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Abstract

As we are entering an era of rapid technological evolution fueled by big data and data
science, surgery is bound to be radically transformed. Today’s operating room, the center
of surgical care, is a highly technological environment: the variety of signals produced
inside it by digital devices can capture the complexity of the surgical act, and provide
data to describe it. The analysis of such data through the emerging field of surgical
data science offers tangible opportunities to make surgery safer, more efficient and more
accessible. Among these data, surgical videos represent the richest and most comprehen-
sive source of information describing the surgical act in minimally invasive procedures.
The automatic localisation and identification of surgical instruments from such videos is
an essential component of valuable downstream applications like automatic surgical skill
assessment and real-time decision support, aimed at facilitating surgical training and at
providing intra-operative assistance. Most of the available solutions tackling this prob-
lem use fully-supervised learning approaches to train deep learning models on manually
annotated data. Due to the cost of annotations, the training of such models is confined
to limited sets of labelled and curated data, potentially impacting their generalization
ability to perform on real-world data.
This thesis explores methods for learning instrument localisation and identification from
unlabelled datasets. To this aim, we first identify several possible sources of information
providing general knowledge about surgical instruments. Such knowledge is significantly
more cost-effective to obtain compared to standard manual annotations, and easily re-
purposable across surgical domains. Then, we make several contributions, showing dif-
ferent ways to formalize such knowledge and to inject it in deep learning model archi-
tectures to solve the tool localisation and identification problems. Specifically, we tackle
the increasingly complex tasks of binary tool segmentation, instance segmentation and
image-based 3D pose estimation. All our approaches are trained on completely unla-
belled data, by fabricating effective pseudo-supervision signals from prior knowledge
and complementary multi-modal data. This is achieved by means of novel methods for
unsupervised learning, self-supervised representation learning, and learning from noisy
labels, all of which are designed to effectively leverage such prior and complementary
knowledge. We hope that our proposed approaches will facilitate the development of
valuable assistive technologies to enhance the quality of surgical care.
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by means of the image-based loss Lr , helped by the auxiliary loss La . The
backgroundizer β and the physical module ρ are trained in advance and
frozen during the training of regressor and decoder. . . . . . . . . . . . . . . 117

5.3 Backgroundizer module β: the imprecise kinematics ks is converted to
the binary projection representation ms , through a robot-renderer model
equivalent to ρ. ms is then expanded to account for uncertainties and used
to mask the image I associated with ks, which is then fed to an inpainting
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CHAPTER 1. INTRODUCTION

1.1 Background

According to the World Economic Forum, we are currently living on the brink of the
fourth industrial revolution [Sch16]. During the first industrial revolution steam power
allowed to mechanize production. Electric power enabled mass production during the
second revolution, and the use of electronics, computers, and the Internet promoted
digitization during the third one, shaping the world we are currently living in. More
importantly, this digital revolution created the perfect substrate for the next and fourth
revolution, which is bound to definitely blur the boundaries between the physical and
digital worlds. This transformation is already underway, and the pace at which this is
happening has no historical precedent. Artificial Intelligence (AI) has quickly become
part of our everyday lives through a wide range of applications such as chatbots, navi-
gation apps, writing assistants, and smart web search engines, with many more ready to
be integrated into our society. The impressive progress made by AI in recent years has
been enabled by a combination of hardware capability improvements and algorithmic
breakthroughs, and fueled by a historically unprecedented availability of data. Indeed it
can be argued that the boundaries between the physical and digital worlds have started
fading long before AI became part of our lives: as soon as digital technologies were in-
troduced, several aspects of our reality suddenly became describable by means of digi-
tal data. Electronic payment systems, electronic mails, social networks, and electronic
health records are examples of technologies that made important aspects of our lives
- like social interactions, buying habits, and health monitoring - describable by means
of digital data. In the late ’90s the term big data was coined to describe the astonishing
amount of heterogeneous data produced, at high velocity, by digital technologies [Pre13].
The possibility to quantify complex problems through big data is widely regarded as the
lifeblood of the fourth industrial revolution [Wel19].
The next sections introduce this digital data revolution, specifically focusing on how it is
bound to impact the way high-quality healthcare can be delivered to patients.

1.1.1 The Big Data Gold Rush

The amount of digital data produced worldwide is doubling every two years [Loh12], and
this growth rate is increasing. In the early 2000s, only one-quarter of all the world’s stored
information was in digital form. Driven by the explosion of the internet, the availability of
cheaper sensors integrated into everyday objects like cellphones, the internet-of-things,
and more digital technologies, digital data have grown to represent more than 96% of the
total information globally stored [CMS13]. In absolute numbers, the amount of digital
data globally stored is projected to reach 181 zettabytes in 2025. To put it into perspective,
in 2020 enough digital information was produced worldwide to give every person alive
more than 300 times the amount of information that was stored in Alexandria’s Library,
once believed to house the sum of the entire human knowledge (Fig. 1.1). Given these
figures, one should not be misled into thinking that big data today are still just a byprod-
uct of the digital technology we consume. In a 2013 article [CMS13], Kenneth Cukier,
senior editor of The Economist, introduced the term datafication to define the way big
data were going to impact our society. Datafication was described as the idea of turning
every aspect of our lives into digital data: not as a mere digitalization of existing analog
data, but as a quantification and modelling of the whole reality surrounding us.
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1.1. BACKGROUND

Figure 1.1: The Great Library of Alexandria in Egypt, the single greatest accumulation of human
knowledge in history. While collecting and centralizing information once required incredible effort,
nowadays digitalization has simplified this process, allowing to accumulate information incredibly
faster. Courtesy of [Lib]

Today, only ten years later, big data have already permeated many aspects of our
lives. Businesses are using them in a great variety of ways, specialized and tailored
to individual needs. Big data analysis is used, for example, in finance to study and
anticipate the stock market, exploiting the datafication of heterogeneous factors like
social trends, economic factors, and political landscapes. Transportation companies use
data to improve driving behaviour, optimize routes, and anticipate vehicle maintenance.
Professional sport teams work in close contact with data analysts to optimize recruiting
[Bea22]; coaches use data analysis to prepare customized game plans based on opposing
teams, and to manage athletes’ workload to maximize long-term results; even individual
athletes have started using data analysis to quantify their value to their teams and to
negotiate contracts [Pri21]. Data analysis is transforming professional sport from an
artisanal craft based on the individual experience of recruiters, coaches, and athletes,
into an evidence-based science built on objective data analysis (Fig. 1.2).
Beyond businesses, the possibility to quantify, predict and optimize problems offers
unique opportunities in the healthcare sector, which inevitably found itself on the edge
of this revolution.

Figure 1.2: Big data analysis is revolutionizing the sport’s world, pushing the game to levels never
reached before. Courtesy of [Las16, Kid20, McG15].

1.1.2 Healthcare in the Big Data Era

In the current landscape of a constantly expanding and ageing population [CDRV09],
health services are required to become more efficient, accessible, and sustainable.
Data science, the interdisciplinary field aimed at analyzing data, holds the potential
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to improve the quality of patient care, by enhancing our understanding of complex
problems, from disease development to epidemic spreading dynamics, predicting
their evolution, and delivering optimized and anticipated solutions. As the process
of datafication is turning reality into data, statistical analysis can be used to reveal
meaningful hidden patterns in them, and Artificial Intelligence (AI) can mine this
knowledge to optimize the present and anticipate the future.

Translational success stories in healthcare already exist. As an example, data
science and AI have been successfully used in 2015 during the West African Ebola virus
outbreak, to optimize and speed up the screening of compounds capable of binding
to a glycoprotein that could prevent Ebola virus penetration into cells. This analysis,
which typically would have taken months or years, was completed in less than a day
[Mes17]. Beyond drug discovery, data science and AI have been proven able to enhance
clinicians’ work. For example, the practice of colonoscopy is being revolutionized by
the use of AI for computer-aided polyp detection, already supported by strong clinical
evidence [HSI+21]. In the field of radiology, commercially available products like
S-Detect (Samsung Medison, Co., Ltd., Seoul, Korea) can already be used to support
operators in the interpretation of ultra-sound images for early-stage diagnosis of cancer
[ZJY+21]. Together with clinical practice, AI is also impacting hospital management:
Johns Hopkins Hospital, for example, implemented a program to optimize the efficiency
of patient operational flow using predictive AI, with a drastic improvement in its ability
to quickly admit and discharge patients [For19].

The impact of big data and AI on healthcare is prominent and horizontal, and
testified by tangible changes in health services from which the population is already
benefiting. Strikingly, such success stories are still lacking in surgery, a critical segment
of healthcare. The following paragraphs explore the present state of big data in surgery,
with a specific emphasis on the intra-operative phase, the core of surgical care, and the
primary focus of this thesis.

1.2 Surgery in the Big Data Era

With approximately 30% of the entire global burden of disease requiring surgical
management and over 330 million procedures performed annually, surgery represents
a critical segment of healthcare systems worldwide [SBAM15, WHM+15]. Reports
from 2010 suggest that inpatient surgical care accounts for nearly 50% of all hospital
expenditures and 30% of overall healthcare costs [MMIW10]. Today, only ten years later,
these figures are widely regarded as an underestimation, as they do not account for
post-operative care following inpatient surgery, re-admissions, and outpatient elective
surgery [KLO+20]. More importantly, regardless of the significant improvements to
surgical techniques that occurred over the last few decades, surgical care remains
perilous, variable, and opaque: post-operative deaths still account for 8% of all deaths
globally, making it the third greatest contributor worldwide [NMB+19]. The criticality
of surgery for healthcare is also evident when assessing its impact on patient care
through Adverse Events (AEs) analysis. An AE is defined as “an unintended injury or
complication resulting in a prolonged length of hospital stay, disability at the time of
discharge or death caused by healthcare management and not by the patient underlying

21



1.2. SURGERY IN THE BIG DATA ERA

disease” [BNF+04]. From a structured record review study on 7,926 patients carried out
in Dutch hospitals in 2011 it emerged that surgical AEs occurred in 3.6% of hospital
admissions and represented 65% of all AEs. Among AEs, 65% involved human factors as
root causes, and 41% were considered preventable [ZdBdK+11]. Disconcerting statistics
and immeasurable human cost aside, intra-operative care remains an extremely siloed
segment of patient care that is both insufficiently analyzed and poorly documented.
To date, the standard approach to the documentation of surgical intervention is the
generation of narrative operator reports that have been proven to be inadequate,
unreliable, and inherently subjective across different types of surgical interventions
[WST+13, SHW+10].

Pushed by such long-standing challenges, surgical technique has kept evolving over
the last decades. The irruption of digital technologies into the surgical practice has
redesigned the Operating Room (OR), and the figure of the surgeon, which had to quickly
adapt to new ways of doing surgery. As for many fields outside healthcare, this digital
revolution has laid the foundation for the integration of big data into surgical practice
[TBB17]. The following paragraphs describe the present OR - not long ago “the operating
room of the future” [CKM05] - from a datafication perspective, exploring the challenges
and opportunities which ultimately motivate and enable and the work presented in this
thesis.

1.2.1 The datafied Operating Room in the Minimally Invasive Surgery
Era

On September 12th, 1985, Dr. Erich Mühe of Böblingen, Germany, performed the first
ever laparoscopic cholecystectomy [RJ01]. During this procedure, a patient’s gallbladder
was successfully removed without any large incision of the abdomen. Two small incisions
(<2cm) were performed in the lower abdomen to introduce instruments (grasper, pistol
grip hemoclip applier, and scissors) in the patient cavity. An endoscope was introduced
through the umbilicus into the peritoneal cavity to visualize the surgical site (Fig. 1.3).

Figure 1.3: Images documenting the first ever laparoscopic cholecystectomy, performed on Septem-
ber 12, 1985, by Erich Mühe. From left to right: model of pistol grip hemoclip applier and scissors
used for the procedure; Galloscope-Laparoscope used in the procedure; picture of the abdomen of
the patient who underwent the procedure showing portholes in the lower abdomen. Courtesy of
[RJ01]

This first laparoscopic cholecystectomy represented the culmination of a decades-long
series of technical innovations, like the introduction of fiber optics and Hopkins rod-
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lens, and of successful applications of the laparoscopic techniques to increasingly com-
plex problems, from biopsy collection in the early ’40s to gynecological procedures and
appendectomies in the late ’70s [Nak17]. Furthermore, this event promoted the use of
laparoscopy for other surgical procedures, such as hysterectomy and nephrectomy, per-
formed laparoscopically for the first time in 1989 and 1990, respectively [RDM89, CK16],
and the consolidation of other minimally invasive surgical techniques, like flexible endo-
scopic surgery [MRD+07].
In 2003, the American surgeon Richard Satava, described as “disruptive” the change that
the first laparoscopic cholecystectomy represented for the whole surgical world, as it
marked the transition from the “Industrial Age” of surgery (of which laparoscopy was still
a product) to the “Information Age” [Sat03]. The real revolution extended beyond the
direct advantages coming from the minimal invasivity, lying in the fact that endoscopic
surgery was a transition technology to computer-enhanced and image-guided surgery.
In order to enable this new kind of surgery, the OR was forced to evolve, advancing to-
wards the highly technological environment it is today (Fig. 1.4).

Figure 1.4: A visual comparison between an OR from early 1900 with a modern-day OR. On the
left, a surgeon performing open surgery with minimal equipment, and no information captured
about the surgical process. Courtesy of [Jac15]. On the right, the OR of the present, a technological
environment teeming with advanced technology and digital information. Courtesy of [Sri21]

ORs are currently populated with digital devices, potentially able to capture the totality
of the intra-operative phase through a variety of signals: activation signals from electrical
instruments, vital signs of the patient, signals from anesthesia machine, videos from
endoscopic cameras, CO2 pressure values; robotic systems such as the da Vinci® allow to
capture additional signals, like endoscopic stereo-camera videos, kinematic joint values,
surgical instrument usage, logs from master’s console. Furthermore, this environment is
fertile for the introduction of additional sensors, such as ceiling-mounted cameras and
audio recording systems.

Data produced in the OR can be characterized by the original 3 V’s of big data: volume,
velocity and variety. First of all, they are produced, and potentially stored, at high velocity
velocity and in large volume: if limited to laparoscopy, a striking 13 million procedures
are currently performed each year, based on recent market studies [iR20]. The num-
ber is inevitably bound to increase: among the 300+ million estimated total surgical
procedures performed globally each year (both open and minimally invasive) only ∼6%
occur in the poorest countries, where over a third of the world’s population lives [Ric16].
As the development of safe, essential, life-saving surgical and anaesthesia care in low-
income countries is considered a global priority, the absolute number of surgeries is
inevitably bound to increase in the future. Furthermore, in the last 20 years the laparo-

23



1.2. SURGERY IN THE BIG DATA ERA

Figure 1.5: Increase in the percentage of procedures performed laparoscopically by surgical residents
in a 16-year period for six high-volume interventions: cholecystectomy, inguinal hernia repair,
appendectomy, colectomy, gastrectomy, and Nissen. Courtesy of [JCKK20]

scopic approach has been proven to be preferable to open surgery for several proce-
dures such as pancreatic and hepatic resections [CMB+18], cholecystectomy [AAK+14],
appendectomy [BDSF+16] and inguinal hernia [TKM+20]. The reasons behind this reside
in the small incisions required to perform such procedures laparoscopically, reducing
risks and discomforts for the patient (lower infection rate, minimal post-operative pain),
and the hospitalization time. This evidence has resulted in a constant increase in the
percentage of procedures performed laparoscopically [JCKK20] (Fig. 1.5). Analogously to
laparoscopy, other minimally invasive techniques, like flexible endoscopic intervention,
are progressively increasing in volume [MB18]. All these concurring factors are indirectly
increasing the availability of digital information capturing intra-operative care.
In addition to volume and velocity, OR data are also characterized by a great variety.
Due to the diversity of digital technologies housed in the OR, the data produced are
extremely heterogeneous, and in some cases redundant (i.e. the same phenomenon is
described by multiple data sources). Main data types include 1D time signals (electronic
tools activation, vital signs, anesthesia signals, kinematic joint values), image data (videos
from endoscopic cameras, ceiling cameras, intra-operative imaging systems), text (hand-
written or digital surgical reports, patient’s pre-operative data) and, potentially, audio
recordings [JJLG20].

1.2.2 Emerging Challenges in Minimally Invasive Surgery

While improving clinical outcomes for several interventions, minimally invasive surgery
has significantly increased the cognitive burden on surgeons [ZMSO20]. Such mental
workload is necessary to compensate for the reduced instrument dexterity, the com-
plex hand-eye coordination, and the lack of 3D perception, compared to open surgery.
These factors place great mental stress on surgeons, commonly associated with an in-
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creased probability of adverse events, as well as with a negative impact on team dy-
namics [ZLZ+19]. Additionally, the technical skills required to perform minimally inva-
sive surgery are hard to master [HCS+14] and have required setting up simulation train-
ing programs like the Fundamentals of Laparoscopic Surgery (FLS) program [SFV+10].
The resulting prolonged learning curve amplifies the gap in surgical skills between ex-
perienced surgeons and residents, making lack of experience a factor highly associated
with surgical errors [SHK+20]. While these factors can indirectly increase the chances of
adverse events, misjudgement due to the lack of 3D perception in minimally invasive
surgery can often be a direct cause of severe surgical errors. In cholecystectomy, for
example, the laparoscopic approach has mostly replaced the open one, supported by
evidence of reduced complications and shorter hospital stay [AAK+14]. Nonetheless, the
rate of a severe complication, known as the Bile Duct Injury (BDI), drastically increased
2-4 fold with the advent of laparoscopy [SC00]. It is estimated that over 97% of BDIs
result from a visual illusion due to lack of 3D perception, leading to the misidentification
of patient’s anatomy [WSG+03]. Cases of optical illusion have been also documented for
different procedures beyond cholecystectomy [Ans18].

However, surgical challenges are now more than ever observable. The introduction
of digital systems has opened a window in the OR: beyond observable, surgery can now
be datafied, opening opportunities for quantification, anticipation and optimization of
surgical practice. These new possibilities have led to the formalization of the dedicated
interdisciplinary research field of surgical data science.

1.2.3 Opportunities for Surgical Data Science

Surgical Data Science (SDS) is an emerging research field born with the aim to “improve
the quality of interventional healthcare through the capture, organization, analysis and
modelling of data” [MHVS+17].
In the present OR, almost every factor potentially impacting surgical outcomes can be
documented and quantified. OR staff interactions, auditory and cognitive distracting
factors, surgical workflow, surgical performance, incidence and severity of complications
are just some of the aspects that can be objectively documented by data. Through quan-
tification, such aspects can be modelled and linked to surgical outcomes for improved
understanding and subsequent optimization of surgical practice. As an example, initial
work on data systematically recorded in the OR, including video-audio data from ceiling
cameras, microphones and endoscopic cameras, has been used to investigate aspects
like auditory and cognitive distractions incidence in the OR, and their correlation with
surgery duration, surgeon performance and surgical events, extracted from endoscopic
videos [JJLG20]. The surgical act can then be improved by providing real-time enhanced
information to the surgeon to support its decisions: this includes timely notifications
of upcoming critical steps, dynamic surgical checklists, augmented reality and more.
Surgical training can be sped up by systematic performance assessment, as well as by
targeted reviewing focused only on critical events, maximizing the ratio between the
information conveyed and the time required for reviewing. Optimization can be applied
to OR management as well, for example through remaining surgical duration estimation
enabling early patient preparation and streamlined procedures.

Among the data available in the OR, endoscopic videos represent a particularly valu-
able and versatile source of information to model the surgical process and enable SDS
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applications. The next section explores their value for SDS, highlighting the need for tools
to automatically process them.

1.2.4 The Value of Endoscopic Video Analysis

Video data from endoscopic cameras are the piece of online information on which sur-
geons rely the most to take critical decisions during minimally invasive surgical proce-
dures. Several factors contribute to make endoscopic video analysis an essential piece of
SDS:

• Endoscopic videos provide comprehensive information about patient anatomy,
surgical instrumentation in use during a procedure, and interactions between the
two. Endoscopic videos allow to study the surgical workflow, to spot deviations
from the standard one, as well as the reasons behind deviations, to identify adverse
events [FCC+18], critical events and potentially critical events like near-misses
[BGG15] and to assess the skill level of surgeons [CFM+20].

• Endoscopic videos capture an extensive portion of intra-operative patient’s care,
coinciding with anatomical manipulation by the surgeon. While phases like pa-
tient preparation, anesthesia and trocar placement are excluded and would require
different sensory data to be assessed, the portion captured is often regarded as the
most critical and the least documented one [ZdBdK+11, WST+13].

• Endoscopic videos coincide with the surgeon’s point-of-view of surgery. The video
feed captured by the endoscopic camera is displayed on multiple monitors inside
the OR and directly used by the surgeon as main sensory feedback. This has two
crucial implications: endoscopic videos can be analyzed to investigate how sur-
geons took certain decisions based on the exact information they receive. As an
example, in laparoscopic cholecystectomy, the visual perception illusion result-
ing in bile duct injuries can be clearly documented only from endoscopic videos
[SW07]. Secondly, endoscopic videos can be directly used as a vector to provide
enhanced information to the surgeon. This is already in place outside the surgical
world for AI-assisted colonoscopy, where the information about AI-detected polyps
is provided to the clinician through overlays on the video feed streamed on the
monitor (Fig. 1.6).

Figure 1.6: Endoscopic camera frame from the GI Genius™ system showing the potential presence
of a polyp. The AI prediction, in the form of a bounding-box containing the polyp, is provided to the
endoscopist as an overlay on the original frame. Courtesy of [GIG]
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1.3 Surgical Computer Vision

The features described above make endoscopic videos the ideal source of information
to quantify and study the surgical process (through workflow analysis, surgical
skill evaluation, adverse event detection, and post-operative documentation) and,
potentially, to extract the necessary context to promptly provide intra-operative support
to the surgeon (through notifications, checklists, augmented information). However, the
unstructured nature of raw endoscopic videos represents a barrier to extensive storage
and usage of such information. Hospitals do not currently own the infrastructures
necessary to store such volumes of raw data; in addition, the lengthiness and complexity
of raw videos prevent their use for post-operative video reviewing and skill-assessment,
as their interpretation would require a significant human effort.

Computer Vision (CV) is a sub-branch of AI focused on building algorithms and
methods for understanding the information captured in images and video. To make
them tractable, vision problems are broken down into minimal building blocks, such as
object identification, localisation, action/activity recognition [CVMS20]. In the surgical
context such CV tasks are tailored to capture relevant information about the surgical
workflow. Relevant tasks used to extrapolate tractable information from endoscopic
videos are, for example, instrument presence detection, instrument localisation,
anatomy identification, phase/step segmentation, gesture recognition, tool-tissue
interaction estimation.

In the next paragraphs we introduce such surgical CV tasks, and discuss their use
in the context of applications that can directly impact surgical care. In particular,
Section 1.3.1 highlights the concept of instrument-centrality of most surgical CV tasks,
introduced in [NYG+22] for the task of tool-tissue interaction estimation. Instrument-
centrality defines the drive that surgical instrument identification and localisation have
on other surgical CV tasks. This concept lays the foundations for the work presented in
this thesis, focusing on CV methods for instrument localisation and identification from
endoscopic videos.

1.3.1 Instrument-Centrality of Surgical Computer Vision tasks

Surgery involves the “manipulation of a target anatomical structure to achieve a specified
clinical objective during patient care” [MHEF+18]. During surgery, patient anatomy gets
manipulated by the surgeon through the surgical instruments: the way instruments
interact with patient anatomy is the final result of surgeon’s cognitive process and
technical ability, and directly contributes to determine the surgical outcome.
Surgical instruments have evolved to effectively carry out specific tasks like grasping,
dissecting, cutting, clipping and suturing tissue. For example, in laparoscopic
cholecystectomy procedures, a total of six different surgical instruments are commonly
used: bipolar forceps, clipper, grasper, hook, irrigator and scissors. Each of them has a
very specific use as can be observed by statistics on the public CholecT50 dataset [NP22]
(Fig. 1.7). In this sense action recognition in surgical CV is a highly instrument-centric
task, where tool type recognition can guide action recognition.
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Figure 1.7: Association between surgical instruments and corresponding actions from the
CholecT50 dataset for laparoscopic cholecystectomy procedures. Each instrument is mostly used
to perform one principal action.

Even when reducing the temporal granularity of activity recognition to surgical steps or
phases, the sub-tasks which constitute a surgical procedure [GKL+21], the correlation
between steps/phases and instrument usage remains clear. In early surgical workflow
analysis works for example, instrument usage was used to infer surgical phases in la-
paroscopic cholecystectomy procedures [PBA+12] (Fig. 1.8).

Figure 1.8: Instrument and trocar usage over time during a cholecystectomy laparoscopic proce-
dure, plotted together with 14 manually annotated surgical phases. Note how each phase transition
is associated with the usage of specific combinations of surgical instruments. Courtesy of [PBA+12]

Instrument-centrality can be even better appreciated when considering the target
definition in the task of tool-tissue interaction estimation, also known as action triplet
recognition. This task aims at jointly identifying instrument type, action carried out and
subject of such action (defined as target, often an anatomical structure). In this task,
visibility alone does not determine the consideration of a certain anatomical structure
as part of a triplet. Instead, the identification of the target is driven by its interaction
with a tool. To a first approximation, the relative position of surgical instruments and
anatomical structures can be an informative cue to identify the target of that instrument’s
action, as in most cases surgical actions involve direct contact between the two (Fig. 1.9).
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Figure 1.9: Examples of action triplets from the CholectT50 dataset. Note how, although the liver
is present in both frames, it is never part of a triplet. Note also how the spatial proximity of an
instrument with an anatomical structure can be used as a hint to identify the target of a triplet.
Courtesy of [NYG+22].

Such considerations on instrument-centrality led us to define a unified framework
describing the fundamental surgical CV tasks (Fig. 1.10).

Figure 1.10: Framework collecting the main CV tasks available to digest endoscopic videos,
parametrized by Time-Scale, Spatial-Resolution and Semantic Content. Frame-wise tasks include,
from lowest to highest spatial resolution: tool-presence detection, bounding-box (BB) detection,
semantic segmentation (binary, tool part, tool type, full-scene), instance segmentation. Short-term
tasks include, from lowest to highest semantic content: action/gesture recognition, tool tracking,
action triplet and quintuplet detection. Finally, long-term tasks, like step/phase segmentation.

Tasks are here parametrized by spatial resolution, time-scale and semantic content.
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The spatial resolution can vary from no spatial information, as in the binary tool presence
detection task, to pixel-wise localisation (e.g. segmentation).
The time-scale can range from single frame to multi-frames (few for action recognition,
several for step/phase recognition).
The semantic content attribute describes the amount of semantic information extracted
by the task, ranging from information describing surgical instruments only, to tool-
anatomy interaction. The latter unifies different tasks like phase and triplets recognition
from a semantic stand-point, considering the first a generalization of the second at
a larger time-scale. For example, the surgical phase Clipping and cutting of the cystic
duct of laparoscopic cholecystectomy [TSM+16], suggests the presence of specific
interactions (clipping, cutting) between certain surgical instruments (clipper, scissors)
and certain anatomical structures (cystic duct). This framework collects fundamental
surgical CV tasks used to extrapolate dense and tractable information from endoscopic
videos. This information can describe instruments exclusively (e.g. information on tool
presence and localisation) or the interaction between instruments and anatomy. As
previously discussed, the recognition of such interactions can be guided by instrument
localisation and identification.

1.3.2 From Building-Blocks to Applications

The above-described surgical CV tasks allow to digest endoscopic videos, extracting
meaningful and dense information which can enable a wide range of downstream
applications. The value of instrument-related information can be also appreciated by
considering such applications, including:

• Surgical Skill Assessment: as surgical skills are correlated with clinical outcomes,
automatically assessing them represents an efficient way to provide systematic
feedback and continuous training to surgeons. Although automatic skill
assessment can be efficiently performed from kinematic data, this information
is not available for laparoscopic surgery, the most largely adopted paradigm in
minimally invasive surgery. Automatic skill assessment from videos is therefore an
appealing alternative, which has been tackled by multi-stage pipelines involving
tool identification, localisation and tracking as the first crucial step [LZK+21].

• Augmented reality: surgical augmented reality can be used as a tool to intuitively
transfer additional information to the surgeon intra-operatively. In laparoscopic
surgery this can be used, for example, to visualize hidden anatomical structures
as overlays on the endoscopic video observed by the surgeon. A critical concern
when displaying such augmented images is not occluding instruments, which can
be achieved through their image-level localisation [TPPV21].

• 3D surgical scene reconstruction: 3D reconstruction of the surgical site from en-
doscopic images is a prerequisite for several downstream clinical applications, in-
cluding intra-operative navigation, surgical simulation, education, and robotic au-
tomation. A critical challenge of this task is the presence of instruments occluding
soft tissues, which affects the completeness of surgical scene reconstruction. The
problem of 3D surgical scene reconstruction has been recently tackled using Neural
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Rendering. The occlusion problem was solved in [WLFD22] by introducing mask-
guided ray-casting, a modification of the standard ray-casting algorithm bypassing
rays travelling through instrument pixels during training. Although in this work
tool masks were extracted manually, the real-world application of this algorithm
requires a systematic way to obtain segmentation masks from endoscopic videos,
which can be achieved by instrument segmentation.

• Robotic automation: localising surgical instruments in the 3D space finds possible
applications in robotic automation and semi-automation, as for dynamic motion
constraints [MISF20] and visual-servoing [ZRCM+21]. While the problem of 3D
pose estimation can be tackled by means of external sensors, vision-based marker-
less approaches are considered a more flexible and therefore desirable alternative.
In the absence of a ground truth 3D pose of the instruments, a possible solution is
to rely on the information provided by image-level localisation of the instruments
[PVH09].

• 3D bowel measurement: bowel length measurement is required by several surgical
procedures, including laparoscopic Roux-en-Y gastric bypass and colon surgery.
Nonetheless, the use of dedicated measuring tools like rulers is uncommon in la-
paroscopy, with most of surgeons relying on more rudimentary methods like using
instruments of known length as reference. This approach often leads to inaccurate
measurements [MGP+22]. CV offers tools to automate this process: [WMB+18], for
example, propose an approach for image-based bowel measurement from stereo-
camera images. Such an approach requires localisation of surgical instruments’ tip
to perform the measurement.

• Critical events documentation: documentation of intra-operative events is com-
monly based on operator-dictated reports, whose reliability has often been ques-
tioned [WST+13, SHW+10]. CV offers tools to automatically locate such events in
surgical videos, making the post-operative reviewing process significantly more
efficient than full-length video review. EndoDigest [MAU+21], for example, is a
CV platform able to locate the critical phase of cystic duct division in full-length
videos of laparoscopic cholecystectomy procedures. This is achieved by combining
automatically extracted information about surgical phases and tool presence, for
robust and reliable critical event documentation across different centers, despite a
potential work-flow variability [MAL+22].

1.4 Surgical Instrument Localisation and Identification

The work presented in this thesis tackles the problems of automatic localisation and
identification of surgical instruments from endoscopic videos. As discussed in Sections
1.3.1 & 1.3.2, instrument-related information can facilitate the development of solutions
for other surgical CV tasks, and enable the development of downstream applications
directly impacting surgical care.
Paragraph 1.4.1 formalizes the problem of automatic localisation and identification of
surgical instruments, and introduces the main techniques commonly used to tackle
them, later detailed in Chapter 2. Paragraph 1.4.2 highlights a common limitation of
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such state-of-the-art approaches: the need for a ground truth supervision signal, usually
obtained via manual annotation. Paragraph 1.4.3 introduces the potential opportunities
offered by a more general knowledge about surgical instruments to solve such tasks,
significantly more cost-effective compared to manual annotations. Such opportunities
are extensively explored in Chapters 3, 4 & 5, with the aim to develop approaches for
instrument localisation and identification free from manual annotations.

1.4.1 Problem Statement

The problem of instrument localisation is explored in this thesis both at the image level,
in the form of image segmentation, and in the 3D space, in the form of vision-based
3D pose estimation. Although the two problems are intrinsically connected, and several
approaches have proposed hybrid problem formulations to tackle them, they are here
separately presented to better highlight individual requirements and constraints, as well
as the link between them.

1.4.1.1 Image-level localisation through image segmentation

Surgical Computer Vision (CV) offers different ways to formalize the problems of image-
level instrument localisation and identification, such as binary tool presence detection,
bounding-box localisation and image segmentation, introduced in Figure 1.10. Among
these different formalizations, image segmentation offers the possibility to simultane-
ously identify tools and precisely localise them in the image space.
Image segmentation is the CV task allowing to partition an image into non-overlapping
segments, groups of pixels sharing common semantic attributes. Image segmentation
allows to significantly simplify image representations by suppressing information outside
a desired semantic set, while preserving spatial information, like object boundaries and
relative object position in the image space.
Given an image I ∈ RW ×H×3, image segmentation can be formalized in three different
ways:

• semantic segmentation: each one of the W ×H pixels of I gets assigned to a seman-
tic label out of a predefined set {Si }, with i in [0, Ncl s] - where 0 is the background
class - which defines the semantic scope of the task:

SeS : I ∈ RW ×H×3 → ISeS ∈ RW ×H×Ncl s+1. (1.1)

Table 1.1 reports some popular applications of semantic segmentation in the sur-
gical CV domain, highlighting their semantic scope, as well as popular datasets
annotated for them. Note that the presented variants are normally referred to as
separate classes of problems: binary segmentation, tool part segmentation, tool
type segmentation, anatomy segmentation are all highly researched problems, hav-
ing their specific datasets and dedicated approaches. Examples of such tasks are
shown in Figure 1.11, columns 2-4.

Semantic segmentation formalization has been highly adopted in recent years,
concurrently with the rise of deep learning, as this formulation allows to solve the
problem with minimal modifications to standard neural network architectures
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Task Scope Datasets
Se

m
an

ti
c

Binary
Separate tool pixels

from anatomy pixels
EndoVis 2017,2019

Tool Part
Separate pixels based on the

tool part they belong to
EndoVis 2015,2017

Tool Type
Separate pixels based on the

type of tool they belong to
EndoVis 2017

Anatomy
Separate pixels based on the

anatomy they belong to
HeiSurf

Full-Scene
Separate pixels based on the type of

tool or anatomy they belong to
EndoVis 2018, CholecSeg8k,

CaDIS, Endoscapes

In
st

an
ce

Tool Part
Separate instances based on the

tool part they represent

Tool Type
Separate instances based on the

tool type they represent

Pa
n

. Full-Scene
Separate instances or pixels based

on the type of tool or anatomy
they represent/belong to

Table 1.1: The table reports an overview of the main surgical instrument segmentation tasks,
organized according to their formalization in Semantic, Instance and Pan-Optic (Pan.). Each
task is characterized by its semantic scope. The main datasets annotated for each task are also
reported. Datasets included are the segmentation datasets of the MICCAI EndoVis challenges 2015,
2017 [ASK+19], 2018 [AKB+20], 2019 [RRF+20], CaDIS [GFK+19], HeiSurf; CholecSeg8k [HKK+20];
Endoscapes [AMV+21].

developed and tested for image classification. Indeed, a significant segment
of literature for surgical instrument segmentation is based on encoder-decoder
architectures directly learning the mapping SeS between images and segmentation
masks from datasets manually annotated with pixel-wise semantic labels
[GPHLF+17, SRKI18a, PPA+19, HL19]. However, more recent works have started
questioning the suitability of pixel-wise classification for tool type segmentation.
Tool parts like shafts, in fact, are often similar across different instrument types,
making pixel-wise classification challenging to solve. In addition, semantic
segmentation is not suitable to distinguish between separate tool instances
sharing the same semantic label. These limitations are addressed by instance
segmentation;

• instance segmentation: the image I is partitioned into a certain number NInst

of tool instances, not a-priori specified. Each instance can be represented by a
binary mask M Inst

i ∈ RW ×H , which is then assigned as a whole to a label out of
the predefined set {Si }, with i in [1, Ncl s]:
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Figure 1.11: From left to right: original endoscopic frame, binary segmentation, tool part semantic
segmentation, tool type semantic segmentation and tool type instance segmentation (separate
instances highlighted by their boundary).

I S : I ∈ RW ×H×3 → {M Inst
i ∈ RW ×H }, {Si ∈ [1, Ncl s]}, with i in [1, NInst ]. (1.2)

As for semantic segmentation, the set {Si } defines the semantic scope of the task.
Instance segmentation, for example, could be applied to both tool parts and
tool types. However, following the common use of the term in the surgical CV
community, we will refer to tool type instance segmentation simply as tool instance
segmentation.
Instance segmentation (Figure 1.11, last column) shifts the focus from pixel-wise
classification to the concept of instances, as commonly done for object detection
problems. Indeed one of the most popular solutions to instance segmentation is
Mask-RCNN [HGDG17], a straightforward extension of RCNN model for object
detection [GDDM14]. This solution has been widely adopted by state-of-the-art
approaches [KJD+21, GBSA20] trained on data manually annotated with pixel-wise
semantic and instance labels. Instance segmentation formalization calls for the
definition of the concept of things, the countable objects, and stuff, uncountable
objects. While the distinction between the two is to some extent subjective, some
objects (e.g. sky,grass in natural images, or fatty tissue in endoscopic images) are
clearly uncountable, and fall outside the scope of instance segmentation. This
limitation is addressed by pan-optic Segmentation;

• pan-optic segmentation: the image is simultaneously treated under both the
instance and semantic segmentation lenses. Things are instantiated and classified
as in instance segmentation, while stuff undergoes direct pixel-wise classification.
This approach provides the most complete segmentation formalization, and is
currently highly researched in the general CV community [LC22]. To the best of
our knowledge, no approach has yet been proposed for surgical CV, and no dataset
has been explicitly annotated for this task, so its use is not further discussed in this
thesis.

Since surgical instruments are countable objects - things - both semantic and in-
stance segmentation are suitable formulations. Note that an instance segmentation rep-
resentation can be transformed into a semantic segmentation representation, but not
vice-versa, as the instantiation information would be missing from the semantic mask:

{M Inst
i ∈ RW ×H }, {Si ∈ [0, Ncl s −1]}, with i in [1, NInst ] →↚ ISeS ∈ RW ×H×Ncl s+1.

(1.3)
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A complete overview of existing segmentation approaches is presented in Chapter 2.

1.4.1.2 Localisation in the 3D space

Beyond localisation at the image level, knowing the 3D pose and shape of surgical in-
struments is often required by robotic applications, as discussed in Section 1.3.2. Such
a problem can be tackled using external sensors like electromagnetic trackers and fiber
Bragg gratings, or applying optical markers to the instruments [SLQ+16, CGD07, GR18,
WS20]. However, relying on external sensors involves several undesirable actions to be
taken, such as modifying the instrument design to fit sensors/markers, potentially requir-
ing their re-certification. For this reason, vision-based marker-less solutions represent an
appealing alternative [BASJ17].
A vision-based approach for 3D tool localisation commonly features the following ele-
ments:

• a 3D virtual/CAD model of the robotic instruments r, parametrized by n values
and characterized by a set of geometric parameters. The n parameters can be for
example kinematic joint values or pose parameters. The two are interchangeable
and have both been explored in literature. For the sake of simplicity, we will refer
to the case of kinematic modelling to define the general framework;

• a set of kinematic joint values vector {ki } with i in [1,T ], with T being the number
of time-stamps, and each ki having n components. The kinematic joint values, fed
into r , give the estimated 3D shape of the robotic instruments in the instrument
reference frame. In case of pose parametrization each vector ki would be replaced
by a pose vector;

• a camera - robot base transformation b, describing the relative pose between the
endoscopic camera reference frame and the robotic instrument base reference
frame;

• a camera model c, characterized by a set of extrinsic and intrinsic parameters. If
known, the camera is said to be calibrated. For simplicity, we will use c to describe
the projective transformation mapping a set of 3D points describing the instrument
3D shape into the rendered tool image m̂;

• a set of images {Ii }, with i in [1,T ], paired with the set of kinematic values {ki };

• a couple of transformations Preal, Prend, mapping the real image Ii and the rendered
tool image m̂i into the same projection space.

The combination of the listed elements allows to map a kinematic joint values vector
ki into the corresponding rendered tool image m̂i :

m̂i = c(br(ki )). (1.4)

Usually, kinematic values recorded by robotic systems tend to be inaccurate, due to two
main reasons: 1) tool-tissue interaction can modify the configuration of the instruments,
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Figure 1.12: Overview of the general framework commonly used to tackle a vision-based 3D tool
localisation problem.

with respect to the one specified by the user and recorded by the robotic system; 2) un-
modelled non-linearities in the tool model (e.g. cable friction, slack in instrument chan-
nel, backlash) can lead to loss of motion between the motors and the instruments: if not
properly modelled this can result in a significant mismatch between estimated tool con-
figuration and effective one. These two factors lead to a non-deterministic mapping be-
tween recorded kinematics and actual robot configuration, which makes recorded kine-
matics unreliable. For this reason, as shown in Figure 1.12, a vision-based 3D pose es-
timation problem is often formulated as an optimization problem aimed at minimizing
the distance between the projections into a common space of the real image, through
Preal, and of the rendered tool image, through Prend:

Preal(Ii ) = Prend(m̂i ). (1.5)

Conceptually, this hybrid framework ties together vision-based instrument localisation
and 3D pose estimation, and has been used to tackle both problems [AOH+18, dCRPR19].
Different approaches which have adopted this hybrid framework [AOH+18, DZK+22]
formalize Preal as machine/deep learning model, whose parameters are learnt from
labelled data, commonly annotated for the tool segmentation task. The most relevant
solutions adopting such frameworks are described in Chapter 2.

1.4.2 The Annotation Bottleneck

As introduced in the previous section, Deep Learning (DL) is the current method
of choice to tackle the problem of instrument localisation and identification. More
generally, over the last decade, DL, fueled by a constantly increasing amount of data and
computing capabilities, has outperformed standard CV algorithms in a variety of tasks
like object detection, image segmentation and classification [VDDP18]. Compared to
standard CV algorithms, which require hand-crafted feature selection and extraction,
DL lets a neural network function learn its own parameters from a set of training data,
without being explicitly programmed. In the largely used fully-supervised paradigm,
this is obtained by optimizing neural network parameters with the greedy objective
of yielding predictions matching a manually annotated ground truth. While this
paradigm does not come without shortcomings, such as the possible over-fitting
of the training data, it quickly led to breakthrough results in CV. Specifically, DL
algorithms outperformed standard CV algorithms in all those tasks requiring a semantic
understanding of data, where factors like large intra-class variability, or reduced inter-
class variability, make the process of manual feature selection non-obvious or, at least,
extremely inefficient.

In the surgical CV field, the mental process followed by experts to carry out tasks
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is developed through years of experience, and is often hard to explicitly formalize:
explicitly defining relevant features for standard CV algorithms development is therefore
prohibitive. Motivated by this challenge, and fueled by the excitement of initial break-
trough results [TSM+16], the fully-supervised approach has been widely used for
most surgical CV tasks, including surgical instrument localisation and identification.
However, this one-fits-all approach, requiring manual annotations to solve every surgical
CV problem, appears today unsustainable and incompatible with clinical translation. In
order to guarantee robustness and generalization ability, in fact, DL approaches need
to be trained on large amounts of data, capturing the potential variability of real-world
data. However, as the size of datasets increases, the cost of annotation linearly increases
with it. Building Endoscape [AMV+21] for example, a dataset for full-scene segmentation
of endoscopic images, required over 400 hours of work for 2k images. Annotations
were performed in double by multiple computer scientists and surgeons, as problem-
specific knowledge was required from both sides. The need for such domain expertise
significantly increases the cost of annotations.
Regardless of the individual laboratories’ or companies’ resources, such cost of
annotation can quickly become unaffordable. This creates an annotation bottleneck,
confining DL model training to a tiny fraction of the potentially available data. If not
properly addressed, this annotation bottleneck can severely limit the benefits that
surgical big data could bring to surgery, by negatively impacting research and translation
in different ways:

• lack of model generalization ability: the most immediate effect of training in small
datasets is the inability of models to perform well on unseen data, due to unwanted
biasing factors present in the collected data. This can pose severe problems for
translation of the developed technologies. A clear example of this problem in the
healthcare sector is the infamous failure of AI to provide reliable predictive tools
during the Covid-19 pandemic [Cha22];

• limited benchmark dataset representativeness: the highly-competitive nature of
research [Žel23] pushes researchers to develop solutions aimed at outperforming
state-of-the-art approaches on specific benchmark datasets. Such datasets allow
standardized evaluation of methods, promoting fair comparison among them.
However, when the number and the size of such benchmark datasets is reduced
because of the annotation bottleneck, their ability to represent real problems may
be hindered. This can lead to the development of methods over-optimized to
perform well on potentially non-representative datasets, thus failing to effectively
advance the state-of-the-art;

• tasks compartmentalization: the lack of centralized data collection and annota-
tion in the surgical data science community [MHES+22], has commonly led to the
construction of several task-specific datasets, tailored to individual laboratories’
needs. Although some exceptions exist, like CholecSeg8k and CholecT50 datasets
[HKK+20, NYG+22], re-annotating existing datasets for different tasks is uncom-
mon. This can have the long-term effect of compartmentalizing surgical CV tasks,
as researchers are forced to find solutions to problems without relying on informa-
tion coming from different tasks. This is extremely counter-intuitive for surgical
CV tasks, which, as described in Section 1.3.1, often tackle the same problem (e.g.
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surgical work-flow analysis) from different perspectives (e.g. gesture recognition,
action-triplet identification, phase/step segmentation), all potentially benefiting
from the availability of the same information (e.g. tool-related information).

In order to mitigate the annotation bottleneck problem, different solutions have been
proposed in the general CV community. Semi-supervised learning approaches, for ex-
ample, incorporate unlabelled data in the training process, while still requiring access
to a set of manually annotated data. Similarly, domain adaptation techniques allow to
repurpose knowledge learnt from a certain domain to another domain, featuring few
or no annotated samples. Recently, self-supervised representation learning approaches
have gained significant traction in the community. These approaches aim at learning
useful feature representations of data, capturing their semantic content, with no external
supervision. Such representations can then be used to learn downstream tasks from
small sets of annotated data, allowing to boost models performance, reduce training time
and minimize the amount of manual annotations needed.
Such strategies have been successfully applied to several surgical CV tasks, including
instrument localisation and identification [RSA+22, AMV+21, SJDH21, ZJG+20]. How-
ever, we believe that the surgical domain offers specific opportunities to solve the tool
localisation and identification tasks in a completely unsupervised way, which have been
only marginally explored in literature.

1.4.3 The Potential of Prior and Complementary Knowledge

This thesis explores the use of prior and complementary knowledge about surgical tools
to perform unsupervised instrument localisation and identification from endoscopic
videos. Such knowledge can come in different forms, and derives from observations
about surgical tools and the surgical domain in general, reported below:

• standardization of surgical instruments: surgical instruments’ shape and overall
appearance is almost completely determined by their function. Therefore,
the appearance variability arising, for example, from different manufacturers,
is usually minimal, with key instrument features always well-preserved. This
contrasts with the large intra-class variability found in general CV problems (Fig.
1.13). Such standardization allows to build prior models of the instruments. In
this thesis, we distinguish between weak, more general prior models, like template
images of the instruments (shape-priors, Figure 1.14, left) and strong prior models,
like parametrized 3D virtual/CAD models (Figure 1.14, right);

• constraints on instrument motion: surgical instruments’ motion inside the surgi-
cal site is constrained and characterized by two main factors. First of all by phys-
ical characteristics of the instruments: laparoscopic instruments are usually rigid,
therefore their motion is coherent as opposed to the one of surrounding soft tis-
sues (Fig. 1.15, left). Instruments’ motion is also characterized by basic principles
imposed by the surgical technique or implicitly followed by the surgeons handling
them. In laparoscopy, for example, the principle of triangulation tends to make
instruments enter the field of view from the lateral side; in addition, surgeons tend
to avoid surgical instruments overlap, in order to reduce the chances of mutual tool
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Figure 1.13: Top row shows randomly sampled images from the ImageNet [DDS+09] chair class.
Bottom row shows images of different types of laparoscopic scissors, produced by different man-
ufacturers. The scissors, whose appearance is totally constrained by their function, tend to keep
clearly recognizable features regardless of the specific type and manufacturer.

Figure 1.14: Left: shape-priors, in the form of binary segmentation masks of the instruments,
obtained from automatic segmentation of chroma-key images. Courtesy of [GPHFD+21]. Right:
different views of a 3D CAD model of a laparoscopic forceps head. Courtesy of [Gra]

occlusions and unwanted tool interactions;

• availability of multi-modal complementary information: endoscopic videos are
not the only source of online information capturing surgical instruments’ activity
during procedures. For example, electric signals from active instruments, like bipo-
lar forceps, can be used to detect their presence in the surgical scene. In robot-
assisted surgery, instrument usage can be automatically recorded by robotic sys-
tems, as well as instrument motion through robot kinematics. Furthermore, man-
ually annotated information about the surgical workflow, like phases, steps and
binary tool presence, can be considered as a source of complementary knowledge
describing surgical tool activity. We define these different sources of multi-modal
information as complementary with respect to the tasks of tool segmentation and
3D pose estimation, as they do not directly provide ground truth information to
solve them;

• simulation: simulators offer the possibility to young surgeons to build experience
by training in a safe environment. Procedure-specific virtual reality simulators
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Figure 1.15: Left: graphic visualization of instrument coherent motion vs soft tissue incoherent
motion using optical flow. Right: laparoscopic triangulation principle for trocar placement (cour-
tesy of [SAG14]), and heat-map representing instrument localisation in the image space during a
procedure extracted from the MICCAI 2017 grand-challenge dataset on instrument segmentation
[ASK+19] (blue low presence, yellow high presence). Note how the two instruments do not normally
overlap and tend to enter the field-of-view from the sides.

like LapSim [DHM+05] can provide accurate renderings of different surgical sites
and instruments, as well as the interactions between the two (Fig. 1.16). Being
synthesized, the surgical scene in simulators is known in every aspect and can be
used to generate realistic labelled samples for DL algorithms training.

Figure 1.16: Renderings from the LapSim® simulator: from left to right salpingectomy, cholecystec-
tomy, appendectomy and hysterectomy procedures. Courtesy of [Lap20].

1.4.4 Research Question

In contrast to standard manual annotations used to tackle the tool localisation
and identification tasks (e.g. bounding-boxes, segmentation masks), prior and
complementary knowledge provide cheaper and more flexible information about
the problem. Prior knowledge, in particular, is usually not directly linked to a specific set
of data. Information about tool shape and color distribution, for example, can be applied
across surgical domains, for data collected from different procedures, performed with
different techniques and in different centers. Complementary knowledge, while usually
linked to a specific set of data, can often be obtained automatically (e.g. kinematics and
tool usage from robotic systems), or with less annotation effort (e.g. binary tool presence
and phase/step labels) compared to standard manual annotations.
These features make prior and complementary knowledge a more general and
repurposable source of information, which can allow models to learn from unlabelled
data, without incurring in the annotation bottleneck problem. On the downside,
integrating such information in standard DL architectures is not straightforward,
compared to standard fully-supervised training (Figure 1.17).
The hypothetical framework shown in Figure 1.17 (right) poses interesting research
questions: how can general knowledge about surgical tools be formalized into a pseudo-
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Figure 1.17: Left: fully-supervised learning framework, where a ground truth signal (GT), usually
obtained through manual annotation, is directly used to compute the loss for model training. The
model’s parameters are optimized to minimize such loss, so that its predictions can match the GT.
Right: hypothetical framework using prior/complementary knowledge to generate a pseudo-GT
signal for deep learning model training. This framework opens up interesting questions, such as
how to generate the pseudo-GT from prior/complementary knowledge and how to effectively learn
from it.

supervision signal? How can a DL model effectively learn from such a signal?
Our contributions, presented in Chapters 3, 4 & 5, address these questions, exploring
the use of such knowledge to tackle the problems of instrument localisation and
identification from endoscopic videos.

1.5 Thesis Contribution

In this thesis we investigate the problems of surgical instrument localisation and
identification, both at the image level, in the form of segmentation, and in the 3D
space, in the form of 3D pose estimation. Motivated by the need to overcome the
annotation bottleneck problem, discussed in Section 1.4.2, prior and complementary
knowledge about tools is incorporated in the developed architectures, to replace manual
annotations. This yields annotation-free approaches, trainable on unlabelled data. Our
three main contributions (Fig. 1.18) are introduced below and detailed in Chapters 3, 4
& 5.

Contribution 1, FUN-SIS: a Fully UNsupervised approach for Surgical Instrument
Segmentation:
As our first contribution, we design an approach for unsupervised binary instrument
segmentation. The proposed solution trains on completely unlabelled videos, exploiting
prior knowledge of instrument appearance and motion. Prior knowledge on tool
appearance is formalized as shape-prior masks, binary segmentation masks of surgical
instruments, obtainable in various ways such as recycling existing annotations from
different datasets or projecting 3D tool models in the image space. For instrument
motion, a simple assumption is made: compared to the surrounding anatomy, surgical
instruments move coherently, i.e. two points close-by in an instrument normally move in
the same direction. This knowledge is incorporated into a deep learning architecture and
used to produce a pseudo-supervision signal to supervise binary segmentation training.
The signal is further refined by exploiting peculiar properties of neural networks when
dealing with noisy labels. We validate this approach in different datasets, using different
kinds of shape-priors, achieving results comparable with fully-supervised solutions.

41



1.5. THESIS CONTRIBUTION

Figure 1.18: Overview of the contributions proposed in this thesis, highlighting the sources of
information exploited to replace manual annotations for deep learning model training. Our
first contribution (FUN-SIS) tackles the binary segmentation problem, using instrument shape-
priors and the hypothesis of instrument coherent motion as sources of prior knowledge. Our
second contribution (PAF-IS) builds on top of FUN-SIS to solve the instance segmentation task by
exclusively relying on general hypotheses on instrument positioning in the field-of-view and binary
tool presence labels. Finally, our third contribution (KI-BOT) uses instrument kinematic modelling
to learn 3D pose estimation from inaccurate kinematic data only.

Contribution 2, PAF-IS: a Pixel-wise Annotation Free framework for Instance
Segmentation of surgical tools:
As our second contribution, we propose a novel framework for instance segmentation
model training, designed to minimize human annotation effort by removing the need for
pixel-wise semantic and instance annotations. Without an explicit supervision signal,
our solution learns to extract individual tool instances from binary segmentation masks,
and obtains, for each tool instance, a powerful feature representation via self-supervised
contrastive learning. Such instance-wise representations guide the automatic selection
of a tiny number of instances (as few as 8 in our experiments), displayed to a potential
human user for tool type labeling. The gathered information, in combination with
binary tool presence labels, guides the training of an instance-wise classifier, predicting
a tool type label for each tool instance.

Contribution 3, KI-BOT: a Kinematic Bottleneck Approach For Pose Regression of
Flexible Surgical Instruments directly from Images:
As our last contribution, we leverage the availability of strong prior knowledge about
instruments by proposing the introduction of parametrized 3D tool models as part of
end-to-end trainable DL pipelines for direct 3D pose estimation from endoscopic images.
The proposed framework trains a model to directly predict kinematic joint values from
images, by exclusively relying on automatically recorded kinematic data. We design our
approach to be robust to noisy kinematic data, and validate it in the challenging domain
of flexible endoscopic surgery.
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1.6 Outline

The work presented in this thesis is organized according to the following outline:

• Chapter 2 provides a structured overview of previous publications relevant to the
tasks of surgical instrument segmentation and 3D pose estimation, organizing
them according to their learning methodology.

• Chapter 3 presents FUN-SIS, an approach for binary instrument segmentation,
training on unlabelled data exploiting prior knowledge on instrument shape and
motion.

• Chapter 4 presents PAF-IS, a novel framework allowing to train an instance seg-
mentation model, exclusively relying on prior knowledge of instrument positioning
in the image space and weak complementary information in the form of binary tool
presence labels.

• Chapter 5 presents KI-BOT, a framework for 3D pose estimation integrating a
parametrized 3D model of surgical instruments inside an end-to-end trainable
deep learning architecture for direct kinematics regression from images.

• Chapter 6 first summarizes the work presented in this thesis, presenting a uni-
fied framework to learn the tool localisation and identification tasks from unla-
belled datasets. This framework helps us discuss the analogies between the pro-
posed contributions and contextualize them with respect to relevant deep learning
paradigms, like self-supervised representation learning and learning-from-noisy-
labels. Finally, current limitations of the proposed solutions, paths for further de-
velopment and open questions arising from our work are discussed.
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This chapter presents related literature on instrument localisation and identification,
both at the image level, in the form of image segmentation, and in the 3D space, in the
form of vision-based 3D pose estimation.
Existing solutions are organized according to their core learning methodology: fully-
supervised solutions, completely relying on manual annotations, are presented in Sec-
tion 2.1; semi-supervised solutions, combining labelled and unlabelled data in the train-
ing process, are discussed in Section 2.2. Prior and complementary knowledge based
solutions are finally presented in Section 2.3.

2.1 Fully-Supervised Solutions

Following the Deep Learning (DL) breakthrough in the field of surgical computer vision,
marked by seminal works like Endo-Net for workflow analysis [TSM+16], research works
have mostly addressed the problem of surgical tool segmentation using fully-supervised
DL approaches. Such approaches have largely outperformed previously proposed
methods for the tasks of instrument segmentation and tracking [BAA+18]. In particular,
encoder-decoder architectures based on Convolutional Neural Networks (CNNs) have
been widely adopted, in concurrency with a semantic segmentation formulation of
the problem. [GPHLF+17, SRKI18a, PPA+19, HL19] propose different variations of
U-Net architecture [RFB15], exploring different loss functions, residual connections,
dilated convolutions and ad-hoc augmentation pipelines. Multi-task learning has
also been adopted, coupling the segmentation task with image-based localisation of
tool landmarks [LRR+17] and task-oriented saliency maps prediction [IVLR21]. While
the segmentation task can be solved from single frames, temporal information has
been proven to boost performance, especially in the case of partially occluded tools
[JCDH19a].

Recently, instance segmentation approaches have started gaining traction. As
previously discussed, the instance segmentation formulation is particularly suitable to
deal with surgical instruments, and allows to extract reacher information compared to
semantic segmentation approaches. The proposed approaches to tackle this problem
require pixel-wise semantic and instance labels to train. Most of them are based on
the popular Mask-RCNN architecture [HGDG17]. [KJD+21] directly train a Mask-RCNN
architecture for the task of surgical instrument instance segmentation, and validate
it across different datasets, highlighting the importance of cross-dataset training to
improve robustness and generalization ability (Figure 2.1). ISI-Net [GBSA20] adds
a temporal-consistency module for improved segmentation results. Beyond Mask-
RCNN based approaches, [KMNA+21] use an anchor-free approach for instrument
instantiation, based on direct prediction of instruments centroids position. [ZJH22]
simultaneously tackle the problems of instance segmentation and tracking, using a
transformer-based architecture.

2.2 Semi-Supervised Solutions

This family of approaches incorporates unlabelled data in the training process, while still
requiring access to a set of manually annotated data to supervise the training. Different
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Figure 2.1: Overview of [KJD+21] approach and validation. The approach consists of a standard
Mask-RCNN architecture, validated using cross-dataset evaluation with different sampling strate-
gies. Courtesy of [KJD+21].

solutions to combine unlabelled and labelled data have been explored. [RZV+18] pre-
train a segmentation model on unlabelled data, by means of a re-colorization pretext
task carried out using a cycle-GAN architecture, and then fine-tunes the model on anno-
tated data (Figure 2.2). A similar pipeline can be followed by replacing the pre-text task
with self-supervised representation learning on the unlabelled data, as experimentally
shown by [RSA+22]. In their work, different state-of-the-art self-supervised representa-
tion learning approaches, both contrastive-based, like MOCO [HFW+20] and distillation
based, like DINO [CTM+21], were bench-marked on different surgical computer vision
tasks, including instrument segmentation. Their analysis shows that substantial perfor-
mance gains can be achieved using self-supervised pre-training over common ImageNet
initialization. [ZJG+20] tackle the problem of sparsely annotated data, propagating low
hertz annotations to intermediate unlabelled frames using optical flow. [KAN+21] in-
corporate in the training process unlabelled data from different domains, to improve
generalization to those domains. This is achieved by mapping annotated frames from
the labelled set to the unlabelled domain using a cycle-GAN architecture, allowing for
better generalization.

2.3 Prior and Complementary Knowledge based Solutions

As discussed in Section 1.4.3 prior problem knowledge and complementary multi-modal
information can be used to directly tackle the problem of instrument localisation and
identification, minimizing the need for manual annotations. The solutions here pre-
sented are organized based on the main source of information they use to solve such
problems. Solutions exploiting simulation and data synthesis are described in Section
2.3.1. Solutions using complementary information about surgical instruments, like bi-
nary tool presence, are presented in Section 2.3.2. Solutions using weak prior knowledge,
in the form of shape-priors or general assumptions on instrument motion and color ap-
pearance, are described in Section 2.3.3. Finally, solutions using strong prior knowledge,
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Figure 2.2: Overview of [RZV+18] approach. The approach includes a pre-training step, performed
using a pretext re-colorization task on unlabelled data, and fully-supervised training step, on the
available labelled data. Courtesy of [RZV+18].

in the form of parametrized 3D models of the instruments, are discussed in Section 2.3.4.
It is worth pointing out that several of the presented works combine different sources of
information, as this helps achieve better and more robust results. Table 2.1, at the end of
the Chapter, collects all the methods discussed in this Section, highlighting the different
sources of information used by each of them.

2.3.1 Simulation and Semi-synthetic Data Generation

Full surgical scene simulators allow to generate virtually infinite-sized datasets of
synthetic endoscopic videos with known ground truth information about anatomy
and surgical tools. However, directly learning from synthetic images is prohibitive, as
there still exists a significant domain gap between real and simulated data. In order
to bridge this gap different solutions have been proposed. [PFR+19] exploit a cycle
Generative Adversarial Network (cycle-GAN, [ZPIE17]) to translate simulated images
into real-looking laparoscopic images, while preserving their original content (Figure
2.3). Fully-supervised learning is then carried out on the generated semi-synthetic data.
[SSMZ20] propose Endo-Sim2Real, a consistency-based framework for joint training
from simulated and unlabelled real data. This approach does not explicitly perform
image-to-image translation, but trains a model for instrument segmentation using a
fully-supervised loss on simulated images, and a consistency loss on different augmented
versions of real images. [SMZ21] improves such framework employing a teacher–student
paradigm, developed to address the confirmation bias problem affecting the consistency
loss of Endo-Sim2Real.
However, full-scene simulators are not always available. The CoppeliaSim DaVinci
simulator [FMFV22] for example, allows to perform non-surgical tasks, like object
manipulation. Therefore, renderings of the surgical scene cannot be generated.
Simulated images of surgical instruments are used in [CS21], which map them to
realistic-looking ones using a Cycle-GAN. Manually annotated segmentation masks are
needed to produce the real domain set for Cycle-GAN training. Translated tool images
can then be pasted on background-only images to generate semi-synthetic samples with
known ground truth tool masks.
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In the absence of simulators, semi-synthetic samples have been produced by
[GPHFD+21], by merging automatically segmented tools from green-screen recordings
and real surgical background images (Fig. 2.4). Finally, [MMC+21] use a pix2pix GAN
to generate synthetic endoscopic images from the ground truth segmentation masks of
surgical instruments and anatomy.
As the quality of simulators improves, simulation-based approaches will play a crucial
role to alleviate the burden of manual annotation. However, as for now, existing
approaches still struggle to bridge the gap between real and simulated data, and the cost
of advanced simulators still poses a significant barrier to their use.

Figure 2.3: Images from full-scene laparoscopic simulation (first column) translated into real-
looking laparoscopic images (second and third column) using different styles. Courtesy of [ZPIE17].

Figure 2.4: Blending process (top row) and blended image sample (bottom picture) created
using green-screen recordings of surgical instruments and background-only images. Courtesy of
[GPHFD+21].

2.3.2 Complementary Information based Solutions

As discussed in Section 1.4.3, complementary multi-modal information about surgical
tools can be acquired in different forms. In robotic-assisted surgery, kinematic joint
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values can often be recorded, as well as the type of instruments inserted in the robotic
arms. Furthermore, manually annotated information about the surgical workflow, like
phases, steps and binary tool presence, can be considered as a source of weak knowledge
for the tool localisation task, obtainable at a significantly lower cost compared to pixel-
wise annotations. As the use of kinematic joint values usually requires the availability
of kinematic models of the instruments, related approaches are separately discussed in
Section 2.3.4, as part of the methods using parametrized 3D tool models.
Weak annotations, in the form of binary tool presence labels describing tool presence,
have been mostly used to tackle the problem of instrument detection using bounding-
boxes. [VMMP18] train a multi-label classifier to predict tool presence from single frames;
the designed architecture features an extended spatial pooling layer yielding class-
specific feature maps, used during inference to localise the tools. Similarly [NMMP19]
use Wildcat Pooling to obtain localisation maps, adding a convolution-LSTM module
for improved temporal consistency. Differently from these two approaches, [XLL+22]
use binary tool presence annotations, in combination with green-screen recorded
images of surgical instruments, to obtain a pseudo-supervision signal consisting of
noisy and redundant bounding boxes. A bounding-box regressor is then trained on the
noisy supervision signal, and its predictions for a certain tool are averaged together
according to their confidence score. For the task of segmentation, [YSL22] automatically
obtain a pseudo-supervision signal by attaching an electromagnetic sensor to surgical
instruments. While cutting the cost of annotations, the approach is inherently limited by
regulatory constraints, which limited the extent of validation of that study.
The use of binary tool presence annotations has remained limited to the localisation task,
as the standard approach involving using class-activation maps limits the localisation to
discriminative parts of the tools, missing out significant parts of the instruments like the
shafts (Fig. 2.5). Furthermore, research works on weakly-supervised learning have mostly
focused on frame-wise binary tool presence annotations, which still require a certain
annotation effort. This has led to overlooking the opportunity given by even cheaper
sources information, like tool usage provided by robotic systems. This information
describes which tools are attached to the system, without providing guarantees on their
visibility in the field-of-view.

2.3.3 Weak Prior Knowledge based Solutions

Before the advent of DL, and learning-based methods in general, solving the image seg-
mentation problem required the formalization of general knowledge about the instru-
ments, derived from considerations of aspects like color distribution and tool positioning
in the image space. We define such prior knowledge as weak, as opposed to the strong
prior knowledge provided by accurate 3D models of the instruments, discussed in the
next Section.
Early work by [WAH97] performs color-based segmentation using external colored mark-
ers attached to the laparoscopic instruments. Pixels belonging to the markers are se-
lected according to a thresholding operation performed on the HSV (hue-saturation-
value) color space. Spatial filtering, implemented as a convolution operation with a ker-
nel of uniform values, is then applied to the masks to reduce the effect of scattered noise
(Fig. 2.6).
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Figure 2.5: Endoscopic images overlaid with corresponding localisation maps and predicted tool
centers for different weakly-supervised architectures. Note how the localisation is mostly confined
to the tip of the tools. Courtesy of [VMMP18].

Figure 2.6: From left to right: endoscopic frame showing the colored marker applied on the
laparoscopic instrument; HSV color space histogram of endoscopic frame and colored marker;
segmentation masks before and after post-processing spatial filtering. Courtesy of [WAH97].

[DGDM05] improve the reliability of the HSV color-space segmentation, by combining
it with an adaptive region growing algorithm with automatic seed detection. Such im-
provement allows to get rid of the external markers, although validation was carried out
on a small-sized dataset, insufficient to assess the algorithm’s robustness. During the
International Conference on Medical Image Computing and Computer Assisted Inter-
vention (MICCAI) 2006, separate works introduced the idea of exploiting constraints on
shape and insertion-point of laparoscopic instruments to improve segmentation results
[VLC06, DNdM06]. The first, in particular, proposes a multi-step approach for instru-
ment segmentation, first computing potential edge points through Sobel filtering, then
using them to locate instruments’ symmetry axis and edges on the image space.
A seminal work by [PVH09] marked the break-through of learning-based approaches for
instrument segmentation. As part of this work, aiming at instrument 3D pose estima-
tion, and therefore detailed in Section 2.3.4, the problem of instrument segmentation
was formalized as pixel-wise classification. It was solved by manually selecting a set
of image features, and training a Gaussian Mixture Model to predict whether the pixel
belonged or not to an instrument. Selected features included RGB and HSV color of the
pixel, average intensity within a small window, and five Laplacian of Gaussian filters of
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different bandwidths to add texture information. As the generalization ability of such
a solution was poor, the complete approach required to have at least one manually-
annotated frame for each testing sequence. Similarly, [ACO+15], [SBF14] use Random
Forest algorithms to perform part-segmentation of the instruments, again as part of 3D
pose estimation pipelines. As a way to boost segmentation results, without requiring
manual initialization at test time, [BBO+15] propose an approach combining pixel-wise
ML classification, performed by a boosted decision tree algorithm, with a tool-specific
template matching, to enforce global shape consistency (Fig. 2.7).

Figure 2.7: Left: Fixed shape template illustration for a suction tube used by [BBO+15]. Right:
example of endoscopic frame and segmentation results of boosted decision tree algorithm (green
overlay) and template matching (orange overlay). Courtesy of [BBO+15].

Following the advent of DL, manual annotations have replaced the use of prior knowl-
edge. Manual annotations implicitly provide the same information, without requiring the
effort to explicitly formalize it. However, as the interest for annotation-free approaches
is rising, prior knowledge information has been recently repurposed to supervise the
training of DL models. [LWJ+20a] integrate prior knowledge about color distribution
and position of the instruments in the image space in a DL architecture. The approach
generates segmentation pseudo-labels using such handcrafted cues, and then refines
segmentation results exploiting feature correlation between adjacent video frames.

2.3.4 Strong Prior Knowledge based Solutions

3D models of surgical instruments, in combination with kinematic models and joint val-
ues, offer a strong and versatile source of prior knowledge to solve the surgical instru-
ment segmentation problem. Approaches integrating parametrized 3D models of the
tools commonly adopt the general framework shown in Figure 1.12. Such a framework
is extremely versatile, allowing to tackle both the tasks of 3D pose estimation and image
segmentation.
A seminal work by [PVH09] formalizes 3D shape estimation of robotic instruments as
an iterative optimization problem aimed at estimating the pose parameters determining
instruments’ shape. At each step, the objective of the optimization is to align the esti-
mated projection of surgical tools, given by the currently estimated tool configuration,
with a tool part semantic segmentation mask obtained from the endoscopic frame. The
segmentation mask is extracted from frames using a Gaussian Mixture Model algorithm,
trained on the first few frames of each video sequence. Then, given the instrument 3D
model, the calibrated camera model, and the previously estimated kinematic configura-
tion (at the first frame the 3D model is manually aligned by the user), an optimization
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algorithm is run to refine the tool configuration until the two silhouettes match, accord-
ing to an overlap metric. The optimization is run using a gradient-free algorithm as the
overlap metric used does not allow gradient propagation.
This approach has inspired several subsequent works. [AOH+18] in particular modify
the optimization algorithm, speeding up the algorithm and improving performance (Fig.
2.8).

Figure 2.8: Overview of the 3D pose estimation approach by [AOH+18].

More recently, [DZK+22] have formalized CaRTS, a framework describing the causal
relationship between observed kinematics and corresponding endoscopic image,
refining the first based on the information provided by the latter. Interesting parallels
can be drawn between [PVH09], previously discussed, and CaRTS. Both approaches
use a 3D model of the instruments. Both the approaches use an image-based
objective, powered by manual annotations: the first uses a contour matching loss,
where the reference silhouette is obtained from a Gaussian Mixture Matrix algorithm
manually initialized at the first iteration; CaRTS uses a feature matching loss, where
feature representativeness is ensured by extracting them using a U-Net segmentation
architecture, pre-trained for binary instrument segmentation. Finally, both initialize
the optimization from a meaningful guess: the first [PVH09] initializes pose parameters
manually at the first frame, then uses the previously estimated values, implicitly relying
on temporal consistency; CaRTS uses observed kinematics and refine it adding an error
term as optimization variable. CaRTS potential mostly relies on the scalability of the
causal model proposed. In a follow-up publication, [DWLU23] CaRTS framework was
extended, decoupling time-variant and time-invariant factors determining instrument
configuration. This allows to separately model, and potentially optimize, kinematic
values, camera-robot transformation and camera parameters. In addition, the proposed
enhanced causal model also conceptually incorporates the interactions between
instruments and environment, although no implementation is currently available.
Parallel works have exploited this framework to directly solve the segmentation task,
without aiming at estimating the instruments’ 3D pose. [dCRPR19] combine recorded
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kinematic joint values and 3D kinematic models of flexible surgical instruments
to generate pseudo ground truth segmentation masks. As the kinematics is often
inaccurate, the obtained masks are not used to directly supervise segmentation.
Instead, they are used to initialize a GrabCut segmentation algorithm. The generated
pseudo-masks can be subsequently used for DL model training (Fig. 2.9). Similarly,
[PSN20] generate pseudo-masks from recorded kinematics. To cope with their potential
inaccuracy, they incorporate them in a cycle-GAN architecture, not explicitly requiring a
direct matching between frames and pseudo-segmentation masks. [CES20] propose the
combined use of recorded kinematics and green-screen recordings, in order to cheaply
obtain ground truth segmentation masks for ex-vivo acquisition. In their work, kinematic
data describing instrument movement are recorded during an ex-vivo experiment. A
second repetition is performed reloading the recorded kinematic: this time a plain green
background is used, allowing to obtain the ground truth using background subtraction
techniques.

Figure 2.9: SSTS [dCRPR19] results on different datasets synthetic and in-vivo datasets. From left
to right: original frame; kinematic projection (inaccurate); ground truth segmentation mask (GT);
SSTS prediction; fully-supervised model prediction (FSL). Courtesy of [dCRPR19].

2.4 Thesis Positioning

Automatic localisation and identification of surgical instruments is a fundamental
enabling technology for a wide range of surgical data science applications. In this
Chapter we reviewed related literature on surgical instrument segmentation and 3D
pose estimation, emphasizing how various sources of supervision have been explored to
solve these tasks.
As discussed in Section 2.1, a large body of work has been proposed to tackle the problem
of surgical instrument segmentation using a fully-supervised training formulation,
requiring pixel-wise manual annotations. While effectively providing state-of-the-art
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Source of Compl./Prior Knowledge Manual

Simul.
Compl.

Weak PK Strong PK Segm.
Method Task DL K P

[SSMZ20] BS ✓ ✓
[SMZ21] BS ✓ ✓
[CS21] BS ✓ ✓ ✓

[GPHFD+21] BS ✓ ✓
[MMC+21] BS ✓ ✓ ✓
[VMMP18] BB ✓ ✓
[NMMP19] BB ✓ ✓

[XLL+22] BB ✓ ✓
[WAH97] BS ✓

[DGDM05] BS ✓
[VLC06] BS ✓

[LWJ+20a] BS ✓ ✓
[PVH09] 3D ✓ ✓

[AOH+18] 3D ✓ ✓
[DZK+22] 3D ✓ ✓ ✓ ✓

[dCRPR19] BS ✓ ✓ ✓ ✓
[PSN20] BS ✓ ✓ ✓
[CES20] BS ✓ ✓ ✓

FUN-SIS BS ✓ ✓
PAF-IS IS ✓ ✓ ✓
KI-BOT 3D ✓ ✓ ✓

Table 2.1: Methods presented in Section 2.3, and thesis contributions (FUN-SIS, PAF-IS, KI-BOT, last
three rows), exploiting prior and complementary information to solve various instrument localisa-
tion tasks. For each solution we highlight, from left to right: the task, among binary segmentation
(BS), instance segmentation (IS), bounding-box detection (BB) and 3D pose estimation (3D); if Deep
Learning based (DL) or not; if based on simulation/semi-synthetic data (Simul.), complementary
information (Compl.), in the form of kinematics (K) or binary tool presence information (P), weak
or strong prior knowledge (PK); if requiring manual annotations, in the form of segmentation
masks (Segm.), at some step of the method.

accuracy on benchmark datasets, such attempts totally rely on the availability of manual
annotations. As a result, their performance drastically drops when applied to different
datasets, if no labels are available for retraining [KJD+21]. As discussed in Section 1.4.2,
acquiring additional manual annotations can be costly and time-consuming, and can
limit effective state-of-the-art advancement.
The work presented in this thesis aims at showing possibilities to unleash the potential
of unlabelled data, in combination with prior and complementary knowledge about
surgical instruments. Some directions have already been explored in literature, as
discussed in Section 2.3. Several of these attempts, presented in Section 2.3.1, fall under
the definition of data-synthesis approaches, trying to generate annotated datasets either
from domain translation of simulation images [SMZ21], or from purposely collected
data, like green-screen recordings [GPHFD+21]. While promising, the performance and
applicability of these methods is still limited by factors such as the quality of translation
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and the need for ad-hoc setups to collect synthetic data.
Beyond data-synthesis, weak prior knowledge has been largely used in early works

for tool segmentation [WAH97, DGDM05, VLC06], but commonly overlooked after the
deep learning breakthrough in the field. Only recently, [LWJ+20a] tried to formalize
general assumptions on instrument color distribution and positioning to train a deep
learning model for the task of binary segmentation. However, the chosen sources of
prior knowledge still require domain-specific tuning, leading to sub-optimal results
compared to fully-supervised solutions. The work presented in Chapter 3 (FUN-SIS)
explores the injection of a more general and robust prior knowledge of instruments’
shape and motions. This knowledge is easier to formalize and is applicable to different
surgical domains with no domain-specific tuning.

Complementary information about surgical tools, like binary tool presence,
has been extensively explored for tool localisation via bounding-box detection
[VMMP18, NMMP19]. However, the standard use of class-activation maps, limits
the localisation to discriminative parts of the tools, missing out significant parts of
the instruments like the shafts. Therefore a clear way to apply such knowledge for
the segmentation tasks is still missing in literature. The work presented in Chapter 4
(PAF-IS) tackles the problem of instance segmentation, relying on binary tool presence
information.

When available, parametrized 3D models can provide a strong prior knowledge
about tools, useful to solve both the tool segmentation and 3D pose estimation tasks. In
addition, such models allow to integrate recorded robot kinematics into the problem,
a rich source of complementary knowledge. However, such information is often noisy,
making it necessary to integrate manual annotations to solve the tasks [DZK+22]. In
Chapter 5 we propose a framework (KI-BOT) allowing to perform vision-based 3D
pose estimation, purely relying on the recorded kinematic data for training. Differently
from existing solutions [DZK+22, AOH+18], this framework is used to perform offline
training of a deep learning model which directly regresses kinematic joint values from
endoscopic images. This significantly speeds up inference, as our solution does not
require optimization at inference time, and removes the need to access robot kinematics
inside the operating room.

Table 2.1 summarizes all the approaches using prior and complementary knowledge
presented in Section 2.3, and our proposed contributions. Overall, such contributions
aim at advancing the state-of-the-art along two separate directions:

• by showing that prior and complementary knowledge about surgical instruments
can completely replace manual annotations to train deep learning models for the
tasks of binary instrument segmentation and 3D pose estimation;

• by showing ways to apply such knowledge to the task of instance segmentation, for
which alternatives to full-supervision are still missing in literature.
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3.1 Introduction

This Chapter explores the use of weak prior knowledge on instrument motion and shape
to tackle the binary tool segmentation problem. The value of this Chapter for this thesis
is twofold: first of all, it shows the feasibility and the effectiveness of training a deep
learning model on unlabelled data, relying only on weak prior knowledge information;
secondly, it enables the development of our second contribution, which relies on binary
segmentation information to solve the semantically richer task of instance segmentation,
with minimal additional information (Chapter 4).

3.1.1 Objective & Contributions

In this Chapter, we present FUN-SIS, a Fully-UNsupervised approach for binary Surgical
Instrument Segmentation (Figure 3.1). The proposed solution allows to effectively train
a binary surgical tool segmentation model on completely unlabelled endoscopic videos,
solely relying on implicit motion information, in the form of optical flow, and a limited
set of instrument shape-priors. We define shape-priors as binary segmentation masks of
surgical tools, unpaired with the video frames and not necessarily coming from the same
dataset or even surgical domain. Shape-priors can be obtained in convenient and various
ways, such as projecting 3D virtual/CAD model of surgical instruments on the image-
space, automatically segmenting green-screen recordings, or using existing annotations
from existing datasets. The method is designed to extract very general knowledge from a
minimal amount of such shape-priors, and therefore it does not require exact templates
for the tools present in the unlabelled video data.
Overall, the method trains a segmentation model on pseudo-label masks generated from
optical flow images; such a supervision signal, often noisy, is refined by exploiting its pe-
culiar noise properties, stabilizing the training of the segmentation model and boosting
its performance.
In order to achieve this, we make the following contributions:

• we propose a new generative-adversarial approach for surgical tool segmentation
of optical flow images, based on simultaneous generation and segmentation of
optical flow images from the shape-priors. Compared to common video object seg-
mentation approaches, we relax the commonly adopted hypothesis of uncorrelated
background-foreground motion, generally not verified in the surgical domain, let-
ting the generative-adversarial training process adapt to the domain characteris-
tics. This leads to state-of-the-art results both on surgical and general Video Object
Segmentation datasets;
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• we extensively investigate the noise properties of the segmentation masks gener-
ated using the proposed optical flow segmentation approach (pseudo-labels), and
their impact on neural network training. We identify and thoroughly analyze two
notable properties, namely unpredictability and polarization, and show that they
can be exploited to largely improve segmentation results;

• we propose a novel learning-from-noisy-labels strategy, based on an extended
teacher-student approach, allowing to train a student model only on probably well-
labelled regions of the noisy pseudo-labels. Differently from existing approaches,
usually requiring a teacher model trained on clean labels, we carry out an efficient
region selection in a fully-unsupervised way, exploiting the aforementioned noise
properties. The proposed approach leads to high-quality binary segmentation
results on several surgical datasets, including the popular EndoVis 2017 Instrument
Segmentation dataset, while being trained on completely unlabelled videos.

Figure 3.1: Chapter contribution from the input-output point-of-view. The proposed FUN-SIS
approach allows to train a model for surgical tool segmentation requiring as inputs only unlabelled
video-clips and tool shape-priors, obtainable in various convenient ways (e.g. by recycling existing
annotations from other datasets). The method is based on a novel approach for unsupervised
surgical tool segmentation of optical flow images, generating pseudo-label masks, and a newly
designed learning-from-noisy-labels strategy, allowing to extract a clean supervision signal to train
a single-frame binary segmentation model.

3.1.2 Learning from Motion and Noisy Labels

As discussed above, the proposed solution is tightly related to the topics of video ob-
ject segmentation, for pseudo-label generation, and learning-from-noisy-labels, to ef-
fectively learn from such pseudo-labels. An overview of these topics is now presented.

3.1.2.1 Video Object Segmentation

Motion information is used by the human visual system for perceptual grouping, the
process of organizing the visual information in order to efficiently perceive and interact
with the world. In the general object segmentation context, as well as for surgical tool
segmentation, motion can be a very discriminative cue, easy to obtain from unlabelled
videos by means of readily available optical flow estimators like RAFT [TD20]. Given the
relevance of motion, the computer vision community has been constantly exploring the
task of Video Object Segmentation (VOS). The two standard approaches to it are semi-
supervised VOS and unsupervised VOS. Semi-supervised VOS aims at tracking a target,
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specified in the first frame of a video sequence in the form of a segmentation mask, across
the following frames. In the surgical context, such an approach is not applicable, as
the repeated changes of instruments during a procedure, and their motion in and out
of the field of view, would require a continuous re-identification of the objects to be
tracked. Unsupervised VOS, instead, aims at separating a salient foreground object from
the background, based on motion information. It is worth noticing that, despite its name,
unsupervised VOS has often been tackled in literature by means of fully-supervised train-
ing (e.g. [MAO+20]): the unsupervised attribute indicates, instead, that this family of
methods does not need an initial mask of the object, as opposed to semi-supervised VOS.
Unsupervised VOS approaches not requiring a ground truth supervision signal to train,
commonly rely on the strong assumption of incoherent background motion, uncorre-
lated with foreground motion [WSYP17, YLSS19a, YLL+21]. This hypothesis is commonly
not applicable to surgical scenes: foreground (tools) and background (anatomical struc-
tures) strongly interact with each other, resulting in correlated motion of the two and
coherent motion of the anatomical structures (Figure 3.2).

In this work we propose a novel unsupervised approach for optical flow tool segmen-
tation, not requiring ground truth annotations of the training data. In order to tackle the
above-mentioned challenges, we relax the hypothesis of incoherent background motion,
letting a generative-adversarial training process adapt to the domain characteristics.

Figure 3.2: Frames and corresponding optical flow images from DAVIS dataset [PPTM+16] (left) and
EndoVis 2017 dataset [ASK+19] (right). Note how, in surgical images, background motion is often
coherent and correlated with foreground motion.

3.1.2.2 Learning-from-noisy-labels

Effectively learning from noisy labels is becoming an essential need of deep learning ap-
plications. In order to gather the massive amounts of annotations required to train deep
learning models, researchers have recently been looking for alternatives to standard in-
house annotation, such as crowd-sourcing [YDDM18] or automatic-labelling [GZH+16].
However, while dramatically cutting down the cost of annotations, these approaches tend
to provide noisy labels. In order to tackle the learning-from-noisy-labels problem, several
approaches have been proposed in literature, such as noise adaptation layers [CG15],
robust loss designs [ZS18, WMC+19] and different strategies aimed at automatically se-
lecting well-labelled samples [JZL+18, HYY+18]. While well theoretically motivated, the
effectiveness of the above-mentioned methods has been mainly proven for the classifi-
cation task in less challenging datasets compared to the surgical ones, such as artificially
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modified versions of benchmark datasets like CIFAR [LeC98], and, less frequently, in real-
world datasets with modest amount of noise like WebVision [LWL+17] and Clothing 1M
[XXY+15].
Segmentation differs from standard classification because individual semantic labels are
not independent, as they come grouped in images. This creates the need to rethink
standard methods such as sample-selection, since discarding full samples may represent
a waste of useful information, if the noise is localised in certain image regions only. Con-
fidence map estimators proposed to tackle this challenge, commonly rely on small sets
of annotated data [YWL+19, NGWS18].
In this work, we tackle the problem of learning binary surgical tool segmentation from
noisy pseudo-labels obtained from unsupervised segmentation of optical flow images.
Differently from the above-mentioned works, our method does not require any set of
clean labels in order to perform well-labelled pixel selection from the noisy pseudo-label
masks. Instead, it leverages their peculiar properties, and the favorable behaviour of
neural networks when dealing with such type of noise.

Figure 3.3: General overview of proposed FUN-SIS training architecture. Step I: training of the
optical flow segmentation network (Teacher, T), as part of a generative-adversarial architecture
mapping shape-priors into synthetic optical flow images and vice-versa. Step II: Proxy seg-
mentation model training, directly supervised by the pseudo-labels obtained from optical flow
segmentation by the Teacher model. Step III: Student segmentation model training on the refined
supervision signal obtained by the combination of Proxy predictions and pseudo-labels. Main
training losses (L) are also shown.

3.2 Methodology

The FUN-SIS approach (Figure 3.3) is a 3-step method that carries out unsupervised sur-
gical tool segmentation of optical flow images (step I) and subsequently trains a single-
frame binary segmentation model on the noisy pseudo-labels generated at step I using a
learning-from-noisy-labels strategy to refine the supervision signal (steps II and III). The
3 steps are introduced below and detailed in the next sections:

I) generative-adversarial training of the optical flow tool segmentation model (called
Teacher), carried out by simultaneously learning to generate and segment synthetic
optical flow images from tool shape-priors (Section 3.2.1, Figure 3.3-I);
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II) training of a model (called Proxy) for tool segmentation of individual frames, using,
as direct supervision, the noisy pseudo-labels generated by the Teacher model via
optical flow segmentation; the effectiveness of this step is guaranteed by a prop-
erty of the noise affecting the pseudo-labels, called unpredictability (Section 3.2.2,
Figure 3.3-II);

III) training of a model (called Student) for tool segmentation of individual frames,
using, as supervision, only probably well-labelled regions of the pseudo-labels, se-
lected according to the local agreement between the Teacher and Proxy models; the
effectiveness of this step is guaranteed by another property of the noise affecting
the pseudo-labels, called polarization (Section 3.2.3, Figure 3.3-III).

3.2.1 Step 1: Unsupervised Motion Segmentation

Figure 3.4: Overview Step I of FUN-SIS: generative-adversarial training of optical flow segmen-
tation model SOF (Teacher), generator (G) and discriminator (D); generated (mOF ) and real
(EOF (It , It+1)) optical flow images undergo augmentation via random rotation θ f . A noise vector n
is concatenated to the shape-prior m to allow one-to-many mapping. Loss boxes (L) are color coded
to show which models are responsible for their minimization during training.

The proposed approach for unsupervised optical flow-segmentation is based on a
generative-adversarial approach, constrained by a cycle-consistency loss. This approach
allows to learn the mapping between the domain of optical flow images and the domain
of shape-priors, consisting of realistic binary segmentation masks of the target object
(in this case surgical tools), without requiring pairwise matching between the two
domains. The method is inspired by the classic cycle-GAN architecture [ZPIE17], a
popular generative architecture for image-to-image translation from unpaired domains.
However, it is known that mapping between a domain of minimal complexity, as
the binary shape-priors, lacking strong discriminative features, and a more complex
one, such as the optical flow, is an ill-posed problem, suffering from issues such as
information-hiding (‘steganography’ [CZS17]) and overpowering discriminator, possibly
hindering the whole training process.
In order to deal with this complexity-imbalance, we propose the following modifications
to the standard cycle-GAN:
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• we use a single cycle-consistency loss (only for shape-priors domain), in order
to avoid reconstructing a high-complexity domain sample from a synthetic
low-complexity domain sample, preventing ‘steganography’;

• we concatenate the shape-priors domain samples with a random noise vector be-
fore feeding them to the generator. This allows the generator to produce different
synthetic optical flow images from the same shape-priors mask, disentangling the
tool silhouette from its motion;

• we make intensive use of on-the-fly image augmentation.

The architecture for the proposed optical flow segmenter is displayed in Figure 3.3-I, and
discussed below.
Let us consider two consecutive frames belonging to a video, It , It+1 (original frames
augmented by an augmentation protocol Aug mDat a, consisting of random cropping
and flipping), an optical flow estimator EOF : {It , It+1} → yOF

t , where yOF
t is the optical

flow image in the form of [u, v] pixel displacement, an optical flow generator model G ,
an optical flow segmentation model SOF (also referred to as Teacher model, due to its
role in steps II and III), a shape-priors binary mask m and a discriminator model D .
The generator G takes as input the shape-priors mask m, augmented on-the-fly by an
augmentation protocol Aug mM ask, consisting of random cropping and flipping, and
concatenated with a noise vector n, sampled from a normal distribution of mean µ and
standard-deviation σ, and resized to the input mask resolution, and outputs a synthetic
optical flow image mOF , also in the form of [u, v] pixel displacement. Both the real and
synthetic optical flow images, yOF

t and mOF , undergo on-the-fly augmentation, based on
augmentation protocol Aug mF l ow , and following normalization operations:

• AugmFlow: the optical flow is multiplied by a random rotation matrix in the form:

R =
[

cosθ f low −sinθ f low

sinθ f low cosθ f low

]
, (3.1)

where θ f low is randomly picked from a uniform distribution. This operation, per-
formed on-the-fly, increases the variability of the optical flow, and releases the
generator from the burden to generate every possible flow direction;

• normalization: each optical flow image is normalized by dividing it by the maxi-
mum pixel displacement

p
u2 + v2 in it. This operation keeps the generated optical

flow image in a controlled range (where maximum displacement has norm equal
to 1).

The synthetic optical flow image mOF is then fed to the optical flow segmentation
model SOF , which outputs the cycled shape-priors mask m̂. The real and synthetic optical
flows yOF

t and mOF (both augmented and normalized) are fed to the discriminator D ,
which is trained to distinguish among the two. Cycle-consistency is ensured by requiring
the cycled-mask m̂ to match the input mask m by means of a standard cross-entropy loss:

Lc ycle =−m log(m̂)− (1−m) log(1−m̂). (3.2)
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Discriminator’s outputs are used to enforce realistic appearance of mOF by training
the discriminator D and the optical flow generator G in an adversarial way. Specifically,
the adversarial loss functions are defined as:

LG
ad v =− log(D(mOF )), (3.3)

LD
ad v =− log(1−D(mOF ))− log(D(yOF

t )). (3.4)

The full architecture is trained end-to-end. The discriminator D is trained to mini-
mize LD

ad v , the optical flow segmenter SOF is trained to minimize Lc ycle , the optical flow
generator G is trained to minimize the sum of LG

ad v and Lc ycle :

LG = LG
ad v +Lc ycle . (3.5)

3.2.2 Step 2: The Proxy Segmentation Network

The optical flow segmentation by SOF (Teacher model) is used to generate pseudo-labels
for the unlabelled frames: each frame It is paired with the Teacher-generated pseudo-
label mask yT

t = SOF (yOF
t ), which is used as direct supervision to train a neural network

(Proxy model) to perform tool segmentation of individual frames (Figure 3.3-II).

Figure 3.5: Overview of Step II of FUN-SIS: Proxy segmentation model training, directly supervised
by the pseudo-labels yT

t , obtained from optical flow segmentation by the Teacher model. Loss boxes
(L) are color-coded to show which models are responsible for their minimization during training.

The proposed approach to leverage the noisy pseudo-labels relies on findings from
[AJB+17], which show that, while neural networks are in principle capable of memoriz-
ing noisy samples, they tend to first take advantage of shared patterns across training
examples, given their finite capacity. In a parallel study, [RVBS17] empirically confirmed,
in the classification task, that neural networks can generalize well even when trained on
massively noisy data, rather than just memorizing noise, assuming that the label noise is
not conditioned by the corresponding input image itself. We define this condition as the
unpredictability property.
The noise affecting the pseudo-labels yT

t can be divided into two additive processes: the
optical flow estimation noise and the optical flow segmentation noise. In both cases, the
property of unpredictability of noise affecting the pseudo-label yT

t , from the single frame
It , holds:

• the possible absence of tool motion or presence of background coherent motion in
the optical flow image yOF

t = EOF (It , It+1), potential sources of yT
t noise, cannot be
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predicted from the individual frame It only, but requires an additional frame (It+1)
to be predicted;

• the optical flow segmentation used to generate the pseudo-labels (yT
t = SOF (yOF

t )),
a second possible source of noise due to the inevitable sub-optimality of SOF

model, does not involve the use of the frame It , contrarily to standard VOS
approaches, where both frame and optical flow are used to make a prediction (e.g.
[YLSS19a]).

Given the unpredictability property, we can train a neural network (Proxy model)
to perform single-frame tool segmentation, using the noisy pseudo-labels yT

t directly
as supervision signal. The Proxy network takes as input the frame It and outputs the
segmentation mask yP

t . The network is trained to minimize the loss LP , which is the
sum of the binary cross-entropy loss LP

C E and the log Intersection-over-Union loss LP
I oU ,

weighted by a factor αP :

LP
C E =−yT

t log(yP
t )− (1− yT

t ) log(1− yP
t ), (3.6)

LP
I oU =− log

∑
(yP

t yT
t )∑

(yP
t + yT

t − yP
t yT

t )
, (3.7)

LP =αP LP
I oU + (1−αP )LP

C E . (3.8)

During training, the Proxy network, unable to learn the noisy pattern from the
pseudo-labels, tries to fit them with the easiest compatible pattern, experimentally
shown to be the separation of tools from anatomy. In order to encourage this effect,
we suggest the advantage of using a relatively small-capacity network compared to
deeper ones. In fact, in principle, a neural network of infinite capacity would be able
to memorize each training sample as a look-up table. The use of a small-capacity
network forces the model to find a common pattern to fit the data, reducing the chances
memorize the noisy labels. We experimentally investigate this aspect in our ablation
studies, reported in Section 3.5.2. However, as the training progresses and the pattern
is learnt, the loss does not get further minimized, and gradient descent updates remain
high. This prevents convergence to an optimal solution, which mainly affects Proxy
segmentation accuracy on hard-to-classify pixels, such as the boundary ones. This
shortcoming is addressed and mitigated at step III below.

3.2.3 Step 3: Refining Noisy Labels

Together with the unpredictability property, a second peculiar property of the noise
affecting the pseudo-labels yT

t derives from the fact that individual tools, moving
coherently, tend to have a uniform appearance in the optical flow image; this implies
that, under ideal conditions (optimal optical flow estimator EOF , optimal optical flow
tool segmenter SOF ), each individual tool will be either perfectly segmented (if moving)
or completely mislabelled (if not moving). We define the resulting noise feature as
polarization property, as a tool can ideally only be perfectly segmented or completely
mislabelled by optical flow segmentation. In the real case, this property still holds,
although occlusions and sub-optimal optical flow estimation/segmentation tend to
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Figure 3.6: Overview of Step III of FUN-SIS: Student segmentation model training, leveraging local
Intersection-over-Union (I oU loc

(w,h)) between Teacher and Proxy predictions to select well-labelled

regions of yT
t . L̃ is a pixel-wise loss (e.g. cross-entropy), masked by the pixel-wise multiplication (∗)

with the binarized local IoU. Loss boxes (L) are color-coded to show which models are responsible
for their minimization during training.

inevitably reduce the intensity of the polarization (i.e. there will possibly be partially
segmented tools). As a practical corollary, the polarization property suggests that inside
a pseudo-label yT

t , there will be either almost-perfectly labelled or almost-completely
wrongly-labelled regions. This polarization property will be thoroughly investigated in
the experiments from Section 3.5.6.
In order to improve training robustness and consistency, we exploit the polarization
property by designing an unsupervised method to select well-labelled regions of
the pseudo-labels yT

t (Figure 3.3-III). The criterion adopted for this selection is the
agreement between Proxy network predictions yP

t (binarized using a threshold value ϵP ),
and pseudo-labels yT

t (binarized using a threshold value ϵT ). The underlying idea is that
the Proxy network learns a robust general representation (the easiest pattern). While its
predictions can be incorrect at small-scale (e.g. on border pixels), they are overall reliable
at greater scale (i.e. tools are not completely mislabelled as possibly happening in the
pseudo-labels). In order to leverage this observation, we introduce a local version of the
Intersection-over-Union (IoU) metric, called local IoU (I oU loc

(w,h)). In order to compute

I oU l oc
(w,h) between two masks, a window of size w ×h is slid across the masks, using a

stride equal to the window size, and IoU is computed inside each time. The output
is an image with the same resolution as the input masks, whose value at each pixel is
the IoU computed for the region containing the pixel (Figure 3.7). Due to the way it is
constructed, it holds that:

1

W ·H

∑
I oU l oc

(W,H) = I oU , (3.9)

1

W ·H

∑
I oU loc

(1,1) = PA, (3.10)
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Figure 3.7: Local IoU I oU loc
(w,h) is computed by sliding a window of size w ×h on the two input

masks, computing standard IoU at each corresponding location. The output is a single-channel
image, having the same resolution as the input masks, with each pixel’s value being set to the one
of the IoU computed for the region it belongs to.

where W ×H is the size of the input masks, PA is the pixel accuracy metric and the sum-
mation is performed over pixels. This makes local IoU a metric that interpolates between
standard IoU and pixel accuracy, by varying the window size parameter. Local IoU is
computed between pseudo-label yT

t and Proxy prediction yP
t , and then binarized using a

threshold parameter ϵI oU . ϵI oU represents the minimum agreement between Proxy and
Teacher required for a region of yT

t to be regarded as well-labelled. The binarized local

IoU, I oU
l oc
(w,h) = bi n(I oU loc

(w,h),ϵI oU ) is used to prevent the loss propagation through the

probably wrongly-labelled regions of the pseudo-labels yT
t , during the training of the

Student network. In particular, the Student network takes as input the frame It and
outputs the segmentation mask yS

t . The network is trained to minimize the loss LS , which
is the weighted sum of binary cross-entropy loss LS

C E and log Intersection-over-Union

loss LS
I oU , masked by multiplying each pixel-wise loss by I oU

loc
(w,h):

LS
C E = 1∑

I oU
l oc
(w,h)

I oU
l oc
(w,h)(−yT

t log(yS
t )− (1− yT

t ) log(1− yS
t )), (3.11)

LS
I oU =− 1∑

I oU
loc
(w,h)

log

∑
(yS

t yT
t I oU

loc
(w,h))∑

(yS
t + yT

t − yS
t yT

t )I oU
loc
(w,h)

, (3.12)

LS =αSLS
I oU + (1−αS)LS

C E . (3.13)

Multiplying the pixel-wise segmentation losses by I oU
l oc
(w,h) allows to prevent Student

network training on both potential false-positive regions (background regions incorrectly
segmented by the Teacher network) and false-negative regions (tools incorrectly consid-
ered as background by the Teacher).

3.2.4 Training Strategy

As presented in Section 3.2 and shown in Figure 3.3, the proposed approach involves a
3-step training, where the Teacher, Proxy and Student models are trained successively.
However, relying on the hypothesis that a neural network will not be able to memorize
noisy labels, discussed in Section 3.2.2, we suggest that the Proxy network can be trained
on the pseudo-labels produced by Teacher network while the Teacher network is being
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trained. This allows the training to be a more compact, 2-step process, with steps I and II
carried out simultaneously. Comparison between 3-step and 2-step training is reported
in Section 3.4.2.

3.3 Experimental Set-up

3.3.1 Datasets

In order to validate the proposed contributions, extensive experiments were carried
out, both on surgical and general object segmentation datasets. All the data used in
our experiments are now presented and categorized as Video and Shape-priors. Details
about their use in the experiments are also reported.

Video data:

• EndoVis2017 [ASK+19]: dataset from the 2017 MICCAI EndoVis Robotic
Instrument Segmentation Challenge. The dataset contains 10 video clips of
abdominal porcine procedures, performed using da Vinci Xi systems. Each video
contains a total of 300 high-resolution frames (1280 × 1024), recorded at 2 Hz. In the
challenge, 8x 225 frames were used for training, while the remaining 8x 75 frames
and another 2x 300 frames were held out by the organizers for testing. According
to the challenge rules, man-made tools not belonging to the da Vinci system (e.g.
drop-in Ultra-Sound probe), labelled by the organizers as part of a class called
Other, are to be included in the background class for the binary segmentation
task. This introduces the need for a model to perform a semantic differentiation
inside the instrument class (da Vinci instruments and Other instruments), which
goes beyond the scope of motion-based segmenters. For this reason, we refer to
the dataset labelled according to the challenge rules as EndoVis2017Challenge,
and also consider a second version of it, called EndoVis2017VOS, where both da
Vinci and other man-made tools are labelled as instrument. Manually annotated
masks for these tools are present in the original challenge dataset as part of the
set of semantic segmentation annotations, and were combined with the available
binary segmentation masks. For the main experiments, we report results on
both EndoVis2017Challenge and EndoVis2017VOS. We provide results on this
dataset according to 2 modalities: 1) following the same evaluation protocol as
[SRKI18a], by performing 4-fold cross-validation on the 8x 225 released training
data (regrouped in 4 splits), and reporting the average metric on the 4 splits, for a
direct and fair comparison with other state-of-the-art approaches; 2) by training
on RandSurg, a dataset of unlabelled data, described below, and testing on the 8x
225 EndoVis2017VOS frames.

• RandSurg: this dataset consists of 4 full unlabelled laparoscopic robotic-assisted
procedures downloaded from a public repository [Wor]: adhesiolysis (1036 frames),
inguinal hernia repair (1075 frames), appendectomy (500 frames) and ex-vivo su-
turing demo (525 frames). A set of experiments was carried out by training our
model on this dataset and evaluating the performance on EndoVis2017VOS; in or-
der to simulate a realistic application of the FUN-SIS method, and show its ease-
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of-use, the videos underwent minimal pre-processing (cropping, no trimming, so
possibly including out-of-body scenes).

• STRAS: this dataset is obtained from endoscopic submucosal dissection proce-
dures performed through the STRAS robotic system [DDZZ+13], a robotic system
consisting of a robotized endoscope, having two lateral channels for flexible robotic
tools. The dataset was built from a 5 day-experiment on porcine models1 [ZNZ+17],
recorded at 30 fps. Each frame was paired with another 1 second apart in the
future, for optical flow computation. The whole dataset was resampled regularly,
yielding a total of 5644 frames (∼1100 per experiment day). For each day, 200
frames, regularly spaced, were manually annotated for evaluation (1000 annotated
samples in total). The dataset contains challenging sequences, involving bleeding,
smoke, strong tool-tissue interaction and image blurring. We provide results on
this dataset by performing 5-fold cross-validation (each fold corresponding to an
experiment day), and reporting the average metric on the 5 splits.

• Cholec80 [TSM+16]: dataset containing 80 unlabelled videos of manual laparo-
scopic cholecystectomy procedures captured at 25 Hz and resampled at 1 Hz. We
provide qualitative results on this dataset by using the standard split (40 videos for
training, 40 videos for testing) to show cross-surgery applicability of the proposed
FUN-SIS method.

• DAVIS2016 [PPTM+16]: a popular VOS dataset, containing different moving ob-
jects (e.g. animals, people, cars). The dataset consists of 50 clips for a total of
3455 1080p frames with pixel-wise annotations. We provide results on this dataset
in order to evaluate the proposed optical flow segmentation approach on non-
surgical videos. To this aim, the standard training-test split was used (30 videos
for training and 20 for testing), for a fair comparison with state-of-the-art VOS
approaches.

Shape-priors:

• RoboTool: 514 manually segmented tool masks, from the RoboTool dataset, re-
leased by [GPHFD+21]. Examples of the original frames and manually segmented
tools can be seen in Figure 3.8, bottom. Original masks were cropped to remove the
lateral black bands, and resized to 256×256 regardless of their original aspect ratio.

• GrScreenTool: automatically segmented tools from recordings in front of a green-
screen. A total number of 1100 masks were downloaded from the publicly released
dataset by [GPHFD+21], mostly having a single tool. Random couples of masks
were then selected and merged together, in order to avoid having single-tool masks.
Following this strategy, a total number 2200 masks were obtained. Examples of the
original green-screen images and extracted tools can be seen in Figure 3.8, top.

• STRASMasks: 2000 projections of approximate 3D virtual/CAD model of the two
STRAS tools, used as shape-priors in the STRAS experiments; details regarding the
projection operation can be found in [SRDM+21].

1The study protocol for this experiment was approved by the Institutional Ethical Committee on Animal
Experimentation (ICOMETH No.38.2011.01.018). Animals were managed in accordance with French laws
for animal use and care as well as with the European Community Council directive no. 2010/63/EU
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Figure 3.8: Examples of shape-priors used for the EndoVis2017 experiments, and corresponding
source image. Top: tools recorded in front of the green-screen and automatically segmented
[GPHFD+21], called GrScreenTool; Bottom: frames from multiple robotic-assisted laparoscopic
surgeries, manually segmented as part of the RoboTool dataset [GPHFD+21]. Frames (and also
masks) in this dataset come with various resolution/aspect ratios. Note how the appearance of the
two domains is different: this is mainly due to the fact that GrScreenTool dataset, recorded using
an external camera, show a different point of view on the instruments with respect to the standard
surgical camera.

• SegTrackV2 [LKH+13]: 976 manual annotations from the generic VOS dataset Seg-
TrackV2. The dataset includes different segmented objects (e.g. animals, cars,
people), used as shape-priors in the DAVIS2016 experiments.

• FBMS59 [OMB13]: 720 manual annotations from the generic VOS dataset FBMS59.
The dataset includes different segmented objects (e.g. animals, cars, people), used
as shape-priors in the DAVIS2016 experiments.

3.3.2 Artificially Corrupted Datasets

In order to gain a full understanding of the impact of the noise properties presented in
Section 3.2.2 and 3.2.3 on the proposed learning-from-noisy-labels approach, we also
perform experiments on the EndoVis2017VOS dataset under controlled noise conditions.
For these experiments we substitute, in our training pipeline, the pseudo-labels yT

t gen-
erated by the Teacher network, with artificially corrupted versions of the clean labels. To
this aim, we consider three types of label corruption, described below:

• Systematic-Erosion: each ground truth mask is eroded;

• Erosion & Dilation: each ground truth mask is randomly eroded or dilated;

• Tool-Drop: full tool annotations are randomly dropped (i.e. each tool is either
perfectly-annotated or not-annotated at all).

For each noise type we apply the corresponding transformation, modulating its in-
tensity in order to obtain 4 datasets, {D80, D60, D40, D20}, each one having a mean
IoU between the corrupted labels and the ground truth of ∼80%, ∼60%, ∼40%, ∼20%,
respectively (e.g. greater erosion is applied to generate D20 compared to D40, in the
Systematic-Erosion experiment). Examples of the datasets are shown in Figure 3.9. We
use this dataset as part of the ablation study detailed in Section 3.5.6.
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Figure 3.9: Samples from the artificially-corrupted versions of EndoVis2017 dataset. From top to
bottom: Systematic Erosion, Erosion & Dilation, Tool-Drop. For each noise source, a sample from
D80 (∼80% mean IoU between training sample labels and original ones), D60 (∼60% mean IoU),
D40 (∼40% mean IoU), D20 (∼20% mean IoU) is shown.

3.3.3 Design Choices & Training Details

All models are implemented as neural networks. Neural network architectures
and hyper-parameters were determined from preliminary experiments on external
data (phantom dataset from [SRDM+21]), and can be found in [SRDM+23]. All the
segmentation models have a U-Net-like architecture. The Proxy and Student networks
have slightly different architectures, with the Proxy having a 11-convolutional-layer
encoder (which we refer to as Unet11) and the Student a 16-convolutional-layer
(Unet16). Optical flow estimation was carried out using RAFT [TD20], a state-of-the-art
approach, trained on the publicly available non-surgical dataset FlyingThings [MIH+16].
Training and evaluation were all carried out on 256×256 resized versions of the images,
regardless of their original resolution/aspect ratio, due to memory constraints. The size
of the noise vector n was set to 32, and investigated in Section 3.5.1. Each value of n
was drawn from a normal distribution of mean µ equal to 0 and standard-deviation σ

equal to 1. The I oU loc
(w,h) window size w ×h was set to 64× 64 (1/4 of the image size);

the threshold ϵI oU was set to 0.5. An in-depth study regarding w and ϵI oU was carried
out and reported in Section 3.5.4. The loss balancing factors αP , αS from Equations
3.8&3.13 were set to 0.8, and investigated in Section 3.5.3. Augmentations Aug mM ask
and Aug mDat a were implemented by applying random left-right, up-down flipping
and random cropping, with minimal cropped region size equal to 224 × 224, then
bilinearly resampled to 256× 256. The angle θ f low for the flow rotation in Aug mF l ow
was randomly picked in the range [−π,π]. All augmentations were applied on-the-fly.
Training was carried out using a single NVIDIA Tesla V100 GPU (32 GB).

3.4 Experiments and Results Analysis

In this section we present experimental results and comparisons with state-of-the-art
methods. First, we analyze the effectiveness of the proposed optical flow segmentation
approach, both on surgical and general object-segmentation datasets. We then analyze
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Annot. [%] EndoVis2017 DAVIS2016
BaselineFS 100 60.47±27.03 73.58±22.31

CIS [YLSS19a] 0* 24.15±21.63 60.89 (71.5)
TeacherRoboTool(ours) 0 40.08±26.70 /
TeacherGrScreenTool(ours) 0 40.47±25.62 /
TeacherFBMS(ours) 0 / 62.72±19.23
TeacherSegTrackV2(ours) 0 / 63.40±19.35

Table 3.1: Optical flow segmentation. Comparison of the proposed method (Teacher), using
different shape-priors for training (RoboTool, GrScreenTool for EndoVis2017VOS experiments;
FBMS, SegTrackV2 for DAVIS2016 experiments), with the state-of-the-art CIS approach (without
and with post-processing, in parenthesis, taken from [YLL+21]) and a fully-supervised baseline
(BaselineFS). Mean IoU [%] and standard deviation are reported. The percentage of annotated
training samples required by each method is also reported (Annot. [%]). Note that CIS (*) uses
frames and optical flow to make predictions, while our approach only uses optical flow.

the results of surgical tool segmentation of individual frames. In order to evaluate model
performance, mean Intersection-over-Union (IoU) between predictions and manually
annotated ground truth (GT) is used.

3.4.1 Optical-Flow Segmentation

Optical flow segmentation by the Teacher network was evaluated on EndoVis2017VOS
and DAVIS2016, and compared with a state-of-the-art deep learning approach for
unsupervised Video Object Segmentation, called Contextual Information Separation
(CIS, [YLSS19a]), adopting the same evaluation protocol on DAVIS2016 and providing
freely available code to train it and test it in the surgical scenario. We report the CIS
results both with and without post-processing, for fair comparison with our approach
which does not make use of it, using the trained network parameters provided by the
authors for DAVIS2016 experiments. Despite being trained using the PWC-net optical
flow estimator [SYLK18], we observed that the CIS model provided more accurate results
using RAFT-generated optical flow images: we thus reported results using the latter.
On EndoVis2017VOS, the CIS model was trained from scratch, using the RAFT optical
flow estimator: training was carried out using the code publicly released by the authors
[YLSS19b]. We trained our Teacher model using RoboTool and GrScreenTool shape-priors
for EndoVis2017VOS experiment, and SegTrackV2 and FBMS for DAVIS2016 experiment.
We also report results of a fully-supervised baseline (BaselineFS) model, having the same
architecture as the Teacher network, trained on GT labels.

Experimental results, presented in Table 3.1, show that the proposed approach out-
performs the state-of-the-art CIS approach (without post-processing) both in the surgi-
cal scenario (EndoVis2017VOS dataset) and in general object segmentation (DAVIS2016
dataset). The reason behind the significant improvement on EndoVis2017VOS (+16.32%
∆IoU) may reside in the independence of the proposed approach from strong a priori
hypothesis on surgical tool and background motion (e.g. of incoherent background mo-
tion). In fact, our method lets the generator and discriminator adapt to the complex-
ity of the optical flow domain, generating samples with possible cluttered background
and partial tool occlusion, while still enforcing correct segmentation through the cycle-
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Figure 3.10: Optical flow segmentation on EndoVis2017VOS. Qualitative results showing frame
couples used for optical flow computation, optical flow images after HSV standard conversion,
predictions from CIS [YLSS19a] and Teacher (trained using RoboTool shape-priors), and ground
truth (GT).

consistency loss. The only implicit constraint applied during training comes from the use
of the shape-priors, which guides the Teacher towards segmenting tool-shaped regions.
Since each optical flow image is normalized to have a maximum displacement of norm
equal to 1, absolute tool motion does not directly impact the segmentation result. As
a result, the Teacher model learns to segment tool-shaped regions characterized by a
coherent motion, relatively different from the surroundings. This includes all those cases
in which the tool is held still but the anatomic background moves due to physiological
movements and nearby tool-tissue interactions. Examples of challenging generated op-
tical flow images can be seen in Figure 3.16. Deeper insights on optical flow generation
will be provided by the ablation study in Section 3.5.1. As a result, the optical flow seg-
menter becomes more robust to cluttered scenes, where tissue, as well as tools, moves
coherently. As shown in the qualitative results from Figure 3.10, the proposed Teacher
model outperforms the CIS approach especially when tools interact with the anatomy
(e.g. pulling tissue, second row from bottom), allowing to drastically reduce the amount
of background regions wrongly segmented as tools.
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3.4.2 Single-frame Binary Tool segmentation

Single-frame binary tool segmentation was evaluated on the EndoVis2017Challenge, En-
doVis2017VOS and STRAS datasets, according to the modalities reported in Section 3.3.1,
using RoboTool and STRASMasks as shape-priors, respectively. For each experiment, we
report results for the following networks:

• Teacher network, producing the pseudo-labels yT
t from optical flow segmentation,

evaluated against GT masks;

• Proxy network, directly trained on the noisy pseudo-labels, producing segmenta-
tion masks yP

t from individual frames, evaluated against GT masks;

• Student network trained using local IoU masking, producing segmentation masks
yS

t from individual frames, evaluated against GT masks. The Student network is the
output model of the proposed FUN-SIS approach.

For the EndoVis2017Challenge and EndoVis2017VOS experiments we compare
the proposed approach with the unsupervised Anchor Generation and Semantic
Diffusion (AGSD) approach [LWJ+20a], based on handcrafted features, and with
the fully-supervised state-of-the-art approaches TernausNet-16 [SRKI18a] and
MF-TapNet [JCDH19a]. Results on EndoVis2017VOS for these approaches were
obtained by training the models using the code publicly released by the authors
[LWJ+20b, SRKI18b, JCDH19b]. Additionally, we compare our results with BaselineFS,
a model sharing the same architecture as the Student network (Unet16), but trained in
a fully-supervised way on the GT labels. We do not provide fully-supervised results on
the STRAS dataset, due to the lack of GT training labels. We also do not provide results
for the unsupervised AGSD approach, due to the fact that the handcrafted cues selected
by the authors are specifically tailored for the EndoVis dataset, yielding poor results on
the significantly different STRAS dataset. In addition to the standard IoU metric we also
evaluate our solution using a Boundary-IoU, providing a better understanding of model
behaviour on challenging boundary pixels.

Experimental results, reported in Table 3.2, show that the proposed approach enables
to effectively train the Student network in a fully-unsupervised way, reaching 83.77%
IoU on the EndoVis2017VOS dataset, 12.30% above the unsupervised AGSD approach
and only 5.22% below the fully-supervised baseline. As hypothesized, the noise affecting
the pseudo-labels generated by optical flow segmentation cannot be predicted from the
individual frames, thus cannot be learnt by the Proxy network, which learns instead the
easiest pattern compatible with the pseudo-labels, i.e. separating tools from anatomy.
This results in a significant improvement of the Proxy network’s predictions compared
to pseudo-labels used for its training (+34.70% ∆IoU on EndoVis2017VOS). On top of
this, the Student network significantly improves the segmentation quality, by training
only on the probably well-labelled regions of the pseudo-labels, selected by means of
the local IoU between pseudo-labels and Proxy predictions: the improvement of the
Student network, with respect to the Proxy network, amounts to +8.99% ∆IoU on En-
doVis2017VOS. Qualitative results presented in Figure 3.11 clearly show the dramatic
improvement of the Proxy network compared to the Teacher network, and the refining
effect of the Student network, producing accurate and sharp segmentation masks. In
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Annot. [%] EndoVis2017VOS EndoVis2017Challenge
TernausNet-16 100 (89.06±13.17) 83.60±15.83 (82.95±14.37)
MF-TAPNet 100* (89.61±13.22) 87.56±16.24 (85.81±15.94)
BaselineFS 100 88.99±11.34 82.55±14.51

AGSD 0 (71.47±16.68) 67.85 (65.30±19.34)
Teacher (ours) 0 40.08±26.70 37.03±25.83
Proxy (ours) 0 74.78±14.99 68.31±19.11
Student (ours) 0 83.77±12.28 76.25±18.61

Table 3.2: Surgical tool segmentation of individual frames. Comparison of the proposed un-
supervised method (trained using RoboTool shape-priors), with state-of-the-art unsupervised
AGSD [LWJ+20a] approach, fully-supervised approaches TernausNet-16 [SRKI18a] and MF-
TAPNet [JCDH19a], and fully-supervised baseline (BaselineFS) on the EndoVis2017VOS and En-
doVis2017Challenge datasets. Results in parenthesis for state-of-the-art approaches were obtained
by training the models using the code released by the authors. Mean IoU [%] and standard deviation
are reported. The percentage of annotated training samples required by each method is also
reported (Annot. [%]). Note that MF-TAPNet uses 2 consecutive frames at inference time to make a
prediction, while the other approaches use individual frames.

p-value (t-test) Cohen’s d
Proxy-Teacher p << 0.001 1.566
Student-Proxy p << 0.001 0.612
BaselineFS-Student p << 0.001 0.448

Table 3.3: Statistical analysis of tool segmentation results obtained in EndoVis2017VOS (Table
3.2). For each pair, t-test was run (p-values reported in first column) and Cohen’s d number was
computed.

order to assess the statistical significance of the results on the EndoVis2017VOS dataset,
pairwise t-tests were run (sample size N=1800) between Proxy & Teacher, Student & Proxy
and baselineFS & Student, all showing statistically significant differences (p << 0.001 for
all the three pairs). In addition, Cohen’s d number was computed for such pairs, in order
to quantify the strength of such statistically significant difference. Cohen’s d numbers
analysis, reported in Table 3.3, shows that the effect-size of such differences is very large
between Proxy & Teacher (d > 1.2, d = 1.566), medium/high between Student & Proxy
(0.5 < d < 0.8, d = 0.612) and medium/small between fully-supervised baseline & Student
(0.2 < d < 0.5, d = 0.448) (according to [Coh13, Saw09]). In order to better understand
the method’s limitations we also analyzed the obtained segmentation results using a
novel metric introduced in [CGD+21], called Boundary Intersection-over-Union (B-IoU).
Compared to standard IoU, the most commonly used metric to evaluate segmentation
results, B-IoU values only pixels close to the object boundaries, and is, as a result, more
sensitive to boundary quality especially in larger objects. B-IoU first identifies the set of
the input masks’ pixels (prediction and GT masks) that are within a threshold distance d
from each contour, and then computes the IoU of these two sets. Threshold d determines
the relative weight of the contour (a smaller d value weights the boundaries more). We
set it to 2% of the mask diagonal, as in [CGD+21]. Qualitative results breaking down
B-IoU computation and quantitative results comparing FUN-SIS with the unsupervised
AGSD method and the fully-supervised baseline are shown in Figure 3.12 and Table 3.4,
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Figure 3.11: Surgical tool segmentation on the EndoVis2017VOS dataset. Qualitative results
showing, from left to right, input frame It , optical flow image yOF

t using HSV standard conversion,
predictions from Teacher (using RoboTool shape-priors), Proxy, Student and fully-supervised
baseline (BaselineFS), and ground truth (GT).

respectively.

Annot. [%] B-IoU
BaselineFS 100 76.38±11.43

AGSD 0 50.11±14.48
Teacher (ours) 0 31.56±19.69
Proxy (ours) 0 55.73±15.32
Student (ours) 0 68.46±12.62

Table 3.4: Surgical tool segmentation of individual frames. Results of the proposed method on
the EndoVis2017VOS dataset using RoboTool shape-priors. Mean Boundary-IoU (B-IoU) [%] and
standard deviation are reported. The percentage of annotated training samples required by each
method is also reported (Annot. [%]).

B-IoU results follow the same trend as standard IoU results, but help highlight the gap
between Student and AGSD (+18.35%∆B-IoU) and between Student and fully-supervised
baseline (-7.92% ∆B-IoU). We believe that this gap is mainly due to the sub-optimality
of the optical flow estimation model to capture fine-scale details (Figure 3.13). Indeed,
while the Proxy network’s segmentation masks can be imprecise at object boundaries
due to the way the network is trained, they do not directly supervise the Student network
training: instead, they are used to select probably well-labelled regions of the pseudo-
labels, where the Student network gets actually trained. Therefore, the quality of the
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Figure 3.12: Surgical tool segmentation on the EndoVis2017VOS dataset: example of boundary
masks used for Boundary IoU computation. From left to right, input frame It , ground truth mask
(GT) and boundary version (B-GT), fully-supervised baseline mask (FS) and boundary version (B-
FS), Student mask (Student) and boundary version (B-Student). Boundary IoU is computed as a
standard IoU between B-GT and predicted boundary mask (e.g. B-Student).

pseudo-labels at fine scale directly impacts the Student’s performance. Potential im-
provements are discussed in Section 3.6.

As expected, the performance on the EndoVis2017Challenge dataset, where tools
such as the Ultra-Sound probe are considered as part of the background class, is lower
than the one on EndoVis2017VOS, while still outperforming the unsupervised AGSD
approach (+8.40% ∆IoU). This is due to the fact that our approach, despite not being
trained using specific shape-priors of these tools, is still able to generalize and segment
them together with the da Vinci ones. Examples of frames containing the drop-in
Ultra-Sound probe are shown in Figure 3.11, first and fourth row from the top. In order
for our approach to learn such semantic discrimination between the two instrument
classes, pure motion information may not be sufficient. The possible extension of
FUN-SIS to multi-class segmentation will be discussed in Section 3.6. We also analyze
the difference between the 2-step and 3-step training strategies described in Section
3.2.4. Results, shown in Figure 3.14, confirm that the two modalities provide comparable
results, as suggested in Section 3.2.4. We thus consider the 2-step approach superior, due
to the shorter training time required. Results obtained on the challenging STRAS dataset,
reported in Table 3.5, confirm the ability of the method to effectively learn surgical
tool segmentation in a fully-unsupervised way. The Student network, trained without
any domain-specific hyper-parameter tuning, reaches an IoU equal to 66.37%, despite
being trained on very low-quality pseudo-labels (29.93% IoU). As observable from
Figure 3.15, in fact, optical flow images appear less sharp compared to the EndoVis2017
ones, mainly due to image blurring and lower image resolution, influencing the overall
performance. The implications of the method’s dependency on optical flow quality will
be discussed in Section 3.6. Additional qualitative results for the Student network on the
EndoVis2017VOS and STRAS datasets are displayed in Figures 3.28&3.29 at the end of
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Figure 3.13: Optical flow estimation inaccuracy leading to missing details in the pseudo-labels
(Teacher network predictions) such as tool tips.

Figure 3.14: Box-plots showing IoU distributions from EndoVis2017VOS segmentation experiment
(Table 3.2). Fully-supervised baseline BaselineFS (grey), Teacher (purple 2-step, light purple 3-step),
Proxy (yellow 2-step, light yellow 3-step), Student (blue 2-step, light blue 3-step).

the Chapter.
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Annot. [%] STRAS
Teacher (ours) 0 29.93±8.51
Proxy (ours) 0 55.07±6.47
Student (ours) 0 66.37±5.14

Table 3.5: Surgical tool segmentation of individual frames. Results of the proposed method on the
STRAS dataset using STRASMasks shape-priors. Mean IoU [%] and standard deviation are reported.
The percentage of annotated training samples required by each method is also reported (Annot.
[%]).

3.5 Ablation Studies and Additional Experiments

In order to provide a more in-depth understanding of the proposed FUN-SIS approach,
we performed several ablation studies on crucial aspects of the method. In the next
paragraphs, each experiment is followed by a short discussion of the obtained results,
in order to facilitate the reading.

3.5.1 Optical-Flow Augmentation and Noise Vector Size

We first analyze optical flow surgical tool segmentation by the Teacher network. In par-
ticular, we evaluate the impact of the two proposed strategies to tackle the complexity-
imbalance between optical flow and shape-priors domain in the generative part of the
Teacher training, described in Section 3.2.1: noise concatenation and optical flow aug-
mentation Aug mF l ow . We trained the Teacher model using different sizes of the con-
catenated noise vector n, with and without the optical flow augmentation Aug mF l ow .

Qualitative and quantitative results are shown in Figures 3.16 and 3.17, respectively.
Quantitaive results highlight how optical flow augmentation Aug mF l ow plays a
crucial role in counteracting complexity-imbalance, allowing to reach quasi-optimal
performance even without noise concatenation (continuous line, “no-noise"). Noise
concatenation also appears effective, with peak Teacher performance reached with noise
size 32 and Aug mF l ow . We did not notice any significant improvement with larger
noise vector sizes. From qualitative results shown in Figure 3.16, it can be noted how
noise concatenation allows to both generate more realistic and variable optical flow
images and disentangle tool configurations and optical flow appearance. Note how,
when changing shape-priors, optical flow image appearance changes when noise is not
concatenated (x0, first block), but remains similar in case of noise concatenation (x1 and
x32, second and third block, respectively). It can also be observed how the most variable
results are obtained with a noise vector size of 32 (third block, x32), with complexity
increasing from leftmost column (noise vector of zeros, more frequently sampled during
training from the normal distribution) to rightmost column (noise vector of ones, rarely
sampled during training), where tools are hardly recognizable and background appears
to feature more consistent motion.
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Figure 3.15: Surgical tool segmentation on the STRAS dataset. Qualitative results showing, from left
to right, input frame It , optical flow image yOF

t using HSV standard conversion, predictions from
Teacher (using STRASMasks shape-priors), Proxy and Student, and ground truth (GT).

3.5.2 Proxy Network Architecture

In Section 3.2.2 we hypothesized the benefit of a limited Proxy network capacity, in or-
der to encourage the learning of the easiest pattern shared between training samples,
compatible with the pseudo-labels. We investigate this hypothesis by evaluating the
performance of Proxy and Student networks, when using different Proxy architectures
(Unet11 and Unet16, defined in Section 3.3.3) on the EndoVis2017VOS dataset.

Results shown in Figure 3.18 confirm that a shallower Proxy network (Unet11) learns
more effectively from the pseudo-labels than a deeper one (Unet16), quantified in an
improvement of +5.44% ∆IoU. Additionally, this study provides the experimental proof
that the Student’s improvements with respect to the Proxy are not due to their different
architectures. Indeed, when using the same architecture for both of them (Figure 3.18,
left) the Student still outperforms the Proxy by a large margin (+10.61% ∆IoU).

3.5.3 Loss Function Coefficients (αP , αS)

We investigate the impact of the balancing factorsαP andαS between cross-entropy (CE)
and log IoU losses in Proxy and Student networks training (Equations 3.8&3.13). In our
experiments we consider the case αP =αS =α, with α ranging from 0 (only CE loss) to 1
(only log IoU loss).

Results shown in Figure 3.19 highlight the positive impact of log IoU loss, especially

79



3.5. ABLATION STUDIES AND ADDITIONAL EXPERIMENTS

Figure 3.16: Qualitative results of the optical flow generator (G), trained using different size of input
noise vector among {no-noise,1,32}. First column: input shape-priors; first block (x0), no noise
concatenation; second block (x1), noise vector of size 1; third block (x32), noise vector of size 32. For
each of the 3 blocks, from left to right, the noise vector was smoothly interpolated between all zeros
to all ones (trivial for x0, having no concantenated noise).

.

Figure 3.17: Analysis of the impact of noise vector size (no-noise, 1, 32) and flow augmentation
Aug mF l ow on optical flow segmentation results by the Teacher network on EndoVis2017VOS.
Mean IoU [%] is reported.

on the Proxy network (+19.79% ∆IoU improvement between α = 1 and α = 0). This
can be in part explained by the diminished sensitivity of IoU-based losses due to class-
imbalance. However, the greater improvement brought by the log IoU loss to the Proxy
network, directly trained on raw pseudo-labels, compared to the Student network, may
suggest that the log IoU loss is more robust to the noise of motion-derived pseudo-labels.
Additional in-depth studies are required to investigate this hypothesis.

3.5.4 Local IoU Parameters’ Impact

While state-of-the-art learning-from-noisy-labels approaches usually require a Teacher
model trained on clean labels in order to identify well-labelled regions of noisy pseudo-
labels, we perform this search in a fully-unsupervised way. As detailed in Section 3.2.3,
probably well-labelled regions are selected according to the agreement between the
pseudo-labels (Teacher model’s predictions from optical flow segmentation yT

t ) and
Proxy model’s predictions yP

t . The agreement is measured by the local IoU, parametrized
by the window size w (w = h in our experiments), and binarized through the threshold
parameter ϵI oU , representing the minimum agreement required to consider a region
well-labelled. The choice of these two parameters influences 1) the effective number
of pixels on which the Student network is trained, 2) the average effective IoU (I oUe f f )
of the training labels, defined as the IoU between ground truth masks GT and pseudo-
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Figure 3.18: Analysis of the impact of Proxy network’s architecture on surgical tool segmentation
results of Proxy (yellow) and Student (blue) networks, on EndoVis2017VOS. Mean IoU [%] is
reported.

Figure 3.19: Analysis of the impact of loss function balancing coefficients αP and αS on Proxy
(yellow) and Student (blue) networks, on EndoVis2017VOS. We only consider the case αP =αS =α;
α equal 0 corresponds to cross-entropy loss only, α equal 1 corresponds to log IoU loss only. Mean
IoU [%] is reported.

labels yT
t , computed only for the selected regions according to the binarized local IoU

(I oU
loc
(w,h)) between yT

t and yP
t :

I oUe f f =
|(GT ∩ yT

t )∩ I oU
loc
(w,h)|

|(GT ∪ yT
t )∩ I oU

loc
(w,h)|

. (3.14)

We evaluate the influence of w and ϵI oU on the effective training size (expressed as
total number of selected pixels over total number of pixels in the training dataset) and
on the average I oUe f f in the training dataset. For these experiments, we considered
trained Teacher and Proxy models on EndoVis2017VOS. We then varied ϵI oU and w in
a grid-like manner, with ϵI oU ranging from 0.0 to 1.0 with a step equal to 0.05, and w in
{1,2,4,8,16,32,64,128,256}. For each couple (w,ϵI oU ) we then evaluated effective training
size and average I oUe f f on the EndoVis2017VOS training set, in order to provide an
insight of the effective training carried out.
Experimental results shown in Figure 3.20 confirm that the agreement between pseudo-
labels (optical flow segmentation masks from the Teacher) and Proxy predictions is
directly correlated to the quality of the pseudo-labels. Figure 3.20 (right) shows the
positive correlation between Proxy-Teacher agreement (ϵI oU ) and average effective
IoU, especially for large window sizes w of the local IoU operation. As expected, the
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Figure 3.20: Impact of local IoU parameters (ϵI oU and window size w) on effective training size
(left) and average effective IoU (right). x-axis can be interpreted as the level of agreement between
Teacher and Proxy required in order to select a certain region (e.g. with ϵI oU equal to 0.8 a region
is considered well-labelled only if the IoU between Proxy and Teacher predictions for that region
is at least 80%). Red markers correspond to w = 64 and ϵI oU = 0.5, the values used in our main
experiments.

experiment also shows that requiring higher agreement reduces the amount of data
effectively used for training, with a similar but inverse relationship. This creates the need
to properly select the two parameters in order to train the Student network on good
quality labels, in order to facilitate convergence, while keeping the training set large
enough to allow generalization and robustness. In light of this experiment, the values
of window size w and ϵI oU chosen for experimental validation, respectively 64 and 0.5,
represent a good compromise, allowing to train the Student network on 50.48% of the
total training data on EndoVis2017VOS, with an effective IoU of the pseudo-labels equal
to 80.70% (high-quality labels).

3.5.5 Shape-Priors Quality & Quantity

Shape-priors represent the only external information required by the proposed approach
for training. In order to investigate their impact on the whole training process, we
performed two sets of experiments. First, we evaluated the performance of our models
(Teacher, Proxy, Student) when trained using RoboTool and GrScreenTool shape-priors,
on the EndoVis2017VOS dataset, in order to evaluate the impact of different sources (i.e.
recycled annotations from a different dataset and automatically segmented tools from
green-screen recordings); secondly, we trained our models using different percentages
of the available RoboTool shape-priors, from 100% to 1%, with and without on-the-fly
augmentation Aug mM ask.

Shape-Priors RoboTool GrScreenTool
Teacher (ours) 40.08±26.70 40.47±25.62
Proxy (ours) 74.78±14.99 73.63±15.11
Student (ours) 83.77±12.28 82.63±13.01

Table 3.6: Analysis of the impact of the shape-priors dataset on frame segmentation. Com-
parison of the proposed method trained using RoboTool and GrScreenTool as shape-priors on
EndoVis2017VOS. Mean IoU [%] and standard deviation are reported.
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Figure 3.21: Analysis of the impact of decreasing shape-priors quantity on individual frame and
optical flow segmentation, with and without Aug mM ask augmentation, on EndoVis2017VOS. On
the x-axis, the amount of RoboTool shape-priors used for training is reported (absolute number and
percentage with respect to the total number). Mean IoU [%] for Student (blue; dashed: trained
without Aug mM ask), Proxy (yellow; dashed: trained without Aug mM ask), Teacher (purple;
dashed: trained without Aug mM ask) is reported.

Experimental results highlight how our FUN-SIS approach is extremely robust to
varying quantity and source of the shape-priors. Experiments using GrScreenTool,
reported in Table 3.6, provide comparable performance to the ones using RoboTool,
despite the significantly different appearance of tools, as shown in Figure 3.8. In
addition, experiments on shape-priors quantity (Figure 3.21), show how the performance
of Teacher, Proxy and Student remains optimal even when using as few as 51 RoboTool
shape-priors masks (10% of total) for training. If augmented on-the-fly using the
Aug mM ask protocol (random cropping and flipping), RoboTool shape-priors can be
further reduced to a total number of 5 instances (1% of total), with limited performance
drop (-5.57% ∆IoU compared to 100% case).

3.5.6 Noise Properties (Unpredictability & Polarization)

We investigate the impact of the unpredictability and polarization properties presented
in Sections 3.2.2 and 3.2.3 on the proposed learning-from-noisy-labels approach. To
this aim, we carried out experiments with artificially controlled type and intensity of
noise affecting the pseudo-labels, as described in Section 3.3.2. We then substituted
the pseudo-labels yT

t , in our training pipeline, with the corrupted EndoVis2017VOS
labels and trained the Proxy and the Teacher networks according to the same
modalities as the previous experiments. The three noise strategies presented in Section
3.3.2 were designed to highlight the effect of the unpredictability and polarization
properties. In Systematic-Erosion experiment, each mask was eroded, making the noise
signal predictable and not-polarized (all tools are equally affected by the noise); in
Erosion&Dilation experiment, each mask was either randomly eroded or dilated, making
the noise signal unpredictable, but still not-polarized (each tool mask is affected by an
error, either due to erosion or dilation); finally, in Tool-Drop experiment, individual
tools were either perfectly annotated or not annotated at all, making the noise signal
both unpredictable and polarized. Differently from the real scenario of pseudo-labels
derived from optical flow segmentation, no false-positives are present in the Tool-Drop
experiment, and the polarization is perfect (tools are either fully present or completely
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Figure 3.22: Analysis of the impact of unpredictability and polarization noise properties on the
proposed method, on the artificially-corrupted EndoVis2017VOS datasets. Top: for each of the 3
noise sources (A, Systematic-Erosion, predictable and not-polarized; B, random Erosion & Dilation,
unpredictable and not-polarized; C Tool-Drop, unpredictable and polarized) Proxy (yellow) and
Student (blue) models were trained on the EndoVis2017VOS training dataset, having ground
truth labels corrupted with different levels of such noise. The colored bars are meant to improve
readability, by visually showing the mean IoU between each training dataset labels and ground
truth clean labels (∼80% for D80, ∼60% for D60, ∼40% for D40, ∼20% for D20); Bottom: for each set
of noisy labels, per-tool IoU histograms (IoUtools) computed as shown in Figure 3.23, are reported.

dropped), while in the real case tools can also be partially segmented.

Results of the conducted experiments (Figure 3.22) clearly highlight the impact of the
two noise properties, as well as the ability of the proposed solution to leverage them.
When the noise is predictable (Figure 3.22-A, top), the Proxy network can perfectly learn
to fit it, even when the corruption is minimal (D80). Contrarily, when noise cannot be
inferred from single frames (Figure 3.22-B&C, top), the Proxy network, unable to learn the
noise pattern, will learn the easiest general pattern compatible with the labels, resulting
in significantly better predictions than the noisy labels used for its training (on average,
+13.76% ∆IoU in Erosion&Dilation, +29.75% ∆IoU in Tool-Drop). The effectiveness of
the Student network training is instead mainly influenced by the polarization property.
When the noise is not polarized (Figure 3.22-A&B, top), the Student network does not
benefit from region selection through local IoU (+1.69% and -1.87%∆IoU, respectively, of
Student compared to Proxy network). Instead, when the noise is polarized, well-labelled
regions can be effectively identified using local IoU, allowing for a consistent improve-
ment of Student predictions, compared to Proxy ones (+6.73% ∆IoU on average, +8.60%
∆IoU in D40). The improvement is aligned with the one obtained in the experiments from
Section 3.4.2 (+8.99% ∆IoU), where the pseudo-labels were produced via unsupervised
surgical tool segmentation by the Teacher network and had an IoU with the GT equal
to 40.08%. Overall, the proposed approach allows to maintain an IoU of at least 81.49%
(compared to the 88.99% reached by fully-supervised training of the Student model on
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Figure 3.23: Computation of per-tool IoU between ground truth masks and noisy labels. Left:
example of ground truth mask (GT) and noisy label. The smallest region containing each tool in the
GT mask is extracted; the same exact region is extracted from the noisy label. Right: Intersection-
over-Union (IoUtool) is computed between each region extracted from GT (GTtool) and noisy label
(noisy labeltool); the process is repeated for each tool in each frame of the dataset, and each IoUtool

is stored in IoUtools. The distribution of per-tool IoU can then be visualized through histogram plots
(Figures 3.22&3.24).

Figure 3.24: Per-tool IoU histogram (IoUtools), computed as shown in Figure 3.23, for pseudo-
labels derived from motion segmentation by the Teacher model on EndoVis2017VOS. Note how the
distribution tends to be polarized on leftmost bin (completely mislabelled tools) and rightmost bins
(almost-perfectly segmented tools).

clean labels, Table 3.2), even when trained on extremely low-quality training labels (Fig-
ure 3.22-C, top: Tool-Drop, D20 i.e. ∼20% IoU between training labels and GT). When
trained on D80 and D60, the Student network reaches optimal performance (88.98% and
88.41% IoU, respectively).
In order to provide a direct visualization of the polarization property, we also report,
for each set of noisy labels, including the motion-derived pseudo-labels by the Teacher
model, per-tool IoU histograms (IoUtools). Per-tool IoU can be computed, as shown in
Figure 3.23, by extracting the smallest regions containing each tool from the GT labels,
and computing the IoU between this region and the corresponding one from the corre-
sponding pseudo-label. This process, while approximate (an extracted region from GT
label may contain more than one tool), allows to produce a clear visualization of the
polarization property, by plotting the histogram of the obtained IoUtools. Histograms are
shown in Figure 3.24, for motion-derived pseudo-labels, and in Figure 3.22, bottom, for
artificially corrupted labels. From Figure 3.22, bottom, it is possible to intuitively com-
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BF PF ND VS GR S O
BaselineFS 78.68 84.29 90.39 89.88 86.39 92.42 87.74

Teacher 33.63 33.58 30.67 36.80 19.69 30.71 51.59
Student 73.57 78.66 83.93 85.91 82.07 86.19 83.01

Table 3.7: Per-tool segmentation results on the EndoVis2017VOS dataset separated by surgical tool
class: Bipolar Forceps (BF), Prograsp Forceps (PF), Needle Driver (ND), Vessel Sealer (VS), Grasper
Retractor (GR), Scissors (S), Other (O). Mean IoU [%] is reported for fully-supervised baseline
(BaselineFS), Teacher and Student networks.

Figure 3.25: Break-down of the per-tool IoU across the 7 tool classes present in EndoVis2017, for
fully-supervised baseline (FS), Teacher and Student networks.

pare the case of not-polarized noise (A,B), where IoUtools values are mostly distributed
around a single peak, to polarized noise (C), where the values appear concentrated on
leftmost bin (full tool annotations missed) and rightmost bin (perfectly labelled tools).
In the case of pseudo-labels derived from optical flow segmentation (Figure 3.24), the
histogram, despite being smoothed by the sub-optimality of optical flow estimator and
segmenter described in Section 3.2.3, still displays the polarization property, allowing
efficient Student network training.

3.5.7 Per-class IoU evaluation

Given the per-tool IoU metric defined above, segmentation results from the main ex-
periment (Table 3.2) are here analyzed by breaking them down into the 7 different tool
categories present in EndoVis2017 dataset.
Results, reported in Table 3.7 and visualized in Figure 3.25, highlight how, as expected,
the quality of optical flow segmentation by the Teacher network decreases for passive
tools, like the grasping retractor, often used to hold anatomical structures still. It is worth
noticing that during training the Teacher network learns to segment tool-shaped regions
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Figure 3.26: Surgical tool segmentation by the Teacher network in the case of static tools: physiolog-
ical anatomical movements highlight surgical tools, even while being held still, allowing a proper
segmentation by the Teacher network.

characterized by a coherent motion, relatively different from the surroundings. In prin-
ciple, anatomical structures always feature some degree of motion (physiological move-
ment, deformation from nearby interactions), inconsistent with the surgical tool motion
(or non-motion), allowing the Teacher model to properly segment them (Figure 3.26).
However, given a sub-optimal optical flow estimator, small physiological motions may
be missed. This could be problematic for passive tools like graspers, as proved by the
quantitative results in Table 3.7. Nonetheless, the proposed learning-from-noisy-labels
strategy manages to handle this noise, allowing to properly train the Student network to
achieve a final segmentation performance for these tools comparable to the other tools.

3.5.8 Random Unlabelled Data

In order to show the ease-of-use and robustness of the proposed FUN-SIS approach, we
trained our models on the surgical robotic dataset RandSurg, described in Section 3.3.1
and tested on EndoVis2017VOS. The RandSurg dataset was created by collecting random
public videos of surgical procedures, and performing minimal data curing. Training was
carried out according to the same modalities as the other experiments, using RoboTool
shape-priors and varying amounts of the RandSurg data, ranging from very few (31 i.e.
1% of total available) to all the available frames (3136).

Experimental results shown in Figure 3.27 show that, despite the limited data cur-
ing and pre-processing of the input data, the method can easily leverage the increasing
amount of available data to effectively train the models. The Student network reaches a
peak IoU equal to 79.65% on EndoVis2017VOS, comparable to the 83.77% obtained when
training on unlabelled data from the same dataset (Table 3.2).

3.5.9 FUN-SIS Applicability on another Domain: Cholec80

We demonstrate the applicability of the proposed FUN-SIS approach on a different do-
main than the robotic one it was validated on. To this aim, we trained and qualitatively
tested our Student model on the unlabelled Cholec80 dataset, consisting of manual la-
paroscopic cholecystectomy procedures. Training was carried out using RoboTool shape-
priors, despite the different appearance of tools between robotic and manual laparo-
scopic videos.

Results shown in Figure 3.30 qualitatively confirm that the proposed method is ap-
plicable to a different surgical domain, even without domain-specific hyper-parameters

87



3.5. ABLATION STUDIES AND ADDITIONAL EXPERIMENTS

Figure 3.27: Analysis of proposed method performance when trained on increasing amounts of
unlabelled RandSurg data, a dataset consisting of randomly selected surgical videos, downloaded
from the public repository [Wor], and tested on EndoVis2017VOS. On the x-axis, the amount of
RandSurg frames used for training is reported (absolute number and percentage with respect to the
total number). Mean IoU [%] for Student (blue), Proxy (yellow), Teacher (purple) is reported.

tuning and with minimal pre-processing. Furthermore, they prove that despite the differ-
ences between shape-priors and target tools, segmentation can still be effectively carried
out. In future work, we plan to quantitatively evaluate FUN-SIS generalization ability,
especially for cases, like the RoboTool-Cholec80 one, where shape-priors and unlabelled
videos come from significantly different domains. This will require building a benchmark
dataset, manually annotated for surgical tool segmentation, containing data from differ-
ent surgical procedures, performed with both manual and robotic-assisted laparoscopic
techniques.

Figure 3.28: Qualitative results on the EndoVis2017VOS dataset, from the experiment reported in
Table 3.2. Original frame overlapped with ground truth (blue) and Student network’s prediction
(green).
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Figure 3.29: Qualitative results on the STRAS dataset, from the experiment reported in Table 3.5.
Original frame overlapped with ground truth (blue) and Student network’s prediction (green).

Figure 3.30: Qualitative results on the Cholec80 dataset. Original frame and overlapping between
Student network prediction and original frame are shown. Training was carried out using RoboTool
shape-priors.

3.6 Discussion and Future Work

In order to validate the proposed FUN-SIS approach, several experiments were
performed and presented, including optical flow segmentation (Section 3.4.1), single-
frame segmentation (Section 3.4.2, main experiment) and several ablation studies
(Section 3.5), dissecting the method and highlighting its key aspects. The obtained
results strongly support the soundness of FUN-SIS: binary surgical tool segmentation
was effectively carried out in various datasets including EndoVis2017 (robotic surgery),
STRAS (flexible endoscopic surgery), and Cholec80 (manual laparoscopic surgery).
When evaluated on EndoVis2017VOS, our Student network reaches an IoU of 83.77%,
12.30% above the state-of-the-art unsupervised AGSD approach, and only 5.84% below
the state-of-the-art MF-TAPNet approach.
The proposed unsupervised approach for surgical tool segmentation of optical flow
images outperforms state-of-the-art CIS approach by a large margin on EndoVis2017VOS
(+16.32%∆IoU). Most common errors resulted from passive tools like graspers, especially
when used to hold anatomical structures. Nonetheless, the proposed learning-from-
noisy-labels strategy showed great robustness to the noise of motion-derived pseudo-
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labels, allowing to effectively train the Student network: results break-down by tool type
(Table 3.7) showed no significant difference in Student’s segmentation performance
between passive and active surgical tools.
Ablation studies proved that the method is extremely robust to the way shape-priors
are obtained, with no significant performance difference between using automatically
segmented tools from green-screen recordings and recycled manual annotations from
other datasets. In addition, FUN-SIS showed great robustness to limited shape-priors
quantity, performing optimally on EndoVis2017VOS even using as few as 51 RoboTool
shape-priors masks for training. We believe that the loose requirements FUN-SIS
has on shape-priors type and quantity strongly contribute to justify why it should be
regarded as unsupervised. Compared to the standard annotations required by weakly-
/semi-supervised approaches, shape-priors do not need to be generated any time
new unlabelled data are collected, as they are agnostic to almost any inter-domain
variation and unpaired with the endoscopic images. This makes them suitable to be
used across different domains as empirically proven for the RoboTool shape-priors
(used in combination with unlabelled videos of multiple surgical procedures, performed
with manual or robotic laparoscopic approaches, involving different tools, recorded
with different acquisition systems under significant lighting conditions variations).
Ablation studies highlighted other interesting aspects, such as the benefits of using
a log Intersection-over-Union loss when training on noisy pseudo-labels, and the
effectiveness of the proposed optical flow augmentation strategy on video object
segmentation. Finally, the extensive analysis on pseudo-label noise properties and their
impact on neural network training, as well as the proposed learning-from-noisy-labels
strategy to leverage them, may serve as the base for future work on object segmentation
using noisy labels, still largely unexplored.
Despite the satisfying results, the proposed work still presents potential room for
improvement:

• the FUN-SIS performance is overall influenced, and bottle-necked, by the quality
of the optical flow images, which depends, in turn, on the endoscopic camera res-
olution and the optical flow estimator. As discussed in Section 5.2, this contributes
to the reduced ability of the Student network, compared to fully-supervised ap-
proaches, to capture fine-scale details. Current research on models for optical flow
computation specifically tailored for endoscopic images, as well as the increasing
use of high-definition endoscopic cameras, could naturally contribute to improve
the effectiveness of the proposed FUN-SIS method. In addition, the quality of
the pseudo-labels could be improved using unsupervised post-processing solu-
tions, such as Conditional Random Fields, before being used for Student network
training. An alternative that could be worth exploring is the use of depth images
from stereo-cameras in combination with optical flow images. Similarly to optical
flow, depth image domain projection allows to reduce the amount of variability in
background and tool appearance compared to the raw endoscopic image domain.
This makes it easier to generate pseudo-labels in an unsupervised way. Whenever
stereo-camera systems are available (as in several robotic systems nowadays), this
combined approach may lead to greater robustness and overall improved segmen-
tation results, than using optical flow only.

• when selecting well-labelled regions through local IoU, a great amount of
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the available data are currently discarded (49.52% of total available pixels in
EndoVis2017VOS experiment), which may impact the generalization ability
of the Student network. These uncertainly-labelled pixels could be exploited in
combination with unsupervised strategies (e.g. enforcing consistency of prediction
between different augmented views of the same region), and contribute to the
Student network training;

• the window used to compute the local IoU has fixed dimensions and is slid regularly
on the masks with fixed width and stride. This approach creates a trade-off between
effective training size and quality of the selected regions, requiring to properly tune
the window size w , as well as the threshold value ϵI oU . A more flexible approach,
adapting to the varying tool size and location, may be beneficial to improve the
quality of the selected regions without excessively reducing the effective training
size;

• the Proxy network is subjected to strong gradients while training directly on the
noisy pseudo-labels, resulting in possible performance oscillations. This can
potentially hinder the Student network training, if the Proxy network training
is stopped in a poor weight parameters configuration. This problem could be
mitigated by using approaches such as self-ensembling [NMN+20], regularizing
Proxy network training.

As extensively discussed, FUN-SIS was developed as an unsupervised approach,
trainable on a virtually unlimited set of unlabelled data. Nonetheless, an interesting
research direction could be exploring its use to guide the selection of particularly
challenging samples (like images which provide a high loss value for the Student), in
order to focus human annotation effort on few, informative cases.

3.7 Conclusion

In this Chapter we presented FUN-SIS, a Fully-UNsupervised approach for Surgical In-
struments Segmentation. The obtained results, almost on par with the ones of fully-
supervised solutions, show the value of learning from unlabelled data, exclusively relying
on weak prior knowledge, easy to obtain and highly repurposable across various surgical
domains. While several research directions can be explored to improve the quality of
binary segmentation, as discussed in Section 3.6, the next Chapter builds on top of this
work to solve the semantically richer task of instance segmentation.
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PAF-IS: a Pixel-wise Annotation Free framework for Instance
Segmentation of Surgical Tools

Contents
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.1.1 Objective & Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.2.1 Tool Instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.2.2 Instance-wise Feature Representation Learning . . . . . . . . . . . . 98

4.2.3 Instance-wise Tool Type Classification . . . . . . . . . . . . . . . . . 99

4.3 Experimental Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.3.2 Design Choices & Training Details . . . . . . . . . . . . . . . . . . . . 103

4.4 Experiments and Results Analysis . . . . . . . . . . . . . . . . . . . . . . . 104

4.4.1 Tool Instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.4.2 Tool Instance Segmentation . . . . . . . . . . . . . . . . . . . . . . . . 105

4.5 Ablation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.5.1 Tool Instantiation Augmentation Strategy . . . . . . . . . . . . . . . 107

4.5.2 Tool Instantiation Inference Parameters . . . . . . . . . . . . . . . . 108

4.5.3 Prototype Labels Number . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

92



CHAPTER 4. PAF-IS: A PIXEL-WISE ANNOTATION FREE FRAMEWORK FOR INSTANCE
SEGMENTATION OF SURGICAL TOOLS

4.1 Introduction

As established in the previous Chapter, binary tool segmentation can be learnt from
unlabelled data by purely relying on prior knowledge about surgical tool shape and
motion. The current Chapter builds on this work to extend the use of prior and
complementary knowledge to the instance segmentation problem.
Compared to binary segmentation, instance segmentation significantly increases
the value of the extracted information, as it enables to obtain individual tool masks
and to simultaneously identify their tool type. Because of its complexity, this task is
commonly tackled by fully-supervised Deep Learning approaches [SRKI18a, JCDH19a,
KJD+21, KMNA+21]. Such approaches require the availability of pixel-wise semantic
and instance labels to train, extremely expensive to collect at a large scale via manual
annotation. Indeed, as discussed in the Related Work Chapter, and observable from
Table 2.1, research on alternatives to full-supervision has remained confined to the
binary segmentation task. We believe that this is due to the rigid problem formalization
imposed by common instance segmentation approaches: such approaches do not
benefit from the potential availability of binary segmentation masks, as they would still
require pixel-wise semantic and instance labels to train. Furthermore, their problem
formalization prevents the incorporation of potentially cheaper sources of semantic
information, compared to pixel-wise annotations, like binary tool presence labels.
Specifically, we define as frame-wise those binary tool presence labels describing which
tool types are effectively visible in each frame; we define as sequence-wise those labels
indicating which tool types are potentially visible in each frame. In robot-assisted
surgery, for example, robotic systems can often record which tools are attached to the
system [KMNA+21]: however, this information only indicates that a certain tool could be
in-use (and visible) at some point of the sequence of frames during which it is attached,
but does not guarantee its visibility at a specific frame (therefore a sequence-wise
visibility). As a generalization, surgical phase and step annotations can provide similar
information, when a mapping between phases/steps and tools can be approximately
defined (e.g. by knowing which tools are commonly used in each phase/step [PBA+12]).
These considerations allow to extend the concept of sequence-wise labels to laparoscopic
procedures. Examples of frame-wise and sequence-wise labels are shown in Figure 4.1.

Figure 4.1: Examples of frame-wise and sequence-wise binary tool presence labels for a robot-
assisted surgery sequence (each color represents a tool type). All the tools can be attached to the
system at the same time, while being visible only in certain frames.
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4.1.1 Objective & Contributions

In this Chapter we propose a framework for instance segmentation model training, which
embraces the recent progress on unsupervised binary segmentation and the availability
of cheap binary tool presence labels, to minimize human annotation effort. Overall,
our solution learns to instantiate binary segmentation masks, and to obtain, for each
extracted tool, a powerful feature representation using a self-supervised formulation.
These instance-wise representations are then used to select a small number of tool in-
stances (prototype instances), which are presented to a potential human user for tool type
labelling. The gathered information, along with binary tool presence labels (either frame-
wise or sequence-wise), is finally used to train an instance-wise classifier that predicts tool
type labels for each tool instance.
At inference time the trained architecture can perform instance segmentation on single
frames, by extracting individual tool instances and separately classifying them.
Overall, we make the following contributions:

• we develop an unsupervised approach to learn tool instantiation from binary
segmentation masks (Figure 4.2, Tool instantiation): with no availability of
pixel-wise instance labels, we fabricate a pseudo-supervision signal from
Connected Component instantiation of the binary masks, and refine it using
simple assumptions on instrument positioning in the image space to effectively
train an instantiation model;

• we develop an approach for self-supervised instance-wise feature representation
learning (Figure 4.2, Instance-wise feature learning): with no availability of
pixel-wise semantic labels, we learn such representations by relying on intrinsic
temporal information from video sequences. Specifically, we design a contrastive
learning approach based on local instance tracking to draw positive and negative
samples. This step allows to obtain powerful instance-wise feature representations,
providing the necessary information to solve the final classification step;

• we develop an approach to learn instance-wise tool type classification with no
ground truth labels available (Figure 4.2, Instance-wise tool type classification):
the learnt instance-wise feature representations are used to guide the automatic
selection of a tiny number of prototype instance tools (as few as 8 in our experi-
ments), displayed to a potential human user for tool type labelling. The gathered
information is propagated to the whole training set, allowing to label each train-
ing instance with a pseudo-GT tool type label (prototype label). This information
is combined with the available binary tool presence labels (either frame-wise or
sequence-wise) to solve the instance classification task, exploiting a teacher-student
problem formulation.

4.2 Methodology

The proposed PAF-IS framework for Pixel-wise Annotation Free Instance Segmentation
explicitly separates the task into three core components: instrument instantiation,
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Figure 4.2: Overview of the proposed Pixel-wise Annotation Free framework for Instance Segmen-
tation (PAF-IS). Top: training architecture highlighting the three core steps. Tool instantiation is
learnt from binary masks, potentially obtained using recent unsupervised segmentation methods.
Instance-wise feature representation learning is performed using a contrastive learning strategy,
powered by local temporal tracking. This step allows to extract a feature representation of each tool
instance in the training set. Instance-wise tool type classification is performed by incorporating a
minimal amount of human-provided information (prototype labels, as few as 8 in our experiments)
and cheaply obtainable binary tool presence labels. Bottom: PAF-IS inference architecture.

instance-wise feature learning and instance classification. Differently from standard
semantic/instance segmentation approaches, PAF-IS does not require pixel-wise
semantic or instance annotation of the training data. Instead, it relies on the
availability of binary segmentation masks, which can be cheaply obtained using
emerging unsupervised approaches, and binary tool presence labels.
The full framework is presented in Figure 4.2 and detailed below.

4.2.1 Tool Instantiation

Instrument instantiation is here defined as the problem of predicting, from an
endoscopic image I , the set of binary masks {M Inst

i }, with i in [1, NInst ], each one
corresponding to an individual instrument visible in the image. When the ground truth
instantiation is known, the problem is often formulated as bounding-box prediction
[KJD+21, GBSA20]. However, the effectiveness of this approach has been questioned
in [KMNA+21], which proposed an alternative solution based on direct regression of
instance centroids’ position. We here adopt a similar formulation, proving its benefits
with respect to bounding-box prediction beyond fully-supervised learning.
The instantiation problem is here formalized as learning the mapping between the image
I ∈ RW ×H×3 and the displacement field D ∈ RW ×H×2, uniquely assigning each tool pixel
to an instance. Given a pixel p = [px , py ], D|p is equal to the vector v = [c i

x −px ,c i
y −py ]

if p belongs to a certain instance i , having its centroid in [c i
x ,c i

y ], or to the null vector
[0,0], if p belongs to the background. Given a training set with known ground truth
instantiation D , such mapping can be learnt by an instantiation model, implemented
as a neural network, by using a fully-supervised training formulation, as in [KMNA+21].
This can be achieved by optimizing the loss LF S

I , implemented as the pixel-wise distance
between the ground truth displacement field D and the instantiation model prediction
D̃ :

LF S
I = |D − D̃|. (4.1)
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Figure 4.3: Overview of the proposed strategy to generate a pseudo-supervision signal to learn
instrument instantiation. Given an image I , its binary mask M B is instantiated using a Connected
Component (CC) algorithm, yielding the set of tool masks {MCC

i }, with i in [1, NCC ]. From them,
the displacement field DCC and the overlap mask MOV can be automatically obtained. A random
tool instance is then selected from the training set, and pasted on I , M B , DCC , producing their
augmented versions I∗, M B∗, DCC∗.

At inference time, given a new image I and the corresponding predicted displacement
field D̃ , the set of instance masks {M Inst

i } can be easily extracted by identifying the in-
stance centroids, as the pixels where the displacement field converges, and assigning
each tool pixel to the centroid pointed by the corresponding displacement vector.

Training: In our case, only the binary mask M B is known. Without a ground truth
instantiation we rely on the assumption that surgeons tend to avoid surgical instruments
overlap, in order to reduce the chances of mutual tool occlusions and unwanted tool
interactions.
Given an image I and the corresponding binary mask M B , if tools do not overlap, the
instance masks can be obtained by separating the Connected Components (CC) of M B

through standard CV methods like the Spaghetti algorithm [BABG19]. The displacement
field DCC , approximating the ground truth D , can then be directly obtained from the
set of NCC tool masks {MCC

i }, with i in [1, NCC ], by subtracting each tool pixel position
from the centroid [c i

x ,c i
y ] of the corresponding mask MCC

i . While effective in the case
of non-overlapping tools, CC labelling systematically fails when tools overlap. In order
to mitigate this problem we artificially modify the supervision signal obtained from CC
instantiation, as follows:

• potential overlapping tools identification: given the set of CC masks {MCC
i }, MCC

i
is considered a potential overlapping instance if it extends across the whole frame
(see Figure 4.3 for an example). All pixels corresponding to potential overlapping
instances are collected in the binary overlap mask MOV , and discarded from loss
computation as described later in this Section;
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Figure 4.4: Overview of the proposed instantiation strategy. Given an image I the trained
instantiation model predicts the masked displacement field D̃. A square grid is then overlapped to
D̃, and the squares with high convergence (per-pixel average> εC ) are then extracted, and separated
by Connected Component (CC) labelling, yielding a set of ÑInst centroid regions. Each tool pixel is
then assigned to the corresponding centroid, yielding the set of instances masks {M̃ Inst

i }, with i in
[1, ÑInst ].

• instance pasting augmentation (AugmPaste): given an image I , its binary mask
M B and its CC displacement field DCC , a random tool instance is selected from
a different training sample and pasted on them, yielding the augmented image
I∗, the augmented binary mask M B∗ and the augmented displacement field DCC∗

(Figure 4.3). This augmentation step allows to artificially simulate the presence of
overlapping instances, making up for the discarded instances at the previous step.

Given the image I∗, in addition to the displacement field D̃ , we let the instantiation
model predict the binary segmentation mask M̃ B , which we multiply by D̃ to ensure that
the displacement vector for pixels belonging to the background is a null vector [0,0]. For
simplicity, we keep the notation D̃ to refer to the result of such product.
Given the image I∗, the corresponding network predictions D̃ and M̃ B , the binary mask
M B∗, the displacement field DCC∗ and the overlap mask MOV , the instantiation model is
trained by optimizing the loss L I :

L I = |DCC∗− D̃|(1−MOV )+LC E (M B∗, M̃ B ), (4.2)

where LC E is a standard pixel-wise cross-entropy loss.
Inference: given an image I and the trained instantiation model, the predicted

displacement field D̃ must me mapped to the set of instance masks {M̃ Inst
i }, with i

in [1, ÑInst ], and ÑInst being the number of predicted instances in a frame. While
for the ground truth displacement field D each tool pixel vector points exactly to the
corresponding centroid pixel, this is not guaranteed for the predicted D̃ . Therefore we
define as centroids the regions of D̃ with a high rate of displacement vectors convergence.
Practically, we overlap a square grid to D̃ and compute, for each square, the per-pixel
average number of vectors pointing inside it. If such number is above a predefined
threshold εC , the square is considered a centroid square. Connected squares are grouped
together, to yield the set of centroid regions {ci }, with i in [1, ÑInst ]. The instance masks
can then be extracted by assigning each tool pixel p to the centroid ci closest to the point
identified by p+ D̃|p. This yields the set of predicted instance masks {M̃ Inst

i }, with i in
[1, ÑInst ] (Figure 4.4). In our framework, the predicted instance masks are subsequently
used to learn instance-wise feature representations, as now discussed.
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Figure 4.5: Overview of the tracking strategy used to generate positive samples for contrastive
learning. Given two consecutive frames, centroids at time t , obtained from the displacement field
D t are mapped to the It+1 space using optical flow OF , computed between the two images It and
It+1. The projected centroids are then matched to the ones obtained from the displacement field
D t+1. This allows to build the set of tubes {Ti }, with i in [1, ÑInst ]. Tubes are progressively grown by
repeating this process for consecutive frames.

4.2.2 Instance-wise Feature Representation Learning

In the absence of pixel-wise semantic labels, we rely on self-supervision to learn robust
and meaningful feature representations of each tool instance, tailored for the instance
segmentation task. The problem of self-supervised representation learning has been of-
ten addressed by means of contrastive learning in literature [JBZ+20]. While general con-
trastive learning approaches usually learn global frame-level feature representations, we
find this formulation to be ill-posed for the instrument segmentation problem, as it lacks
the spatial granularity necessary to discriminate between different instances. Therefore
we design an instance-level contrastive learning approach, exploiting the unsupervised
instantiation described above and intrinsic temporal information from video sequences.
Given an image I and the set of instance masks {M̃ Inst

i } predicted by the instantiation
model, we want to map each instance to a feature vector Fi , capturing its semantic con-
tent. We obtain feature vectors using a feature extractor model implemented using a
standard ResNet-50 architecture. Specifically, for each instance, we pass I through the
model and multiply the intermediate feature maps by M̃ Inst

i , resized to match their di-
mensions, to obtain the corresponding instance-wise feature vector Fi . Then, given a
feature representation Fi , intrinsic temporal information from the video sequence is used
to draw positive and negative examples for contrastive loss computation. Specifically:

• positive examples {F+
i } are sampled from the instance tube Ti , built from the frame-

by-frame tracking of the instance i . Such tracking is described in Figure 4.5. Given
the consecutive images It and It+1, and their corresponding sets of instrument in-
stances, tracking is solved by projecting the centroids of It into It+1 space using the
optical flow OF , computed between It and It+1. Each It centroid is then matched
to the closest It+1 centroid. Optical flow projection allows to robustly handle tool
movements between consecutive frames, reducing the chances of wrong matching;

• negative examples {F−
i } can be sampled either from different tubes belonging to the

same frame, or from tubes far apart in time.
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The feature extractor network is then trained by optimizing the loss LF between {F+
i } and

{F−
i }:

LF = LSC L({F+
i }, {F−

i }), (4.3)

where LSC L is the Supervised Contrastive Loss formulation proposed in [KTW+20], with
each instance tube treated as a separate class. The learnt feature representations are
exploited in the next step for classifier training.

4.2.3 Instance-wise Tool Type Classification

Given the set of available tool type classes {Si }, with i in [1, Ncl s], a classifier model must
now be trained to learn the mapping between instance-wise features and class labels
from that set. In the absence of pixel-wise semantic labels, we rely on binary tool pres-
ence labels to solve this task. However, in order to leverage this information, each tool in-
stance must be matched to a binary tool presence label. To this aim, we inject a minimal
amount of human knowledge, specifically collected to maximize its information content
and exploit it to solve the matching task.
Specifically, we automatically select a tiny number of highly representative instances
(protoype instances) and ask a human user to label them. The gathered information
is then used to match binary tool presence labels and instances, providing an effective
supervision signal for classifier training. The two steps are now detailed.

Prototype labelling: given the complete set of learnt features for all the instances in
the training set, unsupervised clustering is applied. In our experiments we make use of
the standard K-Means++ clustering algorithm [AV06], with the number of clusters Nkm

regarded as an hyper-parameter. The Nkm instances corresponding to the clusters’ cen-
troids are defined as prototype instances. A human user would now be required to assign a
label SP from the set {Si } to each prototype instance. In order to propagate the prototype
instance labels to the rest of the training instances, we require all instances belonging to
the same cluster to share the same semantic label SP . Figure 4.6 provides a visualization
the of prototype instance labelling process, and of the result of prototype labels propaga-
tion. In principle, a number of clusters Nkm equal to Ncl s , the total number of tool type
classes available, is sufficient to correctly label the whole training dataset, and potentially
to directly deploy the instance segmentation model: given an unseen image I and a
predicted tool instance mask M̃ Inst

i from that image, inference would then be performed
by extracting the corresponding feature vector Fi and associating it to the prototype label
SP of the cluster closest to Fi in the feature space. However, in practice, as the feature
learning step is imperfect, the prototype instance label propagation is also imperfect.
Nonetheless, we show that the information provided by prototype labels can be used
to match binary tool presence labels and instances, providing an effective supervision
signal for classifier training.

Binary tool presence labels incorporation: let us consider the set of binary tool pres-
ence labels {SW

i } with i in [1, NW ], subset of the set of tool type labels {Si }, associated to a
certain frame. As discussed in the Introduction Section, this information can be defined
as frame-wise, if the labels indicate which tool types are effectively visible in the frame, or
sequence-wise, if they indicate which tool types are visible at some point in the sequence
the frame belongs to, but not necessarily in such frame. Binary tool presence informa-
tion, either frame-wise or sequence-wise, does not provide tool localisation information,
and is therefore defined as weak with respect to the segmentation task. While cheaply
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Figure 4.6: Left: visualization of learnt feature representations of the EndoVis 2017 [ASK+19]
training set instances, clustered (Nkm equal to 8) and projected in the 2D space using t-SNE
algorithm [VdMH08]. Each instance point is colored in a different shade of grey to represent the
cluster id. Prototype instance features are marked with⋆, and the corresponding masks are overlaid
on the frame and highlighted by a bounding-box, to facilitate their labelling by a human user. The
color of the mask overlays represents the ground truth tool type that the user would assign. Right:
prototype instance labels propagation to the training set. Each instance-wise feature projection is
colored accordingly to its prototype label, assigned via propagation from the prototype instance.

obtainable, such weak labels are often overlooked by segmentation approaches, as they
pose several challenges:

• differently from pixel-wise semantic labels, weak labels are not directly matched
to a specific instance, making them hard to digest for standard segmentation ap-
proaches, whose training is based on pixel-wise annotations;

• depending on the system/annotation protocol used to collect the information, the
presence of multiple instances of the same tool type may not be recorded. In the
Cholec80 dataset [TSM+16], for example, frame-wise binary tool presence labels do
not keep track of multiple tool instances;

• for sequence-wise labels it is quite common that tool type labels do not reflect which
tools are effectively visible in the image. In the case of robotic surgery, for example,
tools are attached beforehand to the robotic system, potentially remaining unused
for relatively long periods of time. Similarly for phases, certain tools, like the ones
used for coagulation, may be linked to every phase of a procedure, while being
visible only for small amounts of time.

In order to make effective use of such information, each tool instance in a frame must be
matched to a weak label from the set {SW

i } associated to that frame. Once the matching
is found, a classifier model can be trained on the matched labels. In practice, the binary
tool presence labels softly constrain the training of the classifier, providing a reduced set
of tool type labels among which the ground truth one for each instance is to be found.

Let us consider an image I , the sets of instance masks, features and prototype labels
{M̃ Inst

i }, {Fi }, {SP
i }, with i in [1, ÑInst ], and the set of weak labels {SW

i }, with i in [1, NW ]
associated to I . Mining such weak labels requires finding the function ξ, matching the
set of ÑInst features to the set of NW weak labels. However, in the most general case, such
transformation is:
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Figure 4.7: Overview of the proposed weakly-supervised instance classification module. Given an
image I , the corresponding set of instance-wise features {Fi }, with i in [1, ÑInst ], is obtained from
the instance masks M̃ Inst

i . Each feature is mapped to the corresponding prototype label SP
i , which,

as shown in this case, does not necessarily correspond to the ground truth label. Each feature is
also independently passed through the Teacher (T) and Student networks (S), yielding the predicted
probabilities P̃T

i , P̃S
i , and the corresponding predicted labels S̃T

i , S̃S
i (for the sake of readability

only the latter are shown in the picture). T is trained optimizing the loss LT computed using the
prototype labels {SP

i }. Simultaneously, T predictions are used to compute the assignment costs
C〈iC ,iP 〉 for each iP permutation of each iC combination of the weak labels {SW

i }, with i in [1, NW ].
The ordered set [S̄W

i ], with i in [1, ÑInst ], corresponding to the minimum assignment cost, is used
to compute the loss LS for Student network optimization.

• non injective, as there could be multiple instances sharing the same tool label SW
i ;

• non surjective, as a certain tool label SW
i may not be present in a specific frame.

This implies that given the set of ÑInst tool instances in a frame, different combinations
of ÑInst elements of the NW weak labels are plausible. To simplify the problem, and
avoid degenerate solutions, we assume that if the number of instances ÑInst in a frame is
equal or smaller than the number of labels, every instance is assigned to a different label.
Specifically, we identify the set of plausible weak labels combinations as follows:

• if ÑInst < NW , all the possible combinations of ÑInst elements of the NW labels are
plausible;

• if ÑInst == NW , we assume that the set of NW labels is the only plausible combina-
tion;

• if ÑInst > NW , all the possible combinations with repetitions of ÑInst elements of
the NW labels are plausible.

Among the set of plausible weak label combinations, the correct label combination must
be identified, and the matching between each instance and each weak label in such
combination must be determined. This could be achieved by associating to each iP per-
mutation of each iC plausible combination of the weak labels an assignment cost C〈iC ,iP 〉.
Each couple 〈iC , iP 〉 yields an ordered set of weak labels [SW,〈iP ,iC 〉

i ], with i in [1, ÑInst ].
Among them, the ordered set minimizing the assignment cost could be selected and used
for the classifier training.
To solve this problem we propose a teacher-student approach (Figure 4.7), exploiting the
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knowledge gathered from the prototype labels. Teacher and Student are two identical
classifiers that map a feature vector Fi to the vectors P̃T

i , P̃S
i , respectively. P̃T

i , P̃S
i represent

the predicted probability of the instance to belong to each of the Ncl s classes, according to
Teacher and Student, respectively. From P̃T

i , P̃S
i the class with the highest probability S̃T

i ,
S̃S

i is regarded as the predicted label. The Teacher network is trained to map each feature
Fi to the corresponding prototype label SP

i , by optimizing the instance-wise classification
loss LTi :

LTi = LC E (P̃T
i ,SP

i ). (4.4)

For each couple 〈iC , iP 〉, its assignment cost C〈iC ,iP 〉 can then be computed as the av-
erage cross-entropy loss between the predicted probabilities [P̃T

i ] and the weak labels

[SW,〈iP ,iC 〉
i ], corresponding to that couple, as follows:

C〈iC ,iP 〉 =
1

ÑInst

ÑInst∑
i=1

LC E (P̃T
i ,SW,〈iC ,iP 〉

i ). (4.5)

The ordered set of weak labels [S̄W,iP ,iC
i ], corresponding to the couple 〈iC , iP 〉 minimizing

the assignment cost, is selected. The Student network is then trained by optimizing the
instance-wise classification loss LSi , between the predicted probabilities [P̃S

i ] and the

matched weak labels [S̄W,iP ,iC
i ]:

LSi = LC E (P̃S
i , S̄W,〈iC ,iP 〉

i ). (4.6)

In practice, the Teacher network applies the knowledge gathered from the prototype
labels to identify the correct ordered set of weak labels used for Student training. Doing
so, the Teacher approximates the function ξ, matching each of the ÑInst tool instances to
a weak label from the set {SW

i }.
This general framework applies to both frame-wise and sequence-wise binary tool pres-
ence labels. In the case of frame-wise labels, ξ becomes surjective, significantly reducing
the space of possible solutions and facilitating the matching.

4.3 Experimental Set-up

The proposed framework was validated on the MICCAI 2017 and 2018 EndoVis Robotic
Instrument Segmentation Challenge datasets. The two datasets are now introduced (Sec-
tion 4.3.1), together with the specific design choices and training details (Section 4.3.2).

4.3.1 Datasets

EndoVis2017 [ASK+19]: the original challenge dataset consists of 10 video clips,
resampled at a frame rate of 1 frame-per-second, of abdominal porcine procedures,
performed using da Vinci robotic system. Each clip contains 300 high-resolution frames
(1024 × 1280). During the challenge 8x 225 frames were released for training, while
the remaining 8x 75 frames and two additional clips were held out by the organizers
for testing. A total of 7 tool classes are present in the dataset. We provide results on
this dataset according to the same evaluation protocol as [SRKI18a], by performing
4-fold cross-validation on the 8x 225 released training data (regrouped in 4 splits). We
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report the average metric over the 4 splits, for direct comparison with state-of-the-art
approaches.

EndoVis2018 [AKB+20]: the original challenge dataset contains 19 video clips,
resampled at a frame rate of 1 frame-per-second, of abdominal porcine procedures,
performed using da Vinci robotic system. Each video contains a total of 300 high-
resolution frames (1024 × 1280). During the challenge 15 clips were released for training,
while the remaining clips were held out by the organizers for testing. The dataset
was originally annotated for anatomy and tool-part segmentation, and did not feature
instrument type labels. [GBSA20] annotated with pixel-wise tool type labels 149 frames
for each of the 15 training clips, and split them into a training set consisting of 11 clips,
and a validation set containing the remaining 4 clips. The same 7 tool classes from
EndoVis2017 dataset were used. We provide results on this dataset according to the same
evaluation protocol as [GBSA20], by training on the 11 training clips, and validating on
the remaining 4 clips.

As the proposed PAF-IS approach requires binary instrument masks to train,
we provide results using both manually annotated binary masks and automatically
segmented masks generated using the unsupervised FUN-SIS approach [SRDM+23].
The mean binary IoU for the FUN-SIS approach on the EndoVis2017 and EndoVis2018
datasets is equal to 83.7% and 81.3%, respectively.

Frame-wise binary tool presence labels were automatically generated for each frame
as the unique pixel-wise semantic labels present in the corresponding ground truth
masks. Sequence-wise binary tool presence labels were also automatically generated, by
considering each video clip in the datasets as a sequence, and assigning to each clip,
as sequence-wise labels, the full set of unique semantic labels present in the ground
truth masks of all the frames in the clip. For 46.12% of the frames in the EndoVis2018
dataset the sequence-wise labels do not correspond to the frame-wise labels (40.72% for
EndoVis2017 dataset), i.e., for a certain frame, its sequence-wise labels contain at least
a tool type which is not visible in it (but which is present at some point in the clip it
belongs to).

4.3.2 Design Choices & Training Details

Tool instantiation: the instantiation model is implemented as a U-Net architecture
with SegFormer encoder [XWY+21], available from the Segmentation Models library
in PyTorch. Training was carried out for 60 epochs using the Adam optimizer with a
learning rate equal to 1e-3 and a batch size of 32, applying standard photometric and
geometric augmentations from the Albumentation library to the original images, resized
to a 256× 256 resolution. During inference, centroids were selected by overlapping the
predicted displacement field with a square grid of 32×32 resolution (i.e. each grid square
of 8 × 8 pixel dimension); a threshold εC of 5 was used to select centroid squares (i.e.
squares with a per-pixel average of at least 5 displacement vectors pointing at them were
selected as centroids). The impact of grid resolution and threshold value is investigated
in Section 4.5.
Instance-wise feature representation learning: the feature extractor network is
implemented as a ResNet-50 architecture. Each instance mask is multiplied by the
output of the conv3_4 layer. Instance-wise features are obtained by applying a global
average pooling to the output of the conv5_3 layer, having 2048 feature channels.
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Training was carried out for 80 epochs using the Adam optimizer with a learning rate
equal to 5e-5 and a batch size of 64, applying standard photometric and geometric
augmentations to the original images, resized to a 512 × 512 resolution. For the
contrastive loss LSC L a temperature factor equal to 0.1 was used.
Instance-wise tool type classification: for the main experiments (Section 4.4.2), K-
Means++ clustering algorithm was applied with a total number of cluster Nkm equal
to 8 (therefore 8 instances were required to be labelled by a potential human user).
While in the real scenario such assignment would be performed by a human operator,
as discussed in Section 4.5, it was here automatically performed by associating to each
prototype instance the semantic label of the ground truth instance of the same frame
having the maximum overlap according to the Intersection-over-Union metric.
The classification networks (Teacher, Student) were implemented as a 2-layer fully-
connected network, with intermediate feature size of 512 and batch normalization.
Training was carried out for 40 epochs using the Adam optimizer with a learning rate
equal to 1e-4 and a batch size of 128, applying standard photometric and geometric
augmentations to the original images, resized to a 512×512 resolution.

4.4 Experiments and Results Analysis

We now present the experimental validation of the proposed PAF-IS framework, and
compare it with state-of-the-art approaches. Tool instantiation results and complete
instance segmentation results are separately presented in Sections 4.4.1 & 4.4.2, respec-
tively.

4.4.1 Tool Instantiation

In order to analyze tool instantiation quality, we evaluate results according to a class-
agnostic Average-Precision metric, computed for two values of threshold Intersection-
Over-Union (IoU): AP@0.5 (50%), AP@0.7 (70%). We present results obtained by our un-
supervised approach using, as binary masks, both manual annotations (PAF-IS CCM) and
unsupervised FUN-SIS predictions (PAF-IS CCF). In addition, we report results for the
instantiation model trained in a fully-supervised manner on the ground truth displace-
ment field (PAF-IS GT). As, to the best of our knowledge, no other work has previously
attempted unsupervised instantiation of binary tool masks, we compare our solution
against a Mask-RCNN baseline, trained under the same fully-supervised (MRCNN GT)
and unsupervised modalities (MRCNN CCM, MRCNN CCF). However, as Mask-RCNN is
an anchor-based approach, the local masking for automatically identified overlapping
tools (MOV , described in Section 4.2.1), is not easily implementable, and would require
substantial architectural modifications which are beyond the scope of this work. There-
fore we limit the augmentation strategy for unsupervised Mask-RCNN experiments to
instance pasting, described in Section 4.2.1.

Results presented in Table 4.1 show how our proposed solution outperforms Mask-
RCNN across both datasets and for all the three training modalities. A similar result for
the fully-supervised training modality was already presented in [KMNA+21]. These ex-
periments highlight the benefits of tool instantiation based on direct centroid regression,
beyond full-supervision, for the unsupervised setting. Indeed, the unsupervised PAF-IS
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solution using binary annotated masks (PAF-IS CCM) closely follows the fully-supervised
one (PAF-IS GT), with an average gap of -∆3.3% AP@0.5 across the two datasets. In addi-
tion, the greatest performance gap between PAF-IS and Mask-RCNN is found when using
FUN-SIS masks to train (CCF): +∆17.5% AP@0.5 and +∆11.15% AP@0.7, in the EndoVis
2017 dataset. This result shows how our solution is particularly suitable to handle a noisy
supervision signal. Finally, the performance gap between PAF-IS CCF and PAF-IS CCM is
significantly smaller for the AP@0.5 metric (-∆4.48% on average across the two datasets)
compared to the AP@0.7 metric (-∆9.74%). This can be attributed to the lower quality
of FUN-SIS binary segmentation masks, causing a performance drop when a high IoU
threshold is used: the lower 50% IoU threshold, instead, being less affected by possible
inaccuracies in the binary segmentation masks, highlights the high instantiation quality.

Superv. Method
EndoVis

2017 2018
AP@0.5 AP@0.7 AP@0.5 AP@0.7

GT
MRCNN 76.11 61.87 75.01 63.12
PAF-IS 88.40 72.12 78.57 66.00

CCM
MRCNN 71.26 55.98 73.99 60.04
PAF-IS 85.36 63.70 75.92 61.08

CCF
MRCNN 63.81 44.99 62.48 42.31
PAF-IS 81.31 56.14 71.01 49.17

Table 4.1: Tool instantiation results for the proposed PAF-IS approach and Mask-RCNN on
EndoVis 2017 and 2018 datasets, trained according to three modalities: fully-supervised (GT) and
unsupervised using Connected Component labelling of manually annotated masks (CCM) and
FUN-SIS predicted masks (CCF).

4.4.2 Tool Instance Segmentation

In order to evaluate instance segmentation results, and compare them with other
state-of-the-art segmentation approaches, we adopt the commonly used IoU EndoVis
challenge metric defined in [GBSA20]. It is worth noticing that such metric treats the
segmentation problem as pixel-wise classification, without providing information about
instantatiation quality. Table 4.2 reports the results of our PAF-IS framework and several
state-of-the-art solutions. For each method the table highlights the type of supervision
used for training. State-of-the-art approaches are all trained in a fully-supervised way
using pixel-wise semantic annotations (S), in combination with pixel-wise instance
annotations for instance segmentation methods (I). Our PAF-IS framework does not
require pixel-wise semantic or instance annotations to train, relying instead only on
prototype instance labels (P) - 8 for the experiments reported in this Table - and weak
labels, in the form of frame-wise (FW) or sequence-wise (SW) tool presence labels (results
for both modalities are reported). In addition, PAF-IS can be trained using manually
annotated binary masks (B) if available, or rely on the predictions of the unsupervised
FUN-SIS approach (results for both modalities are also reported).

Results presented in Table 4.2 show that our PAF-IS approach outperforms
fully-supervised and semi-supervised solutions adopting a semantic segmentation
problem formulation (Ternaus, MF-TN, DMF-TN), despite not requiring any pixel-wise
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Method
Supervision Type EndoVis

Pixel-wise Weak
2017 2018

S I B P FW SW
Ternaus[SRKI18a] ✓ 35.27 /

MF-TN†[JCDH19a] ✓ 37.35 /
DMF-TN†[ZJG+20] ✓30% 45.83 /
DMF-TN†[ZJG+20] ✓20% 43.71 /
DMF-TN†[ZJG+20] ✓10% 33.64 /

M&C†‡[KMNA+21] ✓ ✓ 65.70 /
ISI-Net†[GBSA20] ✓ ✓ 55.62 73.03
MRCNN[KJD+21] ✓ ✓ 42.28 /
Tra-SeTr†[ZJH22] ✓ ✓ 60.04 76.20

PAF-IS ✓ ✓0.3% 43.86 56.62
PAF-IS ✓ ✓0.3% ✓ 53.73 63.38
PAF-IS ✓ ✓0.3% ✓ 52.64 63.57

PAF-IS ✓0.3% 30.47 54.08
PAF-IS ✓0.3% ✓ 45.86 58.03
PAF-IS ✓0.3% ✓ 42.41 57.75

Table 4.2: Instance segmentation results for the proposed PAF-IS approach, state-of-the-art meth-
ods on EndoVis 2017 and 2018 datasets. Supervision signals used by each approach are reported:
pixel-wise semantic labels (S), pixel-wise instance labels (I), required by fully-supervised instance
segmentation approaches, pixel-wise binary segmentation masks (B, for PAF-IS, if not checked
FUN-SIS predicted masks are used), prototype labels (P, 8 labels in total in these experiments, ∼0.3%
of total training instances), frame-wise tool presence labels (FW) and sequence-wise tool presence
labels (SW). † methods using temporal information at inference time. ‡ methods using additional
tool-part annotations for training.

annotation. On the EndoVis 2017 dataset our solution also outperforms a standard
Mask-RCNN (MRCNN), trained on manually annotated segmentation masks and
bounding-boxes for ground truth instantiation. In addition to pixel-wise semantic
and instance annotations, the solutions outperforming our PAF-IS approach also rely
on temporal information during inference (†) and additional tool-part segmentation
annotations (‡). It is worth noticing that temporal modelling is a natural extension for
PAF-IS, as tool tracking information is already extracted as part of the instance-wise
feature learning step. Qualitative results are shown in Figures 4.12 & 4.13 at the end of
the Chapter.

4.5 Ablation Studies

In order to provide a deeper insight into the PAF-IS framework, we now present and
discuss ablation studies on three critical design choices: the augmentation strategy for
tool instantiation, the inference parameters for tool instantiation and the number of
prototype labels required for instance classification training.
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4.5.1 Tool Instantiation Augmentation Strategy

In order to train the displacement network for instrument instantiation, a pseudo-
supervision signal is generated from the binary masks using a Connected Component
algorithm. Such signal is subsequently refined by 1) preventing training on potentially
overlapping instances (OV) and 2) pasting random tool instances (PS) to artificially
simulate the case of overlapping instances (Section 4.2.1).
Tables 4.3 & 4.4 provide results of an ablation study exploring different combinations
of the two augmentation strategies. Such results prove the effectiveness of the two
augmentation strategies, and of their simultaneous use. In the case of binary annotated
masks, instance masking (OV) provides an average improvement of +∆4.46% AP@0.5
and +∆1.08% AP@0.7 across the two datasets, compared to the setting where no
augmentation is used; instance pasting (PS) provide an average improvement of
+∆3.03% AP@0.5 and +∆1.56% AP@0.7; the two strategies combined provide an average
improvement of +∆7.02% AP@0.5 and +∆5.55% AP@0.7. On the EndoVis 2018 dataset,
paste augmentation appears less effective: this could be due to the fact that several
frames in it present at least 4 separate tool instances, making the additional pasting
redundant, and potentially detrimental as frames can become too cluttered.

Augm. EndoVis

OV PS
2017 2018

AP@0.5 AP@0.7 AP@0.5 AP@0.7
74.85 56.585 71.56 58.08

✓ 77.74 54.82 77.58 62.00
✓ 81.91 59.82 70.54 57.98

✓ ✓ 85.35 63.70 75.92 62.08

Table 4.3: Results of the ablation study on unsupervised instrument instantiation from manually
annotated binary masks, highlighting the separate and combined impact of: masking of potentially
overlapping instances (OV) and pasting of random tool instances (PS).

Augm. EndoVis

OV PS
2017 2018

AP@0.5 AP@0.7 AP@0.5 AP@0.7
67.82 47.86 65.23 43.94

✓ 71.80 45.69 71.91 48.99
✓ 72.41 49.42 67.99 47.12

✓ ✓ 81.31 56.14 71.01 49.16

Table 4.4: Results of the ablation study on unsupervised instrument instantiation from FUN-SIS
predicted binary masks, highlighting the separate and combined impact of: masking of potentially
overlapping instances (OV) and pasting of random tool instances (PS).
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4.5.2 Tool Instantiation Inference Parameters

In order to obtain instance masks, a square grid is overlapped to the predicted
displacement field; centroid squares are then selected as the ones whose per-pixel
average of vectors pointing inside them is greater than the threshold value εC . The grid
resolution (equal to 32 × 32 in our main experiments) and the threshold εC (equal to
5 in our main experiments) regulate the trade-off between precision and recall of the
obtained instance masks. We experimentally evaluate the impact of the two parameters
by varying them in a grid-like manner, with grid resolution in [8,16,32,64,128] and εC

in [1,3,5,7,10]. Their different combinations are used to obtain instance masks from
the same displacement fields. The AP@0.5 between the obtained masks and the ground
truth instances is reported in Figure 4.8 for both the EndoVis2017 and EndoVis2018
datasets.

Figure 4.8: Impact of grid square resolution and threshold value εC on the tool instantiation quality
for the EndoVis2017 dataset (left) and EndoVis2018 dataset (right). The combination used in our
main experiments is highlighted in red.

The presented results, together with the qualitative results shown in Figure 4.9, clearly
highlight the impact of the two parameters. For intermediate grid resolution values (32×
32, 64×64), the impact of εC is minimal. However, as the grid solution decreases (16×16,
8× 8), an high value of εC negatively affects the quality as instantiation, as the average
convergence rate on large squares tends to be lower. This can be also observed from
the qualitative instantiation results shown in Figure 4.9, top-right, where no candidate
squares reach the threshold. Vice-versa, high grid resolution values (128×128) tend to be
more negatively affected by a low εC , as it leads to the identification of many false positive
centroids (instantiation results from Figure 4.9, bottom-left).

4.5.3 Prototype Labels Number

In PAF-IS, the Teacher network is required to gather knowledge from the prototype
labels, in order to be able to identify the correct ordered sets of weak labels used for
Student training. Prototype labels, therefore can have a crucial influence on the quality
of instance classification. In addition, they represent the only piece of human-sourced
information necessarily required by PAF-IS for training. Therefore we now present,
in Table 4.5, the impact on the segmentation performance, of the number of clusters
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Figure 4.9: From left to right, original image, predicted displacement field, and examples of centroid
regions and instantiation masks for different combinations of grid resolution and threshold εC .
Mask colors indicate the ID assigned to the tube the instance belongs to. The combination adopted
in our main experiments is highlighted in red.

Figure 4.10: Left: visualization of the learnt feature representations of the EndoVis 2017 training
set instances, projected in the 2D space using t-SNE algorithm [VdMH08]. Each instance point is
colored according to the corresponding ground truth tool class. Right: K-Means++ clustering and
prototype labels using different number of clusters Nkm ; projected features and prototype instances
are colored accordingly to the corresponding prototype labels.

Nkm used for K-Means clustering, equal to the number of prototype labels assigned
by a potential human operator. In order to provide a complete overview, we present
segmentation results obtained via instance classification by direct K-Means inference
(KM), Teacher network prediction (T) and Student network prediction when trained
using sequence-wise binary tool presence labels (SS) and frame-wise (SF). In addition,
Figure 4.10 provides a visualization of the learnt feature distribution, the clustering
process and the automatically selected prototype instances.
Result analysis provides different insights into the method. First of all, although a
marginal improvement exists, increasing the number of prototype instances does not
provide substantial performance gains for the Student network. This result may indicate
that effective feature learning is a crucial methodological bottleneck, which cannot
be solved by simply increasing the number of human-assigned labels. Secondly, the
presented results highlight the consistent improvement in performance provided by the
Student network, trained on weak labels matched through the Teacher model. Although
the Teacher learns to substantially replicate K-Means clustering classification, as shown
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Nkm
Model

KM T SS SF

8 43.86 45.66 52.64 53.73
16 38.52 41.34 50.02 52.64
32 42.33 45.26 51.23 52.44
64 44.76 48.38 52.84 53.37

(a)

Nkm
Model

KM T SS SF

8 30.47 30.88 42.21 45.86
16 37.86 41.81 46.95 47.33
32 32.49 36.40 46.40 48.00
64 36.10 41.02 46.91 47.96

(b)

Nkm
Model

KM T SS SF

8 56.62 56.80 63.57 63.38
16 56.03 57.25 60.63 61.96
32 56.11 57.48 62.80 64.76
64 53.80 57.22 62.24 63.88

(c)

Nkm
Model

KM T SS SF

8 54.08 54.14 57.75 58.03
16 56.53 57.04 57.40 58.53
32 55.53 55.86 58.45 59.48
64 55.52 56.02 57.92 59.85

(d)

Table 4.5: Results of the ablation study investigating the impact of the number of clusters Nkm

on final segmentation results, evaluated using challenge IoU metric. Results obtained using a):
manually annotated binary masks on the EndoVis2017 dataset, b): FUN-SIS predicted binary
masks on the EndoVis2017 dataset, c): manually annotated binary masks on the EndoVis2018
dataset, d): FUN-SIS predicted binary masks on the EndoVis2018 dataset. Best result across the
number of clusters highlighted in bold.

by their similar performance, this is enough to perform a good weak label matching,
responsible for Student’s superior performance. Finally, a comparison between frame-
wise (SF) and sequence-wise (SS) binary tool presence labels training, shows the value of
using the latter, much cheaper, source of information, with the average gap between the
two of ∼∆1.1%, consistently across datasets and binary mask sources.

4.6 Discussion

The results presented in Sections 4.4 & 4.5 prove the soundness of the proposed PAF-IS
framework for instance segmentation. Our solution trains on endoscopic videos paired
with binary segmentation masks, potentially obtained in an unsupervised way, and can
incorporate weak information like binary tool presence labels. Human annotation effort
is here limited to labelling a tiny set of prototype instances, automatically selected by
our approach, with inexpensive classification labels: the ablation study presented in
Section 4.5 shows that the size of such set can be reduced to 8 instances (∼0.26% of
the total number of training instances), with no significant performance drop. This
result goes significantly beyond existing semi-supervised solutions like [ZJG+20], where
a significant set of frames (up to 30%) needs to be labelled with pixel-wise annotations,
while still providing inferior segmentation performance. Indeed, our complete pixel-wise
annotation-free solution, using FUN-SIS predicted masks, outperforms fully-supervised
and semi-supervised semantic segmentation approaches like MF-TN and DMF-TN by a
consistent margin on the EndoVis 2017 dataset.
Although a performance gap still exists with top-performing fully-supervised instance
segmentation approaches, we believe there exist several directions of improvement
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to close such gap. First of all, temporal modelling could be easily learnt from the
already available tracking information, currently exploited only at training time for
feature learning. Secondly, as highlighted by the ablation study on clusters number,
feature learning represents a crucial methodological bottleneck: if the learnt feature
representations are sub-optimal, the unsupervised clustering may fail to separate tools
belonging to different classes, hindering the following classifier training. In the current
implementation, feature learning is performed in a completely unsupervised way, with
no help from external information. Weak information about binary tool presence may be
included at this stage to perform a more informed positive and negative feature sampling.

Figure 4.11: Top row: SAM [KMR+23] segmentation results on the EndoVis2017 dataset. Central
row: PAF-IS instantiation results obtained from binary annotated masks only. Bottom row: PAF-IS
instantiation results obtained from FUN-SIS predicted binary masks only.

In addition to these direct improvements, PAF-IS, not requiring pixel-wise semantic
labels, can leverage recent break-through solutions like SAM [KMR+23] (Segment Any-
thing Model) to directly obtain instance-wise masks for following feature learning and
instance-wise tool type classification. Figure 4.11 shows qualitative results from SAM
(without text prompts, not yet released as of now, April 2023) on the EndoVis2017 dataset,
compared to PAF-IS predictions. Even if SAM segmentation results are currently over-
segmenting tools, breaking them up into individual parts, our PAF-IS instantiation pre-
dictions could be used to group those parts, exploiting the high-quality boundary seg-
mentation that SAM can already provide.
In conclusion, PAF-IS major contribution relies on its ability to lift the need for pixel-wise
semantic and instance annotations of the training data. This may open up new research
directions aimed at better exploiting human annotation effort, for example by focusing it
on particularly representative or challenging samples.

4.7 Conclusion

Overall, Chapters 3 & 4 thoroughly explored the use of different sources of weak knowl-
edge about surgical tools, easily obtainable and highly repurposable across surgical do-
mains, to solve the problems of binary and instance tool segmentation. Their integra-
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tion de-facto removes the need for pixel-wise manual annotations to solve the instance
segmentation task, yielding results superior to the ones of several state-of-the-art fully-
supervised approaches. While these two contributions show that weak prior knowledge
can be sufficient to address the tool localisation and identification problem in the image
space, the next Chapter extends the scope of instrument localisation to the 3D space.
Strong prior knowledge, in the form of 3D kinematic modelling, is integrated into a Deep
Learning architecture, allowing to solve the 3D pose estimation task without relying on
manual annotations.

Figure 4.12: Qualitative segmentation results from the EndoVis2017 dataset. Row 1: ground truth;
rows 2-5: PAF-IS Student trained on (2) manually annotated binary masks and frame-wise tool
presence labels, (3) manually annotated binary masks and sequence-wise tool presence labels, (4)
FUN-SIS predicted binary masks and frame-wise tool presence labels, (3) FUN-SIS predicted binary
masks and sequence-wise tool presence labels.
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Figure 4.13: Qualitative segmentation results from the EndoVis2018 dataset. Ground truth and
PAF-IS Student results are presented in the same order as Figure 4.12 above.
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CHAPTER 5. KI-BOT: A KINEMATIC BOTTLENECK APPROACH FOR POSE
REGRESSION OF FLEXIBLE SURGICAL INSTRUMENTS DIRECTLY FROM IMAGES

5.1 Introduction

In Chapters 3 and 4 we addressed the problem of image-level tool localisation exclusively
relying on weak prior knowledge. In this Chapter we rethink the problem of tool local-
isation when stronger problem knowledge is available. The 3D pose of surgical instru-
ments is an extremely valuable piece of information for robotic automation, enabling
applications like dynamic motion constraints [MISF20] and visual-servoing [ZRCM+21].
As discussed in Section 1.4.1.2, parametrized 3D modelling of surgical tools offers the
opportunity to tackle the 3D pose estimation problem from a pure vision-based stand-
point. While the general problem formulation shown in Figure 5.1, top, has been adopted
by several works, we identify three common critical aspects, that the work in this Chapter
tries to address:

1. inference-time optimization: most of the existing solutions use the general frame-
work shown in Figure 5.1, top, to iteratively refine measured kinematic values at
inference time. Inference-time optimization often results in low throughput, in-
compatible with real-time needs;

2. need for manual annotations: in order to project the endoscopic image into the
same space as the rendered image, existing approaches learn Preal from a set of
labelled data, usually manually annotated for the tool segmentation task;

3. validation domain: validation of existing approaches has been mostly carried out
for rigid endoscopic tools. For such tools the reliability of the recorded kinematics
is usually superior compared to the one of flexible endoscopic tools, more sub-
jected to deformation due to tool-tissue interactions.

Figure 5.1: Application of the general framework for vision-based 3D pose estimation presented in
Chapter 1, Figure 1.12. Top: existing approaches commonly learn Preal from annotated datasets,
and use the distance between the two projections Preal and Prend as optimization error to refine the
kinematic values ks, recorded by the robotic system. Bottom left: our solution shifts the target of
the optimization to the neural network model Ψ, which directly regresses the kinematic vector k̂
from images. Bottom right: at inference time the predicted kinematics k̂ is obtained from the input
image only, by forward propagation through Ψ.
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5.1.1 Objective & Contributions

In this Chapter we present KI-BOT, a KInematic BOTtleneck approach for 3D pose es-
timation of flexible surgical instruments directly from images. In order to address the
above-mentioned criticalities, we propose a fully-differentiable architecture, training a
deep learning model to directly estimate kinematic values from images, without requir-
ing manual annotation of the training data. Compared to existing solutions, KI-BOT
(Figure 5.1, bottom):

• trains a regressor model to directly estimate, from single frames, the 3D pose of the
instruments, parametrized by means of their kinematic joint values. Optimization
is performed at training time only, in order to learn the parameters of the regressor
model. This makes kinematic estimation at inference time a single forward propa-
gation through the trained regressor;

• the full architecture trains end-to-end by exploiting an auto-encoder formulation
bottlenecked by the presence of the physical model of instruments and endoscopic
camera. Such architecture is designed to avoid the use of manual annotations for
Preal estimation, by leveraging the weak complementary information provided by
the recorded kinematics;

• is validated using a flexible endoscopic robot, in multiple datasets including one
containing challenging in-vivo endoscopic submucosal dissection procedures.

5.2 Methodology

The 3D pose estimation problem is here formalized as regressing from an endoscopic
image the value of the n kinematic joints k = {k0,k1, ...,kn−1} describing the configuration
of the robotic system instruments in such frame. The kinematic joint values, combined
with a 3D kinematic model of the instruments, allow to reconstruct their complete 3D
shape. In practice, the problem is here formulated as training the regressor model ψ :
I → k̂ that maps an image I , containing the instruments in a configuration represented
by the set of ground truth joint values k = {k0,k1, ...,kn−1}. If k̂ is known, the training
problem can be formulated as minimizing the fully-supervised loss LF S

r between k̂ and
the estimated joint values k̂, regressed by ψ from I :

LF S
r = |k̂−k|. (5.1)

However, k is not known in practice. The measured joint values ks, recorded by the
robotic system, are generally inaccurate, due to tool-tissue interactions and possible un-
modelled non-linearities. Therefore ks cannot be directly used as supervision signal to
train ψ.
The general framework shown in Figure 5.1, top, adopted by several state-of-the-art ap-
proaches, introduces in the problem the 3D kinematic model of the instruments and the
model of the endoscopic camera. This allows to map the kinematic values to the corre-
sponding tool projections in the image space m̂. The problem is then commonly solved
by iteratively refining the kinematic joint values ks, minimizing the distance between the
two projections Preal(I ) and Prend(m̂). However, as previously discussed, this open-loop
formulation normally requires the use of manual annotations to learn Pr eal .
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Figure 5.2: Full KI-BOT training architecture: given an input image I and the corresponding
measured kinematics ks, the training architecture forces a separation between the appearance of
the image and its kinematic content. In the bottom branch, the module β transforms I into a
backgroundized version of itself Îb . In the top branch, the regressor ψ reduces I to the estimated
kinematic configuration k̂. k̂ is then mapped into the binary silhouette projection m̂ of the
instruments on the image plane by means of the physical model ρ, consisting of the 3D model the
instruments r , the robot-camera transformation b and the model of the endoscopic camera c. A
decoder φ tries to reconstruct the input image I from Îb and m̂. The model is trained by means of
the image-based loss Lr , helped by the auxiliary loss La . The backgroundizer β and the physical
module ρ are trained in advance and frozen during the training of regressor and decoder.

5.2.1 Method Overview

In order to avoid relying on manual annotations, we propose a training architecture built
as an auto-encoder, trained by reconstructing the input image I as output of a decoder
model φ. Figure 5.1, bottom left, provides an overview of our approach, highlighting how
it differs from the commonly adopted framework (Figure 5.1, top). Figure 5.2 details our
architecture, showing how it is effectively implemented.
Our solution aims at separating the appearance of the image from its kinematic content.
In order to do that, the architecture presents two separate branches:

• the appearance branch consists of a module β, called backgroundizer module,
which converts the input image I to the approximate background-only version of
itself Îb ;

• the content branch, which contains the model ψ, regressing kinematics from the
image.

However, a general auto-encoder formulation featuring these elements only would fail
to effectively train the regressor ψ: without any constraints the vector k̂, regressed by ψ,
would not necessarily contain only kinematic information, and it would not necessarily
be physically meaningful (i.e: each regressed value corresponding to a specific instru-
ment joint). For this reason, the regressor ψ is followed by the physical module ρ, a
model of robotic instruments and endoscopic camera. The module maps the estimated
kinematics k̂ to the instrument 3D shape, through a forward kinematic model of the
instruments, and reprojects it to the camera plane as a binary tool mask m̂. The physical
module ρ takes the pivotal role of a kinematic bottleneck in the architecture: because
of the way it processes the low dimensional vector k̂, it gives it the explicit meaning of
kinematics, forcing, in turn, ψ to learn the expected regression transformation.
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Figure 5.3: Backgroundizer module β: the imprecise kinematics ks is converted to the binary
projection representation ms , through a robot-renderer model equivalent to ρ. ms is then expanded
to account for uncertainties and used to mask the image I associated with ks, which is then fed to
an inpainting network which produces Îb , the backgroundized version of I .

The outputs of the two branches, Îb and m̂, are then fed to the decoder φ, which recon-
structs the image Î from the combination of the two. The loss Lr , measuring the distance
between I and Î is minimized to train the regressor model ψ.

The proposed architecture can be seen as a modification of the general framework for
vision-based 3D pose estimation, with Preal being an identity mapping, and Prend being
an operation mapping the tool projection m̂ to the reconstructed image Î , learnt with an
unsupervised formulation as discussed in the next paragraph.
The backgroundizer and the physical module are discussed in sections 5.2.2 and 5.2.3.

5.2.2 Backgroundizer module: an Inpainting Problem

In order to make the reconstruction task feasible, the decoder φ must be provided with
information about the appearance of the image. [JGBV20], adopting a similar archi-
tecture for the task of human pose-estimation, provide this information by feeding a
second image I ′ to the decoder, shifted in time with respect to I (with I , I ′ belonging
to the same video). This approach is effective as long as I ′ contains the same exact
background as I and the subject in it has a different pose than the one the model is trying
to regress. Unfortunately, none of the hypotheses can be verified in the complex surgical
scenario: robotic instruments can remain in the same configuration for relatively long
periods during surgery, and the background appearance is constantly modified by the
direct and indirect action of the instruments (pulling tissue, bleeding, smoke etc.) and by
the movement of the camera. To address this issue, we introduce a novel backgroundizer
module β that informs the decoder about the background of the image I , by estimating
the backgroundized image Îb as:

Îb =β(I ,ks). (5.2)

The image Îb is obtained by exploiting the rough instrument localisation provided by the
recorded kinematics ks, accounting for its uncertainty. The full pipeline for the back-
groundizer module can be observed in Figure 5.3. In order to leverage the imprecise
information provided by ks, we first map it to the corresponding binary mask ms through
a physical module, equivalent to ρ. We then take into account ks uncertainty by expand-
ing the binary mask ms , in order to cover a greater area in the image space. To do that,
we simply overlap a a × b grid on the mask ms , and assign to a whole grid quadrant a
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value of 1 if at least one pixel of ms inside it corresponds to a tool. The masked image
obtained by multiplying the image I by the expanded mask is then processed by an in-
painting network, to obtain the backgroundized image Îb : the problem is formulated as
image inpainting from block occlusion [EAAMA19], solved using the inpainting network
implementation proposed in [LRS+18]. The inpainting network can be trained on artifi-
cial data, obtained by collecting background-only images, randomly masking them and
training the network to reconstruct the original images.

Figure 5.4: Physical module ρ training: a synthetic dataset is generated by mapping kinematic
vectors k to the corresponding projection masks m, using the 3D kinematic model of the tools, the
robot-camera transformation matrix and a potentially non differentiable renderer. The mapping
between kinematic vectors and projection masks is directly learnt by the neural network ρ, trained
on the synthetic dataset.

5.2.3 Camera and Robot Modelling

The physical module ρ, following the regressorψ, has the crucial role of kinematic bottle-
neck, giving k̂ the explicit meaning of kinematics, and forcingψ to properly learn the kine-
matic regression task. This module consists of a geometrical, forward-kinematic model
of the instruments, followed by a renderer (pinhole model of the endoscopic camera and
rasterizer). The forward kinematic model of an instrument is defined as the mapping
r : k → g , with g being the 3D shape of the instruments, referred to the instrument
reference frame. Assuming that the parameters of the transformation b between such
reference frame and the robot-mounted camera reference frame are known from hand-
eye calibration, and that the camera is calibrated, the instrument 3D shape g can be
projected on the camera plane and rasterized in pixel coordinates. The full rendering
operation is defined as c : g → m̂, with m̂ being the binary tool segmentation mask,
obtained binarizing the projection of the 3D shape of the instruments g on the camera
plane.
Given their embedding in an end-to-end trainable neural network architecture, both the
instrument model r and the renderer c are required to be differentiable, in order to allow
the error signal to be backpropagated through them. In this work, we address these chal-
lenges by directly learning the mapping between the kinematic vector k̂ and the output
binary mask m̂ (Figure 5.4). Given the forward kinematic model of the instruments and a
renderer (both not necessarily differentiable), a virtually infinite set of coupled samples
{k,m} can be generated and used to train a neural network to learn the direct mapping
ρ = c ⊙b ⊙ r : k̂ → m̂. The neural network is implemented as a GAN generator, mapping
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the input kinematic vector k to the corresponding tool projection mask m̂. The training
loss is formulated as a standard binary cross-entropy loss between m̂ and m.

5.2.4 Regressor and Decoder

The regressor ψ processes the input image I to predict the corresponding instrument
kinematic configuration k̂. Given the general independence between instruments (if
more than one is simultaneously present), ψ is implemented using a shared backbone
and l separate heads, one per robotic instrument of the robotic system. The backbone
is based on ResNet-50 [BCF18], using only the first and second convolutional layers.
Each head consists of four convolutional layers, followed by global average pooling and
a three-layer fully connected network, having n/l units in output. In order to take ad-
vantage of the rough information provided by the measured kinematics ks, without using
it as a strong supervision signal, we introduce a soft mean squared error auxiliary loss
function La , defined as:

La = 1

n

n∑
i=1

max((ki − k̂i )2 − t 2,0), (5.3)

with t being a tolerance hyperparameter that can be interpreted as a maximum accepted
offset of k̂ with respect to ks. The idea behind this loss is to ease the optimization process
by providing the regressor ψ with a range of kinematic values in which the solution is
likely to be found, avoiding any hard-coded constraint.

The decoder φ processes the predicted projection mask m̂ and the backgroundized
image Îb to reconstruct the image Î . The network is implemented as a UU-net, an exten-
sion of the well-established U-net architecture [RFB15], having two separate contracting
paths for m̂ and Îb , and an expanding path where corresponding features from the two
contracting branches are concatenated. The reconstructed image Î is compared to the
input image I by means of a perceptual loss Lr , defined as:

Lr = ∥Γ(I )−Γ(Î )∥2, (5.4)

where Γ is a feature extractor implemented as a VGG-16 network [SZ14] pre-trained on
ImageNet dataset [DDS+09]. Regressor ψ and decoder φ are jointly optimized to mini-
mize Lr .

5.3 Experimental Set-up

5.3.1 Robotic System

The experimental validation was performed using the STRAS robot [DDZZ+13], a teleop-
erated prototype for flexible robotic endoscopic surgery [LDH+17]. The robot is built as
a standard endoscope having two operating instrument channels, through which robotic
arms can be positioned. The robot arms used in STRAS are flexible cable-actuated in-
struments. Each instrument has 3 joint angles/positions, resulting in a total dimension
of k̂ equal to 6: rotation around the instrument’s main axis, translation along the same
axis, and a cable-actuated bending, defined by the delta between the lengths of the two
cables used for actuation (Figure 5.5).
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Figure 5.5: STRAS robotic system model, showing the two instruments, each one having 3 joint
angles/positions: rotation around the instrument main axis, translation along the same axis, and
a cable-actuated bending, here represented as the radius of curvature, but actually measured as the
delta between the lengths of the two cables used for actuation. Instrument’s main axis forms a small
angle (∼ 10◦) with the main axis of the endoscope (grey cylinder).

The instrument main axes are parallel to the exit parts of the instrument channels, which
deviate from the endoscope main axis, forming a small angle (∼ 10◦), resulting almost
perpendicular to the camera plane. During working configuration, instruments are
bent, in order to be inside the field-of-view of the camera; therefore, when the rotational
joint is activated, the visible part of the instruments moves on a plane almost parallel to
the camera plane, avoiding ambiguities between pose and projected shape [AOH+18].
Using a constant curvature assumption, the joint angles can be used to compute the
forward kinematic model of the robotic instruments, following equations detailed in
[WIJ10]. The robot instruments are teleoperated by the user sending commands through
a master console. The positions of the motors are recorded into the array of joint values
ks. Camera images are acquired through an acquisition board in a synchronized fashion,
resulting in RGB images with 570× 760 pixel resolution. The forward kinematic model
of the instruments and the renderer were implemented using the VTK library [GSBW12].
The two VTK models were used exclusively in the datasets generation process, as
detailed later in this paragraph, and not included in the training architecture, given their
non-differentiability.

5.3.2 Datasets

Three different datasets were used for validating the proposed approach, two from real
acquisitions and a semi-synthetic one:

• phantom dataset: this dataset was built on the bench-top, using a plastic phantom
model of the human digestive system. During the acquisition, both the endoscope
and the plastic model were moved, in order to avoid having a static background
appearance.

• in-vivo dataset: videos for this dataset were collected as part of a pre-clinical
study [MLF+19] from a 4-day set of in-vivo experiments on porcine models1. This

1The study protocol for this experiment was approved by the Institutional Ethical Committee on Animal
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Figure 5.6: Semi-synthetic dataset building: a kinematic configuration k and a background b are
randomly sampled. k is then fed to a VTK model of the robotic instruments (ρ∗, where * means that
binarization of the rendered image is not applied, differently from ρ) and rendered on the image
space. The projection is then blended with b to obtain the image I . Parallelly, random noise is added
to k to simulate the measured kinematics ks (visualized as the corresponding binary projection ms

on the image plane obtained through ρ, in order to qualitatively show the difference with the GT
kinematic configuration k).

dataset presents several challenges compared to standard benchmark datasets
like EndoVis, including low foreground/background contrast, highly cluttered and
changing background, frequent occlusions and bleeding, and strong tool-tissue
interactions.

• semi-synthetic dataset: this dataset was created by blending background-only im-
ages, automatically extracted from the in-vivo dataset by parsing the associated
kinematic information (although imprecise), with rendered robot instruments, ob-
tained using the VTK model of tools and renderer, and random kinematic configu-
rations k. In order to simulate a realistic imprecise kinematic information ks for this
dataset, we added to the nominal value k a normally distributed noise, whose range
was empirically chosen to match the real-dataset noise. The full process followed
to build the semi-synthetic dataset is shown in Figure 5.6.

For the semi-synthetic dataset, the ground truth (GT) joint configuration is known
a-priori. For the phantom and invivo datasets, the GT joint configuration is unknown,
unless external sensors are introduced. The evaluation on these two datasets is therefore
performed indirectly: the 3D shape of the instruments is reconstructed according to the
predicted kinematics k̂, and projected on the camera plane: the projected mask m̂ can
be then compared to the instruments ground truth location on the images, obtained via
manual segmentation, providing an indirect evaluation of the estimated k̂.

In order to train and evaluate the physical module, a synthetic dataset was built gen-
erating random couples {ki,mi }, using the VTK model of instruments and renderer.
For the training of the inpainting network, two separate training datasets were artificially
built. The first one, real backgrounds, was built automatically extracting background-

Experimentation (ICOMETH No.38.2011.01.018). Animals were managed in accordance with French laws
for animal use and care as well as with the European Community Council directive no. 2010/63/EU
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Dataset # Images Training # GT testing images

physical module 100k 10k
real backgrounds 6000 /

phantom backgrounds 1 (+augmentation) /
semi-synthetic 20400 2400

phantom 6800 800*
in-vivo 28800 (4 days) 400*/day

Table 5.1: Number of images in each training and testing dataset (* GT 2-D segmentation mask
only, obtained via manual segmentation)

only images from the in-vivo dataset, according to the associated kinematic information
(although imprecise), and used to train the backgroundizer for the semi-synthetic and
in-vivo experiments; the second one, phantom backgrounds was built by extracting a
single background-only image from the phantom dataset, strongly augmented through
operations like rotation, cropping, lighting etc., and used for the phantom experiments.
Table 5.1 summarizes the number of images and GT images for all the datasets.

5.3.3 Design Choices & Training Details

As a preliminary step, the inpainting network, belonging to the backgroundizer module
β, and the neural network implementation of the physical module ρ were trained. The
physical module was trained on the randomly generated couples {ki,mi }, for 100 epochs,
using a batch size of 64 and a learning rate of 0.0005. For the inpainting network the
grid resolution was set to 6 × 8, as experimentally found providing the best trade-off
between area covered and inpainting quality. Two inpainting networks were trained (on
real backgrounds and phantom backgrounds), with a batch size equal to 16 and a learning
rate of 0.001, until visually satisfying results were reached.
The two modules were then frozen during the end-to-end training of the regressor ψ
and the decoder φ. The regressor and the decoder were trained alternatively (1 iteration
each) using the Adam optimizer with learning rates equal to 1e-4 and 1e-5, respectively,
a batch size of 36, for 100 epochs: the decoder was trained on the loss Lr ; the regressor
was trained on a weighted sum of losses Lr and La , defined as:

L =αaLa +αr Lr , (5.5)

with αa , αr being weight parameters set to 10 and 0.001, respectively, in order to
balance the magnitude of the two losses. The tolerance parameter t for each joint was
empirically determined in the context of other work using the STRAS robotic system
[dCRPR19, DDZZ+13].

5.4 Experiments and Results Analysis

In this Section we present the validation results obtained by the proposed approach on
the three datasets.
First, in Section 5.4.1, we present results for the backgroundizer β and the physical mod-
ule ρ.
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Figure 5.7: Examples of backgroundizer module results. Top row shows one image for each dataset
(semi-synthetic,phantom, in-vivo), with the corresponding measured kinematics ks projection
(imprecise). Bottom row shows the corresponding backgroundized versions, obtained using the
rough localisation provided by ks.

Then, is Section 5.4.1, we present and analyze results for kinematic estimation. In order
to assess the actual contribution of the method, we compare its performance against two
baseline models. They both consist of solely the regressor modelψ trained by minimizing
only the loss function La defined in eq. 5.3:

• the first baseline model BSupKs was trained by setting the tolerance parameter t to
0, thus resulting in a fully-supervised training, having ks as target;

• the second baseline model BSupSoftKs was trained by setting the parameter t to the
same value as the one used for our main model, thus resulting in a softer supervi-
sion.

Together with the baselines, also the raw measured kinematics ks provided by the robotic
system is evaluated.
For the evaluation on the in-vivo dataset, leave-one-out cross-validation was performed,
by training the models on data from 3 days and testing on the remaining. The average of
the results across the 4 days was then computed and reported.

5.4.1 Backgroundizer and Physical Modules Results

The physical module ρ was evaluated by means of the Intersection-over-Union metric,
resulting in an IoU of 94.3% on the testing dataset.
For the backgroundizer module, the inpainting network was qualitatively evaluated.
Qualitative results on the three datasets are shown in Figure 5.7.

5.4.2 Kinematic Regression Results

For the semi-synthetic dataset, the GT kinematic configuration k of the instruments is
known, and the Mean Absolute Error (MAE) for each joint can be computed. Reprojection
of the estimated instrument shape on the image plane is also using the IoU metric. Re-
sults are reported in Table 5.2. For the real phantom and in-vivo datasets the reprojection
error with respect to the manually annotated GT is evaluated, via IoU metric. Results are
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left tool right tool

tr.[mm] ro.[deg] be.[mm] IoU[%] tr.[mm] ro.[deg] be.[mm] IoU[%]

ks 6.40 16.40 0.87 24.41 3.21 13.07 0.77 42.21
BSupKs 4.00 10.30 0.73 64.62 1.85 7.05 0.49 64.68
BSupSoftKs 4.27 11.00 0.62 55.56 2.13 6.97 0.50 62.03
KI-BOT 1.75 6.02 0.47 73.86 1.17 3.61 0.30 85.42

Table 5.2: Semi-synthetic dataset results. Comparison with raw kinematics ks and fully supervised
methods BSupKs, BSupSoftKs. For the joint mean absolute errors (translation: tr., rotation: ro.,
bending: be.), lower is better. For the reprojection IoU metric higher is better.

left tool right tool

phant. in-vivo phant. in-vivo

ks 28.32 42.14 32.73 44.73
BSupKs 28.02 48.21 32.72 46.12
BSupSoftKs 31.31 45.83 33.02 43.64
KI-BOT 64.00 55.40 72.52 55.43

Table 5.3: Evaluation of the IoU on the real datasets (Phantom & in-vivo). Comparison with raw
kinematics ks and fully supervised methods BSupKs, BSupSoftKs. For the in-vivo the average of the
results obtained for each day is reported.

reported in Table 5.3. Qualitative results for the three datasets can be observed in Figure
5.8.

The results obtained in the three datasets confirm the effectiveness of our solution to
learn kinematic regression from images without relying on manual annotations. This is
shown directly by the improved kinematics estimation in the semi-synthetic dataset, and
indirectly by the higher reprojection accuracy on the semi-synthetic and real datasets,
with respect to both the baselines and the raw kinematics.
In the semi-synthetic dataset KI-BOT improves the accuracy of each joint value compared
to the recorded kinematics ks: -3.345 mm MAE (-68.11% error) for translation, -9.92
deg MAE (-67.83% error) for rotation and -0.435 mm MAE (-53.51% error) for bending,
on average between left and right tool. This results in a largely improved IoU between
reprojected tools and GT tool masks (+∆38.04% IoU). A similar improvement for
the reprojection accuracy with respect to ks is achieved in the phantom dataset
(+∆37.74% IoU). In the in-vivo dataset such improvement, while still consistent, is
reduced: +∆11.98% IoU. This can be explained by two main reasons: 1) the dataset is
more challenging due to the factors mentioned in section 5.3 (e.g. low instruments-
background contrast), which can affect image-based training; 2) phenomena such as
tool-channel interaction and slackening [Cab16], more evident under strong tool-tissue
interaction conditions.

When compared to the baselines models, KI-BOT outperforms both BSupKs and
BSupSoftKs by consistent margins: +∆14.96% IoU and +∆20.85% IoU in the semi-
synthetic dataset, +∆37.89% IoU and +∆36.06% IoU in the phantom dataset, +∆8.25%
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Figure 5.8: Examples of qualitative results on the three testing datasets. Top row: semi-synthetic;
middle row: phantom; bottom row: in-vivo. The last two columns show corresponding re-
constructed image and backgroundized image. Note that at inference time none of the two is
needed/obtained, since the image-based regressor ψ is a completely independent module.

IoU and +∆10.68% IoU in the in-vivo dataset (average for left and right tool). Interestingly,
also the baseline models, directly supervised by ks during training, improve the quality of
kinematics, although by a smaller amount than KI-BOT. This can be seen as an empirical
confirmation of the unpredictability property, discussed in Chapter 3: as the noise
affecting ks is not predictable from the image, the regressor learns the easiest pattern, by
averaging out the noise across the training data.
The evaluation of BSupSoftKs also provides an ablation study of our method, showing
that the improvements brought by KI-BOT are not solely caused by the soft loss, but
mostly derive from the image-based loss Lr .

Finally, the average processing time for each image, without any specific model
optimization, is approximately 30 ms (∼ 33 fps) on a single Tesla V100 GPU, compatible
with real-time needs.

5.5 Discussion

The proposed KI-BOT solution aimed at showing the feasibility of tackling the 3D pose
estimation problem by exclusively relying on the availability of a noisy kinematic signal
and a 3D model of the instruments. While we can conclude that this was successfully
demonstrated, several work directions should be considered in view of a potential real-
world application, aimed at improving robustness and flexibility:

• improved problem modelling: the physical module ρ, consisting of the kinematic
model r , the robot-camera transformation matrix b and the renderer model c, is
here implicitly learnt from a synthetic dataset as the direct mapping between kine-
matics and tool projections. This strategy, while effective for the presented study,
lacks in flexibility and, potentially, robustness. First of all, it is based on the as-
sumption that the robot-camera transformation b is perfectly known, a hypothesis
which may not be guaranteed in practice. More recent solutions like [DWLU23]
include b as optimization target, allowing for its imprecise initialization. Alterna-
tively, recent works have shown the feasibility of performing hand-eye calibration
without calibration objects, more flexible to changes in robotic set-ups [PVES21]. A
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Figure 5.9: Left: modelled tool configuration according to a certain kinematic configuration k.
Right: actual tool configuration due to unmodelled phenomena, like tool slackening and tool-
channel interaction.

similar assumption is also made for the camera parameters. While having a known
calibration matrix is a common assumption for vision-based 3D pose estimation
methods, our solution does not currently account for possible changes in such
matrix, as this would require to completely retrain ρ. This severe limitation should
be obviated by using differentiable renderering operations [KUH18], as done in
recent works for both rigid and flexible surgical tools [DZK+22, LLGY23].
Finally, more specifically to the current STRAS robot setup, the current kinematic
model is limited by a constant curvature assumption and by unmodelled phenom-
ena like tool slacking inside the working channel and interaction of the tool with the
channel border. This results in possible configurations which the current model is
unable to match (Figure 5.9). Increasing model complexity, as shown for example
in [Cab16], may bring direct benefits to our solution;

• improved noise modelling: in order to account for ks uncertainty in the back-
groundizer, we adopted the naive strategy of expanding the area covered by the
tools according to their position in a square grid. This approach misses out on
interesting opportunities to integrate additional prior knowledge. For example,
the experimental observation of tool projection in the image space according to
ks suggests that certain tool configurations are more error-prone than others. This
knowledge could be formalized, and injected into the problem to better model ks

uncertainty;

• refining instead of regressing: KI-BOT was designed to carry out the kinematic
regression task directly from images. This choice has the advantage of not requiring
real-time access to the robot API to read the kinematic data, uncommon in the
operating room [AOH+18]. However, if recorded kinematics ks is accessible in real-
time, the regression problem could be reformulated as predicting the residual error
vector ε̂k to compensate for the inaccuracy of ks. This would help ground model
predictions to the measured kinematic values ks, minimizing the risk of inaccurate
predictions, due for example, to tool occlusion;

• improved regressor and decoder problem formulation: the regressor model
currently predicts a fixed number of joint values, describing the configuration of
each tool potentially attached to the robotic system. If a tool is not visible in an
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Figure 5.10: Potential inference architecture modification, if robot kinematics ks is available in
real-time.

image, the regressor learns to predict a kinematic configuration corresponding
to an empty tool reprojection mask. However, a more efficient way to tackle this
problem could be a multi-stage pipeline, where tools are first localized at the image
level and then independently processed by the regressor, which would estimate
the configuration of each visible tool independently. Furthermore, the decoder
is not currently informed about the appearance of the tools, but only about their
kinematic configuration. This is effective for the current set-up, where the two
instruments have a similar and simple appearance, which can be implicitly learnt
by the decoder as a prior. However, in order to deal with more complex instrument
designs with significant inter-class tool variability, such as for the da Vinci®
robotic system, additional information should be provided to the decoder.
These two limitations could be tackled by adding an instance segmentation
module, predicting individual tool masks and classes, fed respectively to regressor
and decoder models, in order to achieve instance-wise pose regression and class-
informed decoding. A possible integration of KI-BOT with our PAF-IS approach
for instance segmentation is shown in Figure 5.11. However, as discussed below,
the availability of unsupervised methods for image-level localisation may facilitate
KI-BOT training by replacing the image reconstruction objective;

Figure 5.11: Potential training architecture modification integrating instance segmentation by PAF-
IS to perform instance-wise 3D pose estimation and class-informed decoding.

• integration of image-level localisation: the image reconstruction-based objective
was originally developed to avoid relying on manual annotations to learn the map-
ping operation Preal. While yielding satisfying results, such a strategy could now be
potentially replaced by tools like FUN-SIS (Chapter 3), directly mapping the image
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I into the same domain as m̂, without requiring manual annotations. A potential
KI-BOT architecture integrating FUN-SIS is shown in Figure 5.12, top. Interestingly,
such architecture could be in principle applied in the laparoscopic domain, as it
lifts the need for recorded kinematics (Figure 5.12, bottom). However, in the laparo-
scopic domain the transformation matrix b would be completely unknown a priori,
because dependent on trocar placement. This could open interesting research
directions, extending the task of 3D pose estimation beyond robotic surgery.

Figure 5.12: Top: potential training architecture modification integrating unsupervised tool
segmentation by FUN-SIS as Preal mapping. The loss Lr could become a cross-entropy between
projected and predicted masks. Bottom: application of such architecture to laparoscopic images.
Such a solution would need to address the problem of the unknown robot-camera transformation
b.

5.6 Conclusion

After tackling the tool localisation problem in the image space in Chapters 3 & 4, in this
Chapter we explored the use of strong prior knowledge to extend localisation to the 3D
space. The proposed KI-BOT approach aimed at showing the feasibility of tackling the
3D pose estimation problem by exclusively relying on the availability of a noisy kinematic
signal and a 3D kinematic model of the instruments.
Overall this Chapter contributes to demonstrating how general problem knowledge, both
cheaply available weak knowledge (e.g. kinematics, shape-priors), and strong repurpos-
able knowledge (e.g. 3D kinematic modelling), can effectively replace manual annota-
tions to tackle increasingly complex tool localisation tasks, from binary segmentation to
3D pose estimation.
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This final Chapter recapitulates the contributions presented in this thesis and dis-
cusses them in view of further research work and translation. Section 6.1 presents a
general framework collecting such contributions, highlighting their analogies and con-
textualizing them with respect to currently popular topics in the deep learning commu-
nity. Current limitations, paths for further development and open questions are then
discussed in Section 6.2.

6.1 A Unified Framework for Learning from Unlabelled
Datasets

The goal of the work presented in this thesis was the development of methods for
surgical instrument localisation and identification, not requiring manually annotated
data to train. This was obtained by selecting suitable sources of information and
designing frameworks able to digest such information, extracting effective supervision
signals for deep learning model training. Regardless of the specific task tackled and
prior/complementary knowledge source used, all the proposed contributions can
be seen as instantiations of the general framework presented in Figure 6.1 (right).
This framework ties together our contributions, and helps contextualize them with
respect to relevant deep learning paradigms like unsupervised learning, self-supervised
representation learning and learning-from-noisy-labels. Figure 6.1 recalls Figure 1.17 of
Chapter 1 and describes how our work addressed our main research questions, posed in
Section 1.4.4. The figure shows the standard fully-supervised learning framework (left)
and the general framework adopted by our contributions to effectively learn from prior
and complementary knowledge sources (right).

Figure 6.1: Left: fully-supervised learning framework. Right: general framework adopted in
this work for model training with no manually annotated GT. The training follows two paths.
Blue: pseudo-GT generation from unlabelled data and prior/complementary problem knowledge.
Red: supervision signal denoising, actuated as direct pseudo-GT refinement or loss modulation.
Such signal can be obtained from the pseudo-GT signal itself, the unlabelled data and additional
prior/complementary knowledge.

In the absence of a manually annotated GT, each contribution, more or less explicitly
fabricates a pseudo-GT signal from unlabelled data and prior/complementary knowl-
edge (Figure 6.1,right, blue line). While inexpensive to obtain, such pseudo-GT is often
noisy and would fail to effectively supervise the training of an output model. For this
reason. a denoising signal is produced from the pseudo-GT itself, the unlabelled data
and additional prior/complementary knowledge (Figure 6.1,right, red line): such signal
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aims at improving the quality of supervision, either by directly refining the pseudo-GT or
by modulating the loss between model’s predictions and pseudo-GT. Each contribution
can be seen as the application of this general framework to solve a specific task using a
certain source of prior/complementary knowledge.

FUN-SIS, for binary segmentation, generates pseudo-GT masks from unsupervised
segmentation of optical flow images, by incorporating tool shape-priors and relying on
the different motion properties of tools and soft tissues (Figure 6.2, blue line).
It then modulates the loss between Student’s network predictions and optical flow masks
(pseudo-GT) by means of a localised binary Intersection-over-Union masking. This strat-
egy exploits suitable noise properties of the pseudo-GT signal to automatically prevent
back-propagation from potentially mislabelled pixels (Figure 6.2, red line);

Figure 6.2: Overview of the FUN-SIS approach (Chapter 3) as the application of the general learning
framework shown in Figure 6.1 (right).

PAF-IS, for tool instantiation, generates a pseudo-GT displacement field from Con-
nected components instantiation of binary segmentation masks, relying on prior knowl-
edge about tool positioning in the field-of-view (Figure 6.3, blue line).
Prior knowledge of tool positioning and laparoscopic triangulation is then exploited to
automatically select potentially overlapping tools from the Connected Components in-
stances (pseudo-GT) and discard them from training. This step cleans the supervision
signal, but can potentially reduce the complexity of the training problem. Problem repre-
sentativeness is recovered via artificial augmentation of the supervision signal, by pasting
randomly selected instances from the training set (Figure 6.3, red line);

Figure 6.3: Overview of the PAF-IS approach for tool instantiation (Chapter 4) as the application of
the general learning framework shown in Figure 6.1 (right).
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PAF-IS, for instance classification, learns powerful feature representations via self-
supervised learning, exploiting intrinsic temporal information of the video data. Training
set features are then clustered, and each cluster is assigned to a prototype label, yielding a
pseudo-GT signal to train the Student model for instance-wise classification (Figure 6.4,
blue line).
The Student model is then trained exploiting prototype labels (pseudo-GT) as source of
information to match instances with binary tool presence labels (Figure 6.4, red line);

Figure 6.4: Overview of the PAF-IS approach for instance classification (Chapter 4) as the applica-
tion of the general learning framework shown in Figure 6.1 (right).

KI-BOT, for 3D pose estimation, directly uses raw recorded kinematics to guide net-
work optimization towards a space of plausible solutions (Figure 6.5, blue line).
Since the recorded kinematics is usually too inaccurate to directly supervised the kine-
matic regressor model training, an additional loss is computed. To this aim, the image
itself is used as target to compute the image-based reconstruction loss Lr for regressor
network optimization. This is achieved by incorporating the 3D kinematic model of
the instruments in the architecture, allowing a differentiable mapping between kine-
matics and image-space tool projection. The projected tool image is combined with
the backgroundized frame, obtained from the raw kinematics (pseudo-GT), and used to
reconstruct the input frame for loss computation (Figure 6.5, red line).

Figure 6.5: Overview of the KI-BOT approach for 3D pose estimation (Chapter 5) as the application
of the general learning framework shown in Figure 6.1 (right).

For all the presented contributions, the denoising signal originates from the pseudo-
GT, but incorporates additional information to solve the problem (e.g. additional labels
for PAF-IS instance classification, 3D tool modelling for KI-BOT). This leads to a signifi-
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cant improvement in the quality of the supervision signal, whose impact on each of our
contributions can be seen in Table 6.1.

FUN-SIS PAF-IS KI-BOT
Task BS [IoU] TI [mAP] IC [IoU] 3D [IoU]

pseudo-GT 40.08 56.86 42.33 43.40
final model 83.77 (+109.0%) 63.70 (+12.0%) 52.44 (+23.9%) 55.40 (+27.6%)

Table 6.1: Comparison between pseudo-GT quality and final model’s performance, after training
on the denoised signal. Results for our contributions on the tasks of binary segmentation (BS), tool
instantiation (TI), instance classification (IC) and 3D pose estimation (3D). The reported metrics
were taken from the main results tables in Chapters 3, 4 & 5.

6.1.1 Framework Contextualization

The general framework shown in Figure 6.1 allows to organically link the work proposed
in this thesis to several important deep learning paradigms and to highlight its transversal
contribution to the community:

• learning-from-noisy-labels: as the generated pseudo-GT is often noisy, the pro-
posed solutions to refine it can be seen as ways to effectively learn from noisy
labels. Such a problem has been largely explored in the general deep learning
community, motivated by the growing availability of platforms to cheaply collect
large quantities of annotations at the price of potential inaccuracies (e.g. crowd-
sourcing platforms, reliable web search engines). However, research work in the
surgical computer vision community is still limited. This can be due to the reduced
availability of noisy labels in the field, where the use of tools like crowd-sourcing
platforms to obtain labels is less common. The work presented in this thesis shows
the potential value of exploring the problem of learning-from-noisy-labels for tool
localisation and identification tasks, where noisy labels can be cheaply obtained
directly from data and prior knowledge.

• self-supervised representation learning: as shown by recent works in the surgical
computer vision domain, self-supervised pre-training, in combination with a re-
duced set of labelled data, can boost model performance and reduce training time.
In this thesis, we integrated self-supervised representation learning as part of PAF-
IS feature learning step, for instance segmentation. Self-supervised learning was
used to learn powerful instance-wise representations, which we clustered together
for prototype labelling. This step dramatically minimized human annotation effort
to less than the 0.2% of the fully-supervised case, significantly less than what is
commonly required by semi-supervised approaches. This application further rein-
forces the potential value of self-supervised learning: beyond pre-training for semi-
supervised approaches, representation learning can play an important role to focus
annotation effort to a few prototype samples, maximizing annotation efficiency.

• unsupervised learning: the term unsupervised learning has been used in the deep
learning community with different meanings. Early works mainly used it to de-
fine clustering and dimensionality reduction techniques [GCB04]; more recently
the term has become an alias for self-supervised representation learning [RS21].
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Furthermore, in the surgical computer vision community, different works have bor-
rowed the term to refer to approaches aimed at learning specific tasks, like in-
strument segmentation, without requiring manual annotations [PSN20, LWJ+20a].
Similarly, in this thesis we adopted the term to define all those approaches whose
training is not bottlenecked by the need for manually annotated labels paired with
training samples. This condition is essential to break the linear relationship be-
tween datasets size and cost of annotations, allowing to potentially increase the
first one without affecting the second one. We therefore believe that these ap-
proaches should fall under the definition of unsupervised learning. Nonetheless,
we think that an improved and more granular definition of learning paradigms
could help the community align on such a relevant topic, as we further discuss in
Section 6.2.3.

6.2 Discussion and Future Work

This final Section first discusses potential lines of work originating from this thesis, either
aimed at addressing current limitations (Section 6.2.1) or at exploiting the opportunities
provided by our contributions (Section 6.2.2). Open questions arising from this work are
then presented in Section 6.2.3.

6.2.1 Limitations

From a methodological stand-point, individual limitations and potential future work di-
rections, specific to each contribution, have been discussed at the end of Chapters 3,
4 & 5. We now discuss two more general limitations, related to the use of prior and
complementary knowledge sources, that future work could address:

• limited effective usage of the available information: the proposed frameworks
were designed to convert unorthodox sources of information into suitable
supervision signals for deep learning model training. However, during this
conversion, part of the information may be lost. For FUN-SIS for example, shape-
priors were only used as part of the pseudo-GT generation. Shape consistency
information could have been injected at the following stages, for example, to
regularize Proxy and Student predictions. In KI-BOT, raw kinematics was used
to backgroundize frames accounting for a systematic error, unaware of temporal
information or error-prone configuration. PAF-IS instantiates tools only based on
tool positioning on the field-of-view, overlooking motion information which could
potentially disambiguate the cases of overlap. Understanding how to maximize the
effective usage of the available information is a necessary next step of the proposed
work that future research could investigate.

• limited representativeness of validation: in order to compare our solutions with
state-of-the-art methods, training and validation were carried out on popular
benchmark datasets like EndoVis. Here, fully-supervised approaches still hold a
certain performance gap with respect to our solutions. However, as discussed in
Section 1.4.2, the representativeness of such datasets is often questionable, as their
size is limited by the cost of annotations. The development of large multi-centric
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and multi-procedural datasets for training and validation is therefore an imminent
requirement for the surgical data science community. This can enable a more
representative benchmarking of the developed approaches, clearly showing the
right steps to advance toward clinical translation. Moreover, the metrics commonly
adopted for evaluation are completely agnostic with respect to the downstream
clinical applications the developed solutions should serve. The need for metrics
specifically designed for clinically-oriented validation is further discussed as part
of open questions in Section 6.2.3.

6.2.2 Opportunities

The value of the proposed contributions is a direct consequence of their ability to train
without manual annotations, enabling instrument localisation and identification on data
coming from completely unlabelled domains. We now present application opportunities
for our solutions, pointing out how they can mitigate the main negative consequences of
the annotation bottleneck, described in Section 1.4.2:

• contribute to the development of clinically valuable applications/studies: as
described in Section 1.3.2, a wide range of applications for computer-assisted
surgery and surgical data science depends on tool localisation and identification.
For such applications, the need for tool related information can represent a
bottleneck preventing extensive validation and deployment. For example, in order
to evaluate their approach for automatic surgical skill assessment, [LZK+21] were
required to perform extensive data labelling for skill grading (the final goal) and tool
detection (enabling the study). The effort dedicated to tool annotation, could have
been highly mitigated by the availability of tools like PAF-IS, and redirected towards
a more extensive skill grading (more surgeons, more procedures etc.), enlarging the
scope of such research and its clinical value. Similarly, for different works on 3D
scene reconstruction [WLFD22], augmented reality [TPPV21] and visual-servoing
[ZRCM+21], our solutions could help enlarge the size of methodological validation,
accelerating their deployment;

• facilitate benchmark datasets creation: as already discussed, building large and
representative annotated datasets for models benchmarking is a crucial need for
the whole surgical data science community. AI-powered annotation platforms are
gaining interest for medical image analysis [PWA+19]. Such platforms can provide
predictions from pre-trained AI models, to be refined by the annotator, significantly
speeding up the annotation process. Tools like FUN-SIS and PAF-IS could be inte-
grated into such annotation platforms, facilitating the annotation of large sets of
unlabelled data for the instrument segmentation task;

• promote task de-compartmentalization: the availability of tools like FUN-SIS,
PAF-IS and KI-BOT can encourage researchers in the surgical computer vision
community to tackle relevant tasks like phase/step segmentation and action-
triplet recognition, relying on instrument-related information. As discussed
in Section 1.4.2, this is normally prevented by the lack of datasets extensively
annotated for multiple tasks. As an example, action-triplet recognition approaches
could integrate tool segmentation information provided by PAF-IS, to guide target

136



CHAPTER 6. CONCLUSION

identification. Beyond simple information integration, the general framework
presented in Figure 6.1 (right) could be applied to different tasks. For example
phase segmentation could be tackled by generating a pseudo-GT signal from
binary tool presence information, refined by prior knowledge on phase casual
relationships. Overall, this could open new interesting research directions,
promoting the de-compartmentalization of surgical computer vision research.

6.2.3 Open Questions

The work presented in this thesis tried to provide answers to the research question
asked at the end of Chapter 1: can a deep learning model effectively learn from general
knowledge about surgical tools?
While we can conclude that our work positively answered this question, other important
and urgent questions arise from it. Such questions are listed below and briefly
commented on, leaving the reader free to form his own opinion.

Is the standard protocol collect data-annotate-train obsolete?
As shown by the work presented in this thesis, the fast progress of self-supervised learning
is providing powerful tools to learn from unlabelled data. Yet, the common approach
to deep learning applications development starts with the systematic annotation of
the available data, usually relying only on qualitative intuitions from the annotators
to decide which of the available data should be annotated and how. As the interest of
the community in a more Data-Centric AI is increasing [ZBL+23], such an approach
may need to be reevaluated. As shown in this thesis the information gathered through
self-supervised learning can be directly used to target annotation efforts on valuable
samples, letting the data themselves reveal the optimal annotation strategy.

Is it time to redefine learning paradigms?
Despite an increasingly growing interest in alternatives to full-supervision, learning
paradigms ontology still relies on a few categories, like unsupervised, semi-supervised,
weakly-supervised learning. These terms are usually too broad to convey information
about the amount of supervision required for model training, and the annotation
effort needed to obtain it. As the language shapes the way we think [Bor18], the lack
of adequate terms can have the long-term effect to reduce or distort the relevance of
such topics. A more transparent way to define learning paradigms could start from an
objective quantification of the amount of supervision each method requires, based on
specific criteria: does the method require manual annotations? If yes, do annotations
need to be paired with input samples? Does every input sample need to be labelled? What
type of manual annotations are required (video-level, frame-level, pixel-level)? If labels
can be automatically obtained, do they need ad-hoc setups like simulators? Are these
setups readily available to the community and at what cost? Is their availability confined
to specific types of surgery (e.g. robot-assisted)? Answering these questions may allow a
finer annotation cost description, more oriented towards clinical translation.

What is the performance level we should strive for?
Ideally, the overarching goal for surgical computer vision research should be the
development of models enabling the deployment of clinically valuable applications.

137



6.2. DISCUSSION AND FUTURE WORK

Available metrics to evaluate such models are commonly borrowed from the general
computer vision community, and are therefore agnostic with respect to surgical
applications. The segmentation task, for example, is commonly evaluated using
Intersection-over-Union score (IoU). However, different down-stream applications
can have significantly variable requirements over the quality of segmentation masks.
Augmented reality applications using tool masking may require a perfect boundary
segmentation of the whole instruments. A surgical skill-assessment approach may
have softer requirements on boundary segmentation quality, as long as instruments
are correctly localised. An action-triplet recognition model integrating instrument
segmentation may just need a good localisation of instruments’ tip, as this is usually the
part carrying out the action. IoU metric does not reflect these different needs. If the
available tools to measure performance are not reflective of the final application needs,
how can we know when computer vision models will be ready for translation?

How do the proposed unsupervised solutions conform to regulatory guidelines?
Regulatory guidelines are quickly evolving to keep up with the latest technological
advancements. Artificial Intelligence, and in particular deep learning, challenge standard
regulatory guidelines due to their black-box nature, and their adaptive behaviour, i.e.
the possibility to retrain models as new data are collected. Recently, The U.S. Food and
Drug Administration (FDA), Health Canada, and the United Kingdom’s Medicines and
Healthcare products Regulatory Agency (MHRA) have jointly identified a list of guiding
principles that can inform the development of Good Machine Learning Practice (GMLP)
[FA+21]. In such a guideline, a great emphasis is placed on the representativeness of
both training and testing data. Point 3 of the list reads “Data collection protocols should
ensure that the relevant characteristics of the intended patient population (for example,
in terms of age, gender, sex, race, and ethnicity), use, and measurement inputs are
sufficiently represented in a sample of adequate size in the clinical study and training and
test datasets, so that results can be reasonably generalized to the population of interest”.
Unsupervised solutions not requiring manual annotations to train, such as the ones
proposed in this thesis, can certainly help deep learning approaches conform to such
requirements, by extending the size of training sets to reduce selection bias. On the other
side, solutions like FUN-SIS use mechanisms like loss modulation, aimed at improving
the quality of the supervision signal by reducing the effective size of the training sets.
These approaches may require specifically designed protocols to ensure that the effective
training data are free from biases.
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