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1. Introduction 

1.1 Biosignals and cognitive tasks 

The number of research studies that investigate the 

effect that cognitive functions have on biological 

signals has been increasing in the last years. The 

main aim is to uncover the main physiological 

mechanisms that underly a variety of cognitive 

processes and possibly exploit this knowledge for 

research, therapy and commercial applications. 

Most studies focus on the monitoring of the Central 

Nervous System (CNS). However, the equipment 

necessary to do so is impractical to use out of the 

clinic or academia. Autonomic signals such as the 

heart rate variability (HRV), the electrodermal 

activity (EDA) and the respiratory signals can be 

easily acquired with inexpensive instrumentation 

and, indeed, several consumer-grade wearable 

devices are already available for this purpose. For 

this reason, the number of studies that adopt 

autonomic indices as a correlate of cognitive 

functioning is nowadays increasing. Moreover, 

given the deep interrelation between the CNS and 

the Autonomous Nervous System (ANS), it is 

reasonable to hypothesise and study a correlation 

between the measures obtained from these two 

branches. 

1.2 Open Problems 

Some open problems that limit practical 

applications of autonomic signals in the 

monitoring of cognitive processes have been 

identified. Very few studies investigate 

electrodermal responses during cognitive tasks. It 

is also unclear how the sympathetic nervous 

system differs in the control of the heart rhythm 

and skin conductance during cognitive tasks.  

Moreover, the most commonly applied methods to 

analyze the HRV make assumptions that are often 

unsatisfied in real-life conditions, namely about 

the stationarity of the signal and the frequency 

range of the respiratory activity. To transfer the 

findings to practical applications these conditions 

must be lifted. 
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1.3 The BASE project 

The key idea of the BASE project is to investigate 

the physiological mechanisms that could lead to 

the generation of software bugs. This objective is 

pursued by acquiring and integrating different 

biological signals on experienced programmers 

during tasks of code comprehension and code 

writing. Both central and autonomic signals are 

investigated. Two research studies in the BASE 

project were conducted: study one took place at 

Universidade the Coimbra while the second at 

Politecnico di Milano [1]. 

1.3  

1.4 Objective of the thesis 

The objective of this thesis is to address the open 

problems identified and investigate possible 

solutions to extract robust and interpretable 

quantitative indices of mental effort and cognitive 

load from autonomic signals.  The original 

intention was to continue with the acquisitions of 

the study 2 of the BASE project and use it to 

conduct all the analyses. However, the acquisitions 

were stopped due to the ongoing COVID-19 

pandemic before the minimum number of subjects 

that had been stated in the experimental protocol 

design was reached. In addition, the EDA signal 

had to be discarded due to quality concerns and 

was not used in future analysis. A second simpler 

protocol called N-Back was added to overcome 

these limitations and obtain a more extensive 

analysis with a focus on EDA and its relation with 

the other autonomic signals of interest. 

2. Data Acquisition 

2.1 BASE Project. Study 2 

2.1.1 Participants 

Sixteen subjects participated in this study. The 

average age was 29, standard deviation 9.6. Twelve 

were males and 4 females. Among the sixteen 

subjects who participated in the BASE protocol, 

three subjects were discarded because the quality 

of the signals was unsatisfactory. All participants 

were asked to answer a technical questionnaire 

meant to assess their coding skills in C 

programming language. Only subjects with a score 

equal to or higher than 4 out of 10 were eligible. 

2.1.2 Equipment and setup 

The following autonomic signals were acquired 

using the ProComp Infinity polygraph: 

Electrocardiogram (ECG), EDA, and Respiration 

activity. The sampling rates were 2048Hz, 256Hz 

and 256Hz, respectively.  In addition, 

Electroencephalographic (EEG) and Functional 

Near-Infrared Spectroscopy (fNIRS) signals were 

also acquired. 

 

2.1.3 Experimental Tasks and Procedure 

The experiment is divided into 2 runs, each 

composed of three tasks presented in random 

order:  

Text Reading- read a short text in natural language 

(English). This task lasted for 60 seconds.  

Code reading – read a short snippet of simple code 

in C language. This task lasted for 5 minutes.  

Code programming – develop a function in C 

language in Eclipse environment. Subjects were 

allowed to stop this task after 5 minutes. The 

maximum time was 20 minutes.  

 

During code programming two tasks of different 

difficulty were presented in random order (one for 

each run). The difficult task is called RLE and the 

easy task is called SPLIT. Also the text and code 

snippets presented were different in each run. 

Before each task and after the completion of the last 

a relaxation phase of 30 seconds was conducted. 

During this phase, called “fixation”, subjects were 

asked to watch a black cross on a grey screen and 

relax.  After each run, an Experiment Evaluation 

form was presented. The form, which took about 1 

minute to be filled, asked to give a score from 0 to 

5 to the following experiences: mental effort, task 

fulfilment, pressure with time and discomfort. 

The code programming task was evaluated by an 

expert who assigned a performance score and 

manually labelled starting from the screen 

recordings into: 

Read problem: the time spent by the participant to 

read the assignment, before starting to write the 

solution. 

Writing: the time spent actually writing code. 
There may be multiple Writing sessions for each 

Code programming task. 

2.2 N-Back protocol 

2.2.1 Participants 

Thirty-one healthy subjects were enrolled in the 

study. Four subjects were excluded due to the low 
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quality of acquired data. Among the remaining 27 

subjects the mean age was 25.2 ± 2 years. The males 

were 14 and the females 13. 

 

2.2.2 Equipment and setup 

The ECG, EDA, and respiratory signals were 

acquired using the ProComp Infinity polygraph, 

maintaining the same sampling frequencies used 

for the BASE protocol. Subjects observed a screen 

connected to the PC running the protocol. 

 

2.2.3 Experimental Tasks and Procedure 

The experimental protocol is composed of 6 

phases. Each lasted 5 minutes, except for N-Back 

which lasted 7 minutes. Subjects had to stay seated 

unless instructed otherwise. In brief, the tasks 

were: 

Relaxation: look at a relaxing image. This phase is 

used to acquire a baseline. 

Sit: look at a grey screen. In this task no 

sympathetic activation is expected. 

Stand: stand up. This is a sympathetic stressor 

without cognitive effort. 

Controlled Respiration: breath at a constant rate of 

12 breaths per minute. This is a parasympathetic 

stressor. It will be called Resp for brevity. 

N-back: press “Enter” if the letter on the screen is 

the same as the one shown N times before. Four 

sequences of 20+N consecutive letters were shown. 

N is an integer determining the difficulty, which 

was varied between 0 and 3 and is fixed during a 

sequence. Two sessions were performed. This task 

was selected to elicit cognitive effort.  

3. Data Analysis 

All analyses were conducted in MATLAB 

environment. The procedure was the same for both 

protocols. The features were computed in time 

windows corresponding to the different 

experimental tasks.  

Regarding the BASE protocol, for the code 

programming task only the Read Problem phase 

and 5 minutes extracted from the longest Writing 

session were selected for each subject. Read 

Problem was only considered in RLE since most 

subjects spent little time reading the instructions of 

SPLIT and windows of sufficient length could not 

be obtained.  

3.1 HRV and Respiratory Signals 

3.1.1 Pre-processing 

The ECG signal was downsampled to 256Hz. The 

R peaks were identified using the Pan-Tompkins 

algorithm and manually corrected. The tachogram 

was then extracted using the identified peaks. 

The respiratory signal was low-passed and down-

sampled to 256Hz and then furtherly low-passed 

with a FIR filter with a cut-off frequency of 10Hz. 

The respirogram was extracted from the 

respiratory signal taking one sample for each peak 

identified in the ECG. The respirogram was then 

filtered with a high pass FIR filter with passband 

frequency set at 0.02Hz and rescaled with a 

logarithmic transformation. 

 

3.1.2 Bivariate time-variant modelling 

The tachogram and respirogram were modelled 

using a bivariate autoregressive model [2] sketched 

in Figure 1.  

 

 

Figure 1. Block diagram of the bivariate autoregressive 

model 

The tachogram (RR time series) is modelled as the 

sum of a component dependent on its past values, 

weighted according to the parameters of block 

A11, the past values of the respirogram, weighted 

with A12, and a white noise (E1). The component 

dependent on the respirogram is the RSA, while 

the component dependent only on itself is the Non-

Respiratory Sinus Arrhythmia (NRSA). 

The respirogram (Resp) is modelled as a signal 

only influenced by its past values, weighted 

according to A22, and a white noise E2. The block 

A21 represents the effect of the RR series on the 

respirogram and is marked in grey because it was 

omitted from the model, forcing to 0 its parameters 
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since the influence of the tachogram on the 

respirogram is assumed to be neglectable. 

The parameters were estimated at each sample 

using a time-variant adaptation of a recursive least 

square filter (RLS) with forgetting factor, which is 

a hyperparameter that determines how past values 

are weighted in the prediction of the next. The use 

of the forgetting factor relaxes the condition of 

stationarity [3]. Its value was set to 0.985. The order 

of the model set to 9. A condition that prevents the 

updating of the parameters when the a-priori 

prediction error exceeds an adaptive threshold was 

implemented to reduce the dependence of the 

model on the outliers.  The partial spectrograms of 

RSA and NRSA, the total spectrograms of RR and 

Resp and the spectrogram of the coherence were 

computed from the parameters using the residuals 

method [4]. An example of total spectrogram of the 

HRV is presented in Figure 2. 

 

 

Figure 2. 3-D Spectrogram of the tachogram 

The instantaneous respiratory frequency was 

estimated from the respiratory signal and used to 

adapt the bands used for feature extraction. 

 

3.1.3 Features extraction  

Time-frequency features were computed 

integrating the spectrograms in the desired 

frequency range and then computing the mean in 

the time window of interest. 

From the spectrogram of the tachogram were 

extracted: P Tot, HF and LF NU obtained 

integrating respectively in f>0.04, f 𝜖 (0.15,0.4Hz] 

and f 𝜖 (0.04,0.15Hz]. LF NU was normalized 

dividing by P Tot. In addition, LF/HF was 

computed by dividing LF non normalized by HF. 

From the spectrogram of the tachogram multiplied 

by the magnitude squared coherence was obtained 

P Coer integrating in f>0.04. P Coer NU is P Coer 

divided by P Tot. LF NRSA was obtained 

integrating in (0.04,0.15Hz] the partial spectrogram 

NRSA and dividing by P Tot. HF RSA was 

obtained integrating the partial spectrogram RSA 

in a frequency range wide 0.25Hz centred at the 

respiratory frequency. From the HRV signal were 

also computed RMSSD, SDNN, pNN50 and mean 

HR [5]. From the respiratory signal was computed 

the mean Respiratory Frequency. 

3.2 EDA Signal 

The signal was low-passed and down-sampled to 

16Hz. Additionally, it was low passed at 5Hz using 

a FIR filter. 

 

3.2.1 Decomposition Analysis 

The signal was decomposed in the phasic and tonic 

components using Continuous Decomposition 

Analysis [6]. From the Phasic component were 

computed the peak frequency, the mean impulse 

amplitude and the Integrated Skin Conductance 

Response (ISCR). From the Tonic component was 

computed the mean. 

 

3.2.2 Time-Frequency Analysis 

A RLS time-variant autoregressive algorithm was 

applied to the Phasic component of EDA to obtain 

its spectrogram. The forgetting factor was varied 

using the Fortescue method. The order was set to 7 

after inspection of the prediction error. TVSymp 

was obtained integrating the spectrogram in the 

band from 0.045 to 0.25Hz. StdTVSymp is the 

standard deviation of TVSymp.  

3.3 Statistical Analysis 

3.3.1 Differences across Tasks 

The features extracted were tested for significance 

using the Friedman test comparing the values 

obtained in the different experimental tasks. 

Results are considered significant if p<0.05. Paired 

comparisons were performed applying the 

Bonferroni correction. 

 

3.3.2 Correlations 

Correlations were evaluated using the Spearman 

coefficient rho and considered significant when 

p<0.05. The features were correlated with each 

other and, for the BASE protocol, with the 

outcomes of the Evaluation Form, the Performance 

score and the EEG features, namely the power in 

the Theta and Alpha bands which had already 

been computed in [1]. For the N-Back protocol 
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were also correlated with the score obtained in the 

N-Back test. 

4. Results 

4.1 BASE protocol 

4.1.1 Differences across tasks 

The heart rate increased and P Tot decreased 

significantly in both difficulty levels during 

Writing. 

 

Figure 3.  P Tot in RLE. Boxplots refer to: Read 

Problem, Code Writing, Read Code and Read Text. 

This finding is in agreement with other studies 

(e.g., [7]). In RLE, but not SPLIT, during code 

writing also P Coer, HF and SDNN decreased, 

while the respiratory rate increased. 

 

4.1.2 Correlations 

P Coer calculated in Code Reading (which was 

selected as the low effort task) positively correlated 

with the performance. HR at rest negatively 

correlated with the score. During the writing task 

SDNN positively correlated with Score and 

Performance while LF NRSA and P Tot positively 

correlated with the Fulfillment. During the writing 

phase RMSSD positively correlated with the Power 

in the Theta and Alpha bands of the EEG while 

SDNN only correlated in the Theta band. HR and 

LF NRSA were found to correlate negatively with 

the power in the alpha band. 

4.2 N-Back protocol 

4.2.1 Cross-correlation between EDA and RR 

A time-delay of about 2.5s of EDA with respect to 

the inverse of the RR series was identified from the 

normalized cross-correlation. The analysis in 

frequency domain did not identify significant 

correlation at any frequency. 

 

 

Figure 4. Normalized cross-correlation between EDA 

phasic component and RR series among subjects 

4.2.2 Differences between N-Back and the other tasks 

 

HRV and Respiration 

During the N-Back task, P Tot was significantly 

lower compared to both the Sit and Resp phases, 

while no difference was detected with the Stand. 

HF was lower only compared to Resp while HF 

RSA was also significantly lower compared to Sit. 

Similarly, LF NU did not differ from Sit to N-back 

while LF NU NRSA did.  

 

 

Figure 5.  LF NRSA. N-Back protocol 

P Coer was lower during N-Back compared to 

Resp while P Coer NU was also lower compared to 

Sit. The only significance found in the time-domain 

analysis of HRV is that RMSSD and SampEn 

increased during N-Back compared to Stand. The 

respiratory rate was significantly higher during N-

Back compared to both Sit and Stand. 

 

EDA 

All the indices extracted increased very 

significantly (p<0.01) during the cognitive task 

compared to Sit.  Except for Peak Amplitude, the 

increase was significant also when compared to 

Resp. Furthermore, Peak Frequency, ISCR, The 

Tonic Mean and TVSymp also discriminated 

between Stand and N-Back which are both 

considered sympathetic stressors. 
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Figure 6. TVSymp. N-Back protocol 

4.2.3 Correlations 

All the EDA features significantly correlate with 

each other, some features with high coefficients 

(e.g. ISCR and Tonic Mean, rho=0.8).  Several 

significant, but much lower, correlations were also 

found between EDA and HRV features. HF RSA is 

negatively correlated with the Peak Frequency, 

ISCR, TVSymp and stdTVSymp. Similar 

correlations but with positive coefficients were 

found with LF NRSA. Furthermore, P Coer is 

negatively correlated with TVSymp, stdTVSymp 

and ISCR while RMSSD is negatively correlated 

with Peak Frequency and ISCR. HR is positively 

correlated with the Peak Frequency. 

 

5. Conclusions 

In both protocols, significant variations in 

autonomic indices were observed.  In the study of 

the HRV and respiratory signals, the results 

obtained confirm that during cognitive tasks the 

total power of the HRV is reduced. Two 

mechanisms are linked to this effect: the increased 

heart rate and the decreased effect of the RSA. The 

N-back protocol also captured a reduction in the 

parasympathetic and an increase in the 

sympathetic tone during the cognitive task 

compared to low effort tasks.  

The descriptors obtained from the EDA signal 

proved to be very sensitive to the cognitive task 

and less sensitive to the stressors commonly used 

in the analysis of the HRV to elicit a sympathetic 

and parasympathetic activation: sit to stand and 

controlled respiration. Indeed, EDA features did 

not vary significantly between the forced 

respiration and the standing tasks while the HRV 

features did. On the contrary, the Stand and the N-

back tasks induced similar effects in the HRV 

features which makes it more difficult to 

discriminate between them while the descriptors 

extracted from the EDA signal behave differently 

under the two conditions.  

These results, confirmed by the low correlation 

coefficients identified among the features extracted 

from the two signals, suggest that the information 

provided by the two is not redundant but rather 

should be used in combination to discriminate 

conditions in which the sympathetic activation is 

induced by the cognitive load from the ones in 

which is induced by orthostatic stressors. 
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Abstract 
The widespread diffusion of smartphones and wearable devices has enlarged the 

scope of applications of biomedical signal processing. Despite the advantages of 

autonomic signals in terms of practicality and cost of acquisition, in order to explore 

the brain mechanisms underlying cognitive processes and extract quantitative 

correlates for cognitive load most studies focus on signals and images deriving from 

the central nervous system. Nevertheless, brain imaging methodologies generally fail 

to represent real-world conditions and cannot be transferred out of academia or 

clinic. 

This thesis aims to find quantitative indices of cognitive load from autonomic signals 

with a focus on methodologies that could allow their use in non-controlled 

conditions. 

HRV, EDA and respiratory signals were acquired with two different protocols: the 

first focuses on programming and is part of a multidisciplinary project, called BASE, 

conducted with the Universidade de Coimbra. The second includes a series of 

standard autonomic stressors and elicits cognitive load with the N-Back test.   

Along with classical time-domain batch methods, mono- and bi-variate time-variant 

models were applied to track frequency variations in time and compute new indices. 

This approach is well-known in the study of the HRV but relatively new in the study 

of EDA. The relations between the HRV and the EDA signals, which are still under-

researched, were also analysed. 

Lastly, several indices able to significantly (p<0.05) discriminate cognitive load from 

other conditions (sit, stand and controlled respiration) were identified. The 

multimodal approach allowed investigating the commonalities and differences in the 

information provided by HRV and EDA signals. Specifically, the results suggest that 

they react differently to different stressors and thus provide complementary 

information which allows discriminating cognitive load from a wider set of 

autonomic activations. 

Key-words:  autonomic system, signal processing, cognitive load, EDA, HRV.  
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Sommario 
La capillare diffusione di smartphones e dispositivi wearable ha esteso gli ambiti di 

applicazione dell’analisi di segnali. Nonostante i vantaggi dei segnali autonomici, sia 

per quanto riguarda la praticità che il costo di acquisizione, la maggior parte degli 

studi scientifici volti a indagare i meccanismi fisiologici che si accompagnano ai 

processi cognitivi ed estrarre indici quantitativi di sforzo mentale si concentrano su 

segnali e immagini del sistema nervoso centrale. Tuttavia, gli studi che fanno uso di 

tecniche di brain imaging difficilmente possono ricreare le condizioni della vita reale 

e la strumentazione non può essere usata fuori dal laboratorio o ospedale. 

L’obiettivo di questa tesi è identificare indici quantitativi di sforzo cognitivo con un 

focus su metodologie che possano essere utilizzate anche in situazioni non-

controllate. L’HRV, l’EDA e il segnale respiratorio sono stati acquisiti all’interno di 

due protocolli: il primo si concentra su task di programmazione e rientra nel progetto 

BASE, condotto assieme all’università di Coimbra. Il secondo si compone di una serie 

di stimoli autonomici e uno stimolo cognitivo (N-back). 

Oltre che ai classici metodi batch, sono stati applicati degli algoritmi mono- e bi-

variati per seguire gli andamenti nel tempo ed estrarre nuovi indici. Questo 

approccio, già validato nello studio di HRV, è invece relativamente nuovo nello 

studio di EDA. Sono state inoltre analizzate le relazioni tra il segnale di HRV e EDA, 

che sono ancora poco studiate in letteratura. Infine, vari indici che variano 

significativamente (p<0.05) tra il task cognitivo e gli altri task sono stati identificati. 

L’approccio multimodale ha permesso di ricercare gli aspetti in comune e le 

differenze tra l’informazione fornita dai due segnali. In particolare i risultati 

suggeriscono che varino in maniera diversa in risposta ai vari stimoli e che quindi 

forniscano informazione complementare che permette di distinguere lo sforzo 

cognitivo da un numero più ampio di stimoli autonomici. 

Parole chiave:  Sistema autonomo, analisi di segnali, sforzo cognitivo, EDA, HRV. 
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1. Introduction 

1.1 Biosignals and cognitive processes 

The number of research studies that investigate the effect that cognitive functions 

have on biological signals has been increasing in the last years. The main aim is to 

uncover the main physiological mechanisms that underly a variety of cognitive 

processes and possibly exploit this knowledge for research, therapy and commercial 

applications.  

Most of these studies focus on the monitoring of the activity of the Central Nervous 

System (CNS) during cognitive tasks by means of brain imaging techniques such as 

Electroencephalography (EEG), Functional Magnetic Resonance Imaging (fMRI) or 

Functional Near-Infrared Spectroscopy (fNIRS). However, the equipment of brain 

imaging technologies such as MRI and NIRS is bulky and expensive and is not 

suitable for applications outside laboratories and hospitals. Moreover, even cheaper 

and lighter brain imaging techniques such as the EEG could affect the validity of 

research outcomes as they fail to represent real-world conditions during the 

experiment. Indeed, they need a long set-up time and can be uncomfortable to wear 

and, for these reasons, the application of such instruments outside the experimental 

setup is limited. Nowadays, wearable and less expensive devices for EEG recording 

are also available on the market, but still have some limitations related to 

comfortability and the quality of the signal compared to more traditional devices [1].  

A way to overcome these limitations is to analyse biosignals related to the activity of 

the Autonomic Nervous System (ANS). Autonomic signals such as the 

Electrocardiogram (ECG), the heart rate variability (HRV) and the Electro Dermal 

Activity (EDA) can be acquired much more easily with less expensive 

instrumentation. Multiple commercial-grade wearable devices equipped with 

photoplethysmographic (PPG) and galvanic skin response (GSR) sensors are already 

available at a modest price and open up the possibility of online processing of 

biological signals in real-world conditions. 
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Despite autonomic signals cannot give a direct measurement of brain mechanisms, 

emotion and cognition seem to have an impact also on the ANS [2],[3],[4]. For this 

reason, the number of studies that adopt autonomic indices as a correlate of cognitive 

functioning is nowadays increasing. Moreover, given the deep interrelations between 

the CNS and ANS, which will be discussed in the next chapter, it is reasonable to 

hypothesize and study a correlation between the measures obtained from these two 

branches.  
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1.2 The Autonomous Nervous System 

The ANS controls visceral reflexes, is largely involuntary and its activity almost 

never reaches the level of consciousness. It is influenced by the CNS through the 

central autonomic network (CAN) with the objective to react to stimuli from the 

environment and maintain the homeostasis. 

The autonomous nervous system can be divided into enteric, sympathetic (SNS) and 

parasympathetic (PNS), as sketched in Figure 1.1. The enteric nervous system 

controls gastrointestinal functions. It is almost completely independent from the CNS 

[2] and therefore not an object of the present work. 

 

 

Figure 1.1: Main subdivisions of the nervous system 

The sympathetic and parasympathetic branches have much more connections with 

the CNS and, as described for the first time by Walter B.Cannon in “The Wisdom of 

the Body“ [5], have diametrically different functions. The sympathetic nervous 

system primes the body for action, triggering the so-called “fight or flight” response. 

The parasympathetic nervous system, on the other hand, is predominant when the 

body is at rest and activates the so-called “rest and digest” activities. Both sections 

are tonically active and work together with each other and the somatic nervous 

system. The balance between the two varies in response to external or internal 

stimuli and is mediated by the CNS [2]. 

A general anatomical organization of the sympathetic and parasympathetic branches 

of the ANS is reported in Figure 1.2. 
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Figure 1.2: The Autonomous nervous system. Adapted from [2]. 

 

As depicted in Figure 1.2, many organs are to some degree controlled by the ANS and 

consequently can be monitored to analyse its activity. Among them, the heart and the 

skin are arguably the most studied in the biomedical signal processing field for the 

analysis of the autonomic regulation. This is performed through the analysis of the 

HRV and the EDA signals. The respiratory activity is also of interest, especially for 

the study of its interaction with the HRV. 

 

1.2.1 The regulation of the heart 

The heart, thanks to the action of the pacemaker cells that are mostly concentrated in 

the sinoatrial node (SA), has the intrinsic ability to contract rhythmically. In addition 

to that, the sympathetic and parasympathetic systems act at the SA to finely regulate 
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the rhythm. As a result, the time distance between successive heartbeats is never 

constant. 

The parasympathetic nervous system has the effect of lowering the heart rate and its 

action predominates at rest. Indeed, in physiological conditions the heart is under 

tonic inhibitory control from the vagus nerve [6]. The sino-atrial node has an intrinsic 

frequency that ranges from 90pbm to 107bpm, decreasing with age. The effect of the 

tonic parasympathetic activity is to lower the intrinsic frequency of about 20-30bpm 

[7]. 

The sympathetic system, instead, has the effect of increasing the heart rate and blood 

pressure. The increase in blood pressure is obtained by contracting the arteries, on 

which the SNS has a tonic activity. Indeed at rest the arteries have around half of 

their maximum diameter [2].  

The mechanisms by which the two branches of the ANS affect the heart are different 

and act with different speeds, creating distinguishable rhythms in the spectrogram of 

the heart rate variability signal, as will be discussed in chapter 1.3.1.2. 

This regulation is strongly dependent on the blood pressure, through the action of 

the alpha baroreceptors [8], and the respiration, which acts mechanically and at the 

autonomic level with a mechanism called respiratory sinus arrhythmia (RSA) [9]. The 

heart rate adapts to maintain the blood pressure in the desired range and 

synchronizes with respiration to optimize the oxygen intake. These interactions can 

be studied using multivariate models, as will be discussed in chapter 1.3.3. 

However, the control of the heart is not limited to the variation of blood pressure and 

respiratory activity. Indeed, as was systematically investigated for the first time by 

Claude Bernard (1813 – 1878), there are direct and indirect connections between the 

brain and the heart. In particular, many pathways link the frontal cortex to the 

Central Autonomic Network. As such, the HRV is a reliable index of the CNS-ANS 

integration [3]. A general overview of these connections is presented in Figure 1.3. 

These pathways play a central role in heart rate regulation as a response to emotional 

and cognitive stimuli [3]. 
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Figure 1.3: Central control of the HRV. Adapted from [3]. 

 

1.2.2  The electrodermal activity 

EDA measures the changes in the skin conductivity generated by the secretion of 

sweat from the glands and the filling of the ducts [10]. The sweat rises in a varying 

number of ducts (shown Figure 1.4) and in different amounts, proportionally to the 

sympathetic activation. There are two types of sweat glands in the human skin: the 

apocrine and the eccrine. The apocrine are found in the armpits and the genital area. 

The eccrine are present in most of the body surface and are primarily involved in 

thermoregulation. These glands, particularly those located on the palms of the hands 

and the soles of the feet, are also responsive to a wide range of stimuli and have been 

more intensely studied. 
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Figure 1.4: The eccrine sweat gland anatomy. From[4]. 

 

The skin is exclusively innervated by the sympathetic nervous system. The review by 

H. Critchley provides a neurophysiological explanation of the mechanisms that 

produce EDA [11]. The author analyses the different brain regions that have been 

proven to be related to electro dermal responses. These areas, which are sensitive to 

different stimuli, generate electro dermal responses using different pathways. 

Nevertheless, identifying the specific neural pathways involved requires the use of 

brain imaging techniques and is not possible using standard EDA recordings. 

EDA is one of the most used response systems in psychophysiology [4], probably 

because of its ease of measurement and sensitivity to psychological states. A skin 

conductance response (SCR) can be measured as a reaction to a single discrete 

stimulus, which makes it a highly discriminable response. The latency between 

stimulus presentation and SCR onset is about 1-3 s [4].  

Both stimuli that are unexpected and determine a transition from automatic to 

controlled processing and stimuli that are experienced as relevant and determine an 

allocation of resources are known to elicit SCRs. Two main typologies of studies can 

be identified: studies that investigate EDA as a reaction to the presentation of 

discrete stimuli, such as sound bursts or images, and studies that look for non-

specific responses obtained during the presentation of chronic stimuli, such as 

performing a task. 
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1.3 Extraction and analysis of the signals of interest 

This chapter briefly presents the signals of interest in this thesis, namely the heart 

rate variability, the electro dermal activity and the respiratory signal, and some of 

their most common quantitative indices. 

 

1.3.1  Heart Rate Variability 

The HRV signal, also called RR series or tachogram, is the time series of the distances 

between consecutive heartbeats, measured on a time window of the desired length. 

The interval between two QRS complexes is also called normal-to-normal or NN 

interval [12].  

The HRV can be extracted from the ECG using, for instance, the Pan Tompkins 

algorithm [13]. A single channel recording is sufficient for this purpose, so it can be 

obtained with as little as three electrodes, typically placed so as to capture the first 

lead of the Einthoven triangle [14]. 

Alternatively, PCG sensors or even high-quality videos of the face can be used 

[15],[16].  

Figure 1.5 shows a typical ECG on which the peaks have been identified and used to 

create a RR series. 

 

 

Figure 1.5: ECG signal and corresponding RR series. Adapted from [17]. 
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The HRV signal can be considered as an impulse train in which the heights represent 

the time distances between heartbeats [18]. Such representation, called interval 

spectrum, is one of the possible solutions proposed to allow the frequency analysis of 

the HRV signal [19].  

Features can be extracted in the time domain, in the frequency domain or with a non-

linear approach. The time windows can be classified as ultra-short-term (between 2 

and 5 minutes), short-term (around 5 minutes) and 24-hours measurements [20]. 

 

1.3.1.1 Time domain and non-linear analysis 

The time domain indices are statistical measures of the HRV signal computed on a 

time window. The length of the window can vary widely, having care that the 

measurements obtained on different time windows are not directly comparable and 

estimate different physiological processes. The window should also be long enough 

to allow for a robust estimation [20]. 

The most widespread time domain indices used in literature are:   

• SDNN: the standard deviation of the NN interval. A time window of 5 

minutes for short term recordings and 24h for long-term recordings is 

recommended for the computation of SDNN [20], even if different window 

lengths have been proposed in the literature. It should be noted that SDNN is 

mathematically equal to the total power of the signal, which can be also 

calculated from the spectral analysis thanks to the Parseval theorem.  

• RMSSD: the square root of the mean squared difference of successive NN 

intervals. It is a measure of high frequency variations in heart rate so short 

term measurements of around 5 minutes are preferred. It is an index of 

vagally mediated control of the hearth that highly correlates with the power in 

the high frequency band calculated through spectral analysis 

• pNN50: the proportion of NN intervals greater than 50ms on the selected time 

window. It is strongly correlated to RMSSD, which should be preferred thanks 

to its superior statistical properties [12]. 

It has been experimentally shown that the HRV presents non-linear characteristics 

[21]. In particular, it is self-similar, i.e. present the same characteristics at different 

scales, within a certain range. This property, which is typical of many physiological 

systems, is called fractality and can be quantified through non-linear analysis [22]. 

Among the methods that have been proposed in the literature to quantify non-linear 

dynamics from the HRV most must be conducted on long series (i.e., at least 24 

hours) to produce meaningful results. The entropy, which in information theory is 
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defined as the amount of information produced [23], also requires long series to be 

estimated. However, a measure of complexity closely related to the entropy called 

sample entropy (SampEn) can be estimated on short segments.  

SampEn is actually a set of statistics defined as “the negative natural logarithm of the 

conditional probability that two sequences similar for m points remain similar at the 

next point” the probability is estimated without counting self-matches [24]. The more 

self-similar a series is, the lowest is the value of SampEn. 

 

1.3.1.2 Frequency domain analysis 

In the frequency domain features are extracted from the Power Spectral Density 

(PSD) of the signal. In short-term recordings, three main spectral components can 

usually be identified in the spectrum. One in the very low frequencies (VLF) i.e. 

<0.04Hz, one in the low frequencies (LF) i.e. between 0.04 and 0.15Hz and one in high 

frequency (HF) i.e. between 0.15 and 0.4Hz. An example of power spectrum is 

depicted in Figure 1.6. 

 

Figure 1.6: Typical HRV spectrum. Adapted from [25] 

The most used features are the power in the three frequency bands in absolute and 

normalized units, the ratio between the power in LF and HF (LF/HF) and the total 

power of the spectrum.  

The distribution of power in these frequency bands reflects variations at the level of 

the ANS. The interpretation of the VLF is the most dubious, especially for very short 

recordings (<5 minutes) in which its correct estimation is impossible, so this 

component is often discarded [12]. 

 The LF is mostly associated with the activation of the SNS but it should be noted that 

also the PNS system can be involved in this frequency band [26].  

The HF component is almost exclusively associated with the vagal activity and 

synchronization with the respiration, so it is considered a pure indicator of 
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parasympathetic activation.  

The LF/HF ratio is commonly used as an indicator of the sympathovagal balance. 

Despite the widespread diffusion of this index, some authors warn against its use 

[27],[28], mainly because the interaction of the ANS on the HRV is actually more 

complex and non-linear, especially in the LF band [28] which makes this index 

strongly biased [29]. 

Different methods for its estimation have been developed. The choice of the best one 

depends on the specific application and strongly affects the results. Approaches for 

frequency analysis of the HRV can be divided into parametric and non-parametric. 

Non-parametric methods rely on the Fast Fourier Transform of the signal, with 

appropriate expedients to reduce the variance of the estimation, such as the Welch 

method and the Bartlett method.  

Parametric methods rely on the assumption that the signal can be represented as 

generated by a mathematical model which takes in input a white noise. The family of 

the model and its order must be decided a priori and strongly influence the quality of 

the estimation. The parameters of the model are calculated from the signal and used 

to compute the power spectrum. In the case of HRV, the most used family of models 

is the auto regressive (AR), and the order needs to be optimized according to the 

characteristics of the signal and the algorithm used. Typical values range from 6 to 22 

[30]. 

The extraction of HRV parameters on time windows rely on the assumption of signal 

stationarity and, therefore, do not consider transient events that could carry 

meaningful information. In addition, they cannot be used for online processing. To 

keep track of fast changes time-frequency analysis of the HRV signal is more 

appropriate. The most common approaches are: non-parametric methods based on 

linear filtering such as the Short-Time Fourier Transform or the Wavelet Transform, 

non-parametric quadratic representation, such as the Wigner-Ville distribution and 

parametric methods with time-varying coefficients [31], [32], [33]. 

Time-variant algorithms offer a fundamental advantage over classical batch methods 

for their ability to adapt to always changing physiological conditions and can be 

used in online applications. 

 

1.3.2 Respiratory signal 

The respiratory signal can be acquired in many different ways [34]. Among them 

several are comfortable and non-invasive, for example chest straps that measure 

movements, strain sensors [35], sensorized T-shirts equipped with piezoresistive 
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electrodes and systems based on measurements of respiratory sounds [36]. The 

respiratory signal can also be extracted from the ECG [37]. In Figure 1.7 is reported an 

example of a respiratory signal recorded with a sensitive girth sensor. 

 

Figure 1.7: Respiratory signal recorded with a girth sensor 

Some of the most commonly used features that can be extracted from the respiratory 

signal measured with wearable devices are the respiratory rate, the inspiratory and 

expiratory time, the variance of the respiratory signal [38],[39]. 

Spirometric devices, that can be used to obtain information about gas exchange and 

metabolic activity, are not discussed in this thesis. 

 

1.3.2.1 The respirogram 

The respiratory signal is also analysed with the HRV signal to assess their 

dependencies. To do so, from the respiratory signal it is possible to create a new 

signal synchronous with the tachogram taking one value of the respiratory signal for 

each QRS peak of the ECG. This signal is called respirogram and, under normal 

conditions, contains practically the same information of the whole respiratory signal 

even if it is irregularly sampled [40]. An example of a tachogram and respirogram 

series is presented in Figure 1.8.  
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Figure 1.8: ECG and respirogram and respective tachogram and respirogram [40]. 

 

1.3.3 Multivariate Analysis: HRV and Respiratory signal 

The heart rate, arterial blood pressure and respiration are not independent, due to 

multiple mutual interactions. These signals, or time series, can be analysed 

simultaneously to assess and quantify their relations, through for example cross-

correlation analysis or, in the frequency domain, computing the cross-spectrum.  

However, the simple correlation has some limitations. For example, it cannot be used 

to assess causality, since it does not provide directionality for the effect, neither it 

excludes that two series have a common effect. Results are also difficult or impossible 

to interpret when feedbacks occur.  

A deeper understanding of the HRV mechanisms can be obtained using models that 

consider the complex interactions among the systems that act on the regulation of the 

heart. 

These interactions can be quantified by means of Autoregressive Multivariate 

(MVAR) analysis [8],[41],[42]. The use of models allows to separate feedforward and 

feedback actions, identify oscillation sources, evaluate correlations along specific 

directions, decompose signals and spectra. Physiological knowledge can be used to 

guide the choice of the model structure using a grey-box approach. On the other 

hand, the use of interpretative models allows quantifying and better interpret 

physiological interactions. The parameters can be estimated using least-squares 

algorithms [31, chapter 5]. These models can be used also for non-stationary signals 
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with adaptive extensions [41].  

The causal interactions (e.g., of the respiratory signal on the HRV) can be assessed 

from MVAR models relying on the definition of Granger causality. Indeed, C. 

Granger provided a useful definition of causality based on the assumption that if a 

stochastic time series X is causing another stochastic time series Y the knowledge of 

past values of X will help in predicting Y [43]. The definition allows to create partial 

spectra and define the causality coherence. It should be noted that this is not a 

definition of “real” causality and to avoid confusion the term “Granger-causality” is 

more appropriate. Nevertheless, it is an useful definition that found many 

applications in the biomedical field. 

However, these methods can fail in the case of low-quality signals or in situations 

that do not satisfy the modelling assumptions, for example because of big inter-

subjects variations. 

 

1.3.4 Electrodermal Activity 

The most common way to measure EDA is to apply two electrodes close to each 

other on the skin with a small resistor in series with the skin and hold constant the 

voltage between the two. Since the resistance of the skin is several orders of 

magnitude higher than the resistance used by the sensor the latter can be considered 

negligible. Therefore, the conductance on the skin, which is the inverse of the 

resistance, is straightforwardly extracted from the measured current using Ohm’s 

law 𝐼 = 𝐸
𝑅𝑝⁄ , where E is constant. This technique is called “exosomatic recording” 

[44].  

Two main components can be identified in the recorded signal and are represented 

in Figure 1.9:  Skin Conductance Level (SCL) and Skin Conductance Response (SCR).  
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Figure 1.9: Decomposed EDA signal, adapted from [45]. 

 

SCL is the tonic component, characterised by slow variations. SCR is the phasic 

component and its variations are much faster and have lower amplitudes compared 

to SCL. These variations can be triggered by an external stimulus or happen 

spontaneously; in this case they are also called “nonspecific SCR” (NS-SCR). The SCR 

component is the most used to assess psychological states [4].  

 

1.3.4.1 Time Domain analysis 

The EDA signal is typically analysed in the time domain, in which many 

measurements can be conducted. Features can be calculated on the decomposed 

tonic and phasic signals or directly on the total EDA signal. 

From the total signal, some statistics such as mean value, variance (or standard 

deviation), skewness and kurtosis can be computed [46]. 

The most common features related to the phasic component are:  

• the amplitude, defined as the increase in conductance after the stimulus onset; 

• the latency, defined as the time interval between stimulus onset and SCR 

initiation;  

• the rise time, i.e. the interval between initiation and peak; 
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• the half recovery time, that is the interval between the peak and the 50% 

recovery in amplitude; 

• The frequency of SCR events. This feature is computed for NS-SCR.  

A graphical representation of the features mentioned that can be computed on a 

single SCR is presented in Figure 1.10. 

 

 

Figure 1.10: Adapted from [4]. 

Benedek et al. also proposed as feature the area under the phasic driver, called 

Integrated Skin Conductance Response (ISCR) [47]. 

Separating the tonic and phasic components and identifying the single SCR peaks is 

vital for a correct analysis of the EDA signal in the time domain. Visual inspection or 

simple automatic comparison of individual peaks against a baseline is often 

impractical. For this reason, several more advanced model-based methods have been 

proposed for the tonic/phasic decomposition of EDA. 

 Bach et al. proposed a linear convolution model which assumes that SCRs are 

generated by a system that is linear and time-invariant [48]. 

Benedek et al. developed a non-negative deconvolution method called “Discrete 

Decomposition Analysis”, which is available in Ledalab, a MATLAB toolbox [49]. 

The algorithm assumes that SCRs have a shape that varies among different subjects 

but is approximately constant within the same subject and can be represented with a 

biexponential function which parameters  𝜏1and  𝜏2 have to be estimated. Thus, SCRs 

can be seen as the response of a system to a driver function composed of positive 

impulses, which has to be estimated. The remainder is interpolated using a cubic 

spline to estimate the tonic activity. This is performed starting with a predefined set 

of parameters which is then optimized re-running the algorithm with many different 

parameters set. The advantage of this methodology is that peaks can be detected on 
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the driver, thus solving the problem of overlapping SCRs that cannot be separated by 

simply imposing a threshold. The same group also proposed a more robust variation 

of the algorithm, called “Continuous Decomposition Analysis” (also available in 

Ledalab) that relaxes the condition of non-negativity which will be discussed in 

chapter 3.3.1.  

A different algorithm called cvxEDA which perform a non-negative decomposition 

of the EDA signal by means of convex optimization was also proposed [50]. The 

algorithm computes a phasic driver similarly to the beforementioned methods but 

describes the EDA signal as a linear combination not only of phasic and tonic 

components but also of noise.  

 

1.3.4.2 Frequency Domain analysis 

Posada-Quintero et al. have recently proposed to study electrodermal activity in the 

frequency domain analysing the Power Spectral Density of the signal [51]. The 

activity of the sympathetic nervous system can be discerned as a spectral peak 

localized in the low frequency band (0.045 – 0.25Hz). The proposed index, called 

EDASymp, was found to be responsive to sympathetic activation induced under 

orthostatic, physical and cognitive stress. Rocco et al. applied the index to the 

exploration of the physiological response to an online gambling task [52] and 

obtained from EDASymp comparable discriminative power compared to classical 

HRV features.  

Posada-Quintero et al. introduced also a new more sensitive index, similar to 

EDASymp, called TVSymp [53]. This index has the advantage of being time-variant, 

allowing for better tracking of the sympathetic tone.  

The analysis of the EDA signal in the frequency domain was proposed to overcome 

one of the main limitations of the analysis of HRV in the frequency domain, i.e. the 

impossibility to perfectly isolate the sympathetic component in the LF band [51]. 

Ghiasi et al exploited further the EDA time-frequency analysis creating a new index 

of sympathovagal balance [29]. The index is meant to overcome the limitations of 

LF/HF produced by the parasympathetic influence in the low frequency band by 

substituting EDASymp to the LF component. Since the skin is exclusively innervated 

by the SNS, EDASymp is expected to be a more reliable index of sympathetic 

activation. The analysis was carried out in time-frequency using a standard Short 

Time Fourier Transform for the EDA series and point-process modelling for the HRV 

series. In the preliminary study, the index yielded satisfactory results. 

The first index of EDA in the frequency domain proposed in the literature, 

EDASymp, was calculated applying the Welch method on the phasic component 
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obtained high passing the recorded EDA signal. The index does not allow to study 

frequency variations in time. The time-frequency representation needed to compute 

TVSymp was obtained via variable frequency complex demodulation, a time-

frequency method characterized by very high resolution. 

A method for visualizing the EDA signal inspired by the spectrogram called EDA-

gram based on the sparse decomposition of EDA was also proposed [54]. The new 

visualization should allow for a more interpretable feature extraction. 

Regardless of the method used, both in time and in the frequency domain, for a 

proper interpretation of the data it should be noted that EDA responses vary widely 

between subjects and suffer from habituation. 
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1.4 Applications in cognitive tasks 

Some of the indices reported in the previous chapter have already found some 

applications in the analysis of cognitive functions. Several methods and approaches 

have been followed yielding heterogeneous results. This chapter contains a brief 

literature review of some of the methods used and the findings obtained. 

 

1.4.1 The HRV and respiratory signals 

Multiple authors reported that subjects with higher levels of HRV at rest usually 

perform better in cognitive tasks and that during the task can be observed a 

reduction of HRV and an increase in heart rate (HR). Thayer et al conducted several 

studies on the topic [3]. The stimuli used to elicit cognitive effort were the Stroop test 

[55] and the N-back test [56], both in normal and stressful conditions. Similar results 

were obtained by Hansen et al. [57] that proposed two tasks, one measuring the 

working memory (2-Back Test) and the other measuring continuous performance (a 

more complex test involving memory, reaction time and mental arithmetic) [58].  

Forte et al. published a systematic review in which the relationship between resting 

HRV and cognitive function was investigated. Only studies including cognitive 

measures, measures of the HRV, healthy subjects and that contain measurements at 

rest were included. Among the 1417 potential articles identified only 20 survived the 

eligibility criteria and involved a total of 19431 people. All the selected studies found 

a positive correlation between resting HRV and cognitive performance, except for 

one study that did not find any correlation. Among the HRV measures reported the 

most frequent is HF, which is an indicator of vagal tone [59]. The studies from 

Thayer et al. and Hansen et al. used RMSSD as a measure of HRV, which is an index 

that highly correlates with HF. A stronger parasympathetic tonic control of the heart 

seems therefore to be associated with a better functioning of self regulatory 

mechanisms that allow for a better and quicker response to the environmental needs. 

However, not all the results reported are consistent with the hypothesis that higher 

resting HRV is associated with better performance. Alba et al. investigated the 

association between the variations of EEG functional connectivity and HRV in 

resting state and looked for correlation with the results of a cognitive task performed 

[60]. The results obtained disagree with the previously mentioned studies: subjects 

with higher levels of HRV (calculated as LF, HF, RMSSD and SDNN) at rest made 

more mistakes during the cognitive task. The authors hypothesised that the 

association between resting HRV and cognitive performance may depend on the 

type and difficulty of the cognitive task. 



20 1. Introduction 

 

 

Backs et al.[61] found a significant difference (p<0.05) in the LF band of the heart rate 

variability, used as a measure of sympathetic tone, between two different difficulty 

levels of a working memory task. There also appears to be a widespread consensus 

that measures of vagally controlled HRV negatively correlate with the level of 

cognitive workload and stress, as reported among others by [62],[57] and [63]. 

These findings suggest that differences in HRV among different subjects may be used 

as a useful predictor of cognitive flexibility.  

Alba et al. in the same study mentioned before also found, using partial correlations 

and multiple linear regression, that the correlation is only significant when mediated 

by neuronal oscillations (i.e., the correlation between HRV and errors is significant 

while partial correlation is not), a finding in agreement with the neurovisceral model 

proposed by Thayer et al. 

All the studies mentioned in this chapter apply batch methods for the computation of 

the HRV. These methods have the limitation that they do not allow to study 

variations of HRV inside the time window selected, which must last at least a few 

minutes. Moreover, none of the studies used multivariate analysis to assess 

interactions among signals. 

Grassmann et al. report that mentally demanding tasks generally increase the 

respiratory rate but do not affect the respiratory amplitude [64]. The result is that 

cognitive load appears to increase gas exchange, consistently with the higher 

metabolic demand induced by the cognitive activity. 

 

1.4.2 The Electrodermal Activity 

According to [4], performing cognitive tasks determines an increase in SCR: the 

sympathetic activation is explained as an allocation of resources to the task both 

because of the reaction to stress and the activation of attentional mechanisms. 

Indeed, patients with ADHD have reduced skin conductance responses to errors, 

which has been hypothesised could be caused by reduced processing of error 

significance [65]. 

Munro et al. [66] reported a significant increase in NS-SCR and SCL during an 

attentional task (0-Back test) compared to rest. Hinson et al. found a positive 

correlation between the level of SCR before the decision and the performance in a 

gambling task [67]. The relative level of Skin Conductance Responses also appeared 

to be higher for the good option. The authors made the hypothesis that higher levels 

of skin conductance are associated with perceived saliency, which produces an 

increment in arousal. 
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Some studies that include EDA frequency features and cognitive tasks have been 

conducted lately by H. Posada-Quintero et al. The authors published three articles 

that analyse EDA activity during cognitive tasks in 24-hours sleep deprivation 

[68],[69],[70]. Non-specific and time-frequency indexes of skin conductance were 

found to be correlated with cognitive performance. The correlation was significant 

only for the phasic component. 

However, the number of studies that investigated electro dermal activity during 

cognitive tasks is limited compared to the heart rate variability.  
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1.5 Open problems 

Numerous studies have proved that bio-signals related to the ANS can be used to 

assess psychological states. The results presented bode well that applications that use 

bio-signals for monitoring mental effort and stress in mentally demanding work 

conditions could become a reality in the foreseeable future.  

However, some issues remain to be solved.  

1- There is still a considerable dispersion of the knowledge in the field and some 

inconsistent results. Moreover, the literature lacks studies that investigate 

EDA responses during cognitive activities and few studies concerning the 

analysis of EDA in the frequency domain were conducted in general. No 

studies presenting an online analysis of EDA in the frequency domain were 

found in the literature review conducted.  

The interrelations between the HRV and the EDA signal also remain mostly to 

be investigated. Practically applicable systems should obtain satisfactory 

performance in discriminative power. It is expected that combining the 

information provided by HRV and EDA could enhance the performance of the 

system. Knowledge of the analogies and differences in the information 

provided by different sub-systems of the ANS could be exploited to interpret 

the results and design better models for data processing and feature 

extraction. On the other hand, our knowledge of the psycho-physical 

processes involved in cognitive processes is still partial. Interpretative models 

can be used for a better understanding of these processes and explain the 

contradictions that arose in the literature. 

 

2- Very different protocols, methods and signals have been employed. Some of 

the methods presented are fit for research studies in controlled conditions but 

cannot be applied in real-life conditions for a variety of reasons. The most 

important identified are:  

 

a. The standard frequency domain analysis of HRV can produce 

unreliable results, for example when the fixed frequency bands do not 

correctly fit the real dynamics of the autonomic control, which often 

happens when the a-priori hypotheses are not respected. The classical 

subdivision of frequency bands for the assessment of sympathetic and 

parasympathetic control of the heart rate reccomended by [12] is based 

on the assumption that the respiratory frequency, which is known to 
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influence the HRV through the mechanism of the RSA, lies in the HF 

band (0.015 – 0.4Hz). However, this is not always the case, even in 

physiological conditions. In some cases, the respiratory rate can fall in a 

lower range of frequencies, invading in this way the LF band, or can be 

higher than 0.4 Hz, typically during high-intensity exercise. These 

effects can significantly affect the results, e.g., including RSA, which is a 

phenomenon produced by the activity of the PNS, in the LF power 

computation, which is generally considered an index related to the 

activity of the SNS. 

 

b. Most studies in the frequency domain assume the stationarity of the 

signal, which is a hypothesis that odds with the practical need to track 

variations in time. Indeed, there is a need for robust, highly 

discriminative methods that can track the fast changes of the autonomic 

regulation. This is true for both the HRV and the EDA signals. Another 

desirable property of practical applications is the ability to give results 

in real-time. Yet most of the methods presented can only be applied 

offline and some of them, especially in the frequency domain, can only 

give results related to relatively long time-windows. 

 

Some methods to solve problem 2 have already been proposed.  

Problem 2.a can be addressed including the respiratory signal in the analysis. Goren 

et al. [71] proposed an algorithm for the automatic detection of time-varying spectral 

boundaries. Bailón et al. [72] proposed to adapt the high frequency band, centring it 

at the respiratory frequency. However, when the respiratory frequency is too low the 

LF and HF band may overlap. Hernando et al. [73] showed that adapting the bands 

according to the respiratory frequency increases the discriminative power of the 

HRV frequency features but had to exclude from the analysis the time windows in 

which the bands overlapped for more than 50%, leaving open the problem of finding 

methods robust enough to be applied in every physiological condition. Varon et al.  

[74] proposed an approach based on orthogonal subspace projections to separate 

linear influences of the respiration on the heart rate. The separation is not frequency-

dependent and does not suffer from the problem of bands overlapping. Another 

possible technique to remove the respiratory component from the HRV is by means 

of appropriate parametric modelling that includes the respirogram, as described in 

[40]. The authors also proposed the new indices “Coherent power” and “Incoherent 

Power” that measure the coherence between the respirogram and the tachogram. 
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These measures of sympathovagal activity have the advantage that they are not 

dependent on the selection of frequency bands.  

To address problem 2.b time-frequency methods can be applied. In particular, 

parametric time-variant models have the advantage that they can be applied in 

online applications. 

However, no studies that make use of these strategies in cognitive applications were 

found in the literature. 
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1.6 Analysis of biosignals in software engineering: the 

BASE project 

Coding is a complex task that involves heterogenous expertise including language 

processing, logical thinking and mathematical computations. Developers must read 

and interpret the code on different abstraction levels [75]. It is therefore a suitable 

task to be used in studies that investigate cognitive functions. 

The doctoral thesis of Sebastian C. Müller [38] provides an investigation of the 

possible applications of biometric sensors to increase developers’ productivity using 

machine learning. A wide number of different biological signals were extracted and 

used to develop classification models. Biometric measurements were used to assess 

the perceived difficulty and to identify code quality concerns, basing on the 

assumption that more difficult code is more likely to contain bugs. To extend the 

validity of the findings the studies were conducted both in lab conditions and on the 

field (i.e., working place).  

Gonçales et al. published in 2019 a systematic mapping study focused on measuring 

the cognitive load of software developers to overcome the dispersion of the 

knowledge related to this problem [75]. The majority (18 out of 33) of the studies 

analysed used the EEG, most of the others used a combination of signals. Among the 

autonomic signals, the most frequently used were the ECG, Blood Volume Pulse 

(BVP) and EDA. Many of these studies aimed at developing machine learning 

techniques based on a set of metrics to identify the level of mental workload. The 

authors warn that the precision and the accuracy of the models identified in the 

articles that were analysed for the review is still too low for realistic scenarios.  

The BASE project is meant to perform a more comprehensive analysis based on 

biosignals and neuroscientific knowledge. The rationale is not only to develop 

models for classification but also to better understand the physiological mechanisms 

that underly the production of bugs. Two reasons are behind the project: 

• Software writing is an intensive human-made process that is consequently 

subject to errors that are difficult to find and have unpredictable 

consequences. The Software Fail Watch from Tricentis estimated that the 

global cost of software failures was about 1.7 trillion US dollars in 2017 alone 

[76]. 

• Recent studies show that software developers tend to commit a limited set of 

bug types, which account for most of the errors [77],[78]. The hypothesis that 

bugs have a causal link with a limited number of contexts that increase the 
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probability to make mistakes justifies the use of this information to improve 

software quality [79]. 

The key idea of the BASE project is to investigate the physiological mechanisms that 

could lead to the generation of bugs monitoring programmers during tasks of code 

comprehension and code writing. This objective is pursued by integrating different 

biological signals and relating the physiological state of the programmer with the 

line of code with the final goal to use the findings to improve software quality using 

a biofeedback augmented approach. 

Both central and autonomic signals are investigated. Particular attention is devoted 

to signals that can be recorded with wearable devices and their connection with the 

brain mechanisms that generated them. The main reason why the analysis of these 

signals is especially important is that they can be easily acquired in working 

conditions. 

Two research studies in the BASE project were conducted: study one took place at 

Universidade the Coimbra [79],[78] while the second at Politecnico di Milano [80]. 

Some findings have already been published in the context of the BASE project. 

Significant variations have been observed in the power spectral density of the EEG 

during software development [80]. Significant variations were also found in the 

pupil diameter during code inspection [79]. HRV features were used to build 

classification models capable to distinguish code snippets of different complexity 

with high accuracy [78]. The same group at the University of Coimbra investigated 

the role of the insula in bug detection using fMRI [81] demonstrating it plays a 

central role in the “Eureka” moment of bug discovery. 

 

1.6.1 Study 2 of the BASE project 

The original objective of the present thesis was to continue with the acquisitions of 

the study 2 of the BASE project to enlarge the dataset and use it to conduct all the 

analyses. The protocol included the acquisition of central (i.e. EEG and fNIRS) and 

autonomic signals (ECG, EDA, respiratory signal). An extensive description of the 

protocol is reported in chapter 2.1. 

However, the acquisitions were stopped due to the ongoing COVID-19 pandemic 

before the minimum number of subjects that had been stated in the experimental 

protocol design was reached. In addition, the protocol required the participants to 

type on a keyboard using both hands. This requirement seriously affected the quality 

of the recorded EDA signal, which had to be discarded and was not used in future 

analysis. 
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A second simpler protocol called N-Back was added to overcome these limitations 

and obtain a more extensive analysis with a focus on the Electro Dermal Activity and 

its relation with the other autonomic signals of interest (HRV and respiratory signal). 

Indeed, understanding if HRV and EDA give similar or complementary information 

on the activity of the ANS is one of the goals of this work. The protocol contains a 

cognitive task (N-Back test) and other autonomic stressors, as will be discussed in 

chapter 2.2. The protocol was designed in such a way that the participants never had 

to move the hand on which the GSR electrodes were applied. Visual inspection 

confirmed that the quality of the signal collected for the second protocol is 

satisfactory. The description of this protocol is reported in chapter 2.2. 
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1.7 Objective of the thesis 

The present work is focused on the analysis of the Autonomic Nervous System 

signals (i.e., ECG, respiratory signal and skin conductance) during cognitive tasks to 

investigate the feasibility of using autonomic indices for the assessment of cognitive 

load and comparing different methods for their analysis. 

Two main goals were identified to guide the analysis: 

 

1. Identify the most appropriate existing models for the extraction of 

quantitative indexes of mental effort and cognitive load and explore new 

techniques. 

For this purpose, a bivariate time-variant autoregressive model was selected for the 

analysis of the HRV and the respiratory signals acquired with the two protocols. 

Particular attention was spent on the choice of the most suitable hyperparameters 

and variations on the original model. Concerning the EDA signal, a time domain 

analysis was conducted using Continuous Decomposition Analysis. For the analysis 

in the time-frequency domain, instead, a time-variant approach was adopted and 

compared with the standard methods used in the literature. 

 

2. Investigate the EDA signal during cognitive tasks and evaluate its relations 

with the HRV and respiratory signals.  

This objective was pursued in two ways:  

Firstly, the HRV signal was cross-correlated with the EDA phasic component. The 

analysis in time domain allowed to identify the time lag between the two signals 

while the analysis of the cross-spectrum was used to identify if the two signals 

covary at specific frequencies.  

Secondly, the features obtained from the HRV and respiratory signals were 

correlated with the ones extracted from EDA to evaluate if they provide similar 

information about the sympathetic activation. 
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2. Data Acquisition 

2.1 BASE Protocol 

Data were collected at the Centre for Ultrafast Science and Biomedical Optics 

(CUSBO), Politecnico di Milano, during the study 2 of the BASE project. The 

acquisitions started in September 2019.  

The minimum number of volunteers was expected to be 30. However, the ongoing 

COVID-19 pandemic abruptly halted the acquisitions. Ultimately, only sixteen 

healthy subjects were enrolled in the study and screened to check that they respected 

the eligibility criteria.  

According to the inclusion criteria, subjects had to be at least 18 years old and score 

at least 4 points out of 10 in a technical questionnaire meant to assess their coding 

skills in C programming language. Subjects with cardiac implanted devices, metallic 

prosthesis or known mental conditions were not eligible. 

 

2.1.1 Experimental setup 

Several biomedical signals and images were simultaneously recorded from the 

subjects and are listed in Table 2-1.  
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Signal / Image Sampling frequency Equipment 

Electrocardiogram 

(ECG) 
2048 Hz 

ProComp Infiniti 

SKU: T9306M 

SKU: T3425 

Electrodermal activity 

(EDA) 
256 Hz 

ProComp Infiniti 

SKU: SA9309M 

Respiration activity 256 Hz 
ProComp Infiniti 

SKU: SA9311M 

Screen recording  
SensoMotoric 

Instruments, SMI 
Pupilogram and eye 

movements 
60 Hz 

Electroencephalogram 

(EEG) 
256 Hz 

64-chan EEG cap + SD 

LTM EXPRESS, 

Micromed S.p.A. 

Functional Near 

Infrared Spectroscopy 

(fNIRS) 

1 Hz 

Machine designed and 

developed at the 

Department of Physics, 

Politecnico di Milano 

Video Recording 30 fps  Logitech webcam 

Table 2-1 Instrumentation used in BASE 

Data related to the ANS, namely ECG, Respiratory signal and EDA were collected 

using the ProComp Infiniti [82], an 8-channel polygraph that allows for their 

synchronous acquisition. 

Data of the respiratory signal and EDA were resampled to 2048Hz using previous 

neighbour interpolation to allow synchronization with the ECG signal. The data were 

then transferred to a PC in .txt format. The protocol was implemented in MATLAB. 

The synchronization of signals is fundamental for multivariate analysis. The start of 

the experiment was signalled using a trigger generated by the computer connected to 

the NIRS. The trigger is sent to the PC that runs the MATLAB script containing the 

protocol, the EEG acquisition system and to the ProComp, which saves it on a 

dedicated channel. The exact duration of the single tasks was saved by the protocol 

script on a dedicated timestamp file.  

The screen used by the volunteers was recorded for the entire duration of the 

experiment. 
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2.1.2 Experimental Protocol 

Data were acquired in a calm and relaxed environment. Before the beginning of the 

experiment, the participants were informed of the study objectives and protocol, in 

particular specifying that all data are treated anonymously and no judgment on the 

performance is made. It was also stressed that the procedure is non-invasive, safe 

and painless. Subjects were asked to sign the informed consent, which had been 

previously accepted by the ethical committee at Politecnico di Milano. The tasks were 

then explained and the subjects were taught how to use the controls and the 

equipment.  

The first step of the protocol is the acquisition of a baseline for EEG and fNIRS. The 

subjects were asked to type randomly on the keyboard with their eyes closed for 2 

minutes while EEG and fNIRS were collected. 

The experiment is composed of two runs that were conducted in sequence. Before the 

beginning of each run the eye calibration took place. A schematic representation of 

the experimental protocol is reported in Figure 2.1. Three different tasks were 

conducted in each run, in random order: 

Text reading –read a short text in natural language (English). This task lasted for 60 

seconds. Two different texts were presented (one for each run, randomly assigned). 

Code reading – read a short snippet of simple code in C language. This task lasted 

for 5 minutes. Two different snippets were proposed (one for each run, randomly 

assigned). 

Code programming – develop a function in C language in Eclipse environment. 

Subjects were allowed to stop this task after 5 minutes. The maximum time was 20 

minutes. Two tasks of different difficulty were presented in random order (one for 

each run). The difficult task is called RLE and the easy task is called SPLIT.  

 

Before each task and after the completion of the last task a relaxation phase that 

lasted for 30 seconds was conducted. During this phase, called “fixation”, subjects 

were asked to watch a black cross on a grey screen and relax.  

After each run an Experiment Evaluation (EE) form was presented. The form, which 

took about 1 minute to be filled, asked to give a score from 0 to 5 to the following 

experiences: Mental effort, Task fulfilment, Pressure with time and Discomfort. 
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Figure 2.1: Schematic representation of the BASE protocol. 

fNIRS setup
< 10 mins

Calibration screen

Eye tracker
≈ 60s

Empty screen
Fixed cross

30s 

Step 2
Text reading /

Code reading /
Code 

programming
?

Empty screen
Fixed cross

30s 

Step 4
Text reading /
Code reading /

Code 
programming

?

Empty screen
Fixed cross

30s 

Step 6
Text reading /
Code reading /

Code 
programming

?
Code programming

1200s

ALGORITHM

Split

ALGORITHM

RLE 
Compression

Random 
selection

Random 
selection

Random 
selection

Random 
assignment

2 RUNS
32 mins each

Tasks stack

Text reading (Natural language)
60s

Lorem ipsum dolor sit amet, consectetuer adipiscing
elit. Aenean commodo ligula eget dolor. Aenean

massa. Cum sociis natoque penatibus et magnis dis 

parturient montes, nascetur ridiculus mus. Donec
quam felis, ultricies nec, pellentesque eu, pretium

quis, sem. Nulla consequat massa quis enim. Donec
pede justo, fringilla vel, aliquet nec, vulputate eget, 

arcu. In enim justo, rhoncus ut, imperdiet a, venenatis

vitae, justo. Nullam dictum felis eu pede mollis
pretium. Integer tincidunt. Cras dapibus. Vivamus

elementum semper nisi. Aenean vulputate eleifend
tellus. Aenean leo ligula, porttitor eu, consequat vitae, 

eleifend ac, enim. Aliquam lorem ante, dapibus in, 

viverra quis, feugiat a, tellus. Phasellus viverra nulla ut
metus varius laoreet. Quisque rutrum. Aenean

imperdiet. Etiam ultricies nisi vel augue. Curabitur
ullamcorper ultricies nisi. Nam eget dui. Etiam

Lorem ipsum dolor sit amet, consectetuer adipiscing
elit. Aenean commodo ligula eget dolor. Aenean

massa. Cum sociis natoque penatibus et magnis dis 

parturient montes, nascetur ridiculus mus. Donec
quam felis, ultricies nec, pellentesque eu, pretium

quis, sem. Nulla consequat massa quis enim. Donec
pede justo, fringilla vel, aliquet nec, vulputate eget, 

arcu. In enim justo, rhoncus ut, imperdiet a, venenatis

vitae, justo. Nullam dictum felis eu pede mollis
pretium. Integer tincidunt. Cras dapibus. Vivamus

elementum semper nisi. Aenean vulputate eleifend
tellus. Aenean leo ligula, porttitor eu, consequat vitae, 

eleifend ac, enim. Aliquam lorem ante, dapibus in, 

viverra quis, feugiat a, tellus. Phasellus viverra nulla ut
metus varius laoreet. Quisque rutrum. Aenean

imperdiet. Etiam ultricies nisi vel augue. Curabitur
ullamcorper ultricies nisi. Nam eget dui. Etiam

Code reading (simple | iterative)
300s

/* HelloWorld.java

*/

public class HelloWorld

{

public 

static void 

main(String[] args) {

System.

out.println("Hello 

World!");

/* HelloWorld.java

*/

public class HelloWorld

{

public 

static void 

main(String[] args) {

System.

out.println("Hello 

World!");

≈
6

4
 M

IN
S

<
1

0
M

IN
S

1 2

1 2

1 2

Rest / EE Form 
(180s)

Empty screen
Fixed cross

30s 

SE Form (60s)
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2.1.3 Manual Annotation 

The code programming task was manually labelled starting from the screen 

recordings into: 

• Read problem: the time spent by the participant to read the assignment, 

before starting to write the solution.  

• Writing: the time spent actually writing code. There may be multiple 

Writing sessions for each Code programmin task. 

• Thinking:  the time during which the subject was not writing and neither 

reading the assignment. It is assumed to be time spent thinking about the 

solution. There may be multiple “thinking” sessions for each “code 

writing” task. 

 

2.1.4 Dataset Validation 

Sixteen subjects participated in this study. The average age was 29, standard 

deviation 9.6. Twelve were males and 4 females. Among the sixteen subjects who 

participated in the BASE protocol, three subjects were discarded because the quality 

of the ECG signal was too low to identify the peaks, even after manual correction. 

The final dataset is therefore composed of thirteen subjects, each one of them 

performed two runs.  
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2.2 N-Back protocol 

The data related to this second protocol were collected at the B3 lab, Politecnico di 

Milano [83], specifically for the present thesis. The tasks were selected in order to 

have a sufficiently long baseline and already validated sympathetic and 

parasympathetic stressors to compare to the cognitive one. 

Thirty-one young, healthy subjects were enrolled in the study. The proficiency test in 

C was not performed since coding skills are not necessary for this protocol.  

 

2.2.1 Experimental Setup 

The signals acquired were: EDA, ECG, BVP and respiratory signal. For their 

acquisition was used the same instrumentation used for the BASE study, i.e., 

ProComp Infiniti. The specifications are reported in Table 2-2. 

 

Signal / Image Sampling frequency Equipment 

Electrocardiogram 

(ECG) 
2048 Hz 

ProComp Infiniti 

SKU  T9306M 

SKU  T3425 

Electrodermal activity 

(EDA) 
256 Hz 

ProComp Infiniti 

SKU  SA9309M 

Respiration activity 256 Hz 
ProComp Infiniti 

SKU  SA9311M 

Blood Volume pressure 

(BVP) 

256Hz ProComp Infiniti 

Table 2-2 Instrumentation used in N-Back 

 Before the application of the sensors the skin and the electrodes were cleaned using 

an alcoholic solution to improve the conductivity of the skin. The GSR sensors were 

applied on the non-dominant hand, which is the left one for all participants. 

The protocol was implemented in MATLAB and shown on a desktop connected to a 

personal computer. A second desktop, oriented to be visible only to the 

experimenter, was used to visualize the signals and monitor the experiment. 
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2.2.2 Experimental Protocol 

Before the start of the experiment subjects were asked to read and sign an informed 

consent. After that, volunteers were instructed about the protocol. The participants 

were also asked to remain as still as possible, in particular not to move the left hand 

to avoid artefacts in the acquisition of the skin conductance. 

The protocol is composed of 6 tasks: 

1. Relaxation: The participants were presented with a relaxing image of a sunset 

and asked to remain as still as possible. The stimulus lasted for 5 minutes. This 

phase is meant to relax the participants and serve as the baseline for further 

analysis. 

2. Sit: The participants were asked to remain seated and look at a black screen 

for 5 minutes. This phase was introduced to obtain a low-stress condition with 

no cognitive effort. 

3. Stand: The participants were asked to stand up and remain in a standing 

position for 5 minutes. The sit-to-stand was introduced as a “gold standard” 

reference for assessing sympathetic activation without any cognitive load. At 

the end of the 5 minutes, a message instructed the participants to sit down 

again. For this task the volunteers were asked to keep the hand relaxed on the 

thigh. 

4. Controlled respiration: The participants were instructed to breathe at a fixed 

frequency of 0.2Hz. Moving instructions (“breath-in”, “breath-out”) were 

presented on the screen in an intuitive fashion. 

5. Demo: A short snippet of a N-Back test was presented in order for the 

participants to get accustomed to the cognitive task. The signals acquired 

during this part of the protocol were discarded from future analysis. 

6. N-Back: The N-Back test is a cognitive task commonly used in literature that 

stimulates working memory and attention. During the designed protocol a 

sequence of letters was shown on the screen in random order, each letter 

appeared for two seconds. The participant were asked to “press the Enter key 

if the letter is equal to the letter shown N letters before or Backspace if it is 

different”. N is an integer that can vary and determines the difficulty. Since 

the number of letters proposed is always bigger than N the subjects were 

asked to answer many times and had to remember always-changing 

sequences of letters. Two consecutive sessions were proposed. For each 

session, four levels of difficulty (N=0,1,2,3) were presented in random order. 

Each level included 20 stimuli (not including the letters at the beginning when 

the number of letters proposed is still lower than N and the subject did not 

have to answer yet). Thus in total each volunteer had to guess 160 times 
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during the experiment. Four performance indices were saved for further 

analysis: number of correct answers, number of omission errors (i.e no 

answer), number of commission errors (i.e. wrong answer) and response time.  

A schematic representation of the protocol is depicted in Figure 2.2. 

 

 

Figure 2.2: Schematic representation of the N-Back protocol 

 

2.2.3 Dataset Validation 

Thirty-one subjects participated in the N-Back protocol. Four subjects were excluded 

due to errors during the acquisition. Among the remaining 27 subjects the mean age 

was 25.2 years std 2. The males were 14 and the females 13. Because of an error 

during the experimental setup, four do not have the file containing the final score. 

Those subjects were obviously excluded from the correlation analysis with the score 

but were kept for all other analyses.  
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3. Materials and Methods: 

Data Analysis 

3.1 Pre-processing 

The pre-processing methods are the same for both protocols. All data collected were 

analysed in MATLAB environment. Data were imported from the .txt file saved by 

the ProComp polygraph and divided into the three signals of interest: ECG, 

Respiratory signal and EDA. The events (i.e. starting times and durations of the 

various tasks) were extracted from the timestamp file saved by the MATLAB script 

implementing the protocol. 

 

3.1.1 Electrocardiogram - Tachogram 

The ECG signal was downsampled to 256Hz. A FIR filter was used for the 

downsampling procedure to avoid Aliasing. The signal was then imported in the 

Graphical User Interface (GUI) developed at the PHEEL laboratory, Politecnico di 

Milano [84].  
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Figure 3.1: GUI Interface for manual correction of the peaks. 

 

The GUI implements the PanTompkins algorithm [13] and provides a practical user 

interface (depicted in Figure 3.1) for the inspection and manual correction of the 

identified peaks. The tachogram was extracted after this de-noising procedure using 

the identified peaks. 

3.1.2 Respiratory signal - Respirogram 

Similarly to the ECG signal, the respiratory signal was low passed and down-

sampled to 256Hz. A more selective low-pass FIR filter was then applied. The digital 

filter has a cut-off frequency of 10Hz and uses the Kaiserwin window [85]. The 

respirogram was extracted from the respiratory signal taking one sample for each 

peak identified in the ECG, thus obtaining a signal which is synchronous with the 

tachogram, and, as previously discussed, retains basically the same information of 

the whole respiratory signal.  

During the Stand phase of the N-Back protocol the respiratory signal takes visibly 

different values compared to the other tasks due to the effect of the movement of the 

band used for the acquisition (Figure 3.2 a). The signal in that time segment was 

shifted subtracting to it the difference of the its mean value and that of the Sit phase. 

The respirogram was then filtered with a high pass FIR filter with passband 

frequency set at 0.02Hz to remove slow drift and rescaled with a logarithmic 

transformation. Figure 3.2 b shows the filtered signal. 
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Figure 3.2: Raw and filtered rspirogram. 

a 

b 

 

3.1.3 Galvanic Skin Response 

The signal was low passed and downsampled to 16Hz. Additionally, since the useful 

band of the EDA signal is concentrated at low frequencies it was also low passed at 

5Hz using a FIR filter of order 50 designed with the Parks-McClellan algorithm to 

remove possible high-frequency noise [86]. 
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3.2 Bivariate analysis: HRV and respiration 

The method presented in this chapter was selected to satisfy the requirements stated 

in the objectives of the thesis: obtain an interpretable, time-variant representation of 

the HRV signal and its interaction with the respiratory signal.  

The bivariate model allows to study the causal interactions among the signals, in 

particular the effect of respiration on the HRV. 

The time-variant approach allows to study variations during the different tasks 

presented during the analysed protocols.  

 

3.2.1 Model description 

Following the approach presented in [8] the interactions between the respiratory 

signal and the RR series were modelled as depicted in Figure 3.3. 

 

 

Figure 3.3: Block-scheme of the bivariate model. 

 

The two signals of interest (the RR series and the respirogram) are modelled by 

means of Multivariate Autoregressive Analysis. The RR series is the sum of a 

component dependent on its past values, weighted according to the parameters of 

block A11, the past values of the respirogram, weighted with A12, and a white noise 

(E1). The component dependent on the respirogram is the RSA, while the component 

dependent only on itself is the Non-Respiratory Sinus Arrhythmia (NRSA). 
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As can be observed from the block scheme, the respirogram is modelled as a signal 

only influenced by its past values, weighted according to A22, and a white noise E2. 

The block A21 represents the effect of the RR series on the respirogram and is 

marked in grey because it was omitted from the model, forcing to 0 its parameters. 

This choice, which makes the respiratory signal an exogenous input, was made 

because the influence of the tachogram on the respirogram is assumed to be 

neglectable. Indeed, physiologically interactions in that direction are not expected 

and assumed to be only noise [31, p. 278] 

The block diagram is equivalent to the system of equation presented in “Eq1”: 

 

[
𝑅𝑅(𝑡)
𝑅𝐸𝑆𝑃(𝑡)

] = ∑𝐴𝑖𝑗
(𝑘)

𝑝

𝑘=1

[
𝑅𝑅(𝑡−𝑘)
𝑅𝐸𝑆𝑃(𝑡−𝑘)

] + [
𝐸(𝑡)
1

𝐸(𝑡)
2 ] Eq 1 

 

Where p is the order of the model and 𝐴21is imposed null.  “Eq1” can be transformed 

in the frequency domain using “Eq2” 

 

𝐴𝑖𝑗(f) = ∑𝑎𝑖𝑗
(𝑘)𝑒−𝑗2𝜋𝑓𝑘

𝑝

𝑘=1

 Eq2  

 

Where 𝑎𝑖𝑗 are the elements of the matrix A presented in “Eq1”, resulting in “Eq3”: 

 

With some algebraic manipulation, the system can be rewritten to highlight the 

reciprocal influences as “Eq4”: 

 

{
 
 

 
 𝑅𝑅(𝑓) =

𝐴12(𝑓)

1 − 𝐴11(𝑓)
𝑅𝐸𝑆𝑃(𝑓) +

1

1 − 𝐴11(𝑓)
𝐸1(𝑓)

𝑅𝐸𝑆𝑃(𝑓) =
1

1 − 𝐴22(𝑓)
𝐸2(𝑓)

 Eq 4 

[
𝑅𝑅(𝑓)
𝑅𝐸𝑆𝑃(𝑓)

] = [
𝐴11(𝑓) 𝐴12(𝑓)

0 𝐴22(𝑓)
] [

𝑅𝑅(𝑓)
𝑅𝐸𝑆𝑃(𝑓)

] + [
𝐸(𝑓)
1

𝐸(𝑓)
2 ] Eq3  
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The equations can be represented using the following block schema (Figure 3.4): 

 

 

Figure 3.4: Bivariate closed-loop model. 

 

The two signals can also be considered as produced by the modulation of two white 

noises. Once again, the following equations (“Eq5”) are obtained from the previous 

ones only with algebraic manipulation. 

 

[
𝑅𝑅(𝑓)
𝑅𝑒𝑠𝑝(𝑓)

] = [
𝐻11(𝑓) 𝐻12(𝑓)

0 𝐻22(𝑓)
] [
𝐸𝑅𝑅
𝐸𝑅𝐸𝑆𝑃

] 

 

Eq 5 

 

Where the matrix H is 𝐻 = (𝐼 − 𝐴)−1 and I is the identity matrix. Since 𝐴21(𝑓) is null 

the element 𝐻21(𝑓) is also null and was omitted from “Eq5”. 

The correspondent schema is presented in Figure 3.5: 
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Figure 3.5: Noise generated model. 

 

This representation is especially useful for spectral analysis, as will be explained in 

chapter 3.2.3. 

 

3.2.2 Time-Variant autoregressive algorithm 

A time-variant autoregressive algorithm [32] was chosen to extract the parameters of 

matrix A. The algorithm is an adaptation of a recursive least square filter (RLS) with 

forgetting factor. Specifically, the forgetting factor is a hyperparameter that 

determines how past values are weighted in the prediction of the next. Admissible 

values are positive and lower or equal to 1. The model depends on N samples, 

weighted exponentially (more recent values are weighted more than distant values, 

following a negative exponential). N can be computed from the formula 𝑁 =
1

1−𝜆
 

where 𝜆 indicates the forgetting factor. Setting the forgetting factor to 1 reduces the 

algorithm to a standard RLS in which the parameters depend on all the available past 

values. The use of the forgetting factor relaxes the condition of stationarity. 

The parameters are updated at every new sample, namely one value from the 

tachogram and one from the respirogram. The already obtained information is 

partially retained and only the innovation is added, weighted according to the 

forgetting factor.  

The algorithm minimizes the figure of merit J, which is reported in “Eq6”: 
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𝐽 =
1

𝑡
∑𝜆𝑡−𝑖𝜀(𝑖)2
𝑡

𝑖=1

 Eq 6  

 

where λ is the forgetting factor, ε is the prediction error and t is the total number of 

samples according to the system of equations reported in “Eq7”: 

 

{
 
 
 
 

 
 
 
 

𝒂(𝑡) = 𝒂(𝑡 − 1) + 𝑲(𝑡)𝜺(𝑡)
 

𝑲(𝑡) =
𝑷(𝑡 − 1)𝝋(𝑡)

𝜆 + 𝝋(𝑡)𝑇𝑷(𝑡 − 1)𝝋(𝑡)
 
 

𝜺(𝑡) = 𝒚(𝑡) − 𝝋(𝑡)𝑇𝒂(𝑡 − 1)
 

𝑷(𝑡) =
1

𝜆
[𝑷(𝑡 − 1) −

𝑷(𝑡 − 1)𝝋(𝑡)𝝋(𝑡)𝑇𝑷(𝑡 − 1)

𝜆 + 𝝋(𝑡)𝑇𝑷(𝑡 − 1)𝝋(𝑡)
]

 Eq 7  

 

𝝋(𝑡) is the vector containing the samples, 𝑲(𝑡) is the gain matrix and 𝑷(𝑡) is the 

covariance matrix. 

The elements of 𝒂(𝑡) related to the effect of the RR series on the respiratory signal, 

which correspond to the block “A21” presented in, were forced to zero. 

It should be noted that in the case of stationary signals the algorithm converges to a 

minimum and stops updating its parameters, while in the case of non-stationary 

signals after the initialization period the algorithm tracks the continuously varying 

minimum, provided that the variations of the signal are not too fast with respect to 

the selected forgetting factor. 

 

3.2.2.1 Initialization 

The convergence of the algorithm must be verified before using the computed 

parameters for further analysis. In order to assure the convergence, a dummy signal 

was concatenated at the beginning of the signal of interest.  

For the BASE protocol, this signal was obtained concatenating 10 times the 30 

seconds of the first fixation for each run of each subject. For the N-Back protocol, the 

5 minutes of baseline were used. 

The values of the gain matrix K and the prediction error were inspected to confirm 
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the convergence. The values of the gain matrix should reach a plateau while the 

prediction error should reduce and become approximately white.  

 

3.2.2.2 Model order 

The prediction error should be as close as possible to white, to assure that the model 

is able to capture most of the dynamics of the signal. The quality of the fit depends 

on the choice of the order and the forgetting factor. The order should be high enough 

to capture all the relevant dynamics of the signals but should not be too high, to 

avoid overfitting and excessive sensitivity to the noise.  

The HRV is known to contain at least three peaks of interest, positioned at Very Low 

Frequency, Low Frequency and High Frequency. The minimum number of poles 

(which is the same as the order of the model) is thus 7, considering that at each peak 

corresponds a pole which has a complex conjugate in the z-plane and one pole is set 

at 0Hz and does not have an imaginary component. 

Standard methods for optimal spectral estimation, such as the Akaike Information 

Criterion, cannot be directly applied to the case of time-variant algorithms. 

Furthermore, the bivariate algorithm selected requires to use the same order for the 

respirogram and the RR series, even if it is expected that the respirogram has a lower 

optimum order.  

The choice of the correct order was made considering the RR series, which is the 

signal of primary interest. The prediction error of the RR series, which should be 

ideally a white noise, was inspected. For each value of the order ranging from 2 to 20 

the normalized autocorrelation function (ACF) evaluated for 100 lags was computed. 

The number of values in the ACF that exceeded the 99% confidence interval 

computed for a standard normal distribution were summed to verify the whiteness. 

The spectra obtained as explained in chapter 3.2.3 were also inspected to verify that 

the algorithm worked as espected.  

 

3.2.2.3 Forgetting factor 

The performance of the algorithm is strongly dependent on the choice of the 

forgetting factor. Reasonable values of the forgetting factor are usually close to 1, for 

example 𝜆 =0.99 which results in a model which depends on 100 samples.  

A higher forgetting factor allows for a more robust estimation of the model 

parameters but results in a reduced ability of the algorithm to track fast changes in 

the dynamic of the signal. The choice of the forgetting factor was made considering 

the trade-off between these two factors.  
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3.2.2.4 Condition on the error 

Samples of both the tachogram and the respirogram can take values that differ 

significantly from the expected dynamic. This can happen because of measurement 

noise or very irregular beats or respiratory movements that may not provide relevant 

information on the functioning of the ANS but can change the behaviour of the 

algorithm and result in an unreasonable estimation of the model parameters. 

To enhance the robustness of the algorithm a condition on the error was 

implemented. The condition prevents the updating of the parameters when the a 

priori prediction error – computed using the parameters calculated at the previous 

step - overcomes a certain threshold, which varies at each iteration according to the 

formula “Eq8”: 

 

{
|𝐸𝑅𝑅| < (𝐹𝑅𝑅√𝑣𝑣𝑣𝑅𝑅

𝑜𝑙𝑑  + 𝐸𝑅𝑅
𝑜𝑙𝑑)

|𝐸𝑅𝐸𝑆𝑃| < (𝐹𝑅𝐸𝑆𝑃√𝑣𝑣𝑣𝑅𝐸𝑆𝑃
𝑜𝑙𝑑  + 𝐸𝑅𝐸𝑆𝑃

𝑜𝑙𝑑 )
 Eq 8 

 

where 𝐸 and 𝑣𝑣𝑣 are the a-priori prediction error and variance and 𝐹𝑅𝑅 and 𝐹𝑅𝐸𝑆𝑃 are 

tuneable parameters (the lowest the value, the more restrictive the criterion).  

To prevent the algorithm from stopping to update its parameters for a period that is 

too long, it was imposed that the control cannot be applied more than 4 consecutive 

times. 

 

3.2.3 Spectral estimation 

Since the algorithm provides new coefficients for each input sample the spectra can 

be computed for each heartbeat. The frequencies are considered in intervals that 

range from 0 to the Nyquist frequency, computed as half of the inverse of the mean 

time distance between heartbeats during the entire protocol (or run, for the BASE 

protocol).  

To compute the total spectra of the two signals and their cross-spectrum the method 

described in [42] was used. For each sample, the matrix A containing the coefficients 

is transformed to the frequency domain as presented in the formula “Eq 2”. 

The matrix H was then obtained from A according to  𝐻 = (𝐼 − 𝐴)−1 

From H the spectral matrix 𝛷(𝑓) was computed using “Eq9”: 
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 𝛷(𝑓) = 𝐻 𝑉𝑎𝑟 𝐻𝑇 Eq 9  

 

The diagonal elements of 𝛷(𝑓) can be written as in “Eq10” 

 

{
Φ(1,1) = |H11|

2𝑉𝑎𝑟(1,1) + |H12|
2𝑉𝑎𝑟(2,2)

Φ(2,2) = |H22|
2𝑉𝑎𝑟(2,2)

 
Eq 10.1 

Eq 10.2 

 

Where Var is the matrix containing the variance of the prediction errors. 

Φ(1,1) and Φ(2,2) are respectively the total spectra of the tachogram and the 

respirogram. 

Φ (1,2) is identical to Φ (2,1) and is the cross-spectrum. The magnitude squared 

coherence is computed as reported in “Eq11”: 

 

𝐶 =
Φ(1,2)

√Φ(1,1)Φ(2,2)
 Eq 11 

 

It should be noted that since 𝐴12 is null C is the causal coherence (in the Granger 

sense). 

The partial spectra are computed as explained in [42] using the residue method and 

correspond to the transfer blocks presented in Figure 3.5 according to “Eq10”, in 

which the two spectra are described as the sum of the partial spectra. Since the loop 

was opened forcing A21 to 0, it derives that also H21 is null and “Eq 10.2” has only 

one term. The partial spectrum that identifies the effect of the tacogram on itself will 

be called PSD11 for brevity while the effect of the respirogram on the tachogram 

PSD12. 

The entire procedure for spectral estimation was repeated for each sample. As a 

result, from all the spectra presented were computed the spectrograms. 
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3.2.4 Instantaneous respiratory frequency 

The instantaneous respiratory frequency was extracted to adapt the HF band 

centring it at the respiratory frequency.  

 

Figure 3.6: Instantaneous respiratory frequency raw and smoothed. 

The peaks were identified on the respiratory signal imposing a minimum 

prominence of 0.3 standard deviations and a minimum distance of 2 seconds. A time 

series containing the time distance between consecutive breaths was computed from 

the identified peaks. To remove outliers a Hampel filter of order 10 was applied on 

the series and a moving average of width 6 was then used to smooth the signal.  An 

example of respiratory frequency obtained from a subject of the N-Back protocol is 

reported in Figure 3.6. 

3.2.5 Feature extraction 

The features listed in this chapter were extracted in both protocols. Time-frequency 

domain features were computed from the spectrograms presented in chapter 3.2.3 

while time domain and non-linear features were computed directly from the HRV 

and respiratory signals. 

3.2.5.1 Frequency Domain 

The features in the frequency domain were extracted integrating the spectra in the 

desired frequency range. The values obtained (one for each heartbeat) were then 

mediated in the time window of interest. Before computing the average value a 

Hampel filter of order 10 was applied on the obtained series to remove outliers. The 

filter replaces with the median all the values in the window that lye more than 3 

standard deviations away from the median. 
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The features in Table 3-1 were extracted from 𝚽(𝟏, 𝟏). 

P Tot The total power of the tachogram, obtained integrating on all 

frequencies excluding the VLF, i.e. frequencies from 0 to 0.04Hz 

HF The power in the frequency band that ranges from 0.15 to 0.4Hz 

LF NU The power in the frequency band from 0.04 to 0.15Hz divided by P 

Tot 

LF/HF The ratio between the power in 0.04-0.15Hz and the power in 0.15-

0.4Hz 

Table 3-1 Features extracted from 𝚽(𝟏, 𝟏). 

The following features (Table 3-2) were calculated from the product of 𝚽(𝟏, 𝟏) with C 

 

P Coer The power computed integrating the product of Φ(1,1) with C 

over f>0.04 

P_Coer_NU P Coer divided by the power obtained integrating over all 

frequencies of 𝚽(𝟏, 𝟏) excluding VLF 

Table 3-2 Features computed from the product of 𝚽(𝟏, 𝟏) with C 

The following features (Table 3-3) were extracted from the partial spectra  

HF RSA The power obtained integrating PSD12 on a frequency band of 

width 0.25Hz centred at the instantaneous respiratory frequency. 

The rationale underlying this choice is that this feature is meant to 

capture only the RSA. 

LF NRSA The power obtained integrating PSD11 in the classical frequency 

band 0.04-0.15Hz. This feature was extracted as an attempt to 

expurgate LF computed on the total spectrum from the effects of 

the respiration, which in the case of slow but still physiological 

breathing can overlap with the Low Frequency band. 

Table 3-3 Features computed from partial spectrograms 
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The BASE protocol does not have a specific section of sufficient length to be used as 

the baseline, therefore the data of the first protocol were not normalized.  

HR, LF NU, LF/HF, LF NRSA were normalized in the N-back protocol subtracting 

the baseline value. The only effect of the normalization is to enhance the 

visualization of the data and does not affect the results of the statistical analysis, as 

will be discussed later (Chapter 3.5). 

 

3.2.5.2 Time Domain and non-linear 

HR: The heart rate was straightforwardly extracted from the tachogram multiplying 

by 60 the inverse of the time distance between heartbeats to obtain a value in beats 

per minute (bpm). 

 

Respiratory Frequency: The respiratory frequency was computed multiplying by 60 

the inverse of the time distances of the instantaneous respiratory frequency discussed 

before. For this purpose, the moving average was not applied. 

 

SDNN, RMSSD and pNN50 were extracted only in time intervals of at least 5 

minutes of length.  

 

SampEn was computed according to the formula “Eq12”: 

 

𝑺𝒂𝒎𝒑𝑬𝒏(𝒎, 𝒓,𝑵)

= −𝑙𝑛
∑ ∑ {𝑛𝑢𝑚𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑡ℎ𝑎𝑡 𝑑[|𝑥𝑚+1(𝑗) − 𝑥𝑚+1(𝑖)|] < 𝑟}

𝑁−𝑚
𝑗=1,𝑗≠𝑖

𝑁−𝑚
𝑖=1

∑ ∑ {𝑛𝑢𝑚𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑡ℎ𝑎𝑡 𝑑[|𝑥𝑚(𝑗) − 𝑥𝑚(𝑖)|] < 𝑟}𝑁−𝑚
𝑗=1,𝑗≠𝑖

𝑁−𝑚
𝑖=1

 Eq12 

 

Where d is the Chebyshev distance, m is the length of the segment to be compared , 

N is the length of the time series and r is the tolerance [87]. The parameter m was set 

at 2 and r at 0.2*SDNN in accordance with [88]. 
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3.3 EDA Analysis 

As previously mentioned, the skin conductance was analysed only for the N-Back 

protocol.  

The analysis was conducted using model-based methods that enhance the 

information contained in the signal using a-priori physiological knowledge.  

The signal was decomposed into phasic and tonic components with a method 

already validated [47]. From the identified components the most common time-

domain features were computed.  

The phasic component was then used for the more innovative time-frequency 

analysis. Along with the batch methods commonly used in the literature a time-

varying RLS algorithm inspired by the HRV analysis was implemented and 

compared to the existing methods. The advantage of the time-varying method is that 

it is expected to reach better time-frequency resolution and can be easily adapted for 

online applications. 

 

3.3.1 Phasic and Tonic Decomposition 

The decomposition of the EDA signal into its tonic and phasic components was 

performed using the continuous decomposition analysis implemented in Ledalab 

[47]. The estimation of the optimal impulse response function is performed through 

the minimization of a cost function that depends on the negativity of the phasic 

driver and its distinctness by means of a gradient descent method. Then, a standard 

deconvolution is applied. The obtained phasic driver is a continuous measure of 

phasic activity. The signals of interest obtained are presented in Table 3-4. 

 

Driver the phasic driver smoothed by convolution with a gauss window 

with σ =200ms on which the peaks are detected 

Phasic Data the reconstructed phasic signal obtained convolving the phasic 

driver with the impulse response function (IRF), i.e. the SCR 

resulting from an unit impulse 

 Tonic Data the reconstructed tonic signal obtained convolving the tonic driver 

with the IRF. The tonic driver is obtained interpolating the inter-

impulse sections using a cubic spline 

Table 3-4 Ledalab output signals 
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In addition, for each impulse identified in the driver function were extracted the 

information reported in Table 3-5. 

 

Impulse Onset the time at which the impulse identified in the driver 

function begins 

Impulse Peak 

Time 

the time at which the identified impulse reaches the 

maximum amplitude 

Impulse 

Amplitude 

the maximum value reached by the impulse in the driver 

function 

Table 3-5 Ledalab impulse characteristics 

It should be noted that the term “impulse” refers to a peak in the driver of short 

duration (generally less than 2 seconds) and not a unit impulse. 

 

3.3.2 Time-frequency analysis 

 

3.3.2.1 Pre-processing 

The slow variations of the EDA signal are not of interest in this contest. Therefore 

only the phasic component, obtained as previously discussed, was used. 

Before proceeding with the time-frequency analysis the phasic signal had to undergo 

further processing.  

The data were low passed and resampled to 8Hz to avoid oversampling and reduce 

future computational load, normalized using the standard score to make the results 

obtained on different subjects comparable, and low passed with a FIR filter with cut-

off frequency at 1Hz. 

 

3.3.2.2 Non-parametric approach 

For the estimation of the EDA spectrogram a variation of the Fast Fourier Transform 

was used. The signal was divided into windows with a duration of 90 seconds and 

an overlapping of 89 seconds (the window is moved with a step of 1 second). Inside 

each window the spectrum was computed using the Welch algorithm with 

Hamming windows of 60 seconds and overlapping of 45 seconds. The spectrum 
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computed is then assigned to the time instant at the middle of the window. Thus, a 

spectrogram with a time definition of 1 second was obtained, excluding the first and 

last 45 seconds. 

 

3.3.2.3 Batch parametric approach 

A Blackman window of 90 seconds was shifted along the signal with a step of one 

second. Inside the window the spectra were calculated using the Yule-Walker 

method [89], which finds the optimal parameters minimizing the squared prediction 

error. The order was selected inspecting the error variance, i.e. using the lower value 

of the order after which it does not significantly decrease. The spectrogram obtained 

should have a similar resolution compared to the previous one since it provides a 

spectrum for each second of the signal (excluding the borders) and calculates the 

spectra on windows of 90 seconds. 

 

3.3.2.4 Time-variant parametric approach 

A time-variant autoregressive algorithm (ARTVAR) inspired by the HRV analysis 

was developed. The phasic signal was down-sampled to 2Hz to make the results 

comparable with those obtained from the HRV analysis. Since the useful band does 

not exceed the 0.25Hz [90] no information should be lost. 

The algorithm takes as input the EDA signal and computes as many parameters as 

the selected order and the variance of the prediction error for each sample of the 

signal (which is sampled at 2Hz). For the initialization of the algorithm, a copy of the 

five minutes of the baseline was concatenated twice at the beginning of the signal.  

The signal is highly non-stationary, which means that the model should be able to 

adapt quickly to the dynamics of the signal. However, simply reducing the forgetting 

factor makes it less stable. For this reason the Fortescue method was applied [91]. The 

method varies the forgetting factor at each sample to keep an estimation of the 

information content constant, making it smaller when the signal changes rapidly and 

close to 1 when more closely resembles a stationary signal. 

The recursive formulation of the information content 𝛤𝑡 is reported in “Eq13”: 

 

𝛤𝑡 = 𝜆𝑡𝛤𝑡−1 + (1 − 𝜑𝑡
𝑇𝐾𝑡)𝑒𝑡

2 Eq 13  
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Where 𝜑 is the vector of the observations, 𝐾 the gain matrix and 𝑒 the prediction 

error. Therefore, substituting to 𝛤𝑡 and 𝛤𝑡−1 the constant value 𝛤0 , the adaptive 

forgetting factor can be formulated as in “Eq14”: 

 

  𝜆𝑡 = 1 − 
1 − 𝜑𝑡

𝑇𝐾𝑡
𝛤0

𝑒𝑡
2 Eq 14  

 

The information content was estimated as in “Eq15”: 

 

𝛤0 = 𝜎0
2𝑁0 Eq 15  

 

Where 𝑁0 is the memory of the algorithm, defined as  1/(1 − 𝜆0), and 𝜎0
2 is the 

variance of the prediction error. To estimate 𝜎0
2 the time-varying algorithm was first 

applied with a fixed forgetting factor 𝜆0, which was chosen a priori to be 0.987. The 

time-varying algorithm was then applied again with the new formulation of   𝜆𝑡. 

The condition on the error was also applied, meaning that the parameters were only 

updated when the error was lower than a certain threshold, according to “Eq16” 

 

|𝐸𝑒𝑑𝑎| < (𝐹𝑒𝑑𝑎√𝑣𝑣𝑣𝑒𝑑𝑎
𝑜𝑙𝑑  + 𝐸𝑒𝑑𝑎

𝑜𝑙𝑑) Eq 16  

 

Where 𝐹𝑒𝑑𝑎is a tuneable hyperparameter. 

Similarly to the batch parametric analysis, the order was chosen by inspecting the 

variance of the prediction error. 

The spectrogram was calculated computing the PSD at each sample from the 

parameters returned by the algorithm with the formula “Eq17”:  

 

𝑃𝑆𝐷(𝑓) =
 𝜎2

𝐹𝑠
|
1

𝐴𝑧
|
2

𝑧=𝑒−𝑗𝑤𝑇𝑠
 Eq 17  

Where 𝜎2 is the variance of the prediction error, A is the vector of the coefficients, 𝐹𝑠 

is the sampling frequency and 𝑇𝑠 is its inverse. 
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3.3.3 Features extraction 

Features related to the electrodermal activity signal were computed relying on the 

models previously described. In time domain were computed on the extracted tonic 

and phasic components and considering the impulses obtained from the phasic 

driver. In the time frequency domain were computed from the spectrograms of the 

phasic component. 

 

3.3.3.1 Time Domain 

The peaks were identified by Continuous Decomposition Analysis on the smoothed 

phasic driver. Only peaks with amplitude greater than a threshold value set at 0.1 

standard deviations of the signal were considered. 

The features computed are reported in Table 3-6. 

 

Peak Frequency The number of peaks identified by the decomposition in 

the window divided by the length of the window 

Impulse Amplitude The average amplitude of the peaks in the window 

Rise Time The average time between impulse onset and impulse 

peak 

ISCR Integrated Skin Conductance Response: the time integral 

of the smoothed phasic driver 

Tonic Mean The average value of the tonic component in the window 

Table 3-6 EDA time-domain features 

All the features except “Rise Time” were normalized subtracting the mean computed 

during the baseline. 

 

3.3.3.2 Time-Frequency Domain 

From the spectrograms computed with all the methods mentioned before the 

following features were computed (Table 3-7): 
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TVSymp The power obtained integrating in the frequency 

band that ranges from 0.045 and 0.25Hz and 

averaging in the time window of interest 

TVTot The power obtained integrating in all frequency 

bands and averaging in the time window of interest 

TVSympStd The standard deviation of TVSymp in the time 

window (before averaging) 

Table 3-7 EDA time-frequency domain features 
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3.4 Analysis of interactions: HRV-EDA 

The sympathetic branch of the ANS innervates both the heart and the skin. A study 

of the coherence between signals related to the two organs was performed in order to 

identify a common source. 

Since the expected effect of the SNS is to lower the value of RR series but to increase 

the value of the skin conductance, to obtain a positive correlation the inverse of the 

RR series (the heart rate) was computed and used for further analysis. 

Regarding the EDA signal, only the phasic component extracted using Continuous 

Deconvolution Analysis was considered, since it is the component that better reflects 

the activity of the SNS. To reduce their skewness the data were transformed using 

the logarithm in base 10, summing 1 to the argument to obtain only positive 

numbers. Both signals were then high passed with a cut-off frequency of 0.02Hz. To 

make them comparable, the Standard score was computed on both. 

The cross-correlation in the time domain was performed as reported in formula 

“Eq19”. 

 

𝑅𝑥𝑦(𝑚) = 𝐸{𝑥𝑛−𝑚𝑦𝑛} Eq 19 

 

The expected value was calculated as in “Eq 20” 

 

𝑅𝑥𝑦(𝑚) = {
∑ 𝑥𝑛+𝑚𝑦𝑛

𝑇

𝑁−𝑚−1

𝑛=0

, 𝑚 ≥ 0

𝑅𝑥𝑦(−𝑚), 𝑚 < 0

 Eq 20 

 

 and then corrected to avoid bias due to the fact that the sequences have finite length 

(“Eq21”).  

 

𝑅𝑥𝑦
𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑(𝑚) =

1

𝑁 − |𝑚|
𝑅𝑥𝑦(𝑚) Eq 21 
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Finally, for the sake of a more intuitive representation, the value was divided by the 

maximum of the absolute value of the cross-correlation in a window of 1 minute 

around 0 lag (“Eq22”). 

 

𝑅𝑥𝑦
𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑
𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑(𝑚) =

𝑅𝑥𝑦(𝑚)
𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑

max (|𝑅𝑥𝑦
𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑|)

 Eq 22 

 

According to the hypothesis that the signals have a common source that drives the 

correlation, a maximum in the correlation function is expected around 0 lag. Since 

the SNS innervates the two organs with different pathways that have different 

conduction times and take a different time to generate measurable effects it may not 

be at exactly 0 lag. Identifying the peak allows to measure this time difference simply 

by looking at the lag. 

An analysis in the frequency domain to determine if the two signals have some 

frequency at which they covary was performed evaluating the magnitude squared 

coherence, defined as in “Eq23”. 

In this context, as shown in Figure 3.7, only the NRSA component, obtained using the 

model introduced in chapter 3.2.1 as the output of A11, was considered. This choice 

was made to remove the effect of the Respiratory Sinus Arrhythmia on the RR series. 

Indeed, the respiration has an effect on both the HRV and the EDA signals but is not 

of interest in this analysis, since its effect is mostly related to the PNS. This was not 

done for the assessment of the cross-correlation in time-domain because the filter 

introduces a delay that biases the computation of the time lag between the two 

signals.  

 

𝐾𝑥𝑦
2 (𝑓) =

|𝑃𝑆𝐷𝑥𝑦(𝑓)|
2

|𝑃𝑆𝐷𝑥(𝑓)||𝑃𝑆𝐷𝑦(𝑓)|
 Eq 23 

 

The cross-spectrum 𝑃𝑆𝐷𝑥𝑦 was calculated as in “Eq24” 

 

𝑃𝑆𝐷𝑥𝑦(𝑓) = 𝑃𝑆𝐷𝑦𝑥(𝑓) = 𝑋(𝑓) ∗ 𝑌(𝑓)
𝑇 Eq 24 
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For its computation were used Hamming windows of 100s with an overlapping of 

10s. 

 

Figure 3.7 Block diagram. Sympathetic regulation over EDA and NRSA. 
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3.5  Statistical analysis  

Several methods for computing quantitative indices have been presented. The goal of 

the statistical analysis is to answer the following research questions: 

1. Do the features vary significantly during the different tasks of the protocols? 

2. Do they correlate with objective measures of performance and the scores 

provided in the questionnaires? 

3. What is the correlation between indices extracted from the EDA signal and the 

HRV-Respiratory signals? 

 

3.5.1 Differences across tasks 

To answer the first question differences among features computed on different time 

windows were evaluated using the Friedman test. The Friedman test is a non-

parametric test, i.e., it does not assume that data come from a specific distribution but 

rather only assumes that data come from populations that have the same continuous 

distribution. It also corrects for intra-subjects variations, looking only for common 

trends. The null hypothesis of the test is that measures obtained in different moments 

are equal. This hypothesis was rejected when the returned p-value was lower than 

0.05. 

When the p-value was significant, a post-hoc multicomparison Bonferroni test was 

applied to determine which groups differs from each other through pairwise 

comparison. 

 

3.5.1.1 BASE protocol 

The two runs (RLE – SPLIT) were kept separate to investigate if differences in 

difficulty affect the results. The segments reported in the protocol definition were 

compared. In order to use windows of the same lengths the Writing and Read 

problem tasks were defined as follow: 

Code Writing: 5 minutes extracted from the Writing task in which the participant 

was continuously writing code (without significantly long stops, that would be 

labelled as “thinking”). If 5 minutes were not available, the longest available session 

was chosen. 



Materials and Methods: Data Analysis 61 

 

 

Read problem – this window was considered only when longer than 1 minute. Since 

for the majority of the subjects it took less than 1 minute to read the instruction of the 

SPLIT session (the easy one) this window was only considered for the RLE task. 

 

Time-domain features and SampEn were tested against five minutes of Code 

Reading and five minutes centred at the longest Code Writing session, defined as 

stated before. No other windows could be tested since time-domain features of 

different lengths are not comparable and the conventional minimum recordings for 

this kind of measurement are 5 minutes [20]. 

Regarding frequency-domain features, even if the time-variant approach selected 

makes it possible to compute features for each heartbeat, only features mediated over 

windows of at least 1 minute were considered. The choice of this window length was 

due to the time limitation imposed by the Text Reading task of the protocol.  

The following windows were tested for differences:  Text reading, Read problem, 

Code writing and Code reading. 

 

3.5.1.2 N-Back protocol 

The segments were divided following the tasks of the protocol. 

As mentioned before, the Demo task was not analysed. The first 15 seconds of each 

task were also discarded since they are considered transition periods.  

The beforementioned windows were tested for significance except for the relaxation, 

that was used as the baseline.  

 

 

3.5.2 Correlations  

To perform a more comprehensive analysis of the features extracted from the three 

signals analysed, their link and their relationship with the categorical outcomes 

provided by the participants in the questionnaires or in the evaluation, multiple 

correlation analyses were performed.  

The correlation was measured using the Spearman correlation coefficient, which tests 

for monotonic relationships according to the formula “Eq18”: 
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𝜌 = 1 −
6∑𝑑2

𝑛(𝑛2 − 1)
 Eq 18 

 

where n is the number of samples in the two variables (which has to be the same) 

and d is the difference between the ranks. The coefficient 𝜌 is 1 (or -1, if the 

correlation is negative) when the relationship is perfectly monotonic, even when it is 

not linear. 

The Spearman coefficient was preferred over Pearson because it does not assume 

normality of the data, which cannot be properly assessed in the data presented 

because the number of subjects is too low, especially for the BASE protocol. It should 

be noted that this type of analysis does not say much about possible non-monotonic 

relationships among the variables considered, that were not investigated.  

The p-value was calculated for each coefficient using the permutation distribution. 

To obtain the value for the two-tailed test (i.e., testing against the null hypothesis that 

the coefficient is different from 0 without assuming a specific direction) the most 

significant value for a one-tail test was multiplied by two [92],[93]. The significance 

level was set at 0.05.  

 

3.5.2.1 BASE protocol 

 

HRV features 

In order to reach a higher numerosity and a more robust evaluation the data from 

RLE and SPLIT were merged (i.e. to each subject correspond 2 points, one for each 

run). 

Only the Code writing and Code reading segments were considered. HRV features 

related to the coding task were correlated with each other and with the categorical 

variables (effort, pressure, score, discomfort, completion). For Code Reading the 

features were only correlated with each other and the score and performance 

obtained during the coding task. 

 

HRV-EEG  

The EEG spectral power density calculated in different frequency bands and for 

different channels was correlated with the HRV features to investigate links between 

central and autonomic signals.  

The frequency bands considered are 'Theta' and 'Alpha'. These bands were chosen 
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because are the ones that gave the most significant results in a previous study 

conducted specifically on the EEG signals recorded in this study [80]. The channels 

were grouped in different functional and anatomical areas: “Frontal”, “Central” and 

“Parieto-occipital”. 

The computation of the features related to the electroencephalographic signal is not 

explained here since it was not an objective of the present work.  

 

3.5.2.2 N-Back protocol 

All the variables extracted from the HRV and the EDA signals were correlated with 

each other and the final score. The purpose of this correlation analysis is: 

- Test if the features extracted from the HRV and from the EDA change 

together, due to the common sympathetic drive. 

- Test how much the features extracted from the EDA are correlated with each 

other, in order to assess redundancy and identify the independent variables. 

- Test if some variables covary with the final score and average time to answer, 

to test if they could be used as predictors of performance. 
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4. Results and Discussion 

4.1 TVAR Model validation 

4.1.1 Model order 

The proportion of values of the ACF that exceed the 99% confidence interval 

computed for a white Gaussian noise as explained in chapter 3.2.2.2 is reported in 

Figure 4.1. The image shows the average percentage value and the standard error in 

function of the model order, computed over all subjects and runs of the BASE 

protocol. Since the average is always higher than 1% (shown as a red line in figure), it 

can be concluded that none of the orders tested satisfied the whiteness of the 

prediction error. 

 

Figure 4.1: Percentage of values outside the confidence interval. 
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A possible explanation is that the condition of stationarity of the signal is not 

satisfied. Ultimately the order 9 was chosen basing also on the inspection of the 

spectra and other works in the literature. Figure 4.2 shows the prediction error 

obtained from the first run of subject 1 (BASE protocol), which was picked as an 

example representative of the general trend observed in all subjects.  

 

 

Figure 4.2: Prediction error with spectrum and ACF. 

 

Figure 4.3: Histogram of the standard score of the error (blu) and normal distribution 

(orange). 
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The prediction error can still be considered at least approximately white as suggested 

by its autocorrelation function. Indeed, as expected, almost all the values of the ACF 

lie inside the confidence interval or very close to the margin. 

The distribution of the prediction error values observed in all the subjects of the 

BASE protocol, depicted in blue in Figure 4.3, shows an excessive kurtosis compared 

to the normal distribution (in orange), thus explaining the non-normality. However, 

this is consistent with the functioning of the model in non-stationary conditions: 

when the signal quickly changes its dynamics the algorithm produces large errors 

(long tails in the distribution) while it returns an error very close to 0 when it has 

adapted to the dynamic (high peak in zero). 

4.1.2 Control on the error 

The control on the error has the effect to prevent the update of the model parameters 

when the error is considered too big according to “Eq8”. The control makes the 

algorithm more robust by removing dependence on outliers. Specifically, the value of 

𝐹𝑅𝑅 and 𝐹𝑅𝐸𝑆𝑃 were set at 4 and 3, respectively. These values appear to be a 

reasonable trade-off between the need to avoid outliers and the requirement to 

follow fast variations, as was confirmed by inspection of the signals. Figure 4.4a 

shows an example of the identification of outliers on HRV and respiratory signal for 

subject 11 of the BASE protocol during the first run. This subject was selected 

because relatively many samples did not pass the control on the error. Figure 4.4b and 

Figure 4.4c show the total spectrogram of the tachogram before and after applying the 

error control, respectively. As can be seen in figure, the spectrogram after the error 

correction presents the typical VLF, LF and HF peaks, without the unexpected third 

peak at the limit of the HF band, which was assumed to be noise.  
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a 

 

b 

 

c 

Figure 4.4: Input signals and Φ(1,1) before and after the control on the error. 
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4.1.3 Initialization 

Figure 4.5 shows the sum of the absolute values of the gain matrix related to the 

tachogram samples. Once again, subject 11 of the BASE protocol was chosen as an 

example in figure but a similar trend was observed in all subjects. A moving average, 

marked in red, was also superimposed for clarity. The blue line marks the end of the 

initialization period. As required, the transient part during which the values of the 

gain matrix present a ramp-like dynamic finishes before the end of the initialization 

period. 

 

Figure 4.5: Dynamics of the gain matrix K. 
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4.2 Spectrograms and features extraction 

4.2.1 Spectrograms 

The advantage of using the time-variant algorithm is that non-stationarities in the 

signals can be tracked in time to highlight variations during the protocol tasks. 

Figure 4.6 and Figure 4.7 show the HRV and respirogram with their spectrograms, 

respectively. On the tachogram one, the fixed frequency bands were superimposed, 

while on the respirogram the adaptive respiratory frequency band was 

superimposed. 

Vertical lines represent the tasks and the 30s fixation periods. In order: first fixation, 

text reading, second fixation, coding, third fixation, code reading.  

Figure 4.8 shows the spectrum of the coherence. Subject 4 was picked as an example 

for the BASE protocol since the respiratory frequency is lower than the classical HF 

band (0.15-0.4Hz) and varies in time.  

 

Figure 4.6 Tachogram and its spectrogram 
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Figure 4.7 Respirogram and its spectrogram 

 

Figure 4.8: Spectrum of the coherence. Run 1 subject 4 
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As expected, most of the coherence between the two signals (Figure 4.8) is contained 

in the adaptive frequency band, as an effect of the RSA. This result highlights the 

advantage of a bivariate time-variant approach, which allows to measure the 

coherence between the two signals at every sample and take into account non-

stationarities.  

 

Figure 4.9: Partial spectrogram PSD12 

 

Figure 4.10 Partial spectrogram PSD11 
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Figure 4.9 shows the partial spectrogram representing the effect of the respiration on 

the tachogram. Comparing this figure with the total spectrum (Figure 4.6), it can be 

observed how only the RSA is retained in the partial spectrogram. Figure 4.10 shows 

the autospectrum of the tachogram, i.e., the component that is not dependent on the 

respiratory signal. As expected, most of its power falls in the LF band. Indeed, even 

though the bands overlap in the total spectrum, the bivariate time-variant approach 

allows to remove the RSA component from the autospectrum of HRV.  

The advantage of the spectral decomposition is also evident in the first subject of the 

N-Back protocol, chosen as an example, whose respiratory frequency falls in the 

standard LF frequency band during both the Relaxation and Sit phases of the 

protocol, as can be noticed in Figure 4.11. 

 

 

Figure 4.11: Spectrogram of the tachogram 
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Figure 4.12: Partial SpectrogramPSD11 

 

Figure 4.13: Partial spectrogram PSD12 

Therefore, the computation of the features in the total spectra results in 

misclassification of the RSA in the LF band. The partial spectrogram PSD11 shown in 

Figure 4.12, on the other hand, can be used for a less biased computation of LF, as in 

the previous example. 
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4.2.2 Time-Frequency domain features 

Time-frequency domain features were extracted directly from the spectra integrating 

in the respective frequency bands, as explained in chapter 3.2.5.1.  

Figure 4.14 shows the features calculated from the spectra presented in Figure 4.6 and 

Figure 4.9 which are reported as an example. Different colours are used to 

differentiate among the sub-classes of coding: Read problem is marked in green, 

while Writing is red. The scale of the plots have been fixed between 0 and 0.005 𝑠2 for 

non-normalized features and between 0 and 1 (or 100) for the normalized ones. 
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a 

 

b 

Figure 4.14: HRV time-frequency features with and without respiratory information. Writing 

in red and Read problem in green. 
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The features presented in Figure 4.15 are referred to the spectrograms presented in 

Figure 4.12 and Figure 4.13. The scale of the plots is reported on the axis and was 

adapted to optimize the visualization. 

 

       

 

 

a 

 

b 

Figure 4.15: HRV features without and with respiratory information. 
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The difference in the LF computed on the total and partial spectra for this subject can 

be visualized in Figure 4.15a and Figure 4.15b The misclassification of the RSA in the 

computation of LF from the total spectrum resulted in an overestimation of the 

sympathetic activation during the first two tasks, which is inconsistent with the 

experimental condition (relaxation and sit). The computation of LF from the partial 

spectrum allowed to remove the RSA component, leading to a time trend of this 

feature in line with the expectations. In particular, the increase in LF and the decrease 

in HF during the stand phase is clear, which is a well-known phenomenon that has 

been extensively studied in the literature and reflects the sympathetic activation 

induced by the orthostatic stressor. 

Figure 4.16 shows how LF NU and HF computed on the total and partial 

spectrograms differ for all the subjects in the sit-to-stand phase. It can be noticed that 

computing LF on the partial spectrogram removes some power, which is assumed to 

be due to the RSA and increases the separation between the two conditions. The 

difference between sit and stand is also more pronounced if HF is computed with the 

adaptive band on the partial spectrogram compared to the standard definition of HF. 

 

 

Figure 4.16: LF and HF computed on total and partial spectra. Sit to Stand. 
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4.3 EDA decomposition analysis 

The first subject of the N-Back protocol was selected as the example for all the 

analyses concerning the EDA signal. The decomposition of the EDA signal into its 

phasic and tonic components explained in chapter 3.3.1 is shown in Figure 4.17.  

 

Figure 4.17: Ledalab Decomposition of EDA 

The observed results are consistent with the expectations. During the first 10 

minutes, that correspond to the baseline and sit phases, the tonic signal is lower 

compared to the stand and cognitive phases. This effect was identified in almost all 

the participants, as will be discussed in chapter 4.6.2.2. During the 5 minutes of 

controlled respiration the skin conductance decays quickly. However this effect, 

which is consistent with the reduced sympathetic activation expected from this task, 

is not conserved in all subjects. The frequency and amplitude of the peaks identified 

on the phasic component follow the same trend, as was confirmed by the correlation 

analysis in chapter 4.7.2.1. This effect is also physiologically well justified, since the 

average conductivity of the skin, which is quantified by the tonic component of the 

signal, depends directly on the number of sweat glands that open and the amount of 

sweat they release, which corresponds to the phasic component. 

Figure 4.18 illustrates the advantage of the decomposition approach over standard 

peak-detection algorithms with threshold. The algorithm is able to reliably detect 

overlapping peaks and label them independently. Only peaks that overcome the 

threshold of 0.1 standard deviations are considered. In the image can also be seen the 
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phasic signal sometimes falls below 0. This effect is not physiologically justified and 

is considered noise. 

 

Figure 4.18: Identified peaks on phasic signal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



80 Results and Discussion 

 

  

4.4 EDA Time-frequency analysis 

Figure 4.19 reports the error variance as a function of the model order for all subjects 

obtained for the batch parametric time-frequency analysis 

 

Figure 4.19: Error variance in AR batch analysis of EDA. 

The order was set to 4 since after that the error variance remains almost constant.  

Concerning the time-varying AR model, instead, the order 4 is not sufficient to 

minimize the variance of the prediction error, as shown in Figure 4.20. The order was 

ultimately set to 7 because it appears to be a valid trade-off between the need to 

minimize the error variance and avoid overfitting. 

 

Figure 4.20: Error variance in TVAR analysis of EDA. 
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The control on the error was applied and the value of 𝐹𝑒𝑑𝑎  (“Eq16”) was set to 7, 

which is higher than the values used for the HRV analysis since a higher prediction 

error is expected in the EDA signal.  

The ARTVAR model was also validated by inspecting the whiteness of the prediction 

error. Figure 4.21 shows the power spectral density and the autocorrelation function 

of the prediction error obtained applying the algorithm on the first subject. 

 

Figure 4.21: The prediction error, its spectrum and ACF from EDA TVAR 

Despite the observable high non-stationarity of the EDA signal, the algorithm 

appears to be able to fit it correctly, as shown by the fact that the prediction error 

does not retain any dominant frequency.  

Figure 4.22 shows how the forgetting factor varied during the protocol. As it can be 

seen, the forgetting factor quickly adapts and reduce its values when the signal 

varies its properties and gets closer to unity when the signal is approximately 

stationary. 

 

Figure 4.22: Forgetting factor with Fortescue. 
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a 

 

b 

 

c 

Figure 4.23: EDA Spectrograms. a) non parametric b) parametric batch c) ARTVAR 



Results and Discussion 83 

 

 

The spectrograms computed with the three time-frequency methods presented in 

chapter 3.3.2 are presented in Figure 4.23. The most relevant difference among the 

three approaches is the higher temporal definition of the ARTVAR algorithm.  

 

4.4.1 Time-Frequency domain features 

The total power and the power in the frequency band of interest according to 

literature (i.e. 0.045 – 0.25Hz) were computed integrating over the frequency in the 

spectrograms, similarly as it has already been reported for the HRV.  

Figure 4.24 shows TVSymp computed with the three different methods. As it can be 

seen in image, the time-variant feature is associated with a much higher temporal 

resolution. Indeed, compared to the other methods tested, the time-variant auto 

regressive algorithm has the advantage of being able to capture fast variations in the 

statistical properties of the signal. 

 

 

Figure 4.24: Phasic signal and TVSymp computed with the 3 methods. 

On the basis of these results and in order to be consistent with the approach used for 

the HRV analysis, the time-variant algorithm was selected for the extraction of the 

time-frequency descriptors of EDA and further statistical analysis. 
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Figure 4.24 also shows that TVSymp is especially sensible to fast variations in the 

dynamic of the signal, that produce high prediction errors and therefore result in a 

lower power in the spectral estimation (“Eq17”). 

Since almost all the power of the signal falls in the frequency range of TVSymp, it can 

be considered an estimation of the power of the filtered signal and is almost identical 

to TVTot, which was therefore not considered in further analyses. 
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4.5 EDA - HRV Cross-Correlation 

The normalized cross-correlation between the inverse of the tachogram and the 

phasic component of the EDA signal was used to evaluate if the two signals present 

some common patterns. As can be seen in Figure 4.25., almost all subjects present a 

peak at few seconds after the 0 delay. This observation suggests that the EDA signal 

is delayed with respect to the tachogram, which is consistent with [94], in which is 

reported that the EDA signal has significant latency, of around 1.60 -2.23.  

 

Figure 4.25 Cross-correlation EDA-RR 

 

 

Figure 4.26 Estimated time delay EDA-RR 
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To quantify the delay, the lag corresponding to the maximum cross-correlation in the 

range from 0 to 6 s was considered. These values were selected as a reasonable lag 

between the two signals. The result is reported in Figure 4.26 

The median delay is around 2.5s. The method adopted allows to obtain only a rough 

estimate, since the signals were resampled at 2Hz. Furthermore, the RR series has a 

time resolution that depends on the hearth frequency and is typically only slightly 

higher than 1Hz (to cross-correlate the two signals EDA was downsampled and the 

tachogram was resampled).  

In the frequency domain only the component independent from the respiration of the 

tachogram was used (NRSA). As can be seen in Figure 4.27, the magnitude squared 

coherence is quite low for all subjects and no dominant frequency band in which the 

two signals interact could be identified. In the image the rows represent subjects, the 

columns the frequency intervals, and the colour the coherence value.  

 

Figure 4.27 Magnitude squared coherence EDA Phasic-NRSA 

The lack of strong correlations between the two signals in frequency suggests that 

they do not significantly covary at any frequency analysed but rather bring 

heterogeneous information. However, the two signals are non-stationary, especially 

the phasic component of EDA, which may affect the quality of this estimation.  
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4.6  Statistical Analysis: Differences Across Tasks 

This chapter reports the results of the statistical analysis presented in chapter 3.5.1. 

The goal is to investigate how the various indices vary in response to the different 

experimental conditions and to identify, among them, the autonomic features that 

better reflect cognitive load. 

4.6.1 BASE protocol 

In this chapter the distributions of the features extracted during the phases of Read 

problem –(RP), Code writing (WR), Code reading (RC) and Text reading (RT) are 

reported and compared by means of boxplots. Moreover, statistical significant 

differences identified by the Friedman test are highlighted on the boxplots using a 

red line. p-values lower than 1% are marked with two asterisk, p values between 1 

and 5% with one. 

As can be observed in Figure 4.28, the heart rate is significantly higher during the 

Writing task in both difficulty levels (i.e., SPLIT and RLE). This effect can be 

explained as the result of the higher metabolic demand induced by the cognitive 

effort of this task. 

 

Figure 4.28 Heart Rate across tasks of BASE 

Intra-subject variability in the resting heart rate, that could not be corrected due to 

the lack of a sufficiently long baseline, make it difficult to clearly visualize the 
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existing differences of HR values among the compared tasks. However, from the 

upper plot it can be observed that most subjects show a common trend: increasing 

HR with increasing task demand. Furthermore, the increase in heart rate is 

accompanied by a significant reduction in the total power in both RLE and SPLIT 

(Figure 4.29). Consistently, SDNN is lower during Writing compared to Code reading 

However, the difference in SDNN is only significant in RLE, which is the most 

difficult task (Figure 4.30). The difference between P Tot and SDNN, besides the 

method applied for the computation, is that SDNN also considers very low 

frequencies, that have been discarded from the computation of the time-frequency 

HRV features. 

 

 

Figure 4.29 P Tot. BASE protocol 
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Figure 4.30 SDNN. BASE protocol  

 

The observed reduction in total power during more demanding cognitive tasks is 

consistent with other works in the literature [59],[3].  

Moreover, HF (Figure 4.31), the Power Coherent with the respiration (Figure 4.32), and 

the respiratory rate (Figure 4.33) are all significantly lower during the Writing task in 

RLE but not in SPLIT. The reduction of the respiratory rate during Code writing is 

expected and consistent with most works in the literature [64]. 
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Figure 4.31 HF. BASE protocol 

 

Figure 4.32 P Coer. BASE protocol 
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Figure 4.33 Respiratory Rate in Resp Per Minute 

No significant differences were identified considering the normalized power in the 

LF band, neither if calculated from the partial (Figure 4.35) nor the total spectra (Figure 

4.34). For most subjects, it maintained relatively high values during the entire 

protocol. A possible explanation could be related to the stressing nature of the 

protocol, probably also accentuated by the uncomfortable instrumentation, and the 

consequent difficulty for the participants to relax. 
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Figure 4.34 LF NU. BASE protocol.  

 

Figure 4.35 LF NU NRSA. BASE protocol 

Altogether, reading code and reading natural text appear to produce similar 

autonomic activations while the coding task significantly increased the heart rate and 

reduced the total power of the HRV signal. 
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The adaptation of the frequency band to the respiratory rate and the decomposition 

of the spectra did not improve the ability of the indices to discriminate between tasks 

in this protocol. 

Table 4-1, Table 4-2 and Table 4-3 summarize the significant results obtained in the 

BASE protocol. The complete tables can be found in Appendix (Table A-1,Table 

A-2,Table A-3,Table A-4). 

RLE  

 FRIEDMAN PAIRED COMPARISONS 

 RP-WR RP-RC RP-RT WR-RC WR-RT RC-RT 

HR <0.01 0.4919↑ 1 0.0684↓ 0.0265↓ <0.01↓ 0.9283↓ 

P TOT <0.01 1 <0.01↑ 0.0159↑ 0.0159↑ 0.0265↑ 1 

HF 0.0129 0.3466↓ 1 1 0.0265↑ 0.0265↑ 1 

P COER <0.01 1 0.0684↑ 0.4919↑ 0.0159↑ 0.1611↑ 1 

Table 4-1 Significant p-values in RLE 

RLE   

 SDNN Resp Rate 

WR-RC <0.01↑ 0.0215↓ 

Table 4-2 Significant p-values in RLE 

SPLIT 

 FRIEDMAN PAIRED COMPARISONS 

 WR-RC WR-RT RC-RT 

HR <0.01 0.5094↓ <0.01↓ 0.1495↓ 

P TOT 0.0125 0.7179↑  <0.01↑ 0.2326↑ 

Table 4-3 Significant p-values in SPLIT 



94 Results and Discussion 

 

  

4.6.2 N-Back Protocol 

4.6.2.1 HRV features 

As reported in Figure 4.36, the results obtained in the N-back protocol show a 

reduction in the total power of the HRV during the cognitive task compared to Sit, 

which is consistent with the results obtained in the BASE protocol. Sit was chosen as 

the reference task since it does not require a specific cognitive effort, neither is 

characterized by specific sympathetic or parasympathetic stressors. The total power 

was also significantly higher during the controlled respiration task, an effect that can 

be explained by the increased RSA. SDNN, on the other hand, was not able to 

capture this difference, as shown in Figure 4.37. 

 

 

Figure 4.36 P Tot. N-Back Protocol 

 

Figure 4.37 SDNN. N-Back Protocol 

The coherent power and the power in the HF band showed very similar trends, as 

presented in Figure 4.38 and Figure 4.39. This was expected since most of the power 

in the HF band is due to the effect of the RSA. In particular, their values decreased 

during the cognitive task and increased during the controlled respiration. However, 

no statistical differences between the Sit and N-back tasks were detected. The data in 

Figure 4.38 and Figure 4.39 were represented in a logarithmic scale to improve the 

visualisation.  
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Figure 4.38 HF. N-Back Protocol 

 

Figure 4.39 P Coer. N-Back Protocol 

Differently from what observed on the BASE protocol, in this protocol the heart rate 

was not significantly higher during the cognitive task compared to the low effort task 

(Sit). Indeed, the HR increased only during the Stand phase, which is expected due to 

the higher metabolic demand required by the standing position (Figure 4.40). 

The respiratory rate instead increased during the cognitive task and not during the 

stand phase (Figure 4.41). This effect is probably due to the fact that the respiration 

was, for most subjects, less regular during the cognitive task. This result is consistent 

with the results of the BASE protocol and with results obtained in similar works in 

the literature [64]. The respiratory rate during the controlled respiration task was 

exactly 12 resp/min as requested by the protocol and was not plotted. 

Figure 4.40 HR. N-Back Protocol Figure 4.41 Respiratory Rate. 
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The normalized power coherent with the respiration showed significant differences 

and reached its minimum during the N-back task (Figure 4.42). The normalized 

power in the LF band computed on the partial spectra, contrary to the BASE 

protocol, showed a significant trend consistent with the expectation (Figure 4.43), i.e. 

higher levels during Stand and cognitive task compared to sit and Controlled 

respiration. Both these features are significantly different during the cognitive task 

compared to Sit but not compared to Stand.  

 

Figure 4.42 P Coer NU as percentage 

 

Figure 4.43 LF NU NRSA 

In conclusion, these features do not differentiate between the cognitive and 

orthostatic stressors.  

 

Figure 4.44 LF NU. N-Back protocol 
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The power in LF computed on the total spectra on the other hand was significantly 

lower during N-back compared to Stand, as shown in Figure 4.44. It is possible 

however that this effect is due to the incorrect inclusion of the RSA in its 

computation, as already discussed in chapter 4.2. 

RMSSD, which is a measure strongly correlated with the power in HF, assumed 

lower values during the Stand phase compared to all the other tasks. Similar results 

were obtained from SampEn, a measure of information. These two features, depicted 

in Figure 4.45 and Figure 4.46, did not capture any other significant differences. 

 

Figure 4.45 RMSSD. N-Back protocol 

 

Figure 4.46 SampEn. N-Back protocol 

In general, these results suggest that the cognitive task reduced the parasympathetic 

tone and increased the sympathetic one compared to the Sit task, in which no 

cognitive effort was required. The Stand and Controlled respiration produced the 

expected variations, confirming the validity of the methods adopted. 

Altogether, despite the same algorithms were used for their computation the features 

extracted from the HRV and Respiratory signals in the N-Back protocol yielded more 

significant results compared to the BASE protocol.  

A possible reason can be found in the protocol itself. BASE required the participants 

to wear uncomfortable sensors for a long time (in particular for the acquisition of 

NIRS and EEG signals) and did not contain a proper relaxation phase.  

On the contrary, the N-Back protocol only required the acquisition of autonomic 

signals, that for their very nature are easier to acquire with more comfortable 

instrumentation. In addition, the tasks proposed have been selected specifically for 

the analysis of the autonomic system. The Relaxation and Sit phases allowed the 
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subjects to relax. The Respiration phase required participants to take long controlled 

breaths, an action that is known to elicit a parasympathetic activation and induce 

Respiratory Sinus Arrhythmia. The Stand phase, on the other hand, is a common 

stressor used to stimulate the sympathetic system. 

All the significant features and the p-values obtained from paired multi comparisons 

are reported in Table 4-4. The complete table is reported in Appendix (Table A-5). 

 

 

FRIEDMAN PAIRED COMPARISONS 

 Sit-Stand Sit-Resp Sit-NB 
Stand-

Resp 
Stand-NB Resp-NB 

HR <0.01 <0.01↑ 0.0504↓ 0.8401↑ <0.01↓ <0.01↓ 1 

P TOT 0.0159 0.2101↓ 1 <0.01↓ 0.2101↑ 1 <0.01↓ 

HF <0.01 0.0368↓ 0.0504↑ 0.4388↓ <0.01↑ 1 <0.01↓ 

HF RSA <0.01 0.0368↓ 1 <0.01↓ <0.01↑ 1 <0.01↓ 

LF NU <0.01 <0.01↑ <0.01↑ 1 <0.01↑ <0.01↑ <0.01↑ 

LF NU 

NRSA 
<0.01 <0.01↑ 1 <0.01↑ <0.01↓ 1 <0.01↑ 

LF/HF <0.01 <0.01↑ <0.01↓ 0.5501 <0.01↓ 0.6831↓ <0.01↑ 

P COER <0.01 1 1 0.1611↓ 0.6831↑ 0.2712 <0.01↓ 

P COER NU <0.01 <0.01↓ 1 <0.01↓ <0.01↑ 1 <0.01↓ 

RMSSD <0.01 <0.01↓ 1 0.5501↓ <0.01↑ <0.01↑ 0.6831↓ 

SDNN 0.0293 0.0266↓ 1 1 0.1611↑ 0.8401↑ 1 

PNN50 <0.01 <0.01↓ 1 0.8775↓ <0.01↑ 0.3579↑ 0.1074↓ 

SAMPEN <0.01 <0.01↓ 1 1 0.0368↑ <0.01↑ 1 

RESP. RATE <0.01 0.9122  <0.01↑  <0.01↑  

Table 4-4 p-values N-Back, HRV features 

The features computed on the partial spectra discriminate better between Sit and the 

N-back task, probably because during Sit the respiratory rate often fell into the LF 
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band. The decomposition allows to better capture the increase in sympathetic tone in 

the cognitive task compared to the neutral task. However, they do not identify 

significant variations between the Stand task and the cognitive one. 

 

4.6.2.2 EDA features 

Features computed on the phasic driver show a modest increase during the Stand 

phase and a more significant increase during the cognitive task. The trends of ISCR 

and Peak Frequency are very similar, as shown in Figure 4.47 and Figure 4.48. This 

was expected since the two measures are strongly correlated. 

 

Figure 4.47: ISCR. N-Back Protocol 

 

Figure 4.48: Peak Frequency. N-Back Protocol 

Considering the tonic component (Figure 4.49) the trend is similar but less significant, 

in accordance with the result already reported in the literature [68]. Noticeably, the 

cognitive task is the only one that induces significant variations in the tonic 

component. 
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Figure 4.49: Tonic Mean. N-Back Protocol 

The results obtained in the time-frequency domain are similar to those obtained in 

the time domain, as shown in Figure 4.50 and Figure 4.51. 

 

Figure 4.50 TVSymp. N-Back Protocol 

 

Figure 4.51 StdTVSymp. N-Back Protocol 

All the indices extracted from the EDA signal, which is known to be dependent only 

on the sympathetic branch of the autonomous nervous system, significantly 

increased during the cognitive task compared to relaxation. All of them maintained 

the trend also compared with the Stand task, which was expected to elicit a 

sympathetic activation, even though it is generally less significant. A possible 

explanation is that, while the cardiorespiratory parameters need to adapt to the 

standing position to control the blood pressure and find a new equilibrium, the EDA 
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parameters only react to the transition from Sit to Stand and rapidly recover. On the 

other hand during the cognitive task, that provides continuous stimuli, the 

sympathetic activation measured through the EDA parameters remain high. This 

hypothesis can be confirmed by exploiting the advantage of the features extracted in 

time frequency domain, that allow tracking variations in time, as shown in Figure 

4.52. that shows the trend of TVSymp on an example subject.  

 

 

Figure 4.52: TVSymp. First subject of the N-Back Protocol 

The Controlled respiration, which is known to suppress indices of sympathetic 

activation in the HRV, produced an increment in most EDA indices compared to the 

resting state. This apparent contradiction can be explained by some work in the 

literature. Indeed, EDA has been shown to be influenced by controlled, volitional 

respiration that requires cortical participation [95]. The response seems generated 

centrally, by an interaction of the respiratory neurons and the central autonomic 

system [96]. Table 4-5 reports the p-values of the significant features. The table 

complete also with the non-significant results is reported in Appendix (Table A-6). 
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FRIEDMAN PAIRED COMPARISONS 

 
Sit-

Stand 
Sit-Resp Sit-NB 

Stand-

Resp 

Stand-

NB 
Resp-NB 

PEAK FREQ. <0.01 0.0154↑ 0.4325↑ <0.01↑ 1 <0.01↑ <0.01↑ 

PEAK AMP. <0.01 0.1375↑ 0.0490↑ <0.01↑ 1 0.0667↑ 0.1805↑ 

ISCR <0.01 0.0190↑ 0.2101↑ <0.01↑ 1 <0.01↑ <0.01↑ 

TONICMEAN <0.01 0.2101↑ 0.0504↑ <0.01↑ 1 <0.01↑ <0.01↑ 

TVSYMP <0.01 0.2061↑ <0.01↑ <0.01↑ 0.8313 <0.01↑ 0.0357↑ 

STDTVSYMP <0.01 1 1 <0.01↑ 1 0.1787↑ 0.0483↑ 

Table 4-5: p-values N-Back, EDA features 
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4.7 Statistical Analysis: Correlations 

In this chapter the correlations obtained between indexes of the autonomic nervous 

system, the outcome measures, and the indexes of the central nervous system 

computed from the EEG signal are discussed.  

The 𝜌 Spearman coefficients are represented using colours: positive correlations in 

red and negative in blue. Significant results are highlighted in yellow on the images. 

4.7.1 BASE 

4.7.1.1 Correlations among HRV features 

Figure 4.53 shows the correlations obtained among HRV features. P Tot and SDNN, as 

expected, are highly correlated with each other, but also positively correlate with 

parasympathetic indices (P Coer, HF computed on the partial spectrum, RMSSD) and 

negatively with the heart rate but not with LF NU, which was also computed on the 

partial spectrum. Noticeably, LF NU does not significantly correlate with any feature. 

All the others correlations identified are consistent with the expectations. 

 

 

Figure 4.53: Correlation matrix. HRV features. Significant 𝜌 are framed in yellow  
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4.7.1.2 Correlations with EEG features 

The correlations between indices of the CNS and ANS are reported in Figure 4.54 and 

Figure 4.55, which are referred to the features computed in the Writing phase. 

 

Figure 4.54 Correlation matrix. Theta band. Code writing 

 

Figure 4.55 Correlation matrix. Alpha band. Code writing 

The power in the alpha frequency band positively correlates with RMSSD. The 

scatterplot of the power in the alpha band in the frontal area and the RMSSD is also 

shown in Figure 4.56 with a linear interpolation line and the significance of the 

correlation coefficient. RMSSD is an index of vagal control on the hearth [20]. Higher 

levels of alpha are usually reported in resting conditions and have been interpreted 

as an inhibitory mechanism. Higher levels of alpha were here found to be linked to 

higher levels of vagally mediated control of the heart computed as RMSSD, but not 

with the component synchronous with the respiration, computed as P Coer and HF 

RSA, which was computed on the partial spectra that captures the effect of the 
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respiration on the variability of the heart rate. Consistently, alpha is negatively 

correlated with LF (Figure 4.57 shows its correlation considering the frontal area) and 

the Heart Rate, both measures of sympathetic control of the heart.  

 

α Frontal - RMSSD α Frontal -LF NU NRSA 

 

Figure 4.56 scatterplot with linear regression 

line and significance of 𝜌 

 

Figure 4.57 scatterplot with linear 

regression line and significance of 𝜌 

The theta band is positively correlated with SDNN and RMMSD (Figure 4.58), both 

measures of variability of the HRV. 

 

θ Frontal - RMSSD 

 

Figure 4.58 scatterplot with linear regression line 

and significance of 𝜌 
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4.7.1.3 Correlations with score and performance 

The correlations between the HRV features computed during Code reading and the 

measures of performance were investigated. The score is the a-priori expected 

proficiency in C language, evaluated before the beginning of the experiment. The 

proficiency is a measure of the actual quality of the code produced during the Code 

writing phase. This analysis was inspired by some works in the literature that found 

higher levels of HRV during rest in subjects that subsequently demonstrated better 

performance [59]. Results are presented in Figure 4.59. 

 

 

Figure 4.59: Correlation matrix. Score and performance – code reading 

The positive correlation between the performance and the Coherent Power suggests 

that higher levels of parasympathetic activation during the Code reading phase, 

which is assumed to require low cognitive effort, are indicators of better performance 

in the more demanding task. The trends observed in the Total Power and SDNN (i.e., 

positive correlation with cognitive performance) are consistent with the literature but 

are not significant. 

Figure 4.60 reports the correlations obtained between HRV and the performance 

measured in the Code writing phase. The only feature which correlates with the 

score and the performance is now “SDNN” a measure of the total power of the HRV 

signal. A possible interpretation of these results, confirmed also by the correlation 

with Completion and LF, is that a sympathetic activation during the execution of the 

Code writing task, but not Code during reading, is associated with better 

performance. 
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Figure 4.60 Correlation matrix. Categorical outcomes – code writing 

 

4.7.2 N-Back protocol 

This chapter reports the correlations obtained among EDA features, between EDA 

and HRV features and between the features and the outcome measures. For the 

correlation analysis features have not been normalized with the baseline.  

4.7.2.1 Correlations among EDA features 

The correlations presented in Figure 4.61 were obtained considering the features 

computed in all the tasks of the protocol (i.e., for each subject one point was obtained 

for every task). 

The variables extracted are highly correlated with each other, which is expected since 

they all measure the activation of the sympathetic nervous system. Nevertheless, this 

result highlights a redundancy in the extracted descriptors which should not be all 

used simultaneously in a classification model. 
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Figure 4.61: Correlation matrix. EDA features 

Figure 4.62 shows the scatterplot of the two features that are more highly correlated.  

 

ISCR - TonicMean 

 

Figure 4.62: scatterplot with linear regression line and 

significance of 𝜌 
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4.7.2.2 Correlations among HRV and EDA features 

Also in Figure 4.63, reporting the correlations among HRV and EDA features, all the 

tasks of the protocol were used.  

 

Figure 4.63: Correlation matrix. EDA-HRV features 

Consistently with the sympathetic origin of the EDA signal, most features correlate 

positively with LF, as shown more in details in Figure 4.64.  

TVSymp – LF NU NRSA 

 

Figure 4.64: scatterplot with linear regression line and significance of 𝜌 
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Negative correlations were also found with measures of parasympathetic activity, 

namely power in HF and coherent power. Fewer correlations were found with the 

total power of the HRV, either measured in frequency and time domain. 

In general, the 𝜌 coefficient was relatively low also for significant results. This means 

that the features extracted from the two systems, even if they have some correlation, 

are not redundant and bring heterogeneous information. 

 

4.7.2.3 Correlations with the score  

Correlations between the score and the autonomic descriptors were analysed in 

order to assess if they can be used as predictors of performance. In addition to the 

correlations obtained considering the time window in which the cognitive task was 

performed, also the correlations obtained with the Sit phase were analysed, in order 

to assess possible correlations with performance and autonomic activity at rest. 

No significant results were found. Some hypotheses can be made to explain this.  

First, as mentioned in chapter 2.2.3, the number of subjects that could be used for this 

type of correlation is lower than the total number of subjects.  

Secondly, it is possible that the protocol design influenced the results since some 

confounding factors may have influenced the score obtained by the participants. For 

example, subjects that already had some familiarity with the N-back test performed 

better than subjects that performed the test for the first time during the experiment.  

The complete results are reported in Appendix (Table A-7,Table A-8,Table A-9,Table 

A-10) 
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5. Conclusion and future 

development 

Despite the practical advantages of autonomic signals in real-world applications, 

most research studies that investigate the effect that cognitive functions have on 

biological signals focus on the monitoring of the Central Nervous System. We know 

however that autonomic signals such as HRV, EDA and respiratory activity are valid 

correlates of many psychophysiological and behavioural states thanks to the deep 

interrelations between the Central and Autonomic branches of the nervous system 

[3].  

The focus of the present work was to address the open problems identified in the 

literature and listed in chapter 1.5: identify more robust and flexible methods for the 

computation of quantitative measures of cognitive load from autonomic signals, and 

further study the EDA signal and its relationship with the HRV during cognitive 

tasks.  

The bivariate time-variant approach adopted for the analysis of the HRV and 

respiratory signals allowed to overcome the problems related to the non-stationarity 

and the variations of the respiratory frequency (and consequently the frequency 

range of the RSA) and proved to be adequate for this specific application. 

The EDA signal was analysed both in the time and time-frequency domains and 

compared to the HRV signal to address the scarcity of works that apply the analysis 

of this signal to the monitoring of cognitive load.  

In addition, the time-variant autoregressive algorithm was adapted and applied to 

the EDA signal, opening the possibility of a multivariate online analysis of the three 

signals.  

The methods applied captured significant task-dependent variations in autonomic 

indices in both protocols. 

In the study of the HRV and respiratory signals, the results obtained confirm that 
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during cognitive tasks the total power of the HRV is reduced, a result consistent with 

other works in the literature. Two mechanisms are linked to this effect: the increased 

heart rate and the decreased effect of the RSA. In the N-back protocol, it was also 

observed a significant reduction in the parasympathetic and an increase in the 

sympathetic tone during the cognitive task compared to low effort tasks.  

Additionally, the descriptors obtained from the EDA signal proved to be very 

sensitive to the cognitive task and less sensitive to the stressors commonly used in 

the analysis of the HRV to elicit a sympathetic and parasympathetic activation: sit to 

stand and controlled respiration.  

Indeed, EDA features did not vary significantly between the controlled respiration 

and the standing tasks while the HRV features did. On the contrary, the Stand and 

the N-back tasks induced similar effects in the HRV features which makes it more 

difficult to discriminate between them while the descriptors extracted from the EDA 

signal behaved differently under the two experimental conditions.  

These results, confirmed by the low correlation coefficients identified among the 

features extracted from the two signals, suggest that the information provided by the 

two is not redundant but rather should be used in combination to discriminate 

conditions in which the sympathetic activation is induced by the cognitive load from 

the ones in which is induced by orthostatic stressors. 

The most natural future development of this work would be to create a larger dataset 

obtained from a bigger and more heterogeneous population sample using different 

cognitive tasks to improve the external validity of the study. 

Furthermore, such a dataset could be used to build a machine learning model able to 

discriminate among different levels of cognitive load using as input the features 

discussed in this thesis. A model able to recognize and quantify the cognitive effort 

from autonomic signals could find a practical application for example in 

smartphones connected to wearable devices, which are already widely used.  

Anyway, before translating the results into practical applications it should be noted 

that measuring mental workload, mental effort, working memory load, mental stress, 

mental fatigue, and other relevant parameters related to cognitive functions poses 

some inevitable difficulties. These definitions are somehow fuzzy, deeply 

interrelated with each other and therefore difficult to isolate and measure 

independently. These metrics are also connected to affective aspects in complex and 

unpredictable ways. For these reasons, the interpretation of the results is not trivial.  

Specifically, the two protocols discussed in this thesis were designed to induce 

cognitive load and not stress. This was achieved by informing the participants that 

they were not judged for their performance and no feedback for their results would 

be provided. Nevertheless, it is reasonable to hypothesise that some volunteers may 
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also have experienced stress which is a possible confounding factor. Indeed, 

cognitive load and stress have been shown to be different biobehavioural states: high 

cognitive workload can be achieved without stress and vice-versa [97]. 

This suggests that to better interpret the results obtained and design better 

experimental protocols biomedical engineers should work together with experts in 

psychology and psychophysiology. 
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A. Appendix 

A.1 Statistical analysis - BASE 

A.1.1 Differences across tasks 

RLE 

 

 FRIEDMAN PAIRED COMPARISONS 

 RP-WR RP-RC RP-RT WR-RC WR-RT RC-RT 

HR <0.01 0.4919↑ 1 0.0684↓ 0.0265↓ <0.01↓ 0.9283↓ 

P TOT <0.01 1 <0.01↑ 0.0159↑ 0.0159↑ 0.0265↑ 1 

HF 0.0129 0.3466↓ 1 1 0.0265↑ 0.0265↑ 1 

HF RSA 0.7212 - - - - - - 

P COER <0.01 1 0.0684↑ 0.4919↑ 0.0159↑ 0.1611↑ 1 

P COER 

NU 

0.8732 
- - - - - - 

LF NU 0.1068 - - - - - - 

LF NRSA 0.9536 - - - - - - 

LF/HF 0.1218       

Table A-1 p-values. RP = Read Problem; WR = Writing; RC = Read Code; RT= Read Text 
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 SDNN RMSSD PNN50 SAMPEN RESP RATE 

WR-RC <0.01↑ 0.3396 0.0942 0.1465 0.0215↓ 

Table A-2: p-values. WR = Writing;  RC = Read Code 

SPLIT 

 

 FRIEDMAN PAIRED COMPARISONS 

  WR-RC WR-RT RC-RT 

HR <0.01 0.5094↓ <0.01↓ 0.1495↓ 

P TOT 0.0125 0.7179↑ <0.01↑ 0.2326↑ 

HF 0.049 0.2327↑ 0.0558↑ 1 

HF RSA 0.1160 - - - 

P COER 0.1160 - - - 

P COER 

NU 

0.5836 
- - - 

LF NU 0.7351 - - - 

LF NRSA 0.3973 - - - 

LF/HF 0.9260 - - - 

Table A-3 p-values WR = Writing;  RC = Read Code; RT = Read Text 

 

 SDNN RMSSD PNN50 SAMPEN RESP RATE 

WR-RC 0.1272↑ 0.6848 0.3804↑ 0.8926 0.2734↓ 

Table A-4: p-values. WR = Writing;  RC = Read Code 
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A.2 Statistical analysis- N-Back 

 

 FRIEDMAN PAIRED COMPARISONS 

 Sit-

Stand 

Sit-Resp Sit-NB Stand-

Resp 

Stand-

NB 

Resp-NB 

HR <0.01 <0.01↑ 0.0504↓ 0.8401↑ <0.01↓ <0.01↓ 1 

P TOT 0.0159 0.2101↓ 1 <0.01↓ 0.2101↑ 1 <0.01↓ 

HF <0.01 0.0368↓ 0.0504↑ 0.4388↓ <0.01↑ 1 <0.01↓ 

HF RSA <0.01 0.0368↓ 1 <0.01↓ <0.01↑ 1 <0.01↓ 

LF NU <0.01 <0.01↑ <0.01↑ 1 <0.01↑ <0.01↑ <0.01↑ 

LF NU NRSA <0.01 <0.01↑ 1 <0.01↑ <0.01↓ 1 <0.01↑ 

LF/HF <0.01 <0.01↑ <0.01↓ 0.5501 <0.01↓ 0.6831↓ <0.01↑ 

P COER <0.01 1 1 0.1611↓ 0.6831↑ 0.2712 <0.01↓ 

P COER NU <0.01 <0.01↓ 1 <0.01↓ <0.01↑ 1 <0.01↓ 

RMSSD <0.01 <0.01↓ 1 0.5501↓ <0.01↑ <0.01↑ 0.6831↓ 

SDNN 0.0293 0.0266↓ 1 1 0.1611↑ 0.8401↑ 1 

PNN50 <0.01 <0.01↓ 1 0.8775↓ <0.01↑ 0.3579↑ 0.1074↓ 

SAMPEN <0.01 <0.01↓ 1 1 0.0368↑ <0.01↑ 1 

RESP. RATE <0.01 0.9122  <0.01↑  <0.01↑  

Table A-5: p-values of HRV and Respiratory features 
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 FRIEDMAN PAIRED COMPARISONS  

PEAK FREQ. <0.01 0.0154↑ 0.4325↑ <0.01↑ 1 <0.01↑ <0.01↑ 

PEAK AMP. <0.01 0.1375↑ 0.0490↑ <0.01↑ 1 0.0667↑ 0.1805↑ 

ISCR <0.01 0.0190↑ 0.2101↑ <0.01↑ 1 <0.01↑ <0.01↑ 

RISE TIME 0.3442       

TONICMEAN <0.01 0.2101↑ 0.0504↑ <0.01↑ 1 <0.01↑ <0.01↑ 

TVSYMP <0.01 0.2061↑ <0.01↑ <0.01↑ 0.8313 <0.01↑ 0.0357↑ 

STDTVSYMP <0.01 1 1  <0.01↑ 1 0.1787↑ 0.0483↑ 

Table A-6: p-values of EDA features 

A.2.2 Correlations 

For the sake of a more readable representation some indexes have been rescaled with 

logarithmic or square root transformations. For the study of correlations the 

Spearman’s non parametric index was used, therefore the results are invariant to 

monotonic transformation and are not affected by the beforementioned 

transformations. 

 

Correlations with time and score 

 

Sit Phase 

Score  

Time 

 HR P Coer HF LF P Tot SDNN RMSSD 

Table A-7: Correlations of score and HRV features. Sit phase 
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Score  

Time 

 Peak Freq ISCR TonicMean TVSymp stdTVSymp Score 

Table A-8: Correlations of score and EDA features. Sit phase 

N-Back phase 

Score  

Time 

 HR P Coer HF LF P Tot SDNN RMSSD 

Table A-9: Correlations of score and HRV features. N-Back phase 

Score  

Time 

 Peak Freq ISCR TonicMean TVSymp stdTVSymp Score 

Table A-10: Correlations of score and EDA features. N-Back phase 
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