre segnali periodici da un segnale contenente più serie di armoniche e rumore e
presenta alcuni vantaggi rispetto all’uso classico della trasformata di Fourier. Per veri-
ficare la possibilità di utilizzare il metodo come strumento di monitoraggio della qualità
della carta, sono stati eseguite delle prove prima su un segnale generato artificialmente e
infine su dati misurati su un campione di cartone. Il segnale sintetico è stato generato in
modo da riprodurre la variazione di spessore misurata in laboratorio su un campione di
cartone. Il filtro, applicato a un segnale sintetico composto da 9 serie di armoniche con
un rapporto segnale rumore prossimo a 1.5, ha restituito un errore medio di 0,014 µm nei
valori di ampiezza delle componenti armoniche della serie estratta. Il metodo ha inoltre
mostrato un risultato comparabile con quello di un software attualmente utilizzato nelle
analisi di laboratorio. Il software individua le frequenze dei componenti della macchina
che causano un’elevata variazione di qualità. Il risultato ottenuto con il filtro può essere
considerato anche più accurato. Infatti, la differenza tra la frequenza estratta e quella
del componente della macchina è uguale a 0,074 Hz quando viene utilizzato il software,
mentre è uguale a 0,006 Hz con il filtro ottimo.

Parole chiave: Filtro ottimo, direzione della macchina, macchina per la produzione di
carta, rulli
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1| Introduction

In many production processes, rotating rolls are used to form the final product. This is
the case for papermaking, steel and non-ferrous metal manufacturing, and plastic film
production. The quality of the final product is subjected to periodic variations, with
a periodicity that depends on the rotational frequency of the rolls [24]. The extent of
the variation imposed by a single roll is related to its run-out, which is the sum of the
central axis movement and the surface roundness profile. Rotors properties must satisfy
specific requirements to ensure the final target quality. It is possible to measure rotor
characteristics in laboratories, but this implies stopping the production and removing the
component from the machine. In-process measurements are, instead, more difficult to
carry out and typically it is not possible to obtain comprehensive measurements [5]. A
possible way to detect defects or wear in some components of the machine is to continu-
ously measure quality parameters in the end product. Additionally, sensors placed on the
machine, measuring for example vibrations or acoustic emissions, can be helpful for the
same purpose.

During the last decades, requirements for paper quality have become tighter in manufac-
turing industries for paper and board production and machine speed has increased, thus
requiring higher production efficiency and effectiveness [3]. The increase in production
volumes is mainly due to a larger tissue consumption and a higher demand for paper
packaging. In fact, in 1993 the global tissue consumption was 15.5 million tonnes, while
in 2018 it reached 38.7 million tonnes [1]. The rise of e-commerce and the need for a
more sustainable substitute for plastic have instead driven the growth of the production
of paper packaging [2]. To reduce production waste, and therefore increase production
efficiency, it is fundamental to measure quality variation. Variation is natural since it
starts at the source of the raw material, but it can worsen at each step of the manufac-
turing process [4], therefore it is necessary to keep it under control. Cutshell [4] presented
the problem of variation with a statistical approach, showing how limiting the amount
of variation can help in decreasing the quality target value of a parameter, reducing the
overall cost of production.
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Different quality parameters can be measured on the final product and their variation can
be categorized in terms of amplitude, frequency, and direction [23]. The main directions
in which the paper is examined are machine direction (MD), the direction of the flow of
material in the machine, and cross direction (CD), the direction perpendicular to MD
(Figure 1.1). Random or residual (R) variation is obtained by subtracting from the total
variation MD and CD variation [4].

Figure 1.1: Graphical representation of MD and CD [5].

1.1. Research problem

In this thesis, a method to separate the effect of machine components, particularly rolls,
on paper parameter variations in MD is analyzed. Rolls are the main components of a
paper machine, representing 60% of its entire cost [28].

As stated in previous works [5], it is possible to distinguish periodic components at fre-
quencies very similar to the rotating frequencies of some rolls in the measurement of paper
parameters. Defects in this type of machine components manifest themselves in the sig-
nals acquired by the sensors positioned on the machine as harmonics with a frequency
that is equal to or a multiple of the rotational frequency of the rolls.

Due to limitations in the manufacturing accuracy of rolls and bearings, and error in the
mounting procedure undesired vibrations are present in the machine. Unbalance, bending
stiffness variation, and roundness error in the cross-section profile of the rotor, for example,
cause excitations at a frequency that depends on the type of defect, but in all cases is a
multiple of the rotational one. The amplitude of the imposed variation on the product
depends on the entity of the defect. Geometrical errors in the bearing elements can, in
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the same way, cause periodic excitation. Additionally, imperfections in the mounting of
the roll on the machine and flexing of the supports can cause end movement vibrations.

If a periodic pattern with a fundamental frequency equal to the rotational frequency of
one roll is extracted from the signal, it is possible to estimate the impact of that roll on
the final paper quality. The result can be used to monitor the condition of the machine
components, prevent faults, and improve quality, acting on the component or section of
the machine that is causing the most variations.

In theory, the Discrete Fourier Transform (DFT) can be applied to estimate the spectrum
of the signal and to extract the harmonic components. Although it is a very light method
from the computational point of view, it presents some limitations. The DFT, indeed,
has a frequency resolution limited by the sampling frequency and the length of the signal,
i.e., ∆f = fs

N
, and it is not efficient in presence of a high level of noise. In paper machine

manufacturing many rotating machine elements have almost identical sizes and rotational
speeds and the measurement environment is quite noisy.

This thesis investigates a different approach that overcomes some of the limits of the DFT.
One of the main advantages of the selected method is that the frequency to be extracted
can be chosen arbitrarily, regardless of sampling frequency and DFT bin spacing.

The frequencies of the rotating components are estimated as the ratio between the ma-
chine operating speed and the rotor diameters. Values very similar to the estimated ones
have been detected in signals of quality parameter variations in [5] through the hMUSIC
algorithm. Once the desired periodic signal has been extracted from the original noisy
mixture the impact of the roll can be estimated by computing the root mean square error
(RMS) of the output signal. The higher the RMS the higher the effect of that roll on the
quality.

The study is mainly concerned with identifying the possible sources of error and limita-
tions of the method to understand if, and in which conditions, it can be a suitable tool
to monitor quality in industrial applications. The data available comes from a paper
production plant, but the results obtained can be valid every time rotating rolls are used
to form the final product, e.g., steel rolling and manufacturing of various plastic films.

1.2. Aim of the study

Currently, many sensors are present on the machine to control the process. Basis weight,
for example, is continuously measured, and feedforward and feedback control actions are
applied to regulate the stock flow to reduce variations [3]. In addition, condition moni-



4 1| Introduction

toring is performed thanks to a large number of sensors distributed on the machine. The
most important measurements for this maintenance action are vibration measurement,
temperature measurement, current analysis of asynchronous motors, wear particle analy-
ses for lubricating and hydraulic oils, and acoustic emission [3]. Moreover, the final quality
is supervised with online measurements on the finished product but, currently, there is no
procedure to directly relate quality variation to a specific component of the machine. The
SOS (separate original signal) analysis of the software developed by Tapio Technologies
company can extract periodic components from the acquired signal and correlate them to
a specific machine element. Some examples of successful applications of this software are
reported in [14]. However, this is a very old method and, additionally, it requires offline
measurements, i.e., carried out separately from the process.

This research aims to study and develop a method to analyze signals from online mea-
surements, i.e., performed in-process, extracting from these repeating patterns. This can
have different purposes in industrial applications. It is, in fact, useful to understand in
which way a machine component contributes to the quality variation, thus correlating
this component, or the machine section, to a quality characteristic. Moreover, if data
are continuously acquired with online measurements on the machine, quality can be kept
under control, setting thresholds, according to the required target values. If a certain
parameter overcomes that threshold, it is possible to identify the component which has
caused the variation and do the required maintenance. This method also allows monitor-
ing the condition of machine components and planning maintenance operations. Correct
and focused maintenance is of fundamental importance to increase the productivity of the
plant and avoid waste, thus saving money.

The work consists of a numerical investigation of the method, which is an optimal filter
inspired by the principle used in the Amplitude and Phase Estimation (APES) method.
The purpose is to study different artificially generated cases that reproduce realistic con-
ditions to understand boundaries for parameters and constraints to be respected to obtain
a satisfying result. Investigation of real data is also performed with the final objective of
listing the rolls in order of their contribution to the final product and relating sections of
the machine to variations in the measured variables.

1.3. Scope of the work

As previously stated, this thesis focuses on the analysis of quality variation caused by rolls
in paper production. Other products, such as steel and plastic films, that are manufac-
tured in a similar way are not discussed in this work. However, the method can probably
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be adapted to be utilized also for these other production processes. Additionally, other
sources of variation, e.g., defects in control loops, pulp flow rate variations, or pump mal-
functions are not studied. Moreover, only MD is examined, excluding CD variations. In
a case in which both CD and MD variations are measured, the complexity of the problem
increases, and the two contributions must be separated. One example of the separation
problem can be found in [6].

The method for this application has been selected on a theoretical basis, after a literature
review of possible methods. The results and the limitations of the method are evaluated,
but no practical comparison with other techniques is carried out. The only comparison
is made with the result obtained with the SOS analysis of the Tapio analyzer. However,
this is done mainly to prove the correctness of the results. The purpose is not to compare
the two since the SOS is an offline tool while the proposed method is meant to be used
online.

The method is applied to real sets of data. However, the development of the measurement
setup and the data acquisition is not part of this thesis work. The optimization of the
algorithm execution time is also outside the scope of this work.

1.4. Materials and methods

As anticipated before, an optimal APES filter is chosen among all the possible methods
to separate and enhance periodic patterns. The proposed design proved to be efficient for
different values of signal to noise ratio (SNR) and signal to interference ratio (SIR) [11].

The filtering algorithm is implemented based on a literature review and with the help
of functions already implemented by Christensen. For the implementation, the software
Matlab is used.

First, an artificially generated signal is studied to evaluate the effectiveness and the lim-
itations of the method. This first step is necessary because the correctness of the result
can only be evaluated by giving a completely known signal as input to the filter. There
are several assumptions to consider, and the following chapters explain how to deal with
these assumptions and in which way, and to what extent it is possible to satisfy them.

Finally, the procedure is also applied to signals coming from the measurement of a real
strip of cardboard. Two different sets of data are available:

– Online measurements, acquired with a quality control system (QCS) developed by
Valmet
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– Offline measurements, obtained with a system developed by Tapio Technologies

In the online measurements, data refer to basis weight, caliper, and moisture, while in the
offline measurements only to basis weight and caliper. A final comparison with results
obtained with the SOS analysis is also carried out.

1.5. Structure of the thesis

The thesis is organized into 6 chapters. Chapter 2 addresses a review of the literature.
Firstly, the paper manufacturing process is briefly explained, and the main sections of a
paper machine together with some of the most important paper parameters are described.
Next, the chapter presents possible methods to extract periodic patterns. The reasons for
the choice of the method, its mathematical implementation, hypothesis, and parameters
are also reported. Finally, sources of quality variation are discussed, with a particular
focus on the non-idealities of rotating rolls.

Chapter 3 provides all the useful information to understand the results. It describes
the set of data available, the Matlab implementation of the filter, and the parameters
used. This chapter also explains how the artificial signal is generated, the type of tests
performed, and how the performances can be evaluated.

Chapter 4 presents and comments on the results obtained, both with the synthetic signal
and with real data while in chapter 5 the results are more deeply discussed. Finally,
chapter 6 draws the conclusion of the work, outlining possible future improvements and
insights.
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2.1. Paper manufacturing process

This chapter provides a short explanation of the manufacturing process of paper. This
description is not intended to be exhaustive and detailed, but it is meant to provide a
general idea of the process. All the information is taken from [3].

At the beginning of the process, raw materials (wood fibers, fillers, adhesives, and chemical
additives) are mixed with water, which stimulates the formation of molecular linkages
between fibers, forming a stock suspension. The latter is distributed in the headbox,
uniformly across the width of the wire, and is then drained in the forming section. This is a
crucial step since, here, important structural properties of paper, such as fiber orientation
and distribution, are determined. Afterward, the product passes through the press section
where it is pressed through several nips, built up by rolls, removing a high amount of water.
The moisture level decreases from 80% to 50%. This section of the machine mainly affects
paper smoothness and symmetry, fines distribution, linting, moisture, porosity, and bulk.
Finally, the product passes to the drying section. Here, external energy is provided
through different methods: cylinder contact drying, air drying, and IR drying. The aim
is to evaporate water from the web, reaching the target water content. Other sections
for finishing operations can be present according to the grade requirements of the end
product. Typical operations are winding and reeling but others, such as surface sizing,
coating, and calendering can be also carried out. Figure 2.1 shows a paper production
plant while figure 2.2 shows a simplified layout of a paper machine, highlighting its main
sections.

Moisture level continuously changes along the production line. Moisture is one of the
most important parameters in paper production, but many other variables are measured
and controlled as well, e.g. basis weight, caliper, ash, gloss, tensile strength, and porosity.

The data in this thesis only refers to basis weight, caliper, and moisture. Basis weight
is defined as the mass of one square meter, [ g

m2 ], of paper, or paperboard. It is the
most fundamental attribute because a change in this affects most of the other properties,
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Figure 2.1: Paper machine (downloaded from [34])

Figure 2.2: Simplified machine layout (modified from [5]).

including strength. It is mainly influenced by the stock flow in the machine, which, for
this reason, is strictly controlled. Caliper, instead, is the thickness of the sheet of paper
and it is measured in µm. Combined with the basis weight, it returns the stiffness, or
bulk, of the product. Moisture is the ratio between the mass of water and the total mass
of the product, expressed in percentage.

2.2. Methods to extract periodic patterns

As previously stated, the method applied in this thesis is an optimal APES filter. For the
sake of completeness, this chapter provides a short overview of other existing methods to
extract periodic patterns, i.e. a source separation problem, describing their advantages
and disadvantages.

The problem of source separation is frequently addressed especially in the speech and
audio processing field. In the case of blind source separation, non-matrix factorization-
based or mask-based methods can be for example applied. In this specific application,
the hypothesis of the periodicity of the sources is made, so it is easier to extract each
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periodic signal once the fundamental frequencies of the sources are known. Several ways
to de-noise the signal and extract periodic components from a noisy mixture can be found
in the literature.

To accomplish this task, one possibility is to apply a filter. The term filter, technically
speaking, refers to a linear, time-invariant filter [7]. Digital filters come in the form of
difference equations, which are sums of delayed versions of the input. Each of these
delayed versions is scaled by a real number, the filter coefficient [7]. A filter is described
by its frequency response function, which, if multiplied by the input, returns the output
of the filter. Two traditional filtering methods are, for example, comb filters or sinusoidal
filters (also called FFT filters). The classical comb filter is a feedback filter, where a
version of the output, delayed by D samples, is added to the input signal. Its impulse
response has uniformly spaced sharp peaks, 2π

D
apart in terms of frequency. This comb

filter is restricted to integer pitch periods and is rather inefficient [8]. The main restraint of
sinusoidal filters is that the frequency resolution is limited by the sampling frequency and
the length of the signal. Therefore, sinusoidal filters have some limitations in separating
all the rotational frequencies of the rolls.

Harmonic model fitting is another alternative to extract a periodic pattern and it is based
on a least-square fitting [18]. The method fails in presence of multiple harmonic series
present in the source signal, assuming that there is only one harmonic series corrupted by
noise.

Periodic patterns can also be extracted by employing an algebraic method [10]. The
advantages of this procedure are a very low computational cost and a short analysis
frame. This is due to the separation problem being formulated as a system of linear
equations and the required signal length being given by the sum of the number of samples
in a period for each harmonic present in the signal. Unlike when applying a filter, the
signal will not suffer from distortion [10].

Another possible method that can be used to estimate the amplitude and frequency of a
signal is the energy separation algorithm [13]. This procedure is based on the estimation
of the energy needed by a source to produce the oscillatory signal, which is given by
the squared product of the amplitude and frequency of the signal. This method has been
proven to be efficient in estimating the time-varying amplitude envelope and instantaneous
frequency of a real-valued signal that has both an AM (amplitude modulation) and FM
(frequency modulation) structure. Variations of the frequency and amplitude of speech
resonances can be modeled and detected at the time scale of one sampling period [13].
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2.3. Optimal APES filters

The method analyzed in this thesis is an optimal filter based on the principle of the APES
method. The term optimal filtering traditionally refers to a class of methods that can be
used for estimating the state of a time-varying system, indirectly observed through noisy
measurements [22].

More in detail, the selected type of filter is optimal in a mathematical sense since it
minimizes the mean square error between the filter output and the desired output under
the constraint that the filter should pass the content at specific frequencies undistorted.
The chosen filter is specifically designed for periodic signals. The desired output, in fact,
is defined as a sum of sinusoids, with frequencies multiple of a fundamental frequency.
This last point makes it suitable for the case studied since the rotating rolls of the machine
impose defects on the final product which periodically repeat themselves. Moreover, the
filter design changes according to the observed signal, being in this way signal adaptive.
The properties listed above represent the main advantages of this method compared to
the traditional filtering approach, such as comb filters or FFT filters [11].

Another property that makes these filters suitable for this application is that they are not
limited in the frequency resolution by the sampling frequency. This means that the input
fundamental frequency can be chosen as needed. Moreover, these filters have excellent
performance even in presence of two closely spaced sources when dealing with a multi-
pitch signal [8]. Nevertheless, there is a limit to the ability of the filter in separating
two frequencies that are very close to each other. This is an important aspect to consider
since in paper machines many rolls have similar diameters and therefore similar rotational
frequencies. The difference between two rotational frequencies can reach even values lower
than 0.01 Hz.

In addition to all the mentioned properties, the optimization procedure leads to filters that
seek to suppress strong interfering sources [8], i.e. other periodic sources, which is crucial
considering the number of machine components in paper production. Overall, the APES-
based method proved to be efficient for different values of signal to noise ratio (SNR) and
signal to interference ratio (SIR), presenting several advantages over the Capon-based one,
which can be derived as a special case of it [11]. The Capon-based method offers the worst
performance in terms of estimation of amplitudes and phases of the harmonic components
since it is not optimized to have a periodic output and performs poorly for high SNRs
because it suffers from bad conditioning of the covariance matrix. On the other hand,
the major drawback of the optimal filtering approaches is the associated computational
complexity [11].
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2.3.1. Implementation of the method

In this section, the mathematical implementation of the filter is repeated and explained
using references [8], [11], and [15].

Before starting, it is necessary to define the model of the signal. The signal is assumed
to be periodic and each periodic component, termed a source, consists of a weighted sum
of sinusoids with frequencies that are integer multiples of a fundamental frequency ωk.
Each source represents a component of the machine and, since more than one component
generally affects the quality variation, a multi-pitch signal model should be used. Equation
2.1 shows the equation of the signal where noise, modeled as originated by a single source
and supposed to be zero-mean, Gaussian, and white is added. Each source is indexed by
k, while l denotes the harmonic component of the source and can have a maximum value
of Lk which is the total number of sinusoids for each source. Ak,l is the amplitude value of
the lth harmonic of the source and ϕk,l is the phase of the harmonic, which is uniformly
distributed on (−π, π].

x(n) =
K∑
k=1

xk(n) =
K∑
k=1

Lk∑
l=1

Ak,l sin(ωkln+ ϕk,l) + e(n) n = 0, ..., N − 1. (2.1)

The filter operates on a vector containing M consecutive time-reversed samples of the
observed signal

x(n) =
[
x(n) x(n− 1) . . . x(N −M + 1)

]T
, (2.2)

that can be written in matrix form as in Equation 2.6, where Dn is defined in Equation
2.7. Zk ∈ CM×2Lk is a Vandermonde matrix (Eq. 2.3), built from 2Lk harmonically
related complex sinusoidal vectors (Eq. 2.4) and ak is defined in Equation 2.5, where
ak,l =

Ak,l

2
ejϕk,l , ∗ represents the complex conjugate operator, and H is the Hermitian

transpose operator.

Zk =
[
z(−ωk) z(ωk) . . . z(−ωkLk) z(ωkLk)

]
. (2.3)

z(ω) =
[
1 e−jω . . . e−jω(M−1)

]T
. (2.4)
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ak =
[
a∗k,1 ak,1 . . . a∗k,Lk

ak,Lk

]H
. (2.5)

x(n) =
K∑
k=1

ZkD
na∗

k + e(n) ≜
K∑
k=1

Zka
∗
k(n) + e(n) ≜

K∑
k=1

Zk(n)a
∗
k + e(n) (2.6)

Dn =



e−jωk1n

ejωk1n

. . .

e−jωkLkn

ejωkLkn


(2.7)

When the filter, defined by the vector of coefficients

hk =
[
hk(0) . . . hk(M − 1)

]H
, (2.8)

is applied to the vector of M time-reversed samples of the observed signal, i.e. x(n), the
output yk(n) is produced (Eq. 2.9).

yk(n) =
M−1∑
m=0

hk(m)x(n−m) (2.9)

The expected output power of the filter is

E{|yk(n)|2} = E{hH
k x(n)x

H(n)hk} = hH
k Rhk, (2.10)

where

R = E{x(n)xH(n)}. (2.11)
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is the covariance matrix of the observed signal which, with the hypothesis of statistically
independent sources, can be written as

R =
K∑
k=1

Rk =
K∑
k=1

E{xk(n)x
H
k (n)}. (2.12)

Substituting in the last equation the model of the signal in Equation 2.6, it is possible to
rewrite the covariance matrix as

R =
k∑

k=1

ZKE{a∗
k(n)a

T
k (n)}ZH

k + E{ek(n)eHk (n)} =
K∑
k=1

ZkPkZ
H
k +Q, (2.13)

where matrix Pk is the covariance matrix of the complex amplitudes of the harmonics,
expressed as time-varying quantities, and Q is the noise covariance matrix (Eq. 2.14).

Q = E{e(n)eH(n)} =
K∑
k=1

Qk. (2.14)

Since the covariance matrix is unknown in practical situations, it is replaced with an
estimation (Eq. 2.15).

R̂ = 1/G
N−1∑

n=M−1

x(n)xH(n) where G = N −M + 1. (2.15)

To obtain an invertible covariance matrix, it is necessary to have M < N/2+1. The filter
coefficients, {hk(m)}, are selected as the coefficients which minimize the mean square
error (MSE) between the filter output and the desired output.

The desired output is a harmonic signal which can be defined as

ŷk(n) =

Lk∑
l=1

ak,le
jωkln = aH

k wk(n). (2.16)

The function to be minimized can be therefore written in the following form:
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P =
1

G

N−1∑
n=M−1

|yk(n)− ŷk(n)|2 =
1

G

N−1∑
n=M−1

|hH
k x(n)− aH

k wk(n)|2. (2.17)

Defining the new quantities

Gk =
1

G

N−1∑
n=M−1

wk(n)x
H(n)

Wk =
1

G

N−1∑
n=M−1

wk(n)w
H
k (n),

(2.18)

Equation 2.17 can be rewritten as

P = hH
k R̂hk − aH

k Gkhk − hH
k G

H
k ak + aH

k Wkak. (2.19)

Minimizing the previous equation with respect to the complex amplitudes, the result
obtained is

âk = W−1
k Gkhk. (2.20)

With some manipulation, Equation 2.19 can be simplified as

P = hH
k Q̂khk where Q̂k = R̂k −GH

k W
−1
k Gk. (2.21)

Q̂k is the modified covariance matrix, which is obtained by subtracting from the estimated
covariance matrix the contribution of the harmonics the filter has to extract. It should be
noted that in this derivation both the fundamental frequency and the number of harmonics
are supposed to be known. The set of filter coefficients is the one that minimizes the last
expression of P , obtained in Equation 2.21.

To obtain a non-trivial solution, additional constraints must be added to the problem.
These additional constraints force the filter to have unit gain, at all the harmonic fre-
quencies to be extracted. In this way, the obtained filter passes undistorted the content
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at the extracted frequencies.

The filter design problem can be thus written as

min
hk

hH
k Q̂khk s.t. hkz(ωkl) = 1, for l = 1, . . . , Lk. (2.22)

The problem of finding the filter coefficients, expressed in Equation 2.22, is, therefore,
a convex optimization problem with equality constraints, which can be solved with the
Lagrange multiplier method. After some computations the result obtained is

ĥk = Q̂−1
k Zk(Z

H
k Q̂

−1
k Zk)

−11. (2.23)

2.3.2. Hypothesis and parameters

Before proceeding with the implementation, it is important to be aware of some hypotheses
the filter is based on and the criteria to follow in the choice of the filter parameters.

One of the hypotheses made in the theoretical derivation of the filter design is that the
signal is stationary over the entire length N, which represents the duration of the ob-
servation [11]. The length of the signal and, consequently, also the filter length M, are
limited by this constraint. Moreover, as already mentioned, the value M must be lower
than N/2 + 1 to ensure that matrix R̂ is invertible and, additionally, the accuracy of the
matrix R̂ increases when M decreases. On the other hand, the higher the filter length,
the better the performance of the filter in attenuating noise and canceling interference
sources [11]. The reason is that the filter used in this thesis is a bandpass filter with
an impulse response aperture equal to M and a resolution of 1/M [16]. Therefore, the
higher M is, the better the resolution and the more accurate the result. The filter length
should be chosen considering all these factors and the additional limitation given by the
computational complexity, which increases with M.

Another assumption of the method is that the signal to be extracted is composed of a lim-
ited number of harmonics, called model order, which is assumed to be known. In practice,
a signal is composed of an infinite number of harmonics. The optimization procedure is
therefore just an approximation when dealing with real signals. The number of harmonics
has to be chosen according to the application. The target is to reproduce the most signif-
icant part of the signal, considering that the higher the model order the more interfering
sources the filter can deal with, at the expense of the computational complexity [11]. The
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model order can also be estimated using a method, called MAP rule [17], which seeks to
find the number of harmonics that maximizes the a posteriori probability of the model
order given the observation. Another approach is to use the hMUSIC algorithm which can
jointly estimate the model order and the fundamental frequency, another required input
of the filter. The hMUSIC algorithm is a subspace method based on finding the values
of model order and fundamental frequency for which the signal subspace, represented by
the Vandermonde matrix, is closest to being orthogonal to the noise subspace [12].

Another assumption of the APES filter is to have white and Gaussian noise. The Gaussian
assumption appears to be the norm in literature and, even when the assumption does not
hold, the method can still be considered accurate, at least asymptotically [18]. The white
Gaussian distribution, instead, can be shown to be the one that maximizes the entropy of
the noise, representing the worst-case scenario [18]. In case the problem involves a non-
white noise, a pre-whitener, i.e. a filter that makes the stochastic part of the signal white,
can be applied. This method extracts a pre-whitening matrix that reduces the noise
covariance matrix to an identity matrix when the two are multiplied. This procedure
works well when the noise is stationary and when measurements where only the noise is
present are available [8]. In the frequency domain, the pre-whitener can be seen as a filter
with a frequency response similar to the inverse of the spectrum of the noise [21]. If the
signal is multiplied by the frequency response of the obtained filter, a flat spectrum for the
noise is obtained. Naturally, the desired signal will also be altered by the passage through
the filter, and this can affect the result, according to how much the signal is changed. To
obtain the desired filter, information about the noise spectrum is needed [21]. Different
methods exist to estimate the power spectral density (PSD) of the noise from a mixture of
desired signal and noise. One possibility is to use a minimum mean-square error (MMSE)
optimal estimation, obtained by the computation of the conditional expectation of the
square of the noise given the observed signal [19]. Once the pre-whitener has been applied,
it is possible to quantify the whiteness of the noise through the spectral flatness measure
(SFM) parameter [20]. This parameter is defined as the ratio between the geometric and
the arithmetic mean of the noise PSD. It can assume values between 0, in presence of
more colored noise, and 1, which represents the case of perfect white noise.

The choice of the parameters and the compliance with the assumptions for this MD
analysis application are discussed in the following chapter.
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2.4. Sources of quality variation

Quality variation can be caused by changes in the raw material or problems related to
the production process. The latter can be divided into three classes of malfunctions [23].
The first class, slow performance degradation, might be caused by the wearing or fouling
of the equipment. The second class is represented by periodic fluctuations, caused by
rotating equipment or, in the case of low-frequency variation, by upstream disturbances.
The third class consists of sporadic phenomena caused, for example, by a violation of
parameter limits. In this work, the focus is on periodic fluctuations caused by rotating
equipment, particularly rolls.

In a previous thesis work [5], the author demonstrated, through the application of the
hMUSIC algorithm, that in the signal coming from sensors positioned on the machine, it
is possible to detect the presence of harmonic components with a fundamental frequency
equal to the rotational frequency of some rolls in the machine. However, this discovery was
not completely new. For example, in the 1990s, analyses made with the Tapio analyzer
on lightweight coated (LWC) paper showed that the quality variation of thickness, basis
weight, and ash in the machine direction presented a periodicity of two and three times the
revolution of the backing roll [24]. In general, these periodic patterns are due to defects
in the roll shape, caused by the manufacturing process, imperfections in the bearings, and
errors in the mounting procedure.

To raise the production capacity, the running speed of the machines has been increased in
the last decades, making vibration problems more significant. Vibrations affect the final
quality of the paper, being even more dangerous when the frequency of vibration matches
the natural frequency of a roll or, of the entire system.

The need to reduce vibrations forced roll manufacturers to find new and more precise pro-
duction methods [28]. The first improvement in the roll machining technology consisted
of compensating the slideway error of the machine tool, which causes systematic diameter
variation to the roll in the axial direction. Successively, the trend in the roll manufactur-
ing process moved towards the production of ideal geometry. The roundness error, which
is due to the change in the distance between the workpiece center axis and the tool, was
minimized as much as possible. Finally, the third generation of roll machining technology
was introduced. This technology takes into consideration that the geometry of the roll
changes between the roll machining shop environment and the production environment.
This change is related to factors such as speed, temperature, and load that can cause
roll deflection and deformation. To compensate for all these effects, the roll geometry is
optimized according to the production environment [28]. Despite the effort in improving
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the roll manufacturing process, it is not possible to eliminate all the sources of quality
variation.

2.4.1. Roll model

A rotor is called rigid or flexible depending on the characteristics of the rotor itself but also
of bearings and foundation [31]. According to the definition present in the ISO standard
21940-12 (2016), a rotor can be considered rigid for balancing purposes if the first flexural
resonance speed exceeds the maximum service speed by at least 50%.

Generally, rolls in paper machines are flexible rotors [28]. This means that their behavior
changes as a function of the rotational speed, due to the change in the state of balance.
Rolls can be modeled as homogeneous, flexible beams with an indefinite number of eigen-
modes and natural frequencies [31]. When the rotational frequency equals the natural
frequency of one mode, huge vibrations occur, even in presence of a small excitation
force.

Usually, the natural frequency of flexible rotors is identified as the natural frequency of
the first bending mode [24]. It is also possible to experience a resonant behavior when
the angular velocity is an integer fraction of the natural frequency, i.e. subharmonic
resonances. For example, when the rotational frequency halves the natural frequency,
the roll still vibrates at the natural frequency, due to errors such as bending stiffness
variation or ovality of the roll geometry, both effects that cause excitation twice per
revolution. Large flexible rotors are usually operated at a speed lower than the critical
speed, i.e. the natural frequency of the first bending mode, or lower than the half-critical
speed [24].

Figure 2.3 shows some of the eigenmodes of a roll. The dashed line represents the static
ideal configuration of the roll. The nodes of the eigenmodes are the sections of the roll that
remain always in the position they assume in the static configuration. At these points,
the amplitude of the vibration is null; therefore, the quality variation is not affected.

2.4.2. Roll run-out

The term run-out can be used as a general term to identify deviations from the ideal shape
and behavior of a roll. Run-out is defined by the standard ISO 1101 (2017) as a radial
variation from a true circle. The most common way to express it is using a peak-to-peak
value, i.e. the difference between the maximum and the minimum value, of the sum of
all the error components [24]. The latter is evaluated considering the rotor central axis
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Figure 2.3: Some eigenmodes of a roll; translational rigid body modes (left) and bending
modes of a flexible rotor (right). The dashed line represents the static ideal configuration
of the roll. [24].

movement and the rotor surface roundness profile [32].

Run-out can be classified into static and dynamic [24]. The first one can be caused,
for example, by initial bending (not gravitational), roundness error, and bearing error
motion. The second one includes the components that change as a function of the rotating
frequency, and it is caused by bending due to unbalance, deformation of the roll shell,
bending stiffness variation, or excitation from the paper or other parts of the machine,
for instance [24].

Unbalance is one of the most prominent faults occurring in rotors and one of the most
common sources of vibration. It derives from manufacturing inaccuracies, limited toler-
ance in parts, inhomogeneous material, and imprecise assembly [29]. It can be minimized
by a balancing procedure, but balancing classes allow a certain amount of residual unbal-
ance. This can become more significant after a certain period of operation, due to wear
and accumulation of dirt. Therefore, it is necessary to monitor vibrations and perform
diagnostics. Moreover, flexible rotors can be optimally dynamically balanced only at a
certain rotating frequency [29]. Unbalance can be defined as a combination of two ideal
unbalanced states [24]. The first is the static unbalance, according to which the rotational
axis and the central principal axis are parallel but not coincident. The second one is the
dynamic unbalance, caused by the fact that the two axes are not parallel. The unbalance
causes deflection of the roll, vibrations, and rotating force on bearing supports, producing
variations of paper parameters in the machine direction with a harmonic frequency equal
to the rotational frequency of the roll affected by the unbalance. It represents one of the
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main causes of roll dynamic deflection together with thermal bending, which is caused by
inhomogeneous material structure and uneven thermal distribution, and tension of the
paper web or felt [24].

Bending stiffness variation (BSV), instead, is caused by the asymmetry in the principal
axes of inertia in the cross-section of the roll, and it is caused by rotor geometry errors,
material inhomogeneity, and structural discontinuities [24]. BSV excitation is enabled
when the rotor is bent under the effect of gravity, by loads in the process, or by other
excitations [30]. The center point of the roll whirls at a speed that doubles the rotational
speed of the rotor, causing variations in the final product with a frequency equal to 2ω,
where ω is the rotational frequency of the roll [24]. The problem of vibration is especially
dangerous when the rotational speed equals half the critical speed. Most BSV is caused by
geometrical errors, such as shell thickness variation, grooves in the shell, welded seams,
keyways, or other manufacturing errors [30]. In [30], the author demonstrated that,
typically, BSV is mainly induced by the lowest roundness components, especially by the
second one. Additionally, the magnitude of BSV is dependent on the amplitude of the
components and the profile location since moments are larger in the middle of the rotor.

Vibration is also caused by the geometrical errors of the bearing components, such as
thickness variation of the inner and outer rings, roundness errors, and diameter variation
of balls or rollers. Most of the excitation induced by bearings is not synchronized with
the rotation of the rotors, except for the excitation caused by the rotating ring, which is
synchronized with the roll speed [31]. The roundness profile of a bearing inner ring, in
the case in which the outer ring is fixed and the inner ring is rotating, is composed of
the rotor shaft roundness profile at the bearing installation cross-section, the thickness
variation of the bearing inner ring, and the adapter sleeve if present [33]. The inner ring
and the adapter sleeve are flexible, compared to the shaft, thus adapting to the roundness
profile of the shaft [31]. The excitation frequency of bearing elements is a multiple of the
rotational frequency of the shaft and the number of undulations of the roundness profile
of the inner ring [33]. The amplitude of excitation depends on the phase angles of the
waviness components of the roundness profiles of the two bearings, being lower if the
phase angles differ from each other [31].

A resonance vibration is induced when the rotational frequency is a submultiple of the
natural frequency. This excitation is transmitted to the roll together with vibrations com-
ing from other parts of the machine, generally called frame vibrations. Frame vibrations
can be transmitted not only by the bearings but also by the driving shaft, or any other
component which is in contact with the machine [24]. Other sources of vibrations in-
clude felts, wires, pumps, and tension variations of the paper web. The excitation can be
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reduced by improving the dynamic behavior of the roll, i.e. the manufacturing accuracy.

In the roll manufacturing process, various conditions can result in some deviation from
the ideal shape, such as roundness error, axial diameter variation, cylindricity, conicity
of the shell, straightness, thickness of the shell, unbalance, and surface roughness. One
of the most significant causes of roll manufacturing inaccuracy is the guideway error. It
consists of a non-perfect straight tool motion, which is copied into the geometry of the
roll, affecting the straightness and the axial diameter variation [28]. Another cause of
axial diameter variation is the non-perfect alignment between the rotational axis of the
roll and the tool path, which leads to a conical geometry after machining [24]. In the
machining process, the workpiece also presents an error in the rotational motion, which
gives rise to a changing distance between the roll center axis and the tool. The main
reasons for this rotational error are the change in flexural stiffness and the accuracy of
the bearing arrangement [28]. In the case of the bearing arrangement, the cause is the
roundness error of the rotating inner ring, determined by the roundness error of the shaft,
the variation in thickness of the conical adapter sleeve, and the variation in thickness of
the inner ring. The result is a non-round profile of the roll after machining.

For example, Juhanko and Väänänen [27] demonstrated in 1999 that the adapter sleeve
was a possible cause of the ovality of the roll. Even the bending stiffness variation causes
a final oval geometry since the center axis is moving with a frequency two times higher
than the rotational speed. The amount of ovality is also affected by the bending due to
the gravity force.

An additional problem that can be encountered during machining is the presence of a
gradual one-sided temperature distribution in the workpiece. This uneven thermal distri-
bution can cause bending of high scale, considering that the thermal expansion coefficient
of steel is 10 µm ◦Cm−1, but the problem can be minimized by rotating the roll before
machining [24].

2.4.3. Roundness error

Roundness can be defined as the minimum radial distance between two concentric circles,
with equal center points, inside and outside the roundness profile (Figure 2.4). According
to the ISO 12181-1 and 2 standards, a roundness profile can be divided into harmonic
components and, therefore, be represented by a Fourier series. Figure 2.4 represents one
example of a roundness profile with the corresponding first 30 amplitude terms of its
Fourier series. For example, the first harmonic represents an eccentric movement, the
second corresponds to ovality, the third to triangularity, and the fourth to squareness.
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Figure 2.4: Roundness profile and definition of roundness (left); amplitude terms of the
Fourier series of the roundness profile (right) [24].

Usually, a rotor contains only one or a small number of dominant components [30].

To measure roundness, it is necessary to separate the effect of the rotating center point
motion and the roundness profile from the run-out signal. Since rolls are too large to be
placed onto a high precision spindle, alternative ways based on multi-probe measurement
have been developed [25]. This type of method is needed for large flexible rotors, because
the center point motion is unpredictable and unrepeatable, due to factors such as the
presence of random loads and bending stiffness variation contributing to the error mo-
tion. Despite the arbitrariness, a decreasing trend of center point harmonic component
amplitudes has been measured in a large flexible rotor [33]. This assumption has been
used in [25] to compare three different multi-probe measurement methods: a three-point
method, a least-squares four-point method, and a redundant diameter four-point method.
In particular, the three-point method yielded the smallest total error distributions for
the harmonic components and the most accurate and least uncertain estimate for total
roundness. The roundness profile of a roll cross-section changes with the rotational speed
[24]; therefore, this is an additional element to consider when measuring the roundness.

Roundness errors can be induced by vibrations of the roll synchronous with the rotation,
occurring during the machining process [28]. The roundness of the rolls needs to be main-
tained at the highest possible level, as it can induce localized and system-wide vibration,
directly impacting the quality of the end product [26].

When two rolls affected by roundness error are in contact and pressed together forming a
nip, a phenomenon called barring can occur [24]. Barring is a vibration mechanism due
to the growth of corrugation of certain wavelengths from roll irregularities [28]. It usually
happens in the paper machine calenders and the press section.
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3.1. Available data

Basis weight, moisture, and caliper data are available to develop the work. These data
have been acquired with measurements performed offline and online, on the same strip
of cardboard, 1.1 km long. Online measurements are acquired with a quality control
system (QCS), which is placed on a paperboard machine operating at a speed of 600 m

min
.

The system consists of a measurement platform that moves across the web guided by a
scanner beam (Figure 3.1). To detect only MD variations, the probe is held stationary in
correspondence to a point sufficiently distant from the edges.

The following is a brief description of the sensors referring to [3] and [34]. The basis weight
estimation is based on the amount of beta radiation, provided by an enriched Kr85 nu-
clear source, absorbed by the mass of paper or board sheet. The transmitted radiation is
captured and measured by an ion chamber type detector. Moisture is estimated based on
the quantity of radiation absorbed by the water in the product. Microwave and infrared
radiation are used and, in both cases, the property of water to absorb only certain wave-
lengths of the beam is exploited. The caliper sensor, instead, is composed of a magnetic
coil in the upper measurement head and a ferrite plate in the lower one. The magnetic
coil is connected to an oscillator that transforms the current generated by the changes in
the distance between the coil and the ferrite plate into voltage pulses. When a contact
sensor is used the upper and the lower head are in contact with the sheet. In non-contact
measurements, the magnetic principle is used to measure the distance of a laser to the
reference plate, while the non-contacting laser triangulation optical principle measures
the distance to the paper surface.

The sampling frequency of the data from the QCS is 25 Hz and this causes a limitation
in the maximum frequency that can be detected. According to the Nyquist theorem fmax

= fs
2
. Since the velocity of the machine is 600 m

min
, the distance between two measured

points is 0.4 m.

Offline measurements are obtained with a system developed by Tapio Technologies com-
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Figure 3.1: QCS placed at the end of the paper machine to perform online measurements.
The system consists of a measurement platform that moves across the web guided by a
scanner beam (picture downloaded from [34])

pany (Figure 3.2). This system allows having higher resolution data, 40 times higher than
the one of online measurements. Moreover, the software can perform different types of
analysis, including one able to separate the original signal (SOS) from the noisy mixture.

Additionally, the diameter of each roll in the machine is known. The rotational frequency
of the rolls is computed as the ratio between the machine speed and the roll diameter.
The values of diameter and frequency of the rolls are reported in Appendix A.1.

Figure 3.2: Tapio analyzer (picture downloaded from [35])

3.2. Matlab implementation

This section provides a brief explanation of the step to follow in the filter application. A
Matlab implementation of the filter is used. The filter requires as input the real signal, the
fundamental frequency ω0, normalized according to Equation 3.1, the model order, and
the filter length. The filter length M is selected equal to the length of the signal divided
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by 4, in agreement with what was said in the literature review. The function returns as
output the set of filter coefficients to apply to the signal to obtain the desired one.

ωnorm =
2πω0

fs
(3.1)

The filter always produces a transient of length M on the output signal. The amplitude
values of the extracted signal are estimated by applying a harmonic model fitting, after
removing the transient. The harmonic model fitting finds the complex amplitudes vector
to best fit a real signal through a least square estimation, reported in Equation 3.2, where
Z is the Vandermonde matrix already defined in 2.3, and x is the signal.

a = (ZHZ)−1ZHx (3.2)

3.3. Synthetic signal for preliminary testing

The method is first applied to a synthetic signal. This procedure is carried out to evaluate
the possible limitations of this filter in the industrial field. Indeed, in the real application,
the hypotheses of the method are not entirely satisfied. The following chapters investi-
gate the possible deviations from the ideal condition, in which all the hypotheses of the
filter are satisfied, and the related errors. The generated signal is a mixture of periodic
components and noise, built to reproduce as faithfully as possible the behavior of the real
signal acquired by the sensors. Specifically, the signal is built referring to the caliper mea-
surements, acquired by the Tapio analyzer. Data from the Tapio analyzer are preferred
over the QCS data because of the higher sampling frequency and the lower level of noise.

3.3.1. Behaviour of the amplitude values of the harmonic com-

ponents

To derive a general trend of the amplitude values of the harmonic components, the filter
is applied to the caliper signal measured with the Tapio analyzer. The effect of 5 different
rolls is extracted, applying the filter with different input base frequencies. The 5 funda-
mental frequencies are selected from the rolls list available. Since the signal is quite long,
it is split into five segments of equal length, and the filter is applied to each segment, for
each fundamental frequency. The estimated amplitude values of the harmonic signal for
a given fundamental frequency are computed as the average of the results obtained for
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the different segments.

The bar plots in Figure 3.3 show the amplitude values for the selected fundamental fre-
quencies. The Tapio data are low pass filtered and the highest frequency detectable in the
signal is around 200 Hz. This explains why the bar plots for the two higher fundamental
frequencies have a zero-amplitude value for high harmonic numbers. In all the cases there
is a decreasing trend of the harmonic amplitudes increasing the harmonic number, and
the first harmonic component has always the highest value. The amplitude values are in-
terpolated with a decreasing exponential function of the form ae−b. For the two harmonic
series with the highest amplitude value of the first harmonic component, the parameter
b is higher, being the decreasing trend steeper.

According to these considerations, a function to generate the amplitude values is imple-
mented. In this function, the value for the first harmonic component is generated as a
random value between 0.12 and 1.5. This value corresponds to the parameter a of the
exponential function. The parameter b of the exponential is randomly generated in a
way that it is higher for higher values of the first harmonic component amplitude. The
amplitude values for all the other harmonic components are generated using the exponen-
tial function with parameters a and b. To better reproduce the actual behavior, random
values are added or subtracted, from each component. Figure 3.4 reports two examples
of the generated amplitudes. Once the amplitude values are obtained, phase values are
randomly generated between (−π, π], and a sum of sinusoidal functions is built according
to the base frequency.

The final generated signal is composed of the sum of 9 harmonic series. The base fre-
quencies of the series are chosen from the list of rotational frequencies of the rolls in the
machine. The choice of selecting just 9 rolls, and not all of them, is due to computational
reasons. However, even if in a paper machine more rolls are present it is reasonable to
think that not all the rolls have an impact on the quality variation simultaneously.

3.3.2. Real noise analysis

According to the hypothesis of the filter, the noise is supposed to be white and Gaussian.
As shortly discussed in the literature review, noise trackers can be used to estimate the
PSD of the noise and a pre-whitener can be applied to transform the stochastic part of
the signal. However, this procedure is applicable only if a portion of the signal where
the only noise is present is available. In the case of paper production, it is not possible
to obtain this data since the noise is present only when the machine is running. It is
therefore impossible to separate the desired signal from the noise.
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Figure 3.3: Amplitude values of the harmonic components obtained by applying the filter
to the caliper signal. The effect of five different rolls is reported.

The noise in the paper machine environment comes from the vibration of the machine
itself and electrical components. The signals coming from the QCS and Tapio analyzer
are studied and compared to extract information about the noise. The PSDs of the two
signals in Figure 3.5 have two peaks at frequencies close to 2.3 Hz and 4.5 Hz. These two
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Figure 3.4: Examples of generated harmonic series.

peaks correspond to the rotational frequencies of two rolls in the machine, and they are,
therefore, for sure part of the deterministic signal. These two frequencies are removed
from the signal with two band-stop filters. The PSDs are then computed again, and their
RMS is computed at intervals of 2 Hz. Figure 3.6 shows the final plot of the RMS values.
Even if the PSDs still contain deterministic components and, therefore, do not represent
the only noise, some observations can be done. In both cases, the energy content of the
signals decreases increasing the frequency value. Additionally, especially in the set of data
acquired on the machine the energy content at low frequencies is quite high.

The PSD is far to be flat, as it should be in presence of white noise. Therefore, the noise
cannot be considered white. The high energy content at low frequencies makes the noise
more similar to a pink noise. The same decreasing trend of the energy content is observed
in the basis weight data. The Gaussian assumption, instead, can be considered more
realistic. Figure 3.7 shows that the probability distribution of the data does not depart
much from a Gaussian distribution, represented by the red line.

3.3.3. Studied cases

This chapter presents the different studied cases analyzed to reproduce conditions that
depart from the hypotheses of the filter or can represent critical situations. The aim is
to understand how the filter behaves in these cases to verify if it is possible to obtain a
satisfying result and propose possible solutions to improve the performance.

As already mentioned, the noise present in the machine environment is reasonably not
white. To understand how the filter behaves with a different type of noise, the presence of
pink noise is also analyzed. Moreover, different noise amplitudes are tested to understand
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Figure 3.5: PSDs of the spectra computed from the average of PS for QCS (stora) and
Tapio data.

Figure 3.6: RMS of the PSDs of QCS (stora) and Tapio data computed for bins of 2 Hz.
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Figure 3.7: Normal probability plots of QCS (stora) data (left) and Tapio data (right).

the level of noise the method can deal with. An additional test is done considering a
sudden variation of the noise amplitude during the acquisition time, to reproduce possible
non-stationarity in the signal.

Additionally, the filter requires as input a fundamental frequency to extract. This fre-
quency is chosen from the list of known roll rotational frequencies. However, in some
situations, the frequency of variation of the quality parameter does not exactly corre-
spond to the set point of the roll speed or to a multiple of that. The two frequencies
are perfectly related only if the actual rotational frequency of the roll is exactly equal to
the set point, and the frequency of variation remains the same from when the defect is
generated until when it is measured.

The second condition is verified when the hypothesis of constant volume is valid. When the
volume remains constant a decrease in the cross-sectional area leads to an increase in the
product velocity (Equation 3.3). When the product passes through the rolls the material
stretches and the distance between defects increases (Figure 3.8). However, the thickness
of the paper decreases as well, and therefore, under the hypothesis of constant volume, the
velocity increases. Consequently, the frequency of occurrence of defects remains constant.
However, the hypothesis of constant volume is an approximation. It can happen that the
speed does not increase in the same proportion as the thinning causing a slight mismatch
between the rotational frequency and the frequency of quality variation. Moreover, the
roll rotational frequency is not always exactly equal to the set point. Indeed, a common
control strategy adopted during the production process consists in adjusting the rotational
frequency making it oscillates around the set point.

A0v0 = A1v1 (3.3)
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This situation is reproduced by giving a wrong input frequency to the filter, i.e. a fre-
quency slightly different from the one present in the signal. Naturally, when the input
frequency is not coincident with the frequency present in the signal the performance
decreases. A possible solution is proposed to reduce the error introduced by this mis-
matching. It consists in performing a frequency detection before extracting the result.
Firstly, a range of frequencies containing the set point of the rotational frequency of the
roll is defined. Subsequently, the filter is applied for the frequencies of the interval cho-
sen, starting from the lowest one, and, finally, the non-captured power is computed. The
algorithm stops when a minimum of the non-captured power, i.e. the maximum of the
output power, is found. The frequency corresponding to the minimum is selected and
used to extract the final result.

Figure 3.8: Distance between defects along the machine. When the product passes
through the rolls the material stretches and the distance between defects increases.

The case of two close frequencies is also studied to understand when the filter can separate
the effect of two sources with similar frequencies. This is important because in paper
production many rolls have similar frequencies (cf. Appendix A.1). Another test was
done by applying the filter to a non-stationary signal, in particular a chirp signal, i.e. a
signal where the frequency linearly increases in time. Finally, the extraction of a frequency
that is not present in the signal or a harmonic series where one harmonic is missing is
simulated considering different SNRs.

Firstly, performance and computational time are evaluated with different window lengths.
A compromise between the two is found, and the selected window length is used to perform
all the tests.

3.3.4. Performance evaluation

The results are evaluated by computing the signal to distortion ratio (SDR). The parame-
ter is calculated as in Equation 3.4 where y is the extracted signal while ŷ is the harmonic
series of the generated signal the filter aims to extract. This parameter evaluates the
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similarity between the two signals. The closest the signals are, the lower the RMS value
of their difference and the higher the SDR.

SDR =
1

rms(ŷ − y)
(3.4)

Additionally, a comparison between the amplitude values of the different harmonic compo-
nents of generated and extracted signals can be performed. A more qualitative approach
is to plot the two signals in time overlapped. This approach can be useful to have a visual
and fast understanding of the result.
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This chapter shows all the obtained results. The first section reports the results obtained
by applying the filter to the synthetic signal, while the second presents the outcome of the
filter application on data measured on a strip of paperboard. Finally, the third section
shows a comparison between the optimal filter and the SOS tool of the Tapio software,
which is able, given offline data, to separate a periodic signal of interest from the noisy
mixture.

4.1. Studied cases on the synthetic signal

To select a proper window length to perform all the simulations, performance and com-
putational time are evaluated for different numbers of samples. Figures 4.1 and 4.2 show
the result. The signal is built with white noise and a total SNR almost equal to 1.5.
Increasing the window length, the SDR increases, leading to a more precise result, but
the overall computational time increases. The increase in the computational cost is of
O(N3). Figures 4.3, 4.4, 4.5, and 4.6 show the outcomes for rolls 5 and 8 for different
window lengths and provide a qualitative understanding of different values of SDR. Par-
ticularly, the bar plot on the top shows the amplitude values of the harmonic components
of the extracted and generated signals. The plot on the bottom reports, from the top to
the bottom, the entire generated signal without noise, the entire generated signal with
noise, the extracted signal (red) together with the corresponding generated harmonic sig-
nal (blue) for the selected fundamental frequency, and the effect of one revolution of the
roll for extracted (red) and generated (blue) harmonic patterns. Roll 8 presents a quite
low performance, due to the low amplitude values of its harmonic components, therefore
it is chosen as the reference to set the minimum acceptable window length.

A trade-off between accuracy and time needed for the computation is chosen and a window
length of 20 s is selected for the following simulations. This window length corresponds
to 20000 samples given the sampling frequency of 1000 Hz. The minimum SDR for the
selected window length, which is reached with roll 8, is equal to 4.48 1

µm
. To this SDR

value corresponds an average error in the amplitude values of the harmonic components
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Figure 4.1: Performance evaluation through SDR for different numbers of samples when
the signal is built with a sampling frequency of 1000 Hz. The outcome is shown for all 9
fundamental frequencies of the signal. The result is more accurate for higher numbers of
samples presenting a steeper increment in the SDR in the left part of the graph.

Figure 4.2: Computational time for different numbers of samples when the signal is built
with a sampling frequency of 1000 Hz. The required time increases as the number of
samples increases, following a cubic trend with respect to the latter.
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Figure 4.3: Bar plot of the amplitude values (top) and plot of generated and extracted
signals in time (bottom). In the last two graphs, the generated signal (blue line) and the
extracted one (red line) are plotted together. The selected frequency is equal to 4.539 Hz,
which corresponds to roll 5. The window length is 2000 samples and the SDR is 1.43 1

µm
.
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Figure 4.4: Bar plot of the amplitude values (top) and plot of generated and extracted
signals in time (bottom). In the last two graphs, the generated signal (blue line) and the
extracted one (red line) are plotted together. The selected frequency is equal to 4.539 Hz,
which corresponds to roll 5. The window length is 5000 samples and the SDR is 2.48 1

µm
.
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Figure 4.5: Bar plot of the amplitude values (top) and plot of generated and extracted
signals in time (bottom). In the last two graphs, the generated signal (blue line) and the
extracted one (red line) are plotted together. The selected frequency is equal to 8.585 Hz,
which corresponds to roll 8. The window length is 20000 samples and the SDR is 4.48 1

µm
.
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Figure 4.6: Bar plot of the amplitude values (top) and plot of generated and extracted
signals in time (bottom). In the last two graphs, the generated signal (blue line) and the
extracted one (red line) are plotted together. The selected frequency is equal to 4.539 Hz,
which corresponds to roll 5. The window length is 15000 samples and the SDR is 6.06 1

µm
.
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of 0.014 µm (Figure 4.5).

Figure 4.7 shows that with a lower sampling frequency, 700 Hz in this specific case, it
is possible to obtain a good result with a lower number of samples. This suggests that
the performance is more connected to the number of rotations of each roll during the
acquisition time than to the number of samples itself.

Figure 4.7: Performance evaluation through SDR for different numbers of samples when
the signal is built with a sampling frequency of 700 Hz. The outcome is shown for all 9
fundamental frequencies of the signal. With this sampling frequency is possible to obtain
better performance with a lower number of samples, compared to the case in which the
sampling frequency is 1000 Hz.

As mentioned in the previous chapter the synthetic signal is composed of 9 harmonic
series. The effect of a different number of harmonic series has been analyzed adding to
the signal one harmonic series with a fundamental frequency of 1.9 Hz and one with 9
Hz. Table 4.1 reports the percentage variation of SDR computed from the nominal case,
i.e. the signal with 9 harmonic series, as in Equation 4.1. The added components have a
beneficial effect on some rolls, leading to an increase in the SDR, i.e. a negative variation.
For other rolls, instead, the SDR decreases. This means that the added series is interfering
with the extracted series, and it is hindering the extraction of the correct amplitudes of
the harmonic components. This happens when the fundamental frequency of the added
series or one of its multiples is close to the fundamental frequency of the extracted series
or one of its multiples. The effect of the added series also depends on the amplitude values
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of its harmonic components, being stronger for higher amplitude values.

var =
SDRnom − SDRnew

SDRnom

∗ 100. (4.1)

Freq [Hz] Roll 1 Roll 2 Roll 3 Roll 4 Roll 5 Roll 6 Roll 7 Roll 8 Roll 9

1.9 -0.94 -4.98 8.35 2.22 6.02 -1.64 -2.28 -1.30 4.20
9 -2.04 -4.60 8.12 3.27 16.96 -5.43 4.39 -0.04 -9.83

Table 4.1: SDR variation caused by the presence of an additional harmonic series. The
result is reported for two different values of the fundamental frequency of the added series.
The SDR variation is computed from the nominal case, in which no harmonic series are
added, as in Equation 4.1.

4.1.1. Extraction of a frequency not present in the signal or a
series with one missing harmonic component

One of the first tests performed on the synthetic signal consists in analyzing what happens
when the filter tries to extract a frequency that is not present in the signal. This test
reproduces two possible realistic conditions. The first is the condition in which the roll
under analysis is not impacting product quality. The second, instead, represents the
condition in which the rotational frequency of the roll under analysis has deviated greatly
from the set point, and therefore the filter is unable to detect it.

The same signal is analyzed with different levels of white noise. Figure 4.8 shows the
relation between the RMS of the extracted signal and the RMS of the noise. The RMS
of the signal approximately linearly increases with the RMS of the noise. The result is
compared with the RMS of a harmonic series present in the signal. Even if the RMS of
the extracted signal is not equal to zero, as it should be, it is much lower than the one of
a harmonic series present in the signal.

To better compare the noise level and amplitude of the extracted harmonic components,
the noise spectra and bar plots of the amplitude values are reported in Figure 4.9 for three
different levels of noise. Looking at the results, it is possible to conclude that the filter is
not properly able to reject the noise when it receives as input an absent frequency.

The second test, instead, studies the effect of a missing harmonic component in the signal.
This is done by removing one harmonic component at a time from the harmonic series
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Figure 4.8: RMS of the extracted signal (blue) when the filter input frequency is not
present in the signal. The result is plotted as a function of the RMS of the noise of the
signal and it almost follows a linear increasing behavior. The RMS of the extracted signal
is compared with the RMS of a harmonic series of the signal.

corresponding to the second roll, i.e. the roll with a rotational frequency of 2.352 Hz, and
computing the SDR of the extracted signal. As it is possible to verify from Figure 4.10
the result is the same for all the missing harmonic components. The results are compared
with the nominal case, in which all the harmonic components are present, by computing
the SDR variation as in Equation 4.1. The variation is bounded in the interval [-6% -
+6%] showing that the effect of a missing harmonic has no relevant impact. The noise
spectra and amplitude values of the extracted signal are shown in Figure 4.11 for three
tests done with different levels of noise and different missing harmonic numbers.

4.1.2. Different noise amplitudes

Since no exact information about the noise present in the machine environment is avail-
able, tests with different types and levels of noise are performed. First, a signal with white
noise is considered, in agreement with the hypothesis of the filter. The amplitude of the
noise is varied to understand the SNR the filter can deal with. Since, as previously stated
from the analysis of the PSDs of the signals (Figure 3.6), the noise probably presents
a higher energy content at lower frequencies, a signal with pink noise is also examined.
Figure 4.12 shows the result in terms of SDR for the two types of noise and different
values of SNR. As expected, the lower the SNR, i.e. the higher the noise level, the lower
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Figure 4.9: Noise spectrum (left) and amplitude values of the harmonic components of
the extracted signal (right) for different noise amplitudes. The extracted frequency is
not present in the signal. In all the cases the extracted amplitude values are not null,
therefore the filter is not able to completely reject the noise.
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Figure 4.10: SDR computed for different SNRs and different missing harmonics from the
generated signal. The roll analyzed is the one with a rotational frequency of 2.352 Hz (roll
2). The number of the missing harmonic component has no impact on the performance
that decreases increasing the noise level.

the performance. In presence of pink noise, the filter is still able to provide a good result,
but for higher SNRs compared to the case of white noise. In addition, the presence of
pink noise mainly affects the rolls with a lower rotational frequency. This is also expected
since the pink noise has a higher energy content at lower frequencies.

4.1.3. Wrong input frequency

As described before, the frequency of variation can slightly differ from the set point of the
roll rotational frequency. To simulate this condition, a wrong frequency is given as input
to the filter. The input frequency ωin is computed by considering a percentage error from
the right frequency ω0 as

ωin =
error

100
∗ ω0 + ω0. (4.2)

The SDR is computed for all the different rolls considering error values from 0% to 0.5%.
Figure 4.13 shows the result in the case of white noise with a total SNR almost equal to
1.5. The same figure shows how the performance is improved with a frequency detection
performed before the extraction of the filtered signal. Figure 4.14 reports the result of
the same test done with a signal with pink noise and an SNR approximately equal to
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Figure 4.11: Noise spectrum (left) and amplitude values of the harmonic components
of extracted and generated signals (right) for different noise amplitudes. The frequency
extracted is the one that corresponds to the second roll. In the three cases, different
harmonic components are canceled from the signal. The higher the noise level the higher
the amplitude of the extracted missing harmonic.

2.5. To better visualize the results, tables 4.2 and 4.4 report the SDR variation from
the nominal case, where the input frequency is the correct one, in presence of white
and pink noise without frequency detection. Since the error is defined as a percentage
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Figure 4.12: SDR computed for different white (left) and pink (right) noise amplitudes.
In both cases, the performance decreases for lower SNRs, i.e. higher noise levels. For the
same SNR values, performance is higher in presence of white noise.

of the correct frequency, the higher frequencies are more affected by it. In the case of
pink noise, the variation in SDR for the lower frequencies is lower compared to the case
of white noise. This is probably because the high noise at low frequency has a higher
contribution to the performance than the error in the input frequency. Tables 4.3 and 4.5
report the variation in the SDR parameter obtained with frequency detection. Overall,
the performance is improved, except for some cases at low frequency and with a low error.
Increasing the resolution of the frequency detection is sufficient to overcome this problem.
However, this implies a higher computational burden.
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Figure 4.13: SDR computed considering an error in the filter input frequency without
(left) and with (right) frequency detection. The SDR is plotted as a function of the error
in the input frequency. The signal is built with white noise and a total SNR approximately
equal to 1.5.

Roll n. 0.0% 0.1% 0.2% 0.3% 0.4% 0.5%
1 0.00 5.78 16.93 30.43 45.30 57.09
2 0.00 6.20 22.04 38.78 54.69 53.61
3 0.00 5.86 16.62 23.88 27.71 30.12
4 0.00 37.91 65.42 72.94 76.25 78.56
5 0.00 42.86 63.88 79.39 80.34 81.26
6 0.00 39.67 71.73 79.15 80.66 80.99
7 0.00 61.57 76.48 79.19 79.91 80.12
8 0.00 34.12 44.39 48.73 50.36 50.26
9 0.00 50.95 68.33 69.16 69.04 68.89

Table 4.2: SDR variation computed from the nominal case, in which the input frequency
is the correct one. The variation is computed as in Equation 4.1 for different errors in
the input frequency. The error is expressed as a percentage of the correct frequency and
ranges from 0 to 0.5%. The signal is built with white noise and a total SNR almost equal
to 1.5.
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Figure 4.14: SDR computed considering an error in the filter input frequency without
(left) and with (right) frequency detection. The SDR is plotted as a function of the error
in the input frequency. The signal is built with pink noise and a total SNR approximately
equal to 2.5.

Roll n. 0.0% 0.1% 0.2% 0.3% 0.4% 0.5%
1 0.00 9.35 10.53 11.78 3.16 4.76
2 0.00 54.28 53.06 55.15 55.27 55.38
3 0.00 37.92 29.05 17.52 5.58 0.00
4 0.00 7.35 3.87 1.22 -0.12 0.22
5 0.00 12.18 6.54 2.27 50.20 46.21
6 0.00 22.22 5.68 2.47 0.45 0.08
7 0.00 26.80 17.01 8.45 2.05 0.04
8 0.00 16.75 9.46 3.49 0.23 0.31
9 0.00 13.32 7.82 2.66 0.13 0.26

Table 4.3: SDR variation computed from the nominal case, in which the input frequency
is the correct one. The variation is computed as in Equation 4.1 for different errors in
the input frequency. The error is expressed as a percentage of the correct frequency and
ranges from 0 to 0.5%. The signal is built with white noise and a total SNR almost equal
to 1.5. A frequency detection is applied.
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Roll n. 0.0% 0.1% 0.2% 0.3% 0.4% 0.5%
1 0.00 2.95 9.34 17.07 24.63 31.57
2 0.00 1.84 12.30 26.74 47.39 46.58
3 0.00 3.32 11.48 17.13 21.83 25.73
4 0.00 24.69 57.14 69.26 74.78 77.23
5 0.00 37.51 60.20 74.17 77.49 78.36
6 0.00 41.83 69.31 78.21 80.53 81.08
7 0.00 63.44 75.46 79.58 80.91 81.27
8 0.00 38.52 46.10 49.28 51.68 52.42
9 0.00 50.62 65.08 69.53 70.31 70.58

Table 4.4: SDR variation computed from the nominal case, in which the input frequency
is the correct one. The variation is computed as in Equation 4.1 for different errors in
the input frequency. The error is expressed as a percentage of the correct frequency and
ranges from 0 to 0.5%. The signal is built with pink noise and a total SNR approximately
equal to 2.5.

Roll n. 0.0% 0.1% 0.2% 0.3% 0.4% 0.5%
1 0.00 6.22 5.49 4.78 4.09 10.91
2 0.00 3.42 4.31 5.28 -0.20 0.07
3 0.00 40.68 30.46 18.54 6.06 0.03
4 0.00 5.65 2.98 0.98 -0.06 0.16
5 0.00 13.49 8.82 4.69 1.52 40.83
6 0.00 22.01 26.02 2.72 0.37 0.14
7 0.00 26.94 15.12 6.41 1.29 0.29
8 0.00 35.66 13.15 5.17 0.93 0.15
9 0.00 21.04 15.96 8.79 2.63 -0.26

Table 4.5: SDR variation computed from the nominal case, in which the input frequency
is the correct one. The variation is computed as in Equation 4.1 for different errors in
the input frequency. The error is expressed as a percentage of the correct frequency and
ranges from 0 to 0.5%. The signal is built with pink noise and a total SNR approximately
equal to 2.5. A frequency detection is applied.

4.1.4. Presence of two close frequencies in the signal

An additional test executed with the synthetic signal consists in adding a harmonic series
with a fundamental frequency close to one of the frequencies present in the signal. The
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Figure 4.15: Amplitude values of the added harmonic series (left) and SDR computed
for different values of the fundamental frequency of the added series (right). The SDR
is plotted as a function of the difference between the added frequency and the extracted
frequency normalized over the latter. The closer the two frequencies the lower the perfor-
mance. The signal is built with white noise and a total SNR almost equal to 1.5.

added frequency is defined such that

ωadd − ω0

ω0

∈ [0.1%− 5%]. (4.3)

The test is done for all 9 fundamental frequencies of the signal, and it is useful to under-
stand when a filter can distinguish two frequencies and when, instead, they are too close
to be separated. Figure 4.15 shows the amplitude values of the harmonic components of
the added harmonic series and the result in terms of performance obtained in the case of
white noise with an SNR around 1.5. The lower the difference between the frequency of
the added series and the extracted one the lower the performance. Table 4.6 presents the
percentage variation of SDR from the case in which no frequency is added. The rolls with
a higher rotational frequency are less affected by the added frequency. This is clear since
the added frequency is defined as a percentage of the frequency of the signal.
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Roll n. 0.10% 0.50% 1% 1.50% 2% 3% 5%
1 51.75 37.50 18.85 9.33 4.55 0.66 -0.56
2 60.30 49.80 25.37 8.17 5.82 2.48 -3.73
3 55.25 40.45 25.49 18.16 10.13 5.18 4.54
4 62.14 32.13 10.40 3.86 0.48 -0.76 -1.33
5 60.56 33.14 13.53 9.89 8.20 5.26 4.06
6 45.48 18.98 4.64 1.38 -0.18 -1.18 -1.63
7 53.65 7.94 0.44 -0.76 -1.19 -1.24 -1.27
8 40.12 2.69 -1.93 -3.61 -4.11 -4.34 -4.33
9 33.65 -0.66 -3.45 -4.74 -4.67 -4.80 -4.84

Table 4.6: SDR variation computed from the nominal case, in which the harmonic series
is not added. The difference between the added frequency and the extracted frequency is
normalized over the latter and expressed in percentage. The variation is computed as in
Equation 4.1. The signal is built with white noise and a total SNR almost equal to 1.5.

The same test is performed on a signal with pink noise. Table 4.7 shows the SDR variation
that is computed as before. From the results, it is possible to notice that the method can
handle worse the presence of two close frequencies in this case.

Roll n. 0.10% 0.50% 1% 1.50% 2% 3% 5%
1 47.79 40.38 30.62 23.34 17.45 10.96 3.25
2 56.35 52.60 42.79 29.12 19.94 14.80 4.45
3 48.66 36.20 27.41 19.88 8.68 1.71 -0.04
4 60.26 43.26 24.08 15.35 7.13 2.28 0.21
5 58.58 38.84 16.16 9.80 7.00 2.23 1.03
6 48.12 23.88 9.81 4.98 2.24 0.56 0.02
7 56.43 15.86 3.76 1.11 0.09 0.02 0.02
8 46.56 11.13 4.00 1.21 0.37 0.00 0.05
9 35.60 5.72 0.76 0.11 0.05 0.02 0.01

Table 4.7: SDR variation computed from the nominal case, in which the harmonic series
is not added. The difference between the added frequency and the extracted frequency is
normalized over the latter and expressed in percentage. The variation is computed as in
Equation 4.1. The signal is built with pink noise and a total SNR approximately equal
to 2.5.
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4.1.5. Non-stationary signal

The filter theoretically requires as input a stationary signal. However, the acquired signal
can present some non-stationarities, for example, a change of frequency or noise. In this
thesis, two tests are reported. In the first one, the filter is applied to a chirp signal, i.e. a
signal characterized by a linearly increasing value of frequency in time. In the second test,
the signal is subjected to a sudden rise in the noise level, occurring in the first M samples.
Figure 4.16 reports the SDR value for chirp signals with both white and pink noise. The
frequency variation on the x-axis denotes the percentage variation between the initial and
the final frequencies of the chirp signal, normalized over the initial frequency. Even in this
case, the decrease in performance is less pronounced for the lower frequencies since the
variation is computed as a percentage of the initial frequency. The decreasing behavior
is similar between the two cases, showing that the type of noise has no significant impact
on the decrease in performance due to the presence of a non-stationarity in the harmonic
signal.

To reproduce a non-stationary behavior of the noise, the noise amplitude is suddenly
increased after a certain number of samples. In particular, the change occurs within
the filter length M. As it is possible to see from Figure 4.17, in the case of white noise,
the performance almost linearly decreases increasing the RMS variation of the noise. In
presence of pink noise, instead, the trend of the SDR parameter is more similar to a
decreasing exponential function. In both cases, the final SDR is mainly dependent on
the final amplitude of the noise being the result very similar to the one obtained using a
signal with the same amplitude of noise for the entire window length. This means that the
non-stationarity does not have a significant effect on the result, and it does not contribute
much to decreasing the performance.

4.2. Real data analysis

After all the simulations on the synthetic signal, the filter is also applied to real data. The
set of data available includes signals of caliper, basis weight, and moisture acquired with
the QCS, and signals of caliper and basis weight acquired with the Tapio analyzer. The
purpose of this analysis is to derive the impact of each roll on these quality parameters and
list the rolls according to how much they are affecting the quality. The influence of each
roll on the quality variation is estimated by computing the RMS of the signal obtained
by applying the filter to the original signal, considering an input frequency equal to the
rotational frequency of the roll under investigation; the higher the RMS of the output
signal the higher the impact of the roll.
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Figure 4.16: SDR computed in presence of a chirp signal for different frequency variations.
The frequency variation is computed as the difference between the final and the initial
frequencies of the signal, normalized over the initial one. The results are evaluated for
white noise (left) and pink noise (right).

Figure 4.17: SDR computed in presence of a sudden increase in the noise level during the
filter length M. The RMS variation is computed as the difference between the final and
the initial RMS of the noise in the signal, normalized over the initial value of RMS. The
results are evaluated for white noise (left) and pink noise (right).
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Signals from QCS are characterized by a sampling frequency of 25 Hz. From the spectrum
of the caliper signal in Figure 4.18, two distinct peaks can be identified at frequencies 2.35
and 4.5 Hz. Both are close to the rotational frequencies of two rolls in the machine, rolls
7 and 22 respectively. It is expected that these are the two rolls with the major impact
on quality. However, the output signal obtained by applying the filter with an input
frequency equal to the rotational frequency of roll 22 is not one of the signals with the
highest RMS.

Figure 4.18: Signal and spectrum of the caliper data acquired online with the QCS on
the running machine for 1.1 km of paperboard.

Figure 4.19: Signal and spectrum of the caliper data acquired offline with the Tapio
analyzer for 1.1 km of paperboard.

The same procedure is applied to the caliper signal from the Tapio analyzer (Figure 4.19),
which is characterized by a higher sampling frequency and a higher number of samples.
Since the signal is very long only the first 17000 samples are used. The five rolls with
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the highest impact on quality are listed in Table 4.8. As expected from the spectrum
of the signal, rolls 7 and 22 are the ones having the highest impact. Since the signals
acquired online and offline refer to the same strip of cardboard, they should have the same
outcome. It is therefore reasonable to think that the result obtained with the QCS data is
not correct. This is probably due to the very low sampling frequency and the low number
of samples. For this reason, the results obtained by applying the filter to the QCS data
are deemed to be of no relevance and, therefore, are not reported.

The filter is applied as well to basis weight data (signal and spectrum in Figure 4.20). As
for caliper variation, rolls are listed in Table 4.9 in order from higher to lower RMS of the
output signal. Moisture data are not analyzed since data related to this parameter were
not available from offline measurements.

Roll Rotational freq. [Hz] RMS [µm]

Thermo roll in valzone calender 2.352 1.328
Deflection-compensated calender roll 4.539 1.084

Forming roll in the body wire 2.439 0.833
Press 1 pick-up driving roll 3.730 0.819

Back wire driving/pulling roll 3.094 0.777

Table 4.8: Rolls with the highest impact on caliper variation. The higher the RMS of the
extracted signal the stronger the impact of the roll.

Figure 4.20: Signal and spectrum of the basis weight data acquired offline with the Tapio
analyzer for 1.1 km of paperboard.
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Roll Rotational freq. [Hz] RMS [g/m2]

Forming roll in the body wire 2.439 1.210
Surface wire joining roll 2.964 1.204

Press 1 pick-up driving roll 3.730 1.191
Back wire driving/pulling roll 3.094 1.188

Thermo roll in valzone calender 2.352 1.156

Table 4.9: Rolls with the highest impact on basis weight variation. The higher the RMS
of the extracted signal the stronger the impact of the roll.

As an example, Figures 4.21 and 4.22 show the effect of roll 7, the thermo roll in the
calender section, on caliper and basis weight variations. The calender section is one of
the last stages of paper production. In this section some surface properties are refined,
the most important of which are smoothness and gloss. The improvements of these
properties lead to a loss of bulk. The figures report the caliper and basis weight signals
in time together with the extracted signals having a fundamental frequency equal to the
rotational frequency of the thermo roll. The figures also show the extracted amplitude
values for each harmonic component and the extracted signal cut to see the effect of one
rotation. Only the first 10 harmonic components are extracted, being the most significant.
The higher components, indeed, have lower amplitude values. The high amplitude of the
first harmonic component in Figure 4.21 indicates that the caliper variation is mainly
caused by defects occurring once per revolution, probably a roll deflection. In Figure
4.22, instead, there is no dominant component.

In Figures 4.23 and 4.24 other two examples are reported. Even in these cases, the first
harmonic component is the one with the highest amplitude value and the amplitude values
decrease increasing the harmonic number.

4.3. SOS comparison

As the last step of this study, a comparison with the SOS tool of the Tapio analyzer is
performed. The SOS analysis can extract the effect of the machine components affecting
the quality the most from the signal acquired by the analyzer. Figure 4.25 shows the
software interface. The analysis reports the spectrum of the signal, highlighting the
frequency components connected to the element of the machine of interest, the signal in
time together with the extracted signal in time, and the roundness profile of the component
causing the variation.
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Figure 4.21: Impact of roll 7 on the caliper variation. The top figure shows the caliper
signal (blue) together with the signal extracted by the filter (red). The bottom figures
show the amplitude values of the extracted harmonic series and the effect on caliper of
one revolution of the roll.

Figure 4.22: Impact of roll 7 on the basis weight variation. The top figure shows the basis
weight signal (blue) together with the signal extracted by the filter (red). The bottom
figures show the amplitude values of the extracted harmonic series and the effect on basis
weight of one revolution of the roll.
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Figure 4.23: Impact of roll 22 on the caliper variation. The top figure shows the caliper
signal (blue) together with the signal extracted by the filter (red). The bottom figures
show the amplitude values of the extracted harmonic series and the effect on caliper of
one revolution of the roll.

Figure 4.24: Impact of roll 12 on the basis weight variation. The top figure shows the basis
weight signal (blue) together with the signal extracted by the filter (red). The bottom
figures show the amplitude values of the extracted harmonic series and the effect on basis
weight of one revolution of the roll.
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Figure 4.25: Tapio analyzer Spectral Analysis interface.

The signal used in this analysis is a caliper signal of 10992 samples, acquired with a
sampling frequency of approximately 1300 Hz. The SOS extracts a frequency of 3.64 Hz
which is close to 3.566 Hz, the frequency of a component in the machine. The optimal
filter is applied with a frequency detection in the range ±0.5%ω0, where ω0 is equal to the
frequency of the machine component, 3.566 Hz. The fundamental frequency detected by
the optimal filter is equal to 3.560 Hz, which is closer than the one extracted by the SOS
analysis to the frequency of the machine component. In this case, 30 harmonic components
are extracted. Figure 4.26 shows the result for the two methods. The two extracted signals
have similar behavior with the difference that the SOS signal also contains fluctuations
at higher frequencies. Figure 4.27 reports on the left the amplitude values of the signal
extracted by the filter with a fundamental frequency of 3.560 Hz, i.e. the one detected
by the filter, and, on the right, the original caliper signal and the signal extracted by the
filter in time.
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Figure 4.26: Comparison between the signal extracted by the SOS tool and the one
extracted by the optimal filter.

Figure 4.27: Amplitude values of the signal extracted by the filter (left). Original signal
from the measurement and extracted signal in time (right).
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5| Discussion

The method demonstrated robust behavior in some non-ideal conditions. The results
obtained on the artificially generated signal give an overview of the filter behavior in
different situations and how to choose the filter parameters. Of course, the choice of
parameters and the minimum level of acceptable performance must be chosen according
to the application and the quality parameter under investigation.

The window length has been chosen in the performed tests to have at least an SDR of 4.5
for each roll. In the real application, the minimum acceptable value of SDR can be chosen
by relating the error in the amplitude values of the harmonic components to the value of
variation in the quality parameter that leads to the waste of the end product. The error,
indeed, should be way smaller than the maximum acceptable value of quality variation.
Moreover, the sampling frequency can be different from the one selected, depending on
the available measurement setup. An additional factor to consider in choosing the number
of samples in a real application is the stationarity of the signal. In fact, with a longer
window, it is more probable that the signal shows a non-stationary behavior. This is
important since the method does not handle well changes in frequency during the signal
acquisition, as shown in the simulation with the chirp signal (Figure 4.16). Moreover,
the window length affects the computational time. The latter depends on the system’s
computational power and can be subjected to some constraints that can make it necessary
to shorten the window length. To decrease the overall computational time the calculation
can be parallelized. Thanks to the parallelization, the effect of all rolls can be extracted
at the same time, instead of done in sequence. This procedure reduces the time at the
expense of the memory needed.

When the filter input frequency is absent from the signal, the amplitude of the harmonic
components extracted by the filter is not null but similar to the noise level. However,
this is not a big issue since it is reasonable to think that the RMS of the extracted signal
is quite low. Since this analysis aims to identify the components causing most of the
variation, those to which a high RMS of the output signal corresponds, the effect of the
absent frequency has minor importance on the problem.
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The possible mismatch between the input frequency, i.e. the set point of the rotational fre-
quency, and the frequency of variation can be partly solved with the frequency detection.
However, performing a frequency detection before extracting the filter result increases
the computational time. In particular, the higher the resolution of the frequency detec-
tion the higher the computational time, but the more accurate the result. Moreover, the
frequency range in which the detection is performed should be chosen considering the
possible presence of similar frequencies.

As shown in the previous chapter, the filter is not always able to distinguish between
two close frequencies. For example, with the parameter chosen in the tests reported in
this thesis, the filter performance strongly decreases when the difference between two
frequencies is around 0.02 Hz. Special caution should be exercised in the presence of
such similar frequencies. A possible way to increase the filter resolution is to increase the
number of samples N.

The method has proven to have good performances when applied to the synthetic signal
but also when real data are used, even if in the last case it is not possible to quantitatively
estimate the correctness of the results. Tests have been carried out on the synthetic
signal to evaluate the applicability of the filter in the paper manufacturing process. Each
application can require different values of the parameters, but the outcome of these tests
can be used as a guide in their choice.

The method is proposed as a tool for condition monitoring of the machines. In fact,
it makes it possible to assess the impact of each roll on the quality variation. This
allows monitoring the roll’s condition and detecting faults such as damage in the coating.
Moreover, it can be used to identify errors in the geometry or excessive vibrations of rolls.

One positive aspect of this method is that it does not need additional offline measure-
ment and it can make use of sensors already present in the machine. Additionally, the
presented filter has some advantages compared to the classical usage of the Fourier trans-
form. Mainly, it provides higher accuracy, and the choice of the input frequency is not
limited by the frequency resolution.
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6| Conclusion

This work analyzes a procedure for separating repeating patterns from machine direction
quality variation. This can be used to monitor the condition of the machine and act on
the component or machine section that causes the highest variations.

Firstly, a synthetic signal was generated to reproduce a signal of caliper variation measured
on a paperboard sample. The signal was built as the sum of 9 harmonic series, reproducing
the effect of 9 rolls in the machine, and noise. Different tests were performed modifying
the signal to reproduce realistic situations that deviate from the ideal condition. The
aim was to test the robustness of the method when some of the hypotheses of the filter
were not satisfied. Subsequently, the filter was applied to available measured data from a
production plant. Satisfying results were obtained in both cases, and the filter was finally
validated through a comparison with a currently used software, showing an even better
result.

When the 9 harmonic series were extracted from a signal with white noise and an SNR
close to 1.5, the filter returned, in the worst case, a maximum average error in the ampli-
tude values of the harmonic components of 0.014 µm. Moreover, the method compared to
a software currently used in laboratory analysis showed a more accurate result. Indeed,
the two methods showed similar results when extracting the effect of a machine compo-
nent but the difference between the frequency extracted by the software and that of the
machine component was 0.074 Hz, whereas it was only 0.006 Hz with the optimal filter.

This work represents the first study of the method, and it does not provide a ready-to-use
tool for industries. Further research can be done to deepen and improve this study.

As a first improvement, a better understanding of the type and amplitude of noise present
in the machine environment can help to generate an artificial signal that more closely
reproduces the real one and better evaluate the results. Moreover, if the spectrum of the
noise can be obtained, a pre-whitener can be applied before filtering. This would allow
having a signal with white noise, thus respecting the hypothesis of the method.

To complete the study, additional tests should be done on real data acquired on the
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running machine. Data with a higher sampling frequency are needed. The sampling
frequency of the available set of data was, in fact, too low to provide good results. Another
interesting analysis might be to collect signals related to different quality parameters to
understand which sections or components impact a particular parameter the most, under
a nominal operating condition. For example, the press section can have a higher impact
on basis weight.

Simulations in the production environment must be carried out to have practical feedback
on the results and to modify the choice of parameters according to the outcome. An
important factor to analyze in detail is the computational time. The latter must have a
value that ensures effective monitoring so that action can be taken in a reasonable time if
the quality level does not satisfy the target value. A further possible investigation consists
in comparing the extracted harmonic series with known roll run out data to determine
if they are correctly related. Finally, to improve the accuracy of the result, data should
be acquired on different CD positions, deriving the outcome as an average of the results
obtained for each position. In the present case, the probe of the sensor was held stationary
in a single position.

Finally, in this work, the focus is on paper machines. Other manufacturing processes
where the material is formed by rolls, such as steel and plastic film production, are not
treated. The method should be reasonably applied, with some expedients, to these other
processes as well.
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A| Appendix A

A.1. Rotational frequencies of the rolls in the paper

machine.

Table A.1: List of known rotating frequencies of rolls in the machine
used in the data acquisition.

1 2.080 1.531

2 2.085 1.528

3 2.088 1.525

4 2.090 1.524

5 2.090 1.524

6 2.121 1.501

7 2.352 1.354

8 2.439 1.306

9 2.553 1.247

10 2.727 1.168

11 2.805 1.135

12 2.964 1.074

13 3.047 1.045

14 3.097 1.029

15 3.154 1.010

16 3.158 1.008

Roll n. Frequency [Hz] Diameter [m]

Continued on next page
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Table A.1: List of known rotating frequencies of rolls in the machine
used in the data acquisition. (Continued)

17 3.250 0.980

18 3.280 0.971

19 3.333 0.955

20 3.730 0.854

21 4.272 0.745

22 4.539 0.702

23 6.342 0.502

24 7.048 0.452

25 7.054 0.451

26 7.059 0.451

27 7.070 0.450

28 7.074 0.450

29 7.076 0.450

30 7.077 0.450

31 7.160 0.445

32 7.486 0.425

33 7.875 0.404

34 8.246 0.386

35 8.585 0.371

36 11.430 0.279

37 14.016 0.227

38 14.112 0.226

Roll n. Frequency [Hz] Diameter [m]
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