
Executive Summary of the Thesis

A CNN-based detector for video frame-rate interpolation

Laurea Magistrale in Music and Acoustic Engineering - Ingegneria Musicale e Acustica

Author: Simone Mariani

Advisor: Prof. Paolo Bestagini

Academic year: 2021-2022

1. Introduction
In the last twenty years, due to the increasing
popularity of social media networks and to the
technological advancements in video capturing
devices, videos are spread everywhere. Anyone
can capture videos with extreme facility, but un-
fortunately, anyone can also tamper with them.
Maliciously manipulated videos can lead to sev-
eral consequences like people defamation, fake-
news spreading or mass opinion formation. For
this reason, it is important to guarantee the in-
tegrity and the authenticity of the video con-
tents, and this is exactly the aim of our work.
Among the many video manipulation operations
that are available, video frame-rate interpolation
is one of the most common ones. This operation
consists in creating new frames (upsampling) in
between already existing consecutive frames, or
even in dropping (downsampling) some frames,
resulting in a frame-rate variation. If new frames
are created, they can be a repetition of the orig-
inal ones, or they can be built by interpolating
between the original frames pixels. The inter-
polating approach is very difficult to detect, es-
pecially if the motion is taken into account dur-
ing the interpolation, for example using Motion
Compensated Interpolation (MCI) [1].
Indeed, MCI approaches perform first a motion
estimation step, and then an interpolation one.

The idea is to estimate the trajectories that each
pixel follow from one frame to another. Then,
the pixels of the newly generated frames are
placed on the trajectory indicated by the esti-
mation. In this way the interpolated frames are
computed and inserted in the middle of the orig-
inal frames, resulting in a very fluid sequence.
Since video frame-rate interpolation can lead to
very realistic results that may be used for mali-
cious video tampering, it is necessary to develop
some tools capable of identifying manipulations
introduced by interpolation.
The goal of our work, is to be able to classify
a given video, as frame-rate interpolated or as
original (untouched frame-rate).
With this purpose, we propose a detector capa-
ble to identify traces of frame-rate interpolation
in a video.
The rest of the document is organized in the fol-
lowing way.
In Section 2 we formally define the goal of our
work. In Section 3 we sum up the details of
our detector, and we also introduce how to ex-
tend the approach to localize smaller interpo-
lated video regions. Section 4 is devoted to
present the principal results obtained from the
conducted experiments. In the final Section 5,
we draw the conclusions of our work.

1



Executive summary Simone Mariani

Figure 1: A quick overview of our detector. We analyze the input video in order to classify it as
interpolated or not interpolated.

2. Problem Formulation
Video frame-rate interpolation leaves peculiar
footprints on the newly generated frames. It
is therefore possible to study these traces in a
forensic manner in order to detect if the video
has been interpolated in time or not.

The goal of this work is to detect if a video
under analysis has undergone frame-rate inter-
polation or not. With reference to Figure 1,
this is a binary classification problem, with one
video as input, and one binary label as output.

Formally, let us consider a video sequence de-
fined as

V = [F0, ...,FL−1], (1)

where Fi, i ∈ [0, L − 1] denotes the i-th frame
in V and L represents the number of frames
contained in V. Our goal is to learn how to
associate a label p to the video V where p = 1
means that the video has been temporally
interpolated, whereas p = 0 means that the
video frame-rate is untouched.

3. Proposed Method
To detect frame-rate interpolation in a video
we propose a method structured as indicated in
Figure 1. This is composed by three principal
stages:

1. Preprocessing
2. Convolutional Neural Network (CNN)
3. Classifier

Preprocessing In the Preprocessing block,
we extract T + 1 consecutive frames from the
video, producing a segment S. Then we convert

Figure 2: CNN high level structure. From the
preprocessed segment SN×N we obtained the
three input segments Sfra, Sres and Sopt. We
fed each one of them into the correspondent
branch. Three output scores are produced from
each branch analysis (o1, o2 and o3).

all the frames of S in the grayscale colorspace
creating the segment Sgray. After that, we re-
size all of the frames of the video segment Sgray

according to our policy. In particular, in the
training phase of our detector, the frames are
first resized by a random factor r picked between
0.9 and 1.1, in a way to have a final height of
r · H and final width of r · W , being H and
W the original frames height and weight. Then
a center crop of N × N is extracted produc-
ing the segment SN×N . In the testing phase,
instead, a simple center crop of N × N is ex-
tracted from Sgray producing the preprocessed
segment SN×N . The final step in the preprocess-
ing stage is to produce three different versions of
the segment SN×N , this to try to capture differ-
ent information about the possible interpolation
traces present in the input video V. These three
versions are Sfra (original frames), Sres (residu-
als) and Sopt (optical flow), all these segments
are of length T frames and all of their frames are
of dimension N ×N .

2



Executive summary Simone Mariani

Figure 3: Pipeline of the final classification
stage. The three branches outcomes (o1, o2 and
o3) are aggregated into the feature vector O.
This vector is fed to the classifier cSVM(·) which
predicts if the video is interpolated (p = 1) or
original (p = 0).

CNN The goal of the CNN inside our detec-
tor is to process the three segments (Sfra, Sres
and Sopt) created during preprocessing and to
extract some sort of interpolation traces inside
of them.
In Figure 2 this approach is summarized. In
particular, the CNN is composed by three struc-
turally identical branches (CB1(·), CB2(·) and
CB3(·)). Each one of them is devoted to the pro-
cessing of each one of the preprocessed segments
(Sfra, Sres and Sopt). After the processing, for
each branch, an output score is produced (o1, o2
and o3). This scores span the range (−∞,+∞),
the higher the score, the higher the probability
that the video has undergone frame-rate inter-
polation.

Classifier The last stage of our detector has
the aim of producing a prediction p related
to the input video V by analyzing the CNN
branches output scores.
First we want to pack together the o1, o2 and
o3 scores in the feature vector O, as indicated
in Figure 3.
Then, the idea is to use this feature vector to
state if the video has been frame-rate interpo-
lated or not. To do that, we implemented a
Support Vector Machine (SVM), in particular a
Support Vector Classifier. The feature vector O
is fed to the classifier (cSVM(·)), which generates
the prediction p, where p = 0 means that the
video is classified as original, instead p = 1
means that the video is classified as interpolated.

To conduct our experiments, first we had to
train and test the proposed detector. To do
so, we built a new dataset composed by a mix-

Figure 4: High level pipeline of localization ap-
plication. From the input video Vin to the out-
put video Vout in which the interpolated sub
blocks are highlighted.

ture of original and interpolated videos. Our
idea was to start from the Kinetics400 dataset,
and to construct a dataset D in which we put
some of the Kinetics400 original videos and the
correspondent interpolated versions at different
frame-rates. All of the videos are interpolated
through FFMPEG [2] with a MCI interpolation.
The training phase is divided into the training of
the individual CNN branches and into the train-
ing of the global model (considering the classi-
fier).

3.1. Localization
In this section we show how to use the proposed
detector to localize the interpolated zones inside
a video.
The idea is to follow the pipeline presented in
Figure 4, starting from the input video Vin and
producing the output video Vout in which the
interpolated regions are highlighted. First, we
divide the input video Vin in segments of length
T + 1 frames. What we want to do is to ana-
lyze each segment in order to highlight the zones
in which our detector finds interpolation traces.
With this purpose, we divide each segment into
multiple subsegments representing non overlap-
ping N × N spatial regions of the segment it-
self. Then, we want to generate predictions re-
lated to each subsegment, in a way to mark each
subsegment as interpolated or not interpolated.
Following this procedure, we preprocess all of
the subsegments belonging to each segment in
the exact same way as explained in the previ-
ous section (in particular, using the testing re-
sizing policy). After that, for each subsegment
(of spatial dimension N × N), we produce the
three versions Sfra, Sres and Sopt. Then, for each
subsegment, the three created segments are pro-
cessed through the CNN and the output scores

3



Executive summary Simone Mariani

are produced. The scores are packed together
and fed to the classifier which generates a pre-
diction on the subsegment (p=0 means that the
subsegment is predicted as original, otherwise
p=1 means that the subsegment is predicted as
interpolated).
The idea is to collect the predictions for all of
the subsegments belonging to a segment, com-
posing a binary mask related to the segment.
This binary mask has the same spatial dimen-
sion of a frame belonging to the segment. The
mask is composed by “zeros” in correspondence
of the subsegments predicted as interpolated, in-
stead is composed by “ones” in correspondence of
the subsegments predicted as not interpolated.
Once this mask is created for every segment be-
longing to the input video Vin, we proceed with
the output video generation.
The output video consists in a version of the in-
put video in which the interpolated zones are
highlighted. To do this, we rely on the segment
masks which represent exactly the interpolated
sectors inside of each segment (N × N sectors
where the mask is set to 1). For each segment,
we multiply the segment mask for the green and
blue channel of all the frames belonging to the
segment. In this way, the resulting segments will
be composed by the original frames in the non
interpolated zones, instead by only red channel
frames in the interpolated zones. Infact, in the
interpolated zones (where the segment mask is
set to zero) the multiplication suppress green
and blue channels of the original frames. The
output video Vout is then produced by concate-
nating all the highlighted segments.

4. Results
In this section, we sum up the main results
obtained in the two applications of our detec-
tor: detection and localization of frame-rate
interpolation.

In Table 1 we compare the detection testing ac-
curacies of our model, against two of the most
recent works in the video interpolation field.
These two works are SpeedNet [3] and the de-
tector proposed by Hosler and Stamm [4].
As we can see from Table 1, our method is very
efficient in detecting frame-rate interpolation
and outperforms the other two.

METHODS COMPARISON
Proposed SpeedNet [3] S&H [4]
99.630% 75.600% 91.700%

Table 1: Comparison between our detector
against “SpeedNet” [3] and “Stamm and Hosler”
detector (S&H) [4] in terms of accuracy.

In Figure 5 we show a result related to the local-
ization application of the proposed detector. We
took an input original video and we produced
a locally interpolated version of it by replacing
the upper left 224x224 block with the correspon-
dent block taken from the interpolated version
of the video. Then, we analyzed this video in
the way explained in the previous section, divid-
ing it in 16 frames segments, and scanning each
segment through subsegments of 224x224 spa-
tial dimension. We produced an output video
in which the interpolated sectors for each seg-
ment are highlighted in red. In Figure 5, three
frames from three different segments have been
extracted from the output video. It is evident
that the localization is very accurate in this spe-
cific case.

5. Conclusions
In this work, we considered the problem of
identifying traces of frame-rate interpolation in
video sequences. To this purpose we proposed a
detector which is trained in a supervised fashion
to understand if a video has been frame-rate
interpolated. The proposed methodology
exploits the idea of applying different kinds of
preprocessing to the video under analysis in
order to better expose frame-rate interpolation
traces. Preprocessed videos are then passed to
a CNN to extract salient features, and an SVM
that performs the final classification.

Our method has been validated through a series
of experiments. To conduct our experiments, we
built a brand new dataset composed by original
videos and the correspondent interpolated (at
different frame-rates) versions, starting from the
Kinetics400 dataset. We have demonstrated the
precision of our model, evaluating it from mul-
tiple perspectives. Moreover, we have compared
against two recently-proposed state-of-the-art
techniques, showing that the proposed method
is able to outperform both.

4



Executive summary Simone Mariani

(a) segment 1, first frame

(b) segment 2, first frame

(c) segment 3, first frame

Figure 5: Samples of frames from three random
video segments from an output video. Anal-
ysis performed with subsegments of dimension
224x224 and 16 frames segments. The predicted
interpolated sectors are marked in red.

Finally, we also made a few steps into the
localization of the frame-rate interpolated zones
inside a video, rather than just the simple
detection, demonstrating a new particular use
of the detector.

References

[1] John W. Woods. Chapter 11 - digital video
processing. In John W. Woods, editor, Mul-
tidimensional Signal, Image, and Video Pro-
cessing and Coding (Second Edition), pages
415–466. Academic Press, second edition edi-
tion, 2012.

[2] Ffmpeg. https://ffmpeg.org/.

[3] Sagie Benaim, Ariel Ephrat, Oran Lang, In-
bar Mosseri, William T. Freeman, Michael
Rubinstein, Michal Irani, and Tali Dekel.
Speednet: Learning the speediness in
videos. https://arxiv.org/abs/2004.
06130, 2020.

[4] Brian C. Hosler and Matthew C. Stamm.
Detecting video speed manipulation. 2020
IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition Workshops
(CVPRW), pages 2860–2869, 2020.

5

https://ffmpeg.org/
https://arxiv.org/abs/2004.06130
https://arxiv.org/abs/2004.06130

	Introduction
	Problem Formulation
	Proposed Method
	Localization

	Results
	Conclusions

