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Abstract

Over the last few years more and more web-based information are charac-

terizing our world. The major aspects of our life are described via data

which are saved and stored in databases. These databases describe differ-

ent domains and each one is composed by different data schemas. These

schemas represent an event or an information of a specific domain, differ-

ent schemas could depict the same data but in a different way. Implement

more data integration systems is becoming a need since data are constantly

evolving and schemas’ volume is always increasing. Systems which applied

to different schemas can provide a unified view of a specific domain that will

give to the user a complete and reliable access to a domain. In our thesis

we will propose a new framework for schema mapping, which is a critical

step inside data integration. Schema mapping finds the relationships be-

tween the attributes of different schemas. Many of the existing frameworks

used to create a schema mapping are thought for expert users who know

how a database works and how to relate different schemas, that’s why those

frameworks are built expecting some inputs from the user that could help

to reach the goal. With the expansion of the fields on which data are used,

nowadays we see an increased use and need of data integration system also

by unsophisticated users. These users don’t know how a database works and

for sure they will not be able to provide the inputs required by these frame-

works. In this thesis we will present framework where schema mapping is

achieved in a fully automatic way, preventing unsophisticated users to give

inputs or to make reasoning on the results. Our frameworks uses the QRE

algorithm, an algorithm which will return a set of queries that applied to a

database will give as result the same tuples. Our framework has proven to

be correct and complete on the datasets we have used since it returned the

expected schema mapping.

Keywords: Data Integration, Schema Alignment, Schema Mapping,

Query Reverse Engineering.
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Sommario

Negli ultimi anni si è visto un incremento dell’utilizzo di informazioni dig-

itali per descrivere il nostro mondo. I maggiori aspetti della nostra vita

vengono descritti da dati che sono salvati su databases. Questi databases

descrivono molte realtà e domini utilizzando molteplici schemi. Per un do-

minio possiamo avere diversi schemi che ne descrivono le informazioni ad

esso legate, e questi schemi possono differire tra di loro ma allo stesso tempo

rappresentare la stessa cosa. Considerando questo aspetto e il fatto che i

dati continuano a cambiare e ad aumentare, è cresciuta la necessità di imple-

mentare sistemi in grado di unificare questi schemi per poter ottenere una

visione unica di un certo dominio. Questa visione deve essere completa e

affidabile per permettere ad un utente di poter accedere alle informazioni di

un dominio. Nella nostra tesi presentiamo un framework utile ad ottenere

uno schema mapping, uno degli aspetti fondamentali per poter trovare le

relazioni tra i diversi schemi di uno stesso dominio. Molti dei sistemi uti-

lizzati per schema mapping sono pensati per utenti esperti che sanno come

interagire con un database, si aspettano degli input dall’utente per poter

ottenere lo schema mapping. Considerando però l’incremento dell’utilizzo

dei dati in ogni aspetto della nostra vita, è sempre più probabile che utenti

meno esperti debbano interagire con i database e che richiedano quindi la

necessità di utilizzare sistemi di schema mapping. Il nostro framework è

pensato per essere completamente automatico, una volta ricevuti gli input

iniziali ritornerà lo schema mapping finale senza dover chiedere ulteriori

input all’utente, il quale potrà quindi essere sia esperto che meno. Per rag-

giungere il nostro scopo, nel nostro framework abbiamo utilizzato l’algoritmo

di QRE, il quale ha come obbiettivo quello di ottenere un gruppo di query

che applicate su un database ritornano gli stessi dati. Il nostro framework

ha ottenuto come risultato lo schema mapping che ci aspettavamo venendo

applicato sui datasets da noi usati, il quale era corretto e completo.

Parole chiave: Data Integration, Schema Alignment, Schema Mapping,

Query Reverse Engineering.
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Chapter 1

Introduction

1.1 Context

Over the past years the amount of structured information exploded and

as a result many users, also non-technical users, have to deal with tasks

that requires to combine, structure and work with different schemas. These

schemas are data structures, called database, that have tables on which they

store information. These tables are formed by rows and columns. The first

ones are called tuples and they are an aggregation of values which represent

a specific information (which could be an event or for example the records

of a person). The latter one are also called attributes and with the values

presented in the tuples specifies what these values are referring to.

In these year we witnessed an explosion of the dimension of web-based

datasources, in the size of the data but also in the numbers of schemas that

represent a domain. This increase happened very fast, thus the data are

dynamic information that could change rapidly. This change could also bring

to different variety between the schemas, we could have different schemas

that represent the same domain but they are totally distinct between them.

These factors create also schemas with different qualities, some of these

schema could be inaccurate or not fully covering the respective domain. For

these reasons the need for data integration system is risen. The need to

align different schemas became significant and with this, also the necessity

to link the attributes of the schemas in the same domain to obtain a unified

view which will give a complete and accurate vision of the specific domain.

The use of Schema Mappings method increased and several different

systems have been developed, each one with their characteristics. Schema

mapping methods are the fulcrum of data integration systems, they are the

last step in the schema alignment procedure. They specify the semantic



relationships between the attributes of different schemas. The majority

of these Schema mapping systems provide a framework which, with the

help of input taken by the user, create a mapping between two different

schemas. For modern schema mapping tasks this is not suitable, it will

require that the user knows in details both the source and target schemas.

As we already said in these years the growth of the web-based information

brought unsophisticated users to deal with this problems and these users

don’t have knowledge of the structures of the schemas or how to create

attribute-level matches. A sentence taken from [12] points out this problem:

Non-technical users should be able to cook their data with their

own flavor, even if they cannot master the ”professional kitchenware”

designed for database experts

1.2 Proposed Solution

With this increased need of schema mapping methods usable also by un-

sophisticated users, I developed a fully automatic framework that given in

input the source and the target schema, and a result table, obtains a schema

mapping without asking supplementary inputs or information to the user.

Our framework is based on the use of the Query reverse engeneering

(QRE) algorithm. This algorithm given a dataset and a result table gives

as result one or more SQL queries, we will call them IEQs, that applied to

the dataset would return the tuples in the result table.

The aim of this thesis is to find a schema mapping using as first step the

QRE algorithm modified according to our needs. We made the QRE able

to find queries also for categorical attributes (string encoding) and then we

also modified it in order to obtain not only a query but a pre-determined

number of queries. Then with a comparison between the IEQs obtained

from the source and from the target we will create a mapping between the

source and the target based on the attributes in the SELECT and WHERE

clauses of these queries. Our results will be saved in an external matrix

which will give a visual representation of the generated mapping.
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1.3 Thesis Structure

The thesis has the following structure:

f In Chapter 2 - Background are introduced the functions necessary

to create the datasets and the function used to compare the IEQs.

Then are introduced also the theoretical concepts needed to under-

stand the discussed topics.

f In Chapter 3 - State of the Art there is the detailed explanation

of what is schema mapping and it is provided an overview of different

studies applied in the same field. At last there is an overview of the

QRE algorithm, how it works and its functionalities.

f In Chapter 4 - Methodology are explained the steps of our process

and the reasons behind our methodological choices. We provide also

a use case that helps to understand how it works.

f In Chapter 5 - Datasets and Experiments are introduced the

Datasets used for our studies and how we have obtained them. We

also have provided some tests to better clarify how the methodology

work.

f In Chapter 6 - Conclusions and Future works are synthetized

the results obtained from the thesis and lastly are suggested possible

future works that could improve and optimize our studies.

3
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Chapter 2

Background

In this chapter we are going to provide some backgrounds necessary to un-

derstand the topics discussed in the next chapters. We initially introduce

the Data Integration problem, the field on which our thesis is working. Then

we will introduce some functions that will be useful in our methodology.

2.1 Definitions

In this section we will add some definition that will come in handy going

forward.

Definition (SPJ Query). A Select-Project-Join (SPJ) query Q, is a

SQL query containing only three clauses: select, from and where-clause.

The select-clause is where the desired attributes to project are specified, the

from-clause specifies the tables from which those attributes come from and

the where-clause is where the predicates for selecting those attributes are

specified.

Definition (Instance-Equivalent Queries (IEQs)). Let Q and Q’

be queries, Q and Q’ are instance equivalent queries if both produce the

same output w.r.t some database D, i.e., Q(D) ≡ Q′(D).

Definition (Datafication). The process that transform each event,

subjects, objects and every interaction in the word into digital data.

2.2 Data Integration

Since in the last years we have seen, and we cite [15], a rise of digital tech-

nologies, digitalization and big data, we are witnessing an intensification of

datafication and a successive need to address the big data integration chal-

lenge. Data integration increase is in fact associated with the explosion of



the volume of data and the need to share these data, possibly coming from

different source, with a unified view.

The big data integration challenge is characterized by the ”V” dimen-

sions which are the dimensions of data sources.

• Volume: with this dimension we are referring not only to the size of

data in a schema, but also to the increased number of schemas, even

for a single domain. In a study from Dalvi et al. [6] they found out

that the domains they have considered were composed by thousands

to tens of thousands of web sources, while traditional data integration

data sources doesn’t reach these types of numbers.

• Velocity: Since we have an increase of datafication and so of available

data, the number of data sources is rapidly exploding and many of

them are quite dynamic. Information changes over time, we need to

provide an integrated view of this changing data. With a study of

He et al. [10] in 2004 there is an estimate of 1,258,000 distinct query

interfaces to deep web content. After two years, in 2006, a study by

Madhavan et al. [13] estimates 10 million distinct query interfaces

to deep web content. This is a reflection of the velocity of how the

number of deep web sources increased.

• Variety: We have a huge variety of data sources from different do-

mains. Moreover data sources for similar entities can present variety in

how they structure their data or how they describe an entity. Lastly,

data sources change over time creating more variety that need to be

handled. In the studies of Li et al. [11], they have identified a high

variety of the sources in the Stock domain. Another study, by He et al.

[10], identified that deeb web databases have a high variety, classifying

51% domain in non e-commerce and the remaining in e-commerce.

• Veracity: We can see that data sources have different quality, they

are dissimilar in accuracy, coverage and timeliness of data provided.

This dimension is becoming a considerably problem since the number

and diversity of data sources increased. With this problem is clear

that we cannot rely only on one source of a domain but we have to

take a look also on the other ones.

6



Figure 2.1: Dimensions of Data

Data integration consists of three major steps:

Figure 2.2: Steps of Data Integration

2.2.1 Schema Alignment

The first one, Schema Alignment, has the goal to link the attributes that

have the same meaning between different sources and it also address the

problem of semantic ambiguity. The latter is the fact that in different

sources the same conceptual information could be presented differently but

7



also that different conceptual information could be presented similarly. As

we can see in [9], given the grew of available online ontologies which repre-

sents different domains with a lot and diverse point of view, we have faced

an increase number of ambiguity problems.

Passing from integrate data in an organization to integrate data in a big

data environment made the problem tougher, since we are now dealing with

an increased number of data sources. This volume and velocity increased also

the variety of data, requiring new techniques to solve schema heterogeneity.

Schema alignment contains three classic steps:

• Mediated schema. A unified view of the different sources, it usually

contains more information than each schema but in some cases may

not present all the information.

• Attribute matching. Attributes in the mediated schema are matched

with the attributes in source schema.

• Schema mapping. A mapping that specify semantic relationships

among the attributes of different data sources.

Figure 2.3: Steps of Schema Alignment

Schema mapping is the fulcrum of a data integration system but it is not

easy to create and maintain those mappings since we have a huge number

of data sources with increased variety. A solution for this variety and so

uncertainty on how to model the domain, is to create probabilistic schema

mapping which contains a set of attribute, each with a possible matching

between source attributes and the mediated schema’s one. So we will have

different mappings that could be the correct and we will have to make a

study to understand which one is the correct one.

Now that we have a general knowledge of what is schema alignment, and

introduced the main concept of our thesis which is Schema mapping, a closer

look in Chapter 3, we will explain the next two steps of Data Integration.

We will not go in details about these ones but we will only give a general

idea.

8



2.2.2 Record Linkage

Once we have aligned different schemas, we still could have that values pro-

vided by the sources for the same attribute may differ (naming conventions,

typo, and so on). With Record Linkage the objective is to assign each

record to an entity and so understand which records refer to the same entity.

We have a lot of records to be linked and this number become even greater

in the big data environment demanding for appropriate record linkage tech-

niques. So, the basic record linkage, besides its basic steps, has to implent

specific techniques to handle the challenges given by the dimensions of the

big data word.

One of the basic steps is pairwise matching, it compares different

records and determine if they refer or not to the same entity. It could be

done with different approaches:

• Rule-based: it applies domain knowledge to create matching rules

that bring to a decision. It could deal with complex scenarios but

requires a lot of domain and data knowledge.

• Classification-based: it trains a classifier using positive and negative

examples, then the classifier classifies a pair of records. It doesn’t

require domain knowledge but it needs a large number of training

examples.

• Distance-based: it computes the similarity between the attributes

values using string comparison techniques (described in the previous

section). It sets thresholds that indicates if there is a match, a possible

match or no-match. Domain knowledge is limited to state distance

metrics on atomic attributes.

Within this step there could be inconsistency between the matching

records, we could have for example that a pair of records R1 and R2 matches,

than R2 matches with R3 but R1 does not match R3. To reach a globally

consistent decision on how to classify all records, we have the Clustering

step. First, with pairwise matching we create an undirected edge between

the matching records, than different partitions are created. Those parti-

tions are such that every partition does not have exiting edges conneting

with other partitions. Each partition is what is called a Cluster. So we have

a graph clustered in different partitions that are disjoint.

These two techniques could be quite inefficient and infeasible for set

with a large number of records. So, it was proposed a new strategy, called

Blocking, that has the goal to partition the input into different small blocks

and than on these blocks it applies pairwise matching.

9



As we said before, Record Linkage become a challenge when it is applied

to big data sets. So, it has been studied complementary techniques that

address this problem, specific to each dimension. We will not go in further

details about each techniques because they are not topics of our thesis, we

will only list them:

• Volume: Two major techniques, one uses MapReduce which are effec-

tive in parallelizing data, the other one uses multiple blocking functions

and identifies the most promising pairs of record.

• Velocity: Since many of the sources are dynamic, it is necessary

to perform an incremental record linkage, which will update existing

linkage results upon the arrival of new data. There are already some

clusters, new records are put into existing ones or in a new cluster.

• Variety: Even if we have already had the Alignment step, with the

amount of domains and sources in the big data era we need this further

step. It will create more links between attributes name and structured

records.

• Veracity: Tries to create clusters that identifies records which refer

to the same entity but with different values or in different points in

time.

2.2.3 Data Fusion

The last step of Data integration is Data fusion. Different sources could

provide information for the same attribute of the same entity that may

have conflicting values, Data fusion seeks to understand which value truly

represents the entity. As for the previous steps, the increase volume of

sources increased the number of conflicting data. Data fusion decides the

value, or the set of values, or the list of values that is consisted with the

real world. At the beginning, before the big data era, the approaches were

often rule based, which became inadequate for higher volume of data where

there is large veracity. To address this problem, many techniques tried to

identify trustworthy sources and detecting copying between the sources. In

these techniques we can have some of all of the following aspects:

• Truth discovery: find the true value between the conflicting ones.

• Trustworthiness evaluation: Evaluate the trustworthiness of a source

according to the correctness of its values.
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• Copy detection: Detects copying between data sources.

The second aspect is one of the most important point of data fusion. It

is calculated as the accuracy of a source, A(S), which is the probability that

a record in the source S is true.

2.3 Encoding

In this paragraph we are going to explain what is Encoding and how it can be

done. First of all, why we are interested in Encoding? The QRE algorithm

(introduced and explained in Chapter 3) that we are going to use, works

only on numerical datasets. Our thesis provides a system to perform schema

mapping between two datasets that can present some categorical attributes.

Given that our approach is based on the QRE algorithm Talos presented in

[14], an algorithm that as we just said works only numerical data, we need

to encode our datasets before we can use them. Beside that, encoding is

very useful and required in most of the machine learning algorithms. We

have used the one hot encoding approach, a process that converts categorical

data variables into numerical data. How does it work? One hot encoding

takes the categorical variable and for every value present in the column of

this variable create a new column assigning a binary value of 1 or 0 to those

columns. Here an example for a better understanding:

Figure 2.4: Example of One Hot encoding

Why we have used one hot encoding? There are some encoding algo-

rithms, like label encoder, that does not create new columns but converts

the values in the original columns with integers. At the end we will have

the original column with the categorical value replaced by numerical values.

We need the originals strings to perform our search so using label encoder

we would lose the information. Generating these numbers, label encoders

create also an order in the column that for some categorical values (like
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cities) does not have sense. Some machine learning algorithm could use the

order of numbers as an attribute of significance. This could be helpful in

some cases but in ours is not so we preferred to use one hot encoding.

With one hot encoding we will create new columns for every value that

we have and we can place as header of the column the actual value of the

categorical attribute so we do not lose it. We do not want to lose it because

we will need it also to find the final query, it could be part of a where-clause.

Now that we have decided to use one-hot we have to choose between one

hot encoding with Pandas or with Sklearn since our system is implemented

with python.

• Pandas: In Pandas we have the function pandas.get dummies() that

given a categorical dataset and possibly some other parameters, will re-

turn the original dataset converted in a numerical dataset with dummy

variables. Those dummy variables are new columns of the dataset that

are created from the values present in the categorical columns. As see

in Fig. 2.4 from one column whit three different values we obtain three

numerical columns.

• Sklearn: In Sklearn we have the function OneHotEncoder that encode

categorical features as a one-hot numeric array. We give as input a

categorical column of our dataset and the function will return a matrix

composed by bynary column for each category. The categories are

derived based on the unique values in each feature. The difference

with get dummies() is that OneHotEncoder creates a function which

persists so it can be applied to new data using the same categorical

variables.

For our thesis we have chosen get dummies() because we have seen that

we obtain the same results in both cases and we don’t take advantage of

the characteristics of sklearn encoder. Furthermore, when we have tried

OneHotEncoder from sklearn we had to built an external function that first

needed to find all the categorical columns. Then, on those columns, we

needed to call the encoder and we obtained a dataframe for each column.

Once we had those dataframe we merged them to obtain our final dataframe

with all the categorical columns encoded. Instead, with pandas encoding we

only had to call the function to obtain the same result.
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2.4 String Comparison

In this section we are going to explain what is string comparison and why

we need it in our thesis. In Chapter 4 we will see how it is used in our

methodology.

In the easiest case we are comparing two strings that are exactly the

same and so the comparison is trivial. For our work we cannot stop our

reasoning on the equality of the strings but we must take a look also at the

similarity that they have.

An example of why it is important to look at the similarity: Suppose you

need some user input. It could happen that there will be a typo in the input.

To bypass the typo there exists string matching techniques that compare the

input with a given string and return the percentage of similarity between

the strings.

We can have different of algorithms:

• Edit distance based: these ones calculates the number of operations

necessary to modify one string into another. When we have less edit

operation it means the strings are similar.

• Token-based. Here we have algorithms that compare the set of char-

acters in both strings and we have a higher similarity when we have a

high number of common characters.

• Sequence-based. Lastly, in this category the algorithms compare

sub-strings, trying to find the longest sequence in common. Higher

the sequence, higher the similarity.

The first techniques that we are going to explore is the Levenshtein

distance, an Edit distance based algorithm. Used mainly to address typos,

it calculates the numbers of transformations needed to transform a string

into another one. Here we can see the definition of the Levenshtein distance:

From this definition is calculated a ratio which is used in the Fuzzy-

Wuzzy Package, the ratio is obtained from this formula:
(|a|+|b|)−leva,b(i,j)

|a|+|b|
This package provide different functions that handles cases similar to the

previous one but where the Levenshtein distance would fail. In the simplest

case we can use fuzz.ratio(s1,s2) (where s1 and s2 are two generic strings)

that computes the standard Levenshtein distance similarity ratio. It will re-

turn a float in the range [0,1]. As we said, this package has other functions

that comes in handy in different situations. For example we could check if

a string is a substring of another string using fuzz.partial ratio(s1,s2).
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Figure 2.5: Levenshtein Distance

The algorithm compare the substring s1 with length k with all the possible

substrings in s2 that have length k and return the best score of the com-

parison. Another important function is the fuzz.token sort ratio(s1,s2)

that order alphabetically the strings and then applies fuzz.ratio to obtain

the similarity percentage.

We could get lost with other functions present in this package but for our

thesis we will need to compare two strings that could be the title of a film

or the name of an actor and so on. So we will not need complex functions

but we can simply use the fuzz.ratio function (same of Levenshtein distance

as we said). Here a practical example:

Figure 2.6: Example of Fuzz Ratio

We can have different functions not based on the Levenshtein distance,

here we will propose some different solutions that could have been used in

our thesis. Firstly we have the Jaro Similarity, also an edit one, that will

return a value in the range from 0 to 1. The formula used by this function

is:

With m representing the matching characters and t is half the number
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Figure 2.7: Jaro’s Formula

of matching characters in different order. | s1 | and | s2 | are the lengths

of the strings. Like in fuzzy we have a more sophisticated jaro functions,

the Jaro-Winkler Similarity which adds to the first one a more accurate

answer when two strings have similar prefix.

The previously presented methods provided a coefficient which indicated

the similarity between the strings, the following one returns a value that in-

dicates how dissimilar two strings are. We are talking about the Jaccard

Distance, a token-based algorithm. It still range from 0 to 1 but we have

that the strings are more similar when the value is low. The Jaccard Dis-

tance is calculated as follows: D(X,Y) = 1 - J(X,Y). Where the last term is

the Jaccard Similarity Index which is equal to |X ∩ Y |/|X ∪ Y |, the charac-

ters in both sets and the total number of characters. Another token-based

algorithm is the Sorensen-Dice one. It differs from the Jaccard Distance

algorithm because it counts twice the characters that intersect in the strings

and plus at the denominators we don’t have the union of the sets (strings)

but the sum of all characters in both strings. This may bring to a overesti-

mate of the similarity.

We close this section with a final example of a sequence based algorithm.

We presents the Ratcliff-Obershelp algorithm. It starts by finding the

longest common substrings, split the strings on it and tires to find other

substrings in the splitted strings. It goes on recursively until a splitted

string has a length lower than a default value. The result of the similarity is

calculated as twice the sum of common characters divided the total number

of characters.
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2.5 Sklearn Decision Tree Classifier

In this paragraph we are going to discuss what are Decision Trees and how

they are used in the QRE algorithm. A decision tree is a non-parametric

supervised learning method used for both classification and regression. It is

based on a tree structure where an internal node is an attribute on which

there will be a test that will create a branch, and each leaf nod represents

the outcome. A leaf node represents a class label. At each node an attribute

is taken to split examples into distinct classes as much as possible. Taking

different branches in a decision tree means to select the data that have spe-

cific characteristic, in fact every branch is obtained by applying a condition

to an attribute and more deeply we go in a decision tree more condition are

applied at each node. The path from root to leaf, or to each node, represent

classification rules.

But how does a decision tree chooses the attribute on which to split?

It selects the best attribute using Attribute Selection Measures. This is a

heuristic for selecting the best attribute to split. Most popular selection

measures are Information Gain, Gain Ratio and Gini Index. Depending

on the measure used to split we can have different types of decision tree

algorithm, respectively: ID3, C4.5 (an improvement of ID3) and CART

(Classification and Regression Tree). We will focus on the last one which is

the one used by our sklearn Decision Tree.

This decision tree algorithm split the attributes looking at the Gini In-

dex:

Figure 2.8: Gini Index

Where Pi is the probability that a tuple in the dataset belongs to class

Ci. The algorithm is going to split on the attribute that has the lowest Gini

Index given a possible partition of the data set D into two data set D1 and

D2. The weighted sum of the impurity of each partition is given by this

formula:

We have made an optimal split but we aren’t sure that this will lead

to optimal splits in following nodes, this is the reason why decision tree
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Figure 2.9: Gini Index after split on attribute A

algorithm are Greedy algorithm. The next figure, 2.10, shows how the

splits works. In the first node we split on the attribute sex and we obtain

two nodes where we can see that the next split will be on different attributes

(Age and Pclass) given the Gini Index:

Figure 2.10: Example of Decision Tree
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Chapter 3

State of the Art

In this chapter, we will go over some of the papers used as a base for our

thesis. First, we will introduce the concept of schema mapping presenting

other methods along with their limits. Next, we will focus on the paper that

describes the QRE algorithm that we have used in our thesis.

3.1 Schema Mapping

A schema mapping transforms a source database instance into an

instance that obeys a target schema. It has long been one of the most

important, yet difficult, problems in the areas of data exchange and

data integration.

With this piece taken from the introduction of the paper [12] we are

introducing the problem of schema mapping that is what we want to ac-

complish with our thesis. What is schema mapping? Schema mapping is

a task that find the relationships between schemas. Given a source schema

S and a target schema T we can find a schema mapping M that correlates

the attributes of the different schemas. We can define a schema mapping

also as we see in Bonifati’s paper [4]: a schema mapping is a combination of

declarative specification of the semantic relationship between elements of a

source schema and a target schema. Schema mappings is also used for data

exchange with the objective to create an instance that reflects the source

instance.



Schema mappings can be distinguished in three types:

• GAV: global-as-view, which obtain the data in the mediated schema

querying the ones in source schemas.

• LAV: local-as-view, the mediated schema is used to provide a view of

the source data.

• GLAV: global-local-as-view, we have a virtual schema that provides

a view both of the mediated and local schema.

In our thesis we will apply a new schema mapping technique to a source

schema and to a target schema with the goal to find the attributes in the

source schema that represents the same attributes of the target schema.

Our technique will be completely automatic upon the input of one example

schema.

Before presenting our works we will focus on different systems that create

mappings and that have an interaction with the user.

Clio, [7], was one of the first Semi-automatic tools created to do schema

alignment. Clio is one of the earliest project to use schema mappings with

the goal to simplify information integration and to find the relationships

between data in heterogeneous schemas. Clio had these requirements:

• We do not assume any relationship between the schemas. We can have

schemas with their data and constraints.

• We need to be able to map between relational and nested schemas.

• We must be capable to generate mappings with diverse levels of gran-

ularity.

• The algorithm that creates the mapping has to be incremental. In-

complete mappings could provide sufficient information to the user

and they could be refined over time.
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Figure 3.1: Possible mapping between a Source and a Target schema

Clio’s project assumes that we want to describe a mapping between two

schema, called source and target. Suppose we have these two schemas, when

Clio is applied to them, it will create a possible combination of mappings if

there are clear associations between target and source. The user is provided

with a data viewer which allows him to see the mapping and decide which

one to use.

Two principal systems that allow to non expert users to create schema

mapping are:

• IMF: Interactive Mapping Specification with Exemplar Tuples” by

Bonifati.

• MWeaver: Sample-Driven Schema Mapping by Jagadish

The latter one, [12], proposed a system called MWeaver, that provide

mappings with the help of the user that provide data in a spreadsheet-

style interface. The ground basis for this system is that with the increasing

amount of data, non-technical user should be provided with a system that

allows them to make data integration. In this paper they proposed a sample-

driven approach that allows those non-technical user to construct their own

data. The system finds the possible mappings and with the information

given by the user, it can conclude which are the best mappings. It is user

friendly because the user doesn’t need to understand the schema of the

source or the mappings and the user has only to provide some information

as input. Two challenges faced by this system are the facts that it has to

create mappings only from the user-provided samples, and than that it has

to compute the mappings quickly to provide a feedback to the user and have
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a response. As results they have obtained a system that is user friendly, they

developed an efficient sample search algorithm, and they provided a quite

efficient system to obtain a schema mapping. Differently from other system,

like [7], that creates mappings and then ask user to debug them, MWeaver

require the user to trust the mappings and ask only for information. The

only feedback the user can give are additional data which will help the system

to understand which is or are the correct mappings currently generated. The

limit of this work is that it requires iteration with the user and if the source

database has ambiguous attributes the system could necessitate of a large

number of samples from the user.

Figure 3.2: Example of Mapping from Jagadidsh

Now we will focus on the first one, [4], an interactive framework for non-

expert users that creates schema mappings. The idea is to create exemplar

tuples that refers to some schema mappings and with an interaction of the

user under the form of boolean queries, we can test the validity of these

tuples. This approach, Interactive Mapping Specification (IMS), with a set

of exemplar tuples provided by non-expert users, pose to the user simple

boolean questions with the intent to derive the correct mapping. Those

exemplar tuples could have ambiguities or could be ill-posed that could lead

to create mappings too specific. Keeping this in mind, the framework will

derives smaller and normalized mappings, closer to what the user wants.

This work is limited by the possible ambiguity present in the tuples and the

fact that the mappings are created only from the attributes present on the

tuples. We could have sources with many attributes and we can not pretend

to ask the user a certain number of tuples to handle all the relationship. We

can also see that this framework depends a lot on interaction with users.

Important studies on mappings have been done by Atzeni, so now we

will introduce one of his papers, [2], that focus the problem to reuse previ-

ously defined schema mappings and also use them to create new mappings.
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The creation of mappings is a time-consuming task and the objective of

the framework from Atzeni is to address this problem by creating meta-

mappings that give an opportunity to reuse some mappings. The challenges

are that they needed to understand what is a generic mapping for an orig-

inal schema mapping, to find a mechanism to generate and store all the

possible combination of constraints for a mapping and lastly to create tools

that helped them to choose a generic mapping for new schemas. With

GAIA, the system presented in this paper, they reached the goals to deduce

generic mapping from input schema and also to have a ranked list of possible

generic mappings for an input source and target schema. They concluded

that creating a repository with all the created schema mappings will provide

a suitable schema mapping to a new scenario in high efficient time respects

with a classic schema mapping method.

Those systems took care of how to create a schema mapping between two

schemas but those mappings could be complex and so increased the need

to create tools to understand them. In the paper [1] of Alexe, it is stud-

ied an approach that given schema mappings provide data examples which

illustrate these schema mappings. They search for data examples that are

a unique characterization of a schema mapping, they consider finite sets of

data examples that are positive or negative examples which will characterize

the schema mapping. Unfortunately they found out that that some schema

mappings are not uniquely characterizable by those sets. So, it has been in-

troduced the concept of universal example and universal solution, the most

general possible solution and represent the entire space of solutions for a

source. They concluded that the first tipe of data examples, the positive

and negative one, are not sufficient and do not yield to unique characteri-

zation of schema mappings. With universal example they overcome some of

the issues they encountered but still with some limitation.

We have introduced three schema mappings systems and now we will

introduce the paper of Yan, [3], that present a solution to evaluate those

mappings. Firstly, it introduced the concept of benchmarks: we need

something to evaluate the mappings, an evaluation scenarios. Designing

these is not easy, because we have not only one correct set of mappings

and we have not a clear specification of the input language. Different tools

could provide a different solution but it does not mean that the generated

mapping is wrong, simply we have a lack of agreement on the semantics of

the matches and some tools may interpret differently the sources.
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3.2 Query Reverse Engineering

In previous chapters we have introduced the concept of data integration and

precisely the step of schema mapping in schema alignment. Our thesis want

to present a new schema mapping method based on the Query Reverse

Engineering (QRE) algorithm introduced in the paper of Tran et al [17].

Definition: Given a database D and a result table T (output of some

known or unknown query Q on D) the goal of QRE is to reverse-engineer a

query Q’ such that the output of query Q’ on database D is equal to T.

This is the formal definition on QRE, and as we can see the goal is

to find a query that produce the same output of another query, these two

queries are called instance-equivalent queries (IEQs). They are IEQs if they

produce the same results w.r.t a database D.

What is the purpose of QRE? We can have different use cases of QRE,

here we will propose three of them to better understand the motive of QRE:

• Database usability: With the use of QRE, a user can derive IEQs of

a given query on a database and these queries can provide to the user

different characterizations of the tuples obtained from the first query.

IEQs can uncover hidden relationships among the data which could

help in better understand complex database. This could also provide

information useful to the user to create more specific queries.

• Data exploration & analysis: In this case we don’t have the input

query and QRE help us to have IEQs derived from the input database

and the input result. These queries will describe the possible charac-

teristics of the tuples in the result. This scenario could easily happen

for different reasons (change of the software, missing or inaccurate

documentation, etc.)

• Database security: An attacker could target with different queries

the same set of tuples and obtain sensitive information. With QRE,

having IEQs generated for historical queries, this could be prevented

because the IEQs will understand that the different queries are target-

ing the same tuples and that this could violate the privacy constraints.

In the Tran et Al paper they provided a QRE algorithm which is an

extension of the query by output (QBO) problem, which is a simplified

version of the QRE. With their algorithm they now provide the possibility

to apply the algorithm not knowing the original query Q, the IEQs derived

are more expressive and not only SPJ, finally they considered the fact that

the database D could change and so have multiple versions.
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In the paper they introduced theTALOS approach that resolve the QRE

algorithm. To create the IEQs we need to determine the three components

of a SPJ query:

• rel(Q’): relation in the from-clause;

• sel(Q’): conditions in the where-clause;

• proj(Q’): attributes in the select-clause;

The rel(Q’) component is a subgraph of the schema graph and this pro-

vide alternative characterizations if Q(D) which involve different join paths.

The critical part is the sel(Q’) component,because it has to be ”minimal”

(without too many condition) and insightful. In the paper they have han-

dled the sel(Q’) part as a classification problem, they have classified the

tuples in a subgraph as positive if they contribute to the query result or

negative if they don’t, and the sel(Q’) is obtained by the conditions that

selects the positive tuples. The proj(Q’) is obtained by the attributes in the

select-clause of the input query, or if the query is unknown, they are derived.

As classifier they have choosen decision trees, as a form of rule-based

classifier. We have explained how a decision tree works in Chapter 2, for

QRE they need to be adapted and they have faced two key challenges:

• At-least-one semantics: Multiple tuples could be projected to the

same tuple and so it is difficult to assign a correct class to each tuple.

There could be tuples labeled as negative that have the same projection

of positive tuples. We can have bound tuples or free tuples. First

ones must be negative or positive either they are in the output set or

they are the only tuple in some subset. The latter are contained in

subsets with other tuples and could be labeled positive or negative.

Here the classification is more flexible in the class label assignment, at

least one tuple from each subset must be labeled positive.

• Performance issues: how to efficiently generate candidates for rel(Q’)

and optimize the computation of the table required for the classifica-

tion step. TALOS exploits join indices.

With at-least-one semantics they had to study a new approach to calcu-

late the optimal node split given the presence of free tuples, how to compute

the optimal Gini index without enumerating all the possible labels of the

tuples. To this scope they have thought about five combinations on how to

consider the free tuples. Our thesis is based on the first one which maxi-

mize the number of positive tuples in both splits, so all the free tuples are

converted to positive one.
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Now that they have discussed how to classify the tuples, they introduced

the decision tree used in their project. They have chosen to adapt an exist-

ing decision tree classifier, SLIQ, which is an efficient decision tree classifier

designed for handling large training data. SLIQ creates an array called class

list which is associated to each tuple and saves the class label of the tuples.

This is composed by two columns: nid and cid. Nid identifies the leaf node

meanwhile cid identifies the class label of the tuple. In TALOS they ex-

tended this class list with another column, called sid, necessary to support

data classification with free tuples. This column provide an additional in-

formation necessary to determine the optimal Gini index. We can classify a

tuple in three ways:

• cid=0 and sid=0: the tuple is a negative one;

• cid=1 and sid=j: the tuple is a bound one;

• cid=-1 and sid=j: the tuple is a free one.

Here j indicates the subset to which the tuple belongs to.

Once they introduced the classification problem and how they solve it

with the decision tree classifier, they focused on how to rank the obtained

IEQs. They proposed three different methods to evaluates the IEQs, one

based on the principle of minimum description lenght and two on the F-

measure metrics:

• Minimum description length (MDL): the best model is the one

that minimizes the sum of the cost of describing the data given the

model and the cost of describing the model itself;

• F-measure: The first method follows the standard definition of F-

measure and a IEQ with an higher value is more precise and a better

query. The second one calculates the F-measure not on the actual

values but with some data probabilistic models.

Now we can see how they have handled the case when they didn’t know

the input query, which is the case we have treated in our thesis. They now

consider the problem of deriving IEQs given only D and the query result T.

In the pseudocode below we can see the approach of TALOS to solve this

problem. Before generating SPJ-IEQs, TALOS determines all the possible

schema attributes that covers each column in the query result T.
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Figure 3.3: Pseudocode to find IEQs from an unknown Query

They have also provided an optimized technique to find the covering

attributes, called domain indices. TALOS creates a three-column mapping

table that saves the value, in which schema it is contained and the frequency

of the value in that schema. TALOS performs then a join between the result

table and this created table and find if an attribute covers a column present

in the result table.

Lastly they provided a solution for handling multiple database versions,

which we will not explain as it isn’t part of our thesis.

This is the main idea behind QRE, how it works and what is the purpose

of this algorithm. Our thesis take advantage of these studies by handling

the case of the unknown input queries and by obtaining IEQs on which we

will apply some functions to generate the desired mapping. We will see in

the next chapter, Ch 4, how we will use QRE.

3.2.1 Decision Tree in Qre

Now we can explain how the decision trees are used in the QRE algorithm.

We use the decision tree in order to find the attribute on which to split our

data set. This algorithm requires a numerical data set and this is why we

have used encoding, explained previously in Chapter 2. The attributes that

has the best gini index are going to be split on a certain threshold. For

example, since in our case we will have many binary columns created by the

encoding, it will probably occur that an attribute will be split on a threshold

of 0.5 where on the left we will have all the tuples with the value of this
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attribute equals to 0 and on the right the ones with value equals to 1. If

after one split we have a partition that includes all the tuples we are looking

for, the algorithm return the attribute and we create a where clause for the

query that corresponds to this split. Instead, if the partitions have mixed

tuples (some correct and others that aren’t), we will recursively call the

function and find other attributes to split. Since we want different queries

to work with, we cannot split only on one attribute but we have modified

the QRE algorithm so that we create n (we have put n=3) different splits.

An example: if we are looking for George Clooney as an actor, we could

have a split on the attribute ”actors*George Clooney” (that is a binary

column obtained by the encoding) where the left partition will have all the

tuples with value zero in the column ”actors*George Clooney” and the right

one will have all the tuples with value zero. So in the where clause we will

have actors = George Clooney.
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Chapter 4

Methodology

In the previous chapters we have summarized all the theory and studies

necessary to better understand the problem we have addressed. In this

chapter we make a detailed analysis of the methodology followed by the

thesis. With the following graph and bullet list we introduce the main steps

of our method:

1. Choice of Source and Target dataset;

2. Execution of QRE on the Source dataset obtaining a set of IEQs;

3. Search for all the possible result tables which have a correspondence

in the Target;

4. Execution of QRE on the Target with every result table found in the

previous step which will give a set or more of IEQs;

5. Evaluation of the Where-clauses from each target set of IEQs compar-

ing them with the ones from the source;

6. Update of the Matrix according to the results;

7. Iteration of these steps until Matrix’s values are clear;

8. Creation of the Mapping;



Figure 4.1: Steps of the Methodology

All these steps will be explained in this chapter, focusing on all the

reasoning we have made and the choices we have taken.

30



4.1 Choice of Datasets and Example

Now I will introduce a use case that will be useful to explain all the steps

in the methodology. We applied our work on two datasets with movies’

domain. The source dataset, coming from rotten tomatoes, composed by

eleven attributes (so eleven columns) and 181075 rows. The target dataset,

taken from IMDB, composed by eight attributes (so eight columns) and

4346150 rows. (The construction of the datasets is explained in Chapter 5).

We have noticed that two attributes (”NewLanguage” and ”newCountry”)

of the source are not present in the target and so we will drop them so we

can reduce the number of columns that will created after the encoding. We

still have one extra attribute in the source but we will not drop it because

we have that ”year” and ”Release date” in the source are represented by the

same attribute ”startYear” only that the second one, ”Release date”, is not

only the year but it is the complete date so it should not be mapped to the

”startYear” attribute. We want to see if the mapping works correctly even

for attributes that are not to be mapped.

For performance issues we had to take subset of these dataset considering

only small parts composed by approximately one thousand or two thousand

tuples. For this example we will consider the subsets composed by all tuples

where Angelina Jolie appears as actor or director or writer and plus we have

added the tuples where Ethan Coen appears as director. Here are the two

datasets ready to be read by our function.

Figure 4.2: Subset from the Source
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Figure 4.3: Subset from the Target

As we can see from the figures above, we can spot the attributes that are

representing the same values but an algorithm cannot spot this relationships.

So we want to apply our method to obtain all the possible mappings between

the attributes in the two subsets. For example, at the end of our procedure

we will expect that the attribute ”Name” in source will be linked with the

attribute ”originalTitle” in the Target. We can also notice how small these

datasets are in confront with the original ones and that it isn’t necessary for

the subsets to have all the same tuples.

Prior to the execution of the QRE algorithm on the datasets we must

do some preprocessing step. We have described some steps in the previous

chapter when we have described how we have obtained the datasets. In

this chapter we will focus more on the lasts steps and how the data must

be structured. Our paper uses the QRE algorithm from 1 which is based

on the paper Query by Output (Tran et al.) described in the state of art

chapter. This algorithm does not support datasets with categorical data.

Since our studies will have categorical data, we had to implement an en-

coding function, as explained in Chapter 2, to transform our categorical

datasets in numerical datasets. Here we can see how our datasets change

after the encoding has been applied to them, I purposely left the dimensions

of the datasets in the picture so we can see how the number of columns has

increased after applying panda.get dummies(). We have modified the base

prefix ” ” with ”⋆” because some titles had in their names and we need

a specific character to be able to separate the new string and return to our

original values when we will create the where-clauses.

1https://github.com/drblallo/QueryByOutput
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Figure 4.4: Source Encoded

Figure 4.5: Target Encoded

Once we have encoded our datasets we can apply the QRE algorithm

seen in Chapter 3. We will first apply it on the Source dataset of which

we have the complete result with both the value of the attribute and the

name of the attribute (name of the column). Then we will perform the QRE

algorithm on the Target dataset but in this case we will not know the name

of the attribute but only the value.

Here we have nominated the result which is the output obtained from

an unknown query that we have has input in our QRE and from which we

want to derive the IEQs that could have created it. In the source case this

is a two rows dataset where the first row has the name of the attribute

(or attributes) that are returned and the second row the searched value (or

values). In the target case we will take only the second row, the values

of the attributes. From these values we will obtain the combination of all

attributes in the target that could represent these value and then we will

create our complete result with one row representing the attributes and the

other one with the values.
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In our example, we will look for the tuples were Angelina Jolie is the

actor so our result in input for the source will be like:

Figure 4.6: Example on the source

It is evident that this example is on a categorical attribute and so, as

we said before, since our QRE algorithm wants only numerical attribute we

have to encode also this example before we can perform the research. The

target example will be created looking at the values of the attributes, in

this case ”Angelina Jolie”. We will see later how we have obtained all the

possible examples in the target from one value.

4.2 Applying QRE on Source

Now that we have the subset 4.4 and the example 4.6 we can apply the QRE

algorithm. The first step will create two lists from the source subset, one

with all the name of the columns and one with all the values present in the

subset, the same step is done also for the example. So we will have four

lists, two with the names of the columns and two with all the values.

The next step will create a new table from which the algorithm will

generate the IEQs. This table is obtained by confronting the columns and

rows of the subset and the example. In this table it is added a column that

indicates the class of each row, the class is specified by values:

• -1: the row doesn’t project any row of the example (bound negative);

• 0: if the row project a row in the example but it is not the only one

(free);

• 1: if the row project a row in the example and it is the only one (bound

positive);

Now we have a numerical table with all the row classified positive, neg-

ative or free. We can call our decision tree to find the optimal splits. In our

algorithm we have adoperated the first case presented in the QRE algorithm

in Chapter 3, the one where all the free tuples are considered as positive.
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Initially the algorithm was built with the goal to find one optimal split

looking at the Gini index and splitting on the minimum and so it would

have returned a single tree that would have generated a single IEQ. For

our purpose we wanted to have more than one IEQ returned and so we have

modified the algorithm in a way that it will create three tree. Our algorithm

calculates the Gini index of every attribute in the table and return all the

Gini with all the possible split, then we select only the three best Gini

and iterate only on those splits creating indeed three tree. To do so we

have modified the function that returns the optimal split in such a way

that returned all the possible splits as generators. Then we iterate on these

generator and take only the three best one.

In the main function once we have called the decision tree function we

will see as result a generator on which once we iterate we obtain a list of three

(in our case we will have three tree). These tree will have as information

the attribute (saved as the number of column) on which they have done the

split, the threshold on which the attribute is been split and a number, -1

or 1, that indicates if the taken split will be relevant as a solution or if it

doesn’t have positive tuples in it.

Here an example of the trees generated from our use case on the source.

Figure 4.7: Example of the trees created from the source subset

As we can see we have three different trees that split on different at-

tributes. The first one is a simple three that splits on one attribute and the

left three doesn’t have positive tuples (-1 as value), instead the right tree

has positive tuples (1 as value). The other two are more complex, they have
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an initial split on an attribute but then they have another split on another

attribute on the left tree. We can see that the only feasible split (the only

split with 1 as value) is inside the second split so we have two condition to

be verified, the first and the second split, we have an ”AND” condition. If

instead we had also a 1 value in another split we would have obtained an

”OR” condition.

Now we have the trees and we can call for every tree the function that

create the IEQs from a tree. This function, tree to query(), take as input

the names of the attributes (the ones in the example table), the name of the

tables from which we are taking the tuples, the columns of the subset and

a tree. The query is formed like that:

• SELECT: the select-clause is created from the names of the attributes,

it simply return a string with ”SELECT” and the names of the at-

tributes selected;

• FROM: the from-clause simply return a string with ”FROM” and

the name of the tables from which the attributes are taken;

• WHERE: the where-clause recursively builds the logical formula given

the decision tree;

The first two clauses are quite easy and intuitive, we now focus on the

third one, explaining also how the logical operators are added in the pred-

icates of the where-clause. First of all it checks that the tree is not a leaf

node, if it is it checks if it is a positive one (if tree=1) or a a negative one. If

it is positive return True, else it return False. After this check, the algorithm

start to build the query. It is obvious that once we enter this function the

tree has at least one split and so a left tree and a right tree. The function

call recursively itself on the left tree and on the right one until the first check

return true or false, we have reached a leaf node. So we are building the

condition starting from the inner predicates. Once we have reached a leaf

node, if it is true we build the predicate. If ”*” is in the attribute name on

which we have the split, we have an encoded attribute (a categorical one)

and we have to reverse encode it to obtain the correct attribute name and

value. If we are in the left tree we reverse encode it with the condition ”!=”

instead in the right one we have the ”=” condition. On the left part of

the operator we put the name of the attribute, on the right one the value

of the attribute. Those are obtained by dividing the given attribute name,

the substring before ”*” is the original attribute name, the one after is the

value of the attribute. If we don’t have ”*” in the attribute name we have

a numerical attribute which was not encoded so we have that the original
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attribute is the one on which we have split and the threshold is the value of

the attribute on which we have split. Here the condition will be on the left

tree the attribute must be ”<=” of the value of the threshold and in the

right one it must be ”>” of the threshold.

This is how we obtain a predicate, but in a where clause we can have

more then one predicates that are bounded by the logical operators ”AND”

and ”OR”. In our algorithm we have an ”AND” when a subtree is not a leaf

node because in this subtree we will have a split with positive tuples and

so we will need at least two condition verified (the first split and the second

one) which are defined with an ”AND” operator. Instead, we have an ”OR”

when both the left subtree and right subtree have a positive split so we need

to consider one condition or the other one which is the definition of the

”OR” operator.Once the function end the recursion on itself we will have

the where-clause with the condition composed by one or more predicates.

We can see an example of IEQs obtained by the trees showed in 4.7, in

the picture below:

Figure 4.8: Example of the queries created from the source trees

Keeping in mind the generated tree we explain the IEQs obtained from

them. In this case we don’t have numerical attribute but only categorical

ones, we see for example that the first query is a condition with one predicate

since the tree has only one split as we noted previously. The positive split

was the right one so as condition we need to have ”=” then we have that the

attribute 198 must have been ”newActors*Angelina Jolie” so we have that

the original attribute was ”newActors” and the value was ”Angelina Jolie”

so here explained the predicate in the first query. Now we will explain the

second query just to see the case of ”AND” operator. We have an initial

split on attribute 167 that gives a right tree with only negative tuples, and

a left tree with positive tuples after another split on attribute 36. So we will

have that one condition will be the one given by the split on attribute 167,

”newCreator*Ethan Coen” and the other one the one given by the split on

attribute 36 ”Id*tt1809398”. We have two condition on the same branch

so we have the ”AND” operator. Since the first split is on the left tree

and the second split has the positive tuples on the left tree we will have

has predicate two ”!=”. The final condition will be the ”AND” operator
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between two predicates with the ”!=” condition, as we can see in 4.8.

Now we have obtained the IEQs from the source and we can move to the

target.

4.3 Search of possible example in the Target

With the source we have applied QRE knowing what attribute we were

looking for, now with the target we dont have this information. In fact, our

goal is to find all the possible correspondences in the target of the example

previously used for the source. So, before we can give the target dataset

and the example as input to the QRE we have to build the example. We

perform a complete scan of the target searching in every column the value

we are looking for. We save in a list the lists of attribute names that have

an occurrence of the value. Then we have to combine those lists with a

cartesian product to create all possible examples.

In our use case we have that the value we are looking for is ”Angelina

Jolie” and in our target subset it appears in three columns:

• Director: when Angelina Jolie appears in a tuple as director of a film;

• Writer: when Angelina Jolie appears as a writer of a film;

• Actor: when Angelina Jolie appears as an actor of a film.

We know that we are looking for the tuples where Angelina Jolie is the

actress but our method cannot know a priori what is thee correct column to

take, so once we have all the possible columns we create different examples

and for each one of them we call the process function.

Now we are in the same situation as for the source, we have a subset

(the target) and an example with an attribute name and a value. We must

encode these datasets, so we apply pd.get dummies, and then we give the

encoded target and the example as input to the QRE algorithm. The QRE

works as before, only this time will be called one time for every example we

have. At the end we will obtain three set of trees from which we will extract

respectively three set of IEQs. The IEQs obtain in our use case are:
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Figure 4.9: IEQs obtained from the target

We can notice how for every attribute we found before we have a different

set of IEQs.

4.4 Analisys of Where-clauses

Now that we have the lists of queries for every attribute, we need to compare

the where clauses with the queries of the source and find the set of IEQs

that are more similar. Specifically, when we will find the set of queries that

look like the queries from the source, we can hypothesize that the attribute

in the select clause of the target and of the source is representing the same

object. We have to save this result but we cannot conclude just with one

example that this is correct, we need more examples and a sum of all the

results to be able to have a more correct matching.

To do so we have built a NxM matrix where each column is a target

attribute and each row is a source attribute. Reasoning behind this matrix

explained in the next section.

Our goal is to increment the values in the matrix but before that, as we

have previously said, we have to find the set of queries (one set from the

source and one set from the target) on which perform these evaluations. The

function that we have created will take as input one where-clause from the

source and a list of where-clauses from the target. At this moment we have

a list with three queries from the source and a list of queries lists from the

target. We need to take these queries and split them on the where-clause

keeping only the part where we have the actual condition. To do so we use

the split() function that applied on a string and given a word on which to

split, separates the string and return a list with the left string and right

string. We save only the right one. For the source is quite simple, we run
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a for on the length of the list and for each query we use the split function.

For the target we need a double loop, one to loop on the lists inside the list

and the other one to loop on the queries inside each list. At the end we will

have the same lists but with only the conditions inside the where clauses

instead of the complete queries. Now we can explain our function and how

we have built the comparison between the where clause.

In our use case after these splits our list of queries will be like:

Figure 4.10: Where-clauses after the splits

As we said the function takes as input a condition of a source query and

one of the lists in the list of condition of the target. So, we have created a

double loop. An external for-loop that loops on the list of the target and an

internal for-loop that loops on the condition of the source. When we have

a condition (the where-clause) from the source and a list of conditions from

the target we have to look at the condition from the source before we can

call the function.

4.4.1 Logical Operators

The where-clause could present different predicates bounded with logical

operators as or and and, or it could also be without logical operators. If we

have a logical operator, we need to separate the predicates bounded by the

operator and at the end perform a summative calculation.

These are the possibilities:

• We have the OR operator; We need to split the condition on the

OR obtaining two separated strings that taken alone will represent a

predicate. Then we have to look at those strings, we could encounter

two possible cases. We have an AND or we dont have logical operators.

In the latter one we simply call our function that will give us the result

of the comparison that we will save in a list (resFirst). In the first one
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we will have to split on the AND operator and so, we will have other

two strings and for both we need to call the function. We save the

result of the comparison of both strings in a list (partialFirst) and

then we append the average in another list (resFirst). So at the end

we will have 2 result in the resFirst list, one for the constraint on the

right and one for the constraint on the left (the predicates obtained

by splitting on the OR). Since we are dealing with an OR that return

true if only one of the who condition is verified, we have decided to

consider as result the max value present in the resFirst. So, we have

appended in another list (totFirst) the max value present in resFirst.

• We have the ”AND” operator; here we must split on the ”AND” and

we will obtain two separated predicates which will be without logical

operators and ready to be passed to the function one by one. Since

the ”AND” operator is true only when both conditions are verified,

we have chosen to take the results given by the function saved in a

list(partialFirst), make the average and save it in another list (tot-

First).

• We don’t have logical operators; in this case we don’t have to split the

string before passing to the function. When we call the function we

will obtain directly the result we want and save it in (totFirst)

This was the description of all the possible cases of how the conditions in

the where clause of the source query could appear. Now we have to look at

how every predicate is handled by the function, since we could have different

cases.

For example, referring to 4.10, we can see that in the source we have

the first where-clause which is already written as a simple predicate and

we can call the function directly passing as input this predicate. Instead,

in the other two where-clauses we have and ”AND” operator so we need

to separate the condition on the ”AND” and we will obtain two different

predicates for each where-clause on which we have to call the function.

4.4.2 Studying the Predicates

Once we called the function, we can start to look at the mathematical sym-

bols that appears in the predicate of the source string. Here we have to

explain in details every case because depending on each symbol we have

to take different path in the code. One thing should be clear by now, we

have called the function with the goal to find the max value of comparison

between the source predicate and the three conditions present in the list of
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where-clauses of the target. So, in the target we could still have conditions

with one or more predicates and we will have to split them as we have done

with the source. Then we can confront the source predicate with a single

predicate and so on. I will not discuss this in detail since it is pretty sim-

ilar with the reasoning done for the source. There is only one thing that

is different and it is how we handle the result of an ”AND” operator. In

the source we have decided to take the average of the results obtained by

the two predicates bounded with the ”AND” operator because we thought

that both predicates should have counted in the final result. Instead, now

we are comparing a predicate from the source with a condition of the tar-

get. This condition could have an ”AND” and so we will split it into two

predicates. So, now we have one predicate from the source that compares

with two predicates from one condition of the target. It is logical to think

that the source one could not be equal or similar at the same time to the

two target predicates. So, we have decided to take as result only the max

result we get from the two comparison and not the average.

We have made an assumption when we have a categorical attribute, we

can only compare predicates with the same operator. For instance, if we

have ”!=” in the source one we need to have != in the target predicate.

We have four possibilities:

• We have the != symbol. We split the first string on the mathematical

symbol and then we create the loop described before. When we have

the predicates of the target, we check that they have the ”!=” symbol

and in that case we call the fuzz.ratio() function passing as input the

source predicate and the target predicate.

• We have the = symbol. We create an if to control that ”<” is not

in the predicate and then split on the equal operator. Create the

predicates from the target list and then before we can call the fuzz

ratio we check that the target predicate has the ”=” symbol and that

it does not have ”!=” or ”<”. Call the fuzz ratio function and return

the result in the list.

• We have the <= symbol. This is the else case from the previous if, we

have an equal but also the < symbol. In this case we are dealing with

a numerical attribute in the source string and we are going to look

for a numerical attribute also in the target string or we will discard

the comparison. As before we split on the ”=” symbol and we also

eliminate the black space so we will have only the integer in the string.

Then we obtain the predicates from the target as before and once we
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got the predicates we check that they are a numerical attribute looking

for a < or > symbol. If we don’t have a numerical attribute we return

as value of the comparison a zero, else, we will have different interval

and we will have to make some evaluations. Since in the source we

had <, we have assumed that if also in the target we have < we can

return 100 as result of the comparison since one interval contains the

other. If in the target we have >, we need to look at the values of the

integers. If the source value is lower then the target value we do not

have an intersection of the interval so we return 0, else, we have an

interval and we return 100 (further studies on what to return should

be made)

• We have the > symbol. We have a numerical attribute in the source

target and as before we will compare it only with another numerical

attribute taken from the target. The only difference from the previous

case is how we will have the intervals between the values. If we have

> also in the target, as before one interval contains the other so we

return 100. Else, we will have that if the source value is lower then

the target one we have an intersection and we return 100, or we will

return zero when there is no intersection.

4.4.3 Evaluation of Results

Once we have called the function and studied all the possible comparison

between the queries we have as result a list of lists composed by some val-

ues. One list with these values is representing the result of the comparison

between the source set of queries and a set of queries from the target. So,

we need to take the list with the max values between all the lists we have

obtained. This list will correspond to the set of queries from the target that

is more related to the ones of the source and we could conclude that the

attribute in the select clause between the two set of queries is matching. To

find the list with the higher values we initially sorted all the value in the lists.

Then with a while we will look at which lists has the higher values. After

this while we will know which set of queries is the one to take to generate

the mapping and we can know increment our matrix.

Here we can see some of these steps applied to our use case. We were at

the point where we have obtained the where-clauses of all the IEQs, 4.10.

We are expecting that the IEQs from the source which have the attribute

”newActors” in the SELECT-clause will be more similar to the IEQs from

the target that have ”Actor” as SELECT-clause. The first step will be to

compare the IEQs of the source with the first set of IEQs of the target, the
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ones that select on the ”Director”. Then it will compare with the ones with

”Writer” as SELECT attribute and lastly with the ones that have ”Actor”

as SELECT attribute. In our use case the result of these comparison will

be equal to:

Figure 4.11: Results from the comparison of the where-clauses

We can see that the third one has two where-clauses that compare with

a result of 100%, instead in the other ones we have only one where-clause

that does so. This was what we were expecting since both set of IEQs, the

one from the source and the one from the target, want to select an actor.

Before we introduce the matrix, we take a look again at 4.10 and with this

previous step we can also understand which where-clauses generated those

results. We have that the first where-clause of the source with the first one

of the target search for an attribute with the value ”Angelina Jolie”, so they

both looked for the same value. Then we have that the third where-clause

of the source is returned a 100% value from the result. We can see that it

is given with the comparison with the second where-clause of the target. In

both clauses we have an ”AND” operator so we need to split the conditions

in two different predicates. Now we have one predicate from the source,

for example ”newCreator != Ethan Coen”, that will compare with the two

predicates of the target and will return the best comparison. We can notice

that one of these predicates has the ”!=” operator and search for the same

value of the source so here we have the 100% comparison result. We can

notice how the attribute on which ”!=” is applied is not the same in the

source and in the target, but in this step we are not mapping the attributes

so we are not concluding right away that ”newDirector” is mapped with

”Writer” which would be wrong. This is the reason why we have built the

matrix, we cannot base our mapping on only one example because we can

obtain wrong results. Now we will see how we have created the matrix and

how it works.
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4.5 Creation of the Mapping

In the previous section we have introduced the concept of the matrix without

going in further details. Here we will have a closer look and explain our final

results. What is the reasoning behind this matrix?

We have two datasets with N and M attributes and we want to find the

correspondences between these attributes to create our mapping. So, we

have built a NxM matrix with the target attributes on the columns and the

source attributes on the rows. This matrix is saved in a csv file and it is

built external to the code. It is initialized to all values equals to zero. This

is how the matrix in our use case would look like:

Figure 4.12: The initialized Matrix

We want to increment these values when we find a matching between

the attributes. When we execute our code, at the end we will obtain an in-

cremented matrix where some values has been incremented according at the

result of the comparison of the where clauses. Since the matrix is external

to the code, when we execute our code ten times, we will obtain a matrix

incremented ten times without losing our previous results. So, at the end

we can run a loop on the columns (or on the rows) and looking at the higher

value in each column we can return the mapping between the two datasets.

4.5.1 Incrementing the Matrix

How do we increment this matrix? At this point we have decided which

set of queries from the target need to be compared with the one of the
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source so we will discard the others and consider only this one. We can

initially suppose that the attribute in the select clauses should represent the

same attribute in both datasets so we can do an increment on the value

of the matrix corresponding to those two attributes. We select the value

where the row corresponds to the source attribute and where the column

corresponds to the target attribute and we increment it by a certain amount

stating that those two attributes should be equivalent. We did not stop

only on the attributes in the select clauses but we have made a study also

on the attributes in the where clauses of those queries. As we did before,

we need to confront not the whole conditions in the where clauses but only

the predicates in them. So, we built our code similar at when we have

analyzed the where clauses in order to compare only the predicates. What

we have done different is that when we obtain our result of the comparison

we do not save it in a list to be returned, but we call another function,

increaseMatrix, that will increment the matrix by a given amount. When

we split the predicates we have also saved in another string the value of the

attribute and not only the value of the attribute. This function requires as

input the name of the attribute in the source predicate, the name of the

attribute in the target predicate and the result of the comparison between

the values of those attributes. Then with one for loop on the columns and

one on the rows of the matrix we search the corresponding column and row

for those attributes. We then increment the value in this specific column and

row by the percentage of the result obtained by the previous comparison.

Update the csv file and we have our incremented matrix.

In our use case, after the results obtain in the previous sections, we can

build our matrix and obtain this incremented matrix:

Figure 4.13: Example of the increased Matrix on our use case
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In this picture, 4.13, we can notice that some attributes have received

some increments, in particular the value obtained by the intersection of

attributes ”newActors” and ”Actor” is sensing that those two attributes

represents the same attribute which is true in our case. We can also notice

that not all attributes are precisely mapped and in particular we have that

the attribute ”Writer” from the target has the same value both for ”newDi-

rector” and ”newCreator”. This is the reason why we need more then one

single example to create a correct mapping. Here we can see an incremented

matrix obtained after the run of five different examples.

Figure 4.14: Example of increased Matrix after 5 execution

In this last matrix we have a more defined mapping where most of the

attributes are mapped correctly and we don’t have doubtful cases. From

this matrix we could extract a partially correct mapping, we are still missing

some attributes for which we will need to run more examples.

4.5.2 Mapping from the Matrix

How do we extract the correct mappings from the matrix? We need to create

a function that reads all the rows and columns of the matrix and understand

which is the maximum value possible for an attribute both from the source

and the target. Once we have created this function we can evaluate our

mapping. Before we can do that we created a numpy matrix from the csv

file containing our incremented matrix. Once we have this numpy matrix

we start with a for-loop on the rows then we have another for-loop on the

columns where we checks for each row which is the maximum value. Once

we have scanned all the values in the row we check that the found maximum

is also the maximum value in the respective column, if it is we link the
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index of the row with the index of the column saving in a list the index of

the column at the respective position of the current row. We repeat this

process until the first for-loop comes to an end. Once we have ended our

for-loop we can evaluate our mapping. We have the created list with all the

linked attributes and we can compare it with a pre-made list were we have

saved the expected results.

Here we can see the results obtained by calculating the mapping on a

matrix generated after different runs of the method on different examples:

Figure 4.15: Final increased Matrix

We can clearly see from the picture the generated mappings, how the

target attributes are linked with the ones from the source. In this matrix

we can see for example that the attribute ”Id” of the target must be linked

with the attribute ”tconst” from the source which is the desired link since

both attribute represent the code of the film.
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As said before I’ve implemented an automatic way to get all the links

and we can notice in the picture below that the obtained results reflect the

expected results:

Figure 4.16: Result of the mapping

We can see that the two arrays are equal so we have obtained a correct

mapping. The value -1 is referring to the attribute ”Release Date” which,

as we said before in the first section, should not be mapped to any source

attribute and also as we see in 4.15 it doesn’t have values that provide a

mapping with any attribute. So, lastly, our method provided a correct map-

ping that needs different run on different example in order to be trustworthy

and complete.
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Chapter 5

Datasets and Experiments

5.1 Creation of Datasets

In this chapter we will explain where we have taken our datasets and how

we have modified them to be suitable for our thesis. This thesis work needed

two datasets that had the same domain so that they had tuples in common

in order to be able to create a mapping between the attributes. For an

external user the mapping between the attributes could have been easily

done, but for an unsupervised algorithm the mapping is trivial not knowing

a priori the meaning of the names of the attributes. We have searched for

two datasets with those prerequisites, we have found the rotten tomatoes

dataset and the imdb dataset. In the next pages we explain how we have

obtained and modelled them.

5.1.1 Source Dataset

I have found the source dataset in this repository 1, the rotten tomatoes.csv

file. Before we could use this dataset, we had to make some adjustments.

First we have eliminated some attributes (some columns), which were not

of our interest. Then we have eliminated the rows with nan values which

could have given some problems later. After these first steps we have no-

ticed that some attributes had more then one value in a single tuple. For

example: a film is described by a unique tuple and so it could have more

then one director in the attribute column director or/and more then one

actor in the attribute column actor. For our scope we needed to separate

these values and have only one value for each attribute. There is a func-

tion, df.explode(nameOfColumn), that given a column which has lists

1https://github.com/AhmedSalahBasha/SchemaMatching



as values, explodes those lists in different rows. It transform each element

of a list-like to a row, replicating index values.

As we can see, this function requires the values of the columns to be in a

list so, since our values were a string, we had to bring those values in a list.

To do so we have used a map function with lambda that given the column

transforms the string in a list splitting the value of the string on the , using

the string.split(,) function. We have saved the lists in new columns. Here

we can see how we have applied this step to a mini example (This is only

an example were we have created only a new column for attribute ”Actors”

and we have also dropped some columns of the dataset to render more clear

the example):

Figure 5.1: Subset of Rotten Tomatoes dataset

Figure 5.2: Creation of new column with lists instead of strings

As we can see we had duplicated columns, the ones with the strings and

the ones with the lists, so we dropped the first ones which will not be useful

to us. Once we dropped those columns we used the explode function on the

new columns and then we used the function df.reset index(drop=True)

to have our dataframe with correct indexes. We can notice that a film, like

”Psycho”, had one tuple with the attribute ”Actors” that had three actors

in one string. Now we have three tuples for ”Psycho”, one for each actor.

This is the final step and we have obtained the source dataset ready

to be passed to the our algorithm. We have saved the final dataset in the

sourceComplete.csv file so that we did not have to repeat all the steps to

create the dataset all the time. This is how the final dataset look like:
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Figure 5.3: Explode function applied to the created column

Figure 5.4: Source Dataset

5.1.2 Target Dataset

In the source dataset we had that the dataset was already given as a unique

table, instead for the target dataset we have found different dataset linked

between each other with primary and foreign keys. These datasets are

from the IMDB dataset. At this first link there is a description of each

dataset: 2 Each dataset is contained in a gzipped, tab-separated-values

(TSV) formatted file in the UTF-8 character set. The first line in each

file contains headers that describe what is in each column. A \N is used

to denote that a particular field is missing or null for that title/name. At

this second link 3 there are the downloadable files with the datasets. For

our purpose we have created a unique dataset merging these datasets: ba-

sics.tsv,crew.tsv,name.tsv,principals.tsv. Now i will detail better how we

2https://www.imdb.com/interfaces/
3https://datasets.imdbws.com/
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have done it.

Firstly we imported the basic.tsv dataset and we selected the tuples

where ”titleType”=movie. After this we dropped some columns that we will

not need, eliminates the \N values and then we have used the df.apply()

function combined with the lambda and pd.to numeric functions to be sure

that the column ”startYear” has all int values (some years were saved as

string and not as integer).

Figure 5.5: Basic.csv dataset

Figure 5.6: Preliminaries steps for the target Dataset

After this, we can see in 5.5 that fro the ”genre” column we have the

same problem faced in the source dataset, this attribute has more then one

value for some tuples, so we will have to use the explode function and before

that create the column with the lists obtained from the split string. Before

using the explode function that will produce a high number of rows for the

dataset, we will do the merge with the other necessary datasets and then

explode at the end of all the merges.

As said before now we have to merge the basic.tsv dataset with the

other ones. We start with the crew.tsv dataset and we merge them using

the pd.merge function used like this:

The merge perform a join on a specified column of two datasets (the

”tconst” column in our case), the result will be a dataset which will have

all the columns present in both the dataset and the tuples created from the

merge with the ”tconst” value.

We then eliminate the rows with \N values and as for the ”genre” at-

tribute we create new columns for ”director” and ”writer”, creating columns

with lists obtained from the split string. Now we can explode all the columns

so we obtain separated values for director and writer that will be fundamen-
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Figure 5.7: Merge of crew with basic

tal later.

As we can see in 5.7, we don’t have the actual names of the directors or

actors but we have their codes. We need to substitute these codes with the

real names. We can find the names associated to the code in the name.tsv

column, so with two consecutive merges (one for director and one for writer)

we obtain a dataset that has the movies associated with the names of the

directors and writers.

Figure 5.8: Name dataset and first merge

In 5.8 we can see how the name.tsv dataset, we have already dropped

some columns which were not relevant. Then we can see the first merge

between our current dataset and the name dataset. We have created a new

column called ”Director” that instead of the codes has the name of the

directors. We still have to change the ”Writer” column which is done with

a new merge, same as the one just seen.

Now in our dataset we have the films with the directors and writers
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but without the actors which are saved in another dataset, principals.tsv.

This dataset has all the person that has worked in a film, so not only actors

but all the cast members. So we have initially selected only the tuples that

were referring to actors and dropped some columns which were not relevant.

Now we have a dataset were the tuples have one code of a film and an actor

who worked for that film. Then, as before, the actors are referred with their

codes and not with their names. Thus, we have performed a merge between

principals and names to obtain a dataset with the film and the name of

the actor. Now that we have obtain this dataset we can merge it with our

previous dataset to join the tuples with the film, the director and the writer

with the tuples with the actors. Our final dataset will be like that:

Figure 5.9: Target dataset after the merges

5.2 Experiments

In this chapter we will show the methodology applied to other examples.

We have to select two subsets, one from the source and one from the tar-

get, in order to have smaller datasets to give as input to the QRE algo-

rithm. Since in the methodology we have introduced an example where in

the SELECT-clause we had one attribute, here we will see two examples

with two attributes in the SELECT-clause.

5.2.1 First Example

For this example we create the source and the target subsets selecting all the

tuples where we have in the attribute actor (”newActors” in the source and

Actor in the target) the values ”George Clooney” or ”Matt Damon”. Our
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result table, what we have obtained as a result from the unknown query, is

the following one:

Figure 5.10: Result table given as input

We can see that we have two attributes in this table, so we had two

attributes in the SELECT-clause: ”Year” and ”newCreator”. Now we have

to apply our methodology to the source and the target with the given result

table. The first step will be to find the IEQs from the source. So we will

need to encode the source and the result table, then apply QRE to find

the positive tuple in the source given the tuples in the result table which

will return the IEQs. Here we can see the IEQs obtained from the QRE

algorithm:

Figure 5.11: IEQs generated from the source

Now that we have the IEQs from the source, we need to find the ones from

the target with all the possible combinations of attributes in the SELECT-

clause that covers the attribute’s values in the result table. Here we have

two attribute’s values so we could have different numbers of combinations.

In our case we are looking for the attributes that covers the values: ”2004”

and ”Tony Gilroy”. In the target we will find out that ”2004” is covered only

by the attribute’s column ”startYear”, instead ”Tony Gilroy” is covered by

two attribute’s columns which are ”Director” and ”Writer”. So we will have

two result tables with the combination of the first column with the other

two. We will need to call our process to find the IEQs one time for each

possible combination. Here we can see the IEQs generated from the target

with the different attributes in the SELECT-clauses:

57



Figure 5.12: IEQs generated from the target

In picture 5.12 we have the sets of IEQs obtained from the target, one

for each generated result table. We can see that we have a particular case

generated from the first result table, the one with Director as attribute.

We were looking in the target subset for the tuples with ”startYear”=2004

and ”Director”=”Tony Gilroy” but there aren’t tuples that satisfy these

conditions so it isn’t possible to find IEQs for such case. We have only one

set of IEQs obtained from the second result table. Here we can see also the

decision tree that generates the queries:

Figure 5.13: Decision trees from the target
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Once we have the IEQs from the source and from the target we have

to compare them and find which one are more similar. We know that we

are looking for the tuples were ”Tony Gilroy” appears as a Writer so we

know that the comparison between the target queries and the source queries

should return as most similar IEQs the set of queries that have as SELECT

attribute ”Writer”. In our case we only have one set of queries so the

comparison will of course return it as most similar. This was also the set of

queries we were looking for, with ”Writer” as attribute.

Finally, we can increase the values in the matrix. Starting from an

initialized matrix we obtain the updated matrix in the picture below:

Figure 5.14: Increased Matrix from the experiment

We can notice an initial mapping between some attributes:

• Id −→ tconst

• Name −→ originalTitle

• Year −→ startyear

• newCreator −→ Writer

As we said in Chapter 4 this is not sufficient to conclude that those

attributes are correctly mapped, we will need to run different examples to

generate a truthful matrix.

The program completed in 3.449397087097168 seconds since the queries

weren’t to much complex and also in the target we only had one set of

IEQs to retrieve. We have also compared the compile time using first panda

get dummies() and then one hot encoding. In ten runs with get dummies()

we have obtained an average compile time equal to 3.405. Instead, with one
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hot encoding we have obtained an average compile time of 8.929. This could

be only a case but we can notice how get dummies() is more optimal than

one hot encoding in this example.

5.2.2 Second Example

For this example we are going to use the same subsets used in the Method-

ology chapter, ch 4, the subsets with Angelina Jolie and Ethan Coen. Also

this time we will have two attributes in the SELECT-clause but instead of

obtaining only one set of IEQs we will have two set of IEQs and so we will

be able to look at the comparison between the IEQs. As result table we

have:

Figure 5.15: Result table of second experiment

So we are looking for the tuples where the attribute ”Year” has value

2014 and the tuples where the attribute ”newDirector” is equal to ”Angelina

Jolie”. We call our function to retrieve the IEQs from the source and we

obtain:

Figure 5.16: IEQs from the source in the second experiment

We can now start to generates the possible result tables for the target

looking for the covering attribute’s column for the values in the original

result table. We have that the value ”2014” is covered by the column ”star-

tYear”, instead the attribute ”Angelina Jolie” is covered by three columns

(”Director”, ”Writer”, ”Actor”) so we will have three different result ta-

ble generated by the combination of the ”startYear” column with the other

three. Once we have the three result tables, we can call our function passing
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the target subset and one of the result table. We will have to do this step

three times, one for each result table. Every time we will obtain a set of

IEQs, if founded. Here we can see the IEQs obtained:

Figure 5.17: IEQs from the target in the second experiment

We can notice how the second combination of attributes in the SELECT-

clause didn’t return any tuples, it means that in the subset there aren’t

tuples where the attribute ”startYear” is equal to ”2014” and where the

attribute ”Writer” is equal to ”Angelina Jolie”. Unlike the first example

we still have two set of IEQs from two different SELECT-clause so we will

need to evaluate the WHERE-clause comparing them with the one from the

IEQs of the source. We are expecting that the first set of IEQs, the ones

that select on the ”Director” attribute, will be more similar to the ones of

the source. Let’s see what we got as result of the comparison:

Figure 5.18: Result of the comparison in the second experiment

It is clear from the results that the first sets of WHERE-clause is more

similar to the ones of the source so we select these IEQs. This was what
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we were expecting so now we have to increment the values of the attributes

in the matrix to obtain a partial mapping. Here we have the incremented

matrix:

Figure 5.19: Incremented matrix from the second experiment

Since the WHERE-clauses of the queries both from the target and from

the source where simple, with just a few predicates, we have a poor mapping

which is not very relevant. We can only hypothesize that the two attributes

in the SELECT-clause of the target should map with the two attributes

of the source SELECT-clause, the other mappings doesn’t have important

values to define a secure mapping.

The program completed in 3.9043145179748535 seconds, which is prob-

ably a little bit higher of before because we had an extra set of IEQs. Still

a short time given the simplicity of the WHERE-clauses.
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Chapter 6

Conclusions and Future

Works

6.1 Conclusions

In this thesis we addressed the problem of generating a schema mapping

from two different data schemas in the same domain with the help of the

QRE algorithm, the domain we focalized on was the one of movies. Our

work is able to find a mapping not only for the domain we used but also for

different domains, given two schemas it can provide the mapping. We have

realized a framework that firstly uses a modified QRE algorithm that allows

to use also categorical datasets and then, with a function that we created,

understands the relationships between the generated IEQs obtained from the

QRE and creates the mapping between the schemas. In Chapter 4 we have

seen how our framework works and how we have used the string encoding

functions and the string comparison functions.

This framework propose an innovative solution in this field since the

QRE algorithm was never used, to the best of our knowledge, to implement

a schema mapping method. We have exploited its functionality to obtain

the IEQs and then implemented the functions to generate the mapping.

Furthermore our thesis provide a complete automatic method to obtain a

schema mapping, it requires as input only the two datasets and the result

table obtained by the unknown query. The user doesn’t have to provide

any further input which is an important progress with respect to the papers

shown in Chapter 3 which needed some user input. With our matrix we

have also provided a visual representation of the mapping which clarifies it

also to unskilled user.



6.2 Future Works

We have seen that the big data enviroment is constantly changing and grow-

ing and so there will be an increasing need for schema mapping methods

which allow to unify different schemas with the same domain. The it tech-

nologies are expected to keep expanding and so the use of database in dif-

ferent fields. This will bring the need to use schema mapping methods on

databases that have a lot of tables with possibly different relationships.

In our studies we have narrowed the problem to the use of two datasets

ready to be used by our framework. We have also made some choices nec-

essary to obtain the results but on which we could have probably made a

better reasoning. Here we can focalize on some aspects on which we could

work in the future to improve our framework:

• Instead of having as input two csv file representing the source and the

target datasets, we could have implemented a function that could have

taken as input two db file. Initially we have taken as source examples

a db with seven different tables and looking at the primary key and

foreign key we were able to create different merges depending on the

attributes that covered the ones in the result table. We changed this

approach because we didn’t have a target db with the same domain on

which we could have applied the schema mapping method. So in the

future we could add at our framework the possibility to take as input

csv file or db file and then create different cases according to the type

of input. Even with a db file we will need to read the tables, perform

the necessary merge and finally obtain the csv file needed by the QRE

algorithm.

• Further studies could be made on the evaluation of the where clauses.

Here we used the fuzzy string function to compare the attribute’s

values, we could have used different functions, the ones presented in

Chapter 2, and we could have also evaluated the comparison between

all the predicate (the attribute’s name and the attribute’s value) and

not only the attribute’s value. In addition to that we could have also

evaluated differently the results obtained by the similarity between

numerical values. In the different possible cases presented in Chapter

4 we had a large number of different intervals and we could find a

possible better way to evaluate those intervals also looking at the type

of number we have, for example if they are similar in number of digits

or not.

• As we saw in Chapter 2 we have different functions that perform string
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encoding. We have used pd.get dummies() but we could have used

something else, further studies could prove that a different function

may bring some optimization or can create smaller datasets which

would be more easier to be used by the QRE algorithm.

• The QRE algorithm on which we have implemented our framework

used as decision tree the one from sklearn, which generated the split by

looking at the Gini index values. There are different types of decision

trees that work differently, it is possible that another type of decision

tree could be more efficient for our work since we are dealing with

possibly very large datasets.
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