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1. Introduction

We are living in a connected world where data
continuously flows and consumers are interested
in continuously querying data in order to re-
spond in real-time. With graph databases (e.g.
Neo4j), it is possible to efficiently process and
query (e.g. via Cypher) highly linked data re-
gardless of the size of the dataset. On the
other hand, Velocity combined with Volume in-
troduced by the Big Data era limit the capabil-
ities of graph DB’s technologies. However, no
significant work has been done by the scientific
community to extend streams features to prop-
erty graphs. Seraph, an extension of the syn-
tax and semantics of Cypher, needs a stream-
ing application that creates and maintains time-
varying graphs that capture the dynamic evolu-
tion of the data flowing inside the query engine.
To this purpose, we propose a reference archi-
tecture for implementing streaming applications
for the Seraph queries evaluations and its imple-
mentation Dozer. The latter offers crucial indus-
trial features such as scalability, fault tolerance,
high throughput, and low latency, which have
been experimentally evaluated. We tested the
performance impact of Dozer against the per-
formance of a canonical way of running Cypher

queries in Neo4j over temporal marked stream-
ing graphs, as well as Dozer’s fault-tolerance.
Finally, we discuss some limitations and some
suggestions to improve the engine.

2. Problem Statement

Presenting Seraph [3], Falzone et al. assume
that an underlying streaming application is re-
quired to generate and maintain time-varying
graphs that capture the dynamic evolution of
the data. The authors proposed a prototype
that introduces streaming features in the con-
text of property graph query languages, but with
some limits making it not suitable for industrial
development. With this as its starting point,
we start working on a reference architecture for
the implementation of streaming applications for
Seraph queries evaluation, which offers crucial
industrial features.

3. Requirements

Stream processing systems have emerged in re-
cent years to provide high efficiency combined
with high throughput at low latency. We start
designing a reference architecture based on a
Stream Processing Engine (SPE) that ingests
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stream (graph) data, performs some mainte-
nance operations to capture the dynamic evo-
lution of the data over time, and communicates
with a Neo4j instance for the query execution
before reporting the results. According to an
architectural design choice, we could guarantee
important requirements [4] a real-time process-
ing system should met: 1) Keep the data moov-
ing; 2) Query on Streams; 3) Handle Stream Im-
perfections (Delayed, Missing and Out-of-Order
Data); 4) Generate Predictable Outcomes; 5) In-
tegrate Stored and Streaming Data; 6) Guaran-
tee Data Safety and Availability; 7) Partition
and Scale Applications Automatically; 8) Pro-
cess and Respond Instantaneously.

4. Dozer

The use of a Streaming Processing Engine (e.g.
Spark, Kafka Streams, Apache Flink) at the
basis of our architecture allows us to exploit
built-in mechanisms to satisfy the requirements.
Dozer arises as the first implementation of the
proposed architecture, built on Kafka and Kafka
Streams. Seraph directly supports consumption
from Kafka, as well as outputs the resulting
stream into Kafka topics. Moreover, the Kafka
distributed and parallel processing model allows
us to design a microservice architecture and to
build a distributed continuous query processing
that provides dynamic scalability. Last but not
least, Apache Kafka provides Connect API, a
free, open-source component for scalably and
reliably streaming data between Apache Kafka
and other data systems. In particular, pre-built
Neo4j Kafka Connector1, able to ingest and sink
graph data with the CDC design pattern, has
played a key role in such a decision. Firstly,
it allows us to focus on the implementation of
the core of the architecture without worrying
about the communication between our engine
and Neo4j. Moreover, CDC [1] enables the mon-
itoring and collection of data changes, as well
as updating a target system with only the data
that has changed from the source system. It en-
ables to stream every single event occurring on
a database into Kafka at very low latency and
low impact. For this reason, it has emerged as
an ideal solution to design event-driven archi-
tectures that provide real-time of data by mov-
ing and processing data continuously as new

1https://neo4j.com/labs/kafka/

database events occur. It is ideal for high-
velocity data environments where time-sensitive
decisions must be taken, since it enables low-
latency, reliable, and scalable data replication.
Using the Kafka Sink Connector, combined with
the CDC module, allows us to overcome the lim-
its imposed by the batch nature of Neo4j, which
is opposed to the strict latency requirements of
stream processing applications.

4.1. Dozer Architecture

Figure 1 illustrates an overview of the Dozer ar-
chitecture. The JSON-PG data format allows
us to ingest graph-native data, possibly com-
ing from the major graph databases. However,
on the basis of the foregoing considerations, our
streaming application needs to work with CDC
event streams, and therefore we need a compo-
nent in charge of converting JSON-PG data for-
mat in CDC events, which will become the new
input stream of our pipeline. Moreover, the cap-
tured data changes denoting the dynamic evolu-
tion of the data according to the window op-
erator will be propagated on a Neo4j instance
using the Kafka Connector Sink. The Neo4j in-
stance is an external system with which Dozer
communicates. Finally, our streaming applica-
tion runs the Cypher sub-query over the portion
of the graphs extracted by the window opera-
tor. The result is then published in a dedicated
Kafka topic using the JSON-PG format.

4.2. Dozer Topology

Figure 2 better depicts the internal structure of
Dozer, consisting of the following modules.

4.2.1 JSON-PG to CDC converter

It consumes from the input stream source topic
defined in the Seraph query and converts the
data in CDC format. The Converter Proces-
sor processes each record and converts it from
JSON-PG format to CDC format. Finally, a
Kafka Producer sends the “create” event record
into the appropriate topic that will be the source
of the next module.

4.2.2 Delete CDC records producer

The goal of this module is to produce CDC
“delete” events. It consumes the CDC “create”
records produced by the converter module and
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Figure 1: Dozer architecture

produces “delete events” with a proper custom
timestamp. To generate the timestamp asso-
ciated to the “delete” events, we can have two
policies which depends on the window type.
Window Time Range. The window time
range defines slices of times on which extract
portions of the property graph. Let’s assume
a 2 hours wide time-based sliding window and
that a CDC “create” event arrives at 7:52 AM;
we need to create a CDC “delete” events at 9:52
AM. Kafka is pull-based, i.e. different con-
sumers can consume the messages at different
paces. On the other hand, producers cannot de-
cide at which time to send the messages. To cap-
ture the dynamic evolution of the time-varying
graphs data we need a way to postpone the CDC
“delete” events. We decouple the process in two
phases. As soon as a “create” events arrives, we
produce the corresponding “delete” events with
an associated timestamp in the future. Later, a
dedicated component will be in charge of con-
suming this record at the proper timestamp and
reproducing it on the Kafka Topic.
Window Event Range. In the case of an
event-based window, the window range defines
the last N events of the streams forming the por-
tion of the property graph to consider. Let’s
assume an event range of 5 events, this means
that we must maintain a sub-graph of the last
5 events. So, once the threshold is exceeded (in
our example 5 events), every time a new event
arrives we need to remove the oldest of the five
and add the most recent one.

4.2.3 Dozer Pipeline

This is the core module of the Dozer engine,
according to which a component generates the
evaluation time instants, some components are
in charge of the maintenance process for cap-
turing the dynamic evolution of the data, and a

Figure 2: Dozer’s modules

component run Cypher subquery on the portion
of generated sub-graphs:
TimeToSyncGenerator. Once a Seraph
query is registered, the application extracts the
EMIT Range, to define a time-to-sync, which
will be the input of the next phases. The EV-
ERY operator specifies the frequency of the
evaluation process and the time-to-sync corre-
sponds to the several exact evaluation time in-
stants. So, assuming that the first record arrives
at 8:17 AM and the EVERY operator equals
PT2M, the first time to sync is at 8:17 AM,
then the second evaluation time will be at 8:19
AM, and so on. From a logical level perspec-
tive, a streaming model uses the concept of a
Tick to drive the system in taking actions over
input streams. Botan et al. in [2] define a Tick
in three ways:
• Tuple-driven (DD), where each tuple arrival

causes a system to react.
• Time-driven (TD), where the progress of

the real time causes a system to react.
• Batch-driven (BD), where either a new

batch arrival or the progress of the time
causes the system to react.

Dozer uses a tuple-driven approach. DD models
typically provide lower latency than the TD and
BD models for the query computation. On the
other hand, the record-at-a-time model requires
state maintenance for all operators with record-
level granularity. This behavior obstructs sys-
tem throughput and brings much higher laten-
cies when recovering after a system failure. How-
ever, Kafka Streams handles out-of-order data,
with low latency and high throughput record-at-
a-time processing. This key feature, combined
with the high fault tolerance of Apache Kafka
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during recovering, made us choose a tuple-driven
model, which allows us to reduce the latency im-
pact due to the transactional behavior associ-
ated with Neo4j.
TimeManagedComponents. During this
phase, the streaming application creates and
maintains the time-varying graphs to capture
the dynamic evolution of the data flowing inside
the query engine up to the time-to-sync gener-
ated by the previous component. Two decou-
pled components are in charge of consuming, at
the proper timestamp, the “delete” and “create”
CDC events produced by the first two modules,
allowing to extract the portion of the subgraphs
data, which is recreated on the Neo4j by sinking
with the connector the CDC events.
CypherHandler. Finally, the engine com-
municates with the Neo4j instance to run the
Cypher subquery on the portion of data and pro-
duce the result on the output Kafka topic.

5. Evaluation

All the experiments, which we present, are
aimed at showing the industrial features for
which this system was designed, such as high
performance and fault-tolerance.

5.1. Experimental Setup

The experiments can be divided into three
groups, different for their purpose and the infor-
mation they produce. All the tests have been ex-
ecuted on an Amazon EC2 t3.2xlarge2 instance,
and the depicted results correspond to the aver-
age results of different independent executions.
We repeated the tests for different window sizes
(PT1S, PT5S, PT10S, PT15S, PT30S, PT45S,
PT1M, PT5M, PT10M) over a time horizon
of at most seven days long (from ‘2021-01-
01T00:00:00Z’ to ‘2021-01-08T00:00:00Z’). The
following plots are just a portion of the executed
tests and aim to describe the system behavior by
analyzing the corner case scenarios.

5.2. Dozer vs Cypher Complexity

First of all, we analyze the complexity of run-
ning the same queries over the two systems,
namely Dozer and querying timestamped Prop-
erty Graphs with Cypher (hereafter referred to
as “Cypher”). For both scenarios and for each

2https://aws.amazon.com/it/ec2/instance-types/t3/

selected window, we ran five experiments over a
linear dataset simulating a linked list of nodes
growing over time. The first node was cre-
ated with a timestamp corresponding to the date
‘2021-01-01T00:00:00Z’. Then, every 500ms two
new nodes, linked to the existing ones, enter
the dataset. In Dozer, we have the system han-
dling the deletion and insertion of relationships
at each evaluation instant, selecting the portion
of the Property Graph to query according to
the window definition. On the other hand, with
Cypher, we simulate a tumbling window by run-
ning a Cypher MATCH query at each evalua-
tion step, filtering over the timestamp property
of the relationships. In the latter scenario, the
relationships continue to grow over time.
The system’s complexity was determined by
measuring the effort required by the Neo4j server
to execute the MATCH query at each evaluation
step. For this purpose, we used the Neo4j Re-
sultSummary interface to collect the time it took
for the server to obtain the query results.
The linear dataset grows linearly over time in
the number of nodes and relationships. Assum-
ing that the complexity for running the MATCH
query depends on the number of nodes and re-
lationships present at each evaluation instant,
we expected that Cypher’s complexity grows lin-
early as well. On the other hand, running the
same MATCH query with Dozer requires a con-
stant time complexity proportional to the num-
ber of nodes and relationships shrunk by the
windows. However, with Dozer, we handle only
the insertion and deletion of the relationships
because we are mainly interested in capturing
the dynamic evolution of graphs over the rela-
tionships which are the key elements of graph
DBs. With this assumption, we reduce the
maintenance costs at expenses of a slight in-
crease of running Cypher queries. Because of
the foregoing consideration, the time complex-
ity analysis led us to the following evaluation. If
we consider the time complexity only as function
of the number of relationships n, we expect:
• A constant complexity O(1) for Dozer; and
• A linear time complexity O(n) for Cypher.

Of course, as time passes, the dependence on
the number of nodes cannot be overlooked. The
plots in Figure 3 show the results of our ex-
periments, which are coherent with our analy-
sis. Moreover, we can see how the inefficiency
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Figure 3: Dozer vs Cypher complexity

of Cypher reduces as window sizes increase un-
til it starts outperforming Dozer (this behaviour
starts from 10-minutes-wide window). We are
not interested in understanding Neo4j’s core exe-
cution strategy; however, it is optimized for bulk
load ingestion. For larger windows, Cypher cre-
ates a large number of nodes and relationships
in bulk, after which filtering on them becomes
more efficient. On the other hand, with Dozer,
we need to handle the maintenance phase. The
deletion of some relationships and the accumu-
lation of node instances introduce some ineffi-
ciency on the Neo4j server.

5.3. Execution Time Comparison

We also focused our interest on measuring the
time impact experienced by the end-user in the
two different approaches by comparing the total
execution time needed by Dozer and Cypher to
run the same query. We can notice that, in both
scenarios, the total execution time decreases as
window ranges increase, following the trend re-
ported in the previous assessments. Moreover,
Dozer outperforms Cypher, regardless of the
window size. Of course, continuing to increase
it, the result would change, in line with what
has already been discussed.

5.4. Comparison among different

datasets

In the light of the outcome discussed previously,
we repeated some tests on a larger star-shaped
dataset to understand if the results depend on
whether or not the linear shape. We define a
cost function as the cumulative sum of the time
it took the Neo4j server to run the query at each
evaluation step. Figure 4 refers to the results of
the two corner cases window width.
In the star-shaped case, we have greater produc-
tion frequency (each second, we create ten times
the number of nodes and relationships as the

Figure 4: Dozer’s cost function at different
dataset

linear one) and a more complex structure. Con-
sequently, the star-shaped cost function width
will be greater, but it will have the same trend
as the linear one. For middle windows, the dif-
ference in width is more evident. Indeed, with
smaller windows, the behavior is almost simi-
lar because, at each evaluation step, Dozer han-
dles a small number of relationships in both sce-
narios; while continuing to increase the window
range, the result would change. Moreover, the
plots highlight how the cost function has a sub-
quadratic complexity due to the node accu-
mulation discussed in the previous phases. Fi-
nally, with the star-shaped dataset, we handle
more triples. The last plot, referred to as a
five-minutes wide tumbling window, shows how
Neo4j becomes more efficient with a bulk load
(see discussion in Section 5.2).

5.5. Components Overhead Analysis

During all of the previous tests, we measured
the portion of time spent by each component.
Figure 6 show, for each of them, the overhead
percentage w.r.t. the total execution time. The
bar-plots highlight the following patterns.
SyncGenerator. its objective is to update the
time-to-sync. Therefore, its timing is relatively
smaller than the other components. Moreover,
with window size increasing, the number of eval-
uation instants decreases, as well as the time
spent by the SyncGenerator.
TimeManaged. Considering a specific win-
dow width, the percentage of the TimeManaged-
Deletion and the TimeManagedInsertion com-
ponents is more or less the same.
CypherHandler. As window sizes increase, its
timing decreases at the expense of increasing
the time spent in the maintenance phases (both
deletion and insertion). The reason is twofold:
1) Increasing the window size, the TimeManaged
components handle, at each evaluation instant,
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Figure 5: Total execution time comparison

a larger number of nodes and relationships, re-
quiring higher maintenance costs. 2) Neo4j ef-
ficiently manages bulk loads. Consistently with
the analysis addressed in the previous sections,
the CypherHandler ’s timing reduces as window
width increases.

5.6. Fault-tolerance Tests

We performed a set of tests aimed at evaluating
the system failover. We ran, for each window,
ten executions with and without failures, and
both over a two-hour-long time horizon. For the
latter, we simulate some anomalies by forcing
the system to restart at regular intervals of ten
minutes, having thus 11 failures within each ex-
ecution. Under the assumption that every single
recovery within an execution is independent of
and does not influence the timing of the other
recoveries, we measure the Dozer’s MTTR. It
ranges from 10 to 12 seconds, and increases as
window width decreases. In addition to measur-
ing the time Dozer took for a single recovery,
we studied how failures affect end-user usability.
The barplot in Figure 7 depicts the time incre-
ment due to the 11 recoveries. In contrast to
the single recovery analysis, the total execution
time increases as window size increases. This is
because the engine takes some time before run-
ning at full capacity. Wider the windows, closer
the evaluation instants at which the system fails
and has to recover.

6. Conclusions

This thesis aimed at providing a reference ar-
chitecture for the implementation of streaming
applications for the Seraph queries evaluation.
The suggested architecture keeps the data mov-
ing and achieves low latency by incorporating
built-in event/data-driven processing capabili-
ties. Moreover, the use of a Streaming Process-
ing Engine at the basis of the architecture allows

Figure 6: Dozer components’ overhead at differ-
ent window sizes

Figure 7: Fault-tolerance tests

us to exploit built-in mechanisms to deal with
streams’ challenges, such as delayed, missing,
and out-of-order data, and to guarantee high
availability and fault tolerance. In particular, we
presented Dozer, a first implementation of the
architecture, built on Kafka and Kafka Streams.
With Dozer, we focused on modeling the dy-
namic evolution of graphs over the relationships,
which are the key elements of graph DBs. This
assumption allows us to cut maintenance costs
by working on the insertion and deletion of the
relationships over time without worrying about
nodes. The different tests highlighted the perfor-
mance of Dozer, outperforming the traditional
way of querying timestamped Property Graphs
with Cypher. However, the nodes accumula-
tion affects the performance, which reduces as
window width increases. In addition, dedicated
fault-tolerance tests have been carried out to
study how Dozer reacts to a failure and how the
latter affects the end-user usability.
In conclusion, Dozer satisfies almost all the ar-
chitectural requirements, being able to provide
near-real-time predictable outcomes for high-
volume with low latency and high throughput.
It has been designed following the microservice
architectural pattern to achieve high scalability,
efficiency, and speed. However, this paradigm
typically requires container management sys-
tems (e.g. Kubernetes, Docker Swarm), which,
at the moment, have not been integrated.
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Stan Zdonik. The 8 requirements of real-time
stream processing. ACM Sigmod Record,
34(4):42–47, 2005.

7

https://arxiv.org/abs/2111.09228
https://arxiv.org/abs/2111.09228


POLITECNICO DI MILANO

Scuola di Ingegneria Industriale e dell’Informazione

Master of Science in Computer Science and Engineering

DOZER:

A Scalable and Fault-Tolerant Streaming Engine

for Seraph Queries Evaluation

Supervisor: Prof. Emanuele Della Valle

Co-supervisor: Emanuele Falzone

Master Graduation Thesis

Antonio Urbano

920760

Academic Year 2020/2021





“La Terra su cui viviamo

non l’abbiamo ereditata dai nostri padri,

l’abbiamo presa in prestito

dai nostri figli”

A mio nipote Lucas

Ti auguro un futuro di successo,

e che il mio contributo a tale risultato

sia il mio principio ispiratore.





Abstract

We are living in a connected world where data continuously flows and consumers

are interested in continuously querying data in order to respond in real-time. With

graph databases, it is possible to efficiently process and query highly linked data

regardless of the size of the dataset.

Furthermore, in recent years, an increasing number of websites, applications

and IoT sensors have generated data streams, which are potentially unbounded

sequences of data having a timestamp and arriving in sequential order, one at a

time. On the other hand, Velocity combined with Volume introduced by the Big

Data era limit the capabilities of graph DB’s technologies.

However, no significant work has been done by the scientific community to

extend streams features to property graphs. At the moment, there exist only few

PoC implementations extending CQL to property graphs. Seraph, an extension of

the syntax and semantics of Cypher, needs a streaming application that creates

and maintains time-varying graphs that capture the dynamic evolution of the data

flowing inside the query engine.

Our effort proposes a reference architecture for implementing streaming ap-

plications for the Seraph queries evaluations, which offers crucial industrial fea-

tures such as scalability, high availability, fault tolerance, high throughput, and

low latency. Dozer arises as its first implementation to be a valid alternative to

a prototype not suitable for industrial development. These features have been

experimentally evaluated over the proposed system. We tested the performance

impact of Dozer against the performance of a canonical way of running queries over

temporal marked streaming graphs. We also performed fault-tolerance testing to

evaluate how the system responds to failures. Finally, we discuss some system

limitations and possible changes to improve its performance.





Sommario

Viviamo in un mondo connesso caratterizzato da un continuo flusso di dati ai

quali gli utenti finali sono interessati per rispondere a query continue in real-

time. I graph databases consentono di processare efficientemente dati altamente

interconnessi tra loro, indipendentemente dalla dimensione del dataset.

Inoltre, di recente un numero crescente di websites, applications e sensori IoT

hanno generato stream di dati, ovvero sequenze, potenzialmente infinite, di dati

marcati temporalmente che arrivano in ordine sequenziale, uno alla volta. Tut-

tavia, volume e velocità introdotte dall’era dei Big Data, limitano le capacità dei

DB a grafo.

Nonostante ciò, esistono soltanto pochi PoC e nessun lavoro degno di nota

è stato sostenuto per estendere le proprietà degli stream ai property graph. Il

nostro impegno propone Dozer, una streaming engine scalabile e fault-tolerant,

in grado di effettuare valutazioni di query Seraph, un’estensione della sintassi e

della semantica di Cypher. Seraph, necessita di un sistema in grado di creare e

mantenere grafi al variare del tempo, catturando l’evoluzione dinamica del flusso

di dati.

Vogliamo proporre un’architettura di riferimento per l’implementazione di ap-

plicazioni streaming per la valutazione di query Seraph, che offra funzionalità in-

dustriali cruciali come scalabilità, alta disponibilità, tolleranza ai guasti, through-

put elevato e bassa latenza. Dozer, una prima implementazione di quest’architettura,

nasce come una valida alternativa ad un prototipo non adatto allo sviluppo indus-

triale. Queste features sono state valuatate sperimentalmente sul sistema proposto.

Abbiamo testato l’impatto sulle prestazioni di Dozer rispetto le performance ot-

tenute valutando le queries su grafi marcati temporalmente. Abbiamo testato

anche la fault-tolerance, per valutare come il sistema risponde ai guasti. Infine,

abbiamo discusso su possibili modifiche da apportare al sistema in modo da miglio-

rarne ulteriormente le performance.
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“Per Angusta Ad Augusta” è una frase che ho sempre amato e trovo adeguata

a riassumere un percorso universitario e tutto ciò che ne riguarda. Più grande
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e per quello che spero continueremo a condividire. Sarà sicuramente un grande
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ci inviavamo alla fine di ogni giornata, con le ore di studio affrontate, cercando

(a volte invano) di stimolarci a vicenda. Durante il mio quarto e quinto anno di

superiori, ero un po’ indeciso se intraprendere una carriera universitaria. Devo

ammettere che te hai svolto un ruolo fondamentale, “convincendomi” sulla scelta

dell’università.
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Chapter 1

Introduction

Nowadays we live in a digital era where a high amount of data, coming from
many different sources, like online websites, social media platforms, IoT sensors,
is produced at a significant rate. The exponential growth of data produced by
non-traditional sources has meant that streaming data becomes a core component
of data architectures.

Moreover, we live in an interconnected world. This means that there are no
isolated pieces of information, but rich, connected domains all around us. Graph
databases, regardless of dataset size, excel at managing linked data and com-
plex queries. Indeed, relational databases require expensive JOIN operations to
compute relationships at query time. Only a database that natively supports re-
lationships can efficiently store, process, and query connections. In a native graph
database, accessing nodes and relationships is an efficient, constant-time opera-
tion that allows exploring millions of connections in a matter of seconds. We can
distinguish two popular models of graph databases:

• RDF1 graphs: conform to a set of W3C 2 standards designed to describe
statements and are ideally suited to capturing complex metadata and master
data. They are commonly used in the context of linked data, data integration,
and knowledge graphs. They can represent complex concepts in a domain,
or provide rich semantics and inference on data.

• Property graphs: used to represent relationships among data and allow query
and data analytics based on them. A property graph is made up of vertices
that provide comprehensive information about a subject and edges that rep-

1https://www.w3.org/RDF/
2Worldwide Web Consortium



resent the link between the vertices. Some attributes, called properties, can
be associated with nodes and edges.

Neo4J1 can be considered the most well-known and widely used graph database
in the world. It uses the labeled-property graph model, which requires efficient
storage, fast traversal, and querying connected data. For this, Neo4j is suitable
for many common use cases, such as Social Network Analytics, Fraud Detection,
and Analytics Network Monitoring.

Property Graphs have gotten a lot of interest from the scientific community
in recent years. However, no significant work has been done to extend CQL to
property graphs at this time. Cypher, in particular, is a declarative graph query
language that allows expressive and efficient data querying in Neo4j. As against
all these advantages, Cypher lacks the features for dealing with streams of (graph)
data and continuous query evaluation. Volume combined with Velocity, two of
the seven V’s characterizing Big Data according to [52], limit the capabilities of
property graph databases such as Neo4j.

Starting from the Big Data general question: “How to tame 5’Vs?” and fo-
cusing on Continuous Query Language world and Stream Processing technologies,
Falzone proposes Seraph [22] as an extension of the syntax and semantics of Cypher
with the goal of dealing with streams of (graph) data and continuous query evalu-
ation. This new proposed query language requires the use of a stream application
capable of creating and maintaining time-varying graphs by capturing the dynamic
evolution of the data flowing inside the query engine. Presenting Seraph, the au-
thors proposed a working prototype for evaluating Seraph queries, which is not
suitable for industrial scenarios.

In this document, we present a reference architecture for Seraph queries evalu-
ation and its first implementation, Dozer2. The proposed architecture introduces
crucial industrial features such as scalability, high availability, fault-tolerance, high
throughput, and low latency. The contributions of my thesis can be summarized
as follows:

• We present Dozer and its design, a valid alternative to the first prototype
aimed at overcoming the limitations of the latter.

• We provide deep performance insights by experimentally evaluating the Dozer’s
components overhead, as well as the performance impact of the proposed so-
lutions against a state-of-art algorithm.

• We experimentally test the fault-tolerance of our system

1https://neo4j.com/
2https://github.com/openseraph/SeraphEngine
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The document is structured as follows:

• Chapter 2 - State of the Art: It presents background knowledge needed
for a complete understanding of the problem and its solution. It also contains
an overview of research areas related to this thesis. Finally, it provides back-
grounds about some state-of-the-art tools on top of which Dozer is designed.

• Chapter 3 - Problem Statement: describes the problem in depth, out-
lining an existing solution and its limitations.

• Chapter 4 - Proposed Approach: we present Dozer and its architecture,
describing the path that led us to the Dozer implementation.

• Chapter 5 - Implementation experience: provides a technical overview
of the proposed system with some code snapshots to highlight core compo-
nents implementation.

• Chapter 6 - Experimental Results: goes through the experimental eval-
uation of our work to assess Dozer performances.

• Chapter 7 - Conclusions and Future Work: summarizes our work by
retracing the main stages and discussing the conclusions. Finally, we propose
some directions for future improvements.
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Chapter 2

State of the Art

In this chapter, we provide an overview of research areas related to this thesis.
Section 2.1 describes the reason why, in recent years, we move from SQL to NoSQL
as well as introducing the main types of NoSQL solutions. In 2.2 we focus on
graph databases definition and in Section 2.3 we present a list of notable graph
databases with an overview of their main characteristics. Section 2.4 provides a
brief description of the most used graph query languages, focusing in Section 2.4.1
on Cypher query language and its extensions. Section 2.5 introduces CQL, a SQL-
based declarative language for registering continuous queries. In Sections 2.5.1
and 2.5.2, we analyze continuous query languages in the context of Graph DBs.
Finally, Section 2.6 presents backgrounds about some powerful, state-of-the-art
engines and tools on top of which Dozer is designed and built.

2.1 Moving from SQL to NoSQL

The relational databases or RDBMSs have been the dominant model for database
management since they were developed. Nevertheless, in recent years with the
advent of the digital era, the NoSQL movement has exponentially grown. The
term NoSQL was used for the first time by Carlo Strozzi in 1998 to name his
lightweight open-source relational database [47] that did not expose the standard
SQL interface. The term was reintroduced in 2009 by Eric Evans [21], an em-
ployee of Rackspace, at a conference organized by Johan Oskarsson, a developer
at Last.fm, to discuss “open-source distributed, non-relational databases”. This
acronym, which stands for “Not Only SQL”, was not used in terms of opposition to
the relational databases, but to describe a movement as the whole point of seeking
alternatives is that you need to solve a problem that relational databases are a
bad fit for. NoSQL is widely spread as a solution to tame the “3Vs” introduced



by Douglas Laney [33] in his first Big Data model:

• Volume: the size of the generated data continues to grow - ranging from Tera
to Zettabytes - but not as much as our tools’ ability to process it.

• Variety: Big Data involves storing structured, semi-structured, and unstruc-
tured multimedia data (text, graphics, images, audio, and video). Extract
information is not more straightforward as in traditional databases

• Velocity: Data moves fast and we must be able to process and analyze data
streams in real-time as the data is gathered.

According to [9] the reasons why NoSQL allows us to deal with the problems
Big Data has brought with it can be summarized as follows:

• Volume: Query execution times increase as the size of tables and the number
of JOINs grow and so it can be difficult to deal with large datasets stored
in relational databases. With NoSQL, we can avoid the so-called ’JOIN
pain’ at the expense of less expressivity. Moreover, NoSQL databases are
horizontally scalable w.r.t. to vertical scaling in SQL in which database
processes are comparatively more time-consuming and expensive, as the data
size increases.

• Variety: NoSQL systems have a schema-less data model which allows han-
dling large volumes of structured, semi-structured and unstructured data
with high flexibility by modeling the data according to application require-
ments.

• Velocity: We can define two problems associated to it:

– The rate at which the data structure changes, both in terms of rapid
change of specific datapoints and change of the data model itself.

– Variations in data velocity coupled with high volume require a database
able to handle write loads.

NoSQL databases address both data velocity challenges by optimizing for
high write loads and by having more flexible data models.

2.2 Graph Databases

According to [36] Graph databases model is one of the core NoSQL technologies
along with Key-value stores [41], Column-family stores [23], Document stores [40].
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Figure 2.1: Main NoSQL database models

A GDBMS - Graph Database Management System, often known simply as a
Graph Database, is an online database management system that exposes a graph
data model using CRUD (Create, Read, Update, and Delete) operations [15]. A
Graph Data Model is a model in which data structures are represented as graphs,
data manipulation is described using graph-oriented operations (i.e., a graph query
language), and proper integrity constraints are defined over the graph structure.
Formally, a graph consists of a pair G = (V,E), where V is a set whose elements are
called vertices, and E is a set of paired vertices, whose elements are called edges.
Graph databases are especially suitable in all those scenarios where the information
is natively in the form of a graph. Social networks, computer networks and data
center management, recommendation systems, and geospatial applications are just
some examples of real-world application fields. Relationships are first-class citizens
of the graph data model. Graph databases store data-relationships as relationships
and so are able to store, process, and query connections efficiently. Accessing nodes
and relationships in a native graph database is an efficient, constant-time operation
that allows exploring millions of connections in a matter of seconds.

Relational databases, ironically, perform badly with relationships. For years,
developers have been attempting to handle linked, semi-structured data using re-
lational databases. In traditional relational databases, as well as the other NoSQL
(Not Only SQL) stores, we have to infer connections between entities using foreign
keys or out-of-band processing such as map-reduce. As outlier data multiplies and
the overall structure of the dataset becomes more complex and less uniform, the
relational model becomes afflicted with large join tables, sparsely populated rows,
and a lot of null-checking logic. In their book [55], Partner and Vukotic performed
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Figure 2.2: Performance comparison between relational databases (RDBMS) and Neo4j over data

relationships (source: [55])

an experiment between a relational database and a graph database (Neo4j). In
Figure 2.2 the results of their experiment in which they used a social network to
find friends-of-friends connections to a depth of five degrees using a dataset of
1,000,000 people each with approximately 50 friends.

According to the applications domain, we can decide to adopt one of the two
popular models of graph databases: property graphs and RDF graphs. The first
one focuses on analytics and querying, while the second one emphasizes data in-
tegration.

2.2.1 RDF Graph DB

RDF stands for Resource Description Framework1, which is a W3C2 standard for
data exchange on the Web. It is a graph data model for publishing semantically
enriched information on the Web. They are ideal to model complex data and
metadata. They are commonly utilized in the context of linked data, data inte-
gration, and knowledge graphs. They can represent complex concepts in a domain
or provide rich semantics and inference on data. RDF can also be used with the
Web Ontology Language (OWL)3 to implement reasoning on this data.

RDF, originally designed as a data model for metadata, became very famous
in the early 2000s with the publication of the article [49], in which the authors
presented their vision of the Internet, in which people would publish data in a struc-
tured format with well-defined semantics in a fashion that agents could consume

1https://www.w3.org/RDF/
2https://www.w3.org/
3https://www.w3.org/OWL/
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and share. It was designed to be an exchange model that prioritized interoper-
ability between the semantic web and agents. RDF models facilitate information
interchange by providing a way to publish data in a standardized format with well-
defined semantics. RDF graphs use all of this information to generate a metadata
layer that helps define whether different names refer to the same object, if the ob-
jects are correlated, and even if different items can be used interchangeably due to
their similarities. For this reason, RDF graphs have been widely adopted by phar-
maceutical companies, government statistics agencies, and healthcare institutions.
A RDF store, also called triplestore, is optimized for the storage and retrieval of
triples. At the core of RDF is this notion of a triple, which is a statement consist-
ing of three elements representing two vertices connected by an edge. It’s typically
known as subject-predicate-object :

• The subject corresponds to a resource or to a node in the graph;

• the predicate represents an edge, or a relationship; and

• the object can be either another node or a literal value.

In RDF models, resources (vertices/nodes) and relationships (edges) are iden-
tified by a URI, or Unique Resource Identifier, which is a unique identifier. This
means that neither nodes nor edges have an internal structure; they are simply
labels. This is one of the main distinctions between RDF and labeled property
graphs. Another reason why RDF are widely used on the web is the possibility to
define the triples by using standardized XML syntax1. It is important to remark
that XML is a possible syntax for RDF, not a component of RDF, i.e. RDF data
model is an abstract, conceptual layer independent of XML.

2.2.2 Property Graph database

A property graph is made up of vertices that provide comprehensive information
about a subject and edges that represent the link between the vertices. Most of
the current graph database systems have been designed to support the property
graph model. A property graph is a directed labeled multigraph with the following
characteristics:

• It contains nodes, often used to represent entities, or to represent other do-
main components, depending on the use case

• Nodes can be labeled with zero, one or more labels. A label is a named
graph construct that is used to group nodes into sets. All nodes labeled with

1https://www.w3.org/TR/rdf-syntax-grammar/
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the same label belong to the same set. This allows writing easier and more
efficient queries which work on a small portion of the whole graph.

• It contains named and directed edges that connect two nodes. They always
have a start and end node (which cannot be an empty node). From a data
modeling point of view, edge represents a relationship between entities

• Nodes and Relationships can contain properties, i.e. name-value pairs of
data used to store relevant information about the entity/relationship they
are associated with. Properties can support most standard data types

A formal definition of the Property Graph Model:

Definition. Let O be a set of objects, L be a finite set of labels, K be
a set of property keys, and N be a set of values. We assume these sets
to be pairwise disjoint. A property graph is a structure (V,E, η, λ, ν)
where:

• V ⊆ O is a finite set of objects, called vertices ;

• E ⊆ O is a finite set of objects, called edges ;

• η : E → V ×V is a function assigning to each edge an ordered pair
of vertices;

• λ : V ∪E → P(L) is a function assigning to each object a finite set
of labels (i.e., P(S) denotes the set of finite subsets of set S); and

• ν : (V ∪ E) × K → N is a partial function assigning values for
properties to objects, such that the object sets V and E are disjoint
(i.e. V ∩E = ∅) and the set of domain values where ν is defined is
finite.

Property graph models are used in several real scenarios in which the main
aspects are analytics and querying. For example in Fraud Detection and Analytics
Network Monitoring, where we can use a graph to model transactions between
consumers as well as information they share (e.g. the email addresses, passwords,
addresses) or use a graph to model how nodes are connected over an IT network.
Or even in Social Network Analytics scenarios, where graph databases can be used
to simulate the social networks storing users’ information and their relationships.

The main differences between the two presented models can therefore be sum-
marized as follows:

1. RDF does not uniquely identify instances of relationships of the
same type
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In RDF it’s not possible to uniquely identify instances of a relationship, i.e.
it’s not possible to have connections of the same type between the same pair
of nodes because that would represent exactly the same triple.

2. In RDF instances of relationships cannot be qualified
Since in RDF it’s not possible to identify unique instances of relationships,
it is also impossible to qualify them or to assign attributes to them.

3. RDF can have multi-valued properties, while the Labeled Property
Graph can have arrays
In RDF you can have multi-value properties, i.e. triples where the subject
and predicate are the same but the object is different. In the labeled property
graph, instead, you have to use arrays.

4. Different application domains
RDF was intended as an exchange model that put interoperability between
semantic web and agents in the first place. On the other hand, Label Property
Graph model is mainly used to represent data as a graph with specific focus
on efficiency, fast query end traversal.

2.3 Notable Graph Databases

In the following we provide a list of notable graph databases with an overview of
their main characteristics and the used query language [56]. We mainly focus on
presenting Neo4j, but for the sake of completeness, we also list some remarkable
graph databases. Query languages will better described in Section 2.4

2.3.1 Neo4j

Neo4j1 is an open-source, NoSQL, native graph database that provides an ACID-
compliant transactional backend with native graph storage and processing. It is
implemented in Java and accessible from software written in other languages using
the Cypher query language through a transactional HTTP endpoint, or through
the binary “bolt” protocol. Neo4j is referred to as a native graph database because
it efficiently implements the property graph model down to the storage level. This
means that in Neo4j, everything is stored in the form of an edge, node, or attribute.
Each node and edge can have any number of attributes. Both nodes and edges
can be labelled. The database uses pointers to navigate and traverse the graph.
In contrast to graph processing or in-memory libraries, Neo4j also provides full

1https://neo4j.com/
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database characteristics, including ACID transaction compliance, cluster support,
and runtime failover. It is considered the most popular and widely used property
graph database in almost all industries, including financial services, government,
energy, technology, retail, and manufacturing. Its main features are:

• Native Graph Processing: it is a schema-free database specifically designed
to store and manage graph data;

• High speed: it provides constant time traversal, regardless the data size, for
both depth and breadth due to efficient representation of nodes and relation-
ships. This enables scale-up to billions of nodes on moderate hardware;

• Fully transactional: it is ACID(Atomic, Consistent, Isolated and Durable)-
compliant to ensure data integrity. It is OLTP-oriented and so not so efficient
for whole-graph analysis;

• Flexibility: flexible property graph schema that can adapt over time, making
it possible to materialize and add new relationships later to shortcut and
speed up the domain data when the business needs change;

• Scalability: it provides highly performant read and write scalability without
specifying data integrity;

• It uses drivers for popular programming languages, including Java, JavaScript,
.NET, Python, and many more.

2.3.2 Other graph databases

In this section, we present a list of well-known and widely used graph DBs, as well
as some of their key features.

• RedisGraph
It is a Redis module developed by Redis Labs1 to add graph database func-
tionality to the Redis database. It is an in-memory, queryable Property
Graph database which uses sparse matrices to represent the adjacency ma-
trix in graphs. This guarantees a fast and efficient way to store, manage
and process graphs, making it significantly faster than comparable graph
databases.

• Eclipse RDF4J2 Its is an open source modular Java framework for stor-
ing, querying, and analysing RDF data. It offers a set of easy-to-use APIs

1https://redis.com/
2https://rdf4j.org/
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that can be connected to all the main RDF storage solutions for highly scal-
able storage, reasoning, and retrieval of RDF and OWL. The main database
solutions that implement the RDF4J APIs are:

– RDF4J Memory Store: a transactional RDF database using main mem-
ory with optional persistent sync to disk. It is fast with excellent per-
formance for small datasets.

– RDF4J Native Store: a transactional RDF database using direct disk
IO for persistence. It is a more scalable solution than the memory store,
with a smaller memory footprint, and also offers better consistency and
durability.

– RDF4J ElasticsearchStore: an experimental RDF database that uses
Elasticsearch1 for storage.

– Third party database solutions: RDF4J-compatible databases are de-
veloped by several third parties, both open-source/free and commercial,
and they often offer better scalability or other extended features. RDF4J
fully supports the SPARQL query (see Section 2.4.2) and update lan-
guage for expressive querying and offers transparent access to remote
RDF repositories using the exact same API as for local access.

• SAP HANA2

It is a column-oriented in-memory database that acts as a single system, stor-
ing and retrieving data as requested by applications. This allows to process
massive amounts of data with near zero latency, query data in an instant.
SAP HANA is an OLTAP system, since it combines OLAP and OLTP oper-
ations into a single system. It supports graph database capabilities.

• Amazon Neptune3

A fast, reliable, fully managed graph database build for cloud. It is used
as a web service and is part of Amazon Web Services (AWS)4.The core of
Amazon Neptune is a purpose-built, high-performance graph database engine
optimized for storing billions of relationships and querying the graph with
milliseconds latency. It is ACID (Atomicity, Consistency, Isolation, Durabil-
ity) compliant and it provides highly availability. Amazon Neptune supports
both Property Graph and W3C’s RDF models, and their respective query
languages Apache TinkerPop Gremlin and SPARQL.

1https://www.elastic.co/
2https://www.sap.com/products/hana.html
3https://aws.amazon.com/it/neptune/
4https://aws.amazon.com/
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• CosmosDB1

It is Microsoft’s proprietary globally distributed, multi-model, schema-free,
and horizontally scalable NoSQL database system. It guarantees high avail-
ability, high throughput, low latency, and tunable consistency.

• OntotextGraphDB2: a highly efficient and robust graph database with RDF
and SPARQL support, also available as a high-availability cluster.

2.4 Graph Query Languages

For many years a lot of effort has been put into enhancing graph query languages
[57]. In this section, we present a list of the most used ones. For the sake of the
thesis, we recommend focusing on the parts explaining Cypher in Section 2.4.1,
which lays the foundations for the problem setting that will be exposed later in
Section 3

2.4.1 Cypher

Cypher [24] is a declarative query language for querying graph data expressively
and efficiently. It was initially designed and implemented as part of the Neo4j
graph database, with the aim of defining a query language that is simple to learn,
understand, and use for everyone, having the power and functionality of other
standard data access languages. The language was developed taking inspiration
from the strength of SQL, but with the ability to meet the requirements of a
database based on graph theory principles. Currently, it used by several commer-
cial database products and researchers, and several evolutions and extensions of
versions have been proposed by the openCypher project (see Section 2.4.1.1).

During the years property graphs have been shown to be suited for shaping data
in many research areas and industries, such as recommendation engines, fraud de-
tection, IT operations and network management, social networks, software system
analysis, and many more. Cypher is based on the Labeled Property Graph Mode,
which is, previously described in Section 2.2.2, composed of:

• Nodes, representing entities (e.g. people, books, animals);

• Relationships, representing the directed, named connections between two
nodes. A relationship always has a direction, a start and an end node, and
exactly one relationship type;

1https://azure.microsoft.com/en-us/services/cosmos-db/#features
2https://www.ontotext.com/products/graphdb
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• Properties, possible attributes in the form of key-value pairs, associated with
nodes and relationships;

• Labels : nodes can be tagged with zero or more labels, representing their
different roles in a domain.

Figure 2.3 shows an example of a Neo4j graph created using Cypher.
However, nodes and relationships are the simple components that build the

most valuable and powerful piece of the property graph model - the pattern. Pat-
terns consist of node and relationship elements and can express simple or complex
traversals and paths. Cypher’s syntax provides a visual and logical way to match
patterns of nodes and relationships in the graph. It is a declarative, SQL-inspired
language for describing visual patterns in graphs using ASCII-Art syntax, a text-
based visual art for computers. It allows us to state what we want to select, insert,
update, or delete from our graph data without a description of exactly how to do
it. This makes the language very visual and easy to read because it both visually
and structurally represents the data specified in the query. For instance, nodes are
represented with parentheses around the attributes and information regarding the
entity. Relationships are depicted with an arrow (either directed or undirected)
with the relationship type in brackets.

Figure 2.4 and Figure 2.5 show respectively an example of Cypher query (“Find
the friends of someone who works for Neo4j”) defined over the graph in Figure
2.3, and its result. Similar to other query languages, Cypher contains a variety of
keywords for specifying patterns, filtering patterns, and returning results. Among
those 1, most common are:

• MATCH: used to describe the search pattern for finding nodes, relation-
ships, or combinations of nodes and relationships together;

• WHERE: used to add additional constraints to patterns and filter out any
unwanted patterns;

• RETURN: formats and organizes how the results should be outputted. It
is possible to return the results with specific properties, lists, ordering, and
more.

Through Cypher, users can construct expressive and efficient queries to handle
needed CRUD (Create, Read, Update, and Delete) operations. Cypher’s keywords
that allows us to specify clauses for writing, updating, and deleting data are:

1https://neo4j.com/docs/cypher-manual/current/
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Figure 2.3: Example of a Neo4j graph created using Cypher
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Figure 2.4: Example of a Cypher query1

Figure 2.5: Result of the Cypher query in Figure 2.41

• CREATE to create nodes and relationships, or MERGE if we want to create
nodes uniquely without duplicates;

• DELETE to create and delete nodes and relationships. Nodes can only be
deleted when they have no other relationships still existing;

• SET and REMOVE for updating purposes. They are used to set values to
properties and to add/remove labels on nodes.

2.4.1.1 Cypher-based Query Languages

As described in previous sections, in recent years, the interest around property
graph query languages massively increases [56], and several vendors start provid-
ing new languages or improving already existing ones [53, 57, 25, 24, 42, 2, 19].

1source: https://neo4j.com/developer/cypher/filtering-query-results/
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Among these, Cypher [24] has grown to be the most popular and widely used
query language for property graphs. Initially developed as a Neo4j product, nowa-
days Cypher has been implemented commercially in several open-source projects
such as SAP HANA [37], Redis Graph [11], AgensGraph1 (over PostgreSQL) and
Memgraph2 via the openCypher3 project [26].

The openCypher project offers an open language definition, a technical com-
patibility kit, and a reference implementation of the Cypher parser, planner, and
runtime. It is supported by several database vendors and allows database imple-
mentors and customers to freely gain from, use, and contribute to the development
of the openCypher language. Below, a more detailed overview of the most popular
open-source projects and research projects, defined by the openCypher community.

• Morpheus
Morpheus [20] is a Cypher extension for the Apache Spark4 system. It allows
for the integration of many data sources and supports multiple graph query-
ing. Analytical graph queries can be processed over a Spark cluster. The
result of a query can also have a graph format, allowing the creation of com-
plex processing pipelines orchestrated by a powerful and expressive high-level
language. Moreover, it is frequently used by data scientists that exploit its
tools for the integration of disparate data sources into a single graph. From
this graph, queries can extract subgraphs of interest into new result graphs,
which can be conveniently exported for further processing. It builds on the
Spark SQL DataFrame API, offering integration with standard Spark SQL
processing and also allows integration with GraphX5. It is built on top of the
Spark DataFrame API and uses features such as the Catalyst optimizer. The
Spark representations are accessible and can be converted to representations
that integrate with other Spark libraries. Morpheus supports only a sub-
set of Cypher and is the first implementation of multiple graphs and graph
query compositionality, which is one of the main features that Cypher 10
(next Cypher release) will bring in as a core component. An integrated data
source API allows developers to plug in custom data importers for external
graphs. Morpheus currently supports importing graphs from Hive6, Neo4j7,
relational database systems via JDBC and from files stored either locally, in
HDFS or S3.

1https://bitnine.net/agensgraph/
2https://memgraph.com/
3https://www.opencypher.org
4https://spark.apache.org/
5https://spark.apache.org/docs/latest/graphx-programming-guide.html
6https://github.com/hivedb/hive
7https://neo4j.com/
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• Cypher in Gradoop
Junghanns et al. in [30, 31] recognized that query languages are currently
only supported by graph databases but not by distributed graph processing
systems. Starting from that, they start a research project aiming to extend
distributed graph processing systems by query capabilities that show the
same expressiveness as those of graph database systems. The authors de-
scribe a large scale distributed graph query processing system based on Flink
operations and built on top of Gradoop, a distributed open-source framework
for graph analytics and processing, based on the dataflow framework Apache
Flink [13]. Gradoop framework already provides operators for working with
graphs such as subgraph extraction, graph transformation, graph grouping, as
well as property-based aggregation and selection. So, the main idea of their
work was to add the pattern matching core of Cypher to Gradoop, which
scales out computation across multiple machines. Since the first experimen-
tal results, good scalability emerged for increasing computing resources and
near-perfect scalability for increasing data set sizes. However, query perfor-
mance depends heavily on data and query graph characteristics as well as
the query execution strategy.

• Cytosm
Steer et al. in [44] propose Cytosm (stands for Cypher to sql mapping)1,
a middleware application which enables the execution of property graph
queries, on non-graph databases, without data migration. They start from
the consideration that, in recent years, property graph models are becoming
widely used, but despite this, a lot of companies store data in non-graph-
specific databases. Data must be loaded into a specialized graph database in
order to take advantage of the high expressiveness associated with declarative
graph query languages. Additionally, property graphs are often schema-free,
complicating efficient query execution. The goal of Cytosm is to efficiently
execute OpenCypher queries on non-graph databases. To do this, Cytosm
relies on gTop, a schema containing an abstract property graph topology,
and its mapping to specific database backends. Their experiments show that
openCypher queries translated via Cytosm have a similar execution time to
manually tailored SQL queries, and also times comparable to the same queries
executing on leading dedicated graph databases.

A final import remark is about GQL project proposal. The GQL project [38],
led by Stefan Plantikow (the first lead engineer of Neo4j’s Cypher for Apache
Spark project) and Stephen Cannan (Technical Corrigenda editor of SQL), aims

1https://github.com/cytosm/cytosm
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to complement the work of creating a standardized query language for property
graphs. The GQL project proposal states:

“ There are two graph models in current use: the Resource Description
Framework (RDF) model and the Property Graph model. The RDF
model has been standardized by W3C in a number of specifications.
The Property Graph model, on the other hand, has a multitude of
implementations in graph databases, graph algorithms, and graph pro-
cessing facilities. However, a common, standardized query language for
property graphs (like SQL for relational database systems) is missing.
GQL is proposed to fill this void.”

2.4.2 SPARQL

Since the introduction of RDF as a World Wide Web Consortium (W3C) Recom-
mendation in 1998, various designs and implementations of RDF query languages
have been suggested [27].

The RDF Data Access Working Group, which is part of the W3C Semantic Web
Activity, published the first public working draft of SPARQL (recursive acronym
for SPARQL Protocol and RDF Query Language), a query language for RDF, in
2004. Since then, SPARQL has been rapidly adopted as the standard for querying
semantic Web data, and on 15 January 2008, W3C recognized SPARQL 1.0 as
an official recommendation [29], followed by SPARQL 1.1 in March 2013 [28].
Nowadays, several SPARQL implementations for multiple programming languages
exist1. The definition of a formal semantics for SPARQL has played a key role
in the standardization process of this query language. SPARQL can be used to
define queries across several data sources, regardless of whether the data is stored
natively as RDF or seen as RDF via middleware. Figure 2.6 shows an example of
a SPARQL query, which returns names and emails of every person in the dataset.
A query defined in SPARQL is syntactically represented by three part:

• Query form: a block defined either by the keyword SELECT, CONSTRUCT,
ASK or DESCRIBE ;

• Zero or more dataset clauses defined through the keyword FROM or FROM
NAMED ;

• WHERE clause: it provides a graph pattern to match against the RDF
dataset constructed from the dataset clauses;

• Possibly solution modifiers, e.g. DISTINCT.

1https://www.w3.org/wiki/SparqlImplementations
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Figure 2.6: Example of a SPARQL query

2.4.3 Other Graph Query Languages

The following is a list of notable graph query languages, with a brief description
of their uses and their features.

2.4.3.1 Gremlin

Gremlin1 is the graph traversal language of Apache TinkerPop. It is is a functional,
data-flow language that allows users to describe, in a concise manner, complex
traversals or complex queries over a property graph. Every Gremlin traversal is
made up of a series of (possibly nested) steps. A step is an atomic operation, i.e.
a single unit of work on the data stream. Every step can be either:

• Map-step: it transforms all the items in the stream; or

• Filter-step: it removes objects from the stream; or

• Side-Effect-step: used for computing statistics about the stream.

Gremlin was designed according to the philosophy “Write Once, Run Any-
where”, i.e. every Gremlin traversal can be evaluated as either a real-time query
(OLTP execution) or as a batch analytics query (OLAP execution). This univer-
sality is made possible by Gremlin traversal machine, a distributed, graph-based
virtual machine which understands how to coordinate the execution of a multi-
machine graph traversal. Gremlin naturally supports both imperative and declar-
ative querying. The former tells the traversers how to proceed at each step in

1https://tinkerpop.apache.org/gremlin.html
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Figure 2.7: Simple Property Graph created with PGQL1

the traversal, the latter does not tell the traversers the order in which to execute
their walk, but instead, allows each traverser to select a pattern to execute from a
collection of (potentially nested) patterns.

2.4.3.2 PGQL - Property Graph Query Language

PGQL [53] is a SQL-like query language for property graph data structures de-
signed and implemented by Oracle Inc., but made available as an open source
specification. The language combines familiar SQL-expressions with a graph pat-
tern matching language. Figure 2.8 shows a set of statements that allows creating
the graph in Figure 2.7. In addition, Figure 2.9 shows an example of the following
SELECT query over the defined graph: “Produce an overview of account holders
that have transacted with a person named Nikita”.

2.4.3.3 GraphQL

GraphQL2 is an open-source data query and manipulation language for APIs, and
a runtime for fulfilling queries with existing data. It was developed internally by
Facebook in 2012 before being publicly released in 2015. Despite its name, it does
not provide the rich variety of graph operations present in a typical property graph
database (like Neo4j). After a GraphQL service is running (typically at a URL on
a web service), it can receive GraphQL queries to validate and execute. The service
first checks a query to ensure it only refers to the types and fields defined, and then

1source: https://pgql-lang.org/
2https://graphql.org/
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Figure 2.8: PGQL statements for the creation of the graph in Figure 2.7

runs the provided functions to produce a result. GraphQL servers are available
for multiple languages, including Java, JavaScript, Python, C++, Haskell, Perl,
Ruby, Scala, PHP, and many more.

2.4.3.4 G-CORE

G-CORE [2] is a research graph query language for property graph databases.
It was designed by the LDBC Graph Query Language Task Force, consisting of
members from industry and academia. It is path-oriented meaning that paths are
first-class citizens, i.e. core operations and queries are defined in terms of paths
and nodes and edges are retrieved as being pieces of a specific path. In G-CORE,
we can perform all the main core operations like graph patterns, path patterns,
aggregation, subqueries, graph and path construction. An important feature is the
composability: the input and the output of all the operations are graphs, i.e. graph
inputs are processed to create a graph output, using graph projections and graph
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Figure 2.9: PGQL SELECT query over the graph in Figure 2.7

set operations to construct the new graph. G-CORE queries are pure functions
over graphs, having no side effects, which mean that the language does not define
operations which mutate (update or delete) stored data.

2.5 CQL - Continous Query Languages

Traditional DBMSs are best suited for running one-time queries over finite stored
data sets. However, nowadays, a lot of applications, such as network monitoring
and sensor networks, require continuous queries over unbounded streams of data.

The STREAM [5] project at Stanford proposes a general-purpose prototype
Data Stream Management System (DSMS), also called STREAM, that supports
a large class of declarative continuous queries over continuous streams and tradi-
tional stored data sets. In [6] Arasu et al. presented, as part of the STREAM
project, CQL (Continuous Query Language), an expressive SQL-based declarative
language for registering general-purpose continuous queries against streams and
updatable relations. In this paper, the authors define a precise abstract semantics
for continuous queries, based on two data types, streams and relations, which are
defined using a discrete, ordered time domain Γ:

Definition (Stream). A stream S is a (possibly infinite) bag (mul-
tiset) of elements 〈s, τ〉 where s is a tuple belonging to the schema of S
and τ ∈ Γ is the timestamp of the element.

Definition (Relation). A relation R is a mapping from Γ to a finite
but unbounded bag of tuples belonging to the schema of R.

The abstract semantics uses three classes of operators over streams and rela-
tions:
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Figure 2.10: Operator classes and mappings used in abstract semantics [6]

• stream-to-relation operator takes a stream as input and produces a relation
as output. The S2R operators in CQL are based on the concept of a sliding
window [1] over a stream;

• relation-to-relation operator takes one or more relations as input and pro-
duces a relation as output. CQL uses SQL constructs to express its R2R
operators, and much of the data manipulation in a typical CQL query is per-
formed using these constructs, exploiting the rich expressive power of SQL;
and

• relation-to-stream operator takes a relation as input and produces a stream
as output. CQL has three R2S operators:

– Istream streaming out all new entries of an instantaneous relation w.r.t.
the previous one

– Dstream streaming out all deleted entries of an instantaneous relation
w.r.t. the previous one

– Rstream streaming out all entries of an instantaneous relation at a cer-
tain instant

where an instantaneous relation is a relation (bag of tuples) at a given instant.

2.5.1 RDF and CQL

In the early 2000s’, the scientific community proposed continuous query languages
to support continuous query evaluation on stream of linked data.

Stream Reasoning (SR) [18] is the research area that combines Stream Pro-
cessing and Semantic Web technologies to make sense, in real-time, of vast, het-
erogeneous and noisy data streams. The SR community’s contributions include
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data models, query languages, and algorithms, and benchmarks for RDF Stream
Processing (RSP). In the last decade, the RSP community has proposed several
models and languages for continuously querying and reasoning over RDF streams1:

• Dell’Aglio et al. in [17] proposed the RSP-QL model, a unifying semantic,
similar to the one used in DSMSs, for RSP engines and continuous SPARQL
extensions.

• Barbieri et al. in [8] presented C-SPARQL (Continuous SPARQL), a contin-
uous extension of SPARQL allowing to register continuous queries over RDF
Streams.

• Le-Phuoc et al. [34] propose CQELS (Continuous Query Evaluation over
Linked Streams), a native and adaptive query processor for unified query
processing over Linked Stream Data and Linked Data.

• Sparkwave is a solution for continuous schema-enhanced pattern matching
over RDF data streams, presented by Komazec et al. in [32]. The aim
of Sparkwave is to achieve and retain high-throughput RDF graph pattern
matching while providing a number of stream reasoning features such as
support for fairly expressive pattern definitions, time-based sliding windows
and schema-entailed knowledge.

• Anicic et al. in [3] propose Event Processing SPARQL (EP-SPARQL), a lan-
guage extending SPARQL with its event processing [39] and stream reasoning
capabilities.

• Calbimonte et al. in [12] presented SPARQLstream, a SPARQL streaming ex-
tension to query virtual RDF streams composed of timestamped RDF triples.

• In [50] Tommasini et al. present RSP4J, a flexible API for the development
of RSP engines and applications under RSPQL semantics.

2.5.2 Property Graph and CQL

Although in recent years the interest in Property Graphs has exponentially grown,
at the moment only a few PoC implementations extending CQL to property graphs
have been proposed, highlighting poor work from the scientific community in this
field.

Marton et al. in [35] propose inGraph2 a PoC system to perform live queries
on graph data in scenarios in which real-time results play a key role (e.g. sensor

1https://www.w3.org/community/rsp/wiki/RDF Stream Models
2https://github.com/FTSRG/ingraph
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systems for failure or danger detection, systems for critical monitoring tasks like
railway monitoring). Traditional systems typically work with batch queries, i.e.
they cannot obtain query results on demand, but they have to wait for databases
response before the computations. On the contrary live queries are computed
continuously. Initially, a client registers the queries. Then, every time the graph
data changes, the results are maintained, recalculating the results of the queries.
The propsed inGraph implementation follows all the standard steps for building a
query engine:

1. Parse Cypher queries, producing syntax trees;

2. build a relational graph algebra expressions using a compiler;

3. use a transformer and optimizer (VIATRA1) to properly transform the graph
into an incrementally maintainable graph that embeds relational algebra op-
eration.

InGraph can therefore be considered an example of a distributed continu-
ous graph query engine based on live queries and incremental query evaluation.
Szárnyas et al. in [48] shows that incremental evaluation model have already good
scaling capabilities both increasing computing resources and increasing data set
sizes. Despite inGraph is an important step for the extension of CQL to property
graphs, the engine still lacks many important features of traditional DSMSs, such
as windowing and integration with stream processing systems.

Starting from the consideration that no notable mature work has been done
by the scientifc community to extend CQL to property graphs, Falzone et al.
propose Seraph [22], an extension of the syntax and semantics of Cypher able
to cope with streaming (graph) data and continuous query evaluation. Seraph
introduces streaming features in the context of property graph query languages,
with windows (both time-based and event-based), streaming operators ispired by
CQL model (Dstream, RStream, and IStream operators), as well as a new data
model that extends the property Graph data model adding time dimension to
it. In Chapter 3, we briefly introduce the Seraph language and its syntax and
semantics.

2.6 Design Backgrounds

For the sake of completeness, this section provides some background about power-
ful, state-of-the-art components used during the design of the Dozer architecture,
which will be better described in the next chapter.

1https://www.eclipse.org/viatra/
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2.6.1 Apache Kafka

Apache Kafka1 is an open-source distributed event streaming platform used for
high-performance data pipelines, streaming analytics, data integration, and mission-
critical applications. Kafka combines three key capabilities to implement event
streaming solutions:

• To publish (write) and subscribe to (read) streams of events, including
continuous import/export of your data from other systems.

• To store streams of events durably and reliably.

• To process streams of events as they occur or retrospectively.

Kafka is a distributed system consisting of servers and clients that communicate
via a high-performance TCP network protocol. It is run as a highly scalable and
fault-tolerant cluster of one or more servers that can span multiple datacenters or
cloud regions. Some servers, called brokers, are used to store streams of records.
Other servers run Kafka Connect (see 2.6.2.4) to continuously import and export
data as event streams. It is a publish-subscribe based messaging system:

• Producers: client applications that publish (write) events to Kafka.

• Consumers: client applications that subscribe to (read and process) these
events.

Messages are read from and published to Kafka in the form of events. A Kafka
event has a key, value, timestamp, and optional metadata headers and the fact
that “something happened” in the world. Events are organized and durably stored
in topics.

Kafka topics are always multi-producer and multi-subscriber: a topic can have
zero, one, or many producers that write events to it, as well as zero, one, or many
consumers that subscribe to these events. Topics are partitioned over different
Kafka brokers, allowing client applications to both read and write the data from/to
many brokers at the same time. When a new event is published to a topic, it is
appended to one of the topic’s partitions. Events with the same event key are
written to the same partition, and Kafka guarantees that any consumer of a given
topic-partition will always read that partition’s events in exactly the same order
as they were written. Every topic can be replicated. The replication factor defines
the number of copies of a topic in a Kafka cluster and allows to customize the level
of fault-tolerance and availability.

1https://kafka.apache.org/
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Figure 2.11: Client-Server communication via Kafka APIs1

2.6.2 Kafka APIs

Apache Kafka provides five core APIs:

• The Producer API allows applications to publish a stream of records to
one or more Kafka topics in the Kafka cluster;

• The Consumer API allows applications to subscribe to one or more topics
in the Kafka cluster;

• the Streams API allows application to transform streams of data from
input topics to output topics. It provides higher-level functions to implement
stream processing applications and microservices, such as transformations,
aggregations and joins, windowing, and more;

• the Connect API allows to build and run reusable data source/sink con-
nectors that continually consume or produce streams of events from and to
external systems and applications;

• the Admin API allows managing and inspecting topics, brokers, and other
Kafka objects.

1source: https://kafka.apache.org/20/documentation.html
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Figure 2.12: Logical view of a Kafka Streams application1

2.6.2.1 Kafka Streams

Kafka Streams is a client library for developing highly scalable, elastic, fault-
tolerant distributed applications and microservices that store input and output
data in an Apache Kafka cluster. It combines the benefits of Kafka’s server-side
cluster technology with the ease of developing and deploying ordinary Java and
Scala apps on the client-side.

A stream processing application is a program that uses the Kafka Streams
library. Kafka Streams is built on the Apache Kafka producer and consumer APIs
(see 2.6.2.3) and it exploits the native features of Kafka to offer data parallelism,
distributed coordination, fault tolerance, and operational simplicity. Figure 2.12
depicts a logical perspective of a Kafka Streams application with several stream
threads, each of which contains multiple stream tasks.

When implementing stream processing applications, you typically need both
databases and streams, to store respectively historical and live streaming data.
Kafka’s Streams API provides first-class support for streams and tables. The most
significant abstraction offered by Kafka Streams is the stream, which represents
an unbounded, constantly updating data collection and consists of one or more
stream partitions.

1source: https://docs.confluent.io/platform/current/streams/architecture.html
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A stream partition is an, ordered, replayable, and fault-tolerant sequence of
immutable data records, where a data record is defined as a key-value pair. Par-
titioning enables data locality, elasticity, scalability, high performance, and fault
tolerance. Kafka Streams uses the concepts of stream partitions and stream tasks
as logical units of its parallelism model :

• Each stream partition is a totally ordered sequence of data records and maps
to a Kafka topic partition.

• A data record in the stream maps to a Kafka message from that topic.

• The keys of data records determine the partitioning of data in both Kafka and
Kafka Streams, i.e., how data is routed to specific partitions within topics.

In kafka, a stream can be viewed as a table, and a table can be viewed as a
stream, where a table is a collection of key-value pairs. This relationship between
streams and tables is called stream-table duality :

• Stream as Table: a stream can be considered a changelog of a table, where
each data record in the stream captures a state change of the table

• Table as Stream: a table can be considered a snapshot, at a point in time, of
the latest value for each key in a stream.

Kafka Streams models the duality explicitly via the KStream and KTable ab-
stractions:

• KStream: an abstraction of a record stream, where each data record repre-
sents a self-contained datum in the unbounded data set;

• KTable: an abstraction of a changelog stream, where each data record rep-
resents an update.

Other key features that Kafka Streams includes are:

• It handles out-of-order data, with low latency and high throughput record-
at-a-time processing (no micro-batching).

• Every stream task in a Kafka Streams application may embed one or more
fault-tolerant local state stores, which enables very fast and efficient stateful
operations, like windowed joins and aggregations. Local state stores can be
accessed via APIs to store and query data required for processing. State
stores are robust to failures. For each of them, Kafka Streams maintains a
replicated changelog Kafka topic in which it tracks any state updates.
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• According to the exactly-once processing semantics, each record is processed
once and only once, even if there is a failure on either clients or Kafka brokers.

A stream processing application may define one or more processor topologies,
which represent a logical abstraction of the stream processing code.

2.6.2.2 Processor Topology

High-level Kafka Stream client applications are based on the idea of building a
processor topology (or simply topology). A topology consists of a graph of stream
processors (nodes) that are connected by streams (edges) or shared state stores. It
defines the stream processing computational logic of a streaming application, i.e.
how input-data is transformed into output-data.

A stream processor is a node in the processor topology, as shown in Figure
2.13; it denotes a processing step that transforms data in streams by receiving
one input record at a time from its upstream processors, applying its operation
to it (such as map or filter, joins, and aggregations), and then producing one or
more output records to its downstream processors. In every topology we have two
special processors:

Figure 2.13: Processor topology1

• Source Processor: a special type of stream processor that does not have
any upstream processors. It consumes records from one or multiple Kafka
topics, which represent the input stream to defined topology, and forward
such records to its down-stream processors.
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• Sink Processor: a special type of stream processor that does not have
down-stream processors. It sends any received records from its up-stream
processors to a specified Kafka topic.

Kafka Streams offers two ways to define the stream processing topology:

• The imperative, lower-level Processor API 1 that provides allows developers
to define and connect custom processors as well as to interact with state
stores.

• The declarative, functional Kafka Streams DSL2 that provides the most com-
mon built-in data-transformation operations such as map, filter, join and
aggregations.

The low-level Processor API are more flexible than the Streams DSL, which
builds on top of the former, but it require more manual coding work.

2.6.2.3 Consumer & Producer API

Kafka Producer and Kafka Consumer APIs allow client applications respectively
to send and to read streams of data to/from the Kafka cluster.

• Kafka Consumer

A Kafka Consumer is a client that consumes records from a Kafka cluster.
It interacts with the broker to allow groups of consumers to load balance
consumption using consumer groups. A consumer group is a collection of
consumers who work together to consume data from a specific topic. The
topics’ partitions are distributed among the consumers in the same group.
Each consumer in a group can dynamically set the list of topics it wants
to subscribe to through one of the subscribe APIs. Kafka will deliver each
message in the subscribed topics to one process in each consumer group. This
is achieved by balancing the partitions between all members in the consumer
group so that each partition is assigned to exactly one consumer in the group.
Moreover, every time new members join the group and old members leave,
the group is re-balanced. Rebalancing the group means that the partitions
are re-assigned so that each member receives a proportional share of the
partitions. As a consumer in the group reads messages from the partitions
assigned by the coordinator, it must commit the offsets corresponding to the
messages it has read. A group’s coordinator is responsible for managing the

1https://kafka.apache.org/10/documentation/streams/developer-guide/processor-api.html
2https://kafka.apache.org/20/documentation/streams/developer-guide/dsl-api.html
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Figure 2.14: Kafka Consumer1

members of the group as well as their partition assignments. Kafka maintains
a numerical offset for each record in a partition. This offset acts as a unique
identifier of a record within that partition, and also denotes the position of
the consumer in the partition. There are actually two notions of position
relevant to the user of the consumer:

– The position of the consumer gives the offset of the next record that will
be given out. It will be one larger than the highest offset the consumer
has seen in that partition. It automatically advances every time the
consumer receives messages in “poll” call.

– The committed position is the last offset that has been stored securely.
Should the process fail and restart, this is the offset that the consumer
will recover to.

By default, the consumer is configured to auto-commit offsets. Using auto-
commit gives you “at least once” delivery, i.e. Kafka guarantees that no
messages will be missed, but duplicates are possible. The consumer also sup-
ports a commit API which gives developers full control over offsets.Most of
the time, the consumer just consumes records from beginning to end, peri-
odically committing its position (either automatically or manually). Kafka,
on the other hand, lets the consumer manage its position manually, moving
forward or backward in a partition at will.

1source: https://www.javatpoint.com/apache-kafka-consumer-and-consumer-groups
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Figure 2.15: Kafka Producer1

• Kafka Producer

A Kafka Producer is a client that publishes records to the Kafka cluster. It
has no need for group coordination, and so it is conceptually much simpler
than the consumer.

A producer partitioner maps each message to a topic partition, and the pro-
ducer sends a produce request to the leader of that partition. Partitioners
guarantee that all messages with the same non-empty key are sent to the
same partition. Each partition in the Kafka cluster has a leader and a set of
replicas among the brokers. All writes to the partition must go through the
partition leader. The replicas are kept in sync by fetching from the leader.
Upon leader failure, a new leader is chosen from among the in-sync repli-
cas. Producers can customize between three acks-level, to control message
durability at some cost to overall throughput:

– Acks=1, requires an explicit acknowledgement from the partition leader
that the write succeeded;

– Acks=all, the strongest guarantee that Kafka provides. The write is
replicated to all of the in-sync replicas;

– Acks=0, maximize the throughput at cost of no guarantee that the mes-
sage was successfully written to the broker’s log since the broker does
not even send a response.

1source: https://www.javatpoint.com/apache-kafka-producer
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Regardless of the producer’s acknowledgement settings, messages written to
the partition leader are not immediately readable by consumers. When all
in-sync replicas have acknowledged the write, then the message is considered
committed, which makes it available for reading. This ensures that messages
cannot be lost by a broker failure after they have already been read.

2.6.2.4 Kafka Connect

Kafka Connect is a free, open-source component of Apache Kafka that works as
a centralized data hub for simple data integration between databases, key-value
stores, search indexes, and file systems. It allows to scalably and reliably streaming
data between Apache Kafka and other data systems. It runs in its own process,
separate from the Kafka brokers and it is distributed, scalable, and fault tolerant,
just like Kafka itself. With Kafka Connect, developers can write a new connector
plugin from scratch or can use built-in connectors. We distinguish two types of
connectors:

• Source connector allows low-latency ingestion of data into Kafka topics for
streaming processing;

• Sink connector to deliver data from Kafka topics into secondary indexes, or
batch systems for offline analysis.

When combined with Kafka and a stream processing framework, Kafka Con-
nector is an integral component of an ETL pipeline (Figure 2.16). Kafka Connect
is based on some key concepts:

• Connectors

A connector defines where data should be copied to and from. “Connectors”
can refer to both connector instances and connector plugins. A connector
instance is a logical job responsible for managing the copying of data between
Kafka and another system. A connector plugin defines all the classes that
implement or are used by a connector.

• Tasks

Tasks play the key-role in the Kafka Connect data model. Each connector
instance coordinates a set of tasks that actually copy the data. Kafka Connect
provides built-in support for parallelism and scalable data copying with very
little configuration. These tasks have no state stored within them. Task state
is stored in Kafka in special topics and managed by the associated connector.
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Figure 2.16: ETL pipeline with Kafka

• Workers

Connectors and tasks are logical units of work and must be scheduled to
execute in a worker. Workers call rebalancing procedure when connectors
increase or decrease the number of tasks they require, or when a connector’s
configuration is changed, so that each worker has approximately the same
amount of work. When a worker fails, tasks are rebalanced across the active
workers. When a task fails, no rebalance is triggered as a task failure is
considered an exceptional case. Kafka Connect has two types of workers:

– Standalone mode: it requires minimal configuration and is the simplest
mode, where a single process is responsible for executing all connectors
and tasks;

– Distributed mode: it provides scalability and automatic fault tolerance.
In distributed mode, developers can start many worker processes (with
the same group.id), which automatically coordinate to schedule execu-
tion of connectors and tasks across all available workers. Workers use
consumer groups to coordinate and rebalance.

• Converters

Converters (such as AvroConverter, JsonConverter, StringConverter) are
necessary to have a Kafka Connect deployment support a particular data
format when writing to or reading from Kafka. Converters are decoupled
from connectors themselves to allow for reuse of converters between connec-
tors naturally.

37



• Transforms function

A simple function that take one record as an input and returns a modified
record as output. Connectors can be configured with transformations to
make simple and lightweight modifications to individual messages. This can
be convenient for minor data adjustments and event routing.

2.6.3 Microservice Architecture

In recent years, application architectures are shifting from monolithic enterprise
systems to flexible, scalable, event-driven approaches. Microservice architecture
has become the de facto standard for modern Web application development. It is
an architectural style that structures a monolithic application system as a collec-
tion of services that are:

• Loosely coupled with other services: each service can be developed indepen-
dently without being impacted by, and affecting other services;

• independently deployable;

• highly maintainable and testable: enables rapid and frequent development
and deployment;

• capable of being developed by a small team.

This approach allows each microservice to be developed, deployed and operated
in parallel by different teams, favoring the rapid, frequent and reliable delivery of a
large and complex application, as well as its deployment, testing, and maintenance.
The problem with microservice architectures is the need for increased communica-
tion between distributed instances, and the need for microservices orchestration,
new failover requirements, and resilient design patterns.

Apache Kafka plays a key role in microservices orchestration and provides im-
portant features that microservices aim to achieve, such as scalability, efficiency,
and speed. It also facilitates inter-service communication while preserving ultra-
low latency and fault tolerance.
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Figure 2.17: Microservice architecture using Kafka
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Chapter 3

Problem Statement

In this chapter, we discuss the problem that this thesis is trying to address, detail-
ing the characteristics the system should meet. Firstly, in Section 3.1, we provide
a brief knowledge about Seraph, giving a formal specification of its semantics to-
gether with its syntax. Section 3.2 describes the problem in-depth, outlining an
existing solution and its limitations. Finally, in Section 3.3, we present relevant
knowledge about the crucial requirements to take into account when building an
engine for continuous query processing.

3.1 Seraph Language

Seraph [22] is a declarative language for the continuous query evaluation over
streams of property graphs and arises as an extension of Cypher, intending to
introduce streaming features in the context of property graph query languages.
Its definition is based on the continuous-evaluation paradigm [6].

Figure 3.1 shows the syntax of a Seraph query. The REGISTER QUERY
clause allows for registering a new query into the Seraph system. With FROM
STREAM we specify the input stream of the Property Graph. With the START-
ING FROM clause, we define the first evaluation time instant, expressed either
as:

• An ISO 8601 datetime; or

• The datetime associated with the first (last) event, respectively with the
keyword Earliest (Latest).

The EVERY clause, together with the STARTING FROM clause, can
determine the sequence of evaluation time instance. In particular, the EVERY



Figure 3.1: Seraph’s syntax

clause defines the frequency of the evaluation, specified either with an ISO 8601
duration or in terms of number of events.

The EVERY clause is always preceded by the EMIT clause and determines
which streaming operator to use. The streaming operators are time-aware, i.e.
they require a time instant as input to produce their outputs.

Seraph admits three different streaming operators, relying on their first formal
definition in [6]:

• RStream operator: it takes as input a time-varying table and annotates
the instantaneous table with the evaluation time τ . This operator allows
streaming out the whole answer produced at each evaluation iteration.

• IStream operator: it streams out only the difference between the answer
of the current evaluation and the one of the previous iteration.

• DStream operator: it outputs only the part of the answer at the previous
iteration that is not in the current one.

In Seraph, we can express to use the RStream with the SNAPSHOT clause,
while with the ON EXIT and with the ON ENTERING clauses we select the
DStream and the IStream respectively.

With the WINDOW RANGE clause, we can customize the width parameter
of sliding windows. Seraph introduced both the concept of time-based and event-
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based windows to create a Property Graph by extracting relevant portions of the
Property Graph Stream:

• Time-based window: it is defined through two time instants, respectively
named opening and closing time instants.

• Event-based window: it is defined through one time instant t, and a
number N representing the number of Property Graphs to be extracted from
the Property Graph Stream. An event-based window defines its output by
extracting the last N events of the stream with the largest timestamps ≤ t

Inspired by Morpheus (see Section 2.4.1.1), we can add an optional CON-
STRUCT CREATE pattern tuple RETURN GRAPH clause to create a
Property Graph Stream. Finally, the INTO clause allows for specifying the output
stream, corresponding the destination of the result stream.

Just for the sake of clarity, Figure 3.2 shows a specif example of a Seraph query
in which we registered for a query that produces a stream of events whenever two
or more people are in the same room with a time-based sliding window with a
length of two minutes and a sliding interval of one minute.

3.2 Problem Setting

Presenting Seraph (see Section 3.1), Falzone et al. assume that an underlying
streaming application is required to generate and maintain time-varying graphs
that capture the dynamic evolution of the data flowing inside the query engine.
The only notable implemented engine about all the suggested proof-of-concept
systems is GSP4J1, an extension of RSP4J, briefly introduced in Section 2.5.1.

In [50] Tommasini et al. presented RSP4J library, a flexible API for the devel-
opment of RSP engines and applications under RSPQL semantics [17]. The engine
interface adopted to control the RSP4J’s capabilities is based on the VoCaLS ser-
vice feature idea [51]. The GSP4J solution adds a set of APIs to the RSP4J, for the
development of an engine under the Seraph semantics. This can be considered an
important step in the Property graphs area, since, for the first time, it introduces
streaming features in the context of property graph query languages.

However, there are some challenges with this prototype that make it not suit-
able for industrial development. This system is fully in-memory, single-query, and
only supports real-time analysis, ensuring high performances at the expense of
lower scalability and fault tolerance.

1https://github.com/riccardotommasini/rsp4j/tree/gsp4j
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Figure 3.2: Example of a Seraph query

Moroever, RSP4J is designed for RDF Stream Processing and does not directly
support Property Graph operations. Figure 3.3 depicts the architecture presented
in the article. Their solution makes use of RSP4J window operators and a report-
ing policy adapted to Seraph’s EMIT clause, which controls how the output is
emitted. They chose JSON-PG [14] as a data format in order to be graph-native
at the ingestion level and to be able to represent property graph data used in cur-
rent graph databases like as Neo4j, Oracle Labs PGX, and Amazon Neptune. In
the paper, the authors highlight some challenges; first and foremost, RSP4J is de-
signed for RDF Stream Processing and does not directly support Property Graph
operations. Furthermore, the presented system is fully in-memory, single-query,
and only supports real-time analysis. Although it guarantees high performance, it
lacks some important industrial features such as scalability and fault tolerance.

With this as its starting point, we start working on a system aimed at industrial
development. In Chapter 4, we present our solution aimed at overcoming such
limitations.

3.3 Requirements

Dozer’s objective is to provide the first implementation of the Seraph query lan-
guage capable of ensuring crucial industrial features such as scalability, fault-
tolerance, high throughput, and low latency. A continuous query system can easily
run out of resources in case of a large amount of input stream data. Distributed
continuous query processing is a scalable method to solve this problem. Distributed
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Figure 3.3: First prototype architecture presented by Falzone et al.

stream processing systems have emerged in recent years to provide high efficiency
combined with high throughput at low latency. Architectural design choices play
a central role when complex distributed systems must be deployed at scale.

In [46], Stonebraker et al. provide high-level guidance for developing a real-time
SPE (Stream Processing Engine), outlining eight requirements that the system
should meet:

1. Keep the data mooving
To achieve low latency, a system must be able to perform message processing
without having a costly storage operation in the critical processing path.
An additional latency problem exists with systems that are passive, while
active systems avoid this overhead by incorporating builtin event/data-driven
processing capabilities.

2. Query using SQL on Streams (StreamSQL)
In streaming applications, some querying mechanism must be used to find
output events of interest or compute real-time analytics. The system should
support a high-level “StreamSQL” language with built-in extensible stream-
oriented primitives and operators.

3. Handle Stream Imperfections (Delayed, Missing and Out-of-Order
Data)
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Real-time systems should have built-in mechanisms to deal with streams
challenges, such as data that is late or delayed, missing or out-of-sequence.

4. Generate Predictable Outcomes
An SPE must guarantee predictable and repeatable outcomes. This is also
important from fault-tolerance and recovery perspective.

5. Integrate Stored and Streaming Data
The engine should efficiently store, access, modify historical information, and
combine it with live streaming data.
For seamless integration, the system should use the same StreamSQL lan-
guage when dealing with either type of data.

6. Guarantee Data Safety and Availability
The applications should be always up and available, and the data integrity
maintained anyway, despite failures.

7. Partition and Scale Applications Automatically
The system should provide incremental scalability, by distributing the com-
putation across multiple processors and machines. Ideally, the distribution
should be automatic and transparent.

8. Process and Respond Instantaneously
A stream processing system must have a highly-optimized, minimal-overhead
execution engine to deliver real-time response for high-volume applications.

45



Chapter 4

Proposed Approach

This chapter presents the proposed approach to the problem detailed in Chapter 3.
With the purpose of describing the path that led us to the Dozer1 implementation,
we introduce, in Section 4.1, an overview of Dozer’s architecture based on some
tools and concepts introduced in Section 2.6. We present a system architecture
that aims at overcoming the limitations of the prototype described in Section 3.2,
highlighting some architectural choices that allowed us to reach the requirements
detailed in Section 3.3. Finally, Section 4.2 illustrates an overview of the internal
system design laying the groundwork for the Dozer engine’s implementation.

4.1 Dozer architecture

As described earlier, Falzone et al. design a system prototype based on RSP4J [50]
which guarantees high performances at the expense of crucial industrial features
such as scalability and fault tolerance. The first idea was to design a Stream
Processing Engine (SPE) able to overcome such limitations and let the Neo4j
query engine communicate with it, as shown in Figure 4.1.

SPEs can handle massive amounts of data with high throughput and low la-
tency, addressing both data velocity and volume. We start taking into consider-
ation several existing SPEs (e.g. Flink2, Spark Streaming3, Storm4) as the basis
for our streaming application.

Among them, Kafka and Kafka Streams meet all the requirements presented in
Section 3.3. In addition, Seraph directly supports consumption from Kafka, as well

1https://github.com/openseraph/SeraphEngine
2https://flink.apache.org/
3https://spark.apache.org/streaming/
4https://storm.apache.org/



Figure 4.1: First design of our streaming processing engine

as outputs the resulting stream into Kafka topics. Moreover, the Kafka distributed
and parallel processing model allows us to design a microservice architecture and
to build a distributed continuous query processing that provides dynamic scalabil-
ity. Last but not least, Apache Kafka provides Connect API, a free, open-source
component for scalably and reliably streaming data between Apache Kafka and
other data systems.

All this encouraged us to develop an underlying streaming application based
on Kafka and Kafka Streams. Figure 4.2 depicts such a principle; we exploit the
Kafka Connect component to ingest property graph data (possibly coming from
several data sources) into Kafka topics. Then our underlying streaming application
consumes event streams, representing graph data, to generate and maintain time-
varying graphs that capture the dynamic evolution of the data. Finally, we use
sink connector API to export the data to the Neo4j instance.

The Neo4j Labs Team has worked on neo4j-streams1, a project aimed at inte-
grating Neo4j with streaming data solutions. Neo4j Streams can be used to ingest
data from external sources into the graph or to send update events to the event
log for later consumption. It can run in two modes:

• as a Neo4j plugin
It acts as a Neo4j Server extension and provides both sink and source func-
tionalities. It consists of a Neo4j Streams Source, a transaction event handler
that sends data to a Kafka topic, and a Neo4j Streams Sink, a Neo4j appli-
cation that ingest data from Kafka topics into Neo4j;

• as a Kafka-Connect Plugin
A plugin for the Confluent Platform that allows to ingest data into Neo4j,
from Kafka topics (actually it offers only the Sink functionality).

1https://github.com/neo4j-contrib/neo4j-streams
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Figure 4.2: The main principle of the Dozer design

Under the assumption that our system could ingest graph data coming from
several data sources in JSON-PG format [14], we focused on the Kafka Sink Con-
nector. It can work in several ways:

• By providing Cypher template
It works with template Cypher queries stored into properties with a specific
format. Each Cypher template must refer to an event object that will be
injected by the Sink;

• By ingesting the events emitted from another Neo4j instance via the Change
Data Capture (CDC) module

• By providing a pattern extraction to a JSON or AVRO file

• Managing a CUD file format
The CUD file format is JSON file that represents Graph Entities (Nodes/Re-
lationships) and how to manage them in term of Create/Update/Delete op-
erations.

A typical design pattern is to make information in databases available in Kafka
using Change Data Capture (CDC), in conjunction with Kafka’s Connect API
to extract data from the database. CDC [43, 4, 58] enables the monitoring and
collection of data changes, as well as updating a target system with only the data
that has changed from the source system. A well-known CDC system is Debezium1,

1https://debezium.io/
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an open-source distributed platform for change data capture. Debezium is a set
of distributed services to capture changes in a database and then uses Kafka and
Kafka Connect to make the change data available scalably and reliably to multiple
downstream systems.

CDC enables to stream every single event occurring on a database into Kafka
at very low latency and low impact. For this reason, it has emerged as an ideal so-
lution to design event-driven architectures that provide real-time or near-real-time
movement of data by moving and processing data continuously as new database
events occur. It is ideal for high-velocity data environments where time-sensitive
decisions must be taken, since it enables low-latency, reliable, and scalable data
replication.

Using the Kafka Sink Connector, combined with the CDC module, allows us to
overcome the limits imposed by the transactional nature of Neo4j, which is opposed
to the strict latency requirements of stream processing applications. Moreover,
with the plugin and the CDC module, we can automatically ingest events emitted
from other Neo4j instances. Figure 4.3 shows an example of streams event that
will be projected into the related graph entity as the following Cypher “CREATE”
statement:

Owing to such considerations, we have re-designed the GSP4J-based architec-
ture in Figure 3.3 to fit our design choices. Figure 4.4 illustrates an overview of the
Dozer architecture and highlights the main differences between the two architec-
tures. In line with the strategy adopted by Falzone et al. for the first prototype,
we used the JSON-PG data format, which allows us to ingest graph-native data,
possibly coming from the major graph databases. However, on the basis of the
foregoing considerations, our streaming application needs to work with CDC event
streams, and therefore we need a component in charge of converting JSON-PG data
format in CDC events, which will become the new input stream of our pipeline.

Moreover, the captured data changes denoting the dynamic evolution of the
data according to the window operator will be propagated on a Neo4j instance
using the Kafka Connector Sink. Unlike the previous model, the Neo4j instance
is no longer in-memory as part of the application but rather is an external system
with which Dozer communicates. Finally, as it was before, our streaming appli-
cation runs the Cypher sub-query over the portion of the graphs extracted by the
window operator. The result is then published in a dedicated Kafka topic using
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Figure 4.3: Example of CDC “Create” events

the JSON-PG format. Figure 4.5 better depicts the internal structure of the Dozer
application and its workflow, which consists of three main phases:

1. Once a Seraph query is registered, the application extracts the EMIT Range,
to define a Timestamp To Sync, which will be the input of the next phases.
The EVERY operator specifies the frequency of the evaluation process and
the timestamp to sync corresponds to the several exact evaluation time in-
stants. So, assuming that the first record arrives at 8:17 AM and the EVERY
operator equals PT2M, the first time to sync is at 8:17 AM, then the second
evaluation time will be at 8:19 AM, and so on. From a logical level perspec-
tive, a streaming model uses the concept of a Tick to drive the system in
taking actions over input streams. Botan et al. in [10] define a Tick in three
ways:

• Tuple-driven (DD), where each tuple arrival causes a system to react.

• Time-driven (TD), where the progress of the real time causes a system
to react.

• Batch-driven (BD), where either a new batch arrival or the progress
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Figure 4.4: Dozer architecture

of the time causes the system to react.

Dozer uses a tuple-driven approach. DD models typically provide lower la-
tency than the TD and BD models for the query computation. On the other
hand, the record-at-a-time model requires state maintenance for all operators
with record-level granularity. This behavior obstructs system throughput and
brings much higher latencies when recovering after a system failure [54].
However, as better explained in Section 2.6.2.1, Kafka Streams handles out-
of-order data, with low latency and high throughput record-at-a-time pro-
cessing. This key feature, combined with the high fault tolerance of Apache
Kafka during recovering, made us choose a tuple-driven model, which allows
us to reduce the latency impact due to the transactional behavior associated
with Neo4j.

2. The second step involves the core function of the pipeline. During this phase,
the streaming application creates and maintains the time-varying graphs to
capture the dynamic evolution of the data flowing inside the query engine. It
extracts the portion of the subgraphs data, which is recreated on the Neo4j
instance via a set of CDC event streams.

3. Finally, the engine communicates with the Neo4j instance to run the Cypher
subquery on the portion of data and produce the result on the output Kafka
topic.
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Figure 4.5: Dozer internal workflow

Each described phase is carried out by one or more components. A more
detailed description of the internal design will be presented in the next Section,
and the actual implementation will be discussed in detail in Chapter 5.

4.2 Internal System Design

The objective of this Section is to provide a high-level overview of the Dozer
internal structure, outlining its main components and how they work together.
Section 4.2.1 describes the main modules characterizing the workflow of our engine.
Then, Section 4.2.2 details the behavior of some of the main components whose
implementation will be detailed in Chapter 5.

4.2.1 Dozer Topology

Dozer consists of three main decoupled modules which, working together, are in
charge of simulating the workflow presented in Figure 4.5. Figure 4.6 depicts an
overview of the Dozer’s modules. We have:

• JSON-PG to CDC converter
It consumes from the input stream source topic defined in the Seraph query
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Figure 4.6: Three main Dozer’s modules

and converts the data in CDC format. The Converter Processor processes
each record and converts it from JSON-PG format to CDC format. Finally,
a Kafka Producer sends the “create” event record into the appropriate topic
that will be the source of the next module.

• Delete CDC records producer
The goal of this module is to produce CDC “delete” events. It consumes
the CDC “create” records produced by the converter module and produces
“delete events” with a proper custom timestamp. To generate the timestamp
associated to the “delete” events, we can have two policies which depends on
the window type:

– Window Time Range
The window time range defines slices of times on which extract portions
of the property graph. Let’s assume a 2 hours wide time-based sliding
window and that a CDC “create” event arrives at 7:52 AM; we need
to create a CDC “delete” events at 9:52 AM. Kafka is pull-based, i.e.
different consumers can consume the messages at different paces. On the
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other hand, producers cannot decide at which time to send the messages.
To capture the dynamic evolution of the time-varying graphs data we
need a way to postpone the CDC “delete” events.

– Window Event Range
In the case of an event-based window, the window range defines the last
N events of the streams forming the portion of the property graph to
consider. Let’s assume an event range of 5 events, this means that we
must maintain a subgraph of the last 5 events. So, once the threshold is
exceeded (in our example 5 events), every time a new event arrives we
need to remove the oldest of the five and add the most recent one.

• Dozer Pipeline
This is the key module of the Dozer engine. It is the actual implementation
of the workflow depicted in Figure 4.5, in which a component generates the
evaluation time instants, some components are in charge of the maintenance
process and capturing the dynamic evolution of the data, and a component
run Cypher subquery on the portion of generated sub-graphs.

The activity diagram in Figure 4.7 describe the complete workflow of each single
modules. The first module consumes the graph data in JSON-PG format from the
input stream and converts it into CDC “create” events. The CDC “create” stream
will be the input of the second module, in charge of traducing the “create” records
into CDC “delete” events. The generation of the “delete” events depends on the
window type that can be either time-based or event-based. With a time-based
window range, we produce “delete” records with a timestamp in the future; with
an event-based window, we count the number of processed “create” events and
we generate the associated “delete” records only once the queue is full. Finally,
the last module is in charge of the graph maintenance and running the Cypher
sub-query on the portion of the subgraph defined by the window. Once the Seraph
query has been parsed, a component will generate the time-to-sync corresponding
to the several exact evaluation time instants, defined by the EVERY operator.
Then, using the output of the first two modules, the engine will delete and insert
records up to the time-to-sync. This operation generates the portion of the graph
up to the evaluation time instant defined by the time-to-sync. Finally, the last
component runs the Cypher query on the portion of the subgraph. This entire
process continues until a defined end-instant.

4.2.2 Dozer Components

In this section, we present how some of the main components previously introduced
cooperate. Subsequently, in Chapter 5, we better detail the internal functioning
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Figure 4.7: Activity diagram of the Dozer workflow

of some of these components. The component diagram in Figure 4.8 depicts the
internal structure of our system, presenting the key components and how they
are wired together. The first two blocks, namely “JSON-PG To CDC Converter”
and “CDC Delete Production”, have been widely analyzed previously. In the
following, we will focus on the description of the components of the other two
blocks, namely “Dozer’s processors” and “Dozer’s engine”, which corresponds to
the “Dozer Pipeline” module presented in Figure 4.6. The several processors ex-
change the CurrentAgent item, a sort of token of the current running processor.
Every time a processor ends its operations, sends the token to the next proces-
sor designed to start. According to the workflow defined in Figure 4.6 and to
the activity diagram in Figure 4.7, the first component designed to start is the
Time-To-Sync Generator, in charge of generating the first evaluation time instant
according to the EVERY operator. Once it finishes, it sends the currentAgent
token to the TimeManagedDeletion Processor, in charge of performing deletion up
to the defined time-to-sync. The following component is the TimeManagedInser-
tion Processor that insert “create” records up to the defined time-to-sync. Finally,
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the CypherHandlerProcessor is triggered to run the Cypher subquery on the sub-
graph. Once it gets the Cypher result, it sends the currentAgent token to the
Time-To-Sync Generator which updates the time-to-sync and the working cycle
starts again. In the following, we explain how the timestamp-to-sync is generated
and how the components capturing the graph data evolution work.
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Figure 4.8: Dozer’s component diagram
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4.2.2.1 Timestamp To Sync Generator Processor

All the Dozer components work by synchronizing themselves to a timestamp, called
time-to-sync. This parameter corresponds to the evaluation time instant and is
updated at a frequency determined by the EVERY operator. Seraph language
admits the definition of the latter either in terms of time or number of events.

• Sync Generator By Time
In the case the EVERY operator is defined in terms of time interval, the
processor will add such an interval to the last recent timestamp. The first
time, it is triggered after the Seraph query has been parsed, and it initializes
the time-to-sync according to the STARTING FROM clause in the Seraph
query. The latter can be either:

– Earliest, and the timestampToSync must be initialized to the timestamp
of the first record in the input stream;

– Latest, and the time-to-sync must be initialized to the timestamp of the
last record in the input stream; or

– A specific time interval, which corresponds to the time-to-sync initial-
ization.

Subsequently, the SyncGenerator will be triggered after the CypherHandler
completion, and it will update the time-to-sync by adding the defined time
interval to the last valid timestamp.

• Sync Generator By Time
The EVERY operator can be also defined in terms of number of events after
which update the evaluation time instant. It basically works according to the
same principle of the SyncGenerator By Time. The first time, it is triggered
after the Seraph query has been parsed, and it initializes the time-to-sync
according to the STARTING FROM clause defined in the Seraph query.
Subsequently, it will be triggered after the CypherHandler completion, but
with a different update’s policy. In this scenario, we need to count the number
of input events we process and, once the counter is equal to the EVERY
value, we update the time-to-sync, by assigning the timestamp of the last
read record.

4.2.2.2 TimeManaged Processor

This component is in charge of maintaining the time-varying graphs, capturing
the dynamic evolution of the data. We can decouple this process into two phases,
carried out by two independent components:

58



1. Deletion
After the definition of the time-to-sync, we need to extract the portion of
the graph defined by the window. In Section 4.2.1, we explained that CDC
“delete” events are produced with a custom timestamp, according to the
WINDOW RANGE operator. This component consumes from the CDC
“delete” events topic up to the time-to-sync timestamp in order to delete all
the events which do not fall in the window scope.

2. Creation
After the deletion, we need to capture the events in the window, up to the
time-to-sync, and reproduce the CDC “create events” with the proper cus-
tomized timestamp.

With this engine, we are mainly interested in capturing the dynamic evolution
of graphs over the relationships which are the key elements of graph DBs. With
this assumption, we handle the insertion and deletion of the relationships; while
we keep all the nodes we ingest from the input stream. If we wanted to delete also
the nodes, at every evaluation time instant we would have to check that a specific
node didn’t have any relationships with other nodes within the window scope.
This computation would be expensive. According to this model, we improve the
performance, by significantly reducing the maintenance costs at expenses of a slight
increase of running Cypher queries. Further consideration of the performances will
be covered in Chapter 6.
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Chapter 5

Implementation Experience

This chapter aims to provide a technical overview of the architecture we proposed
in this thesis work. We describe, helping with some code and pseudo-code snap-
shots, how the components presented in Chapter 4 have been implemented.

5.1 CDC “Delete” Records Producer

In Section 4.2.1, we have described the goal of this module. It consumes the CDC
“create” records produced by the converter module and produces “delete” events
with a proper custom timestamp, which depends on the window type.

5.1.1 Time Range Window

Kafka is pull-based, i.e. different consumers can consume the messages at differ-
ent paces. On the other hand, producers cannot decide at which time to send the
messages. To capture the dynamic evolution of the time-varying graphs data we
need a way to postpone the CDC “delete” events. One possibility could have been
to create an internal queue, wait with an internal countdown and then publish
the deletion record at the proper time. Such an in-memory solution would cause
scalability problems, contradicting our requirements.

The solution we adopt consists of producing CDC “delete” events, as soon as
a “create” events arrives, with an associated timestamp in the future. Listing
5.1 shows the implementation of the Customer Extractor in which we change the
record timestamp by adding a delay equal to the window size. Then, a dedicated
component will be in charge of consuming this record at the proper timestamp
and reproducing it on the Kafka Topic from which the Kafka Connector will sink
in Neo4j.



Listing 5.1: Customer Extractor

1 public class CustomerExtractor implements TimestampExtractor {

2 long windowTimeRange;

3

4 public CustomerExtractor(long windowTimeRange) {

5 this.windowTimeRange = windowTimeRange;

6 }

7

8 @Override

9 public long extract(ConsumerRecord <Object , Object > consumerRecord , long l) {

10 return consumerRecord.timestamp () + this.windowTimeRange;

11 }

12 }

5.1.2 Event Range Window

In this case, the window range defines the last N events of the streams to consider.
We need an internal queue to count the number of events we have processed.
Pseudo-code 1 outline the key phases. For fault-tolerance purpose, we store the
event queue in the Kafka processor local state store.

Algorithm 1 CDC Delete Producer By Event Pseudo-code

1: c← CDC “create” record

2: δ ← produceDeleteCDC(c)

3: q ← localStore.getQueue()

4: q.add(δ)

5: if q.size() > W INDOW RANGE then

6: h← removeHead(q)

7: Publish h on Kafka Topic

8: end if

9: localStore.update(q)

5.2 Dozer Processors

In Section 4.2.2, we described how the several processors exchange a sort of token
of the current running processor. Figure 5.1 illustrates the actual implementation
of this module. To simulate such behaviour we implemented a Kafka Topology
in which each processor consumes and produces from the same topic, let’s call
it Worflow Topic. Moreover, Kafka Topology allows us to use local state stores
associated with the processors. In this way, we could implement a stateful engine,
able to recover its state in case of failure.

Listing 5.2 shows the definition of CurrentAgent class, in which we store the
name of the component currently performing operations, the status of the compo-
nents (started or completed) and the timestamp to sync.
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Figure 5.1: CurrentAgent token and Processors Topology Implementation

Listing 5.2: Current Agent class definition

1 public class CurrentAgent implements Serializable {

2

3 private String agentName;

4 private String status;

5 private Long timestampToSync;

6 /**

7 * @param agent the class name of the component currently performing operations

8 * @param status the status of the current components - may be "started" or "completed"

9 * @param timestampToSync

10 */

11 @JsonCreator

12 public CurrentAgent(@JsonProperty("agentName") String agent ,

13 @JsonProperty("status") String status ,

14 @JsonProperty("timestampToSync") Long timestampToSync){

15 this.agentName = agent;

16 this.status = status;

17 this.timestampToSync = timestampToSync;

18 }

19

20 public String getAgentName () { return agentName; }

21 public String getStatus () { return status; }

22 public Long getTimestampToSync () { return timestampToSync; }

23 }

Every time a processor ends to perform its operations, it updates the local
store and publishes on the Workflow Topic a CurrentAgent record indicating its
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finish. Each processor will also receive such a record, because the Workflow Topic
corresponds also to the source topic from which the processors consume. At the
CurrentAgent record arrival, only the processor designed to perform its opera-
tion is triggered, and once it finishes, it updates the state store and publishes its
completion.

5.2.1 Time-To-Sync Generator

As already described during the design phase, all the components in Dozer work by
synchronizing themselves to time-to-sync timestamp. This parameter corresponds
to the evaluation time instant, and it is updated with a frequency defined by the
EVERY operator. Pseudo-codes 2 and 3, outline the behavior of the SyncGener-
ator components, when the EVERY operator is defined respectively by events or
by time.

Algorithm 2 Sync Generator By Events Pseudo-code

1: read currentAgent from Workflow Topic

2: if currentAgent = PARSED QUERY then

3: initialize time-to-sync

4: update currentAgent

5: publish currentAgent to Workflow Topic

6: else if currentAgent = CypherHandler then

7: ∆← localStore.getLastOffset()

8: counter= 0

9: while counter < EVERY do

10: read CDC “create” record from ∆

11: update ∆

12: counter++

13: end while

14: τ ← timestamp of last read record

15: localStore.update(∆)

16: time-to-sync = τ

17: update currentAgent

18: publish currentAgent to Workflow Topic

19: end if
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Algorithm 3 Sync Generator By Time Pseudo-code

1: read currentAgent from Workflow Topic

2: if currentAgent = PARSED QUERY then

3: initialize time-to-sync

4: update currentAgent

5: publish currentAgent to Workflow Topic

6: else if currentAgent = CypherHandler then

7: time-to-sync + = EVERY operator

8: update currentAgent

9: publish currentAgent to Workflow Topic

10: end if

In the first pseudo-code, when the EVERY operator is defined in terms of
events, we use a local state store associated with the processor to store the last
offsetToRead to be resilient in case of failure.

5.2.2 Time Managed Consumer

This module is in charge of maintaining the time-varying graphs, capturing the
dynamic evolution of the data. As described in the design phase, we can decouple
this process into two components, one managing the deletion and the following
managing the insertion of records up to the time-to-sync. Both components have
the same behavior. The only difference is the type of records they consume and
reproduce, respectively CDC “delete” and “create”. The following pseudo-code
refers to the deletion component:

Algorithm 4 Time Managed Deletion Pseudo-code

1: read currentAgent from Workflow Topic

2: if currentAgent = SyncGenerator then

3: ∆← localStore.getLastOffset()

4: while record.timestamp() < time-to-sync do

5: read CDC “delete” record from ∆

6: produce on “Neo4j Topic”

7: update ∆

8: end while

9: localStore.update(∆)

10: update currentAgent

11: publish currentAgent to Workflow Topic

12: end if
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It starts reading the records with the customized timestamp in order to repro-
duce them on the topic connected with Neo4j at the proper time. Also with this
processor, we use a local store to recover, in case of failure, the offset where starts
to read.

5.2.3 Cypher Handler

This is the last component of the workflow before the time-to-sync is updated,
and it is triggered after the TimeManaged Insertion completion. It uses the Neo4j
Java Driver API 1 to connect to the Neo4j instance and run the Cypher subquery.

Finally, the result of the Cypher query is converted in JSON-PG format and
sent on the output stream topic via a Kafka Producer.

1https://neo4j.com/developer/java/
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Chapter 6

Evaluation

This chapter contains an explanation of all the experiments done to evaluate the
proposed system. Section 6.1 describes the purpose of the experiments, illustrating
them, the used datasets, and the system that hosted them. Section 6.2 highlights
the results of a set of experiments carried out to analyze the Dozer performances.
Finally, Section 6.3 covers an analysis of the fault-tolerance of our engine.

6.1 Experimental Setup

This section provides an overview of the experiments we carried out to analyze the
performance of our work. In Section 6.1.1, we introduce the test and describe the
purpose of each of them. Then, in Section 6.1.2, we describe the query used for
our experiments, as well as the used datasets. Finally, in Section 6.1.3, we give a
brief description of the execution environment, presenting some of the used tools
and the system that hosted our experiments.

6.1.1 Test Cases

All the experiments we are going to present are aimed at showing the industrial
features for which this system was designed, such as high performance and fault-
tolerance. The experiments can be divided into three groups, different for their
purpose and the information they produce.

Firstly, Dozer’s performances have been tested against a standard way of query-
ing timestamped Property Graphs with Cypher. As a preliminary step, we create
a dataset, better described in the next section, in JSON-PG format. Then, we
use the same query to analyze the performance of the two ways of running queries
over streaming graphs w.r.t. the window size. In this scenario, we tested both the



total execution time over a predefined time horizon, as well as the time needed to
the Neo4j server to have the result available and to consume it at each evaluation
step. For the latter case, we used the Neo4j ResultSummary interface1 to investi-
gate the time needed by the Neo4j server to retrieve the result when the window
size changes. For both the tests, we used time-based tumbling windows with dif-
ferent sizes and different time horizons. We will better define both parameters in
the next section, in which we discuss the dataset and the executed query.

Then, we test the performance of the Dozer itself at different window sizes.
To this purpose, we analyze the overhead of each component of the system w.r.t.
window range changes. Moreover, we test how the system performs with different
shaped datasets.

Finally, we evaluate the fault-tolerance of our system, studying its behavior in
case of failure and the cost needed in the recovering phase.

In the performance analysis tests, we ran, for each window, five executions with
Dozer and other five executions by querying timestamped Property Graphs with
Cypher. The five executions over Dozer have been used also for evaluating the
overhead of each component. For the fault-tolerance testing, we repeated ten runs
with and without failures across a smaller time horizon. More information on each
specific setting, however, will be presented in the dedicated section.

6.1.2 Datasets

In the following subsections, we present two different datasets we used for our
experiments.

6.1.2.1 Linear-Shaped Dataset

In the first scenario, we create a dataset in JSON-PG format, simulating a linked
list of nodes growing over time. The first node was created with a timestamp corre-
sponding to the date ‘2021-01-01T00:00:00Z’. Then, every 500ms two new nodes,
linked to the existing ones, enter the dataset. Considering a five-seconds wide
tumbling window, Figure 6.1 and Figure 6.2 show respectively the dataset at the
first and the second evaluation step. Each relationship in the dataset will have an
increasing timestamp (e.g. the relationship between the first two nodes will have a
timestamp corresponding to the date ‘2021-01-01T00:00:00.500Z’, the relationship
between the second and the third node will have a timestamp corresponding to
the date ‘2021-01-01T00:00:01.0Z’, and so on).

Figure 6.3 reports the query used for our experiments. We registered the
query into the Dozer system, consuming data from the Kafka topic ’input-dataset-

1https://neo4j.com/docs/api/java-driver/current/org/neo4j/driver/summary/ResultSummary.html
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Figure 6.1: Linear dataset used for the experiments at first evaluation step

stream’, containing the JSON-PG records described previously. We are interested
in searching, at each evaluation step, all the people linked to another person. With
STARTING FROM Earliest, we specify that the first evaluation time instant
is related to the oldest event in the source stream, in our case corresponding to
the record with date ‘2021-01-01T00:00:00.0Z’. The WINDOW RANGE PT5S,
combined with the EVERY PT5S, defines a five-seconds wide tumbling window.
The EMIT SNAPSHOT clause selects the RStream operator that directly emits
the results without performing any additional operation. Finally, the INTO clause
specifies to publish the result into the ’output-result-stream’ Kafka topic.

The same query has been repeated for different window sizes (PT1S, PT5S,
PT10S, PT15S, PT30S, PT45S, PT1M, PT5M, PT10M) over a time horizon of
at most seven days long (from ‘2021-01-01T00:00:00Z’ to ‘2021-01-08T00:00:00Z’),
according to the considered experiment. However, further information about set-
tings will be described later, in each dedicated section.

The same dataset depicted in Figure 6.1 has been created in Neo4j with Cypher,
by temporally marking each relationship. Then, we simulate a tumbling window
by running a Cypher query at each evaluation step. So, considering the example of
a five-second wide tumbling window, Figure 6.4 shows the query at the first evalu-
ation step. After that, new nodes enter the dataset up to ‘2021-01-01T00:00:10Z’.
Then a new Cypher query requires the match for the nodes and relationships with
timestamps between ‘2021-01-01T00:00:05Z’ and ‘2021-01-01T00:00:10Z’.

With this configuration, Dozer maintains, at each evaluation step, only the
portion of the graph defined by the window, eliminating all the relationships that
do not fall in the window scope. On the other hand, by querying timestamped
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Figure 6.2: Linear dataset used for the experiments at second evaluation step

Figure 6.3: Example of Seraph query used for the tests

Property Graphs with Cypher, we work on a dataset that linearly grows as time
passes. More consideration about this will be addressed in Section 6.2, in which
we discuss the performances of the two approaches at different window sizes.

6.1.2.2 Star-Shaped Dataset

In the second scenario, we create a dataset in JSON-PG format, with a different
shape. This dataset was used to inspect if the obtained performances that will be
described later were dependent on the specific linear shape of the previous dataset.

We create a star-shaped dataset, in which every 250ms five nodes linked to an
existing one enter the dataset. Figure 6.5 shows the dataset after one second.

In Section 6.2.2.2, we will describe how Dozer’s performance changes w.r.t. the
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Figure 6.4: Cypher query simulating a five-seconds tumbling window

used dataset.

6.1.3 Execution Environment

All the introduced tests have been executed on an Amazon EC2 t3.2xlarge1 in-
stance. In particular, the Dozer system was running in a Docker container without
any resources limitation: CPUs (8) and RAM (32 GBytes). During each test,
Dozer consumes JSON-PG events from Kafka topics as fast as possible while exe-
cuting the Cypher query according to the specifications. We use a Kafka cluster,
composed of a single broker running on the Amazon instance. The Kafka broker
hosted the input and the output stream topics, as well as the internal topics used
by Dozer for the maintenance phases. Finally, the system communicates using the
Neo4j Kafka Connect plugin2 to sink data to a dockerized Neo4j instance3.

For the timestamped Property Graph scenario, on the other hand, we con-
structed nodes and relationships directly on the same Neo4j instance3 at each
evaluation time indicated by the window definition, as described in the previous
section.

6.2 Performance Evaluation

In this section, we present a set of experiments aimed at evaluating the performance
of our system. In Section 6.2.1, we present the analysis we made to evaluate the
complexity of Dozer against querying timestamped Property Graphs with Cypher.
In Section 6.2.2, we address a performance analysis of the two systems, as well as
a study about the performance of Dozer at different datasets. Finally, in Section

1https://aws.amazon.com/it/ec2/instance-types/t3/
2https://neo4j.com/labs/kafka/4.0/kafka-connect/
3neo4j:4.0.3
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Figure 6.5: Star-shaped dataset

6.2.3, we analyze the overhead of each component of the system w.r.t. window
range changes.

Each experiment will be explained in detail with some useful plots, helping us
to highlight the evaluation outcomes.

6.2.1 Big-O Cost Analysis

First of all, we analyze the complexity of running the same queries over the two
systems, namely Dozer and querying timestamped Property Graphs with Cypher
(hereafter referred to as “Cypher”). For both scenarios and for each selected win-
dow, we ran five experiments over the linear dataset (see section 6.1.2.1). For
smaller windows (i.e. PT1S, PT5S, PT10S, PT15S, PT30S, and PT45S), we
run five experiments simulating a one-day long time horizon (i.e. from ‘2021-01-
01T00:00:00Z’ to ‘2021-01-02T00:00:00Z’). While for wider window (i.e. PT1M,
PT2M, PT5M, and PT10M), the experiments were carried out over a seven-day
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long time horizon (from ‘2021-01-01T00:00:00Z’ to ‘2021-01-08T00:00:00Z’).
The system’s complexity was determined by measuring the effort required by

the Neo4j server to execute the MATCH query at each evaluation step. For this
purpose, we used the Neo4j ResultSummary interface1 to collect the time it took
for the server to obtain the query results.

As introduced in section 6.1.2.1, Dozer manages streaming graphs natively,
and therefore at each evaluation step, we have only the sub-graph corresponding
to the portion selected by the window. On the other hand, with Cypher, we
do not perform any maintenance, and therefore the property graphs continuously
grow over time. In the latter case, at each evaluation step, we shrink the portion
of the graph of our interest by filtering with the WHERE clause, as shown in
Figure 6.4.

The linear dataset grows linearly over time in the number of nodes and rela-
tionships. Assuming that the complexity for running the MATCH query depends
on the number of nodes and relationships present at each evaluation instant, we
expected that Cypher’s complexity grows linearly as well.

On the other hand, running the same MATCH query with Dozer requires a
constant time complexity proportional to the number of nodes and relationships
shrunk by the windows. However, in Chapter 4 we explain that with Dozer, we
keep all the nodes we ingest from the input stream and we handle only the insertion
and deletion of the relationships because we are mainly interested in capturing the
dynamic evolution of graphs over the relationships which are the key elements of
graph DBs. With this assumption, we reduce the maintenance costs at expenses
of a slight increase of running Cypher queries.

Because of the foregoing consideration, the time complexity analysis led us to
the following evaluation:

Time Complexity Analysis. Let Γ be a finite, discrete, ordered
sequence of k ∈ N time instants (t1, t2, ..., tk), where ti ∈ N; and let
ρ be the production frequency (e.g. in our scenario two nodes and
relationships per second). Additionally, let:

• GW be the portion of Property Graph defined by a time-based
sliding window of widith α, so that at each time instant t, GW(t)
contains the content of the time-based window W = (t− α, t];

• ri = ρ∗ i∗α, be the number of relationships in the Property Graph
at the instant ti;

• ni = ρ ∗ i ∗ α, be the number of nodes in the Property Graph at
the instant ti;

1https://neo4j.com/docs/api/java-driver/current/org/neo4j/driver/summary/ResultSummary.html
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• rw = ρ∗α, be the number of relationships in the portion GW, which
is constant at each evaluation instant ti;

• R = rk and N = nk respectively be the number of relationships
and nodes at the final time instant.

We define the time complexity of executing the MATCH query at time
instant ti in Cypher and Dozer respectively as:

• δCypher(ti) ∼ (ri + ni)

• δDozer(ti) ∼ (rw + ni)

Then, extending the analysis to an infinite, discrete, ordered time do-
main T = (t1, t2, ...), where ti ∈ N, in the worst case we have a time
complexity of:

• O(N) for Dozer; while

• O(N +R) for Cypher.

Finally, if we consider the time complexity only as function of the number of
relationships n, we expect:

• A constant time complexity O(1) for Dozer; and

• A linear time complexity O(n) for Cypher.

Of course, as time passes, the dependence on the number of nodes cannot be
overlooked. The plots in Figures 6.6, 6.7, and 6.8 depict the actual value and the
result of the time complexity analysis for different window sizes over a one-day
long time horizon; while in Figures 6.9 and 6.10, the plots associated of a seven-
day long time horizon. The charts show the results of our experiments, which are
coherent with our analysis. Moreover, we can see how the inefficiency of Cypher
reduces as window sizes increase until it starts outperforming Dozer (see Figure
6.12). The frequency of evaluation instants decreases as the window size rises,
while the amount of processed triples at each instant grows. We are not interested
in understanding Neo4j’s core execution strategy; however, it is optimized for
bulk load ingestion. For larger windows, Cypher creates a large number of nodes
and relationships in bulk, after which filtering on them becomes more efficient.
On the other hand, with Dozer, we need to handle the maintenance phase. The
deletion of some relationships and the accumulation of node instances introduce
some inefficiency on the Neo4j server.

74



Figure 6.6: Big-O Analysis of Dozer vs Cypher Time Complexity at different window sizes (1-second,

5-seconds) over a one-day long time horizon
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Figure 6.7: Big-O Analysis of Dozer vs Cypher Time Complexity at different window sizes (10-seconds,

15-seconds) over a one-day long time horizon
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Figure 6.8: Big-O Analysis of Dozer vs Cypher Time Complexity at different window sizes (30-seconds,

45-seconds) over a one-day long time horizon
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Figure 6.9: Big-O Analysis of Dozer vs Cypher Time Complexity at different window sizes (1-minute,

2-minutes) over a seven-day long time horizon
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Figure 6.10: Big-O Analysis of Dozer vs Cypher Time Complexity at different window sizes (5-minutes,

10-minutes) over a seven-day long time horizon
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6.2.2 Perfomance Comparison

In this section, we will further investigate the Dozer performance. Firstly, going in-
depth in the difference between Dozer and querying timestamped Property Graphs
with Cypher. Starting from the analysis in the previous section, we will define a
cost function that allows us to compare the two approaches. Then, we will analyze,
for each window, the total execution time needed by the two systems to perform
the same query over a predefined time horizon. Finally, using the same metrics
used for comparing Dozer with Cypher, we will discuss how Dozer reacts to a
different dataset.

6.2.2.1 Dozer vs Querying Timestamped Graphs with Cypher

Starting from the time complexity analysis described in Section 6.2.1, and using
the data collected for the latter, we define a cost function as a metric to evaluate
and compare the two approaches, namely Dozer and Cypher.

Cost function definition. Let consider k different executions.
Let Γ be a finite, discrete, ordered sequence of N ∈ N time instants
(t1, t2, ..., tN), with ti ∈ N; let α be the width of a time-based tumbling
window; and let δj = [δj1, δj2, ..., δjN ] be the vector of the j−th execution
(with j ∈ 1, 2, ...k), where each element δji (for i ∈ 1, 2, ..., N) corre-
sponds to the time it took for the Neo4j server to obtain the MATCH
query results at the i− th execution step. We define the cost function
of the j − th execution:

cj(α) = [δj1, δj1 + δj2, ..., δj1 + δj2 + ...+ δjN ]

as the cumulative sum of the vector δj for an α-width time-based tum-
bling window.

Then, we define the TOTAL COST FUNCTION for an α-width time-
based tumbling window:

C(α) =
1

k

k∑

j=1

cj(α)

as the mean of the k costs c1, c2, ..., ck.

According to the analysis made in Section 6.2.1, if we consider, for a given α,
the complexity of the C(α) as a function of the number of relationships n, we
expect:
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• A linear cost function C(α) ∼ O(n) for Dozer; and

• A quadratic cost function C(α) ∼ O(n2) for Cypher.

The plots in Figures 6.11 and 6.12 depict the cost function of Dozer versus
Cypher calculated for different window sizes over a seven-day long time horizon;
while in Figures 6.13 and 6.14 the cost function for other window sizes over a a one-
day long time horizon. Each cost function has been averaged over five independent
executions, as indicated in Section 6.1. The cost function depends on the timing
collected for the big-o analysis. As for the previous section, it increases for wider
windows, while decreasing in Cypher.

Furthermore, we focused our interest on measuring the time impact experienced
by the end-user in the two different approaches. For this purpose, we compare the
total execution time needed by Dozer and Cypher to run the same query. As for
the previous settings, the bar-plots in Figure 6.15 and 6.16 have been computed
by averaging the total execution time of five independent execution over a one-
day and seven-day long time horizon, respectively. We can notice that, in both
scenarios, the total execution time decreases as window ranges increase, following
the trend reported in the previous assessments. Moreover, Dozer outperforms
Cypher, regardless of the window size. Of course, continuing to increase it, the
result would change, in line with what has already been discussed.

Figure 6.11: Cypher’s vs Dozer’s Cost function over a seven-day long time horizon for a 1-minute

tumbling window
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Figure 6.12: Cypher’s vs Dozer’s Cost function at different window sizes (2-minutes, 5-minutes,

10-minutes) over a seven-day long time horizon
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Figure 6.13: Cypher’s vs Dozer’s Cost function at different window sizes (1-second, 5-seconds, 10-

seconds) over a one-day long time horizon
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Figure 6.14: Cypher’s vs Dozer’s Cost function at different window sizes (15-second, 30-seconds,

45-seconds) over a one-day long time horizon
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Figure 6.15: Total execution time comparison over a one-day long time horizon

Figure 6.16: Total execution time comparison over a seven-day long time horizon
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6.2.2.2 Dozer Performance At Different Datasets

In the light of the outcome discussed in the previous sections, we repeated some
tests on a different dataset (see Section 6.1.2.2) to understand if the results depend
on whether or not the linear shape of the dataset used to carry out the experiments.
Firstly, we ran five experiments with the query in Figure 6.3 on the two different
datasets over a one-day long time horizon. We collect the time it took for the Neo4j
server for the results at different window sizes, and we plot the cost functions in
the two scenarios. Figure 6.17 show the result related to the executions with a
one-second, five-second, one-minute and five-minute tumbling window, on which
some important considerations:

1. In the star-shaped case, we have greater production frequency (each second,
we create ten times the number of nodes and relationships as the linear one)
and a more complex structure. Consequently, the star-shaped cost function
width will be greater, but it will have the same trend as the linear one.
For middle windows, the difference in width is more evident. Indeed, with
smaller windows, the behavior is almost similar because, at each evaluation
step, Dozer handles a small number of relationships in both scenarios; while
continuing to increase the window range, the result would change (see item
3);

2. Analyzing Dozer with different datasets, we can figure out how the cost
function has a sub-quadratic complexity due to the node accumulation
discussed in the previous phases;

3. As discussed in item 1, with the star-shaped dataset, we handle more triples.
The last plot, referred to as a five-minutes wide tumbling window, shows
how Neo4j becomes more efficient with a bulk load (see discussion in Section
6.2.1).

Furthermore, also for these experiments, we measured the time impact expe-
rienced by the end-user, by computing the total execution time to run the same
query in the two different datasets. As for the previous settings, the bar-plot
in Figure 6.18 has been computed by averaging the total execution time of five
independent executions over a one-day long time horizon. We can notice that:

• In both scenarios, the total execution time decreases as window ranges in-
crease, following the trend reported in the previous assessments; and

• We have greater execution times in the star-shaped dataset because it is
larger. However, the two cases have almost the same order of magnitude.
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Figure 6.17: Dozer’s cost function with a linear-shape dataset against a star-shape dataset at different

window sizes (1-second, 5-seconds, 1-minute, 5-minutes) over a one-day long time horizon

6.2.3 Components Overhead Analysis

This section is devoted to the overhead analysis of each component in Dozer w.r.t.
window changes. During all of the previous tests, we measured the portion of
time spent by each component. Figures 6.19 and 6.20 show, for each of them, the
overhead percentage w.r.t. the total execution time, for a one-day and a seven-day
long time horizon, respectively. As usual, all computations have been averaged
across five independent executions. The bar-plots highlight the following patterns:

1. The SyncGenerator’s objective is to update the time-to-sync. Therefore,
its timing is relatively smaller than the other components. Moreover, with
window size increasing, the number of evaluation instants decreases, as well
as the time spent by the SyncGenerator.
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Figure 6.18: Dozer’s total execution time at different dataset over a one-day long time horizon

2. Considering a specific window width, the percentage of the TimeManaged-
Deletion and the TimeManagedInsertion components is more or less the
same.

3. As window sizes increase, the CypherHandler’s timing decreases at the
expense of increasing the time spent in the maintenance phases (both deletion
and insertion). The reason is twofold:

(a) Increasing the window size, the TimeManagedDeletion and the TimeM-
anagedInsertion components handle, at each evaluation instant, a larger
number of nodes and relationships, requiring higher maintenance costs.

(b) Neo4j efficiently manages bulk loads. Consistently with the analysis
addressed in the previous sections, the CypherHandler ’s timing reduces
as window width increases.
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Figure 6.19: Dozer components’ overhead at different window sizes (1-second, 5-seconds, 10-seconds,

15-seconds, 30-seconds, 45-seconds) over a one-day long time horizon

Figure 6.20: Dozer components’ overhead at different window sizes (1-minute, 2-minutes, 5-minutes,

10-minutes) over a seven-day long time horizon
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6.3 Fault-tolerance Tests

All the tests presented in the previous sections highlighted the capacity of Dozer
to continuously work without any failure. Therefore, we performed a set of tests
aimed at evaluating the system failover by inducing some anomalies. We ran,
for each window, ten executions with and without failures, and both over a two-
hour-long time horizon. For the latter, we simulate some anomalies by forcing the
system to restart at regular intervals of ten minutes, having thus 11 failures within
each execution.

Under the assumption that every single recovery within an execution is inde-
pendent of and does not influence the timing of the other recoveries, we wanted
to evaluate how the window width affects the recovering time. Let T be a finite,
discrete, ordered time domain; let N be the number of recoveries occurring in the
time horizon T ; and let rij be the collected time referring to the j-th recovery in
the i-th execution. We define the Mean Time To Recover for the i-th execution:

MTTRi =
1

N

N∑

j=1

rij

as the average time that Dozer took to recover from any failure in the i-th
execution. Then, we analyze the recovery distribution w.r.t. the window width by
plotting for each window the ten computed MTTRs. The boxplots in Figure 6.21
show the result of our tests:

• Dozer’s MTTR ranges from 10 to 12 seconds; and

• The MTTR increases as window width decreases.

In addition to measuring the time Dozer took for a single recovery, we studied
how failures affect end-user usability. The barplot in Figure 6.22 depicts the total
execution time increment due to the 11 recoveries. Differently from what Figure
6.21 highlights, the total execution time increases as window size increases.

The boxplots depict the average time required by Dozer to recover and resume
running. However, the engine takes some time before running at full capacity.
Wider the windows, closer the evaluation instants at which the system fails and has
to recover. Let’s consider the two corner cases of the Figure 6.21. With a 1-second-
wide tumbling window, we have a recovery every 600 evaluation steps, while with a
5-minutes-wide tumbling window, we need to recover every two evaluation instants.
Therefore, increasing the window size, a failure happens before the system start
working at full capacity, and then the total execution time increases.
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Figure 6.21: Recovery distribution for different window ranges

Figure 6.22: Failures’ impact on the total execution time
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Chapter 7

Conclusions and Future Work

This thesis aimed at providing a reference architecture for the implementation of
streaming applications for the Seraph queries evaluation. The suggested archi-
tecture keeps the data moving and achieves low latency by incorporating built-in
event/data-driven processing capabilities. Moreover, the use of a Streaming Pro-
cessing Engine at the basis of the architecture allows us to exploit built-in mecha-
nisms to deal with streams’ challenges, such as delayed, missing, and out-of-order
data, and to guarantee high availability and fault tolerance.

For the definition of the requirements the architecture should meet, we based
on the high-level guidance for developing a real-time SPE (Stream Processing
Engine), outlining eight requirements that the system should meet [46].

The use of a Streaming Processing Engine (e.g. Spark, Kafka Streams, Apache
Flink) at the basis of our architecture allows us to exploit built-in mechanisms
to satisfy the requirements. In particular, we presented Dozer1, the first imple-
mentation of the proposed architecture, to be a valid alternative to a prototype
not suitable for industrial development. Of course, the requirement of “Query
using SQL on Streams (StreamSQL)” has been the first one we considered. In
general, the streaming applications should provide some querying mechanism to
find output events of interest or compute real-time analytics. In our case, we
define a reference architecture for the implementation of streaming applications
for the Seraph queries evaluation, which is an extension of Cypher, intending to
introduce streaming features in the context of property graph query languages.
With Dozer, we focused on the basic features while ignoring certain more complex
operations, such as the management of the optional clause inspired by Morpheus2

for the creation of a Property Graph Stream. Moreover, during the design phase,
we adopted some simplifications such as managing only the basic types and imple-

1https://github.com/openseraph/SeraphEngine
2https://github.com/opencypher/morpheus
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menting only the RStream operator. The use of the other two operators (IStream
and DStream), as well as the use of more complex data structures allowed in
Cypher (Map, List, and Path) and the use of more complex queries (e.g. enabling
UNION or JOIN between streams), do not impact the Dozer’s design but requires
coding implementation and the corresponding tests.

The fact the Seraph directly supports consumption (output) from (to) Kafka,
combined with the availability of the pre-built Neo4j Kafka Connector1, able to
ingest and sink graph data into Kafka, has played a key role in choosing Kafka and
Kafka Streams as the core of the Dozer architecture. In particular, during Dozer’s
design, scalability and fault-tolerance were the major driving factors. Among the
eight requirements, Stonebraker et al. [46] require the system to guarantee the
following:

• “Partition and Scale Applications Automatically”. The system should pro-
vide incremental scalability, by distributing the computation across multiple
processors and machines. Ideally, the distribution should be automatic and
transparent.

• “Guarantee Data Safety and Availability”. The applications should be always
up and available, and the data integrity maintained anyway, despite failures.

• “Generate Predictable Outcomes”. An SPE must guarantee predictable and
repeatable outcomes. This is also important from fault-tolerance and recov-
ery perspective.

The Kafka distributed and parallel processing model allows us to design a mi-
croservice architecture and to build a distributed continuous query processing that
provides dynamic scalability. However, this paradigm typically requires container
management systems (e.g. Kubernetes, Docker Swarm), which, at the moment,
have not been integrated. An orchestrator may facilitate the load distribution
between and within Kafka clusters, improving the first requirement.

Moreover, with Kafka, data can be fault-tolerant and highly available, by repli-
cating every topic. Dedicated fault-tolerance tests have been executed to study
how Dozer reacts to a failure and how the latter affects the end-user usability,
while no tests about availability and data integrity have been carried out. For the
latter, Kafka enables the customization of the number of replicas according to the
design needs, as well as the configuration of the acknowledgment level (acks=0,
acks=1, acks=all). This allows to trade-off between durability guarantees and
performance. Assuming to have no frequent failures with Dozer, we focused on
improving performances without worrying about availability and replicas.

1https://neo4j.com/labs/kafka/
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Finally, the several tests, for both performance and fault-tolerance purposes,
highlighted the coherence in the results and Dozer’s ability to generate repeatable
outcomes. On the other hand, correctness verification requires a more complex
analysis with the design and implementation of an oracle, helping to automatically
check the correctness [16].

However, the use of a pull-based architecture like Kafka allowed us to gain
in scalability and fault tolerance, at the expense of higher latency. In addition,
the design of a tuple-driven architecture introduced further latency. Even though
we were aware of these limits, the Neo4j Kafka Connector has played a key role.
Firstly, it allows us to focus on the implementation of the core of the architecture
without worrying about the communication between our engine and Neo4j. More-
over, it can ingest and sink graph data with the CDC design pattern, enabling to
update of the Neo4j with only the data that has changed from the source system.
The CDC pattern has emerged as an ideal solution to design event-driven architec-
tures that provide real-time data by moving and processing data continuously as
new database events occur because it allows streaming every single event occurring
on a database into Kafka at very low latency and low impact. Using the Kafka
Sink Connector, combined with the CDC module, allows us to overcome the limits
imposed by the batch nature of Neo4j, as well as to improve the latencies due to
a pull-based system.

Moreover, with Dozer, we focused on modeling the dynamic evolution of graphs
over the relationships, which are the key elements of graph DBs. This assumption
allows us to cut maintenance costs by working on the insertion and deletion of the
relationships over time without worrying about nodes. The different tests high-
lighted the performance of Dozer, outperforming the traditional way of querying
timestamped Property Graphs with Cypher. However, the nodes accumulation
affects the performance, which reduces as window width increases. Furthermore,
in some scenarios, the variation of nodes over time is crucial and must be correctly
managed.

On the basis of the foregoing considerations, other two key requirements have
been satisfied by Dozer and experimentally evaluated.

• “Keep the data moving”. To achieve low latency a system must be able to
perform message processing without having a costly storage operation in the
critical processing path.

• “Process and Respond Instantaneously”. A stream processing system must
have a highly-optimized, minimal-overhead execution engine to deliver real-
time response for high-volume applications.

Of course, further improvement for better performance, both in terms of la-
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tency reduction and throughput increment, could be achieved. Here is a list of
suggestions sorted by their impact w.r.t the architecture re-design:

1. Maintain Kafka and run performance tuning, to optimize the system latency
and throughput.

2. Define a Time-Driven Tick [10], reducing the latency for the query compu-
tation. On the other hand, the record-at-a-time model requires state mainte-
nance for all operators with record-level granularity. This behavior obstructs
system throughput and brings much higher latency when recovering after a
system failure.

3. Change the core of the architecture, choosing a push-based model (e.g. with
Apache Flink 1) to reduce the latency, or a micro-batch model (e.g. Apache
Spark 2) to improve throughput even with wider windows.

Another critical aspect in stream processing is the notion of time, and how it is
modeled and integrated. Among the requirements, the architecture must “Handle
Stream Imperfections (Delayed, Missing and Out-of-Order Data)”. In Dozer, we
worked with Kafka ingestion-time, and for this reason, we do not have stream
imperfections by design. In the case of moving towards an event-time-based model,
the stream imperfections should be handled. Maintaining Kafka, we could achieve
the requirement by using the ProcesorAPI from Kafka Streams, by implementing
some kind of scheduler with the Punctuator 3. Alternatively, in the case we change
the core of the architecture, we could adopt Apache Spark with watermarking [7].
Or Apache Flink that enables the Out-of-Order events processing accurately.

Finally, according to Stonebraker et al. [46], the system must “Integrate Stored
and Streaming Data”. At the moment, this is part of the future work of the
Seraph language. The latter, and consequently the designed architecture, can be
extended to accommodate more use-cases. Once Seraph is extended with Static
graph support, the engine should efficiently store, access, modify historical infor-
mation, and combine it with live streaming data. Moreover, with Multi-Stream
and Multi-window supports, developers should be able to perform queries across
streams and with multiple sliding windows, respectively.

Another interesting future work could be an implementation of a totally dis-
tributed version of Dozer, in which every single node deals only with a single
evaluation instant, leaving to another node the management of the following eval-
uation instant. For this purpose, we suggest a Chord-based [45] architecture.

1https://flink.apache.org/
2https://spark.apache.org/
3https://kafka.apache.org/10/documentation/streams/developer-guide/processor-api.html
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