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Abstract

The population of debris with High Area-To-Mass ratio (HAMR) is thought to have ori-
gins in the Geostationary Earth Orbit (GEO) region, proven by optical observations of
space debris using a 1 m Ritchey-Chrétien telescope on Tenerife (Canary Islands). Many
of these objects, with apparent area-to-mass ratios of up to 30 m2/kg are not yet charac-
terise. The orbits of HAMR objects are highly perturbed due to the combined effect of
Solar Radiation Pressure (SRP), anomalies of the Earth gravitational field, and third-body
gravitational interactions induced by the Sun and the Moon. Space situational awareness
requires a comprehensive comprehension of their nature, orbital evolution, and possible
origin. Considering both short- and long-period terms, the study of the orbital evolution
of HAMR objects necessitates numerical integration of a precise set of differential equa-
tions and the investigation of a wide range of possible parameter values. However, such
computations become prohibitively expensive when applied continuously over decades, as
is required for HAMR debris.
Consequently, it is useful to investigate the equations that regulate the long-term behavior
of orbits; such equations can be derived using the averaging method. Recent research has
shown that a model based on singly-averaged equations of motion can be used to char-
acterize the dynamics caused by the planetary oblateness in conjunction with the solar
radiation pressure. However, this hypothesis, is valid within a certain range of altitude,
inclination, eccentricity and for extremely high value of AMR ratio. The main scope
of this thesis is to extend the state-of-art modeling by including also the effect of Sun
gravitational perturbation on the dynamical evolution. The coupled perturbations affect
the evolution of the eccentricity, inclination and orientation of the orbit with respect to
the Sun–Earth line. Resonant interactions lead to non-trivial orbital evolution that can
be exploited in mission design, however, the dynamics in the vicinity of each resonance
can be analytically described by an extended resonant model that provides the location
of the central and hyperbolic invariant manifolds which drive the phase space evolution.
Once the new Hamiltonian model has been derived exploiting the same resonant term of
the third-body perturbation of the Sun and the SRP, the classical tools of the dynamical
systems theory can be applied to perform a complete dynamical analysis of the system.



vi | Abstract

At the end, exploiting the peculiar double-lobe phase space portrait induced by the grav-
itational perturbation of the Sun, we have derived conditions for resonance trapping of
space debris as well as for spacecraft de-orbiting design.

Keywords: High Area-To-Mass ratio; Solar Radiation Pressure; Third-body pertur-
bation; solar sails; Andoyer model;
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Sommario

I detriti spaziali aventi un elevato rapporto tra area e massa (HAMR) sono ritenuti aver
origine nella regione delle orbite terrestri geostrazionarie (GEO), dimostrato da osser-
vazioni ottiche utilizzando un telescopio Ritchey-Chrétien di 1 m presso Tenerife (Isole
Canarie). Molti di questi oggetti aventi rapporti area-massa fino a 30 m2/kg non sono
caratterizzati. Le orbite degli oggetti con HAMR sono fortemente perturbate dall’effetto
combinato della pressione della radiazione solare (SRP), delle anomalie del campo grav-
itazionale della Terra e delle interazioni gravitazionali del terzo corpo indotte dal Sole e
dalla Luna. Una solida comprensione della loro natura, evoluzione orbitale e possibile
origine è fondamentale per la comprensione della loro distribuzione dello spazio. Lo stu-
dio dell’evoluzione orbitale degli oggetti aventi HAMR, tenendo conto sia dei termini di
breve periodo che di lungo periodo, richiede una precisa integrazione numerica di sistemi
di equazioni differenziali, e l’indagine di una vasta gamma di possibili valori dei parametri
fisici e orbitali. Tuttavia, tali calcoli diventano computazionalmente costosi quando ven-
gono applicati continuamente per un periodo di diversi decenni, come è necessario nel
caso di detriti con HAMR.
E’ pertanto ragionevole indagare le equazioni che governano il comportamento a lungo
termine delle orbite; tali equazioni possono essere derivate dal metodo della mediazione
dell’anomalia media dell’oggetto. Recenti lavori hanno dimostrato che la dinamica causata
dall’ oblateness terrestre accoppiata con la pressione della radiazione solare può essere de-
scritta attraverso un modello basato sulla mediazione. Tuttavia, questa ipotesi è valida en-
tro un certo intervallo di altitudine, inclinazione, eccentricità e per un valore estremamente
alto del rapporto AMR. L’ambito principale di questa tesi è quello di estendere la model-
lazione includendo l’effetto della perturbazione gravitazionale del Sole sull’evoluzione della
dinamica orbitale. Le perturbazioni accoppiate influenzano l’evoluzione dell’eccentricità,
dell’inclinazione e dell’orientamento dell’orbita rispetto all’asse Sole-Terra. Le interazioni
risonanti portano ad un’evoluzione orbitale non triviale che può essere sfruttata nella pro-
gettazione della missione, tuttavia, la dinamica nelle vicinanze di ciascuna risonanza può
essere descritta analiticamente da un modello a singola risonanza esteso che fornisce la po-
sizione dei punti di equilibrio e delle orbite che guidano l’evoluzione dello spazio delle fasi.



Una volta che il nuovo modello di Hamilton è stato derivato sfruttando lo stesso termine
di risonanza della perturbazione del terzo corpo del Sole e del SRP, gli strumenti classici
della teoria dei sistemi dinamici possono essere applicati per eseguire un’analisi dinamica
completa del sistema. Alla fine, sfruttando il peculiare spazio delle fasi a fase doppia
indotto dalla perturbazione gravitazionale del Sole, abbiamo derivato le condizioni per la
cattura in risonanza dei detriti spaziali così come per la progettazione del de-orbiting di
satelliti fuori uso.

Parole chiave: High Area-To-Mass ratio; pressione della radiazione solare; Perturbazione
del terzo corpo; vele solari; modello di Andoyer;
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1| Introduction

The population of debris with High Area Mass Ratio (HAMR) is thought to have origins
in the Geostationary Earth Orbit (GEO) region (formulated by Liou and Weaver [1],
Anselmo and Pardini [2], Valk et al. [3], Lemaitre et al. [4], Rosengren and Scheeres [5]),
proven by optical observations of space debris using a 1 m Ritchey-Chrétien telescope
on Tenerife (Canary Islands, by Schildknecht et al. [6]). Many of these objects, with
apparent Area Mass Ratios (AMR) of up to 30 m2/kg are not yet characterised. Paint
flakes and Multi-Layer Insulator (MLI) fragments were identified as potential sources
for much larger populations of HAMR debris (see Flegel [7], Drolshagen et al. [8]).
The orbits of HAMR objects are highly perturbed due to the combined effect of Solar
Radiation Pressure (SRP), anomalies of the Earth gravitational field, and third-body
gravitational interactions induced by the Sun and the Moon (see Anselmo and Pardini
[2]). Knowing their nature, orbital evolution, and possible origin is critical for space
situational awareness because it allows to accurately foreseen their spatial evolution in
time and, if possible, find regions of the space where they tend to accumulate due to the
interaction between the aforementioned perturbations. The study of the orbital evolution
of HAMR objects, taking into account both short-period and long-period terms, requires
numerical integration of the precise set of differential equations, and the investigation of
a broad range of possible parameter values. However, such computations become very
costly when continuously applied over a period of several decades, as is necessary in the
case of HAMR debris.
Consequently, it is useful to investigate the equations that regulate the long-term behavior
of orbits; such equations can be derived using the averaging method (McClain and Vallado
[9], Battin [10], Curtis [11]). This method consists in averaging the keplerian elements
over a fast angle (i.e., true anomaly) in order to eliminate fast dynamics and make the
numerical integration faster.
Recent works (Krivov and Getino [12], Lucking et al. [13], Alessi et al. [14], Gkolias et al.
[15]) demonstrated that the dynamics caused by the planetary oblateness coupled with
the solar radiation pressure can be described through a model based on singly-averaged
equations of motion. However, this hypothesis, as stated in Gkolias et al. [15] is valid
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within a certain range of altitude, inclination, eccentricity and for extremely high value
of AMR. The coupled perturbations affect the evolution of the eccentricity, inclination
and orientation of the orbit with respect to the Sun–Earth line. Resonant interactions
lead to non-trivial orbital evolution that can be exploited in mission design. However, the
dynamics in the vicinity of each resonance can be analytically described by an extended
resonant model that provides the location of the central and hyperbolic invariant manifolds
which drive the phase space evolution.

1.1. Literature Review

In the following section, the examined literature is reported, organised by topic.

1.1.1. Solar radiation pressure-J2 model

The effect of the solar radiation pressure (SRP) on Earth satellites was recognised since
the first space flights of Vanguard I (Musen et al. [16]) and the Echo balloons (Shapiro
and Jones [17]), which were found to be significantly influenced by SRP.
Musen [18], Boulton [19], were pioneers in identifying the role of the SRP effect cou-
pled with the zonal harmonics J2 of a primary body in the orbital evolution of a minor
body. If the dynamics of the SRP perturbed orbit is treated as a perturbation problem,
the singly averaged contribution of SRP is integrable and analytical solutions can be ob-
tained (Mignard and Henon [20], Oyama et al. [21], Scheeres [22]).
Musen [16] and Cook [23] were the first to identify and locate six SRP resonances in
the inclination and semimajor-axis plane (the singly averaged perturbing function decom-
posed in six distinct terms has also been reported in Kaula [24]), each of them dominating
in a particular range of orbital elements. In particular, Cook [23] observed that, unlike
lunisolar gravitational resonances, SRP resonances are able to produce variations in ec-
centricity even for circular orbits.
Nevertheless, when coupled with the effect of Earth’s oblateness J2 the system becomes a
2.5 degrees of freedom (DoF). An analytical insight can be recovered when treating locally
the semi-secular SRP resonances.
The equation of motion have been derived as singly averaged disturbing Hamiltonian
potential associated with the oblateness and the solar radiation pressure effect, as de-
scribed by many authors (Mignard [25] for dust particles, Cook [23], Krivov and Getino
[12], Colombo et al. [26] for communication spacecrafts, Alessi et al. [14], Colombo and
McInnes [27] for smart dusts dynamics, and Colombo et al. [28] for Earth observation
spacecrafts), considering some simplifying hypothesis, such as considering the cannonball



1| Introduction 5

model for the SRP force acting on the object and neglecting the third-body perturbation.
The disturbing potential associated with the SRP has also been reported in Casanova et
al. [29] and in Scheeres [22].
The dynamics arising by combining each of the harmonics with the secular evolution due
to J2 can be reduced to a 1 DoF resonant model described by the only resonant angle
(Krivov and Getino [12]; Lücking et al. [13]; Alessi et al. [14]).
Daquin et al. [30] provided the formalization for reducing the multi-resonant Hamiltonian
formalism to the single-resonance. The first set of transformations developed in [30], were
applied to the formulation of the Hamiltonian using Delaunay element in order to reduce
the representation to a single-resonance model.
The derivation of the six different resonant models in the three-dimensional case and their
effect on the long-term evolution of resident space objects has also been recently discussed
in the literature by Alessi et al. [14].
In their paper, Gkolias et al. [15] and Alessi et al. [14] re-derive the resonant models in
the Hamiltonian framework, providing also a non-singular representation of the resonant
dynamics and bifurcation analysis of the dynamics exploiting the results obtained in the
field of single-resonance modelled by Alessi et al. [14]. After the distillation of the Hamil-
tonian function to a 1-DoF, autonomous system, the authors have studied the bifurcation
map in the plane of the semimajor-axis and inclination, providing the number and type
of equilibrium point in each region of the space.
The solar radiation pressure, Earth oblateness model has also been used to design of
frozen orbits for small-size objects in Alessi and Colombo [31] and Luo et al. [32].
These works assume that the spacecraft is always in sunlight; Lemaitre and Habaux [33]
studied the impact of Earth shadow on the long-term evolution of space debris under
the solar radiatio pressure, Earth oblateness framework. Recent numerical results were
obtained in the context of the ReDSHIFT project in Rossi et al. [34].

1.1.2. Fundamental resonance Hamiltonian models and applica-
tions

As first approximations, the resonant interaction between the orbital perturbations plays
a role in the dynamical evolution of the orbiting objects. This topic has been subjected
to a thorough examination, as detailed below.
In the past, fundamental models were derived in order to have a simplified model capable
of qualitatively describing the motion of orbiting objects. The fundamental models are
derived from a reduction of Hamiltonian models to a description with the fewest param-
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eters conceivable.
The first work on this topic is in Andoyer [35], on the motion of the Moons of Jupiter.
Then Henrard and Lemaitre [36] proposed the second fundamental model, and Breiter
[37], [38] the extended fundamental and the lunisolar resonance models (see also Celletti
and Gales [39], they have studied the motion of debris in a resonance in the MEO region).
Winter and Murray introduced in [40] and [41] the Andoyer Hamiltoinan model in the
context of exterior resonance and asymmetric libration points, inspired by the works done
in Andoyer [35] and Beauge et al. [42].
They have proven the existence of asymmetric equilibrium points in the 1 : n resonance
in the context of planar, circular, restricted three body problem. Although this is a very
interesting result, only the mathematical considerations about the asymmetric equilib-
rium point were used in this work. Together with Gkolias et al. [15], these authors have
inspired this thesis, allowing to understand how to merge the contribute of the Sun grav-
itational perturbation into the state-of-art modelling, exploiting the same resonant terms
of the Sun perturbations. In particular, the Sun perturbation and the SRP have, for
certain resonances, the same resonant angle, which can be used to reduce the extended
system to an autonomous system.
Gkolias et al. [43], described the double-averaged Hamiltonian in ecliptic variables of the
Earth oblateness, lunisolar model providing also the bifurcation analysis.
Regarding the GNSS orbits, Scheeres et al. [44] applied the lunisolar Hamiltonian for-
mulation to understand the long term evolution of spacecrafts in that region. Lara et al.
[45], instead, studied the resonance 3 : 5 affecting the motion of the Galileo operational
orbits.
Regarding the Earth oblateness-lunisolar model, Celletti et al. provided in [46] the bifur-
cation analysis of the coupled J2-Lunisolar multiply-averaged Hamiltonian whichs depend
only on the inclination, and Scala et al. [47] for post-mission disposal of satellites in high-
altitude orbits.

Space debris dynamics

The need to predict the spatial distribution of space debris has necessitated the develop-
ment of a comprehensive dynamical model. The presence of HAMR debris in GEO, posed
the starting condition for the research on analytical models able to describe the complex
interaction between orbital perturbation and foreseen their accumulation in space.
The GEO region can be considered as a 1 : 1 gravitational resonance, in which the debris
are captured. In a pendulum-like model, a separatrix separates the inner and exterior
circulation regions from the central libration region (Lemaitre [48]). If the dynamics of
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HAMR debris is perturbed by the SRP, instability and chaos are introduced around the
separatrix. Analyses with a numerical chaos indicator (MEGNO, Cincotta et al. [49])
were performed by Breiter et al. [50] and for large AMR, by Valk et al. [3]. The size of
the chaotic region around the separatrix is increasing with the AMR, as expected, making
the coupled dynamics complex to describe.
To this scope, Lemaitre [48] developed a "toy-model" based on the Hamiltonian formalism
able to reproduce and explain the structure obtained by the previous authors. Following
the works by Lemaitre, in Casanova et al. [51] they merged a synthetic population of
debris with the solar radiation pressure, Earth gravitational, and lunisolar perturbation
Hamiltonian model developed by the team of the University of Namur (Casanova et al.
[29], Valk et al. [52]), to retrieve information regarding the placement of the debris in
space. Also Celletti et al. [53] used proper elements of the solar radiation pressure, Earth
gravitational, and lunisolar perturbation Hamiltonian (Celletti et al. [54], Celletti and
Gales [55]), to reconstruct the evolutionary history of debris and possibly to associate the
fragments to a parent body.
To investigate the long-term dynamical evolution of HAMR objects released, in each of
the six orbital planes used by Global Positioning System (GPS) satellites, a large number
of simulations, including all relevant perturbations, were performed by Anselmo and Par-
dini in [56], and by Wang et al. [57] in Geostationary Transfer Orbits, showing also the
presence of resonance between solar radiation pressure and Sun gravity. In the context
of the dynamics of space debris in Earth resonance, Gales and Celletti in [58] studied the
dynamics in the 1 : 1 and 2 : 1 resonances, where geosynchronous and GPS satellites are
located; and in [59] about resonances outside the geostationary ring, such as 1 : 2, 1 : 3,
and 2 : 3 (regions of XMM-Newton and Integral missions).
In the context of dynamical trapping of debris in resonances, Henrard [60] introduced
the concept of adiabatic capture in resonance (see also Lemaitre et al. [48]) through a
slowly decreasing parameter, such as the semimajor-axis due to weak non-conservative
phenomena. From this work, the literature has been developed in the understanding on
how asteroid and debris belts have been formed under the effect on non-conservative con-
tributes, such as the Poynting-Robertson drag (the dissipative part of the solar radiation
pressure, see Lhotka et al. [61] and Gomes [62]), or in the presence of migration (Mustill
and Wyatt [63] and Batygin [64]) or due to equilibrium crossing in LEO caused by air
drag dissipation (Celletti and Gales [65]).
This work, like Casanova et al. [51], explots a synthetic population of space debris. The
synthetic population represents the actual population and preserves its characteristics.
The concept strength resides in the ability to compute numerically the orbits of each
piece of space debris constituting the synthetic population. This has been done imple-



8 1| Introduction

menting the Standard NASA Breakup Model to generate a population of debris based on
a gaussian distribution of Area-To-Mass ratio and ∆v. The model implemented has been
taken from Bade et al. [66], Johnson et al. [67], and Frey and Colombo [68].
A dynamical mapping campaign in distinct phase space planes (i.e. semimajor-axis versus
inclination with eccentricity diameter as index) as done in Gkolias et al. [69], Alessi et
al. [14], Alessi and Schettino [70] and Schaus et al. [71] was carried out using a semi-
analytical propagator developed following the works done in Colombo [72], Colombo [73],
Gkolias and Colombo [69] in order to detect unusual situations for debris entrapment. The
statistical method was chosen over the analytical method due to the need to statistically
demonstrate the accumulation of debris at stable points.

De-orbiting manoeuvre

The main contributes to the design of passive de-orbiting in the planar SRP-J2 model have
been given by Lucking, Colombo and McInnes in [74], [75], for Sun Synchronous orbits in
[76], for communication spacecrafts in [26], by using deployable balloons in Colombo et
al. [77], and by using pressure-augmented devices from high-altitude orbits in Colombo
et al. [78]. Then, Gkolias et al. [15], Giovannini and Colombo in [79], have contributed
to the design of solar sail deorbit manoeuvre, extending the planar Hamiltonian model to
the inclined orbit Hamiltonian model. The first studies involved only a planar simplified
version of the Hamiltonian, without including inclination of the orbit nor the tilt of the
Earth axis. More recent studies, from Gkolias et al. and Giovannini and Colombo,
otherwise included both these aspects. The fact of having a more comprehensive model
implies more reliable results in terms of feasibility of the disposal technique adopted. The
work in Gkolias et al. [15] regarding the deorbiting from an inclined orbit has been taken
as a landmark for this thesis together with all the works of the previously cited articles.
In particular, the formulation of the "two-point boundary value problem" connecting the
initial condition of the de-orbiting spacecraft to its critical condition, was adopted and
integrated together with the extended model developed in the thesis.
Moreover, it the framework of multiple-resonant model, natural highways generated by
the coupled model have been exploited for de-orbiting by Alessi et al. [70], [80], and
Schettino et al. [81]. Exploiting the interaction between the Earth oblateness and lunisolar
perturbations, Scala et al. [47], [82] designed natural post-mission disposal trajectory of
spacecrafts in high-altitude orbits.
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1.2. Aims and contributes of the thesis

The research presented in the following thesis is aimed to formulate a new Hamiltonian
model of the coupled SRP-Earth oblateness and Sun third-body perturbation and asses its
potentiality in the field of mission analysis, de-orbiting trajectory design, debris dynamics
as well as contribute the theoretical comprehension of the dynamics of the current model
and of the new one. To summarise, this work has been developed to answer the following
questions:

1. How is it possible to add the Sun gravitational perturbation to the current single-
averaged single-resonance SRP-J2 Hamiltonian model ?;

2. How can it be used to disposal manoeuvre of inactive spacecrafts ?;

3. How can it be used to comprehend the evolution of low AMR fragments after an
explosion ?.

Contributes of the thesis

The most significant contribution of this thesis to the academic landscape of astrody-
namics is the development of a single-averaged and single-resonance Hamiltonian model
to include the gravitational perturbation of the Sun into the state-of-the-art coupled
SRP-J2 dynamical model. The contribution is not only theoretical but also practical, as
it contributes to the understanding of debris dynamics and the preliminary design of a
novel de-orbiting maneuver based on the insights acquired from the dynamical analysis
of the expanded model.
In particular, in the field of space debris, conditions under which low and medium AMR
may accumulate into equilibrium points in the space are formulated. Unfortunately, due
to the lack of real data, the theory has only been validated with a synthetic debris pop-
ulation generated through the NASA Breakup Model. However, in order to make the
validation as much realistic as possible, the debris population has been propagated with
ad hoc semi-analytical propagator and specific conditions for debris trapping have been
searched to validate the theoretical conditions.
Regarding the design of de-orbiting maneuver, two novel ways to exploit the solar ra-
diation pressure to drive the spacecraft towards the Earth are proposed. In particular,
instead of opening an area-augmented device, it has been found a way to de-orbit when
the sail is closed, while it is opened during the mission life. However, while the theoret-
ical contribute is disruptive, from the practical point of view, at the moment is rather
unfeasible. This because, the manoeuvre exploits the peculiar dynamics of the extended
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model, which can be only exploited if the spacecraft is initially placed on an equilibrium
point near the critical eccentricity of its orbit.

1.3. Thesis outlines

The thesis work has been organised in six Chapters. A part from the first which includes
the literature review and the contributes given to the scientific community, the other are:

• Chapter 2 summarises the fundamentals on the orbit propagation theories used in
this work, together with usual validation with both TLEs and high-fidelity models;

• Chapter 3 describes the main results from the previous SRP-J2 model;

• Chapter 4 develops and describes the contributes given in the extended model.
together with its formulation and dynamical structure;

• Chapter 5 describes the application of the developed theory to the fields of de-
orbiting manoeuvre and debris analysis;

• Chapter 6 outlines the conclusions and gives the route for future analyses.



11

2| Perturbation theory

In the Section that follows, the approaches used to propagate orbits under the influence
of conservative forces are described. Two propagators, one based on a high-fidelity force
model and the other on a semi-analytical model, are coded and verified in comparison to
known TLEs and the STELA propagator.

2.1. Semi-analytical propagator

The method used to analyse the long-term orbital evolution of debris orbits discussed
here is mainly inspired by the work of Gkolias et al. [69]. A detailed description of the
force model is given in Appendix A. Aiming for a several year integration time span,
a single-averaged semi-analytical propagation was opted for, which is a typical practise
for Earth satellite orbits (see Colombo et al. [72], [73]) because it can considerably
reduce the computation time while maintaining good accuracy. For the main force model,
the contributions of Earth’s geopotential, third-body perturbation from the Sun and the
Moon, and the effect of solar radiation pressure were considered:

• For the geopotential force the only oblateness of the Earth is considered, and the
normalised coefficients Cn,m, Sn,m are taken from Kaula [24].

• The third-body potential is expanded up to fourth order in the parallactic factor
and is averaged in closed form over the mean anomaly of the satellite. This is more
efficient computationally instead of using a series expansion representation. The
positions of the perturbing bodies (i.e., the Sun and Moon) are computed from
analytical time series; the ephemeris of the Moon are generated from the algorithm
described in Simpson [83] and the ephemeris of the Sun are generated from the
algorithms described in the Chapters 25 and 26 by Meeus [52]. (see Appendix A for
details).

• The solar radiation pressure is also included under a cannonball approximation
(Kaula [24], Krikov and Getino [12]).

• The eclipse has been neglected : during an eclipse, the spacecraft is in the Earth’s
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shadow and does not receive direct sunlight, which means that the force due to SRP
is significantly reduced. However, the spacecraft may still experience a small force
due to scattered light from the Earth’s atmosphere or reflected sunlight from the
Moon. As shown by Gkolias et al. [15], in the Hamiltonian function, which is a
mathematical representation of the dynamics of a system, the effects of the SRP
are typically modeled as a perturbation term. This means that the Hamiltonian
function includes the effects of SRP, but only as a small correction to the dominant
gravitational forces (see Figure 2.1). Because the force due to SRP during an eclipse
is small compared to the force during periods of direct sunlight, it can be neglected
without significantly affecting the accuracy of the Hamiltonian function. Therefore,
for practical purposes, the eclipse can be ignored when modeling the effects of SRP
on the dynamics of a spacecraft.

Figure 2.1: Comparison of order of magnitude of perturbation acceleration computed
according to Montenbruck and Eberhard [84] with Equation (A.1). The SRP contribute
is evaluated for different AMR.
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The semi-analytical propagator used for all the simulations is based ode45 which is based
on an explicit Runge-Kutta (4,5) formula, the Dormand-Prince (see Dormand and Prince
[85]) pair with RelTol,AbsTol = 1e-7.

2.2. High fidelity propagator

In addition, an high-fidelity full-dynamics propagator based on cartesian coordinates was
developed for comparison with the semi-analytical propagators (for details on the formu-
lation refer to Appendix A). The numerical integration is based on ode78 which is an
implementation of Verner’s Runge-Kutta 8(7) pair with a 7th-order continuous extension
(Verner [86]) with RelTol,AbsTol = 1e-8. For the main force model, the contributions
of Earth’s geopotential, third-body perturbation from the Sun and the Moon, and the
effect of solar radiation pressure were considered:

• For the geopotential force, the expansion of the geopotential disturbing function
using the Legendre polynomial Pnm is used (Kaula [24]);

• The ephemeris of the Sun and the Moon, and the the transformation matrices related
to the motion of Earth’s rotation axis are retrieved from NASA’s SPICE toolkit4
(see Acton [87]);

• The SRP force is intended aligned with the Sun-Earth line, and the object is consid-
ered under the cannonball hypothesis, that is to say that the solar rays are considered
perpendicular to the surface of the satellite. The SRP force is the same as described
in Lhotka et al. [61]

2.2.1. Semi-analytical propagator validation

The semi-analytical propagator model described in Appendix A was validated by compar-
ison with the actual ephemerides of an artificial satellites in highly-elliptical orbit: XMM-
Newton. The orbit of XMM-Newton was propagated in the time span from 1999/12/15 to
2013/01/01 with the initial Keplerian elements on 1999/12/15 at 15:00 UTC as reported
in Table 2.1. The Figure 2.2 shows the comparison between the ephemeris taken from
SpaceTrack [88]; in red the orbit propagated using the semi-analytical propagator, and in
blu the ephemeris.
The semi-analytical propagator is also validated against the developed high-fidelity prop-
agator and the semi-analytical propagator developed by CNES [89]. The Figure 2.3 shows
the comparison between the propagators; in blu the orbit propagation computed by the
STELA, in yellow by the high-fidelity, and in red by the semi-analytical propagators, re-
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spectively. The initial conditions are integrated from 2000/01/01 to 2100/01/01 with the
initial Keplerian elements on 2000/01/01 at 00:01 UTC as reported in Table 2.1. The de-
veloped propagator shows good agreement with the high-fidelity one, validating the force
model selection and the use of a single-averaged formulation. However, the evolution of
the semimajor axis as described by STELA is not constant due to the semi-analytical
nature of the equations of motion. The right-hand sides of the averaged equations of
motions must be truncated and then averaged over one period under certain simplifying
hypotheses (typically, that the mean orbital elements are constant during the averaging
operation).
This averaging error can be considered the contribution to the integration error caused
by these simplifications (Rosengren et al. [90]). For similar reasons, the high-fidelity
model shows a non-constant semimajor-axis. The numerical errors are responsible for few
kilometers errors in the semimajor-axis propagation with respect to the initial condition.
Instead, due to the extremely simplified equation of motion used in the semi-analytical
propagator, it shows a constant altitude.
Regarding the computational time, the single-averaged formulation is orders of magni-
tudes faster (few seconds for the semi-analytical and up to 8h for the high-fidelity prop-
agator), which allows us to proceed with a massive and accurate characterisation of the
phase space.

Table 2.1: Initial Keplerian elements of Figure 2.2 and Figure 2.3

Test a km e i rad Ω rad ω rad f rad AMR m2/kg

Figure 2.2 67045 0.7951 0.67988 4.1192 0.99259 3.2299 0.012
Figure 2.3 42165 0.1 0.6981 0 0 0 2
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Figure 2.2: XMM Newton ephemerides: actual ephemerides and propagation with the
semi-analytical propagator developed in this work.0 10 20 30 40 50 60 70 80 90
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Figure 2.3: Comparison between the semi-analytical propagator, STELA and the high-
fidelity propagator.
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2.3. Hamiltonian approach

As stated by Celletti et al. [91], in the Hamiltonian framework, the natural approach is
based on canonical perturbation theory. By using appropriate sets of canonical variables,
the geopotential, the lunisolar attraction, and the SRP can be expressed in forms suitable
for the series expansions needed in perturbation methods. Nonetheless, for each orbital
region with its own hierarchy of perturbations, it is advantageous to select the principal
contributions and perform a proper ordering of terms in order to comprehend the pre-
dominate dynamical behavior.
With this formalism, the system dynamics is completely described by a scalar function
H. Indeed, the Hamiltonian formulation is an energetic representation of the dynamical
system. This function can be derived from the Lagrangian function L (Arnol’d, V.I. et
al. [92], Lemaitre [48]):

L = T − V (2.1)

Supposing that the position of a mechanical system is described by the coordinate q, it
can be said that T (q, q̇) is the kinetic energy while V(q) is the potential energy. If the
conjugate momenta p is introduced such that (Arnol’d, V.I. et al. [92], Lemaitre [48]):

pk =
∂L(q, q̇)
∂q̇k

, (2.2)

where k goes from 1 to the number of elements in the vector q. Now it is possible to
define the Hamiltonian as (Arnol’d, V.I. et al. [92], Lemaitre [48]):

H := pT q̇ − L(q, q̇). (2.3)

For Hamiltonian systems, the Hamiltonian function H(p, q) is a first integral, i.e. remains
constant in time. Indeed it can be proven that the Hamiltonian is (Arnol’d, V.I. et al.
[92], Lemaitre [48]):

H = T + V (2.4)

which is the total energy. Considering a general model of perturbation including the effect
of Earth oblateness, Solar Radiation Pressure, and the gravitational influence of Sun and
Moon, the Hamiltonian describing, the dynamics of the satellite in a geocentric equatorial
inertial frame can be modelled by the Hamiltonian (Gkolias et al. [15], Celletti et al. [91],
Lemaitre [48]):

H = Hkep +HJ2 +HSRP +H⊙ +HM + T . (2.5)
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If the kinetic energy is constant (i.e., the force model is conservative), its contribute to
the equation of motions is zero, therefore (Arnol’d, V.I. et al. [92], Lemaitre [48]):

H = V . (2.6)

Knowing that, in a conservative framework the perturbing function R = −V , it is possible
to say (Alessi et al. [14], (Arnol’d, V.I. et al. [92]), Lemaitre [48]):

R = −H. (2.7)

From which it is possible to write the Langrange planetary equations (McClain, W.D.
and Vallado, D.A. [9], Battin R.H. [10], Celletti et al. [91]):

da

dt
= − 2

na

∂H
∂M

,

de

dt
=

1

na2e

(
−(1− e2)

∂H
∂M

+
√
1− e2

∂H
∂ω

)
,

di

dt
=

1

na2 sin(i)
√
1− e2

(
− cos(i)

∂H
∂ω

+
∂H
∂Ω

)
,

dΩ

dt
= − 1

na2 sin(i)
√
1− e2

∂H
∂i
,

dω

dt
= +

1

na2 sin(i)
√
1− e2

cos(i)
∂H
∂i

−
√
1− e2

na2e

∂H
∂e

,

dM

dt
= n+

1− e2

na2e

∂H
∂e

+
2

na

∂H
∂a

.

(2.8)

Where, (a, e, i, ω, Ω) are the Keplerian orbital elements of the body measured with
respect to the Earth equatorial plane, and n is the mean motion of the orbiting body.
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3| Fundamentals of the coupled
solar radiation pressure and
Earth oblateness dynamic

The following Chapter outlines the main results obtained from the literature review re-
garding the coupled SRP, Earth oblateness Hamiltonian model. Typically, the analysis of
such a model is subdivided as follows :

• Definition of modelling hypothesis and the derivation of the dynamical model;

• Definition of the Hamiltonian model and its transformation to a single DoF au-
tonomous function to which, the tools of system theory reported below, are applied;

• Stability analysis : for each equilibrium points, the stability properties are computed;

• Bifurcation analysis : for each resonance, the change in the dynamical the structure
(i.e. the position of the equilibrium points) as a function of physical parameters
(i.e. AMR) and obsculating parameters (i.e. a, e, i) is traced;

• Phase space analysis : the phase space in the plane (ψ, e) is analysed for each of the
dynamical region identified.

3.1. Dynamical model

Henceforth, it is assumed that a small body (e.g., a spacecraft) moves under the following
hypothesis:

• as perturbations only SRP and J2 are taken into account: the third body effect
up to MEO regions and for high values of AMR can be considered negligible (see
Equation (A.1), Montenbruck and Gill [84], this hypothesis is dropped in the next
Chapter);

• the Sun rays are considered perpendicular to the surface of the satellite (cannonball
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model);

• albedo is not considered;

• the solar flux is considered constant;

• the satellite is considered in sunlight;

• the light aberration is neglected, hence the SRP can be considered as a conservative
force.

Therefore, the dynamics of the satellite comes from the sum between the Keplerian dy-
namics, the SRP perturbation and the J2 perturbation.
In the following equations, (a, e, i, ω, Ω) are the Keplerian orbital elements of the small
body measured with respect to the Earth equatorial plane, λ = ω + f the argument
of latitude, n the mean motion of the small body, µ the Earth gravitational parameter,
J2 the second zonal term of the geopotential, R⊕ the equatorial radius of the Earth, ε
the obliquity of the ecliptic, P⊙ the solar radiation pressure at 1 AU, cR the reflectivity
coefficient the area-to-mass ratio of the small body.

3.2. Hamiltonian formalism

Following the derivation by Gkolias et al.[15], the dynamics of the satellite in a geocentric
equatorial inertial frame can be modelled by the Hamiltonian:

H = Hkep +HJ2 +HSRP (3.1)

The Keplerian part Hkep reads:

Hkep =
v2

2
− µ

r
(3.2)

where µ is the gravitational parameter of the Earth, and r, v are the geocentric distance
and velocity of the satellite, respectively.

The Earth’s oblateness effect is modelled as (Gkolias et al. [15], Gkolias I. and Colombo
C. [69]):

HJ2 =
CJ2
(
3 sin2 ϕ− 1

)
2r3

(3.3)

where CJ2 = µR2
⊕J2 with J2 the oblateness parameter and ϕ the geographic latitude of

the satellite. The sine of the latitude is expressed in terms of the orbital elements of the
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satellite via (Gkolias et al. [15]):

sinϕ =
z

r
(3.4)

and
z = [0, 0, 1]R3(−Ω)R1(−i)R3(−λ)[r, 0, 0]T (3.5)

Considering a generic angle u, the rotation matrices around the first (1) and third (3)
axis, (R1(u), R3(u)) are defined as (Gkolias et al. [15]):

R1(u) =

 1 0 0

0 cosu sinu

0 − sinu cosu

 , R3(u) =

 cosu sinu 0

− sinu cosu 0

0 0 1

 (3.6)

The solar radiation pressure contribution is given by (Gkolias et al. [15]):

HSRP = CSRPX (3.7)

where CSRP = 3
2
P⊙cR

A
m

, X is the coordinate of the satellite in an Earth-centred system
with the X-axis pointed towards the Sun. In terms of the orbital elements of the satellite
it reads:

X = [1, 0, 0]R3(λ⊙)R1(ε)R3(−Ω)R1(−i)R3(−θ)[r, 0, 0]T (3.8)

with λ⊙ the ecliptic longitude of the Sun. In Equation (3.7) and Equation (3.3) the true
anomaly is the fast angle, hence the two equations are integrated over it for one period.
The integrals can be carried out in closed form for both the J2 and SRP contributions.
In the case of J2 the differential relationship dM = r2

a
√
1−e2df along with r = a 1−e2

1+e cos f
are

used to obtain (Gkolias et al. [15]):

H̄J2 =
CJ2(1− 3c2i )

4a3(1− e2)3/2
(3.9)

where ci = cos i. For SRP the integral with respect to the eccentric anomaly E is expressed
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using the relations (Gkolias et al. [15]):

r sin f = a
√
1− e2 sinE,

r cos f = a(cosE − e),

r = a(1− e cosE),

dM =
r

a
dE,

(3.10)

resulting in (Gkolias et al. [15]):

H̄SRP = −aeCSRP

6∑
j=1

Tj cosψj (3.11)

where the resonant argument is (Gkolias et al. [15], Alessi et al.[14]):

ψj = n1ω + n2Ω + n3λ⊙, ψj ∈ [0, 2π], (3.12)

and Tj is the expansion term obtained from the expansion of the single-averaged model
of the SRP (see Table 3.1 for each resonant term).

Table 3.1: Argument ψj = n1ω + n2Ω + n3λ⊙ of the periodic component in terms of n1,
n2, n3, and the coefficients Tj as in Gkolias et al. [15] and Alessi et al.[14].

j n1 n2 n3 Tj

1 1 1 −1 1
4
(1 + cε)(1 + ci)

2 −1 1 −1 -1
4
(1 + cε)(ci − 1)

3 1 0 −1 1
1
sisε

4 1 0 1 -1
1
sisε

5 1 1 1 -1
4
(cε − 1)(1 + ci)

6 −1 1 1 -1
4
(cε − 1)(ci − 1)

The Equation (3.11) result is a well-known finding in the literature Krivov et al. [12],
Lucking et al. [13], and Alessi et al. [14]. The approach proposed in Daquin et al. [30]
for lunisolar gravitational perturbations, is adapted to the solar radiation pressure effect,
under the assumption that only one periodic term j is driving the motion of the body at
any given moment. This approach considers the first canonical transformations developed
in [30] written in terms of classical Delaunay variables (L, G, H, l, g, h), and introducing
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the set of resonant variables (Ψ, ψ) such that [30]:

Ψ =
G

n1

,

Π = −n2G+ n1H,

K = Is −
n3G

n1

.

ψ = n1g + n2h+ n3λ⊙,

π =
h

n1

,

κ = λ⊙.

(3.13)

the Hamiltonian can be written in a 1-DoF autonomous form (Gkolias et al. [15]):

Hψj
= Hψj ,J2(Ψ ;L,Π) +Hψj ,SRP (Ψ, ψ;L,Π) + ns(n3Ψ +K), (3.14)

where the part associated with J2 is:

Hψj ,J2(Ψ ;L,Π) =
CJ2µ

3 (n4
1Ψ

2 − 3(Π + n1n2Ψ)
2)

n7
14L

3Ψ 5
, (3.15)

and the one due to SRP is:

Hψj ,SRP (Ψ, ψ;L,Π) =− CSRP

µ
L2

√
1− n2

1Ψ
2

L2
Tj cosψ, (3.16)

with the coefficients Tj are expressed in terms of the new variables using the equations
ci =

n1n2Ψ+Π
n2
2Ψ

and si =
√

1− c2i .

As a result of the resonant transformation, both π and κ are negligible; hence, Π and K
are constants, and the term n⊙K can be eliminated from the Hamiltonian. The action
variable Π is a resonant integral of the system; its value is determined by the initial
conditions and stays constant during the orbital evolution (for the whole derivation, see
Appendix C). Expressed in Keplerian orbital elements (Gkolias et al. [15]), Alessi et al.
[14], Daquin et al. [30]):

Π =
√
µa

√
1− e2(−n2 + n1 cos i) (3.17)

represents the mathematical link between the oscillation of eccentricity and inclination of
the orbit. Its value, which is associated to the inclination of an initially circular orbit (Π0

or Π̃0 = Π0/
√
1000µ) is used in this work to label the phase space.
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For a satellite close to a resonance with argument ψj with initial elements:

(a0, e0, i0, ω0, Ω0, λ⊙,0), (3.18)

the orbit evolution in the (Ψ ,ψ ) plane, or equivalently in the (e,ψ) plane (substituting
Ψ =

√
µa(1− e2)/n1), is given from the contour line of the implicit equation:

Hψj
(Ψ, ψ;L,Π) = Hψj

(Ψ(a0, e0), ψ(ω0, Ω0, λ⊙,0);L,Π), (3.19)

with L = L(a0) and Π = Π(a0, e0, i0). Note that Π depends on the resonance j through
n1 and n2.

The equations of the motion related to the resonant models Hψj
are

dψ
dt

=
∂Hψj

∂Ψ
,

dΨ
dt

= −
∂Hψj

∂ψ
,

(3.20)

where the first equation is called commensurability equation, because it describes the
commensurability between the angles describing the motion of the object, while the second
one is the equation of motion of the conjugated momentum linked to the eccentricity. The
associated equilibria are given imposing null time derivative to both the equations:

dψ
dt

= 0,

dΨ
dt

= 0.

(3.21)

The stationary solutions of the resonant model represent periodic orbits of the full equa-
tions of motion. Their stability is determined from the eigenvalues of the Hessian of the
Hamiltonian Hψj

computed at each equilibrium point.

3.2.1. Dynamical equation of motion

In this Section the equations of motions written in terms of the Hamiltonian perturbing
function are derived. The 1-DoF autonomous Hamiltonian Equation (3.16) can be ex-
ploited to describe the perturbing function R of the orbital dynamics driven by a single
resonant term:

R = −H. (3.22)
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Hence, as described by Alessi et al. [14], the Lagrange equation of motion of the coupled
SRP-J2 dynamics expressed in mean Keplerian element is (Alessi et al. [14]):

da

dt
= 0,

de

dt
= −CSRP

√
1− e2

na

6∑
j=1

Tj
∂cosψj
∂ω

,

di

dt
= −CSRP

e

na
√
1− e2 sin i

6∑
j=1

Tj
(
∂cosψj
∂Ω

− cos i
∂cosψj
∂ω

)
,

dΩ

dt
= Ω̇J2 + Ω̇SRP,

dω

dt
= ω̇J2 + ω̇SRP,

(3.23)

3.2.2. Equilibrium

If it is assumed that the dynamics are driven by a single term j at a time, that means
that only one periodic component (i.e. sinψj for eccentricity and inclination; and cosψj

for Ω, ω) affects the motion, then the description of the dynamics can be simplified as
(Alessi et al. [14]):

de

dt

∣∣∣
j
= n1CSRP

√
1− e2

na
Tj sinψj,

dψj
dt

= n1ω̇(J2,j) + n2Ω̇(J2,j) + n3n⊙,

(3.24)

The terms written in the equation are:

Ω̇J2 = −3

2

J2r
2
⊕n

a2(1− e2)2
cos i,

Ω̇SRP = CSRP
e

na
√
1− e2 sin i

6∑
j=1

∂Tj
∂i

cosψj,

ω̇J2 =
3

4

J2r
2
⊕n

a2(1− e2)2
(
5 cos2 i− 1

)
,

ω̇SRP = CSRP

√
1− e2

nae

6∑
j=1

Tj cosψj − Ω̇SRP cos i.

(3.25)

For the resonances j = 1, 2, 5, 6, the commensurability equation ψ̇j = 0 can be reduced to
(see Alessi et al.[14]):
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c1 cos i
2 + c2 cos i+ c3 = 0. (3.26)

with the coefficients ci are reported in Table 3.2:

Table 3.2: Coefficients of the quadratic equation c1 cos
2 i + c2 cos i + c3 = 0 associated

with the equilibrium point at ψj for j = 1, 2, 5, 6. In the table, β =
√
1− e2, γ = cos2

(
ϵ
2

)
,

ρ = sin2
(
ϵ
2

)
and cψ = cosψ. Note that Equation (3.26) is multiplied by 4a5β5en to have

the same notation as in Alessi et al. [14].

j c1 c2 c3

1 15C⊕eβ −6C⊕eβ + 2CSRPa
4β4γcψ 2CSRPa

4β4γ(1− 2e2)cψ−
+eβ (3C⊕ + 4a5β4nn⊙)

2 −15C⊕eβ −6C⊕eβ + 2CSRPa
4β4γcψ −2CSRPa

4β4γ(1− 2e2)cψ+

+eβ (3C⊕ − 4a5β4nn⊙)

5 15C⊕eβ −6C⊕eβ + 2CSRPa
4β4ρcψ 2CSRPa

4β4ρ(1− 2e2)cψ−
+eβ (3C⊕ − 4a5β4nn⊙)

6 −15C⊕eβ −6C⊕eβ + 2CSRPa
4β4ρcψ −2CSRPa

4β4ρ(1− 2e2)cψ+

+eβ (3C⊕ + 4a5β4nn⊙)

Instead, for the resonant terms j = 3, 4, the commensurability ψ̇j = 0 can be reduced to
(Alessi et al. [14]) :

sin i3 + s1 sin i
2 + s2 sin i+ s3 = 0, (3.27)

with the coefficients ci are reported in Table D.2:

Table 3.3: Coefficients of the quadratic equation sin i3 + s1 sin i
2 + s2 sin i + s3 = 0

associated with the equilibrium point at ψj for j = 3, 4. In the table, β =
√
1− e2,

γ = cos2
(
ϵ
2

)
, ρ = sin2

(
ϵ
2

)
and cψ = cosψ. Note that Equation (3.26) is multiplied by

4a5β4n/15C⊕ to have the same notation as in Alessi et al. [14].

j s1 s2 s3

3 −2CSRP

15C⊕e
a4β3 sin ϵcψ − 4

15C⊕
(3C⊕ − a5β4nns)

2CSRP

15C⊕
ea4β3 sin ϵcψ

4 2CSRP

15C⊕e
a4β3 sin ϵcψ − 4

15C⊕
(3C⊕ + a5β4nns) −2CSRP

15C⊕
ea4β3 sin ϵcψ

If the orbiting object is in an equilibrium point, such as (ė, ψ̇) = 0, its orbit is characterised
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by a constant eccentricity, inclination, semi-major axis and, depending on the resonant
term j (Alessi et al. [14]):

• if j = 1 and it is on a prograde orbits, the longitude of the periapsis is sun-
synchronous: Ω̇ + ω̇ = n⊙;

• if j = 2 and it is on a retrograde orbits, the longitude of the periapsis is sun-
synchronous: Ω̇− ω̇ = n⊙;

• if j = 3, the argument of periapsis is sun-synchronous: ω̇ = n⊙;

• if j = 4, the argument of periapsis is sun-antisynchronous: ω̇ = −n⊙;

• if j = 5 and it on a prograde orbits, then the longitude of the periapsis is sun-
antisynchronous: Ω̇ + ω̇ = −n⊙;

• if j = 6 and it is on a retrograde orbits, then the longitude of the periapsis is
sun-antisynchronous: Ω̇− ω̇ = −n⊙.

3.3. Stability analysis

The stability of an equilibrium point can be evaluated following the procedure outlined
by Alessi et al. [14], by computing the eigenvalues of the Hessian matrix evaluated at the
equilibrium point:

Hess(Hj) =

(
∂ė
∂e

∂ė
∂ψ

∂ψ̇
∂e

∂ψ̇
∂ψ

)∣∣∣∣
eeq ,ψeq

(3.28)

with partial derivatives ∂ė
∂e

and ∂ψ̇
∂ψ

are zero if evaluated at the equilibrium. Therefore,
the information about the stability of the point can be easily retrieved evaluating the
eigenvalues of the Hessian:

λ2 − ∂ė

∂ψ

∂ψ̇

∂e
= 0 → λ1,2 = ±

√
∂ė

∂ψ

∂ψ̇

∂e
(3.29)

if the sign of the term under the square root is positive, the eigenvalues are positive,
hence it is unstable. On the other hand, if it is negative, the eigenvalues are complex
conjugated, thus the orbit is periodic, therefor it is stable. The partial derivatives are the
sum of the Earth oblateness and SRP and reported below:
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∂ė|j
∂e

= 0,

∂ė|j
∂ψj

= n1CSRP

√
1− e2

na
Tj cosψj,

∂ψ̇j
∂e

= n2

∂Ω̇(J2,j)

∂e
+ n1

∂ω̇(J2,j)

∂e
,

∂ψ̇j
∂ψj

= 0.

(3.30)

where, the terms of the Hessian matrix of the commensurability equation are are reported
in Appendix B in Equation (B.1).

3.4. Bifurcation analysis

By definition (see Guardia et al. [93], and Arnol’d [94]), the bifurcation analysis is the
study of changes in the qualitative or topological structure of a given family of curves,
such as the integral curves of a family of vector fields and the solutions of a family of
differential equations. A bifurcation takes place when a small and continuous change
in the parameter values (the bifurcation parameters) of a system results in an abrupt
qualitative or topological change in its dynamical behavior. There are two primary types
of bifurcations: local, which can be completely analysed through changes in the local
stability properties of equilibria, periodic orbits, and other invariant sets when parameters
exceed critical thresholds, and global, which frequently occur when larger invariant sets
(i.e. periodic orbits) of the system collide with each other, or with equilibria of the system.
Given an Hamiltonian function, as that defined in Equation (3.14), it is possible to choose
one or more bifurcation parameters (see Sadovskii and Delos [95]), the change of which,
cause the qualitative change of the topological structure of the phase space describing the
Hamiltonian function. For the analysis performed in this work, the Hamiltonian structure
can change varying mainly three parameters, the semi-major axis a, the inclination of the
initially circular orbit i0 (or similarly the second integral of motion Π0) and the physical
parameter AMR. Henceforth, i0 (or Π0) is considered the first bifurcation parameter and
a the second, keeping the AMR fixed.
Solving Equation (3.26) in correspondence of ψ = 0 and ψ = π at a fixed AMR and semi-
major axis, the resulting bifurcation diagram represents the position of the dynamical
equilibrium in the plane (e, Π0).1 A bifurcation map in the plane of the bifurcation
parameters (a, i0) is made computing the position of the bifurcations in that plane. For

1Generally indicated as Π̃0 = Π0

√
1000µ

√
km, or equivalently the corresponding i0 at a fixed a.
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each critical point in the bifurcation diagram, its stability is evaluated computing the
eigenvalues of the Hessian matrix defined in Equation (3.28) evaluated at the critical
point. A local bifurcation occurs when the Hessian has null eigenvalues. The bifurcations
can be of different types:

1. saddle-point in which two fixed points (or equilibria) of a dynamical system collide
and annihilate each other. If the phase space is one-dimensional, one of the equi-
librium points is unstable (the saddle), while the other is stable (the node). As
already stated by Breiter in [37], the number of equilibria can increase only through
the saddle-node bifurcations;

2. saddle-point connection occurs when the values of the Hamiltonian at both unstable
points are equal. This kind of bifurcation was firs depicted by Arnold et al. [94]
and applied to the Extended Fundamental model by Breiter [37]. Also Gkolias et
al. [15] have pointed out the presence of this kind of bifurcation in the framework
of the couple SRP-J2 Hamiltonian;

3. trans-critical in which a fixed point exists for all values of a parameter and is never
destroyed. However, such a fixed point interchanges its stability with another fixed
point. This point has already been discovered in the work by Gkolias et al. [15];

4. pitchfork where the system goes from one fixed point to three fixed points. This
bifurcation is not present in the system under study;

5. imperfect pitchfork bifurcation occurs when a symmetry-breaking term is added to
the pitchfork. Differently from the pitchfork one, this is possible to find in the
system under study.

The bifurcation characteristic is evaluated only numerically, since an analytical investiga-
tion is cumbersome. In the following section, it is outlined the bifurcation analysis of the
first resonance only (see Gkolias et al. [15] for all the others).

3.4.1. Bifurcation analysis of resonance j = 1

In the following section it is outlined the detailed bifurcation analysis of the first resonance
of the mean anomaly averaged SRP-J2 Hamiltonian model. Although this analysis has
been already done by Gkolias et al. [15] and Alessi et al. [14], it is presented as basis
for more advanced analysis and for deepen our knowledge on this topic. Moreover, there
are reported some new insights on the dynamics of sub-critical, imperfect pitchfork and
saddle-point connection bifurcations.
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Figure 3.1: Flow diagram for the generation of a bifurcation map for a given resonance,
in range [a1, a2] and a given AMR.

The bifurcation analysis follows two major steps:

• the generation of bifurcation diagrams for each semi-major axis considered in the
analysis;

• the assembly of the bifurcation map on the basis of the stability analysis carried on
the bifurcation diagrams just derived.

Following the flow diagram in Figure 3.1, the bifurcation diagram at a specific semi-
major axis and AMR is computed solving for each eccentricity in the range e ∈]0, 1[ the
Equation (3.26). Once the position of the equilibrium is identified for each semimajor-axis
(in range 8000 km, 30000 km) and prescribed AMR, their stability is evaluated by looking
at the sign of the eigenvalues of the equilibrium points (Equation (3.29)). A bifurcation
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occurs when the product between the eigenvalues is zero (λ1λ2 = 0), or equivalently when
the product changes sign. The bifurcation point coordinates (Π̃0, e) are then reported in
the plane (a, i0) to build up the complete bifurcation map, where i0 is the inclination of
the corresponding circular orbit:

cos i0 =
Π̃0

√
1000µ

n1

√
µa(1− e2)

+
n2

n1

(3.31)

To distinguish between the saddle and the trans-critical bifurcation, two different bifur-
cation point search methods have been applied:

• saddle-point search method: for each bifurcation diagram, the saddle-point of the
curve are found by computing the position of the zero derivative of the curve. This
method is pretty fast and accurate, however it can detect only points were the
number of equilibria change;

• stability-change-point search method: this method exploits the concept of stability
depicted before.

Case study results

In Figure 3.2 the bifurcation diagram at a = 12078 km and AMR = 1 m2/kg is reported.
It is possible to note that the Equation (3.26) admits at maximum two solutions (indicated
with apex (1) and (2), respectively) for each critical angle considered (ψ = 0, π), reported
in the plot with bluish colors for ψ = π and reddish colors for ψ = 0. In the enlargements
of Figure 3.2 (see Figure 3.3), on the left there are reported the stability characteristics
of the equilibrium points: the points characterised by a change in the stability are called
bifurcation points, and those are populating the bifurcation map.
In this work, additional equilibrium points in first resonance are identified, which are not
yet present in the literature (see Gkolias et al. [15] and Alessi et al. [14]). Those points
are located typically at very high eccentricities; even if they are not of a practical interest,
they are reported in this work for the sake of completeness. As an example, lets examine
the Figure 3.2 and Figure 3.3. As already stated before, Equation (3.26) has at maximum
two solution, this resulting in two pairs of bifurcation diagrams (see the figure). Referring
to the plot on the left of Figure 3.3, along the first solution (upper pair in the figure) for
Π̃0 = −10

√
km, there are five equilibria: three in ψ = π and two in ψ = 0. Instead,

zooming in the far right part of that diagram (see right plot Figure 3.3) it is possible to
appreciate other two equilibria: one in ψ = 0 and one in ψ = π, for very high eccentricities
(see also an additional example of bifurcation diagram at a = 8078 km, AMR = 1 m2/kg
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in Figure 3.4). These latter were not present in the papers by Gkolias et al. [15] and
Alessi et al. [14].
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Figure 3.2: Bifurcation diagram of equilibrium points at ψ = 0 and ψ = π at a = 12078 km
and AMR = 1 m2/kg. With (1) and (2) are identified the first and the second solutions.
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Figure 3.3: Enlargements of Figure 3.2. On the left on Π̃0 ∈ [−20, 0]
√
km and on the

right enlarged on very high eccentricity ranges to see the 6th and 7th equilibrium.



3| Fundamentals of the coupled solar radiation pressure and Earth oblateness
dynamic 33

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-21.5

-21

-20.5

-20

-19.5

-19

I
III VI

III

0 50 100 150 200 250 300 350
0.9845

0.9846

0.9847

0.9848

0.9849

0.9850

0.9851

0.9852

ψ[rad]

e[
-]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-21.5

-21

-20.5

-20

-19.5

-19

I
III VI

III

0 50 100 150 200 250 300 350
0.9845

0.9846

0.9847

0.9848

0.9849

0.9850

0.9851

0.9852

ψ[rad]

e[
-]

0
0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1
-2
00

-1
80

-1
60

-1
40

-1
20

-1
00-8
0

-6
0

-4
0

-2
0020

Figure 3.4: Bifurcation diagram of equilibrium points at ψ = 0 and ψ = π at 8078 km
and AMR = 1 m2/kg. On the plot the phase space at Π̃0 = −20

√
km, highlighting the

equilibria at very high eccentricity.

Figure 3.5 shows the complete bifurcation map at AMR = 1 m2/kg, with red lines are
reported the bifurcations occurring along the first solution of Equation (3.26) and with
blue lines the ones occurring at the second solution. With dashed lines are identified the
saddle-points type bifurcations, instead, with bold line the trans-critical.
In Figure 3.6a, Figure 3.6b and Figure 3.7, the bifurcation map is depicted in detail. In
addition, the phase spaces at a = 7900 km, 8078 km, and 8400 km are depicted to the
right of each plot.
The first diagram depicts the bifurcation phase spaces at (A) and (B), where (A) describes
the transition between regions I and III and (B) between regions VI and III. Similarly,
the phase spaces of the bifurcation between regions I and III, III and VI, and VI and III
are reported in Figure 3.6b. In the latter, the transitions between I and II, II and VI, and
VI and III are shown.
Each of the aforementioned transitions causes a change in the dynamical structure; specif-
ically, it affects the number and stability of equilibrium points.
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Figure 3.5: Bifurcation map of the resonant term ψ1 with AMR = 1 m2/kg. On the sides
are reported the peculiar phase space appearing in the five identified regions.

In detail, from these plots the dynamical characteristics of the regions I, III and VI, can
be explained:

• region (I) is characterised by two stable points in ψ = π, one unstable point in
ψ = π, one stable point in ψ = 0 and one unstable point in ψ = 0. It is possible to
see in Figure 3.8a a representative phase space portrait of this region, for Π̃0 = −20.3√
km;

• region III is characterised by one stable point in ψ = π, one stable point in ψ = 0

and one unstable point in ψ = 0. In Figure 3.8b and Figure 3.9b are reported
the representative phase space portraits of this region, for Π̃0 = −20.45

√
km and

Π̃0 = −20.6
√
km;

• region VI is characterised by one stable point in ψ = π, two stable point in ψ = 0

and two unstable point in ψ = 0. It is possible to see in Figure 3.9a a representative
phase space portrait of this region, for Π̃0 = −20.5

√
km.
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Figure 3.6: On Figure 3.6a phase space of the bifurcation appearing at a = 7900 km and
on Figure 3.6b at a = 8078 km.
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Figure 3.7: Bifurcation map detail at semi-major axis of 8400 km and AMR = 1 m2/kg
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Figure 3.8: Figure 3.8a the phase space at a = 8078 km at Π̃0 = −20.3
√
km and in

Figure 3.8b at Π̃0 = −20.45
√
km and AMR = 1 m2/kg.
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Figure 3.9: Figure 3.9a the phase space at a = 8078 km at Π̃0 = −20.5
√
km and in

Figure 3.9b at Π̃0 = −20.6
√
km and AMR= 1 m2/kg.

As stated above, the first difference with the literature is that, referring to Figure 3.7, at
a = 8400 km, the phase space has seven points, rather than five: two stable points in
ψ = 0 and ψ = π, two unstable points in ψ = 0 and one unstable in ψ = π.
The second novelty introduced by this work, is one new dynamical region in the bifurcation
map, labelled as VII in Figure 3.10. The diagrams on the right of Figure 3.10 depict the
bifurcation phase spaces: A represents the phase space of the bifurcation that divides
region IV from region VII, B divides region VII from region III, and V divides region III
from region V. In detail, from these plots the dynamical characteristics of the regions IV
and VII, can be explained:

• region IV is characterised by one stable point in ψ = π, one unstable point in
ψ = π and one stable in ψ = 0. The phase space is represented in the left plot of
Figure 3.11 at a = 17240 km and Π̃0 = −260

√
km;

• region VII is characterised by two stable points in ψ = 0 and one stable point ψ = π.
The phase space is represented in the right plot of Figure 3.11 at a = 17240 km and
Π̃0 = −258.1

√
km;

The bifurcation separating the region III from IV is called trans-critical, and it is char-
acterised by a change only in the stability characteristics of the equilibrium points, not
in their number. In particular, the transformation from III to IV is achieved through the
transition region VII.
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Figure 3.10: Trans-critical bifurcation at ie=0 = 165◦, AMR = 1 m2/kg. On the right the
phase space appearing in the bifurcation points.
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Figure 3.11: Left: bifurcation diagram at semi-major axis of 17240 km and AMR =
1 m2/kg showing the trans-critical bifurcation and the imperfect pitchfork bifurcation
(with phase space). Right: zoom in of the bifurcation diagram showing the trans-critical
bifurcation (with phase space).
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It is possible to appreciate in this last graph (Figure 3.12) at a = 10000 km and Π̃ =

−145.6
√
km, the presence of an imperfect pitchfork bifurcation. It separates the region

III from the region V, in which there is only one stable point in ψ = π.
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Figure 3.12: Bifurcation diagram at semi-major axis of 10000 km and AMR = 1 m2/kg
showing the imperfect pitchfork bifurcation separating the region III from (V).

In Table 3.4 the characteristics of the regions identified in Figure 3.5 are summarised:

Table 3.4: Number of equilibria and their stability (S: stable, U: unstable) for the reso-
nance with argument ψ1, corresponding to the seven regions of Figure 3.5.

Region Total ψ = 0 ψ = π

I 5 1S and 1U 2S and 1U
II 7 2S and 2U 2S and 1U
III 3 1S and 1U 1S
IV 3 1S 1S and 1U
V 1 - 1S
VI 5 1S 2S and 2U
VII 3 2S 1S
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Dependence of the bifurcation map on AMR

Despite the bifurcations depend on the AMR, in Figure 3.13, were bifurcation map of
AMR = 1 m2/kg and AMR = 10 m2/kg are compared, it is possible to see that, globally,
the shape of the bifurcation map does not change.
The effect of increasing the AMR is reflected in the amplification and shifting towards
higher altitude of some regions: on the left side of the map it is possible to see that
the intersection of the diagram with the inclination i0 = 0◦ shifts towards higher semi-
major axis, while the trans-critical bifurcation region amplifies. However, the phase space
characteristic shapes are the same in the regions identified.
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Figure 3.13: Left: bifurcation map of the resonant term ψ1 with AMR = 1 m2/kg, right:
bifurcation map of the resonant term ψ1 with AMR = 10 m2/kg.

Saddle-point connection

The saddle-point connection bifurcation shown in Figure 3.14 takes place when, at a
certain inclination i0 (or Π̃0), the Hamiltonian Hj evaluated at an unstable point U0 at
ψ = 0 has the same value of the unstable point Uπ at ψ = π.
The resulting phase space (see Figure 3.14) presents a trajectory which connects those
points.
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At the bottom right the specific case of the intersection point connecting the unstable
curves in the plane (Π̃0,Hj), is reported. The aforementioned bifurcation has already
been investigated in Gkolias et al. [15], however, they have not reported in the bifurcation
map the line corresponding to the bifurcation.

-20 -18 -16 -14 -12 -10

-1.6

-1.55

-1.5

-1.45

-1.4

104

25 30 35 40 45

8

10

12

14

16

18

20






37 37.5 38 38.5 39 39.5 40 40.5 41
7.8

7.9

8

8.1

8.2

8.3

8.4

8.5

0 50 100 150 200 250 300 350
0.0

0.1

0.2

0.3

0.4

ψ[rad]

e[
-]

0 50 100 150 200 250 300 350
0.0

0.1

0.2

0.3

0.4

ψ[rad]

e[
-]

(A)	 (B)

(B)	 


 

(A)

I

II

III

VI






37 37.5 38 38.5 39 39.5 40 40.5 41
7.8

7.9

8

8.1

8.2

8.3

8.4

8.5

0 50 100 150 200 250 300 350
0.0

0.1

0.2

0.3

0.4

ψ[rad]

e[
-]

0 50 100 150 200 250 300 350
0.0

0.1

0.2

0.3

0.4

ψ[rad]

e[
-]

(A)	 (B)

(B)	 


 

(A)

I

II

III

VI






37 37.5 38 38.5 39 39.5 40 40.5 41
7.8

7.9

8

8.1

8.2

8.3

8.4

8.5

0 50 100 150 200 250 300 350
0.0

0.1

0.2

0.3

0.4

ψ[rad]

e[
-]

0 50 100 150 200 250 300 350
0.0

0.1

0.2

0.3

0.4

ψ[rad]

e[
-]

(A)	 (B)

(B)	 


 

(A)

I

II

III

VI

0
0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1
-2
00

-1
80

-1
60

-1
40

-1
20

-1
00-8
0

-6
0

-4
0

-2
0020

-250 -200 -150 -100 -50 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-250 -200 -150 -100 -50 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-250 -200 -150 -100 -50 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.14: Left: Position of the bifurcation points associated to the saddle-point connec-
tion in the plane (a, i0). On the top right, the phase space with in red line the saddle-point
connection line associated to the semi-major axis of 20000 km at AMR = 1 m2/kg and
on the bottom right the bifurcation point in the plane (Π̃0, H).

3.4.2. Notes on the other resonances

The bifurcation analysis of the remaining resonances is not conducted for the purposes
of this thesis. This is because the purpose of this paper is to describe the methodology
underlying this analysis so that other readers can continue these studies. In the subsequent
chapters, all analyses and results must be interpreted as pertaining to the first resonance
only.
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4| Extended model of the coupled
solar radiation pressure, J2 and
Sun gravity dynamic

In this Chapter the state-of-art single-resonance Hamiltonian model is extended including
also the effect of Sun gravitational perturbation.
Many authors (see Section 1.1.1), have studied the dynamics of HAMR objects subject
only to SRP and Earth oblateness forces. This hypothesis, as stated in Gkolias et al. [15],
is valid within certain range of altitude, inclination, eccentricity and, for high value of
AMR. In Gkolias et al. [15], for the value of (a, e, i) and AMR considered, the contribute
of the Hamiltonian of the Sun gravitational perturbation H⊙ is negligible with respect to
the one of the SRP following HSRP . Therefore, the following relation holds :∣∣∣∣ H⊙j

HSRP,j

∣∣∣∣ << 1 (4.1)

where j is the resonance considered. However for some specific ranges of the elements
mentioned abode the relation is no longer valid, hence a more complete model has to be
considered.

4.1. Taxonomy of extended solar radiation pressure,

Earth oblateness and Sun gravity Hamiltonian

model

The following Chapter outlines the hypothesis and the derivation of the extended Hamil-
tonian model mentioned above. The analysis are composed of the following topics :

• Definition of modelling hypothesis and the derivation of the dynamical model;

• Definition of the Hamiltonian model and its transformation to a single DoF au-
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tonomous function to which, the tools of system theory reported below, are applied;

• Stability analysis : for each equilibrium points, the stability properties are computed;

• Bifurcation analysis : for each resonance, the change in the dynamical the structure
(i.e. the position of the equilibrium points) as a function of physical parameters
(i.e. AMR) and obsculating parameters (i.e. a, e, i) is traced;

• Phase space analysis : the phase space in the plane (ψ, e) is analysed for each of the
dynamical region identified.

4.1.1. Hamiltonian formulation

In the following Section, the Hamiltonian function of the gravitational perturbation is
derived following the derivation by Lara et al. [45]. Then, the single-averaged autonomous
Hamiltonian model is derived using the mathematical tools presented in Chapter 3.

Hypotheses

The hypotheses behind the formulation of the Sun third-body extension of the SRP-J2
model are the same stated in Chapter 3. In addition to that:

• the Sun is lying on a circular orbit on the ecliptic plane at 1AU distance from the
center of the Earth;

• the precession of the equatorial plane over the ecliptic is neglected, which is known
(see Lara et al. [45]) to have a long-term effect, on time scales of decades.

The presence of the Moon is neglected because it has not the same resonant term of the
Sun, however it is possible to reduce it to an autonomous 1 DoF Hamiltonian only after a
double-average process around two subsequent fast-angles as done by Gkolias et al. and
Lara et al. in [43]. This statement is not always valid because its effect depends highly on
the initial Keplerian parameters and AMR value (see Casanova et al. [29]); however, as
stated by Wang et al. in [96], near the Sun apsidal resonance its effect is really negligible.
In the following, the SRP-J2 Hamiltonian is expanded with the singly-averaged second-
order Hamiltonian components of the Sun gravitational perturbation having the same
resonant argument of the SRP as Gkolias et al [15] have previously reported.
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Hamiltonian of the Sun gravity perturbation

The perturbing potential of a third-body on spacecraft close to a central body can be
expressed as a power series of the parallactic factor (r/r3b) (see Lara et al. [45]):

V3b = −µ3b

r3b

∑
j≥2

( r
r3b

)j
Pj cos γ = −βn

2
3ba

3
3b

r3b

∑
j≥2

( r
r3b

)j
Pj cos γ (4.2)

where β = m3b/(m3b +m) is the third-body reduced mass, a3b is the semi-major axis of
the third-body orbit, n3b is the mean motion of the third-body orbit, Pj are Legendre
polynomials, and cos γ the scalar product between the position of the object and the Sun.
Note that the term −µ3b/r3b has been neglected because it has no effect on the equations
of motion in the restricted problem approximation.
Then, the position of the perturber r⃗3b = r⃗⊙ is written in the Earth equatorial frame:

(x⊙, y⊙, z⊙)
T = R3(−h⊙)R1(−ε)R3(−θ⊙)(r⊙, 0, 0)T (4.3)

where h⊙ = −θ̇t is the argument of the node of the Sun apparent orbit about the Earth
in the rotating frame, ε is the obliquity of the ecliptic, and θ is the Sun argument of the
latitude. The Sun disturbing potential is then obtained from Equation (4.3) by computing:

cos γ =
xx⊙ + yy⊙ + zz⊙

rr⊙
(4.4)

where x⊙, y⊙, z⊙, r⊙ and x, y, z, r are the Sun and spacecraft coordinates in Earth equa-
torial frame, respectively. The coordinates of the spacecraft can be written in term of
Keplerian parameters:

(x, y, z)T = R3(−Ω)R1(−i)R3(−θ)(r, 0, 0)T. (4.5)

Then, the Equation (4.4),Equation (4.5) are replaced in Equation (4.2) and only the first
order expansion, is retained.
The secular and long-periodic terms of the Sun potential are derived by averaging the
satellite mean anomaly over one period under the assumption that the Sun remains
stationary throughout this interval. This averaging can be done in closed form by in-
troducing the elliptic anomaly of the satellite E, by using the known ellipse relations:
r sin(f) = a(1 − e2) sin(E), r cos(f) = a(cos(E) − e), r = a(1 − e2)/(1 + e cos(f)) and
dM = (r/a)dE. The averaging process results in (see Lara et al. [45]):
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H̄⊙ = −
a2n2

⊙

64

2∑
i=0

2∑
j=−2i

1∑
p=−1

YiK2i,l,2p × cos(2iω + lΩ + 2pλ⊙) (4.6)

where the coefficients Yi, K2i,l,2p are reported in Table 4.1,

Table 4.1: Sun gravity resonant terms. Coefficient Yi and K2i,l,2p in Equation (4.6) taken
from Lara et. al. [45].

i l p K2i,j,2p Yi ϕ j

1 2 -1 1
4
(1 + cϵ)

2(1 + ci)
2 30e2 2ω + 2Ω− 2λ⊙ 1

1 -2 1 1
4
(1 + cϵ)

2(1− ci)
2 30e2 2ω − 2Ω + 2λ⊙ 2

2 0 -2 3
2
s2εs

2
i 30e2 2ω − 2λ⊙ 3

2 0 2 3
2
s2εs

2
i 30e2 2ω + 2λ⊙ 4

1 1 1 −1
4
(cϵ − 1)2(ci + 1)2 30e2 2ω + 2Ω + 2λ⊙ 5

-1 1 1 1
4
(cϵ − 1)2(ci − 1)2 30e2 −2ω + 2Ω + 2λ⊙ 6

which for specific values of integers (i, l, p) contains the same resonant terms as Equa-
tion (3.14). The Equation (4.6) just derived is the same reported in Gkolias et al. [15].
In this work, this contribute is added to the state-of-art model and then analysed using
the tool of the bifurcation analysis.

Extended model of coupled SRP, J2 and Sun gravity dynamics

The coupled SRP, Earth oblateness and Sun gravitational perturbation model (from here
SRP-J2-Sun) is derived summing up Equation (3.14) and Equation (4.6):

H̄ = H̄J2 + H̄SRP + H̄⊙ (4.7)

which is, highlighting all the terms:

H̄ = H̄J2 + H̄SRP + H̄⊙ =
CJ2(1− 3c2i )

4a3(1− e2)3/2
− aeCSRP

6∑
j=1

Tj cosψj+

−
a2n2

⊙

64

6∑
j=1

YjKj cos 2ψj

(4.8)
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with j = 1 to 6 is the index associated to the resonances. The Equation (4.8) has already
been derived in literature (see Casanova et al. [29], Lemaitre [48], Celletti et al. [54],
and Valk et al. [52]). However, neither the single-resonance formalism nor the bifurcation
analysis of the Hamiltonian have been provided.

Isolated resonance model

The most interesting thing to note is the shape of this new extended model. As shown in
Breiter [38], Winter and Murray [41], it has the form of a Second Andoyer Fundamental
Model of resonance, in the shape of :

K = A(Φ,Ψ) + B1(Φ,Ψ) cosϕ+ B2(Φ,Ψ) cos 2ϕ (4.9)

where, A is associated with the contribute of the secular J2, and the B1,2 are associated
to the contribute of SRP and Sun gravity, respectively.

Following the same procedure in Gkolias et al. [15] and Breiter [38], the Hamiltonian can
be expressed in terms of the canonical Delaunay elements (L,G,H, l, g, h) such that:

L =
√
µa, l =M ; G = L

√
1− e2, g = ω; H = G cos i, h = Ω (4.10)

to obtain:

H̄ =
CJ2µ3(G2 − 3H2)

4G5L3
−

CSRP
√
1−G2/L2L2

µ

6∑
j=1

Tj cosψj+

−
L4n2

⊙

64µ2

6∑
j=1

YjKj cos 2ψj

(4.11)

where for the coefficients Tj, Kj and Yj the relationships ci = H/G, si =
√

1−H2/G2

and e2 = 1 − G2/L2 holds and with the resonances reported in Table 4.1. Due to the
averaging process, Equation (4.11) does not depend on the mean anomaly M = l and
thus the Delaunay action L, as well as the semi-major- axis, is constant. The system has
two DoFs and one explicit time dependence through λ⊙(t) = λ⊙,0 + n⊙t. Considering an
extended phase space, a dummy action Is with frequency n⊙ is added to the Hamiltonian:

H̄ = H̄J2 + H̄SRP + H̄⊙ + n⊙Is (4.12)
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which yields a three DoFs autonomous system. For each resonance with argument ψj a
resonant set of variables (Ψ , ψ) is introduced via a unimodular transformation of the
Delaunay elements (Ψ, ψ,Π, π,K, κ) as done in Gkolias et al. [15]. The transformed
Hamiltonian is described by the single degree of freedom ψ and by its conjugate momen-
tum Ψ:

H̄ = H̄J2(Ψ;L,Π) + H̄SRP,j(Ψ, ψ;L,Π)+

+H̄⊙,j(Ψ, ψ;L,Π) + n⊙(n3Ψ+K)
(4.13)

where :
H̄⊙,j(Ψ, ψ;L,Π) = −

L4n2
⊙

64µ2
YrKr cos 2ψj (4.14)

Using the same notation as Equation (4.9):

H̄ = AJ2 + BSRP,j cosψj + B⊙,j cos 2ψj + n⊙(n3Ψ+K) (4.15)

The coefficients Tr, Kr and Yr are expressed in terms of the new variables using the
equations ci = n1n2Ψ+Π

n2
2Ψ

, si =
√

1− c2i and e2 = 1 − n2
1Ψ

2/L2. Due to the resonant
transformation both π and κ are ignorable, hence Π and K are constants. The action
variable Π is a resonant integral of the system which is useful to recover the inclination
from the eccentricity and the resonance considered. The second integral of motion Π is
the same defined for the SRP-J2 model; to prove it, Equation (4.13) is substituted in
Equation (C.6) the. Using the same notation as in Equation (4.9), the partial derivatives
of R with respect to ω and Ω are:

∂H
∂ω

= n1BSRP sinψj + 2n1B⊙ sin 2ψj,

∂H
∂Ω

= n2BSRP sinψj + 2n2B⊙ sin 2ψj,

(4.16)

and hence, their quotient :
∂R/∂Ω
∂R/∂ω

=
∂H/∂Ω
∂H/∂ω

=
n2

n1

, (4.17)

which is the same argument as in Equation (C.1), proving that the extended single-
resonant autonomous Hamiltonian has the same second integral of motion as the SRP-J2
model.

4.1.2. Equilibrium points

From the Hamiltonian formalism, it is known that apart from H, the isolated resonance
system has two constants of motion: the semi-major- is constant due to averaging, and the
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second integral Π. The inclination of the corresponding circular orbit can be used to label
the values ofΠ. A phase space is uniquely identified given a set of values for the dynamical
parameters (a, icirc) and the engineering parameter AMR. The number of equilibrium
points and their stability can be defined in this phase space and thus a bifurcation diagram
can be computed by varying the parameters and tracking the structural changes in the
system. Elliptic and saddle points appear, as well as disappear, based on the classical
bifurcation theory for 1-DoF systems.

Equilibrium points in (Ψ, ψ) and (e,ψ)

The equation of motions relative to the coordinate (Ψ, ψ) can be derived from the resonant
Hamiltonian Equation (4.15):

ψ̇ =
∂H
∂Ψ

, Ψ̇ = −∂H
∂ψ

(4.18)

or, substituting the variable (ψ, e):

ψ̇ = −n1

√
1− e2

e
√
µa

∂H
∂e

, ė = n1

√
1− e2

e
√
µa

∂H
∂ψ

(4.19)

The equilibrium are computed imposing null gradient:

ψ̇ = 0 → ∂H
∂e

= 0, ė = 0 → ∂H
∂ψ

= 0 (4.20)

Making explicit the gradients in Equation (4.19):

∇Hψ,j = −BSRP,j sinψj − 2B⊙,j sin 2ψj,

∇He,j =
∂HJ2

∂e
+
∂BSRP,j

∂e
cosψj +

∂B⊙,j

∂e
cos 2ψj + n3n⊙

∂Ψ

∂e
.

(4.21)

It is intuitive to see that, from the equation of ∇Hψ,j the critical angles are at ψ = 0, π

(here called symmetric equilibrium points), and at intermediate value (from here called
asymmetric equilibrium points, pointed out only numerically by Wang et al. [57]).

Symmetric equilibrium points

Regarding the symmetric libration points, substituting ψ = 0, π in Equation (4.20) (using
the same notation as Equation (4.15) for convenience), the following equations have to be
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verified separately:

ψ̇0 = 0 → ∂AJ2

∂e
+
∂BSRP,j
∂e

+
∂B⊙,j

∂e
+ n3n⊙

∂Ψ

∂e
= 0,

ψ̇π = 0 → ∂AJ2

∂e
− ∂BSRP,j

∂e
+
∂B⊙,j

∂e
+ n3n⊙

∂Ψ

∂e
= 0

(4.22)

With reference to Figure 4.1 it has been plotted the phase space in the plane (ψ, e) at
a = 12000 km, ie=0 = 19.5◦ and AMR = 0.1 m2/kg. The symmetric points are spotted
with red dots.

Asymmetric equilibrium points

Regarding the asymmetric libration points, the Equation (4.21) can be simplified dividing
by sinψ (avoiding ψ = 0, π) and therefore the following non-linear system has to be solved:

ė(+/−) = 0 → BSRP,j + 4B⊙,j cosψ = 0,

ψ̇(+/−) = 0 → ∂AJ2

∂e
+
∂BSRP,j
∂e

cosψ +
∂B⊙,j

∂e
cos 2ψ + n3n⊙

∂Ψ

∂e
= 0

. (4.23)

In Figure 4.1 the asymmetric points are labelled with blue dots. Due to the coupling with
the SRP dynamics, they are not located at ψ = π/2 but rather in between ψ = π/2 and
ψ = π. In particular, from the first equation of Equation (4.23):

cosψ = −
BSRPj

4B⊙,j
, (4.24)

which has at two pairs of solution in the form of (ψ, e)+ and (ψ, e)−. The signs +, − are
used to differentiate the solutions. The angles ψ+ and ψ− are symmetric with respect to
the axis ψ = π, while their associated eccentricities (e+ and e−), are the same.
Later in the course of the Chapter it is proven that, although are very similar, the eccen-
tricity of the symmetric points and asymmetric points differ.
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Figure 4.1: Phase space of the extended SRP-J2-Sun model relative to the first resonance
at a = 12000 km, ie=0 = 19.5◦ and AMR = 0.1 [m2/kg].

4.2. Dynamical model, resonances and bifurcation

analysis

The semi-analytical equation of motion of the coupled SRP-J2 model based on the single-
averaged Hamiltonian has been defined in Chapter 3. Here, considering the Hamiltonian
of the extended SRP-J2-Sun model defined in Equation (4.11), the Lagrangian equations
of motion become:

∂ė|j
∂e

= 0,

∂ė|j
∂ψj

= n2CSRP

√
1− e2

na
Tj cosψj +

15

8

√
1− e2

n
n2n⊙Kj cos 2ψj,

∂ψ̇j
∂e

= n1

∂Ω̇(J2,⊙j ,SRPj)

∂e
+ n2

∂ω̇(J2,⊙j ,SRPj)

∂e
+ n3n⊙,

∂ψ̇j
∂ψj

= 0,

(4.25)
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with Ω̇(J2,⊙j ,SRPj) = Ω̇J2 + Ω̇SRPj
+ Ω̇⊙j

and ω̇(J2,⊙j ,SRPj) = ω̇J2 + ω̇SRPj
+ ω̇⊙j

, therefore:

Ω̇J2 = −3

2

J2r
2
⊕n

a2(1− e2)2
cos i,

Ω̇SRP = CSRP
e

na
√
1− e2 sin i

6∑
j=1

∂Tj
∂i

cosψj,

Ω̇⊙ =
15

32

e2 csc i√
1− e2

n2
⊙

n

6∑
j=1

∂Kj

∂i
cos 2ψj,

ω̇J2 =
3

4

J2r
2
⊕n

a2(1− e2)2
(
5 cos2 i− 1

)
,

ω̇SRP = CSRP

√
1− e2

nae

6∑
j=1

Tj cosψj − Ω̇SRP cos i,

ω̇⊙ =
15

16

n2
⊙

n

√
1− e2

6∑
j=1

Kj cos 2ψj − Ω̇⊙ cos i.

(4.26)

The equilibrium orbit, depending on the resonance, describes the same kind of orbit listed
in Section 3.2.2, with the difference that the argument of periapsis is n1Ω̇(J2,⊙j ,SRPj) +

n2ω̇(J2,⊙j ,SRPj).

4.2.1. Dynamical regimes

In this Section, the basic technique for calculating the location and stability of equilibrium
points associated with the extended model as a function of both physical parameters and
initial elements is detailed.
A part from the obsculating Keplerian parameters, the dynamics is strongly influenced
by the AMR; hence, the dynamics is classified according to the AMR of the object :

• AMR = 0 m2/kg, thus only the dynamics due to J2 and Sun gravity effects are
retained;

• low AMR such that the contribute of SRP does not overwhelm that of the Sun
gravity, but can not be neglected;

• high values of AMR such that the dynamics is mainly driven by the coupled effect
of SRP and Earth oblateness.

For this scope a new parameter σ∗
i,j is defined, and used to identify as the critical value

of AMR such that, under certain circumstances defined below, the dynamical model
collapse to the coupled SRP, J2 model. To derive this parameter, the gradient of H
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(Equation (4.21)) with respect to (ψ, e) is explicited :

∇Hψ,j = aeCSRPTj sinψj +
15

16
a2n2

⊙e
2Kj sin 2ψj,

∇He,j =
∂HJ2

∂e
− aCSRPTj cosψj −

15

16
a2n2

⊙eKj cos 2ψj + n3

n⊙
√
µae

√
1− e2

.
(4.27)

From the first the critical equilibrium angle is defined as:

ψ = 0, π and

cosψj = − 8

15

CSRP
an2

⊙e

Tj
Kj

(4.28)

From the second of Equation (4.28), it is intuitive to conclude that, if cosψ = −1, the
asymmetric equilibrium point is located at π, this condition is satisfied for:

σ∗
i,j =

5

4

Kj

Tj
n2
⊙

P⊙cR
aeeqi,j (4.29)

where σ∗
i,j is the discriminant AMR associated to the i-th equilibrium and j-th resonance.

If AMR = σ∗
i,j, the condition constitutes the generation of a peculiar kind of bifurcation

which has not yet described in literature.
As a result of the dynamical regimes stated before, from here, are defined as:

• first dynamical regime for AMR = 0 m2/kg;

• second dynamical regime for 0 < AMR < σ∗
i,j;

• third dynamical regime for AMR ≥ σ∗
i,j.

Dynamical structure for AMR = 0

If it is assumed the spacecraft has a negligible area, the dynamics can be described by
the coupled Sun gravity and Earth oblateness model. Considering the second equation of
Equation (4.21), and putting CSRP = 0 :

∇Hψj
= 2B⊙,j sin 2ψj = 0, (4.30)

it is possible to observe that the equilibrium points are at critical angles ψ⊙,J2 = 0, π
2
, π, 3π

2
,

and π with corresponding eccentricity computed satisfying:

ψ̇J2,⊙j
= n1ω̇J2,⊙j

+ n2Ω̇J2,⊙j
+ n3n⊙ = 0, (4.31)
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which can be conveniently reduced to a quadratic equation in the unknown cos i rearrang-
ing Equation (4.25) with CSRP = 0 :

(c1,J2 + c1,⊙j
) cos i2 + (c2,J2 + c2,⊙j

) cos i+ (c3,J2 + c3,⊙j
) = 0. (4.32)

The coefficients c1, c2, c3 are defined above in the dedicated resonance Section 4.2.3.

Dynamical structure for 0 < AMR < σ∗i,j

For objects with low value of AMR the effect of the SRP on the orbital dynamics is not
negligible. Under this hypothesis, the orbital dynamics is driven by the coupled SRP,
Earth oblateness and Sun gravity perturbations. As already studied in Section 4.1.2, the
contemporary presence of the Sun gravity, SRP and Earth oblateness effect, leads to a
more complicate dynamical structure with an increased number of equilibrium points.
The asymmetric equilibrium points arising from the equilibrium points at ψ = π/2, 3π/2,
belonging to the coupled J2-Sun gravity model, are not more located at that peculiar
angular position but have to be computed solving a non-linear system of two equations
Equation (4.27).
The peculiarity of this coupled model is that, as long as it is possible to consider the
dynamics of an equilibrium driven by the three effects, its eccentricity positions does not
depend on AMR, remaining the same computed in the J2-Sun gravity model until its
discriminant σ∗

i,j is reached.
This can be demonstrated by substituting the second Equation (4.28) in the equation of
∇He:

∇He,j =
∂HJ2

∂e
− aCSRPTj cosψ − 15

16
a2n2

⊙eKj cos 2ψ + n3n⊙
∂Ψ

∂e
=

=
∂HJ2

∂e
+

15

16
a2n2

⊙eKj − cosψ

(
aCSRPTj +

15

8
a2n2

⊙eKj cosψ

)
+ n3n⊙

∂Ψ

∂e
=

=
∂HJ2

∂e
+

15

16
a2n2

⊙eKj + n3n⊙
∂Ψ

∂e
.

(4.33)

The term inside round brackets simplifies, therefore the gradient does not depend on the
SRP contribute. The proof is valid regardless of the resonance considered; however, for
the sake of clarity, in Figure 4.5, Figure 4.6, and Figure 4.7 is reported the computation
done for the first resonance. Indeed, below the value of the respective discriminant AMR,
the asymmetric equilibrium point eccentricity position do not change increasing the AMR
of the object.
The inclination of the asymmetric equilibrium points for 0 < AMR ≤ σ∗

i,j is the same of
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the corresponding asymmetric point computed at AMR = 0 m2/kg. This because, if the
eccentricity does not change, also the inclination remains constant, because the second
integral of motion is conserved.
Instead, for the symmetric points it is the contrary. This because, in Equation (4.27),
∇He,j, still depends on AMR if ψ = 0, π.
Similar to what has been done for Equation (4.32), the commensurability equation can
be written as :

(c1,J2 + c1,⊙j
+ c1,SRPj

) cos i2 + (c2,J2 + c2,⊙j
+ c2,SRPj

) cos i+

+(c3,J2 + c3,⊙j
+ c3,SRPj

) = 0.
(4.34)

If it is solved for each value of (a, e, AMR) and for ψ = 0 or π, it is possible to compute
the resonant inclination of the symmetric points 1, which now depends on AMR.
The bifurcation map for the points in ψ = 0, π has been computed in the same way as
the one in Chapter 3 . The stability evaluation now differs because it has to include the
contribute of the Sun third-body.
In addition to the bifurcations associated to the symmetric points, a bifurcation relative
to the asymmetric points arises when the AMR of the object considered is the same as
the critical one. Therefore, for each value of the semi-major axis considered and in the
range of eccentricities between 0 and 1, at ψ = π/2 and AMR = 0 m2/kg, together with
the corresponding value of Π̃e=0, the discriminant σ∗

i,j is computed and compared with
the considered AMR. Then, if a bifurcation exists, it is plotted in the plane (a, ie=0).

Dynamical structure for AMR ≥ σ∗i,j

In the case of objects with AMR ≥ σ∗
i,j, the asymmetric equilibrium point collapse to ψ =

π, and the contribute of the Sun gravity Hamiltonian becomes negligible. Therefore, the
objects motion can be considered as driven by the coupled SRP-J2 dynamics, extensively
described by many authors and also in this thesis (see Chapter 3).

4.2.2. Stability analysis

The stability of the equilibrium points can be evaluated by computing the eigenvalues of
the Hessian matrix evaluated at the equilibrium point:

Hess(H)j =

(
∂ė
∂e

∂ė
∂ψ

∂ψ̇
∂e

∂ψ̇
∂ψ

)
(4.35)

1the values of ci are reported in the resonant-specific section



56
4| Extended model of the coupled solar radiation pressure, J2 and Sun

gravity dynamic

The partial derivatives ∂ė
∂e

and ∂ψ̇
∂ψ

are zero if evaluated at the equilibrium. Therefore, the
information about the stability of the point can be retrieved by evaluating the eigenvalues
of the Hessian :

λ2 − ∂ė

∂ψ

∂ψ̇

∂e
= 0 → λ1,2 = ±

√
∂ė

∂ψ

∂ψ̇

∂e
. (4.36)

If the sign of the term under the square root is positive, the eigenvalues are positive, hence
unstable. On the other hand, if it is negative, the eigenvalues are complex conjugated,
thus the orbit is periodic. The partial derivatives are the sum of the Earth oblateness,
SRP and Sun gravity contribute and reported below:

∂ė|j
∂e

= 0,

∂ė|j
∂ψj

= n1CSRP

√
1− e2

na
Tj cosψj +

15

8
a

√
1− e2

n
n1n⊙eKj cos 2ψj,

∂ψ̇j
∂e

= n2

∂Ω̇(J2,j,⊙)

∂e
+ n1

∂ω̇(J2,j,⊙)

∂e
,

∂ψ̇j
∂ψj

= 0.

(4.37)

where, the terms of the Hessian matrix of the commensurability equation are reported in
Appendix B in Equation (B.4).

4.2.3. Dynamical structure of the resonance j = 1

In the following two sections dynamical structure analysis for the first resonance only, is
reported. The coefficients of the quadratic equations for the other resonances are reported
in Appendix D.
Under the hypothesis of dynamics driven by a single resonance, the resonant Hamiltonian
corresponding to the first resonance is :

H̄1 =
CJ2µ3(G2 − 3H2)

4G5L3
+

−1

4

CSRP
√
1−G2/L2

µ
L2(1 + cε)(1 + ci) cos (ω + Ω− λ⊙)+

− 15

128

L4n2
⊙

µ2
e2(1 + cε)

2(1 + ci)
2 cos (2ω + 2Ω− 2λ⊙)− n⊙

√
µa

√
1− e2

(4.38)

In the following, the bifurcation maps is drawn under the hypothesis of dynamics driven
by J2-Sun (AMR = 0 m2/kg), SRP-J2-Sun and SRP-J2 (AMR ≥ σ∗

i,j) models.
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Dynamical structure at AMR = 0 m2/kg

If it is assumed that the spacecraft has negligible area, the dynamics can be described by
the coupled Sun gravity and Earth oblateness model. The equilibrium points are at critical
angles ψ⊙,J2 = 0, π

2
, π, 3π

2
, and π with corresponding eccentricity computed satisfying:

ψ̇J2,⊙1 = ω̇J2,⊙1 + Ω̇J2,⊙1 − n⊙ = 0, (4.39)

which can be conveniently reduced to a quadratic equation in the unknown cos i by elab-
orating Equation (4.25) with CSRP = 0 :

(c1,J2 + c1,⊙1) cos i
2 + (c2,J2 + c2,⊙1) cos i+ (c3,J2 + c3,⊙1) = 0. (4.40)

The coefficients are reported in Table 4.2 (note that the Equation (4.31) is multiplied by
4a5β5en to have the same notation as in Alessi et al. [14]):

Table 4.2: Coefficients of the quadratic equation c1 cos
2 i + c2 cos i + c3 = 0 associated

to the extended model for j = 1 and AMR = 0 m2/kg. In the table, β =
√
1− e2,

γ = cos2
(
ϵ
2

)
, ρ = sin2

(
ϵ
2

)
.

c1 c2 c3

J2 15C⊕eβ −6C⊕eβ −eβ (3C⊕ + 4a5β4nn⊙)

⊙ +15/4a5γ2eβ4n2
⊙ cos 2ψ +30/4a5γ2eβ6n2

⊙ cos 2ψ −15/4a5γ2eβ4(2e2 − 1)n2
⊙ cos 2ψ

The procedure followed to draw the bifurcation map (Figure 4.4), is reported in the
flowchart Figure 4.2.
For each semi-major axis in the range under study, and for the resonance considered, the
Equation (4.40) is solved for AMR = 0 m2/kg, ψ = 0, π/2 and π. As for example, the
bifurcation diagram at a = 16000 km for the three angular configuration considered, the
inclination range (Π̃0) is in [0, 180◦] in Figure 4.3, has been reported in the plane (e, Π̃0).
Then, for each equilibrium point along the plot, if the eigenvalue product λ1λ2 according
to Equation (4.36), results zero, the equilibrium point is a bifurcation.
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Figure 4.2: Flowchart of the procedure used to compute the bifurcation map (Figure 4.4)
in the J2-Sun coupled dynamics.

The populated bifurcation map of the dynamics is reported in Figure 4.4. In the figure,
labelled with point (A) it has been reported reported the phase space characteristic of
this region: it presents nine equilibrium points (three for each angular configuration). In
region (B), instead, the dynamics presents only three equilibrium (one for each angle). The
transition between (A) and (B) is reported in the bottom right phase spce of Figure 4.4,
where the bifurcation for a = 16000 km occurs at i0 = 29.0085◦.
Table 4.3 summarises the number and behaviour of the equilibria appearing in Figure 4.4.

Table 4.3: Number of equilibria and their stability (S: stable, U: unstable) for the reso-
nance with argument ψ1, corresponding to the two regions of Figure 4.4

Region Total ψ = 0 ψ = π/2 ψ = π

(A) 9 2 U and 1S 1 U and 2 S 2 U and 1S
(B) 3 1 U 1 S 1 U
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Figure 4.3: Bifurcation diagram for AMR = 0 m2/kg, a = 16000 km and j = 1 for the
⊙, J2 model.
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Figure 4.4: Bifurcation analysis plot for the ⊙, J2 model with i0 from 0◦ to 180◦, a from
8000 km to 30000 km and j = 1. Bifurcation at i0 = 29.0085◦ for a = 16000 km.
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Dynamical structure at 0 < AMR < σ∗i,j

For objects with low value of AMR the effect of the SRP on the orbital dynamics is not
negligible. Under this hypothesis the dynamics is considered as driven by coupled SRP,
Earth oblateness and Sun gravity perturbations. From Equation (4.29), the discriminant
AMR for the first resonance is defined:

σ∗
i,1 =

5

4

(1 + cε)

P⊙cR
(1 + ci)n

2
⊙ae

eq
i,j=1 (4.41)

which drives the change of dynamical regime.

Figure 4.5, Figure 4.6 and Figure 4.7 display the equilibrium position (e, ψ) of the three
asymmetric equilibrium points in a = 10078 km, Π̃0 = −17 [

√
km2] (i0 = 33.8335◦), and

varying the AMR ratio in the range [0; 0.5] m2/kg. It is possible to appreciate that, below
σ∗
i,1, the eccentricity does not change as proven by Equation (4.33).

Note : the concept just studied is used to identify the bifurcation lines on the bifurcation
map for the extended Hamiltonian model. In particular, if the AMR of the object under
study, for a coordinate (a, i0), is the same as that associated to the discriminant value
σ∗
i,1, hence the equilibrium point is on a bifurcation.
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Figure 4.5: Position of the stable asymmetric equilibrium points of the extended model
model at a = 10078 km, Π̃0 = −17.0

√
km with increasing values of AMR and j = 1.
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Figure 4.6: Position of the unstable asymmetric equilibrium points of the extended model
model at a = 10078 km, Π̃0 = −17.0
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Figure 4.7: Position of the stable asymmetric equilibrium points of the extended model
model at a = 10078 km, Π̃0 = −17.0

√
km with increasing values of AMR and j = 1.

Regarding the equilibrium points at ψ = 0, π their equilibrium eccentricity can be easily
computed by verifying the commensurability equation:

(c1,J2 + c1,⊙1 + c1,SRP1) cos i0
2 + (c2,J2 + c2,⊙1 + c2,SRP1) cos i0+

+(c3,J2 + c3,⊙1 + c3,SRP1) = 0.
(4.42)
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The coefficients ci are reported in Table 4.4.

Table 4.4: Coefficients of the quadratic equation c1 cos
2 i + c2 cos i + c3 = 0 associated

to the extended model for j = 1. In the table, β =
√
1− e2, γ = cos2

(
ϵ
2

)
, ρ = sin2

(
ϵ
2

)
.

Note that Equation (4.40) is multiplied by 16a5β5en.

Effect c1 c2 c3

J2 60C⊕eβ −24C⊕eβ −4eβ (3C⊕ + 4a5β4nn⊙)

SRP +8CSRPa
4β4γ cosψ +8CSRPa

4β4γ(1− 2e2) cosψ

⊙ +15a5γ2eβ4n2
⊙ cos 2ψ +30a5γ2eβ6n2

⊙ cos 2ψ −15a5γ2eβ4(2e2 − 1)n2
⊙ cos 2ψ

Bifurcation map generation algorithm

The algorithm used to compute the bifurcation maps presented in Figure 4.12, Figure 4.11,
Figure 4.13 and Figure 4.14 is reported in Figure 4.8 for an easier understanding of the
procedure.
In addition to the bifurcation diagram presented in Chapter 3 (in Figure 3.5), bifurcations
connected to the points ψ = 0, π are added those associated to the asymmetric points.
In fact, for the first, the procedure to obtain their position is the same as in Figure 3.1,
but rather than using the Equation (3.26), it uses Equation (4.42) and the coefficients are
reported in Table 4.4.
Regarding the asymmetric points, the technique is rather more laborious. First of all,
for each semi-major axis in the range under study and for e ∈]0, 1[ the position of the
equilibrium points of the Sun-J2 model with the equation Equation (4.42) is computed.
As already remarked before, a bifurcation occurs when for the triplet (a, i0, AMR) the
asymmetric point has cosψasym = −1 (see Equation (4.28)), that is to say ψasym → π.
The bifurcation takes place when, for the coordinate (a, i0) and for the eccentricity of the
asymmetric equilibrium point just computed, satisfies the condition :

σ∗
i,j = AMR. (4.43)

To better summarise, let us refer to the plot in Figure 4.7: for (a, i0) indicated, the angular
position of the equilibrium point, continuously increase from ψ = π/2 until reach ψ = π

when AMR = σ∗
1,1. Conversely, the eccentricity remains constant until the bifurcation

condition is reached. In conclusion, for the couple (a, i0) reported in the plot, if the
AMR of the orbiting object is the same of the discriminant AMR, that point populates
the bifurcation diagram. The delineate procedure has to be repeated for each asymmetric
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equilibrium point reported in Table 4.3.

Figure 4.8: Flowchart of the algorithm used to identify the bifurcation points associated
to the asymmetric equilbria.

Figure 4.9 shows the position of the bifurcation lines as function AMR. Specifically, when
AMR rises, the bifurcations shift to higher altitudes and lower inclination, indicating that
the influence of the third-body disturbance is more significant at higher altitudes. In the
following sections, are shown two examples of bifurcation maps for two different AMR.
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Figure 4.9: Bifurcation map of the resonant term ψ1 with AMR = 0.5 m2/kg. On the
bottom are reported the peculiar phase space appearing in the five identified regions.

Case study : AMR = 0.3 m2/kg

With reference to Figure 4.12, Figure 4.11, and Figure 4.13, the dynamical behaviour in
the regions identified by the newly derived bifurcations is described. The yellow bold lines
are generated from the bifurcation condition on the two equilibrium points along the first
solution of Equation (4.42), while the green bold one to the equilibrium present along the
second solution of Equation (4.42) (see Figure 4.3 for comparison). The characteristics of
the equilibrium points in the region (II)(Figure 4.11), are listed in Table 4.5:

Table 4.5: Equilibrium points in region (II) of Figure 4.11 for AMR = 0.3 m2/kg.

Region ψ = 0 ψ = π Asymmetric Total

A 2 S and 2 U 2 U and 1 S 1 S in (A,2), 1 S in (A,4) and 1 U in (A,3) 10
B 2 S and 2 U 1 U and 2 S 1 S in (A,2) and 1 U in (A,3) 9
C 2 S and 2 U 3 S 1 U in (A,3) 8

The characteristics of the equilibrium points in the region (I)(Figure 4.12), are listed in
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Table 4.6:

Table 4.6: Equilibrium points in region (I) of Figure 4.12 for AMR = 0.3 m2/kg.

Region ψ = 0 ψ = π Asymmetric Total

A 1 S and 1 U 3 S 1 U in (A,2) 6
B 1 S and 1 U 2 S and 1 U - 5

The characteristics of the equilibrium points in the region (III)(Figure 4.13), are listed in
Table 4.7:

Table 4.7: Equilibrium points in region (III) of Figure 4.13 for AMR = 0.3 m2/kg.

Region ψ = 0 ψ = π Asymmetric Total

A 1 S and 1 S 1 S in (A,2) 4
B 1 S and 1 U 2 S - 3

For the regions (IV), (V), (VI) and (VII), since they are all above the bifurcations, their
dynamics is the same as the one presented in Chapter 3 and completely described by
Table 3.4.

Case study: AMR = 0.5 m2/kg

Figure 4.14, shows the bifurcation diagram relative to AMR = 0.5 m2/kg. Here, the third
bifurcation line (the green one), is not visible, since it is locate at higher altitudes. In the
region (II), the characteristics of the equilibrium points are listed in Table 4.8:

Table 4.8: Characteristics of asymmetric bifurcation

Region ψ = 0 ψ = π Asymmetric Total

A 2 S and 2 U 2 U and 1 S 1 S in (A,2) and 1 U in (A,3) 9
B 2 S and 2 U 3 S 1 U in (A,3) 8
C 2 S and 2 U 2 S and 1 U - 7

To summarise, although the position of the bifurcations depends on AMR, the number
of asymmetric points and their stability behaviour holds the same as represented in Fig-
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ure 4.10. In fact, above each bifurcation branch, an asymmetric equilibrium is added. In
particular, as reported in Table 4.9 and in reference to Figure 4.10:

Table 4.9: Characteristics of asymmetric bifurcation

Bifurcation branch Equilibrium added

First Y 1 U
Second Y 1U and 1 S
First G (region I) 2 S and 1 U
First G (region II) 1 S
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Figure 4.10: Number of asymmetric equilibrium points with their stability added by region
identified by the bifurcation lines.
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Figure 4.11: Bifurcation map of the resonant term ψ1 with AMR = 0.3 m2/kg. On the
bottom are reported the peculiar phase space appearing in the region (II).
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Figure 4.12: Bifurcation map of the resonant term ψ1 with AMR = 0.3 m2/kg. On the
bottom are reported the peculiar phase space appearing in the region (I).
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Figure 4.13: Bifurcation map of the resonant term ψ1 with AMR = 0.3 m2/kg. On the
bottom are reported the peculiar phase space appearing in the region (III).
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Figure 4.14: Bifurcation map of the resonant term ψ1 with AMR = 0.5 m2/kg. On the
bottom are reported the peculiar phase space appearing in the region (II).
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Note on the trans-critical bifurcation

The so called trans-critical bifurcation limits the (IV) area. It is important to note that,
if the discriminant AMR is exceeded in this area, the stable asymmetric points do not
collapse to ψ = π, but rather to ψ = 0, since they must adhere to the stability behavior
of the SRP-J2 dynamics that is specific to that region. This phenomena is reported in
Figure 4.15 for increasing AMR. The phase spaces (A) correspond to a point in the area
(IV), while the phase spaces (B) relate to the region (III) (and to the other regions):
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Figure 4.15: Up : asymmetric points collapsing in ψ = 0 in region (IV) and, down :
asymmetric points collapsing in ψ = π in region (III)(and to the other regions).

Dynamical structure at AMR ≥ σ∗i,j

If for a given initial condition (a, ie=0, eeqi,j=1):

AMR ≥ σ∗
i,1 =

5

4

(1 + cε)

P⊙cR
(1 + ci)n

2
⊙ae

eq
i,j=1 (4.44)

with cos i computed from the conservation of the second integral of motion Πe=0:

√
1− e2(n2 − n1 cos i) = (n2 − n1 cos ie=0), (4.45)
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the dynamics can be completely described by the SRP-J2 model. Hence, the bifurcation
map resembles the one calculated in Figure 3.5. This is due to the fact that, as seen in
Figure 4.9, the asymmetric bifurcations move upwards with rising AMR.
In the next section, it has been proven that, the harmonic contribute of the Sun gravity
on the time variation of the eccentricity and inclination becomes negligible when the
discriminant AMR is exceeded.

Final Remark

In previous analysis, the conditions under which the asymmetric points fall into a bifurca-
tion on the phase space of the extended Hamiltonian model are derived. These additional
points are added to the existing one, which forms the foundation of the studied map (a,
i0, AMR).
Considering the other resonances, the coefficients of Equation (4.34) are reported in Ap-
pendix D for completeness. The procedure has been outlined so that future researchers
may continue with the study.

4.2.4. Validation of the Hamiltonian model

In this section the just derived model is validated against the semi-analytical propaga-
tor. As done for the semi-analytical propagator described in Chapter 2 and detailed in
Appendix A, a semi-analytical propagator is modelled using as perturbing function the
single-resonance Hamiltonian Equation (4.38) such that :

R̄ = −H̄j (4.46)

Although the Hamiltonian is autonomous, its integration requires the position of the Sun,
hence the only time dependent quantity is the ecliptic longitude of the Sun λ⊙(t), that
here is assumed having a circular orbit lying on the ecliptic plane :

λ⊙(t) = λ⊙,0 + n⊙t (4.47)

In Figure 4.16, Figure 4.17 and Figure 4.18 has been reported the time evolution for 90
years of the eccentricity and of the inclination computed with the full-dynamics semi-
analytical (red line) and Hamiltonian (blu line) propagators. The initial conditions at
01/01/2001 00:01 UTC are reported in Table 4.10.
In Figure 4.19, Figure 4.20 and Figure 4.21, the phase space (e, ψ) obtained by integrat-
ing the equation of motion in the framework of dynamics driven by a single-resonance
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Hamiltonian (light gray) and by the complete semi-analytical dynamics (colored lines)
are compared, with initial conditions reported in Table 4.10, respectively.

Table 4.10: Initial Keplerian elements of the test cases.

Test a km e ie=0 rad Ω rad ω rad f rad AMR m2/kg

Figure 4.16 12000 0.29 0.3491 0 0 0 0.01

Figure 4.17 12000 0.29 0.3491 0 0 0 0.1

Figure 4.18 12000 0.29 0.3491 0 0 0 ≈ 0.15

Figure 4.19 12078 0.445 0.3491 0 0, π/2, π 0 0.01

Figure 4.19 12078 0.445 0.3491 0 0, π/2, π 0 0.05

Figure 4.19 12078 0.445 0.3491 0 0, π/2, π 0 0.5

The applicability of this model, as stated in the initial hypothesis, is near the resonance
(Casanova et al. [29]). On the other hand, far from it, the coupled effect of the higher
order harmonics and the combined Luni-solar perturbation deviate the dynamics from
the one represented by the Hamiltonian semi-analytical propagator.
As can be seen, the propagated trajectory deviates from the Hamiltonian model due
to the contribution of extra harmonics and higher order terms that are not accounted
for in the Hamiltonian formulation. In addition, the extended model does not include
the contribution of the Moon’s gravity, as its Hamiltonian formulation lacks the same
critical argument as that of the Sun and SRP. As a result, it is not possible write the
Hamiltonian with respect to a rotating reference frame containing the Sun-Earth line, and
it is therefore impossible to reduce the single-averaged formulation to autonomy. This may
be conceivable if a procedure with a higher level of averaging (i.e. double averaging) is
used and the Moon’s impact on node precession, inclination, and argument of perigee
fluctuation is ignored. Nevertheless, the double-averaged Hamiltonian (first about mean
anomaly and second about the Sun mean anomaly) renders the SRP contribution null
(see Gkolias et al. [15] and Gkolias et al.[43]). Nonetheless, the Hamiltonian model is
able to retrieve valuable information on the dynamics in a quasi-analytical formulation,
thereby simplifying the preliminary analysis of disposal manoeuvre design.
Regarding the computational time, the integration of the equation of motion based on
the Hamiltonian formulation requires less time than the one required by the integration
of the semi-analytical propagator. In Table 4.11 are reported the computational times of
the integration of the Hamiltonian and the semi-analytical model of the initial conditions
of Figure 4.16, Figure 4.16 and Figure 4.18 and AMR = 2 m2/kg run on a 2.3 GHz 8-Core
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Intel Core i9 CPU. It is possible to see that the CPU time required for the integration of
the Hamiltonian model is approximately a sixth of the one required by the second model,
and, moreover, the computational times do not depend on AMR.

Table 4.11: Computational time comparison on 2.3 GHz 8-Core Intel Core i9 CPU

Test tCPU (Hamiltonian) s tCPU (Semi-analytical) s

Figure 4.16 0.233415 1.479738
Figure 4.17 0.231110 1.480736
Figure 4.18 0.234676 1.624767
AMR = 2 m2/kg 0.281956 1.652886
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Figure 4.16: time evolution of the eccentricity and inclination propagated with the full-
dynamics and with the single-resonant Hamiltonian propagators. AMR = 0.01 m2/kg,
a = 12000 km and ie=0 = 20◦.
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Figure 4.17: time evolution of the eccentricity and inclination propagated with the full-
dynamics and with the single-resonant Hamiltonian propagators. AMR = 0.1 m2/kg,
a = 12000 km and ie=0 = 20.0◦.
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Figure 4.18: time evolution of the eccentricity and inclination propagated with the full-
dynamics and with the single-resonant Hamiltonian propagators. AMR = σ∗

1,1 ≈ 0.15

m2/kg, a = 12000 km and ie=0 = 20.0◦.
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Figure 4.19: Representation in the plane (e, ψ) and in the Poincare plane (e cosψ, e sinψ)
of the trajectories propagated with the Hamiltonian propagator (light gray) and semi-
analytical propagator (coloured lines) for AMR = 0.01 m2/kg, a = 12078 km and ie=0 =

25.5◦

Figure 4.20: Representation in the plane (e, ψ) and in the Poincare plane (e cosψ, e sinψ)
of the trajectories propagated with the Hamiltonian propagator (light gray) and semi-
analytical propagator (coloured lines) for AMR = 0.05 m2/kg, a = 12078 km and ie=0 =

25.5◦.
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Figure 4.21: Representation in the plane (e, ψ) and in the Poincare plane (e cosψ, e sinψ)
of the trajectories propagated with the Hamiltonian propagator (light gray) and semi-
analytical propagator (coloured lines) for AMR = 0.5 m2/kg, a = 12078 km and ie=0 =

25.5◦.

4.2.5. Effect of the discriminant AMR (σ∗i,j) on the orbital dy-
namics

When, for a specific equilibrium point, its associated discriminant AMR is exceeded, the
asymmetric equilibrium points collapse to π if the initial condition is below the trans-
critical bifurcation (see Figure 4.15), and to 0 if are above the line. Figure 4.22 shows
the width of the asymmetric resonance for an object having initial condition a = 12000

km, ie=0 = 20◦. The width δe has been computed solving the Equation (4.27) in the
cases of ψ = π and asymmetric point, then computing the distance between the corre-
spondent eccentricities. It is possible to note that the width of the resonance is zero for
AMR≥ σ∗

1,1 ≈ 0.15 m2/kg.
From a dynamical standpoint, this indicates that the oscillation induced by the harmonic
of the Sun in the eccentricity depends on the initial argument of ψ: in Figure 4.23, the
evolution of eccentricity and inclination for different AMR is reported; it is possible to
see that if the initial point is located on the unstable point in ψ = 0, the oscillation
with higher frequency of the Sun gravity decreases (also shown by Wang et al. [96]) with
the increase of AMR, and from about the value of σ∗

i,j ≈ 0.15 m2/kg they completely
disappear (see also Figure 4.22). Similarly, in Figure 4.24, if the initial condition is the
unstable point at ψ = π, for increasing AMR, the overall evolution of inclination and
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eccentricity stabilise at constant value because the unstable point changes into a stable
point.
Due to the presence of higher order perturbations and multi-resonance interactions, this
is not exactly true in practice.
As final remark, it is possible to see that, when the discriminant AMR is exceeded,
the Hamiltonian of the SRP overwhelms the Hamiltonian of the Sun gravity (see Equa-
tion (4.1)): ∣∣∣∣ H⊙j

HSRP j

∣∣∣∣ << 1, (4.48)

In fact, by substituting the definition of σ∗
i,j in Equation (4.1) (evaluated at ψ = π or

ψ = 0, for any resonance): ∣∣∣∣ H⊙j

HSRP j

∣∣∣∣ = 5

16

an2
⊙e

eq
i,j

P⊙cRσ∗
i,j

Kj

Tj
=

1

4
. (4.49)

In conclusion, for AMR ≥ σ∗
i,j, whatever are the resonance, semimajor-axis, and inclina-

tion considered, the contribute of SRP is four times higher than the contribute of the Sun
gravity. As consequence, it is reasonable to consider that the orbital dynamics is subject
to the coupled SRP-J2 model only.
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Figure 4.22: Asymmetric resonance width as function of the AMR at a = 12000 km,
i0 = 20◦
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Figure 4.23: time evolution of eccentricity and inclination for different values of AMR
starting from the unstable point in ψ = 0, a = 12000 km ie=0 = 20◦ .
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Figure 4.24: time evolution of eccentricity and inclination for different values of AMR
starting from the unstable point in ψ = π, a = 12000 km ie=0 = 20◦ .
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Using the techniques of dynamical system theory, this chapter extracts relevant infor-
mation for mission design and debris analysis from the phase space portrait. As for the
dynamics driven by SRP and Earth oblataness in the planar case Lucking et al. [13] and
inclined case Gkolias et al. [15] models, it is shown how de-orbiting may occur within
the extended SRP-J2-Sun model. Then, in the last section, a synthetic debris population
is propagated and analysed (Casanova et al. [51]), to see whether there exists a specific
case of debris trapped in one of the resonances found.

5.1. State-of-art passive de-orbiting from e = 0

In the following Section, the state-of-art procedure to compute the minimum AMR to
deorbit from a circular inclined orbit is outlined.
Phase space analysis may be used to determine the possible orbital elements and AMR
for a reentry into Earth atmosphere. Given that the investigated dynamics do not affect
the semi-major axis, natural de-orbiting can only occur if the eccentricity exceeds the
critical value ecr = 1−R⊕/a. The minimum needed AMR is taken into account when this
situation takes place at either ψ = 0 or ψ = π. Also, bearing the phase space behavior
of Chapter 4 in mind, the steepest eccentricity growth from a circular orbit occurs at
ψj,1 = π/2 or ψj,1 = 3π/2, following the stable direction associated with a hyperbolic
equilibrium point or a libration curve associated with an elliptic equilibrium point. On
the basis of this, and in line with the concept described in Lücking et al. [13] for the
planar situation, the algorithm solves for the matching condition (CSRP) the two-point
boundary value problem described by the following equation:

Hψj
(Ψ(e = 0), ψj,1;L,Π)−Hψj

(Ψ(e = ecr), ψj,2;L,Π) = 0, ψj,2 = 0 ∨ π (5.1)
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This equation has two unknowns: the first is the value of AMR (CSRP), while the second is
the value of inclination at the critical condition. Given that the inclination changes with
eccentricity and that the second integral of motion Π is conserved, the final inclination
reads (Gkolias et al. [15]):

cos icr =
Π

n1

√
µa(1− e2cr

+
n2

n1

. (5.2)

Re-arranging with respect to CSRP and simplifying by variable changes substituting η =√
1− e2, it holds (Gkolias et al. [15]):

CSRP =
µ cosψj2

4L10n2
1Tjη5crecr

[
4L9n1n3n⊙(ηcr − 1)ηcr+

−CJ2L2(n2
1 − 3n2

2)η
3
cr(η

3
cr − 1)µ3+

+6CJ2Ln2ηcr(η
4
cr − 1)µ3Π+ 3CJ2(η5cr − 1)µ3Π2

] (5.3)

The minimum AMR to de-orbit from a circular inclined orbit is computed solving for
a ∈ [7000; 15000] [km], i0 ∈ [0; 90◦] and ψ = 0, the CSRP from Equation (5.3). On the
basis of its sign, it allocates the de-orbiting at the final critical angle ψ = 0 (if positive)
or ψ = π (if negative).

5.2. Passive de-orbiting from e = 0 in the extended

model framework

Similar to what was done in the previous Section in the context of SRP-J2 framework
(and by several authors (see Section 1.1.1, including Giovannini and Colombo in [79]),
in this Section, the procedure to calculate the lowest AMR necessary to de-orbit from a
circular orbit within the context of the extended Hamiltonian model is given.
Starting from the initial angular configuration that lead to the steepest increase in eccen-
tricity (ψj1 = π/2∨ 3π/2), the minimum AMR required to reach e = ecr = 1−R⊕/a and
the final angular configuration that corresponds to the maximum eccentricity increase, is
determined. The final condition is determined considering the derivative of the eccentric-
ity with respect to the critical angle along an invariant curve (see Equation (4.27) for the
explicit terms):

de

dψ
= −∂Hj/∂ψj

∂Hj/∂e
, (5.4)
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which, from the classical mathematical analysis theory, it is zero at a point of maximum
or minimum. In particular, in the framework of the first resonance and in the extended
model of resonance, at ψ = 0 and π there is a minimum. Instead at:

cosψcr,j = − 8

15

CSRP

an2
⊙ecr

(
Tj
Kj

)
e=ecr

= γcrCSRP, (5.5)

the eccentricity reaches its maximum. Where for compactness:

γcr = − 8

15

1

an2
⊙ecr

(
Tj
Kj

)
e=ecr

, (5.6)

given that it depends only on ecr, a and the resonance j which are defined as input
conditions.
By exploiting the conservation of L =

√
µa, Π and of the Hamiltonian, the following

equation:

Hj(0, ψj1;Π,L, CSRP) = Hj(ecr, ψj,cr;Π,L, CSRP), (5.7)

is solved for CSRP (or equivalently AMR), where the initial condition is a circular orbit at a
prescribed a, ie=0, and ψj,1 = π/2∨3π/2 (although the initial Hamiltonian does not depend
on the angular condition). The final condition is at ecr and the angular configuration is
matched such that the maximum eccentricity condition is exactly the critical one. The
inclination at the critical eccentricity is computed exploiting the conservation of Π (proven
in Appendix C):

cos icr =
Π0

n1L
√
1− e2cr

+
n2

n1

, (5.8)

where n1, n2 depend on the resonance, and Π0 = L(−n2 + n1 cos ie=0). Therefore Equa-
tion (5.7) can be solved analytically. The analytical solution is derived thereafter.
First, the Hamiltonian formulation written in a more compact shape:

Hj(Ψi, ψi;Π,L) = ΓJ2δ
J2
i (Ψi;Π,L) + ΓSRPCSRPδ

SRP
i (Ψi;Π,L) cosψi,j+

+Γ⊙δ
⊙
i (Ψi;Π,L) cos 2ψi,j + n3n⊙(Ψi +K).

(5.9)

with:

ΓJ2 =
CJ2µ3

4n7
1L

3
,

ΓSRP = −CSRP

µ
L2,

Γ⊙ = −15

32

L4

µ2
,

δJ2i =
(n4

1Ψ
2
i − 3(Π + n1n2Ψi)

2)

Ψ 5
i

,

δSRP
i =

√
1− n2

1Ψ
2
i

L2
Tj,i,

δ⊙i =

(
1− n2

1Ψ
2
i

L2

)
Kj,i.

(5.10)
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Then, imposing the initial condition of e = 0, the initial Hamiltonian is:

H0(Ψe=0, ψ;Πe=0, L) = ΓJ2δ
J2
i (Ψe=0;Πe=0, L) + n3n⊙(Ψe=0 +K). (5.11)

which is constant along the trajectory (invariant curve). The final condition reads:

Hj(Ψe=ecr , ψi;Π,L) = ΓJ2δ
J2
i (Ψe=ecr ;Π,L) + ΓSRPCSRPδ

SRP
i (Ψi;Π,L) cosψi,j+

+Γ⊙δ
⊙
i (Ψi;Π,L) cos 2ψi,j + n3n⊙(Ψi +K).

(5.12)

The final expression may be rearranged into a kind of second-order equation that is readily
solved analytically:

a = 2Γ⊙δ
⊙
2 γ

2
cr + ΓSRPγcrδ

SRP
2 ;

b = 0;

c = ΓJ2(δ
J2
2 − δJ21 ) + n3n⊙(Ψ2 −Ψ1)− Γ⊙δ

⊙
2 ;

assembled: aC2
SRP + c = 0.

(5.13)

It has been so far addressed de-orbiting along asymmetric equilibrium point orbits. If,
however, the boundary conditions in terms of (a, ie=0, AMR) are such that it takes place
at ψ = 0, π, the solution equation can be reduced to:

CSRP =
µ cosψj2

4L10n2
1Tjη5crecr

[
4L9n1n3n⊙(ηcr − 1)ηcr+

−CJ2L2(n2
1 − 3n2

2)η
3
cr(η

3
cr − 1)µ3+

+6CJ2Ln2ηcr(η
4
cr − 1)µ3Π+ 3CJ2(η5cr − 1)µ3Π2

]
, ψj2 = 0 ∨ π.

(5.14)

Note that, it is not possible to apply Equation (5.13) to the de-orbiting in ψ = 0, because
in all the dynamical regions (except from the (IV)), it does not exist a value of AMR
such that cosψj2 = 1 (see Equation (5.5)). In region (IV), as explained in Chapter 3,
the stability properties are exchanged due to the presence of a trans-critical bifurcation.
It means that, the asymmetric points (see Figure 4.15), move toward ψ = 0 if AMR
increases. Design of de-orbiting manoeuvre in this region could be the subject of future
research.
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De-orbiting algorithm

In this Section the procedure to develop a de-orbiting map in the extended SRP-J2-Sun
framework is described.
The solution of the two-point boundary value problem admits the de-orbiting at ψ = π,
ψ = 0 or at ψ ∈]π/2, π[ (where the borders are excluded because the first can be reached
only if AMR = 0 m2/kg, while the second implies cosψcr,j = −1). Consequently, the
final angular configuration has to be determined. Following the procedure outlined in the
flowchart Figure 5.1, for each a ∈ [a1, a2], ie=0 ∈ [0, 90◦] and resonance j, it evaluates
Equation (5.14)(CSRP,0) for ψ = 0; if the sign of CSRP,0 is positive, the de-orbit occurs in
ψ = 0, on the contrary it might take place at ψ ∈]π/2;π]. Then, the minimum AMR as-
suming the re-entry at an asymmetric points is computed solving Equation (5.13)(CSRP,as,
only the positive solution). Then, if the angular configuration, computed substituting the
just computed AMR in Equation (5.5), is within ]π/2;π[, the final condition is on an
asymmetric point. Otherwise, if cosψj2 results ≤ −1, the minimum AMR should be
computed imposing ψ = π in Equation (5.14), coming to the conclusion that the object
terminates in ψ = π.

Figure 5.1: Flowchart of the new de-orbit strategy from a circular inclined orbit.
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Results

Figure 5.2 shows the computations for fixed value of semi-major axis a = 12200 km.
Despite the fact that the AMR computed in the two frameworks is quite similar, there
are some differences near the position (a, ie=0) of the bifurcation, as the AMR required for
re-entry approaches 0 and, as it is well known, the Sun gravity may become significant. In
particular it highlights that the bifurcation point shifts toward higher inclination under
the effect of the coupled SRP-J2-Sun dynamics (see also Figure 5.3).
The needed AMR for the re-entry configuration in an asymmetric point is more in the
SRP-J2-Sun model than in the previous model. Conversely, the opposite is true when
ψ = 0. Moreover, it is possible to see in Figure 5.2, that the algorithm starts to compute
the re-entry solution in the range ]π/2, π[ (if statement (f) in Figure 5.1), when the
inclination of the circular orbit is near the bifurcation point.
Note that, the comparison between the AMR computed in the inclination range between
the two bifurcations (see Figure 5.2) lacks of significance because the object de-orbits to
ψ = 0 in the case of SRP-J2 dynamics, and to ψ ∈]π/2, π] for the SRP-J2-Sun dynamics.
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Figure 5.2: Minumum AMR to de-orbit from circular orbit with a = 12197 km and
inclinations i0 ∈ [0, 90] deg computed using the SRP-J2 and extended models.
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In Figure 5.3, Figure 5.4 and Figure 5.5, the comparison of the computation on the two
frameworks are reported. Figure 5.3 reports the complete de-orbiting map for all the final
angular configurations; even if it is not possible to see, the bifurcation lines (in white) are
not coincident: the bifurcation computed in the extended model is slightly shifted towards
higher inclinations. In Figure 5.4 the final configuration is ψ ∈]π/2, π] and in Figure 5.5
in ψ = 0. The AMR estimated to de-orbit towards ψ = 0 in the extended model is
smaller than the one computed in the literature, however the opposite is true if the final
configuration is ψ ∈]π/2, π]. Figure 5.6 and Figure 5.7 are show two example of de-orbiting
orbits. In the first figure, it is possible to see the de-orbiting toward π, specifically on the
left in the extended dynamics when the object re-enters at an asymmetric point, and on
the right, the method derived from the literature. In the second figure, where ψ = 0 is
used for comparison, it is possible to see that with the newly derived strategy, the required
AMR is less than with the previous manoeuvre.

Bifurcation lines do 
not exactly coincide

(I) (I)(II)/(III) (II)/(III)

AMR m2 / kg AMR m2 / kg
Bifurcation lines do 
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Figure 5.3: Left: de-orbiting map in the framework of SRP-J2.,rigth: de-orbiting map in
the framework of SRP-J2-Sun.



86
5| Application of the extended model to de-orbiting design and debris

dynamics






37 37.5 38 38.5 39 39.5 40 40.5 41
7.8

7.9

8

8.1

8.2

8.3

8.4

8.5

0 50 100 150 200 250 300 350
0.0

0.1

0.2

0.3

0.4

ψ[rad]

e[
-]

0 50 100 150 200 250 300 350
0.0

0.1

0.2

0.3

0.4

ψ[rad]

e[
-]

(A)	 (B)

(B)	 


 

(A)

I

II

III

VI






37 37.5 38 38.5 39 39.5 40 40.5 41
7.8

7.9

8

8.1

8.2

8.3

8.4

8.5

0 50 100 150 200 250 300 350
0.0

0.1

0.2

0.3

0.4

ψ[rad]

e[
-]

0 50 100 150 200 250 300 350
0.0

0.1

0.2

0.3

0.4

ψ[rad]

e[
-]

(A)	 (B)

(B)	 


 

(A)

I

II

III

VI 




37 37.5 38 38.5 39 39.5 40 40.5 41
7.8

7.9

8

8.1

8.2

8.3

8.4

8.5

0 50 100 150 200 250 300 350
0.0

0.1

0.2

0.3

0.4

ψ[rad]

e[
-]

0 50 100 150 200 250 300 350
0.0

0.1

0.2

0.3

0.4

ψ[rad]

e[
-]

(A)	 (B)

(B)	 


 

(A)

I

II

III

VI






37 37.5 38 38.5 39 39.5 40 40.5 41
7.8

7.9

8

8.1

8.2

8.3

8.4

8.5

0 50 100 150 200 250 300 350
0.0

0.1

0.2

0.3

0.4

ψ[rad]

e[
-]

0 50 100 150 200 250 300 350
0.0

0.1

0.2

0.3

0.4

ψ[rad]

e[
-]

(A)	 (B)

(B)	 


 

(A)

I

II

III

VI






37 37.5 38 38.5 39 39.5 40 40.5 41
7.8

7.9

8

8.1

8.2

8.3

8.4

8.5

0 50 100 150 200 250 300 350
0.0

0.1

0.2

0.3

0.4

ψ[rad]

e[
-]

0 50 100 150 200 250 300 350
0.0

0.1

0.2

0.3

0.4

ψ[rad]

e[
-]

(A)	 (B)

(B)	 


 

(A)

I

II

III

VI 




37 37.5 38 38.5 39 39.5 40 40.5 41
7.8

7.9

8

8.1

8.2

8.3

8.4

8.5

0 50 100 150 200 250 300 350
0.0

0.1

0.2

0.3

0.4

ψ[rad]

e[
-]

0 50 100 150 200 250 300 350
0.0

0.1

0.2

0.3

0.4

ψ[rad]

e[
-]

(A)	 (B)

(B)	 


 

(A)

I

II

III

VI






37 37.5 38 38.5 39 39.5 40 40.5 41
7.8

7.9

8

8.1

8.2

8.3

8.4

8.5

0 50 100 150 200 250 300 350
0.0

0.1

0.2

0.3

0.4

ψ[rad]

e[
-]

0 50 100 150 200 250 300 350
0.0

0.1

0.2

0.3

0.4

ψ[rad]

e[
-]

(A)	 (B)

(B)	 


 

(A)

I

II

III

VI






37 37.5 38 38.5 39 39.5 40 40.5 41
7.8

7.9

8

8.1

8.2

8.3

8.4

8.5

0 50 100 150 200 250 300 350
0.0

0.1

0.2

0.3

0.4

ψ[rad]

e[
-]

0 50 100 150 200 250 300 350
0.0

0.1

0.2

0.3

0.4

ψ[rad]

e[
-]

(A)	 (B)

(B)	 


 

(A)

I

II

III

VI






37 37.5 38 38.5 39 39.5 40 40.5 41
7.8

7.9

8

8.1

8.2

8.3

8.4

8.5

0 50 100 150 200 250 300 350
0.0

0.1

0.2

0.3

0.4

ψ[rad]

e[
-]

0 50 100 150 200 250 300 350
0.0

0.1

0.2

0.3

0.4

ψ[rad]

e[
-]

(A)	 (B)

(B)	 


 

(A)

I

II

III

VI

Figure 5.4: De-orbiting map in the framework of SRP-J2-Sun near ψ = π on the top left
and on ψ = π on the bottom left. Comparison between them on the right.
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Figure 5.5: De-orbiting map in the framework of SRP-J2-Sun on ψ = 0 on the top left
and on ψ = 0 on the bottom left. Comparison between them on the right.
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Figure 5.6: Phase space with de-orbit trajectory from a = 10623.2 km, ie=0 = 29.77◦.
Left in SRP-J2-Sun and right in the SRP-J2 frameworks.
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Figure 5.7: Phase space with de-orbit trajectory from a = 13637.3 km, ie=0 = 41.90◦.
Left in SRP-J2-Sun and right in the SRP-J2 frameworks.
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5.3. De-orbiting from an unstable equilibrium at ψ =

π

In the following Section, the initial orbit is assumed to be elliptical.
The strategy presented assumes that the spacecraft is initially located at the unstable
equilibrium point ψ = π of the extended model, then the spacecraft reaches a point of
maximum eccentricity at the angular configuration of the asymmetric equilibrium point.
As stated many times in this thesis, during the evolution of the phase space, the semi-
major axis does not change under the dynamics considered, hence a natural de-orbiting
can take place only if the eccentricity increases as much as to attain the critical value
ecr = 1 − R⊕/a. The link equation between the Hamiltonians of two generic initial and
final conditions is considered:

Hj(Ψ1, ψ1, j;Π,L, CSRP) = Hj(Ψ2, ψ2, j;Π,L, CSRP), (5.15)

where (1, 2) are the initial and final condition along an Hamiltonian level trajectory, j is
the resonance considered, Π is the second integral of motion, L =

√
µa and Hj expressed

as in Equation (5.9) for an easier reading:

Hj(Ψi, ψi;Π,L) = ΓJ2δ
J2
i (Ψi;Π,L) + ΓSRPCSRPδ

SRP
i (Ψi;Π,L) cosψi,j+

+Γ⊙δ
⊙
i (Ψi;Π,L) cos 2ψi,j + n3n⊙(Ψi +K).

(5.16)

with:

ΓJ2 =
CJ2µ3

4n7
1L

3
,

ΓSRP = −CSRP

µ
L2,

Γ⊙ = −15

32

L4

µ2
,

δJ2i =
(n4

1Ψ
2
i − 3(Π + n1n2Ψi)

2)

Ψ 5
i

,

δSRP
i =

√
1− n2

1Ψ
2
i

L2
Tj,i,

δ⊙i =

(
1− n2

1Ψ
2
i

L2

)
Kj,i.

(5.17)

Region of applicability

As seen in Chapter 4, the maximum eccentricity reached following the trajectory starting
from an unstable point in π for a defined (ie=0, a)1, depends on the value of AMR. In
particular, it is maximum at AMR = 0m2/kg and cancels out at the associated bifurcation
value (see Figure 4.22). Therefore, for each semi-major axis in the range from 9000 km
to 15000 km and for eccentricities in the range ]0, 1[, the resonant inclination for the

1the inclination of an hypothetical circular orbit is taken as coordinate since it allows to compute a
reference Π = (−n1 + n2 cos ie=0)

√
µa, which "generates" the phase space portrait.
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equilibrium ψ = π has been computed.

Then, if it exists, the maximum eccentricity reached for a virtual 2 object with AMR =
0 m2/kgis found at the critical angle ψ = π/2, and its value is found by solving:

Hj(Ψ1, π, j;Π,L, 0) = Hj(Ψ2, π/2, j;Π,L, 0). (5.18)

For the prescribed eccentricity and semi-major axis range, the re-entry condition is achieved
if e2 ≥ ecr. On the other hand, if the maximum eccentricity is below the critical one or
the eccentricity of ψ = π is already above the critical, the point is outside the feasibility
region. The graph in Figure 5.8 shows the upper and lower limit of applicability of the
manoeuvre: the lower limit delimits a region in which the maximum eccentricity is below
the re-entry condition, while the upper limit delimits the region in which the eccentricity
of the point ψ = π is already above the critical one. The color-bar shows the eccentricity
of the stable point in ψ = π and AMR = 0 m2/kg . Therefore, the applicability of the
manoeuvre is in between the two borders.
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Figure 5.8: De-orbiting strategy validity limit at AMR = 0 m2/kg

2an object with AMR = 0 m2/kg does not physically exist
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Initial and Final Conditions

The disposal manoeuvre starts from an unstable equilibrium point located at ψ = π of the
extended Hamiltonian model. This allows the object to exploit the double lobe dynamics
which drives it toward the Earth surface at the critical angle of the asymmetric equilib-
rium. The initial angular configuration is the known parameter of the initial condition;
the eccentricity, inclination, and AMR, are unknown. This because, fixed the semi-major
axis and the angle ψ, the eccentricity of the equilibrium point (and hence its inclination)
depend on the unknown AMR. An iterative technique is designed to calculate the starting
condition. It is assumed as initial guess that the initial eccentricity is that of the equilib-
rium at ψ = π and AMR = 0 m2/kg. The object final condition is at e2 = ecr = 1−R⊕/a

and icr computed from the conservation of the Π.

Two-point boundary value problem

Following the idea described above, the spacecraft has to be placed in an unstable equi-
librium point in ψ1 = π at a defined eccentricity, with initial inclination computed from
the resonant condition Equation (4.34) at AMR = 0 m2/kg. As first guess, it is assumed
that the eccentricity of the initial point, is the one computed at AMR = 0 m2/kg, ψ = π

(the assumption is reasonable since the very low value of AMR and under the hypothesis
that AMR < σ∗). Then, the re-entry is achieved at e2 = ecr, reached at the angular
configuration:

cosψ2,j = − 8

15

CSRP

an2
⊙e

eq,π/2

(
Tj
Kj

)
e=eeq,π/2

= γπ/2CSRP, (5.19)

where eeq,π/2 is the eccentricity of the equilibrium point computed at ψ = π/2 and AMR
= 0 m2/kg (it is known from the theory developed that the eccentricity of the asymmetric
point does not change below the bifurcation AMR).
Rearranging Equation (5.15) and substituting in cosψcr the value computed in Equa-
tion (5.5), the value of CSRP can be derived solving analytically the second order equation:

ΓJ2δ
J2
1 (Ψ1;Π,L)− ΓSRPCSRPδ

SRP
1 (Ψ1;Π,L) + Γ⊙δ

⊙
1 (Ψ1;Π,L) + n3n⊙Ψ1 =

= ΓJ2δ
J2
2 (Ψ2;Π,L) + ΓSRPδ

SRP
2 (Ψ1;Π,L)γπ/2C2

SRP+

+2Γ⊙δ
⊙
2 (Ψ1;Π,L)γ

2
π/2C2

SRP − Γ⊙δ
⊙
2 (Ψ1;Π,L) + n3n⊙Ψ2.

(5.20)

The above equation can be rearranged in a canonical shape:

κ1C2
SRP + κ2CSRP + κ3 = 0. (5.21)
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with the following coefficients:

κ1 = 2Γ⊙δ
⊙
2 (Ψ1;Π,L)γ

2
π/2 + ΓSRPδ

SRP
2 (Ψ1;Π,L)γπ/2,

κ2 = ΓSRPCSRPδ
SRP
1 (Ψ1;Π,L)

κ3 = ΓJ2(δ
J2
2 (Ψ1;Π,L)− δJ21 (Ψ1;Π,L)) + n3n⊙(Ψ2 −Ψ1)− Γ⊙(δ

⊙
1 + δ⊙2 ).

(5.22)

The solution, if exists, has to be selected positive and lower than the bifurcation value
computed at that altitude and inclination.

De-orbiting algorithm

After the definition of the beginning and final conditions, as well as the equations involved
in the de-orbiting design, the technique used to calculate the required AMR to assure re-
entry is detailed. Following the procedure in the flowchart Figure 5.9, it is possible to
compute the de-orbiting map presented in Figure 5.10.
For any feasible point computed in Figure 5.8, it is assumed as initial guess for the starting
eccentricity, the one associated to the equilibrium point in ψ = π and AMR = 0 m2/kg.
With this initial condition, it is possible to compute the C(0)

SRP solving the second order
equation Equation (5.21). Then, since the eccentricity of the initial conditions depends
on the AMR, the procedure is iterated over AMR until a defined stopping condition (i.e.,
|e11−e01| < tol = 0.01 eAMR=0,π is reached. The eccentricity of the equilibrium point ψ = π,
C(0)
SRP is computed solving the non-linear system of equation Equation (4.27). Then, if the

stopping condition is satisfied, the algorithm stops. The computed AMR is the highest
value that guarantees re-entry; if a higher value is chosen, the width of the double-lobe is
reduced, and hence de-orbiting is not assured.
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Figure 5.9: Flowchart of the new de-orbit strategy starting from an unstable condition.

Results

In Figure 5.10 the de-orbiting map is reported, showing that the maximum AMR which
guarantees the re-entry is higher toward the upper limit and lower towards the lower
limit. This may be explained by the fact that the width of the double-lobe eye is inversely
proportional to the AMR; hence, if the object is closer to the critical condition, the width
of the lobe that assures re-entry is smaller, resulting in a greater maximum AMR. The
computed AMR is intended as a maximum value, which imposes an upper restriction:
if the AMR is greater than the computed maximum, the technique is inapplicable. The
bottom limit is technical in nature: there is no object with AMR = 0 m2/kg.
Namely, the de-orbiting trajectory at a ≈ 12000 km for i0 = 25.99◦ on the left and
i0 = 26.38◦ on the right, are reported in Figure 5.11.
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AMR m2 /kg

Figure 5.10: Maximum AMR for deorbit from a given a and inclination of initially circular
orbit i0

The maximum AMR sufficient for the de-orbiting in the first case is AMR = 0.0012m2/kg
while in the second case AMR = 0.1063 m2/kg. The computed value is intended to be
used together with technology limitations, for example the minimum AMR achievable for
a spacecraft has to be under that value to guarantee the de-orbit.

Practical use

This innovative strategy is exploitable only if the spacecraft is placed initially on the
unstable point in ψ = π. This could be performed if, for example, during the mission life
the spacecraft is placed in ψ = π with AMR ≥ σ∗

i,j, hence at a stable equilibrium of the
SRP-J2 framework. Then, once the mission is finished, to start the disposal manoeuvre,
the spacecraft reduces its AMR until it goes below σ∗

i,j. By following the double-lobe
Hamiltonian curve, it is driven toward the Earth atmosphere.
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ecr ecr

Figure 5.11: Example of de-orbiting configuration at 12000 km for i0 = 25.99◦, AMR
= 0.0012 m2/kg on the left and i0 = 26.38◦, AMR = 0.1063 m2/kg on the right.

5.4. Debris analysis

In this Section the theoretical results obtained in Chapter 4 are applied to the de-
bris dynamics in order to deepen the knowledge about the mechanism which drives the
low/medium AMR debris to accumulate in space. In particular, under certain circum-
stances, the debris accumulate in peculiar regions of the space as consequence of the
interaction with the coupled SRP-J2-Sun perturbation.
As suggested by Alessi et al. [14] and similarly to what was done in Schaus et al. [71]
for the case of the “resonant reentry corridors”, it is interesting to analyse the space de-
bris catalog to see whether there exists a specific case trapped in one of the resonances
found. Whereas a database of small debris with high AMR is not yet available, the NASA
standard breakup model (Bade et al. [66]) is used to generate a fictitious debris popu-
lation, which is then propagated by the semi-analytical model described in Chapter 2
and Appendix A. Then the resulting distribution of the objects is explained through the
mathematical model presented in this thesis.

5.4.1. Dynamical Mapping

In this Section, the dynamical mapping tool is used to provide an overview of the de-
bris dynamics, which are analysed in depth in following sections. This work examines
a dynamical indicator related with the development of the orbit eccentricity, which is
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primarily responsible for the perigee variation and, therefore, the re-entry time (Gkolias
and Colombo [69]):

∆e = |eMAX − emin| (5.23)

For the scope of this analysis, only the dynamical map (e, i) is investigated with a grid
of 150 × 150 initial conditions in the ranges e ∈ [0, 0.5] and i ∈ [0◦, 90◦]. In particular in
Figure 5.12 an object with AMR = 0.01 m2/kg is propagated from a = 13000 km. For
the value of AMR considered, at that semi-major axis, the value of σ∗

1,1 is greater than
the considered AMR, hence the phase space presents asymmetric equilibrium points near
ψ = π/2.
The first three maps in the figure, are integrated starting from critical angle of ψ = 0,
π/2 and π in order to make the map highlight the resonances. Note that, for the first
resonance, since the critical angle is the sum of Ω and ω, in this case it has been decided
to take Ω0 = 0 while varying the initial ω0.
The top right map of Figure 5.12 presents on the left portion of the plot a peculiar
resonant branch. Differently from the case ψ = 0 and ψ = π, an object propagated with
initial ψ = π/2 shows in its dynamical map the center of the stable asymmetric point,
while the other two plots show the center of other two equilibrium points (symmetric),
but in this case are unstable. The stability behaviour is described by the values of ∆e,
indeed in the plot of ψ = π/2, the resonant branch in the left corner presents a low ∆e

route (the eye center of the asymmetric point) between two high ∆e branches which are
the upper and lower eyelids. The center of the resonance has also been computed solving
Equation (4.40) for ψ = π/2 and compared with the real position of the center of the
asymmetric point computed by solving Equation (4.23).
In the bottom left map, it is possible to see a small portion of the resonant branch which
has a smaller value of ∆e. This because, increasing the AMR from 0 to σ∗

1,1 the asymmetric
stable point moves from ψ = π/2 to ψ = π, this results in the dynamical map of ψ = π

in a increasingly stable resonant center.
In the last plot of Figure 5.12 the angle-averaged ∆e plot is presented as the mean value
of the three ∆e computed.
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Figure 5.12: Cartography analysis reporting the value of ∆e in the plane (e,i) for AMR
= 0.01 m2/kg at a = 13000 km. Dashed black line the analytical position of the first
resonance computed with Equation (4.40).

The dynamics that causes the capture of debris

In Figure 5.13, Figure 5.14 and Figure 5.15, the dynamics an object is propagated from
three initial critical angle and for three AMR using the semi-analytical propagator defined
in Appendix A, and then compared to their Hamiltonian phase space at i0 = 20◦. From
the first two plot it is possible to see that near ψ = π/2 the object (depicted in green)
stays near the stable point, while, this is not true if it is propagated starting from ψ = 0

(blue line) and ψ = π (red line) which are unstable points. The object considered in
Figure 4.21 has AMR = 5 m2/kg, which is greater than the discriminant σ∗ ≈ 0.15 m2/kg
at a = 13000 km and i = 20◦, hence the object placed initially in ψ = π/2 won’t librate
around an asymmetric stable point but rather around the stable point in ψ = π, typical
of the SRP-J2 model.
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Figure 5.13: Representation in the plane (e, ψ) and in the Poincare plane (e cosψ, e sinψ)
of the trajectories propagated with the Hamiltonian propagator (light gray) and semi-
analytical propagator (coloured lines) for AMR = 0.01 m2/kg, a = 12078 km and ie=0 =

25.5◦

Figure 5.14: Representation in the plane (e, ψ) and in the Poincare plane (e cosψ, e sinψ)
of the trajectories propagated with the Hamiltonian propagator (light gray) and semi-
analytical propagator (coloured lines) for AMR = 0.05 m2/kg, a = 12078 km and ie=0 =

25.5◦.
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Figure 5.15: Representation in the plane (e, ψ) and in the Poincare plane (e cosψ, e sinψ)
of the trajectories propagated with the Hamiltonian propagator (light gray) and semi-
analytical propagator (coloured lines) for AMR = 0.5 m2/kg, a = 12078 km and ie=0 =

25.5◦.

From this preliminary analysis, it is possible to conclude that, if a debris having AMR
< σ∗

i,j is propagated from ψ = π or from an asymmetric equilibrium, it orbits evolve
around the asymmetric point. Theredore, the debris remains trapped in that region of
space.

5.4.2. NASA breakup model

In this part, the NASA breakup model formulation is presented, following what is de-
scribed in Johnson et al. [67], Bade et al. [66] and Strasbery et al. [97].
In the standard NASA breakup model, the characteristic length, Lc, is used as inde-
pendent variable to define the features of the fragmentation cloud. The properties of
the generated fragments (i.e., mass, AMR, velocity variation) are taken from suitably
built Lc-dependent distribution functions; hence, they are different for fragments with
the same characteristic length. For this reason, at each run, the NASA breakup model
provides different results for the same initial conditions. Different expressions are used
for explosions and collisions, in order to take into account the dependence on the nature
of the fragmentation event. While collisions tend to generate a considerable number of
small fragments with high relative velocities, explosions usually generate larger fragments
with lower speed. The model also allows distinguishing between catastrophic and non-
catastrophic collisions. Here, a catastrophic collision is considered for values of the impact
energy per target mass exceeding 40 J/g, since, under these conditions, the collision is
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assumed to cause the complete fragmentation of both the impactor and the target (Bade
et al. [66]). According to the implementation in Bade et al. [66], the number of produced
fragments, Nf , of a given size Lc or larger can be computed through Equation (5.24),
depending on the nature of the considered fragmentation event. For the scope of this
thesis, only fragmentation due to explosion is considered (Bade et al. [66]):

Nf = 6SLc[m]1.6, (5.24)

with S an empirically derived unitless factor between 0.1 and 1 (dependent on the explosive
body type) and the reference mass of the collision. The AMR distribution is modelled as
a lognormal distribution function, with mean value µAMR m

2/kg and standard deviation
σAMR m

2/kg. Expressions for these parameters can be found in the cited literature such
as Strasbery et al. [97], Krisko [66] and Johnson et al. [67]. The magnitude of the
velocity variation, ∆v, is defined as a function of the AMR and, similarly, its distribution
is modelled as a lognormal distribution function. Again, the expressions for the mean
value µ∆v km/s and the standard deviation σ∆v km/s are included in the literature used.

Synthetic population

In this work, the synthetic population used for analysis is generated by the explosion
of a spacecraft, which generates a population comprised of 100 evenly spaced bins on a
logarithmic scale ranging from 1 mm to 10 cm. The parameter S has been chosen equal to
S = 0.002 in order to limit the population to 10726 elements. The number of fragments
Nf vs Lc and the distribution of AMRSC and ∆vSC are reported in Figure 5.16.

5.4.3. Results discussion

Combining the NASA standard breakup model with the dynamical mapping and utilizing
the extended Hamiltonian model (see Casanova et al. [51]), some test cases are analysed
to provide deeper insight in the debris dynamics.
For all the tests described later, the final propagated debris population shown has been
selected as those debris which are at:

• adeb ∈ [a0 − 100 km; , a0 + 100 km];

• ideb ∈ [i0 − 0.05 deg, i0 + 0.05 deg];

• AMR < σ∗
1,1(a0, i0, e

eq
1,1).

This has been done in order to compare the debris population with a "mean" phase space
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having as Keplerian parameters the mean value of the filtered population parameters
(final population of 1086 elements).
Figure 5.18 shows the propagated population which was propagated (from 21/03/2020
00:01 UTC to 21/03/2120) including all the perturbation listed in Appendix A and with
AMR depending on the Standard NASA Breakup Model. The initial conditions of the
population before the fragmentation was characterised by a = 13000 km, e = 0.438671,
i = 19.4074◦, Ω = 0◦, f = 0◦ and ω = 0, π/2 and π respectively. With reference to
Figure 5.12, the spacecraft has been virtually exploded at the center of each resonance
branch, and it has been evaluated how it evolves under the effect of the dynamics detailed
in the Appendix A and compare it with a representative phase space.
Since the initial a = 13000 km and the corresponding ie=0 = 18.3886◦ are located in the
dynamical region (II) of fig. 3.5, the equilibrium points ψ = 0 and π are unstable, instead,
the asymmetric point in ψ ∈]π/2, π[ is stable. Figure 5.17 reports the phase space used
to determine the initial condition of the synthetic population.

Figure 5.16: Up: number of fragment per characteristic length. Down: distribution of
AMR and velocity variation among the fragments generated from the breakup.



5| Application of the extended model to de-orbiting design and debris
dynamics 101

0 50 100 150 200 250 300 350
0.4

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.5

Figure 5.17: Reference phase space of the initial population generated at a = 13000 km,
ie=0 = 18.3886◦ and AMR = 0.1 m2/kg.

From the analysis of the case (2) of Figure 5.18 it is possible to conclude that if the
fragmentation occurs near an stable stable point of the considered triplet (a, ie=0, AMR),
those some debris continue to librate around asymmetric stable points, instead, if the
fragmentation occurs near unstable points (1) and (3) this does not take place.
Considering again the dynamical mapping in Figure 5.12 and in particular the resonance
branch of the second plot with ψ0 = π/2, in Figure 5.19, the propagated the fragments
from an explosion which occurs in three peculiar points are reported. The points in which
the fragmentation occurs are selected in the center and boundaries of the resonant route
(see the first image of Figure 5.19). In the plots from (1) to (3) it is shown the comparison
between propagated debris population and their reference phase space. The point (2) is
once again the stable asymmetric point, while the other coincides with an initial point on
a librating orbit around it in the phase space. As a consequence, they do not accumulate
in a particular region.
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Figure 5.18: (1), (2) and (3): propagated population for 100 years from ψ = 0, ψ = π/2

and ψ = π respectively, compared with a reference phase space.
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As concluding notes, regarding the debris that are out of the filtering done to generate
the previous plots, we can say that:

• due to the semi-major axis increase after the explosion, some of them may re-entered
into the atmosphere;

• other objects with a different AMR may have been entangled at other equilibrium
points positioned on various planes and semi-major axes.

To summarise, the initial condition under which a cloud of debris remains trapped in a
stable point of the extended SRP-J2-Sun model is such as it is generated near a stable
point relative to the triplet (a, ie=0, AMR). The explosion generates debris surrounding
the initial point, but if it occurs near a stable point, the debris with AMR < σ∗

1,j has
a greater probability of remaining inside the stable point. Whether AMR ≥ σ∗

1,j, the
asymmetric equilibrium point with respect to (a, ie=0, AMR) have collapsed to ψ = π,
therefore the debris may have been entangled at stable point in ψ = 0 or ψ = π depending
on the dynamical area represented in Figure 3.5.
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Figure 5.19: Cartography in the plane (e, i) used as initial condition for the synthetic
population.(1), (2) and (3): propagated population for 100 years compared with a refer-
ence phase space.



103

6| Conclusions and future works

At the conclusion of this work, it is possible to summarise the results obtained and track
future research. During this research thesis, an Hamiltonian model capable of representing
in a easy way as the one present in literature, the complex dynamics of low and medium
AMR objects subject to the coupled SRP-Earth oblateness-Sun gravity perturbations, has
been derived. Under the assumption of single resonance dynamics, and utilizing classical
system theory tools, it was possible to analyse the dynamics of the extended model, and
new dynamical properties that the actual model cannot capture were discovered. For
example, in addition to the symmetric equilibrium points of the state-of-art model, the
extended model introduces some asymmetric equilibria, which position depends on the
AMR of the object. The model has been validated against a semi-analytical propagator,
showing that the accuracy reduction is due to the fact that the semi-analytical propagator
includes higher order terms and multiple-resonance interactions.
Despite that, the model is able to catch the main characteristics of the dynamics, almost
analytically. Moreover, the integration of the model is an order of magnitude faster than
the analytical one.
Then, the new phase space shape deriving from the extended model was exploited for the
passive de-orbiting of dead spacecrafts. In particular, the de-orbit trajectory is designed
such as it happens at these new equilibrium point. The minimum AMR computed from
this strategy is, in some cases, lower than the one compute in literature, due to the fact
that the strategy exploits also the effect of the Sun gravity. Two de-orbiting strategies
were proposed. The first, starts from an initially circular orbit, and needs lower AMR
in the cases when the de-orbiting starts from points near the bifurcation region or from
points in the dynamical regions (II) and (III).
The second strategy, instead, starts from an unstable equilibrium point in ψ = π. In
particular, it utilises the lowering of AMR to de-orbit rather than augmenting it. In fact,
the solar sail remains open throughout the duration of the mission, and closes to ensure
the de-orbiting.
Using the new phase space, it is almost possible to derive the conditions under which
low/medium AMR debris accumulates in space. In particular, objects with an AMR
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lower than a "discriminant" AMR, whose initial conditions are close to an asymmetric
equilibrium point, could accumulate in it for an extended period of time. At the end, the
theoretical assumptions are verified with the use of a synthetic population generated from
the NASA standard breakup model, and propagated using a semi-analytical propagator.
Although many interesting results have been obtained, there is still a long road ahead.
Future researches may concentrate on:

• the dynamical analysis: the remaining five resonances of the extended Hamiltonian
model have to be fully characterised, both in terms of bifurcation diagrams and
bifurcation maps. This thesis has only given the general procedure that has to be
followed to complete the analysis. Moreover, it could be interesting to study what
happens when two or more resonances overlap-

• the mission design: the ability to modify the location of equilibrium by changing
the AMR of the object may be used to plan an Earth observation mission based
on an adaptive Solar Sails technology that, by varying the AMR, may change the
mission working point;

• the debris dynamics: the theoretical results obtained from the merging of the Stan-
dard NASA Breakup model with the dynamical analysis of the Hamiltonian model
should be compared with real data regarding low/medium AMR debris to prove
what stated in the thesis.
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A.1. Order of magnitude of perturbations

According to Montenbruck and Eberhard [84], the equations used to characterised the
order of magnitude of the perturbing acceleration as function of the altitude and AMR
are the following:

anm = (n+ 1)
µ⊕

r2
Rn

⊕

rn

√
Cm2

n + Sm2

n ,

aM =
2µM
d3M

r,

a⊙ =
2µ⊙

d3⊙
r;

aSRP = CR
A

m
P⊙

(A.1)

where anm, aM , a⊙aSRP are the perturbing acceleration due to gravitational non-uniformity,
Moon gravity, Sun gravity and Solar Radiation Pressure respectively.

A.2. High fidelity Model

We consider a small body, say a space debris S, subject to the gravitational attraction of
the Earth, including the oblateness of our planet, the influence of the Moon, Sun and solar
radiation pressure. In this work any other additional force that might affect the dynamics
of the space debris are neglected, like Earth’s atmosphere, solar wind, Poynting-Robertson
effect (see Lhotka et al. [61] for detail).
Let r⃗ be the position of the object of mass m in a quasi-inertial, geocentric reference
frame, e⃗ = (e1, e2, e3), and denote by rM , rS the position vectors of the Moon, and the
Sun, respectively. Then, the equation of motion of the is given by:

d2r

dt2
= − d

dr
[VE (r) + VM (r, rM) + VS (r, rS) + VSRP (r, rS)],
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where VE, VM, VS are the gravitational potentials of the Earth, the Moon, and the Sun,
VSRP is the potential of solar radiation pressure. Details about the description of each
terms is reported below and are the same given by the authors in Lhotka et al. [61].

A.2.1. Gravitational field perturbation

The geopotential VE is given in a synodic reference frame, with unit vectors f⃗ = (f1, f2,
f3), and rotating with the same angular velocity of the Earth:

VE(r, ϕ, λ) =
GmE

r

∞∑
n=0

(RE

r

)n n∑
m=0

Pnm(sinϕ)

× (Cnm cosmλ+ Snm sinmλ) .

Here r, ϕ, λ are Earth-fixed spherical coordinates (radius, co-latitude, and longitude with
λ = 0 corresponding to the Greenwich mean meridian), and RE, Cnm, Snm are the mean
equatorial radius of the Earth and the (not normalized) Stokes coefficients that enter the
spherical expansion of the Earth’s gravitational field up to degree n and order m. The
quantities Pnm are the associated Legendre polynomials (in the geophysical sense, see
Kaula [24]).

A.2.2. Solar radiation pressure perturbation

The solar radiation pressure term is considered acting like a potential disturbing term:

VSRP (r, rS) = βGmS

(
1

|r − rS|

)
.

Here, β is the ratio of the magnitude of radiation force over solar gravitational attraction:

β =
SQA

c
/
GmmS

R2
≃ 7.6× 10−4 Q

A (m2)

m (kg)
,

In the code, A
m

is intended as the Area-To-Mass ratio of the object and Q the spectrally
averaged dimensionless efficiency factor for radiation pressure.



A| Orbits Propagation Models 107

A.2.3. Three body perturbation

The gravitational potentials due to the third-body, point-mass like interactions take the
form:

Vk (r, rk) = Gmk

(
1

∥r − rk∥
− r · rk

r3k

)
,

where k is M (Moon) or S (Sun). The position of the two bodies is retrieved by the routine
Spice [88].

A.3. Semi-analytical Model

The single-averaged theory for Earth’s satellites has been extensively studied and pre-
sented in the literature. In Particular the dynamical system adopted in PlanODyn is
presented and validated in Colombo et al. [72]. Here are report the equations taken from
the Appendix in Gkolias et al. [69] necessary to reproduce the calculations discussed in
the present manuscript. In the following formulas µ⊕ is the gravitational parameter of the
Earth, R⊕ is the equatorial mean radius of the Earth and (a, e, i,Ω, ω,M) the classical
orbital elements of the satellite.

A.3.1. Zonal harmonics

For the secular effect of the zonal harmonics it is taken into account the first-order averaged
perturbations with respect to only J2:

R̄⊕ = R̄J2 (A.2)

which from Kaula [24] is:

R̄J2 =
R2

⊕J2µ⊕(3 cos (2i) + 1)

8a3(1− e2)3/2
. (A.3)

A.3.2. Third-body perturbations

The third-body potential implemented in Gkolias and Colombo [69], Colombo [73], [72]
is expanded in powers of the parallactic factor (a/rb), where rb is the geocentric distance
of the perturber. Terms up to the fourth order (P2,P3,P4) in the expansion are retained
for both the Sun and the Moon. The ephemeris of the Moon are generated from the
algorithm described in Simpson et al. [83] and the ephemeris of the Sun are generated
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from the algorithms described in the Chapters 25 and 26 by Meeus [98].

A.3.3. Solar radiation pressure

The single-averaged contribution of the solar radiation pressure is implemented as in
Colombo [72]:

R̄SRP =
3

2
aePSRPCR

A

m
(cos(ε) sin(λ⊙) cos(ω) sin(Ω)

+ cos(ε) cos(i) sin(λ⊙) sin(ω) cos(Ω) + sin(ε) sin(i) sin(λ⊙) sin(ω)

− cos(i) cos(λ⊙) sin(ω) sin(Ω) + cos(λ⊙) cos(ω) cos(Ω)) ,

(A.4)

where λ⊙ is the ecliptic longitude of the Sun, PSRP is the solar radiation pressure per unit
area at 1 AU, CR the satellite’s reflectivity coefficient and A/M its area-to-mass ratio.

A.3.4. Equations of motion

The complete long-term evolution is driven by the perturbing function (Gkolias and
Colombo [69], Colombo [73], [72]):

R̄ = R̄⊕ + R̄3body + R̄SRP, (A.5)

obtained under the assumption that the orbital elements are constant over one orbit
revolution of the spacecraft around the central planet. The equations of motion in orbital
elements are then derived via Lagrange’s planetary equations (Gkolias and Colombo [69],
Colombo [73], [72]):

da

dt
=

2

na

∂R̄
∂M

,

de

dt
=

1

na2e

(
(1− e2)

∂R̄
∂M

−
√
1− e2

∂R̄
∂ω

)
,

di

dt
=

1

na2 sin i
√
1− e2

(
cos i

∂R̄
∂ω

− ∂R̄
∂Ω

)
,

dΩ

dt
=

1

na2 sin i
√
1− e2

∂R̄
∂i
,

dω

dt
= − 1

na2 sin i
√
1− e2

cos i
∂R̄
∂i

+

√
1− e2

na2e

∂R̄
∂e

,

dM

dt
= n− 1− e2

na2e

∂R̄
∂e

− 2

na

∂R̄
∂a

.

(A.6)
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Therefore, the variation of the mean elements is described by (Gkolias and Colombo [69],
Colombo [73], [72]):

dα⃗

dt
= f

(
α⃗,
dR
dt

)
. (A.7)
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B| Hessian terms of the

commensurability equation

The coefficients of the SRP and J2 contributes have been taken from Alessi et al [14]. The
Sun gravitational contributes are original.

Hessian term of commensurability equation of SRP-J2
The differential contributes of to the commensurability equation of the SRP-J2 model are
(Alessi et al. [14]):

∂Ω̇(J2,j)

∂e
=− 6

J2r
2
⊕ne

a2(1− e2)3
cos i+

CSRP

na(1− e2)3/2 sin i

∂Tj
∂i

cosψj

−
J2r

2
⊕n

a2(1− e2)2
∂cos i

∂e
+ CSRP

e

na
√
1− e2

∂Tj
∂i

cosψj
∂

∂e

1

sin i

+ CSRP
e

na
√
1− e2 sin i

cosψj
∂

∂e

∂Tj
∂i

,

∂ω̇(J2,j)

∂e
=3

J2r
2
⊕ne

a2(1− e2)3
(5 cos2 i− 1)

− CSRP

na
√
1− e2

(
Tj
e2

− cos i

(1− e2)2 sin i

∂Tj
∂i

)
cosψj

+
15

2

J2r
2
⊕n cos i

a2(1− e2)2
∂cos i

∂e
+ CSRP

√
1− e2

nae
cosψj

∂Tj
∂e

− CSRP
e

na
√
1− e2

∂Tj
∂i

cosψj
∂

∂e

1

tan i

+ CSRP
e

na
√
1− e2 tan i

cosψj
∂

∂e

∂Tj
∂i

,

(B.1)

where:
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∂cos i

∂e
=

eΠ

n1
√
µa(1− e2)3/2

,

∂sin i

∂e
=

1

tan i

∂cos i

∂e
,

(B.2)

and ∂Tj
∂i

and ∂
∂e

∂Tj
∂i

can be derived by applying the half-angle trigonometric formulae.

Hessian term of commensurability equation of SRP-J2-Sun

The differential contributes of to the commensurability equation of the SRP-J2-Sun model
are:

∂Ω̇(J2,j)

∂e
=− 6

J2r
2
⊕ne

a2(1− e2)3
cos i+

CSRP

na(1− e2)3/2 sin i

∂Tj
∂i

cosψj

− 3

2

J2r
2
⊕n

a2(1− e2)2
∂cos i

∂e
+ CSRP

e

na
√
1− e2

∂Tj
∂i

cosψj
∂

∂e

1

sin i

+ CSRP
e

na
√
1− e2 sin i

cosψj
∂

∂e

∂Tj
∂i

,

∂ω̇(J2,j)

∂e
=3

J2r
2
⊕ne

a2(1− e2)3
(5 cos2 i− 1)

− CSRP

na
√
1− e2

(
Tj
e2

− cos i

(1− e2)2 sin i

∂Tj
∂i

)
cosψj

+
15

2

J2r
2
⊕n cos i

a2(1− e2)2
∂cos i

∂e
+ CSRP

√
1− e2

nae
cosψj

∂Tj
∂e

− CSRP
e

na
√
1− e2

∂Tj
∂i

cosψj
∂

∂e

1

tan i

+ CSRP
e

na
√
1− e2 tan i

cosψj
∂

∂e

∂Tj
∂i

.

(B.3)

The contribute to the stability of the Sun gravity is:
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∂Ω̇⊙j

∂e
=− 15

32
e

e2 − 2

(1− e2)3/2
n1n

2
⊙

n
csc i

∂Kj

∂i
cos 2ψ+

+
15

32

e2√
1− e2

n1n
2
⊙

n

∂Kj

∂i
cos 2ψj

∂

∂e

1

sin i
+

+
15

32

e2 csc i√
1− e2

n1n
2
⊙

n

∂

∂e

∂Kj

∂i
cos 2ψj,

∂ω̇⊙j

∂e
=
15

32

e

(1− e2)3/2
n2
⊙

n

[
2(e2 − 1)Kj + (e2 − 2)

∂Kj

∂i
cot i

]
+

+
15

16

n2
⊙

n

√
1− e2

∂

∂e
Kj cos 2ψj+

− 15

32

e2√
1− e2

n1n
2
⊙

n

∂Kj

∂i
cos 2ψj

∂

∂e

1

tan i
+

− 15

32

e2√
1− e2

n1n
2
⊙

n

1

tan i

∂

∂e

∂Kj

∂i
cos 2ψj

(B.4)

where (Alessi et al. [14]):

∂cos i

∂e
=

eΠ

n1
√
µa(1− e2)3/2

,

∂sin i

∂e
=

1

tan i

∂cos i

∂e
,

∂csc i

∂e
= − 1

sin i2
∂sin i

∂e

(B.5)

and ∂Tj
∂i

, ∂
∂e

∂Tj
∂i

and ∂Kj

∂i
can be derived by applying the half-angle trigonometric formulae.
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derivation

We want to focus the attention on the derivation of the second integral of motion equation.
Let us consider the equation of motion of the eccentricity and inclination from eq. (3.23),
and divide the first by the second under the hypotheses of isolated resonance (the contrary
holds the same, Alessi et al. [14]):

di

de
=
e sin i

1− e2

∂ cosψj

∂Ω
− cos i

∂ cosψj

∂ω
∂ cosψj

∂ω

=
e sin i

1− e2

(
∂ cosψj/∂Ω

∂ cosψj/∂ω
− cos i

)
, (C.1)

which, whit the adopted convention by Gkolias et al. [69], it reads:

di

de
=
e sin i

1− e2

(
n2

n1

− cos i

)
. (C.2)

The above differential can be exactly solved by the method of separation of variables and
integrated from e = 0 and e and from ie=0 and i:∫ i

i0

n2

n1
− cos i

sin i
di =

∫ e

e=0

1− e2

e
de (C.3)

which is:
ln (−n2 + n1 cos i)− ln (−n2 + n1 cos ie=0) = −1

2
ln (1− e2) (C.4)

bringing on the left the quantity related to the final state and elevating:

√
1− e2(n2 − n1 cos i) = (n2 − n1 cos ie=0), (C.5)

which is nothing but the a-dimensional version of the Π in eq. (3.17), which is multiplied
by √

µa to have the unit of a momentum. From eq. (C.5) we can also note that the
integral of motion is constant once the resonance has been chosen since a is constant due
to the conservative nature of the acting forces.
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In conclusion, the eq. (C.1) can be generalised with the perturbing function or equivalently
the disturbing Hamiltonian R = −H:

di

de
=
e sin i

1− e2

(
∂R/∂Ω
∂R/∂ω

− cos i

)
, (C.6)

The eq. (C.6) has also been derived by Giovannini in [79].
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coefficients

The coefficients for the J2 and SRP contributes are taken from Alessi et al. [14].

Resonance j = 2

Table D.1: Coefficients of the quadratic equation c1 cos2 i+ c2 cos i+ c3 = 0 associated to
the extended model for j=2. In the table, β =

√
1− e2, γ = cos2

(
ϵ
2

)
, ρ = sin2

(
ϵ
2

)
. Note

that eq. (4.34) is multiplied by 16a5β5en.

Effect c1 c2 c3

J2 −60C⊕eβ −24C⊕eβ +4eβ (3C⊕ − 4a5β4nn⊙)

SRP +8CSRPa
4β4γ cosψ −8CSRPa

4β4γ(1− 2e2) cosψ

⊙ +15a5γ2eβ4n2
⊙ cos 2ψ −30a5γ2eβ4n2

⊙ cos 2ψ +15a5γ2eβ4(2e2 − 1)n2
⊙ cos 2ψ

Resonance j = 3, 4

According to Gkolias et al. [69], the coefficient n2 relative to the RAAN (Ω) is null. The
contribute of the Sun gravity on the variation of the argument of perigee is:

ω̇⊙ =

[
− 15

8
a5β4en2

⊙χ(e
2 + β2) sin i2 +

15

8
a5β4e2n2

⊙χ

]
cos 2ψ3, (D.1)

with χ = cos ε2 − 2 sin ε2 − 1.

In order to have the same nomenclature as in the other example, the eq. (D.2) has to be
multiplied by sin i/(15C⊕eβ):

ω̇⊙ =

[
− 1

8C⊕
a5β3n2

⊙χ(e
2 + β2) sin i3 +

1

8C⊕
a5β3en2

⊙χ sin i

]
cos 2ψ3,4, (D.2)
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Table D.2: Coefficients of the quadratic equation s0 sin i
3 + s1 sin i

2 + s2 sin i + s3 = 0

associated with the equilibrium point at ψj for j=3,4. In the table, β =
√
1− e2, γ =

cos2
(
ϵ
2

)
, ρ = sin2

(
ϵ
2

)
. Note that eq. (4.34) is multiplied by 16a5β5en.

j s1 s2 s3

3 −2CSRP

15C⊕e
a4β3 sin ϵ cosψ − 4

15C⊕
(3C⊕ − a5β4nns)

2CSRP

15C⊕
ea4β3 sin ϵ cosψ

+ 1
8C⊕a

5β3en2
⊙χ sin i cosψ

4 2CSRP

15C⊕e
a4β3 sin ϵ cosψ − 4

15C⊕
(3C⊕ + a5β4nns) −2CSRP

15C⊕
ea4β3 sin ϵ cosψ

+ 1
8C⊕a

5β3en2
⊙χ sin i cosψ

and s0 = − 1
8C⊕a

5β3n2
⊙χ(e

2 + β2) sin i3 cosψ.

Resonance j = 5

Table D.3: Coefficients of the quadratic equation c1 cos
2 i + c2 cos i + c3 = 0 associated

to the extended model for j=5. In the table, β =
√
1− e2, γ = cos2

(
ϵ
2

)
, ρ = sin2

(
ϵ
2

)
.

Effect c1 c2 c3

J2 60C⊕eβ −24C⊕eβ −4eβ (3C⊕ − 4a5β4nn⊙)

SRP +8CSRPa
4β4ρ cosψ +8CSRPa

4β4ρ(1− 2e2) cosψ

⊙ +15a5ρ2eβ4n2
⊙ cos 2ψ +30a5ρ2eβ6n2

⊙ cos 2ψ −15a5ρ2eβ4(2e2 − 1)n2
⊙ cos 2ψ

Resonance j = 6

Table D.4: Coefficients of the quadratic equation c1 cos
2 i + c2 cos i + c3 = 0 associated

to the extended model for j=6. In the table, β =
√
1− e2, γ = cos2

(
ϵ
2

)
, ρ = sin2

(
ϵ
2

)
.

Effect c1 c2 c3

J2 −60C⊕eβ −24C⊕eβ +4eβ (3C⊕ + 4a5β4nn⊙)

SRP +8CSRPa
4β4ρ cosψ −8CSRPa

4β4ρ(1− 2e2) cosψ

⊙ +15a5ρ2eβ4n2
⊙ cos 2ψ −30a5ρ2eβ4n2

⊙ cos 2ψ +15a5ρ2eβ4(2e2 − 1)n2
⊙ cos 2ψ
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