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Abstract

Cooperative Connected and Automated Vehicles have been proposed as a solution to
address congestion and safety issues in urban environments. However, it is difficult to test
in real environments how a human driver of a non-automated vehicle or a passenger of
an automated vehicle perceives these improvements. To overcome this, driving simulators
are seen as a great tool when a sufficient level of realism is provided both in the visual
scene and the traffic behavior.

On the scope of this thesis, we designed a traffic scenario calibrated based on real traffic
data in an urban roundabout environment. We used the software SUMO, where we
individuated the main parameters affecting the output of the simulation using ANOVA
tests and then calibrated them to represent reality. This scenario will be used for the
training of an automated vehicle policy and as the traffic scenario used in the co-simulation
that allows to introduce the human in the loop.

After this, we aligned the traffic simulator scenario with the driving simulator scenario and
performed some tests in which non-professional drivers were exposed to different traffic
mixes of non-automated and automated vehicles. As the preliminary results show, the
policy was perceived as safe and more fluent.

Keywords: microscopic simulation, calibration, co-simulation





Abstract in lingua italiana

Per risolvere i problemi legati alla congestione e alla sicurezza stradale in ambienti ur-
bani, Cooperative Connected and Automated Vehicles sono stati proposti come una pos-
sibile soluzione. La loro introduzione aumenta la sicurezza e la scorrevolezza del traffico
d’accordo alla letteratura disponibile. Tuttavia, ci sono delle difficoltà per testare nella
realtà come un guidatore di una macchina non automatizzata interagisce e percepisce il
comportamento di queste vetture automatizzate, e quanto sono comode per i passeggeri.
Per superare queste difficoltà, i simulatori di guida sono un ottimo strumento quando si
usano con uno scenario di traffico realistico.

Nello scopo di questa tesi, abbiamo disegnato uno scenario di traffico calibrato sulla base di
una rotonda urbana reale. Per la simulazione di traffico abbiamo usato il software SUMO,
individuando i parametri più significativi per l’output della simulazione e calibrandoli per
rappresentare il traffico reale. Questo scenario sarà poi utilizzato per allenare una policy
in grado di gestire il comportamento delle vetture automatizzate nell’approccio d’una
rotonda urbana, e sarà anche usato per la co-simulazione che permette introdurre un
guidatore umano nel ciclo.

Dopo di questa calibrazione, abbiamo allineato lo scenario di traffico con quello del simu-
latore di guida per fare delle prove in cui guidatore non professionali hanno sperimentato
diverse combinazioni di traffico di veicoli automatizzati e non automatizzati. I primi
risultati ottenuti mostrano una preferenza sia per la scorrevolezza del traffico sia per la
sicurezza per lo scenario con un maggiore numero di veicoli automatizzati

Parole chiave: simulazione di traffico, calibrazione, co-simulazione
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Introduction

During the last decades, to address safety and fluency problems related to the increasing
number of vehicles on the road, different solutions have been implemented. Among these
solutions, we can find the introduction of dedicated infrastructure to address conflicts in
intersections, such as roundabouts; and, more recently, the introduction of Cooperative
Connected and Automated Vehicles (CCAV) which offer promising results [1]. However,
the introduction of this new technology faces challenges such as safety in complex urban
environments, like roundabouts, and lack of acceptance by other road users. To address
this, it is important to test the solutions prior to introducing them into the market.
However, testing of innovative technologies is expensive and potentially dangerous. To
overcome these issues, simulation is a good alternative, specially at early stages of devel-
opment. However, testing CCAV related technologies includes different challenges, among
which the communication between all the required components is key. To overcome this
difficulty, the AI@EDGE architecture is used.

This Master’s thesis project is framed inside the European project AI@EDGE that looks
into industry-relevant applications of Artificial Intelligence (AI) and 5G technologies
through 4 different use cases [2]. The first use case, Virtual validation of vehicle co-
operative perception, is the one relevant for this thesis.

The objective of this use case is to test AI-based automated vehicles using V2N2V
(Vehicle-to-Network-to-Vehicle), specifically in a roundabout scenario. To do this, a real
road network and traffic will be reproduced in a traffic micro simulation. This will then be
used to train an AI policy to govern automated vehicles looking at various KPIs related
to traffic conditions. The co-simulation of traffic simulation, in conjunction with the AI
policy, and the driving simulator allows the assessment of impacts on drivers’ perception.
The simulation will also take into account real-world latency, ensuring accurate testing
conditions. The main components of the required co-simulation are:

• Microscopic traffic simulator

• Dynamic driving simulator
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• AI-controlled policy for the automated vehicles

• Software and Hardware to reproduce the communications between vehicle and net-
work

This thesis main focus is the first of these requirements: the microscopic traffic simulation.
This traffic simulation comprises the definition of the road network and traffic conditions.
Regarding the software used in the scope of this project, although different alternatives
are available, Simulation of Urban MObiltiy (SUMO) [3] is chosen since its open-source
nature allows for a higher degree of flexibility and interoperability with other required
software, while maintaining a satisfactory level of realism of the simulations.

In previous stages of the project, preliminary tests were performed to analyze the overall
workflow and identify any potential issues. For these tests, a roundabout scenario was
designed from scratch and the vehicles were controlled using Car Following Models (CFM)
parameters coming from available literature, in this case the Intelligent Driver Model
(IDM) was used since it can faithfully reproduce the behaviour of human driver with
good performance. This scenario was used to train an AI policy which was later tested
in the driving simulator to assess the impact of automated vehicles on perceived safety
and fluency of the traffic. It is important to note that this scenario was not based on real
network but represented a general three-legged roundabout.

To improve the validity of the conclusions drawn from the preliminary tests, it was deemed
necessary to perform new tests using a traffic scenario reproducing a real environment.
This led to the scope of this thesis, which focuses on designing and calibrating the traffic
simulation and aligning it with the driving simulator scene.

To perform the design of the scenario different aspects need to be considered and are
dealt with in this thesis. The first of them is the selection of a real roundabout and the
acquisition of real data that is later used as reference for creating the traffic simulation
scenario. The second is the calibration of specific parameters available in the software
to better reproduce the real conditions of traffic. It is important to consider that the
scenario and parameters are later used to train a policy for automated vehicles that is
finally tested in the driving simulator. Hence, this step is of great relevance since the AI
output can only be as good and realistic as the input it has been trained after.

This thesis is structured as follows:

• Chapter 1 covers the relevant information on roundabout infrastructure, Cooper-
ative Connected and Automated Vehicles, traffic simulation and microsimulation,
and the calibration process.
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• Chapter 2 provides a detailed explanation of the AI@EDGE project and its rele-
vance.

• Chapter 3 presents the process of defining, calibrating and modelling the real sce-
nario.

• Chapter 4 gives an overview of the process of aligning the traffic scenario and the
scenario presented in the driving simulator. It also includes test results using the
new scenario.

• Chapter 5 offers the main conclusions of this work as well as a review of the under-
taken process with suggestions for possible further improvement.
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1| State of the art

In this chapter a brief recollection of the state of the art is presented. The analysis is
divided in five different sections even though some of the concepts are transversal. This
sections are: (1) Introduction to roundabouts (2) Connected and Automated Vehicles
(3) Traffic simulation and microsimulation (4) Simulation of Urban MObility (SUMO [3])
software (5) Calibration and validation of traffic simulations.

1.1. Roundabouts

The increase in welfare during the last century has led to greater mobility, increasing the
number of vehicles on the roads This increased vehicle number and usage in all kinds of
situations has led to congestion and safety concerns specially in junctions. To improve
the performance and safety of road networks, the design of junctions plays a crucial role
and roundabouts have been found to be a good solution.

Roundabouts are a form of intersection whose key features are circular shape, yielding
control of entering traffic and a specific set of right-of-way rules [4]. The roundabouts
aim to accomplish speed reduction of the incoming traffic as well as allowing different
typologies of vehicles to circulate on them. Splitter islands contribute to separate incoming
and outgoing traffic on a leg and flare on the entries allows to increase the capacity.

The main features as presented in figure 1.1 are:

• Central island: central area of a roundabout around which the traffic flows. Usually
this area is raised to avoid crossing it.

• Splitter island: raised or painted area at the approach of a roundabout to separate
incoming and outgoing traffic as well as induce speed reduction of the incoming
traffic.

• Apron: mountable portion of the central island to allow traffic of bigger vehicles.

• Yield line: pavement marking to indicate the entry of the roundabout.
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• Landscaping buffer: elements separating road traffic from pedestrian traffic.

Figure 1.1: Main features of a roundabout [4].

The geometrical characteristics of a roundabout shown in figure 1.2 are:

• Inscribed circle diameter: basic parameter to define a roundabout. Measured be-
tween outer edges.

• Circulatory roadway width: measured between outer edge and the central island,
excluding any apron.

• Departure width: width of the lane downstream the roundabout.

• Approach width: width of the lane upstream the roundabout.

• Exit width: width of the exit lane where it meets the inscribed circle measured
perpendicularly from the right edge of the lane.

• Entry width: width of the entry lane where it meets the inscribed circle measured
perpendicularly from the right edge of the lane.

• Entry radius: radius of curvature of the outside curb at the entry.

• Exit radius: radius of curvature of the outside curb at the exit.
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Figure 1.2: Main geometrical characteristics of a roundabout [4].

Different types of roundabouts are conceived depending on the capacity requirements of
the road on which they are placed. The main differences between these types of round-
abouts are the number of lanes, the size and desirable entry speed. The characteristics
according to the National Cooperative Highway Research Program [4] are reported in
table 1.1.

Main roundabout types

Design Element Mini-Roundabout Single-Lane Roundabout Multilane Roundabout

Maximum desired speed 25-30 km/h 30-40 km/h 40-50 km/h

Maximum entering lanes per approach 1 1 2+
Central island Trasversable Raised Raised

Table 1.1: Roundabout characteristics according to the National Cooperative Highway
Research Program (USA) [4].

These characteristics are similar to the ones seen in Germany [5] and Italy [6] where the
classification regards the inscribed circle diameter (mini-roundabouts: 14-25 m; compact
roundabouts 25-40 m; and conventional roundabouts: 40-50 m).

Another possible layout for roundabouts are Turbo roundabouts. It has been shown in
the literature that they can improve safety compared to two-lane roundabouts and yet
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improve capacity when compared to smaller, single-lane, roundabouts [7]. To provide a
better understanding of the types of roundabouts in figure 1.3 the basic urban roundabouts
and turbo roundabouts schemes are showed.

(a) Urban mini-roundabout [4]. (b) Urban single lane roundabout [4].

(c) Urban double lane roundabout [4]. (d) Turbo roundabout [8].

Figure 1.3: Schemes of different types of urban roundabouts

The main safety advantage of roundabouts when compared to normal intersections is
that roundabouts reduce the amounts of possible conflicts, especially those that involve
crossing trajectories and are the most dangerous. Multiple lane roundabouts do not
eliminate this type of conflict, but they reduce the number of crossing conflicts from 16
to 8. This concept is clear when looking at figure 1.4.

However, analyzing the safety of intersections is not only a matter of studying conflicts
between vehicles, it is also required to consider other users of the road such as pedestrians
or cyclists [9]. The safety of pedestrian is known to increase, when looking at the reduc-
tion of number of injuries when comparing regulated intersections and roundabouts with
unsignalized intersections. This decline is steeper in the case of roundabouts, specially in
areas where low enforcement of traffic regulations is reported [10], this could be explained
by the induced speed reduction due to the geometry of the roundabout [11]. It also has
been shown analysing available accidents data that roundabouts significantly reduce se-
rious injury accidents [12]. Analyzing traffic conflicts using surrogate measures of safety
has shown the importance of geometrical design of roundabouts, mainly outer diameter
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Figure 1.4: Vehicular conflicts for normal intersection and roundabouts [4].

and number of lanes, and flow distribution around the different legs, showing that it is
important to analyze safety for all the possible conditions of flow [13].

The main disadvantage of roundabouts comes in high flow situations, in this circum-
stances the signalised intersections show advantages over roundabouts, allowing a higher
throughput [14]. Another situation in which traffic is better controlled by traffic lights
than by roundabouts in terms of performance are unbalanced flows coming from the dif-
ferent legs. A possible solution is to merge both alternatives and control the entrance
of the roundabout with traffic lights. In this case, the flow can be further improved by
applying the correct control strategy of the traffic lights [15], the main drawback of this
approach is that the origin/destination flows must be known a priori. Another solution
could be the already mentioned turbo roundabouts [16].

To evaluate an intersection not only capacity and safety performance need to be consid-
ered, but also the pollutant and noise emissions that are generated by cars running on it.
In a suburban environment different layouts have proved to be source of different outputs
regarding emissions [17]. These differences can be linked to different driving behaviors
depending on the type of roundabout.

Despite the existence of clear guidelines on how to design and build roundabouts, the
actual implementation can suffer variations from the theoretical design due to other re-
quirements, such as space limitations, higher flows or the need to place parking slots
inside, that need to be met [18]. These considerations lead to the necessity of analyzing
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every roundabout on its specific context to reach significant conclusions. On top of that,
the different mix of vehicles (cars, trucks, motorcycles) that use the roundabouts leads to
different impacts of roundabouts [19].

To fully evaluate the impacts and advantages of roundabouts, it is crucial to understand
how drivers approach them and interact with each other within the intersections. Several
studies have demonstrated that drivers’ behavior is influenced by the geometrical char-
acteristics and lane demarcation in two-lane roundabouts [20]. In addition, it is relevant
to analyze the speed and acceleration upstream and downstream of the roundabouts [21].
These studies have shown that roundabouts promote speed stabilization. However, in the
case of two-lane roundabouts, the homogenization of driver behavior in terms of trajec-
tory and speed has been questioned due to the greater freedom of movement that drivers
have [22].

Another important consideration is the discomfort experienced by passengers due to lat-
eral acceleration, particularly at the entry and exit of roundabouts, which depends on the
required trajectory by the driver [22]. Understanding the impact of lateral acceleration
on passenger discomfort is crucial in designing safer and more comfortable roundabouts
for all users as well as to design the behavior of automated vehicles when approaching
this kind of intersections.

In conclusion, roundabouts are a type of intersection that can offer various benefits over
traditional signalized intersections, such as increased safety and reduced congestion. How-
ever, the specific design and layout of a roundabout can greatly impact its performance,
and factors such as pedestrian and cyclist safety, emissions, and driver behavior must
also be considered. Different types of roundabouts have their own characteristics and
requirements depending on the capacity of the road. Ultimately, the implementation of
roundabouts must be tailored to the specific context and needs of each intersection. By
carefully considering all factors and using appropriate design principles, roundabouts can
continue to be a valuable tool in improving the efficiency and safety of urban transporta-
tion systems.

1.2. Cooperative Connected and Automated Vehi-

cles

One of the main factors of road accidents is the human factor, meaning that having a
human driver who is subjected to distractions and does not respond perfectly to all the
situations increases the injuries and fatalities that occur. Hence, removing this factor
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from the driving equation could theoretically lead to more predictable driving scenarios,
improving the safety and efficiency of the road network. In the last years, some advances
have been made on the scope of automated and self-driving vehicles, although the tech-
nical and regulatory complexity of these systems render the date of full adoption of the
technology still distant in time. In this section both connected and automated vehicles
are considered and the focus is placed on the impact of this technologies in urban areas
and specially at intersections.

Connected vehicles are considered those able to connect to external networks, through in-
built technologies or extra devices added to the vehicle. This connectivity can be between
vehicles, Vehicle to Vehicle (V2V), or between the vehicles and the infrastructure (V2I).
These technologies among others take part in Inteligent Transportation Systems (ITS)
with predicted impacts on traffic signal control, traffic and incident management, vehicle
control technologies and shared-use mobility among others [23]. This is expected to reduce
energy consumption while improving both safety and efficiency.

According to the taxonomy provided by the Society of Automotive Engineer (SAE) [24],
6 discrete and mutually exclusive levels of car automation can be distinguished, as shown
in figure 1.5.

According to this taxonomy one of the important parameters to define a CAV is knowing
its Operation Design Domain, meaning the conditions in which an automated vehicle can
safely operate, to asses its level of automation and to guarantee safety operation of the
vehicle, the results have been seen to vary according to the definition of safety boundaries
[25].

One of the possible uses of connected vehicles is the automated control of intersections.
Using V2I (vehicle to Infrastructure) communication allows to get rid of traffic signaling
at intersection (if all the vehicles are automated). In this case the vehicle waits for the
commands of a centralized system that determines the best order to enter the intersection
providing space-time path reservations to each vehicle through time buffer when entering
conflict point. A sensitivity analysis revealed the importance of this time buffer in the
overall performance of the system [26]. One of the negative aspects of intersections is an
increase of fuel consumption and emissions due to vehicle idling and excessive acceler-
ations. However, this reduction of fuel consumption and emissions could be conflicting
with the minimization of travel time. This conflicting objectives have been addressed in
the literature using V2I and V2V communication to implement eco-driving strategies [27].

Regarding the behavior of automated vehicles one of the main areas of study is the tra-
jectory planning, some theoretical approaches have been proposed and simulated. For
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Figure 1.5: Automated vehicles taxonomy according to SAE [24]

instance, in the work done by Solea and Nunes [28] the planning of the trajectory is
constrained by the desired destination and the acceleration and jerk limits proposed in
the ISO 2631-1 standards. Some other works are more specifically designed for specific
situations such as roundabouts [29]. In this case, the proposed algorithm differentiates be-
tween entry, circulatory roadway, and exit. However, this algorithm neglects the presence
of other vehicles. On the plus side, the algorithm was tested through a real implementa-
tion on a vehicle. The decision making of CAVs could also be governed by game-theoretic
approaches and in this case user preference and global or individual optimization focus
plays a significant role on the performance [30].

The possible impacts of the introduction of CAVs in the existing networks have been
analyzed in the literature looking at possible different outcomes and through different
methods. The general consensus is that a significant penetration rate of CAVs would
improve safety and efficiency [31]. However, the required penetration threshold for this
improvements to materialize is disputed and ranges from 20% to 70%.

According to the English Department for Transport [1] the different levels of automation
and user choice aspects need to be considered to understand the impact on traffic flow,
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network performance and road capacity of the introduction of CAVs. The user choices
influence the behavior of CAVs both when the user is in the automated vehicle and when
the user is driving in front of one of them, due to the desired rear gap.

The same study also highlights that different environments lead to different effects of the
introduction of CAVs. Urban environment could see a greater improvement in delay and
journey time even for penetration rates as low as 25%, even for low-tech driver assistance
technologies, meanwhile this threshold is higher for highway scenarios. The analyzed
outputs in this case are time delay and journey time.

According to the research, CAVs are said to affect different aspects of driving: free driv-
ing, vehicle following (time headway, acceleration and deceleration rates), lane changing,
merging and joining (behavior at junction and gap acceptance) and planning and deci-
sion making. On top of this, a balance between comfort, safety and capacity needs to
be found since these objectives are often not aligned. Also it is important to distinguish
between the user-optimal and the network-optimal solutions, because they could also be
conflicting.

Simulating the introduction of CAVs in a theoretical and real network [32] allowed the
authors to indicate that the introduction of CAVs would lead to a quasi-linear increase
of maximum flow. However, the maximum flow increase is said to be lower than that
theoretically expected. Analyzing the fundamental diagram for a roundabout scenario
[33] increasing the presence of CAVs in 20% steps led to a increase of critical density and
hence maximum flow for different formulations of the fundamental diagram. However, in
this case the improvement shows a saturation after 80% of CAVs presence.

In conclusion, CAVs are expected to have a positive impact in both fluency and safety of
traffic, although it is not well established the minimum percentage of these vehicle to have
a sensible impact. It is also discussed how this technology will manage complex situations,
such as roundabouts, and how the perception of the passengers would be. Also important
is to consider the perception of the surrounding non-automated drivers. To assess this
impacts different solutions are proposed and implemented in the literature, being traffic
simulation one of the preferred alternatives due to its cost-effectiveness.

1.3. Traffic simulation and microsimulation

The democratization of computational power during the last decades has given access to
a significant number of tools that allow performing complex calculations in short times
allowing to develop representations of reality with ever-increasing detail. This can also be
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seen in the traffic sector, where simulation tools help assess different planning scenarios,
study complex behaviors or the potential impact of a given technology in a cost-effective
way. Traffic simulations could be categorized according to its focus [34] in:

• Macroscopic: average values of traffic variables are analyzed.

• Microscopic: each vehicle is modeled individually.

• Mesoscopic: a combination of the previous approaches.

• Submicroscopic: specific functions of the vehicle are explicitly simulated.

The two basic simulation variables are time and space. The models are usually time-
discrete for computational reasons, meanwhile both space-discrete and space-continuous
models can be found. There are both commercial and open-source solutions available.
Space-discrete models are usually simpler and more suited to analysis on performance of
the network rather than individual behaviors, for example comparing phase diagrams of
signalized intersections with those of roundabouts using a cellular automaton model [35].
Microsimulation tools, however, tend to use space-continuous models.

In the scope of this project, the most relevant simulations are microscopic simulations
since it is required to analyze each vehicle individually. Regarding microsimulations the
results strongly depend on how the behavior of drivers is modelled, mainly the behavior
related to car following and lane changing. It is also important to consider limitations to
reproduce incidents, errors and accidents on the network

Car Following Models (CFM) have been studied for many years and different approaches
have been explored. The most used car following models and their working principles are
explained in the next section. After, an overview of the main simulation software and the
implementation of the CFM is presented.

1.3.1. Car Following Models (CFM)

Optimal Velocity Model

The basic explored idea behind this car following model is that drivers desired acceleration
is a function of its own speed, the speed differential and the gap between them corrected
by a calibration parameter as can bee seen in its formulation (1.1).
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ẍn(t) =aF (...,∆xn+1,∆xn,∆xn−1, ...

..., ẋn+1, ẋn, ẋn−1, ...

..., xn+1, xn, xn−1, ...)

(1.1)

Where xn is the position of the ego vehicle and n+ 1 and n− 1 represent the rest of the
vehicles in front and behind the ego influencing its behaviour. The coefficient a is the
calibration parameter.

Taking on this idea, considering that the driver reacts to the position, velocity and head-
way of the surrounding vehicles with a given sensitivity [36] and considering that the
driver sets its desired speed by looking at the headway with respect to the leader the
equation of motion of the Optimal Velicity Model can be expressed as follows.

ẍn = a[V (∆xn)− ẋn]

∆xn = ẋn+1 − ẋn

(1.2)

(1.3)

The function V needs to be monotonically increasing and has an upper bound that could
be understood as the maximum speed [36]. The model is said to account for the effect of
time lag through the second order differential equations based on the equation of motion
[37].

A similar reasoning could be made to introduce a model in which headway and speed
interchange its functions, this model is known as optimal headway model. Following this
approach, the function that defines the desired headway uses the speed difference between
leader and follower as the independent variable.

Gipps Model

The goal of this car following model was to mimic the behaviour of real traffic providing
a model in which the parameter corresponded to obvious driver characteristics [38]. The
model considers that the driver can either drive freely, limited only by its desired speed,
acceleration and braking and only influenced by its immediate predecessor. The basic
formulation of the model is shown below.
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vn(t+ τ) =min

[
vn(t) + 2.5anτ

(
1− vn(t)

Vn

)√
0.025 +

vn(t)

Vn

,

bnτ +

√
b2nτ

2 − bn

[
2[xn−1(t)− sn−1 − xn(t)]− vn(t)τ − vn−1(t)2

b̂

]] (1.4)

where

• an: maximum desired acceleration.

• bn: maximum desired deceleration.

• sn: size of the vehicle composed by the actual length plus a gap.

• Vn: desired speed.

• xn(t): position of the front bumper at time t.

• vn(t): speed of the vehicle at time t.

• τ : reaction time.

• b̂: follower’s estimation of leader’s maximum deceleration.

Using two expressions the model provides two driving situations, unconstrained when the
leader tries to travel at its desired speed and following mode where the constrained is
imposed by safety.

The first part of equation (1.4) represents that the driver will not exceed its desired
speed and it will moderate the acceleration when getting closer to the desired speed. The
second part represents the braking constraint, if the leader (vehicle n-1) breaks with a
given deceleration the follower reacts with a delay due to the reaction time getting closer
to the first vehicle, the safety constraint of avoiding collisions leads to the conclusion that
the speed at the time in which the deceleration begins needs to be constrained.

The free driving equation of the original model can be expressed in a more general way
providing the possibility of calibrating new parameters (alfa, beta, gamma) that define
the relationship between speed and acceleration during free driving, equation (1.5). This
has been proven to enhance the performance of the model when calibrating the model
based on trajectory data [39].

vn(t+ τ) = vn(t) + αanτ
(
1− vn(t)

Vn

)(
β +

vn(t)

Vn

)γ
(1.5)
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Krauss Model

This car following model [34] also considers two states of driving: free motion and inter-
action with another vehicle. In free motion the main characteristic is that the speed is
limited by a maximum velocity. In the second state the model objective is to guarantee
that no collisions occur, hence the speed is limited by the maximum speed at which this
can happen. Another assumption of the model is that the maximum acceleration and
deceleration are bounded. All these constraints can be expressed as follows.

v ≤ vmaxv ≤ vsafe

−b ≤ v̇ ≤ a; where a, b > 0

(1.6)

(1.7)

The implementation of this model relies on the calculation of the gap between the leader
and the follower, the desired gap and the desired relaxation time.

vf (t+∆t) ≤ vl(t) +
g(t)− gdes(t)

τdes(t)

where : gdes = vlτ ; τdes = τb + τ ; τb = v̄/b(v̄)

(1.8)

To sum up, the model for discrete time steps can be represented by the following equations.

vsafe(t) = vl +
g(t)− gdes(t)

τb + τ

ves(t) = min[vmax, v(t) + a(v)∆t, vsafe(t)]

v(t+∆t) = max[0, vdes(t)− η]

x(t+∆t) = x(t) + v∆t

(1.9)

(1.10)

(1.11)

(1.12)

In equation (1.11) η represents a random perturbation. According to Krauss [34] a suffi-
ciently small time step is required to guarantee that it is smaller than τ and the desired
gap is smaller than the speed multiplied by the time step.

Wiedemann’s Model

Wiedemann proposed a psycho-physical model [40] in which four driving regimes - free-
flowing, approaching, following and emergency – are defined and the driver enters in one
of the regimes when certain thresholds regarding speed difference and gap with respect
to its predecessor are reached. These areas can be represented as in Figure 1.6.

The different thresholds represented in figure 1 are:
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Figure 1.6: Wiedemann’s car following model [40].

• AX: minimum standing distance

• BX: minimum following distance

• CLDV: points where drivers perceive their speed is higher than the leader speed

• SDV: points where drivers perceive they are approaching a slower vehicle

• OPDV: points where drivers perceive their speed is higher than the leader speed

• SDX: limit of the car-following model

The original model of Wiedemann was published in 1974 (W74) and it was latter reviewed
in 1999 (W99), thus two models of the Wiedemann approach are available and, although
they share the same concept, they have different parameters. The original model (W74)
is formulated as follows .

vn(t+∆t) = min

[
3.6

(
sn(t)− sj

BX

)2

;uf

3.6

(
sn(t)− sj
BX · EX

)2

;uf

] (1.13)
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where BX and EX are computed as

BX = BXadd +BXmult ·RND1n

EX = EXadd + EXmult · (NRND −RND2n)

(1.14)

(1.15)

Where BXadd, BXmult, EXadd, EXmult are the calibration parameters.

The expected threshold values are calculated as follows [41]:

E(AX) = sj + 0.5 ≈ sj

E(ABX) = E(AX) + E(BX)
√
u = sj + E(BX)

√
u, u ≤ udesired

E(SDX) = sj + E(BX) + E(EX)
√
u, u ≤ udesired

(1.16)

(1.17)

(1.18)

The model W99 is governed by the following equations [41] .

vn(t+∆t) = min

[
vn(t) + 3.6 ·

(
CC8 +

CC8− CC9

80
vn(t)

)
∆t; vf

3.6 · sn(t)− CC0− Ln−1

vn(t)
; vf

] (1.19)

AX = L+ CC0

BX = AX + CC1 · v

SDX = BX + CC2

(SDV )i = −∆x− (SDX)i
CC3

− CC4

CLDV =
CC6

17000
(∆x− L)2 − CC4

OPDV = − CC6

17000
(∆x− L)2 − δ · CC5

(1.20)

(1.21)

(1.22)

(1.23)

(1.24)

(1.25)

Where v is the speed of the subject vehicle if it is slower than leader or the leader speed
with some random errors. ∆x is the headway measured between front bumpers. δ is a
dummy variable equal to 1 when the ego vehicle’s speed is greater than CC5.

The parameters of W99 are usually defined as follows [40]:

• CC0: standstill distance

• CC1: headway time
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• CC2: following variation

• CC3: entering following threshold

• CC4: negative following threshold

• CC5: positive following threshold

• CC6: oscillation speed dependency

• CC7: acceleration oscillation

• CC8: standstill acceleration

• CC9: acceleration at 80 km/h

Some of this parameter can be easily linked to actual measurable parameters and related
to other CFM, meanwhile others are more difficult to interpret.

Intelligent Driver Model (IDM)

The IDM is a model conceived by Martin Treibet et al. [42] that tries to explain the
acceleration as a sum of two components, one depending on the relationship between the
actual speed and the desired speed, and the second one depending on the actual gap
between follower and leader and the desired gap. This can be mathematically expressed
in formulas (1.26) and (1.27).

v̇α = a(α)

[
1−

(
vα

v
(α)
0

)δ

−
(
s∗(vα,∆vα)

sα

)2
]

s∗(v,∆v) = s
(α)
0 + T (α)v +

v∆v

2
√
a(α)b(α)

(1.26)

(1.27)

Where S∗ is the desired gap by the follower vehicle and every vehicle can have a different
set of parameters. The basic notation is explained in figure 1.7.

Figure 1.7: IDM notation [43]

Equations (1.26) and (1.27) are described in a continuous way. However, for simulation
purposes the time discrete approach is used. One of the advantages of this model is that
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all the parameters are intuitive and easily measurable [39]. The meaning of the parameters
is explain as follows:

• δ: eagerness to reach the desired speed

• T : time headway

• s0: minimum standing gap

• a: maximum comfortable acceleration

• b: maximum desired deceleration

• v0: desired speed, could be interpreted as the maximum legal speed

This model has been shown to perform well to reproduce traffic flow characteristics such as
the ones obtained via the fundamental diagram [42]. However, the model could be further
improved and some modifications and additions have been proposed over the years.

The Improved Intelligent Driver Model (IIDM) [44] allows to obtain more realistic gaps
in homogeneous traffic conditions, this is obtained calculating a new acceleration used as
a reference when the gap is above the desired gap, thus avoiding large gaps induced by
the term of the gap in the original acceleration formulation.

The model can be further improved including finite reaction times, estimation errors,
temporal and spatial anticipation. These characteristics are included in what is known as
Human Driver Model (HDM) [45] and it is shown that can be paired with the IDM [43].

In the IDM the time-headway could be interpreted as the reaction time, however, this
two could be different since one depends on driving style and the other is a psychological
parameter [45]. The real value should be also different from the simulation step time. To
represent the estimation errors of the driver a Wiener process to introduce stochasticity
is proposed. The driver is also able to anticipate the velocities, own velocity, and leader
velocity, as well as the gap between the two vehicles. Introducing this reduces the prob-
ability of accidents and instability produced by the addition of the reaction time as time
action points [43].

The IDM was originally conceived as single lane mode, which led to high deceleration
when applied to a multiple lane scenario, the Enhanced Intelligent Driver Model (EIDM)
tries to tackle this problem [46]. This model provides a more relaxed and realistic change
in the acceleration specially when a lane change has been performed [43]. The formulation
of the model is shown below.
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acah(t) =


v2n−1ãn

v2n−1−2s(t)ãn
vn(vn−1 − vn) ≤ −2s(t)ãn

ãn − (vn−1−vn)2Θ
2s(t)

otherwise.
(1.28)

Θ =

0 (vn−1 − vn) < 0

1 (vn−1 − vn) ≥ 0
(1.29)

ãn = min(an(t), amax (1.30)

This model is not independent from the IDM model and needs the prior calculation of
IDM to work, to be coupled with the IDM the parameter cACC is added to weigh the
impact of the IDM and this modification in the actual acceleration.

aACC =

aIDM aIDM ≥ aACC

(1− cacc)aIDM + cACC

[
aCAH + b · tanh(aIDM−aACC

b
)
]

otherwise
(1.31)

Further improvements to the original IDM that are implemented in SUMO under the
name of Extended IDM (EIDM) [43] include:

• Providing smooth deceleration to 0 when estimation and perception errors are con-
sidered.

• Modifying the desired speed with anticipation to the speed limit change.

• Instant reaction of the driver when the required change of the acceleration is greater
than a certain limit to simulate

• Limit jerk in drive off scenarios to obtain more realistic results modifying the accel-
eration after stopping and proposing a hyperbolic tangent function.

• Limit jerk in scenarios with sudden changes of desired gap and actual gap limiting
the ratio of change to a specific parameter.

Although these modifications to the IDM improve the realism of the outcomes,
the original IDM is still widely used due to its simplicity and straight forward
formulation.
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Other models

Other models can be found in the literature. Some rely on different approaches such as
fuzzy logic instead of deterministic calculation of the acceleration to better represent the
estimation capabilities and randomness of the drivers [47]. Probabilistic approaches can
also be found [48]. Others are more specific and try to find innovative approaches to
model how drivers interact, for example using microeconomic utility-based models [49] or
based on game theory. Most of the models are designed to represent the conditions of
traffic in developed countries, however some specific models try to represent the conditions
of developing countries, for instance, heterogeneous traffic [19]. This traffic condition is
characterized by numerous interactions among vehicles with different trajectories and
very different characteristics in lane-less traffic, basically large presence of small vehicles,
two-wheelers and no lane discipline [50].

To model the behavior when implementing autonomous vehicles (AV) or connected au-
tonomous vehicles (CAV) the IDM could be used with the adequate parameter configu-
ration [46]. However, specific models for these situations can be found in the literature
such as the work done by Milanés et al. [51].

Although, the main CFM explained are generally accepted, some criticism can be found in
the literature regarding the lack of realism to represent traffic flow breakdown at highway
bottlenecks [52].

1.3.2. Lane Change Models

As it has been shown, the longitudinal behavior of a vehicle driven by a human can be
represented through mathematical models. However, to completely represent the move-
ment of cars in traffic scenarios, the lateral behavior, mainly lane changing, must also
be represented to obtain realistic results. This is because lane changing can affect per-
formance outputs of the network such as capacity due to shock-waves in heavy traffic
conditions [53].

To reproduce the decision making process of human beings while driving, the literature
divides these decisions into strategic, tactical and operational. Lane changing falls in the
last two categories. According to Moridpour et al. [53], models based on search algorithms
can be found. These models try to make the decision considering the final position of the
driver’s vehicle and other surrounding vehicles. The other option is to base the decision
on current traffic characteristics, this second approach is the most common and different
strategies have been implemented in the literature.
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The first defined strategy is that of having a deterministic model. The model tries to re-
produce a clear relationship between the independent variables and the output of whether
to perform or not the lane change. It is crucial to define the explanatory variables to ob-
tain a good performance of the lane changing model. The main advantage is that it is
simple to model and has a low number of variables [53].

An example of this strategy is the Gipps’ model [54]. According to Gipps, stimulus re-
sponse CFM are easier because any obstacle can be analyzed as a leader vehicle, while
Lane Changing models are more problematic because they depend on different and some-
times conflicting objectives. The three basic parameters influencing the decision of making
the lane change are possibility, necessity, and desirability. These parameters are said to
be affected by the driver assessment of the situation where the parameters to take into
account are risk, required turns and proximity, if traffic is likely to represent a limit to
the desired speed, the urgency of the lane changing as well as legal requirements.

The hierarchy between conflicting objectives or reasons needs to be clear and might vary
from driver to driver or from region to region [54]. This hierarchy is explained in [53]
in a simplified way: if the driver is far away from the desired exit, maintaining speed
is the main objective; closer to the exit, the advantage of changing lane is ignored if
moving away from desired exit; and if exit is immediate speed desire is irrelevant. The
physical parameters of the defined mathematical model are the same explained for the
Gipp’s CFM: safe speed and brake, front gap and estimation of leader’s braking. Hidas
developed a similar model for a specific simulation model SITRAS [55]. This model
includes a feasibility constrained linked to the acceleration change of the subject vehicle
and the new follower vehicle. It also introduces the concept of courtesy which could be
important to simulate merging, considering it a special case of lane changing.

The second strategy is the probabilistic approach. The model gives a probability to
performing the lane change according to the entry variables that are fed into it. According
to Moridpour et al. [53], this approach leads to a higher computational cost when using
simulation since all the probabilities need to be calculated in every time step.

Toledo et al. [48] developed a model of integrated driving behavior, in which the analysis
of lane change to either side or no lane change and then decision to accelerate once the
target lane is set are considered. The variables that this model accounts for are speeds and
spacing of surrounding vehicles, not only those in the current lane, trip plan variables,
network knowledge and experience, as well as driving style and capabilities. All these
parameters are used to calculate the utility of each lane and a logit model is used to
obtain the probabilities of selecting each lane.
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The third strategy is that of using Fuzzy logics [56]. Although random terms can be
included in all the previously defined models to try to simulate the variability and ran-
domness of drivers, this representation might not be good enough [53]. To better represent
the driver decision making process fuzzy logic has been proposed in the literature because
it allows to define specific uncertainty in the model. The better performance and capabil-
ity to represent humans perception comes at the cost of difficult and complex to abstract
fuzzy rules and a more cumbersome validation process [53].

Wu et al. developed a fuzzy logic simulation model (FLOWSIM) to reproduce driving
in motorways [47]. Regarding Lane changing two different models are described by Wu
et al.: changing lane offside or nearside. Changing nearside relies on pressure from rear
(time headway of the following vehicle) and gap satisfaction (period of time in which is
possible to stay in the lane without reducing speed) as basic parameters. Changing offside
relies on overtaking benefit (speed gain) and opportunity (safety and comfort of the lane
change time headway to the nearest approaching vehicle to the rear).

Some of the remarks found in the review performed by Moridpour et al. [53] about
limitations of the lane changing models are: the lack of models for heavy vehicle lane
changing decision, the use of macroscopic traffic measures for the validation of the models
and the assumption that the lane change is an instantaneous maneuver.

1.3.3. Integration of CFM in microsimulation platforms

Different attempts to build microsimulation software with research purposes have been
undertaken in the last decades to test specific models, such as the Intelligent Driver Model
(IDM) [57], or to test vehicle features like Adaptative Cruise Control (ACC) in the case of
PELOPS [58], a traffic microsimulation program created by Institut für Kraftfarhwesen
Aachen and BMW to simulate traffic flow on motorways. The most relevant microsim-
ulation platforms according to the literature [31] are shown in Table 1.2 indicating its
developer, the included Car Following Models, Lane Change Models, the original release
date and a stable release version.

PLATFORM DEVELOPER CFM LCM RELEASE

PARAMICS Quadstone
(University of Edinburgh) Fritzsche Gap-acceptance 1990

Paramics Discovery (2020)

VISSIM PTV
(Karlsruhe University) Wiedemann 74, Wiedemann 99 Sparmann model 1992

PTV VISSIM 2021(2020)

CORSIM McTrans Center,
University of Florida Pitt Intralink LC 1998

TSIS-CORSIM 6.3 (2012)

AIMSUM Siemens Mobility
(TSS – Transport Simulation) Gipps Rule-based Gipps 1997

AIMSUM Next 20 (2020)

SUMO German Aerospace Center Krauss, Daniel, IDM, IDMM, EIDM, Wiedemann, ACC, CACC DK2008, LC2013, SL2015 2001
SUMO 1.9.2 (2021)

Table 1.2: Most used microsimulation platforms [31]
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VISSIM, Paramics, CORSIM, SUMO and AIMSUM are, according to publication share
in the top 25 publishers, the most used microsimulation platforms. From this list, SUMO
is the only open-source software.

Specific studies have been done trying to analyze the performance of different software,
for instance, comparing transims, SUMO and VISSIM [59]. Transims is based on cellular
automata, where a given cell (each of the areas in which the network is divided) can be
empty or occupied by a vehicle and its state affects the decision making of nearby vehicles.
Maciejewski tried to reproduce a real urban network an analyze the performance. It is
stated that VISSIM allows a more realistic representation of the network, specially of
intersections, and possible maneuvers and the highest realism level of vehicle dynamics.
Even though some different results are obtained in the quantitative analyses, qualitatively
all gave the same results regarding problematic areas of the network [59]. However, it is
important to note that this study was performed considering older versions of the software,
and these are in constant development. Giuffrè et al. [13] used VISSIM and AIMSUM to
obtain trajectories to assess safety in roundabouts analyzing conflict points. The results
pointed that it is possible to obtain comparable results regarding safety through the use
of appropriate filters.

Other studies have used simulation to compare the performance of different CFMs. The
most used models are Wiedemann and IDM. Goncu et al. using SUMO showed that
W99 and IDM, when set for the same driver behaviour, give different results regarding
travel time and total throughput, this difference is said to be higher than the difference
obtained modifying the parameter for a given model [60]. Also, it is stated that IDM
reproduces better the behaviour of real drivers for specific situations, this is due to its
different approach to driver modelling [25, 60].

Sun et al. [56], added Gipps to the comparison and tried to reproduce different driver
behaviors according to the aggressiveness of the driver, they found that Gipps model was
the least performing regarding error with real data. Meanwhile, both Wiedemann and
IDM were able to reproduce the two driver styles, but they found that some anomalies
regarding the value of acceleration for W99. IDM has also been proven to be better to
reproduce heterogeneous behaviors [61]. This last study done by Zang et al. introduces
also the General Motors CFM, that was found to be under-performing when compared
to W99 and IDM, and divides the driver behaviour in neutral, aggressive and timid.
They also included an additional term to represent heterogeneity among same type of
drivers, they found that for their analyzed data the best approach was to estimate this
new parameter through and α− stable distribution.



1| State of the art 27

The importance of the ability of a given CFM to reproduce different driving styles and
heterogeneity among driver is further explored in the literature. Focusing on the IDM
the possibility of using a distribution instead of a fixed parameter has been proposed as a
way to represent driver variability [27, 62], the addition of noise to the acceleration signal
has also been analyzed given different results [27].

Many of the studies carried on in the last years regard the implementation of Automated
Vehicles (AV) in the current network. Some of the studies to assess the impact of different
CAVs penetration rates focus on modelling them setting different CFM parameters. For
example, using SUMO and Krauss parameters [32] or IDM [33], or using VISSIM and
W99 [1, 63].

In some cases, modifying the parameters of the inbuilt models might not be sufficient to
represent the behavior of AV, hence a different approach is needed and cosimulation has
been used in the literature as a possible solution. Applying this strategy means that some
vehicles are controlled by the inbuilt model meanwhile others are externally controlled,
for instance through a different software or a driving simulator. In this case the preferred
software is SUMO due to its open-source nature [31]. This also gives the possibility
to simulate Connected Automated Vehicles (CAVs) simulating the communication via
external software or hardware.

Simulation is also useful to test specific algorithms, for instance a game-theory approach
to decision making of CAVs when they approach a roundabout [30]. Hang et al. proposed
differentiated driving strategies based on giving different weights to the payoff function
parameters representing safety, comfort, and efficiency to introduce the impact of different
user preferences. They also considered the impacts of respecting personal preference on
the overall system efficiency including some remarks on the relevant role of policy makers
and OEMs.

Analyzing the impact of CAVs specifically in roundabouts has also been studied through
the use of microsimulations [1, 33, 63]. The impacts have been studied on different out-
comes, such as maximum flow or average speed or more roundabout-specific parameters,
like queue length and time stopped. Analyzing safety looking at possible conflict points
using Surrogate Safety Assessment Model software leads to the conclusion that rear end
crashes could increase for certain levels of CAVs penetration [63]. That study concludes
that a positive impact on queue length, average speed and time stopped can be seen,
although the magnitude of the impact depends on the specific layout of the roundabout
and it is greater for higher CAVs penetration rates. It is also important to recognize that
when simulating roundabouts different parameters need to be taken care of such us lateral
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movement and lateral gap acceptance, specially for multiple lane roundabouts [1].

1.4. Simulation of Urban Mobility (SUMO)

As it has been discussed, different simulation software are available to perform analysis
on traffic networks. However, the open-source nature of SUMO [3] renders it as the best
alternative for the scope of this project. SUMO allows to represent road traffic (both
private and public), bicycle traffic and pedestrian traffic. In this section, the software is
described explaining the main characteristics that are useful for the project.

SUMO can be run through a graphical interface or using the command window. It can
also be commanded through Python or Matlab codes. To reproduce a scenario in SUMO
it is necessary to create at least three different XML files: a network file (.net.xml), a route
file (.rou.xml) and configuration file (.sumocfg). All these files allow to set the different
options available in the software.

The Network consists on the definition of nodes and edges connecting the nodes. The
nodes represent the different junctions in the network in which different roads converge
or suffer a change (e.g. reduction of the number of lanes). Edges represent the road or
the street and can be formed by one or more lanes with different characteristics (e.g. 4
lanes: road, bike path and two sidewalk lanes).

To generate a network in SUMO it is possible to use different options. NETEDIT is
the option provided by SUMO to generate the network and the demand using a visual
interface. This is one of the easiest ways to create a network from scratch, using the
visual interface the nodes and edges are created selecting their position on the screen and
then different configuration options are presented as can be seen in figure 1.8. On top of
this, SUMO provides different tools to be run using the command window that allow to
generate abstract networks (netgenerate), create a network starting from two files defining
the edges and nodes (netconvert) or import the network from different sources such as
OpenStreetMap, VISSIM and VISUM among others.

Once the network is generated using whichever of the mentioned methods an XML file
is generated. This file includes the definitions of nodes and edges previously explained
as well as the connections among the different lanes and some internal lanes. SUMO
generates these lanes inside the junctions to increase the realism of the simulation and it
is explained more in detail later.

NETEDIT also allows to define the vehicles and other users of the network through a
graphical interface. This is done in the demand module of the software. There are
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(a) NETEDIT node parameters definition. (b) NETEDIT node parameters definition.

Figure 1.8: NETEDIT Graphic interface to configure nodes and edges

different ways to define the desired movement of the vehicles. The first option is to define
the initial junction and the final junction, the second possibility is to do the same with
edges instead of junctions and the last one is to define a route, selecting the different
edges that compose it. In the first two cases SUMO uses Dijkstra’s algorithm (a shortest
path tree is generated from the source node to all other nodes and then the shortest path
to the desired node is chosen) as default to calculate the route because of its simplicity.
After defining the desired path it is possible to decide if we want it to be covered by a
single vehicle or by a flow of vehicles.

The demand module also allows to define different vehicle types. These vehicle types are
then assigned to the defined routes or trips. The vehicle type includes general attributes
of the vehicle (e.g. dimensions, capacity, emission class), Lane Change Model, Junction
Model and Car Following Model attributes. Figure 1.9 shows the configuration menu
of the vehicle type in NETEDIT. The specific attributes are discussed over the next
paragraphs.

Also for the demand an XML file is generated containing the information related to the
vehicle types and the different defined trips or routes, this allows to modify the settings
of the demand without using the graphic interface.
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Figure 1.9: NETEDIT Vehicle type configuration menu

After having defined the network and the demand on the network the setup of the simu-
lation is done. The configuration of the simulation is divided into input files, processing
parameters and desired outputs. The input files are the netwok and route files and it is
possible to include also additional files to represent different elements of the network (e.g.
traffic lights, bus stops, loop elements to measure different traffic parameters...).

The processing parameters of the simulation have a significant impact on the results of
the simulations. Some of the parameters are dedicated to define what is considered a
collision and what the action should be if the simulation detected one. It is also at this
point where it is necessary to state if the sublane model is going to be used, the sublane
model divides the lane in smaller portions and a vehicle occupies more than one of these
sublanes. This model also allows to modify the alignment of the vehicle on the lane and
introduces more option for the Lane Change Model that are explained later as well as the
possibility to consider the lane change event not instantaneous. The main two parameters
are the definition of the integration method and the step length.

The integration methods available in SUMO are the Euler method and the Ballistic
method. Treiber and Kanagaraj [64] analyzed these two methods among others and
found that the ballistic method offers a superior performance. However, it is important
to note that the implementation of some CFM in SUMO has not been tested using the
ballistic method and might lead to unexpected results.

The step length is the most significant parameter of the configuration. This parameter
impacts significantly the computational cost of the simulation increasing the resolution of
the results. It is also important to note that this parameter is used by some CFM as the
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reaction time of the driver, changing the results of the simulation even when the other
CFM parameters are the same.

The configuration process also includes defining which are the desired outputs of the
simulation. By default, no output is generated and saved by the simulation other than
the time of the simulation, the real time consumed, the number of vehicle and possible
warning related to the vehicles (e.g. emergency braking, collision or teleport). However,
SUMO allows to generate and save information related to the flow car data (position,
speed, acceleration), tip info both aggregated and for specific vehicles (depart/arrival
time, waiting time, time loss, emissions), emission using different available classes (CO2,
CO, HC, PMx, NOx, fuel consumption) and queue information.

It has already been mentioned that SUMO can be commanded externally using Python,
this is thanks to the Traffic Control Interface (TraCI). TraCI gives access to a running
simulation allowing to modify the behavior of objects of the simulation and to retrieve
information at each step of the simulation.

The next sections describe the Car Following Models, Lane Change Models and Junction
Models currently available in SUMO.

1.4.1. Car Following Models

The main concepts of Car Following Models (CFM) have already been explained in section
1.3.1. Although SUMO does not include all the mentioned CFMs, it includes the most
commonly used as well as some specific models that are implemented thanks to the open-
source nature of SUMO. The most relevant CFM are shown in table 1.3

Main Car Following Models available in SUMO

CFM in SUMO Description
Krauss Original Krauss model (see 1.3.1) with some modifications (default

SUMO model)
IDM Intelligent Driver Model as described by Treiber [42]
EIDM Extended Intelligent Driver Model [43]
Wiedemann 2-Parameters model. Similar to W74 (see 1.3.1)
W99 Wiedemann model with 10 parameters (see 1.3.1)
ACC & CACC Model developed by Milanés and Shladover [51]

Table 1.3: Main Car Following Models implemented in SUMO [65].
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On top of the described models, three other versions of the Krauss model are available
in SUMO, another IDM modification and two different CFM as well as one model for
rail vehicles. From the models shown in the table the most relevant are: Krauss, which
is the default used in the simulations, whose parameters are shown in table 1.4; IDM,
with parameters displayed in table 1.5, note that in the SUMO implementation two extra
parameters are added to the model, emergencyDecel, which allows to avoid collisions
exceeding the comfortable deceleration, and the stepping parameter that is relevant for
simulations using a large time step; and W99, with parameters shown in table 1.6.

Krauss Model parameters in SUMO

Attribute Range (Default Value) Description
minGap ≥ 0 (2.5 m) Minimum standing distance (from front

bumper to rear bumper)
accel ≥ 0 (2.6 m/s2) Maximum desired acceleration
decel ≥ 0 (4.5 m/s2) Maximum desired deceleration
emergencyDecel ≥ 0 (9 m/s2) Maximum ability to break
sigma [0,1] (0.5) Driver imperfection
tau ≥ 0 (1 s Time headway

Table 1.4: Parameters of the Krauss model in SUMO.

IDM parameters in SUMO

Attribute Range (Default Value) Description
minGap (s0) ≥ 0 (2.5 m Minimum standing distance (from front

bumper to rear bumper)
accel (a) ≥ 0 (2.6 m/s2) Maximum desired acceleration
decel (b) ≥ 0 (4.5 m/s2) Maximum desired deceleration
emergencyDecel ≥ 0 (9 m/s2) Maximum ability to break
delta (δ) ≥ 0 (4) Acceleration exponent, eagerness to reach de-

sired speed
tau (T) ≥ 0 (1 s Time headway
Stepping ≥ 0 (0.25 s Internal step length to compute follow speed

Table 1.5: Parameters of the IDM model in SUMO.
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W99 parameters in SUMO

Attribute Range (Default Value) Description
minGap (CC0) ≥ 0 (2.5 m Minimum standing distance (from front

bumper to rear bumper)
CC1 ≥ 0 (1 s Spacing time
CC2 ≥ 0 (8 m Following variation
CC3 ≤ 0 (-12 m Threshold for following
CC4 ≤ 0 (-0.25 m/s) Positive following threshold
CC5 ≥ 0 (0.35 m/s) Negative following threshold
CC6 ≥ 0 (6 104rad/s) Oscillation of speed dependency
CC7 ≥ 0 (0.25 m/s2) Oscillation acceleration
CC8 ≥ 0 (2 m/s2) Standstill acceleration
CC9 ≥ 0 (1.5 m/s2) Acceleration at 80 km/h

Table 1.6: Parameters of the W99 model in SUMO.

One particular aspect of drivers’ behavior that is not implemented into this models is
the reaction time. In SUMO, by default, the reaction time is equal to the step length
of the simulation. When using very low time steps this might lead to unrealistically low
reaction times, in order to decouple these two aspects SUMO has a configurable parameter
called actionStepLength that allows to modify when the logic of the driver is computed.
However, this is not a real reaction time because, even though the driver reacts after
the time set in the actionStepLength parameter, it reacts to the conditions seen in the
previous time step.

1.4.2. Lane Change Models

As discussed in section 1.3.2, to faithfully represent the behavior of a vehicle, the lane
change movement needs to be considered. The LCM that can be found in SUMO are those
considered deterministic, in which a given set of variables gives the output of whether or
not the lane change needs to be performed. Erdmann [66] explains the JE2013 Lane
Changing Model that is implemented in SUMO. The model distinguishes four different
motivations to perform a lane change:

• Strategic: change of lane to continue with the planned route.

• Cooperative: to allow other vehicle to perform a lane change or merge in a lane.
Includes also the possibility of slowing down.

• Tactical: change lane to reach the desired speed.
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• Regulatory: to comply with the regulations stating that circulation needs to be done
on the rightmost lane.

The lane change is only feasible if there is enough forward and rear space on the target
lane. However, some conclusions coming from the literature [66] point out that drivers
may accept lower rear and front gaps during lane changing due to the expected behavior
of the vehicle performing the lane change. This is said to be a reason to modify the CFM
parameters when evaluating the safety of these situations. Each of the lanes is numbered
from left to right starting from 0 and are ranked according to their convenience.

The strategic lane changing is characterized by the urgency of the movement. This urgency
depends on the distance to the dead end, the speed and the occupation of the lanes that
need to be crossed. The lane changing model is affected by the existence of a blocking
leader or a blocking follower. In this case, it is required to control the speed of the ego
vehicle depending on the speed of the leader vehicle and the remaining distance and time.
To prevent deadlock in the simulation, if a vehicle needs to perform more than one lane
change to reach each target lane an additional space of 20 or 40 m is saved for right and
left changes respectively.

The cooperative behavior assumes that a vehicle knows when it has become a blocking
follower and changes lane to allow the blocked vehicle to perform its desired lane change.
In SUMO, multi-lane roundabouts can be considered a special case for cooperative be-
havior. Meanwhile, tactical lane change needs to balance the speed gain and the effort
required to perform the lane change.

The hierarchy of lane changing motivation in SUMO is also described by Erdmann. The
following lists shows the motives ordered as by default, but the relative importance can
be tuned modifying the parameters of the LCM.

• Urgent strategic change needed: strategic change

• Changing creates an urgent situation: strategic stay

• Vehicle is a blocking follower for strategic change: cooperative change

• Speed gain outweighs lane change discomfort: tactical change

• Necessary to stay to the right by regulations: regulatory change

• non urgent strategic change

SUMO has three different lane-change models implemented (DK2008, LC2013, and SL2015).
The first one is the original model, that was later substituted by a more performing model
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that is currently the default model (LC2013). This model includes the possibility of tun-
ing different parameters related to lane changing. These parameters affect the 4 lane
changing motives already explained. The last model (SL2015) is a lane changing model
designed to work when the sublane model is active. This model allows to configure new
parameters such as minimum lateral gap and willingness to laterally encroach another
vehicle. On top of this, it also includes an impatience factor. The parameters of the LCM
in SUMO can be found in the documentation [65] and the main ones are shown in table
1.7.

Main LCM parameters in SUMO

Attribute Description
lcStrategic Eagerness to perform strategic lane changing. Higher values lead to

earlier lane change. [0, inf]
lcCooperative Willingness to perform cooperative lane changing. [0, 1]
lcSpeedGain Eagerness to perform tactical lane changing. [0, inf)
lcKeepRight Eagerness to perform regulatory lane change. [0, inf)
lcAssertive Willingness to accept lower gaps on the target lane.
minGapLat Minimum lateral gap. (SL2015)
lcPushy Willingness to encroach laterally other drivers. [0, 1] (SL2015)
lcPushyGap Minimum lateral gap when encroaching other drivers. (SL2015)
lcImpatience Factor modifying the assertiveness and the willingnes to encroach other

driver. [-1, 1] (SL2015)

Table 1.7: SUMO Lane Change Models main parameters [65].

Other parameters are available to represent situations such as overtaking on the right
lane, or using the opposite lane, or the speed difference to perform the lane change, or
to modify parameters like the cooperative for roundabouts or to allows other vehicles to
gain speed. On top of this, the lane change behavior can also be externally controlled
using TraCI.

1.4.3. Junction Models

The original SUMO junction model acted as black box, distributing vehicles from the entry
lane to the exit lane, however this was not realistic, especially for larger intersections.
To allow for a more realistic behavior, internal lanes are used inside the intersections,
these lanes connect the entry lane of the intersection to the exit lane of the intersection.
On top of this, internal intersections exist to represent specific traffic situations. To
represent the priority of vehicles when approaching an intersection a right of way matrix
is computed during the generation of the network, this approach in which an static matrix
is composed did not work well for sub second simulations according to Erdman and
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Kraijzweicz [67], leading vehicles to stop at the entrance of the intersection even if no foe
vehicle is approaching it.

Erdmann and Kraijzweicz [67] point out that the requirements for a realistic intersection
simulation are no deadlocks, no collisions, efficient use of the intersections, realistic gap
acceptance, approach unprioritized links without stopping and dynamics independent of
the simulation step length.

The junction model in SUMO needs to have information about the expected time and
speed of the entrance in the intersection. The vehicle computes how long it will take
to cross the intersection and checks the approaching vehicles on the prioritized lanes.
If there is a sufficient time gap to enter the intersection the vehicle keeps going. To
determine if the situation is safe when two vehicles have the same target lane the formula
v2L/dL > v2F/dF guarantees that the follower vehicle can stop before the leader vehicle
stops, avoiding collision (v: speed, d: maximum deceleration).

The approaching speed to the intersection is set by multiplying a given time by the
maximum deceleration of the vehicle. According to the SUMO proceedings [67], this
speed could be seen as a speed that allows to safely check if the intersection can be
crossed according to the speeds and position of vehicle in the foe lanes. However, the
authors of the model highlight that the deceleration and acceleration profiles might not
be completely realistic.

To model the dynamics of the vehicle once it is inside the intersection the CFM is used
which requires to know which is the leader vehicle - the first one that enters the intersection
- and the distance between follower and leader vehicles, using the start of the internal
lanes as a reference. The choice of CFM influences the estimation of entry and exit times
due to possible dawdling of the model used [67].

Another parameter that was introduced in SUMO specifically for the intersection model
is the impatience. This parameter accounts for a vehicle that could enter the intersection
aggressively forcing other vehicles to brake hard to keep the safety conditions.

The parameters included in the Junction Model currently available are described in table
1.8 according to the SUMO documentation [65]:
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Main Junction Model Parameters

Parameter Description
jmIgnoreKeepClearTime Accumulated waiting time for a vehicle to enter a junction even

if this might cause jamming.
jmIgnoreFoeProb Probability to ignore a vehicle with right of way and enter the

intersection.
jmIgnoreFoeSpeed Ignore only vehicles with a speed below the set speed. Works

in conjunction with jmIgnoreFoeProb.
jmIgnoreJunctionFoeProb Probability to ignore foe vehicles that have already entered a

junction.
jmTimegapMinor Minimum time gap when passing ahead of a prioritized vehicle.
jmCrossingGap Distance to a pedestrians willing to cross under which the ve-

hicle stops.
impatience Willingness of drivers to impede vehicles with higher priority.

Table 1.8: Main parameters of the Junction Mode implemented in SUMO [65].

1.5. Calibration and validation

The concept of calibration in simulation regards studying the output of the simulation and
comparing it with real data with the objective of minimizing the error. The calibration and
validation procedure is a key part of the simulation process. Since almost any output could
be generated with the adequate set of parameters [68], the significance and acceptability
of the results strongly depends on the transparency and the goodness of the calibration
process.

Calibration is usually seen as an optimization process where objective function is the error
between observed measurements and simulated measurements. However, in this process
the minimum error is limited and depends on the type of data and parameters used for
calibration, for instance velocity is easier to reproduce correctly than gap between vehicles
[69].

It is also important to realize that calibration needs to be site specific and situation
specific, since driver behavior differs from region to region and between environments as
has been shown in the literature [68, 70–72].

To calibrate a model the first requirement is to have a sufficient amount of relevant data.
This data needs to be feasible to obtain both from the real environment and as an output
of the simulation process.
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Car following experiments can be useful to obtain data for the calibration process. In
these experiments, two cars are considered in a given driving situation in which one car
follows the other. The velocities and gaps between the vehicles are recorded as function of
time. For the simulation, the speed function of the leading vehicle is prescribed and the
follower speed profile over time tries to be replicated. According to Krauss, one drawback
of this approach is that it looks at microscopic aspects of the model, regardless of its
performance to simulate accurately the macroscopic behavior [34]. However, to perform
the calibration and validation of a model is more common to use real world data that can
be obtained in different forms looking at different calibration objectives.

A different experimental approach is that of demanding a driver to perform certain ma-
noeuvres in a real environment, the site of interest, while recording the necessary data and
complementing this data with questions to the driver to better understand their behavior.
This approach is presented by Wu et al. when calibrating a fuzzy logic CFM [47].

Some attempts to obtain real world information about driver behavior at a large scale can
be found. For example, the Shangai Naturalistic Driving Study [73], where 60 anonymous
drivers where analyzed for 3 years using sensorized vehicles and cameras; the Naturalistic
Truck Driving Study [74] carried out in the US, where the main focus were drivers of
commercial vehicles; the 100-car Naturalistic Study [75], also in the US but looking at
cars instead of trucks. The main scope of these projects was not to retrieve data to
perform calibration of car following models, however, it has been proven to be useful for
this [56, 62, 71]. Other studies in the United States obtain the data from aerial views of
selected sites [76, 77].

These two strategies can be found in the literature applied to the specific study area or
for a reduced number of vehicles. For instance, using Global Navigation Satellite Systems
to define the different speeds when crossing a roundabout [63]. The recording strategy
has also been implemented successfully in the literature to obtain data from specific
intersections [15, 78, 79].

Other than these two approaches, to calibrate traffic simulation parameters the measure-
ment of traffic parameters by direct observation can be done, for instance looking at flows
and queue lengths at a given intersection during peak hour [80].

The Guidelines for Applying Traffic Microsimulation Modeling Software published by the
Federal Highway Administration (FHWA) [81] provide a general framework for calibration.
The proposed order of calibration is capacity of the network, fine tuning of links’ capacity,
calibration of the route choice (if required) and, finally, system performance (travel times
and queues). The recommendation is to keep the number of modifiable parameters as low
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as possible to reduce the calibration effort and to use observed field data to reflect local
conditions when possible. Regarding the objective function, their recommendation is to
use the Mean Square Error, although in the literature Root Mean Square Error is widely
used.

The choice of the objectives used to calibrate depends on the CFM that is selected for
the simulation. It has been shown in the literature that IDM and Gipps are easier to
calibrate using trajectories due to their easier mathematical formulation. On the other
hand, Wiedemann models are more difficult to calibrate trying to replicate a trajectory,
although it is possible [82, 83].

In the literature, different methodologies to improve the calibration process have been
proposed. Maheshwary et al. [70] defined a methodology to calibrate heterogeneous
traffic. After defining the adequate flows and geometry of the scenario, they proposed to
modify the parameters ±10% and select the ones that induce a more significant change
in the output. To define the range in which modify the parameters, they found the values
of each parameter that led to an output of 2 times the original output and half of the
original output. Then, using Latin Hypercube Sampling, test different sets of parameters,
running the simulation multiple times to account for stochasticity. They suggested to
further analyze the significance of these parameters using one-way ANOVA tests. Then
use linear regression considering this significant parameters to determine the overall fitness
of the model and the relative contribution of each factor, considering that these equations
are scenario specific. These equations are later used to perform the optimization and they
proposed to use genetic algorithms.

The importance of performing a correct sensitivity analysis is highlighted by Punzo et
al. [68] and helps to select relevant parameters. It has been already mentioned the use
of ANOVA to identify which parameter where more significant for the calibration result.
Ge and Menendez [84] proposed to use variance based sensitivity indices assuming de-
pendence among the parameters, this index accounts for the main variance, the variance
caused by interactions and the variance caused by dependence. The approach is based on
generating random samples and estimating the independent and dependent sensitivity in-
dices using Gaussian copula with known marginal distributions, extracted from literature
or reasonable assumptions. If the obtained sensitivity index is low, that parameter can
be fixed for the calibration process. The main concern of the authors is that an incorrect
modelling of the dependence could lead to biased results [84].

Regarding the optimization process, the use of different optimization algorithms has been
widely studied in the literature over the last years. Zu et al. [73] calibrated different
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car following models using inter-vehicle spacing obtained from naturalistic data running
a genetic algorithm multiple times and then selecting the combination of values that
gave the best solution. Aghabayk et al. [85] proposed the use of a Particle Swarm
Optimization algorithm in which the position of a particle is updated towards its optimal
position. According to the authors this method allows to reduce time running the process
on separated threads. They distinguished between parallel tasks (find personal best for a
given particle) and joint tasks (find global best fitness and checking stopping criteria).

Other approach to calibrate CFM is that described by Rakha and Gao [86], where a steady
state calibration is proposed. They obtained the CFM parameters from macroscopic traffic
stream parameters: capacity, jam density and free-flow speed. The objective function in
this case is minimizing the error between field observations and functional relationship.
They tested the approach for different CFM using macroscopic loop detector data and
recommended that some parameters should be link specific, revealing again the difficulty
to have a general model that suits different scenarios.

Studies using maximum likelihood as method to calibrate the model can also be found.
This approach makes possible to jointly estimate parameters for multiple vehicles, includ-
ing a priori knowledge of their distribution acquired from other date sources or literature
[87]. According to the same study, the high correlation of the parameters explains the
difficulty of the calibration process. Taking on this approach and using the Bayes’ rules
to transform prior probabilities into posterior probabilities, van Hinsbergen et al. [88]
developed a strategy to quantitatively analyze inter-driver differences. This last approach
has been proposed to used selecting the parameters found relevant after analyzing the
variance sensitivity indeces [84].

The limitation of the validity of the CFM parametrization is also shown by Asamer [72],
who calibrated a CFM for specific weather conditions. He focused on the most affected
parameters for slippery road conditions that are acceleration, deceleration, desired speed,
and clearance distance when considering saturation flow and start up delay. His paper
also shows the high impact of the modification of one parameter in the influence of others
and suggests the design of a feasibility region of parameter combinations to perform the
calibration. However, the proposed approach for calibration is that of running simulation
for all of the parameter combinations that are in the feasibility region. Continuing this
line of work, Pótári et al. [89] implemented this methodology to check again the effect
of weather conditions looking at trajectory data. They performed the calibration using
different softwares (VISSIM and SUMO) and concluded that SUMO was slower due to
the difficulty of post-processing the outputs. However, in both cases the brute-force
calibration was found to take a significant amount of time.
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Although the configuration of the network in the simulation outputs has a non-negligible
effect, the main effect comes from the correct definition of the parameters of the CFM. The
next section gives some examples of how different models have been calibrated according
to the literature, focusing on Wiedemann models and IDM, since they are the most
commonly used.

1.5.1. Application on Car Following Models

The Intelligent Driver Model (IDM) has already been explained in previous sections
(1.3.1). One of the mentioned advantages of the model is the straight forward inter-
pretation of its parameters and the possibility of measuring them.

Regarding the possibility of measuring the parameters from real data, it can be seen in the
literature that even these parameters need to be calibrated. Zu et al. [73] calibrated the
IDM looking at inter-vehicle spacing and saw that the observed parameters are generally
correlated with and distributed similarly to the calibrated, but the calibrated values tend
to be lower. This is in line with the conclusions of Punzo et al. [68].

The literature also shows, that not all parameters are equally important. Punzo et al.
[62] show that when calibrating the model trying to reproduce the speed and the spacing
the most influential parameters are time headway, maximum acceleration and delta when
looking at contribution to variance of the error. According to Ge and Menendez [84], the
parameters that could be fixed when calibrating the IDM looking at position error depend
on the specific trajectory that needs to be reproduced, but the desired speed appears
to be the least relevant parameter. These two studies suggest that, when performing
calibration based on trajectory data, the calibration of the model needs to be done for each
trajectory individually and then aggregate the calibration results instead of aggregating
the trajectory data and then performing the calibration.

Another study that addresses the calibration of IDM through trajectory data is the work
presented by Hoogendoorn et al. [87], they used the maximum likelihood approach to
jointly estimate the parameters for multiple vehicles and concluded that the correlation
among the parameters is usually very high, hence the complexity of the calibration process.
They also pointed out that the least relevant parameters where deceleration and desired
speed. Sun et al. [56] distinguished two different models for aggressive and non-aggressive
drivers using spacing gap as the Measure of Performance, they show that it is possible to
perform the calibration without looking beforehand at the impact of different parameters,
just knowing the range in which this parameters are.

It is important to highlight, that these studies were looking at data taken from highway
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scenarios in different regions, hence significantly different values of the parameters are
reported.

The use of Wiedemann models is also widely spread in traffic simulation studies due to its
implementation in the popular VISSIM software. The two Wiedemann models that exist
(W74 and W99) have already been described in section 1.3.1. Since there are differences
among the two models, they will be discussed independently.

In the aforementioned study by Ge and Menendez [84], they tested their proposal for
variance-based sensitivity indices also using the W74 model. They concluded that out of
the 12 parameters that were defined in the model, only 8 were relevant. Praticò et al.
[79] performed the calibration of the model for a specific roundabout, they used the speed
at different stretches of the roundabout area to perform the calibration. Their results
concluded that the most relevant parameter to be set of the CFM were those related to
gap acceptance. However, this study looks at roundabouts focusing only on the through
movement.

Some studies focus on analyzing the parameters of the W74 under different conditions.
Asamer et al. [72] looked at saturation flow and start up delays to calibrate a CFM
representing slippery conditions and found that the most affected parameters where those
related to acceleration, deceleration, desired speed, and clearance distance. Higgs et al.
[71] used naturalistic data to understand the effect of the actual speed of the vehicle on
the parameters of the W74 founding that the effect was significant and that different
models could be necessary to represent the real behavior of drivers at different speeds.

Regarding the W99, different attempts of calibrating the model can be found in the liter-
ature. Derrani et al. [83] looked at the action points and perception thresholds of drivers
using the trajectory data coming from FHWA data-set [76]. They estimated some of the
parameters from direct observation (CC1 and CC2) and others through regression looking
at the values of the action points extracted from the trajectory data (CC4, CC5 and CC6)
using the equations of the Wiedemann model. Sun et al. [56] also used trajectory data to
calibrate the W99 model, however, they used an optimization approach trying to reduce
the error in the spacing gap between follower and leader. Even though this two studies
look at similar driving conditions, the values of the calibrated parameter are significantly
different, highlighting again the necessity for a specific calibration and validation to obtain
relevant results for a given scenario.

Mahsehwary et al. [70] calibrated the W99 model for urban conditions looking at travel
time as the measure of performance, setting limits to the individual travel time error as
constraints for the optimization process. They found CC0, CC1 and CC3 as the most
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relevant parameters of the W99 model. They also distinguished two situations in the
urban scenario to consider the different behavior at intersections. Another study that
looks at intersections, specifically at roundabouts, is the one carried out by Fang and
Castaneda [78]. They extracted speed, gaps, headway, travel time and queue length
from video recordings. They looked at the calibration of the queue length and travel
time and concluded that for queue length the most relevant factors are minimum gap,
headway distance and reduced speed on the approach. On the other hand, they exposed
the difficulty to calibrate travel time due to the impossibility to assign in their model
different circulating speeds for different turning movements. It is important to highlight
that in this last study not only CFM parameters are modified to obtain the required
results. These two last studies look at urban environments and intersections and this
affects the value of the parameters, having significant differences from the studies referred
to highways, especially those related to time headways.

When looking at the complexity of the calibration process, it is clear that more parameters
make the process more cumbersome. Intuitively, it could be assumed that this higher
complexity is compensated by better results in terms of accuracy. However, the literature
shows that the IDM, even with less parameters tends to outperform the Wiedemann
models [56, 60, 61, 73].
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In this chapter the AI@EDGE project is further explained. The consortium encompasses
a group of diverse organizations coming from a variety of fields. The main goal of the con-
sortium is to introduce a system architecture and explore industry-relevant applications
of Artificial Intelligence (AI), edge computing and 5G technologies in a variety of cases.
Edge computing refers to the paradigm in which the computation and storage of the data
is close to the source of the data itself, which helps to provide low latency applications.
The scope of the European project is to design an architecture able to take advantage of
these technologies while maintaining high standards of privacy and security of the data.
The general architecture of the AI@EDGE project is displayed in figure 2.1.

Figure 2.1: General AI@EDGE architecture [90]

It can be seen that the proposed architecture is a complex system, including different
technologies and its complete definition is out of the scope of this thesis, but it can
be found in the documentation of the project [90]. This architecture is adapted to be
validated under different use cases (UC):

• UC1: Virtual validation of vehicle cooperative perception
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• UC2: Secure and resilient orchestration of large (I)IoT networks

• UC3: Edge AI assisted monitoring of linear infrastructures using drones in BVLOS
operation

• UC4: Smart content and data curation for in-flight entertainment services

It is noticeable the wide range of applications to which this architecture is intended to be
useful. However, this thesis refers only to the first of the defined use cases.

2.1. UC 1: Virtual validation of vehicle cooperative

perception

This case regards the development of 5G and edge computing in a road environment to
implement cooperative connected automated vehicles. The basic goals of this use case are
summarized as [2]:

• Showing that the architecture can be used to support industry 4.0 digital twinning;

• Design and implement the digital twinning of a mix of real and emulated vehicles;

• Recreate the data exchange required to build the cooperative perception system
between emulated vehicles and the human-driven vehicle.

The general components and architecture of this use case are shown in figure 2.2, where
the green boxes represent case-specific components and the blue ones represent general
architecture components [91].

The case specific components of the architecture shown in figure 2.2 are the traffic simula-
tion, the driving simulator and Worldsim synchronization and the cooperative perception
algorithm. The traffic simulation includes the definition of a network and the traffic con-
ditions in a way that they represent a real environment. The driving simulator refers
to the driving simulator facilities at Politecnico di Milano (DriSMi). The cooperative
perception algorithm uses artificial intelligence and Reinforcement Learning, an unsuper-
vised machine learning technique in which the agent tries to maximize an output through
a process of trial and error, to make decisions based on the conditions of the traffic sim-
ulation (position of the vehicles at each time). The goals for the training are represented
by predefined KPIs referring to safety, emissions and time to cross the roundabout and
are later explained. Figure 2.3 shows the scheme of the testing architecture in greater
detail.

In figure 2.2 we can also see the different nodes that compose the validation process. The
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Figure 2.2: AI@EDGE Use Case 1 5G architecture [91]

CRF validation node represents the real driving environment in which the communication
takes place between the vehicles and the infrastructure through the use of telematic boxes.
This information is then sent to the cooperative perception algorithm deployed on the edge
node, in the scope of the project using a 5G emulator.

The most relevant node for this thesis is the one located at the Polimi site. This node
includes the deployment of a digital twin of a real roundabout scenario with information
coming from different sources. This digital twin needs to be replicated both for the traffic
simulation, which acts emulating the individual behaviour of a mix of non-automated
and automated vehicles, acting as a fully virtual scenario, and for the drving simulator
scenario. The connection between the real scenario and the virtual scenario occurs using
the driving simulator, that allows to introduce the human in the loop and the hardware
in the loop through the connection of a telematic box and the use of a 5G emulator. The
driving simulator acts as a Virtual-Real scenario in which the driver input is real as well
as the hardware behaviour, although the surrounding scenario and vehicles are not. This
provides a simulated environment to validate the Artificial Intelligence algorithms and
the radio components of the telematic box as well as to analyze the perception of real
drivers on Automated Vehicles. In figure 2.3 the specific components of the test bed at
the polimi site are presented.

The overall working flow of the system is as follows. The RealTime database (Rtdb) is
responsible of managing the data of the simulation that is constantly changing. This
data is fed to the VI-GRADE software, VI-CarRealTime, that interacts with the driver
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Figure 2.3: Detailed testbed architecture

actions and computes through its solver the dynamic responses, these can be feed to
the cueing algorithm to provide the required movements and forces to the cockpit of the
driving simulator. The graphical interface is displayed using the VI-WorldSim software
that allows to represent different scenarios to give the sense of realism to the driver
inside the cockpit. The behaviour of the other vehicles displayed in the scenario comes
from the traffic simulation. This simulation is run on a different computer and uses
SUMO and FLOW software. FLOW is a deep reinforcement learning framework for mixed
autonomy traffic that is used in this project to train and control the automated vehicles.
This simulation is interfaced using python to provide the information to the graphic
interface of where the vehicles are and to retrieve the information about the position of
the vehicle driven by a human in the driving simulator. This allows the automated and
non-automated vehicles of the traffic simulation to interact with the human driver and
respond to its behavior. The traffic simulation needs to be able to replicate the delay when
providing the data to the AI policy to better represent the reality of the architecture. Then
a telematic box and 5G emulator are used to reproduce the latency of the communication
due to the V2N-N2V scheme used in this project, in which the vehicles are transmiting
the information to the network that is able to process it and distribute it back to the
vehicles. However, at the moment of developing this thesis this is not yet implement, so
the communication is performed in real time.

The presented scheme of the testbed shows the complexity of the system and the wide
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number of elements that need to be consider, as well as the difficulties that can arise
when connecting different software. In this last point, is when using open-source software
(SUMO) for the traffic simulation is useful, specially due to its Traffic Control Interface
(TraCI) feature that allows to control and retrieve data from the simulation while the
simulation is going. The communication between software in the scope of the project
represents a significant contribution, however, it is a topic on its own and is out of the scope
of this thesis. Other breakthroughs of the project are the definition of a co-simulation
environment able to introduce the Human-in-The-Loop feature that allows to test the
impact of automated vehicles on human drivers and not only on the overall performance
of the network as has been done in the literature.

2.2. Previous tests

During the preliminary stages of the project, some tests were conducted using a three-
legged roundabout. Participants were asked to enter the roundabout and leave via the
second exit, with tests repeated twice per leg using two different percentages of automated
vehicles. During this tests, it was found that the trajectories of the non-human driven
vehicles lacked realism and resulted in aggressive maneuvers when exiting the roundabout.
To address this issue, an extra step in the communication process was included, which
involved interpolating the position of the simulated vehicles to make their behavior more
realistic on the driving simulator. Additionally, a new version of the software used in
the driving simulator allows to display the turning signal and brake lights to help drivers
understand the behavior of the simulated traffic.

Regarding the perception of the human drivers in this scenario in terms of safety and
fluency of the traffic, when comparing a scenario with 20% and 80% of automated vehicles,
no significant differences were found but these results could be influenced by the small
number of participants in the tests (12 people) as well as the already mentioned lack of
realism of some characteristics of the simulation.

For the preliminary campaign the policy governing the automated vehicles was trained
using different scenarios varying the flow level for each entry, the used Car Following
Model was the Intelligent Driver Model (IDM) mainly because of the advantages already
explained in the literature review (see 1.5.1). However, the value of the parameters were
taken from available literature [27] which can lead to some problems related to the validity
of this data. Since this is later used to train the policy that guides the automated vehicles,
not having a reliable model would lead to not having a reliable output either. This is why
it is deemed necessary to generate a traffic scenario that is based on a real scenario.
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2.3. Next steps

The main goal of this thesis is to provide a simulation scenario based on a real network
with a calibrated CFM. The next chapters explain how this was done, however, this is
just an intermediate step in the project. Once the simulation scenario is created and
the calibration results are satisfactory, this information is passed to Fondazione Bruno
Kessler (FBK) so they can work on developing the AI policy that guides the automated
vehicles on the simulation. The policy is based on Reinforcement Learning considering
different KPIs. The two main KPIs are the reduction of the crossing time inside the
roundabout and the reduction of emissions, considering a control zone, starting meters
before the entry of the roundabout and extending until the exit. The constraints of the
optimization are maintaining safety conditions of traffic and guaranteeing certain levels
of comfort to the passengers, assessing the lateral acceleration of the vehicle. Once the
policy is trained it can be used in conjunction with the driving simulator at DriSMi where
the human driver is introduced in the loop. To do so, the scenario displayed in the driving
and traffic simulators need to be aligned and this alignment process is also discussed in
this thesis. After this, different tests can be performed.

On top of testing the validity of the architecture to simulate automated vehicles connected
to a 5G network, the biggest breakthrough of this use case is to test how human drivers
react when sharing the network with automated vehicles. To assess this, similar tests to
the ones performed during the preliminary campaign will be done, adding the possibility
of checking the human impressions not only through a questionnaire but also monitoring
physical response of the driver. It will also be possible to asses these reactions when
the driver is a passenger of an automated vehicle, to check if the policy is perceived as
comfortable and safe for the users. This could later lead to a revaluation of the policy
considering all the feedback coming from real users. On top of this it could be possible to
assess if the driver is able to perceive significant differences in comfort and safety when
the policy is designed to follow a cooperative goal rather than an individual objective.

The next chapters of this thesis focus the attention on the calibration process of the real
roundabout and the alignment of the scenario between the different software involved.
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the real roundabout

This chapter describes the design process of the scenario, starting from the selection of the
location, data acquisition, scenario generation in SUMO, calibration of the parameters and
discussion of the results. It is important to highlight that this includes not only the Car
Following Model and Junction Model calibration but also the tuning of some parameters
related to the network and demand definition trying to better reproduce reality.

3.1. Scenario description and data acquisition

In previous stages of the project a preliminary study was done using a theoretical scenario
with a three-legged roundabout to evaluate the influence of different penetration rates of
Connected and Automated Vehicles (CAV) on the perceived fluency and safety of traffic.
In that case, the Car Following Model (CFM) parameters used to train the policy and to
guide the behavior of non-automated vehicles in the simulation were taken from available
literature [27]. However, as it has been shown in the literature review the parameters of
the CFM strongly depend on the location and type of intersection. These limitations to
use parameters coming from different studies motivates the necessity to select a location
to have as reference to perform our own calibration of the CFM. The desired calibration
scenario was a 4-legged roundabout with a flow level leading to a slight congestion on the
approaches (queues) and with a medium size since this type is the most common across
Europe, to guarantee the relevance of the findings.

Attending to these characteristics the selected roundabout to perform the calibration of
the CFM was a roundabout located in the intersection between Via Padova, Via Giuseppe
Giacosa and Via Francesco Predabissi in Milan shown in figure 3.1a.

The collected data to perform the calibration were flow data and queue length. The flow
data is required to obtain an Origin/Destination (O/D) matrix and the queue length will
be used as the objective for the calibration. The data collection process was performed
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(a) Satellite image of the roundabout. (b) Entries and exits key.

Figure 3.1: Selected roundabout to perform the calibration

manually writing down the license plate numbers of the cars entering and exiting the
roundabout. This required the participation of eight people, two per each leg. The
people in charge of the exit lanes wrote down also the number of pedestrians and bicycles
crossing the lane, meanwhile, those on the entry lanes recorded the maximum queue length
and the average queue. On top of this, it is required to identify the type of vehicle, thus
an extra comment is made when a heavy vehicle, bicycle, or motorbike is detected. In
appendix A the templates used for the collection of the data are shown.

The data collection was conducted on 14-12-2022 (Wednesday) from 08:30 to 09:30. This
collection time was divided in six periods of 10 minutes. With the collected data, it
was possible to define different O/D matrices for the different periods of time and the
different vehicle types. Figure 3.1b shows the names given to the exits and entries of the
roundabout and serves as a key to understanding the O/D matrices.

To build the O/D matrices a match between the entering and exiting license plate numbers
is expected. However, the data collection process led to difficulties matching all the
detected vehicles (i.e: missing vehicles, especially two-wheelers because of the lack of lane
discipline). From the total of 3783 vehicles noted (summing both entrying and exiting
vehicles) it was possible to obtain a match for 3065 of them (81%). Nevertheless, it was
possible to obtain an O/D matrix for each period of 10 minutes. To build the final O/D
matrices, the percentages of the intermediate O/D matrices were used to infer the final
O/D matrix, knowing that the exiting vehicles through each leg and considering this
information to be more accurate than the entry rate, especially for 2-wheel vehicles.
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An example of the O/D matrices for cars, heavy vehicles, motorbikes and bicycles is shown
in table 3.1.

O/D matrices for the first 10-minute period

Cars Heavy vehicles
O\D E N S W TOTAL O\D E N S W TOTAL
E 0 7 24 36 67 E 0 0 0 2 2
N 21 1 56 7 85 N 3 0 1 0 4
S 20 50 4 8 82 S 3 1 0 0 4
W 31 0 13 0 44 W 5 0 0 0 5
TOTAL 72 58 97 51 278 TOTAL 11 1 1 2 15

Motorbikes Bicycles
O\D E N S W TOTAL O\D E N S W TOTAL
E 0 0 2 24 26 E 0 1 2 12 15
N 2 0 5 4 11 N 0 0 3 2 5
S 2 4 0 5 11 S 0 5 0 3 8
W 2 0 1 0 3 W 0 0 1 0 1
TOTAL 6 4 8 33 51 TOTAL 0 6 6 17 29

Table 3.1: O/D matrices for the first data acquisition period

It can be seen that the flows are not balanced along the 4 entries of the roundabout,
in this first period the north and south legs present a significant higher flow, especially
when compared with the south lane. This uneven distribution can be seen along the six
different periods and it is also present in the queue length. The rest of the matrices can
be checked in appendix B. In figure 3.2 the car flow coming through all four entries for
the different time periods is displayed. It can be seen that the highest flow comes from
the north entry and the lowest from the west entry. However, when looking at the total
number of vehicles, including motorbikes, bicycles and heavy vehicles the most used entry
is the east entry as shown in figure ??.
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Figure 3.2: Car flows in different entries.

Figure 3.3: Vehicular flows in different entries.

Looking at the differences between both graphs we can see that the number of vehicles
other than cars is significant and cannot be neglected when analyzing the traffic in the
roundabout. However, it is important to note that not all the vehicles have the same
influence on queue formation and traffic dynamics since their behavior can be widely
different. This is why, especially under the scope of traffic simulation, to avoid having
to represent these different behaviors that add complexity to the model, it is possible to
represent a given vehicle as a fraction of other (e.g: one motorbike equals one half of a
car). In the scope of this project, the factors used come from available guidelines [92],
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in which the factors are 0.2 for bicycles and 0.4 for motorbikes. After performing this
transformation the number of equivalent vehicles is shown in figure 3.4.

Figure 3.4: Entry flow at different periods considering conversion factors between bikes,
motorbikes and cars

Regarding the length of the queues, both average and maximum queues were registered for
every 10-minute period. When performing the data acquisition it was clear that checking
the maximum queue was easier than assessing the average queue, since it strongly depends
on perception, this is why it is considered a better objective to perform the calibration,
however it is still subjected to error since the measurement was done based on physical
references on the street. In figure 3.5 the length of the queues are shown for every entry
and period.

Analyzing the queues, it can be seen that the north entry is the most congested one,
followed by the east entry, especially in the first and last periods. It is also noticeable
that the first period in the north entry represents a clear outlier, this could be caused
by the time at which the data acquisition was performed and the presence of specific
services on that street (i. e: there is a school on that street and the data acquisition
started at 08:30). It is also important to note that not only the flow of the specific leg
affects its queue, this can be seen when looking at the difference in flow between the
south and west legs, in which the south entry has a significantly higher level of flow, while
having a lower maximum queue. In the case of the west lane the queue could be formed
because of the presence of a bus stop close to the roundabout, that concentrates the
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Figure 3.5: Queue length for every entry at different periods

flow of vehicles before entering the roundabout, leading to a higher punctual flow. The
other possible cause of disruption of traffic and queue formation in the roundabout are
pedestrians crossing the road. This is why that information was also recorded, although
with a lover level of detail, only the number of pedestrians crossing a given leg are noted.
This can be seen in figure 3.6

Looking at the number of pedestrians crossing the legs of the roundabout the maximum
flow is seen that the most crossed leg is the north entry followed by the south legs, which
means pedestrians going from west to east and vice-versa. It is important to highlight that
this is the total number of pedestrians or cyclists crossing the legs of the roundabouts,
which does not necessarily equal to the number of times in which the vehicular flow is in-
terrupted by the pedestrian flow since more than one pedestrian can cross simultaneously.
All this collected information modelled and introduced in the simulation as explained in
the following section.
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Figure 3.6: Number of pedestrians crossing a given leg of the roundabout

3.2. Network and demand definition

To calibrate the CFM, it is required to have a scenario as realistic as possible, to rule out
other factors that could affect the CFM parameters, trying to obtain a model in which
the CFM does not need to compensate for other defects of the scenario definition. To
obtain a realistic scenario of the roundabout location the network is originally imported
from OpenStreetMaps into SUMO using the netconvert functionalities already provided
by the software. This first import includes not only roadways but also sidewalks and
cycling lanes, so it needs to be refined and modified to represent only the infrastructure
that affects our simulation. The original network obtained from OSM is shown in figure
3.7a where it can be seen the excess of edges and junctions, on top of this, some lanes do
not have assigned the correct width and/or maximum speed.

On top of this, other modifications needed to be done. The west approach is missing a
lane on the exiting direction. The width of the lanes is automatically set to the SUMO
default (3.2 m) but, the north, west and east approaches have a width of 3.5 meters and
the south lanes and internal lanes of the roundabout of 6 meters. This is relevant because
it affects the junctions’ shape and is more realistic if the sublane model needs to be used.
On top of this, the size of the roundabout is not correct, having an internal diameter
in the OSM scenario of 22 meters, when in reality it is 16 meters. This size affects the
capacity of the roundabout, modifying the queues on the entry lanes, so it is reduced to
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(a) OpenStreetMap import. (b) Modified network.

Figure 3.7: Roundabout SUMO network

match reality. On top of this, the crossing roads are deleted, assuming that all vehicles
come from the same street even if the crossing roads might be adding flow, because that
information is not recorded. To introduce the collected pedestrian flow in the simulation,
sidewalks and pedestrian crossings are added as shown in figure 3.8a. Finally, the legs are
elongated to provide space between the entering point of vehicles in the simulation and
the queue and the bus stops are located placed in the network where they are in reality,
in lanes west and east, and can be seen in figure 3.8b. All of these modifications lead to
the network shown in figure 3.7b.

(a) Pedestrian cross detail in SUMO. (b) SUMO bus stop representation.

Figure 3.8: Details of the SUMO network

To represent the flow that was observed a flow distribution is extracted for each element of
the OD matrix. Among the different options offered by SUMO to represent the flow, the
exponential distribution is chosen since it represents a Poisson process with an expected
number of vehicle insertions per second. This process is repeated over the 6 different time
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periods and for all vehicles types (heavy vehicles, motorbikes and bicycles). However,
after some preliminary tests it is seen that the impact of motorbikes and bicycles on the
simulation behaviour is different from the one observed in reality. For instance, bicycles
and motorbikes tend to not respect lane discipline and this leads to lower impact on
the queues that are form at the entry, however the impact on the circulatory roadway
of the roundabout is not negligible. After these considerations it was decided to use
a factor of correspondence between the observed number of bicycles and motorbikes an
equivalent number of vehicles. Since it was not possible to calibrate this data for the
specific location it was decided to use a factor coming from the literature, in this case
available traffic modelling guidelines [92]. According to the aforementioned guidelines the
equivalent factor for bicycles is 0.2 and for motorbikes is 0.4 and the impact on the total
flows can be seen in figure 3.3 and 3.4. The flow configuration in SUMO can be seen in
appendix B.

The demand was further modified by adding a warm-up phase. This warm-up phase
became necessary because of the mismatch between the queue outputs observed during
the first period of the simulation. To decide on the parameters of the warm-up phase the
maximum and average queues of the first period were considered. The average observed
queue plus 75% of the difference between maximum and average queue was considered
to generate a flow of vehicles lasting 2 minutes that introduces vehicles in the simulation
before the first period of flow based on real data is generated. On top of this, seeing that
the queue in some of the legs were due to a bus stop it was decided to introduce also a
flow of buses stopping for 12 seconds in the assigned stop, which is in line with what can
be found in the literature [93, 94] for the low number of passengers that was observed,
although not precisely measured, which could introduce some error into the model. The
bus stops are located on the east and west legs of the roundabout and the path of the bus
is from west to east and vice-versa. The data of vehicles per hour was calculated based on
the available information of the specific route. Knowing that it is the route number 56 it
was possible to obtain the programmed frequency of the bus service, which is 7 minutes.
This is in line with the number of buses observed during the field data acquisition.

3.3. Calibration process

After defining the basic network and the demand on SUMO, it is necessary to perform
the calibration of all the different models that affect the output of the simulation. In our
case, these models are the Car Following Model (CFM) and the Junction Model (JM)
implemented in SUMO that have been previously discussed in 1.4.1 and 1.4.3.
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The first step of the calibration process is defining which are the relevant outputs of the
simulation to be taken as the measure of performance. In this case, the output that is
going to be considered is maximum and average queue length, but mainly focusing on
maximum queue length, since it is more reliable. Deciding how to extract the output
from the simulation is not trivial, since it has implications on the computational cost
and speed of the process. Once the output is decided it is required to define how to
deal with stochasticity. Afterwards, it is necessary to study which of parameters have
the greatest influence in the queue output to select the parameters to modify through
a sensitivity analysis. When the set of parameters to modify is clear, it is possible to
begin the calibration process. In this section all these steps are explained, leading to
the definition of the final parameters that are able to better reproduce the observations
coming from reality.

To extract the queue information from SUMO, there are two possible options: using the
queue output functionality already implemented in SUMO, that generates a file containing
the queue length and queuing time at each edge for every time step; or using the TraCI
interface in SUMO to obtain the number of halting vehicles (vehicles with a velocity under
0.1 m/s) in every edge each time step. Due to the requirement of a low time step, the
first option leads to dealing with heavy files that slow down the simulation process, hence
the second option was selected.

It is important to address the stochasticity of the simulation since it is of great relevance
when dealing with traffic simulations. Randomness affects the simulation in SUMO mainly
changing the specific desired speed of the vehicles and the traffic flow distributions. Both
elements could be neglected defining a desired speed for all the vehicles with no variability
and not using a probabilistic distribution for the vehicle flow, stating a constant time
space between vehicle insertions, or specific times for each vehicle. However, enough
information is not available to establish these parameters accurately. Thus, to account
for stochasticity it is necessary to repeat the simulations with different seeds. The seed
commands the initialization of the random processes in the software, hence repeating the
simulation with the same seed would yield the same outputs. To understand the number
of repetitions that are needed a convergence analysis was carried out.

The convergence study was done using the flows coming from just one period of time,
thus simulating 10 minutes of real traffic instead of the complete hour to speed up the
process. Regarding the parameters of the CFM, the default SUMO values are used. The
analysed outputs were maximum and average queue for each of the legs of the roundabout.
These outputs were then averaged over the number of simulations. The objective of this
is trying to find the minimum number of simulations that are representative enough of
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the variability of the output due to the stochasticity of the simulation process. In figure
3.9 we can see the maximum queue on the south and north entries of the roundabout.

(a) Maximum queue on the north lane for differ-
ent simulations seeds

(b) Maximum queue on the south lane for differ-
ent simulations seeds

Figure 3.9: Average simulation output for different seeds

Analyzing this last graph we can see that the convergence tends to happen around 6
cars in queue, however the difference of outputs between seeds is significant, having a
minimum value of 0 and a maximum value of 19 vehicles in queue. We can also see how
the variation of the mean smooths out after 10-15 simulations. Ideally we would perform
15 simulations with 15 different seeds and then use the mean to analyze the outputs.
However, the computational cost of running 15 simulations for every modification of
parameters needs to be taken into account. Thus, it was decided to search for a minimum
number of simulations. To further analyze the data, the outputs were grouped in 5 and
10 simulations to try to understand what is the variability that we would not be cathcing
deciding to reduce the number of simulations. In figure 3.10 the two clusters for 10 and
5 simulations are displayed for the south lane.

It can be seen that averaging 5 simulations already improves the variability when com-
paring it with using a single value. This is further improved when using 10 simulations
instead of 5, reducing the weigh of the outliers. However, the computational cost savings
need to be taken into account. In conclusion, it was decided that 5 simulations could be
sufficient for the scope of the project.

After deciding the minimum number of simulations required it was necessary to analyze
which are the main parameters that should be modified to obtain the desired behaviour.
To do so a preliminary sensitivity analysis is conducted. In this preliminary part the
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(a) Maximum queue on the south lane averaged
over 5 simulations

(b) Maximum queue on the south lane averaged
over 10 simulations

Figure 3.10: Simulation outputs for different seeds averaged for 5 and 10 simulations

parameters are modified one by one and compared against the default parameters imple-
mented in SUMO. The first parameters that are modified are parameters that according
to available literature and expertise of people taking part in the calibration process are
known to be significantly different from the SUMO default. The parameters are related to
interaction with pedestrians in terms of priority distance and interaction between vehicles
both in time and distance, as well as impatience. On top of this, parameters related to the
CFM, such as acceleration and deceleration, the speed distribution and the action step
length are modified. These parameters were explained during the literature discussion
when dealing with SUMO. To select which of the initial parameters need to be modified
an ANOVA test is performed and only the parameters that produce a significant differ-
ence when compared against the default parameters in SUMO are selected. This test is
carried on with a 10 minute simulation to speed up the process.

After this preliminary analysis, a range in which the selected parameters can be modified
is identified, this is done looking at the physical meaning of each of the parameters and
deciding reasonable boundaries. These initial boundaries are presented in table 3.2.

It is important to consider that the actionStepLength is further constrained by the value
of tau. Since tau can be interpreted as a following time headway and the actionStepLength
acts as a proxy of the reaction time, having an actionStepLength greater than tau would
lead to collisions.

To analyze the impact of the different parameters and evaluate a preliminary calibration
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Maximum and minimum values for the selected parameters

Parameter Minimum value Maximum value
tau 0.5 s 3 s
jmCrossingGap 1 m 4 m
jmTimeGapMinor 0.3 s 2 s
impatience 0 1
acceleration 1.3 m/s2 2.6 m/s2

deceleration 2 m/s2 5 m/s2

actionStepLength 0.5 s 1.5 s

Table 3.2: Parameters range for further the evaluation of their effect.

result the combination of the selected parameters is analyzed, to do so 250 parameters
sets are obtained using a sobol sequence for a dimension equal to the number of varying
parameters. The sobol sequence defines a quasi-random sequence of values from 0 to 1
for each of the defined parameters, these values are then adjusted to the limits shown
in table 3.2 for each parameter. An example of how the parameters are distributed is
shown in figure 3.11, where it is possible to see that the space is evenly covered for a
given combination of two parameters, however it is important to consider also that we are
working with 7 dimensions, one per parameter, so 250 sets of parameters might not be
enough to cover the entire space, although it is a number of sets similar to what can be
found in the literature [70]. Each of these 250 parameters are evaluated over 5 different
seeds that are generated randomly and kept constant for all of the sets. This leads to
performing 1250 1-hour simulations.

After this first run of 250 simulations the impact of the parameters was reanalyzed, con-
cluding that the actionStepLength parameter needed to be further limited (not exceeding
0.9 s), since it yielded unexpected and unrealistic long queues. On top of this, some
tuning of the network geometry and characteristics of the junctions was performed. This
involved changing the geometry to better represent the geometry of the different lanes
instead of the overall dimensions of the roundabout.

Later, more simulations were launched again using a sobol sequence. In this case, the
results of the simulations were compared against the real data available. To perform this
comparison as a measure of performance the Mean Squared Error was used. The results
were split between periods 2, 3 and 4 and periods 5 and 6. Then the sum of the MSE
for all the lanes were computed for each of the periods. Between all the tested set of
parameters the one that provided an optimum compromise between minimizing the error
when looking at periods 2, 3 and 4 and the error when looking at periods 5 and 6. This
was done in order to guarantee that the later periods were more heavily weighted when
finding the best set of parameters, considering that they should be closer to reality since
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Figure 3.11: Example of parameter distribution for a 250 sobol sequence

the anomalies of the first period should have been already been dissipated and also to
check that the model performs well for different flow levels as the ones seen in the different
periods. It is important to highlight that the first period was neglected due to the great
outlier that it represents, especially when looking at the north entry, as has already been
discussed and can be seen in figure 3.5.

3.4. Results and discussion

After performing the simulations, the best solution was found for the set of parameters
shown in table 3.3.

After obtaining the results, it is possible to compare the value of the obtained parameters
with the original parameters of the IDM implemented in SUMO. The first parameter,
minGap, was fixed prior to the calibration process to perform the conversion from queue
length to number of vehicles in the queue. The jmCrossingGap parameter is reduced when
compared to the default value, this would mean that the drivers are more aggressive when
dealing with pedestrians, the pedestrian needs to be closer to the car for it to stop. The
required time gap to a prioritized vehicle inside the roundabout is represented by the
parameter jmTimegapMinor and it is higher than the default value, being closer to values
known from previous experience using different software and seen in the literature for
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Best set of parameters

Parameter Value Default
minGap 1.0 m 2.5 m
jmCrossingGap 1.3545 m 10 m
jmTimegapMinor 1.7792 s 1 s
impatience 0.1182 0
accel 1.7634 m/s2 2.6 m/s2

decel 4.2939 m/s2 4.5 m/s2

tau 1.3472 s 1 s
actionStepLength 0.505 s NA

Table 3.3: Calibrated IDM parameters

comparable parameters of different models [78]. The impatience parameter represents the
willingness of a driver to enter the roundabout even if this means that a vehicle inside
needs to brake, by default this parameter is deactivated but our observations indicate that
it is relevant in queue formation. The accel and decel parameters in SUMO are by default
the maximum acceleration and deceleration that the vehicle can provide, however, when
looking at these parameters from the perspective of a CFM they are better interpreted as
the maximum acceleration and deceleration that the driver is willing to perform and that
are lower than the maximum value of the vehicle. The parameter tau represents the time
headway between vehicles, it is, in conjunction with jmTimegapMinor, the parameter that
leads to a vehicle entering the roundabout, in this case after a car using the same entry.
The last parameter that was modified is the actionStepLength that tries to simulate the
reaction time of the driver, the obtained value is lower than the expected values for human
reaction time, however the literature offers an explanation to why this is possible when
looking at macroscopic outputs using microscopic simulation in the form of other aspects
that are not included in this model such temporal and spatial anticipation [45].

This physical interpretation of the parameters is one of the main advantages of using
the IDM, however it is important to consider that the mathematical formulation of the
model (see 1.3.1) introduces interactions among the different parameters. Although these
interactions reduce the interpretability of the model, it is important to consider that these
values - particularly the ones referring to acceleration and deceleration - need to be below
certain thresholds because of physical constraints, this has been consider prior to the
calibration process when imposing limits to all of the parameters.

To further assess the results, it is possible to represent the total queue length for different
periods as shown in figure 3.12. The figure shows the sum of the queues among the



66 3| Simulation and calibration of the real roundabout

different legs for the experimental and the simulated results. The experimental queue
representation includes an error bar to consider possible deviations. The figure excludes
the first period since it was not considered when calculating the error due to its condition
of outlier. In the figure it can be seen that the third period is the one that is worst
represented by the simulation, meanwhile the fifth and sixth period are the ones with
the smallest error. It is important to consider that the simulated results are the result
of averaging the maximum queue output over 5 simulations, which may lead to a higher
impact of abnormally high or low results for specific periods. It is also significant, that
the measurement of the experimental queue length is also subjected to error, both when
measuring it in reality and when transforming it from distance to number of vehicles.
Another problem arises from the fact that the queue length is aggregated for all the lanes
which does not provide a complete picture since one entry could be outperforming the
others, to better analyze the results this data is separated for all the different entries.

Figure 3.12: Total queue for each time period

The next figures (3.13 a-d) show the simulated and the experimental queue for the different
entries of the roundabout. These figures show that the error of the simulation is different
for all the entries. It can be seen that the overall error is reduced for the last two periods,
with the exception of the last period on the east lane. When looking at the south entry
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(figure 3.13a) we can see that the simulation overestimates the queue in the first two
periods and is not able to capture the change in trend during the fourth period. Figure
3.13d displays the conditions on the west approach, in this case, excluding the second
period (P2), the simulation is able to capture the trend that was seen in reality.

(a) Maximum queue on the south entry (b) Maximum queue on the north entry

(c) Maximum queue on the east entry (d) Maximum queue on the west entry

Figure 3.13: Simulated and experimental queue length for different lanes and periods

It is clear that these parameters are not able to reproduce the observed queue with no
error, however expecting this from the simulation would be unrealistic. It is important to
consider that the roundabout is not isolated from the network, so it is possible that some
of the conditions that led to higher queues at specific times came from other characteristics
of the network or the traffic flow conditions and to control for all the conditions of the
network is nearly impossible. Nonetheless, if the goal were to furhter diminish the error
it could be possible to loose the constraints of having maximum and minimum values
of the parameters, or to use different CFM parameters for different approaches or even
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for different routes, since it can be seen in the literature that the behavior of the driver
changes depending on the traffic conditions as well as a function of the desired exit of the
roundabout [20, 21].

Regarding the lack of data to perform further validation of the parameters, it could have
been helpful to repeat the data acquisition process for different traffic conditions and
in different days, to better capture the impact of the infrastructure and the interaction
between vehicles which changes for different flow levels. Also, having the data further
divided in smaller time periods would have yielded more data-points to compare and
allowed us to better capture the reality of the scenario, leading, however, to a more
cumbersome data acquisition process. It is also important to note that all the results
are necessarily influenced by the fallibility of human perception when collecting the data.
This last aspect could be corrected using available technologies such as cameras and image
recognition to asses the queue, the number of vehicles and even the travel time, but these
solutions are very expensive, not only from the point of view 0f equipment price, but also
considering the data management computational costs.

However, the main constraints during the calibration process was the high computational
effort of performing 1-hour simulations with a time-step of 0.005 seconds. This constraint
responds to the necessity of having a real-time simulation when performing tests in the
driving simulator. This parameter greatly affects the behaviour of the CFM so calibrating
the parameters with a higher time-step would lead to significant differences in the output
of the simulation. This is one of the issues when trying to match macroscopic outcomes
with microscopic behaviour. This condition constrained the way in which the data was
acquired from SUMO using the TraCI option of getting the number of halted vehicles for
each time step since using the option of asking SUMO directly for the queue output file
led to the necessity of managing huge files for each of the simulations, further slowing
down the process.

Despite all the considerations made, the obtained results are deemed to be satisfactory
and are the ones provided to Fondazione Bruno Kessler (FBK) to perform the training
of the AI policy that guides the behavior of the automated vehicles.
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simulator and traffic simulator

This chapter deals with the process of creating the scenario that is seen in the driving
simulator and its alignment with the SUMO scenario. The first section explains the
requirements for both scenarios and the differences and similarities with the scenario used
for the calibration process as well as some of the constraints related to the co-simulation
process. The second section describes the specific process undergone both to create the
scenarios and to guarantee its alignment.

4.1. Requirements and constraints

A basic requirement for a co-simulation to work is that the different software involved
replicate the same events in a comparable way. In our specific case, this means guaran-
teeing that the vehicle information (position at each time-step) coming from SUMO is
correctly displayed in the Worldsim scenario that is seen in the driving simulator; and,
vice versa, to introduce the human-controlled vehicle behavior, coming from the driving
simulator software, in the SUMO simulation obtaining the desired interactions with the
traffic.

The first thing that needs to be considered is that the two software involved do not use the
same reference to locate the vehicles’ positions (i. e: the vehicle reference in SUMO is in
the middle of the front bumper, meanwhile Worldsim uses the rear axle position as input
and provides the position of the front axle as output). Furthermore, the angle in SUMO
is biased 90º with respect to WorldSim. These systematic differences had already been
addressed to perform the previous tests introducing an intermediate step that performs
the required modifications to the coordinates coming from SUMO before feeding them to
WorldSim.

In this specific case, it is important to include the constraint that the scenario is based on
a real location and that the calibration has been based on this, so changing the geometry
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and other aspects could certainly influence the outcomes of the simulation, being this
important to get a certain degree of realism from the simulations. Other constraints and
requirement are:

• The scenario needs to be easy to interpret by persons on the driving simulator with
no previous knowledge of it, therefore, it is necessary to avoid possible sources of
driver mistakes (e.g: exiting on an incorrect exit).

• The width of the lanes needs to be close to reality while still allowing the vehicle in
the simulator to remain in the same lane as in SUMO. This is particularly important
for the circulatory roadway, which needs to be wide enough to allow for realistic
trajectories to be performed by the human in the driving simulator.

• The position at which the vehicles stop in the SUMO simulations need to be real-
istically displayed in the driving simulator, this is, vehicles should be stopped close
to circulatory roadway, as it is seen in reality.

• The conjunction of the two software does not allow yet to introduce an control
pedestrians as it is done with cars.

• The visual environment needs to offer a sense of realism so that the person in the
driving simulator is able to perceive speed and behaves as close as possible to how
they would behave in a real environment.

Once this constraints were clear, it was possible to start the scenario alignment process
as an iterative process trying to match all the requirements that is described in the next
section.

4.2. Scenario alignment

The starting point for the scenario alignment is the SUMO scenario obtained for the
Car Following Model and Junction Model calibration based on OpenStreetMap data, the
scenario had to be modified to avoid possible errors during the assessment of the scenario
by real drivers This meant deleting the gap that can be seen on the South legs. Since it
was decided that representing pedestrians was not inside the scope of the project at this
phase, it is not required to introduce this crossing in the SUMO scenario, which could
lead to a slightly different behaviour. The last modification consists in changing the
junction shape, so the vehicles in SUMO stop closer to the circulatory roadway and are
correctly displayed in the Worldsim scenario. These modifications are firstly implemented
in SUMO, getting a working scenario, and can be seen in figure 4.1.
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(a) Network used for the calibration of the model (b) Network used for the simulation in the driving
simulator

Figure 4.1: SUMO network modification to interface the driving simulator

Afterward, the SUMO scenario is exported to an intermediate format that is compatible
with RoadRunner, the software used to create the graphic environment of the driving
simulator. Even though the intermediate format is compatible with both software some
adjustments are still needed to guarantee that the roads seen in SUMO and RoadRunner
are the same lengths and shapes. In addition, RoadRunner is used to introduce all the
required visual elements, such as driving lanes, sidewalks, traffic signs, and pedestrian
crossings, that make the simulation more realistic

After this, the scenario can be exported to Worldsim and check running a simulation with
trajectories generated by SUMO if the scenarios are aligned. The main source of misalign-
ment is the different reference systems used by the software, this is managed modifying
the trajectories from SUMO adequately. On top of this, an offset needs to be added to
the original SUMO scenario to perfectly match the WorldSim scenario, guaranteeing that
the cars are effectively on the road. To perform this, the SUMO’s netconvert is used
since it allows to take the original SUMO network and offset it using as reference the
position of the centre of the roundabout in both RoadRUnner and SUMO. The original
missalignment can be seen in figure 4.2, where the black lanes represent the elements of
the roundabout in Worldsim, the red lanes represent the SUMO trajectories before the
offsetting and the blue ones show the final position of the SUMO trajectories after off-
setting the network. This offsetting could be directly introduced in the Simulink model
that controls the input data to the driving simulator scenario, but it would lead to other
difficulties down the line, so it is more convenient to have the two scenarios previously
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aligned.

Figure 4.2: Alignment offset between WordlSim and SUMO

After guaranteeing that the trajectories are aligned, it is required to look at how the
vehicles going over this trajectories are displayed in the driving simulator environment,
to do so the trajectories coming from SUMO can be displayed in the WorldSim Studio
software were it is possible to force vehicles to move over this trajectories to check if the
scenario needs further modification to perform correctly. An example of this can be seen
in figure 4.3a where one of the preliminary iterations of the scenario is shown and we
can assess that on the highlighted exit the flare needs to be modified to accommodate
the trajectory. This figure also makes clear on the of the limitations of SUMO when
representing circular trajectories, since they are given by a number of indivual points
joined by a straight line. It is possible to modify the network file so that the number
of points is increased to obtain higher resolution, however, SUMO is still limited by the
fact that the trajectories inside the junction are unique independently of the complete
trajectory of the vehicle (i.e: both a vehicle making a U-turn and a vehicle turning right
on the first exit exhibit the same trajectory in the part of the path they share). Since
this behavior is different from what can be seen in reality, it is decided to modify how
the trajectories are displayed on the driving simulator presetting the visual trajectories
knowing the origin and destination of the vehicle, although it is out of the scope of this
thesis. This approach of using WorldSim to preview the position of the vehicles is also
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helpful to understand were they would stop to wait to enter in the roundabout, figure 4.3b
shows the stopping position for the 4 different entries, where the blue dot represent the
SUMO stopping lane (i.e: the position of the middle of the front bumper when waiting
to enter a junction).

(a) SUMO trajectories displayed on the Wordl-
Sim scenario

(b) Position of the SUMO stopping lines dis-
played on the WorldSim scenario

Figure 4.3: Alignment checking using WorldSim Studio

Despite using WorldSim Studio to perform this alignment analysis, it is still required to
check on the driving simulator if the feeling obtained is sufficiently realistic or if some
modifications are still needed. This is true both for the visual elements of the network, as
well as for the trajectories of the vehicles and other elements of the simulation environment
and to check if SUMO is correctly retrieving the data provided by the driving simulator.

After having the scenarios aligned it is possible to add all the visual elements that render
the simulation environment more realistic, adding references so that the driver can have
a sense of speed. This is shown in figure 4.4.
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(a) Aereal view

(b) Ground view

Figure 4.4: Final WorldSim scene used in the driver simulator

4.3. Tests and results

After creating the scenario, we performed more tests to asses how drivers perceive the
safety and the fluency of the simulation. In this case, the drivers are asked to enter the
roundabout and leave the roundabout using the third exit. The drivers experience two
different penetration levels of automated vehicles - 80 % and 20 % - for each of the legs
of the roundabouts but they do not know the order in which they are exposed to this
scenarios. In total each driver does 8 runs before assessing the fluency and safety they
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experienced. They are asked to do this answering a questionnaire. The expected result,
according to the KPIs used for the training of the policy, is that the fluency of the traffic
is improved when the percentage of automated vehicles is increased, while maintaining a
satisfactory level of perceived safety.

The questionnaire starts with some control questions regarding age, km driven per year,
need of glasses to drive and years of driving experience. Then two questions about if
vehicles respected the rules of precedence and if they waited for too long at the entry of
the roundabout are introduced. This questions is repeated two times, considering the two
different scenarios presented (different automated vehicle percentage). The final questions
refer to the preference of drivers about the first or the second scenario.

1. Regarding safety perception, which of the following statements do you agree with
the most?

• Traffic in the scenario with 20% of CAVs was definitely safer than in the scenario
with 80% CAVs

• Traffic in the scenario with 20% of CAVs was partially safer than in the scenario
with 80% CAVs

• Traffic in the scenario with 20% of CAVs was partially less safe than in the
scenario with 80% CAVs

• Traffic in the scenario with 20% of CAVs was definitely less safe than in the
scenario with 80% CAVs

• No difference perceived

2. Regarding traffic smoothness, which of the following statements do you agree with
the most?

• Traffic in the scenario with 20% of CAVs was definitely smoother than in the
scenario with 80% CAVs

• Traffic in the scenario with 20% of CAVs was partially smoother than in the
scenario with 80% CAVs

• Traffic in the scenario with 80% of CAVs was partially smoother than in the
scenario with 20% CAVs

• Traffic in the scenario with 80% of CAVs was definitely smoother than in the
scenario with 20% CAVs

• No difference perceived
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3. Globally, which of the 2 scenarios did you prefer?

In this round of tests, 10 drivers were asked to perform the test. The results obtained
regarding scenario preference can be summarized and reported as in table 4.1. In this
table the previous questions are synthesised as preference in terms of safety, smoothness
and overall preference.

Questionnaire answers

Answer\Question 1. Perceived safety 2. Perceived smoothness 3. Overall preference
Definitely 20% over 80% 0 1 0
Partially 20% over 80% 2 3 3
Partially 80% over 20% 2 4 3
Definitely 80% over 20% 6 1 4
No difference 0 1 0

Table 4.1: Preference questionnaire results

The results also show that in the simulation with a higher number of vehicles, the yield
rules are perceived as more respected. In the 80 % scenario 6 people perceive that yield is
respected, and this number goes down to 2 for the 20% scenario. Regarding the fluency
of the queue, drivers generally don’t perceive either of the scenarios as slow to enter the
roundabout.

In conclusion, it can be seen that the vehicles governed by the policy not only increase
the fluency of the traffic, but also are perceived as safer. With an overall preference for
the scenario with a higher percentage of CAVs.
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The objective of this thesis was to create a calibrated and aligned scenario for performing
realistic co-simulations using a traffic simulator (SUMO) and a driving simulator (DriSMi)
in an urban environment. This co-simulation will enable to evaluate the impact of auto-
mated vehicles on drivers’ perception of safety and traffic fluency, as well as assess the
comfort of the AI policy guiding the automated vehicle that is trained using the calibrated
scenario.

The calibration process of the traffic simulation involved several steps. First, we collected
real data on vehicle flow and queues at the real roundabout. Then, we designed the
network to closely resemble the real environment. After that, we identified the most
influential parameters through previous experience and sensitivity analysis, and various
parameter sets were tested to determine the best solution.

The biggest constraint that we found was the requirement of using a time step of 0.005
seconds for the driving simulator. This increased significantly the computational cost
of the traffic simulation, which limited the number of repetitions per simulation to deal
with stochasticity. To address this issue, regression techniques using neural networks were
proposed as a potential solution, which would then allow to have a faster process where
different optimization techniques could be tested, but more work needs to be done in this
area.

To improve the calibration process, gathering more data on the same roundabout for
different traffic conditions would be helpful for model validation purposes. It could also be
possible to compare the performance of different Car Following Models (CFMs), although
the Intelligent Driver Model (IDM) was selected because it outperforms more complex
models according to the literature. However, exploring other options for modeling driver
behavior, such as using AI to develop a policy that mimics real driver behavior, could be
worthwhile. Using the capabilities of the driving simulator, it could be possible to explore
the speed and acceleration profiles performed by real drivers and compared them with the
ones obtained using different CFMs or the automated vehicle policy. This information
could be then used to further refine the model and improve its accuracy in reproducing
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real-world traffic conditions.

Once the calibration of the traffic scenario was completed, it was possible to introduce
it in the co-simulation environment and perform some tests with non professional drivers
on how they perceived the safety and fluency of the traffic. From the obtained results, we
can conclude that the higher number of automated vehicles not only reduces the crossing
time in the roundabout but also is perceived as safer and smoother. This is in line with
the expected results, but more testing will be done to validate this conclusions.

It is important to consider the impact of automated vehicles not only in other vehicles and
drivers, but in vulnerable road users. To do so, it could be interesting to, increasing the
complexity of the traffic simulation used in the co-simulation, include other actors such
as pedestrians and cyclists taking advantage of the already implemented co-simulation
architecture.

In the coming months the AI@EDGE project will go on carrying diverse tests using
this roundabout scenario to check the impact of the automated vehicles in the driver’s
perception of safety and traffic fluency. The comfort of the policy for passengers of the
automated vehicle will also be evaluated, in this case the driver in the driving simulator
will have no control over what the vehicle does and the perceived safety and comfort will
be assessed. On top of this, it could be possible to analyze the perception of different
policies with cooperative and individual objectives.
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A| Appendix A - Templates for

the collection of data

Figure A.1: Data acquisition template entry
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Figure A.2: Data acquisition template exit
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B| Appendix B - OD matrices

and SUMO demand

OD matrices for cars

PERIOD 1 PERIOD 2 PERIOD 3
OD E N S W Total OD E N S W Total OD E N S W Total
E 0 7 24 36 67 E 0 6 39 34 79 E 0 6 28 33 67
N 21 1 56 7 85 N 9 0 59 11 79 N 18 1 66 6 91
S 20 50 4 8 82 S 18 27 1 8 54 S 17 40 5 7 69
W 31 0 13 0 44 W 26 5 9 1 41 W 26 0 15 0 41
Total 72 58 97 51 278 Total 53 38 108 54 253 Total 61 47 114 46 268

PERIOD 4 PERIOD 5 PERIOD 6
OD E N S W Total OD E N S W Total OD E N S W Total
E 0 4 20 41 65 E 0 5 23 34 62 E 0 5 28 43 76
N 17 1 46 8 72 N 17 1 54 6 78 N 14 1 66 8 89
S 16 29 3 9 57 S 17 38 4 8 67 S 13 38 5 10 66
W 25 0 10 0 35 W 26 0 12 0 38 W 21 0 15 0 36
Total 58 34 79 58 229 Total 60 44 93 48 245 Total 48 44 114 61 267

Table B.1: OD matrices for cars

OD matrices for motorcycles

PERIOD 1 PERIOD 2 PERIOD 3
OD E N S W Total OD E N S W Total OD E N S W Total
E 0 0 2 24 26 E 0 0 2 29 31 E 0 2 2 32 36
N 2 0 5 4 11 N 3 0 5 5 13 N 4 0 5 6 15
S 2 4 0 5 11 S 3 4 0 7 14 S 4 9 0 7 20
W 2 0 1 0 3 W 4 0 1 0 5 W 6 0 1 0 7
Total 6 4 8 33 51 Total 10 4 8 41 63 Total 14 11 8 45 78

PERIOD 4 PERIOD 5 PERIOD 6
OD E N S W Total OD E N S W Total OD E N S W Total
E 0 0 2 30 32 E 0 0 3 26 29 E 0 0 3 13 16
N 3 0 4 5 12 N 2 0 6 5 13 N 2 0 6 2 10
S 3 1 0 7 11 S 1 2 0 6 9 S 2 2 0 3 7
W 4 0 1 0 5 W 2 0 1 0 3 W 4 0 1 0 5
Total 10 1 7 42 60 Total 5 2 10 37 54 Total 8 2 10 18 38

Table B.2: OD matrices for motorcycles
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OD matrices for bicycles

PERIOD 1 PERIOD 2 PERIOD 3
OD E N S W Total OD E N S W Total OD E N S W Total
E 0 1 2 12 15 E 0 1 1 13 15 E 0 1 2 14 17
N 0 0 3 2 5 N 1 0 2 2 5 N 1 0 5 3 9
S 0 5 0 3 8 S 1 4 0 3 8 S 1 5 0 3 9
W 0 0 1 0 1 W 1 0 1 0 2 W 2 0 1 0 3
Total 0 6 6 17 29 Total 3 5 4 18 30 Total 4 6 8 20 38

PERIOD 4 PERIOD 5 PERIOD 6
OD E N S W Total OD E N S W Total OD E N S W Total
E 0 0 2 16 18 E 0 1 2 6 9 E 0 0 3 12 15
N 1 0 5 3 9 N 1 0 4 1 6 N 1 0 6 2 9
S 1 3 0 4 8 S 1 6 0 1 8 S 1 3 0 3 7
W 2 0 1 0 3 W 1 0 1 0 2 W 2 0 1 0 3
Total 4 3 8 23 38 Total 3 7 7 8 25 Total 4 3 10 17 34

Table B.3: OD matrices for bicycles

OD matrices for heavy vehicles

PERIOD 1 PERIOD 2 PERIOD 3
OD E N S W Total OD E N S W Total OD E N S W Total
E 0 0 0 2 2 E 0 0 1 4 5 E 0 0 1 3 4
N 3 0 1 0 4 N 3 0 1 1 5 N 3 0 1 1 5
S 3 1 0 0 4 S 3 3 0 1 7 S 3 1 0 1 5
W 5 0 0 0 5 W 5 0 0 0 5 W 4 0 0 0 4
Total 11 1 1 2 15 Total 11 3 2 6 22 Total 10 1 2 5 18

PERIOD 4 PERIOD 5 PERIOD 6
OD E N S W Total OD E N S W Total OD E N S W Total
E 0 0 0 2 2 E 0 0 1 3 4 E 0 0 1 2 3
N 2 0 1 0 3 N 2 0 2 1 5 N 2 0 1 0 3
S 1 1 0 0 2 S 2 1 0 1 4 S 1 3 0 0 4
W 2 0 0 0 2 W 3 0 1 0 4 W 2 0 0 0 2
Total 5 1 1 2 9 Total 7 1 4 5 17 Total 5 3 2 2 12

Table B.4: OD matrices for heavy vehicles
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OD matrices using coefficients for motorcycles and bicycles

PERIOD 1 PERIOD 2 PERIOD 3
OD E N S W Total OD E N S W Total OD E N S W Total
E 0 7 25 48 80 E 0 6 40 48 94 E 0 7 29 49 85
N 22 1 59 9 90 N 10 0 61 13 85 N 20 1 69 9 99
S 21 53 4 11 88 S 19 29 1 11 61 S 19 45 5 10 79
W 32 0 14 0 45 W 28 5 10 1 43 W 29 0 16 0 44
Total 74 61 101 68 304 Total 58 41 112 74 284 Total 67 53 119 68 307

PERIOD 4 PERIOD 5 PERIOD 6
OD E N S W Total OD E N S W Total OD E N S W Total
E 0 4 21 56 81 E 0 5 25 46 75 E 0 5 30 51 85
N 18 1 49 11 79 N 18 1 57 8 84 N 15 1 70 9 95
S 17 30 3 13 63 S 18 40 4 11 72 S 14 39 5 12 70
W 27 0 11 0 38 W 27 0 13 0 40 W 23 0 16 0 39
Total 63 35 83 79 261 Total 63 46 98 64 272 Total 52 45 120 72 289

Table B.5: OD matrices using coefficients for motorcycles and bicycles
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This demand is represented in SUMO with a flow element per each cell of the OD matrix,
representing one pair of origin destination. In the simulation the used OD matrices are
the one refering to heavy vehicles (table B.4) and the combination of cars, motorcycles
and bicycles using different coefficients (table B.5). Following, an example of the code
representing the demand for one period is shown:

Figure B.1: Definition of vehicle flow in SUMO

Figure B.2: Definition of pedestrian flow in SUMO
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