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Abstract: In the presence of a chronic upper limb (UL) impairment, the quality
of life of the person affected can be severely compromised. For this reason, motor
rehabilitation and assistance with activities of daily living (ADLSs) are fundamen-
tal. In the context of home assistance, exoskeletons represent a valid tool to assist
UL movements in the execution of ADLs thanks to cooperation between sensors
and actuators. This thesis is part of a project aimed at the development of a
cable-driven exosuit for upper-limb assistance. Three inertial measurement units
(IMUs) are integrated into the device to allow real-time gravity compensation. The
vision behind this work is to exploit these sensors to build a kinematic model of the
UL to accomplish exosuit control and evaluate daily the user’s UL functionality
progress to provide feedback and promote user engagement. To this aim, two ob-
jectives were defined: i) implementing the online computation of anatomical angles
in accordance with the ISB (International Society of Biomechanics) standard, ii)
defining, training, and testing a neural network for motor primitives classification.
To achieve the first objective, a 3-step (IMU reset, N-pose and T-pose) calibration
procedure was proposed. Then, the formalization of the computation method for 5
ISB angles including plane of elevation (POE), angle of elevation (AOE), humeral
rotation (HR), flexion/extension (FE), and pronation/supination ( PS),, was com-
pleted. The method was validated on a robotic arm and on 5 healthy participants
by means of comparison between the IMUs and the robot’s encoders and an op-
toelectronic system respectively. For the second objective, 10 healthy participants
were asked to execute a set of activities in two different settings: one characterized
by simple ADLs (SADL) and the other by more complex ADLs (CADL). Dur-
ing the experiments, data were acquired by means of 5 IMUs and a video camera
to provide ground truth for the labeling process. Data were labeled by means of
video inspection according to the definition of 5 motor primitives: ’idle’, 'stabilize’,
'reach, 'transport’, and ’reposition’. A Long-Short Term Memory (LSTM) neural
network was then trained and tested with different combinations of datasets: SADL
for both training and test and SADL+CADL for both training and test. Results
of the validation on ISB angles showed a lower error during the test on the robotic
arm (mean RMSE 2.75°-4.96°) with respect to that on participants (mean RMSE
9.45°-29.65°). Nevertheless, the correlation coefficient was greater than 0.91 also
during the validation with healthy subjects. For what concerns the classification
performance of the LSTM model on the 2 datasets, the first achieved an fl-score
of 0.75, while the second, which is more relevant for the final application, obtained
an fl-score of 0.73. The algorithm performed better in the estimation of ’idle’
and ’transport’ primitives, which were the most present in the datasets. On the
contrary, 'reach’ and ’reposition’ primitives were often misclassified as 'transport’.
This work represents a starting point for UL assessment in daily living scenarios.



1. Introduction

1.1. Clinical problem

Upper limb motor impairment is a condition that can occur both due to neurological and neuromuscular
disorders, such as stroke and muscular dystrophy, and as a consequence of traumatic events that have severely
injured the spinal cord. During the acute phase, stroke leads to upper limb (UL) impairment in the 80% of
the affected subjects, 65% of which report a chronic loss of functionality afterward [1]. Upper extremity motor
impairment can arise at the muscle level as a loss of strength or ability to control muscle contraction [2] making
the execution of basic activities in everyday life challenging.

The constant need for assistance in the execution of activities of daily living (ADLs) as a consequence of
chronic arm impairment contributes to a loss of independence which can lead to a decrease in the individual’s
participation in usual activities, ultimately resulting in a deterioration of the quality of life [3]. Impaired subjects
might develop compensatory strategies which can be observed at the neural level as a different activation of
brain areas compared to the period preceding the injury. Moreover, they can appear in alternative movement
patterns like unnatural muscles activation of the damaged arm or learned avoidance of its use [3]. Learned non-
use is observable in an increase of unaffected limb use, particularly evident in the execution of unimanual tasks,
and in a lowered movement intensity of the impaired arm which can be observed during bimanual activities [4].
To mitigate the consequences of motor impairment, rehabilitation is fundamental. In the case of stroke or spinal
cord injury, the most common treatment approach of UL-impaired patients is to perform in clinical settings
sessions of exercises and functionality assessments which are planned in a specific schedule within the first 6
months since the occurrence of the ischemic/hemorrhagic event or the spinal trauma. Specialized practitioners
guide rehabilitative exercises which consist in the repetition of well-defined movements. The positive effects
of an extension of the rehabilitation program during the chronic stage have been proved [5], but the limited
resources of clinical centers reduce the feasibility of prolonging the rehabilitation treatment after the customary
period.

During rehabilitation sessions, the evaluation of the functionality of the UL is commonly carried out through
the application of standard clinical scales like Fugl Meyer Assessment for Upper Extremity (FMA-UE) and
Action Research Arm Test (ARAT) to assess the patient’s improvements and to personalize the treatment. The
application of FMA, ARAT, or similar clinical scales involves the conduction of several tests by the clinician:
assessment through clinical scale is therefore time-consuming [6], and due to the limited available time for each
session, can take up time for training reducing the efficacy of the treatment.

In this context, the clinical approach to rehabilitation and assessment has limitations that need to be considered:
the presence of limited resources, namely the availability of therapists, coupled with an increase in demand as a
result of the world’s population aging, may lead to an under-treatment of patients. Moreover, the rehabilitation
path may not be optimal for the patient as the accuracy of progress assessments can be compromised due to the
presence of the above-mentioned compensatory strategies, which are not always recognizable [? ]. Moreover,
factors like patient engagement and practitioner subjectivity may influence the assessment [7].

Recent studies have underlined the advantages of using wearable sensors that can provide measurements of the
kinematics of the upper limb that can be used to perform an objective assessment of the patient’s recovery.
Among the potential advantages provided by wearable sensors, one of these is the possibility to provide contin-
uous arm movement registration: a more consistent and meaningful evaluation of movement can be achieved
which in turn can result in a better understanding of functional progress. The application of wearable technolo-
gies extends beyond movement evaluation: the kinematic and dynamic measures provided by wearable sensors,
like inertial measurement units (IMUs), can be exploited in assistive robot control. The ongoing research on
robotic exoskeletons is playing a substantial role in the innovation of the rehabilitation journey, both in the
clinical settings, to increase treatment dose intensity [8], and in-home environments as assistive devices.

This thesis falls within a project conducted at Politecnico di Milano which is focused on the development of a soft
exoskeleton for the daily assistance of UL movements. This device is designed to assist patients in the execution
of activities of daily living outside of the clinical environment with the objective to restore the individual’s
independence and improve his quality of life. The primary function of this exoskeleton is the compensation of
arm weight against gravity, which is achieved through a real-time control based on the data acquired by three
IMUs placed on the thorax, impaired upper arm, and impaired forearm. The underlying motivation of this
thesis is to leverage the large amount of data obtained from sensors that are already embedded in the exosuit,



which can therefore be useful for control and assessment purposes. The direction towards which this research
is aimed is the development of a system capable of assisting the impaired arm movement in daily living and
assessing upper arm use to generate a daily report which is descriptive of the trend of UL progress. The idea
is that this report could be accessible both to the practitioner, who can remotely and continuously monitor
progresses, and to the patient. Delivering the report to the patient can be an effective tool to enhance his
engagement in the daily use of the exoskeleton: a research study [9] has shown that feedback plays a crucial
role in motivating patients to engage with assistive devices, thereby promoting movement and facilitating the
use of technology in their daily lives.

In the following section, a brief overview of the state of the art of assistive robotics, movement classification,
and assessment will be presented to provide a clear context for this study.

1.2. Rehabilitation and assistive robotics

The ongoing research in novel techniques for rehabilitation and assistive technologies is bustling in the direction
of robotic devices. Different studies [8] have underlined benefits arising from the introduction of this kind
of approach in the clinical and home scenario, thanks to the repeatability and precision that this technology
can offer. Exoskeletons are devices popular in the neurorehabilitation and robotic assistance field [10]. These
devices are wearable and composed of rigid segments linked to each other and aligned to the body segments
whose movements can be controlled by the synergic action of sensors and actuators. Exoskeletons have been
developed both for upper limbs and lower limbs.

Wearable robotic devices, better known as UL exoskeletons, have been developed for different purposes: aug-
mentation, rehabilitation, and assistance [11], [12]. Technologies for augmenting functions have been mainly
implemented in the industrial field, for example, to provide assistance to warehouse workers in lifting heavy
weights and reduce injury risks associated with this activity. In the rehabilitation scenario, the use of rigid
exoskeletons can bring several advantages both for the patient and the specialized practitioner: session efficacy
can be improved in terms of an increase in exercise dose [13] and precision of movement assessment [14]. The
presence of sensors, like encoders, which are embedded in the robotic structure for control purposes, facilitates
the extraction of objective measurements allowing high accuracy in tracking trajectories and in the estimation
of kinematic metrics like the Range Of Motion (ROM), accelerations, and velocities. Despite the popularity
of rigid exoskeletons in industrial and clinical applications, in-home rehabilitation or in the assistive scenario,
these devices may not be the best choice: their structure, mainly composed of stiff materials like metal and
plastic, could be weighty and the rigid configuration may hamper the freedom of movement of the arm. The
need to perform laborsome alignment between rigid robot links and body segments entails that wearing them
requires external assistance from a specialized practitioner [15].

For these reasons, recent studies have been focusing on the development of a novel generation of assistive
exoskeletons, also known as exosuits, which are mainly composed of soft materials. The idea behind this kind of
devices is to get rid of the bulky structure in favor of textile interfaces which are lightweight, more comfortable,
and ensure higher compliance between the device and the user. Due to their soft structures, these technologies
can exert lower torques with respect to rigid ones but the lack of rigid joints makes for an ease of wearing thus
avoiding laborsome alignment procedures [12]. Moreover, the movements enabled by soft exoskeletons are more
fluid and less constrained than the rigid ones. A significant advantage is also the reduction of costs introduced
by the use of affordable materials: exosuits represent a more cost-effective technology that could be more easily
widely distributed. In terms of actuation, soft exosuits can be driven by cables [16] or use pneumatic [17]
or passive forces [18]. Cable-driven soft exoskeletons, also called tensile exosuits, are the most explored ones
nowadays. They are characterized by the use of tendons, which are connected to various anchoring points on the
exoskeleton, and that can transmit the force exerted by the motor which in turn can be placed distantly from
the point at which the force is intended to be applied. This characteristic allows the installation of actuators,
batteries and other elements necessary for the control of the exosuit in a non-obtrusive positioning.

1.3. UL function assessment and movement classification

1.3.1 Clinical assessment

Movement evaluation in neurorehabilitation is usually performed through the application of clinical scales. The
most popular scales used for upper limb assessment are the Fugl-Meyer Assessment (FMA) scale [6] and the
Action Arm Research Test [19]. The former, considered a gold standard for the upper and lower limb, consists
of a standardized sensorimotor evaluation of the extremity’s motor function, sensation, pain, balance, and joint
range of motion. This standard was primarily developed for patients with hemiplegia caused by stroke. During
the execution of FMA-UE (FMA for Upper Extremity), the patient is instructed to perform a series of well-
defined tasks: an example is to move the hand from the contralateral knee to the ipsilateral ear. The target of



the evaluation is the upper extremity, wrist, and hand movement quality as well as their coordination, reflexes
activity, and speed. The outcome of this standardized evaluation is a numerical score that depicts the level
of overall severity of the arm motor impairment and is computed by summing up the scores assigned to every
single task. The latter clinical scale, the ARAT test, differently from FMA-UE, aims to the evaluation of UL
performance in tasks belonging to daily activities such as reaching, grasping, and object manipulation. This
evaluation protocol includes 19 items comprising grasp, grip, pinch, and gross movement movements that are
evaluated with a score between 0 and 3.

Despite the popularity of these clinical scales, they present several drawbacks such as floor and ceiling effects
[20]. Moreover, as they rely on observational measures, the personal interpretation of the test administrator can
affect the objectivity and reliability of the measure thus bringing in inter-rater and intra-rater variability. The
scoring method also introduces a lack of specificity, in particular in the assessment of mildly impaired subjects
[21]. The evaluation of movements could also be over-estimated by the arising of compensatory strategies, like
the introduction of trunk compensation, which are not always easily discernible by the eye of the practitioner [?
|. These limitations in the use of clinical scales, combined with healthcare systems’ difficulty in complying with
an increasing number of requests to provide an adequate frequency in monitoring progress, steered the research
to the integration of sensors in clinical assessment.

1.3.2 Sensor-based UL assessment

The analysis of arm kinematics, which involves the study of positions, velocities, and accelerations, can be
integrated with the use of clinical scales having the advantage to provide objective analysis. Indeed, sensors
are widely used for motion capture, especially in lower limb applications like gait analysis following surgical
intervention [22]. Moreover, with rehabilitation exoskeletons, it is possible to monitor the patient during exercise
execution: one way is to record electromyographic signal by means of the sensors embedded in the exoskeleton
[23]. Among the technologies that can perform an objective assessment of arm use, accelerometers represent a
reliable tool both for their applicability in home settings and precision of measurements [24].

The first and most intuitive metric that can be extracted from accelerometers is Activity counts (AC) [25]. AC
is an easily measurable metric based on the data acquired by a uniaxial accelerometer. The sum of the raw linear
acceleration is usually computed over a few seconds windows [26]. If the value of the sum of the accelerations
evaluated in a specific epoch overcomes a threshold, the window is tagged as a "movement", otherwise as
"non-movement". The overall number of windows labeled as "movement" obtained through the analysis of the
accelerations acquired during a long period of time (24 hours in the cited study), provides a description of the
amount of upper arm use. Despite the ease of application, this metric brings along a main drawback: the passive
movements involved in activities like walking, in which the arms are swung unintentionally, may be recognized
as activity leading to overestimation of the activity count [27]. The correlation of activity counts with clinical
scales is, in fact, low [28].

Bayley et al. [27] proposed an alternative application of the activity count by registering the accelerations of
both paretic and non-paretic arms to detect differences in the intensity of use between the two. This approach
allows the recognition of bimanual tasks and offers an overview of the relative use between one arm and the
other, but still lacks in providing information about the functional arm use.

Additional relevant information to assess arm movement can be offered by embedded sensors, such as Inertial
Measurements Units (IMUs) [29]: these devices are composed of an accelerometer, a gyroscope, and a mag-
netometer, and the combination of the data acquired by these three different sensors is integrated to provide
information regarding the orientation of the IMU. This measure can be obtained by combining roll, pitch, and
yaw angles, which are estimated from acceleration and gyroscopic data through the application of sensor fusion
techniques [30]. Thanks to their compact size and the reliability of the acquired data, these sensors are a
common choice to perform activity registration in natural settings.

The study conducted by Subash et al. [31] focused on the comparison between different techniques to quantify
upper arm use based on data acquired through a wrist-worn IMU. In particular, the authors compared the effec-
tiveness of Gross Movement score (GM), Thresholded Activity Counts (TAC), and machine learning methods.
GM is a metric similar to the AC, with the improvement of discriminating between ’functional movement’ and
'non-functional movement’ relying on the information about the orientation of the IMU. The absolute change
in yaw and pitch angles is analyzed, and if its value appears to be higher than 30°, coupled with an absolute
elevation of the forearm with respect to the horizontal plane lower than 30°, the movement is classified as func-
tional. The inclusion of pitch and yaw angles in the discrimination of functional and non-functional movement
introduces the concept of exploration of the space in front of the subject, the 'functional space’, which allows the
achievement of a more comprehensive evaluation of arm motion. A hybrid metric, given by the combination of
GM and TAC, has been proposed by the authors with the intent to obtain good results both for sensitivity and
specificity. Lastly, the study examined three machine learning methods for the classification between functional
and non-functional movements, namely Random Forest (RF), Support Vector Machine (SVM) with a radial
basis function, and Multi-Layer Perceptron (MLP) algorithms. These methods were tested in both inter-subject



and intra-subject scenarios. The best results in terms of sensitivity and specificity were obtained by the ma-
chine learning techniques, and in particular, among these, RF performed slightly better (Youden index =0.74
for intra~subject measures). This study demonstrates that properly trained machine-learning methods can use
IMU data to assess accurately upper arm use, outperforming traditional methods such as TAC and GM.

The research in the state of the art conducted in this thesis has revealed the prominent role of machine learning
techniques in the domain of upper limb functionality monitoring. Gomez-Arrunategui et al. [32] proposed
a device equipped with an IMU, which is intended to be worn on the wrist, that exploits machine learning
algorithms for the recognition of functional movements and in particular of reaching actions. Since the intended
application of this device is the domestic environment, reaching movements have to be recognized among
the execution of complex tasks, which are typical of the ADLs, in an uncontrolled environment. To gain a
comprehensive understanding of the device’s versatility among various settings, the acquisition protocol included
two datasets: a functional assessment dataset including tasks taken from protocols for the application of clinical
scales (FMA-UE and ARAT), and an ADL dataset composed by data acquired during the preparation of a
pizza and during walking. Data were acquired through a tri-axial IMU integrated into the device, namely
Arm Rehabilitation Monitor (ARM), a sensor for activity counts detection, and a video camera. The ground
truth, which is the sequence of labels of 'reach’ and ’'non-reach’ associated to the movements in the dataset,
was determined through video labeling. Frames were labeled as ’reach’ if a sequence of forward, stationary,
and backward movement was detected. The filtered and segmented data were used to train, validate and test
two different classificators: RF and Convolutional Neural Network (CNN). The RF classifier was composed of
50 trees exploiting 63 signal-based features and 6 correlation features. The CNN architecture was composed
by 3 convolutional layers, the learning rate was set to 0.001, and the batch size to 32. The assessment of
the performance of the two algorithms was conducted with different combinations of datasets in training and
testing. In the first experiment, both the training and testing sets consisted of clinical exercises. In the second
experiment, exercises taken from the ADL dataset were used for both training and testing. Lastly, the third
experiment aimed to assess the algorithms’ ability to classify among different datasets, and thus the training set
comprised standard activities while the test set included activities of daily living. The results shown that the
best classification accuracies were achieved with the first experiment (92.4% for RF and 92.2% of CNN), while
the worst ones were obtained with the third experiment (74.8% for RF and 76.5% of CNN). This outcome is
comprehensible given that training and testing have been conducted using different datasets. While it is crucial
to classify whole functional movements like reaching one, it is essential to recognize that the motion of the
upper limb is far more intricate. Moreover, due to the variety of objects encountered during ADL, functional
movements encompass a large variety of actions. However, each functional movement can be represented as a
sequence of building blocks motions, namely primitives [33]. A more refined classification of movements can be
achieved by attempting to classify functional primitives.

1.3.3 Machine learning for primitive classification

The characterization of movements during the execution of ADLs can be challenging due to the presence of
an uncontrolled environment. Schambra et al. [34] proposed a taxonomy for the description of upper limb
motion based on a hierarchical structure that encompasses the definition of ’activity’, ’functional movement’,
and ’functional primitive’ as depicted in Fig:1. At the top of the pyramid in Fig:1 long-duration motions
are illustrated. ’Activity’ is defined as a sequence of motions aimed at achieving a unique purpose through
multiple small tasks, called functional movements. Functional movements, similarly to activities, can be further
segmented into functional motor primitives. Motor primitives are characterized by a duration within milliseconds
to seconds and are oriented at the accomplishment of one single goal. Primitives can thus be considered as
the units of motion since they result in simple motion phenotypes which are consistent across activities and
motor-impairment levels [34] [35]. A recent study [35] added further discrimination of the 'reach’ primitive into
'reach to grasp’ and 'point’. The former stipulates that the movement should end with a grasping of an object,
while the latter does not involve the interaction with items.

The first study that approaches the classification of motion primitives is the one conducted by Guerra et al. [36].
Their research focused on machine-learning techniques, specifically logistic regression, applied to data streams
collected from both healthy and stroke subjects using 7 IMUs positioned on the upper limb. The dataset was
obtained through the acquisition of data from the execution of radial activities, which require the interaction
of the patient with objects placed on a table, shelf activities, with objects distributed at different heights,
and feeding activities. The definition of the ground truth was carried out with a video-labeling procedure. In
particular, the authors performed the recognition of the following primitives: rest, reach-to-grasp, and release-to-
retract when there was no object manipulation, and transport, manipulation, and stabilization when the action
was exerted on a target object. Three subtypes were also considered including cyclic manipulation, stabilization-
transport, and stabilization-manipulation. The classification performance was evaluated only for rest, reach,
retract, and transport primitives. Labeled data was pre-processed, statistical descriptors were extracted using
a sliding window approach, and a Hidden Markov Model (HMM) was used for pattern recognition. Finally,
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Figure 1: Image taken from Schambra et al.[34| representing the hierarchy of functional motion

a logistic regression algorithm was employed to map the predictions of functional primitives. The results
demonstrated that the approach successfully identified functional movement primitives in both healthy control
and stroke patients, achieving an average precision of around 80%. The authors underlined that given the good
performance of IMU-based motion capture and HMM algorithm, their methodology could be applied in the
quantification of rehabilitation training dose.

Another approach to primitive classification was proposed by Parnandi et al. [37]. In their paper, they outlined
a pipeline to classify and count functional primitives during stroke rehabilitation exercises. This consisted in the
application of a deep-learning algorithm applied to motion data to generate sequences of primitives. Kinematic
information given as input to the neural network was captured with 9 IMUs. Moreover, The authors developed
an algorithm that counts primitives to provide a measure of the training dose. The architecture of the deep
learning algorithm was inspired by speech recognition methods and, in particular, they employed sequence-
to-sequence (seq2seq) algorithms. Seq2seq are characterized by two main subsequent structures: an encoder
and a decoder. The encoder elaborates the temporal sequence given as the input to generate, as the output,
a single-feature vector which is then decoded by the decoder. The decoder generates as output a sequence of
primitives that subsequently is then passed to an algorithm that merges subsequent similar ones and counts
them. The layers of the encoder and the decoders are constituted of Gated Recurrent Units (GRU) which
belong to the family of Recurrent Neural Network (RNN). These units have been specifically designed to handle
long sequential data and resolve the problem of vanishing gradient which is typical of the standard RNNs. In
RNN in fact, information travels through the neural network from the input neurons to the output neurons,
while the error is calculated and propagated back through the network to update its weights. In these networks,
a cost function is evaluated at each point by means of the comparison of the received input and the desired
one and then backpropagated through the network in order to update neurons’ weights. When the weights are
backpropagated, they are basically multiplied neuron by neuron, and if their value is too small it will vanish
over time. GRU and Long Short Term Memory (LSTM) networks have the ability to solve this problem by
implementing an update and forget gate that can select the necessary information to propagate both short-
term and long-term dependencies in sequences. The dataset used for the training and testing of the proposed
algorithm was obtained by acquiring data from 41 chronic stroke patients performing a set of nine rehabilitation
exercises taken from a standardized manual of occupational therapy. Data were acquired through 2 cameras
and 9 IMUs. As in previous similar studies, the videos were labeled to populate the ground truth sequence
to be associated with the kinematic data of the IMUs. The definition of primitives followed the taxonomy,
previously described, proposed by Schambra et al. [34]. The movements were therefore classified among 5
primitives: idle, reach, transport, stabilize, and reposition. To assess the validity of the proposed algorithm,
namely 'PrimSeq’, the authors compared its performance with CNN, RF, and Action Segment Refinement



Framework (ASRF) which are three benchmark models used for activity recognition. Results demonstrate
that PrimSeq outperformed the other algorithms obtaining a percentage of true counts for different primitives
between 86.6%; and 99.6%. The study also shows that IMU-based motion capture can be well tolerated by
patients, and the automatic primitive counts operated by PrimSeq can considerably reduce the time and effort
required to manually quantify functional motion.

The remarkable results achieved with this paper have laid the foundation for setting up the work aimed at the
classification of data. Taking inspiration from Panrandi et al.[37] research, one of the focuses of this thesis has
been centered on the application of the advanced versions of RNN, namely Long-Short Term Memory LSTM
and GRU, to not incur in the vanishing gradient problem. The classification of movement into motor primitives
could be useful to generalize the evaluation of the performance of more complex skills, without the need to rely
on benchmarks developed only for specific movements.

1.3.4 Thesis scope and open challenges

This thesis was developed to lay the foundation for the ultimate scope of the project, which is the exploitation
of IMUs to provide input for the control system of the exosuit and assess upper limb movements. Continuous
kinematic registration and subsequent UL functionality evaluation can be a highly valuable tool in home-
based rehabilitation both for the patient and the practitioner. The implementation of proper data storage and
transmission system could allow the specialized practitioner to receive continuous information about arm use
during everyday life. This information could then be exploited to personalize the training program according
to the patient’s progresses. The patient, on the other side, could track his quantity and quality of arm use by
means of daily reports. The reported feedback can enhance the enthusiasm of the user in the usage of wearable
robots for daily assistance[9].

This research work focused on the attainment of two preliminary objectives necessary to achieve the purpose
described above. The evaluation of UL motion requires, in fact, the extraction of different kinematic measures
which can be easily achieved through the tri-axial IMUs embedded in the exosuit to implement a gravity
compensation mechanism. These sensors can provide information regarding accelerations, angular velocities,
and magnetic field strength along three orthogonal axes (x,y,z). This information can be exploited provided
that their positioning in terms of orientation on the body segments is well known.

In the context of this thesis, it is planned that the positioning of the sensors will be carried out directly by users
without the assistance of specialized practitioners. In light of this, the calibration procedure becomes crucial to
compensate for any potential mispositioning of the sensors and ensure that the acquired data is interpretable
and reliable for control and evaluation purposes. For this scope, a fast and automatic calibration procedure has
been proposed.

Once the calibration is ensured, a kinematic model of the upper limb is required in order to implement a real-
time control strategy for exosuit motor torques and assess movement quality. In relation to this specific scope,
the mathematical extraction of 5 anatomical angles according to the definitions provided by the International
Society of Biomechanics (ISB) [38] has been presented. This mathematical explanation is, in fact, lacking in the
literature, given that different studies have extracted angles without following the standard (ISB) convention
[39], [40] or by partially defining shoulder and elbow joints [41]. The second objective of this thesis was developed
considering that the broader aim of the research is the UL movement assessment in home scenario: the data
are in fact acquired in a non-controlled environment in which complex functional movements can be performed.
During the execution of ADLs typically non-standardized, non-repetitive, and non-functional movements can be
involved, and therefore the classification is necessary to identify the portion of data which are meaningful for the
extraction of evaluation metrics. For this reason, the application of a deep-learning algorithm for fine-grained
classification of motion was implemented. The idea is that the classification can provide meaningful information
which can ultimately be used to select which data are significant for the evaluation of motion metrics. The
idea was to attempt the classification of motion primitives using advanced RNN architectures, similar to what
was proposed by Parnandi et al. [37]. In contrast to their study, which involved the exclusive use of data
acquired from standard settings, the acquisition protocol proposed in this thesis included both standard and
non-standard activities. This choice arises considering that the final application of the exosuit will be in an
uncontrolled environment. Moreover, this research distinguishes from previous studies [36], [37] for the number
of sensors involved. The data supplied to the deep learning algorithm were obtained through the acquisition
of only 3 IMUs: this choice was constrained by the design characteristics of the exosuit. For what concerns
the selection of data to provide to the network, only ISB angles, extracted with the approach proposed in the
context of this thesis, and the relative accelerations and angular velocities between segments have been chosen.
The selection of such few features (26), compared for instance with the 77 identified by Panrandi et al., was
driven by the intention to preserve data interpretability and contemporarily reduce the computational effort of
the algorithm.



2. Materials and methods

The following section describes the materials and methods employed to achieve the objectives of the thesis.
First, the procedure defined to compute shoulder and elbow upper limb joint angles from IMUs data will be
described followed by the validation experiments. Then, a description of the experiments to acquire the dataset
used for the classification network training will be provided, followed by a description of the network itself.

2.1. IMU-based estimation of upper-limb angles

This section unfolds a method for calibrating the IMUs when worn by the users and extracting shoulder and
elbow anatomical angles starting from the rotation matrices following the ISB convention [38].

2.1.1 Materials

The IMU sensors employed in this project are the NGIMUs (x-io Technologies Limited Bristol, UK), shown in
Figure 2. NGIMUs embed different sensors among which there are a tri-axial accelerometer for the measure
of linear acceleration, a tri-axial gyroscope for the measure of angular velocity, and a tri-axial magnetometer
that exploits the Hall effect to detect the intensity of the magnetic field. NGIMUs are equipped with other
transducers (humidity, temperature, and pressure sensors) which will not be used in the current application.
NGIMUs employ sensor fusion combining data from accelerometers, gyroscopes, and magnetometers to provide
an accurate measure of the orientation of the device. This estimation is performed through the application
of the Madgwik algorithm [30] which iteratively updates the orientation estimation, providing an accurate
representation of the object’s orientation in real-time.

NGIMU'’s proprietary software allows the synchronization of multiple sensors and their communication via a
wireless protocol which requires the use of a router. Moreover, these sensors are equipped with a battery that
allows a cable-free application. The software provided by the owning company is open source, and Python
sample codes to establish the communication between NGIMUs and computers are provided on the GitHub
official page of the company.

In the context of this project, in which the intended application is at-home use, magnetometers had to be
switched off to ensure data accuracy and minimize the introduction of errors caused by magnetic interference
typical of an indoor environment. This requirement carries out two main drawbacks. The first is the necessity
to align the sensors on a rigid surface in order to reset their yaw angle and ensure that they share the same
ground reference frame, the second is the appearance over time of a drift in the measure of the orientation,
in particular of the yaw angle, introduced by the lack of compensation that is usually implemented through
magnetometer data. For validation purposes, TTAGo robot (PAL Robotics Barcelona, Spain) and BTS SMART
DX 400 (BTS SPA, Italy) were used. In Figure 3 TIAGo robot (A) and a schema of an optoelectronic system
(B) are represented.
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Figure 2: NGIMU sensors (x-io Technologies Limited Bristol UK, USB station for simultaneous charg-
ing of multiple IMUs and TP-link router ( TP-Link Corporation Limited) for wireless connection



Figure 3: A) TIAGo robot, B) BTS SMART DX 400 Optoelectronic system

More in detail, TTAGo is a humanoid robot, mainly used for research purposes, equipped with motors, that
provide 7 Degrees Of Freedom (DOFs), and encoders for an accurate joint reading [42]. The encoders’ data were
used as the ground truth for robot joint angle comparison. The optoelectronic system, located at 'Luigi Divieti’
laboratory at Politecnico di Milano, is instead equipped with 8 high-frequency video cameras (100fps) and a
proprietary software for calibration and marker trajectories extraction and visualization. The angles extracted
by the optoelectronic system were used as ground truth for human joint angle comparison.

2.1.2 Reference frames definition

The reference frames that will be used in the following sections are defined as shown in Figure 4 and are:
e Global reference frame (G), defined with the z-axis pointing vertically up, and the x-axis and y-axis
oriented as to obtain an orthogonal frame.
o IMU reference frame (I), that can be oriented randomly on the limb.
e Body segment reference frame (B), fixed to each body segment and defined with the z-axis parallel to the
segment pointing up, the y-axis pointing forward, and the x-axis pointing to the right.
e ISB convention reference frame (ISB), fixed to each body segment and defined with the y-axis parallel to
the segment pointing up, the x-axis pointing forward, and the z-axis pointing to the right.
When left joints are concerned, the same reference frame was used and, when needed, a term was applied that
is defined as:
o {—i—l, ff right arm (1)
—1, if left arm

C) Body segment reference frames D) ISB reference frames

Figure 4: A) Global, B) IMU, C) Body segment, D) ISB reference frames. TH indicates the thorax,
UA indicates the upper arm, FA indicates the forearm.



2.1.3 Calibration procedure

The calibration procedure is needed to align the IMUs reference frames (I) and the body segments reference
frames (B). Calibration is performed by acquiring data from two different poses: i) the N-pose (A in Figure 5)
and ii) the T-pose (B in Figure 5). During the N-pose, the user stands still with the arms resting and the palms
of the hands pointing forward. In this configuration, the ISB joint angles are ideally null.

The orientation of each IMU with respect to G is expressed by the rotation matrix estimated by the IMU and
can be expressed as:

R¢ = RS (R}’ (2)

where RI o s the rotation matrix of the i-th IMU during the N-pose, and R 0 is the rotation matrix of the
i-th IMU calibrated with respect to the N-pose. Inverting Eq. (2), the followmg equation was obtained:

I77
Ry" = (R o))" R, (3)
The orientation of each IMU with respect to G is also expressed as:
R¢ = RG Ry (4)

where R is the rotation matrix describing the orientation of the i-th body segment with respect to G, and RB
is the rotatlon matrix describing the orientation of the i-th IMU with respect to the i-th body segment. ThlS
rotation matrix is assumed to be constant during the subsequent use of the sensors, such that RB R?‘(’)O,Where
0 indicates the N-pose configuration. If the sensors are moved relative to the body segments the calibration
procedure should be performed again.

The rotation matrix describing the orientation of the body segment with respect to G can be expressed as:

RG =R%, (Rp"’ (5)

where Rg o is the rotation matrix of the i-th body segment with respect to G in the N-pose and is unknown,

and RB“O is the rotation matrix describing the orientation of i-th body segment at the current time instant
with respect to the N-pose.
Using Eq. (5), Eq. (4) can be rewritten as:

R§ = RG (RpRY (6)

During the T-pose, the arms are rotated by 90° in the coronal plane. In this configuration, the ISB joint angles
are ideally null except for AOF which is equal to 90°.

Assuming that in the N-pose the z-axes of the body segments are aligned with the z-axes of the IMUs calibrated
as in Eq. (3) and the z-axis of G, the rotation matrices expressing the orientation of the body segments with
respect to G in the N-pose can be expressed as a rotation around the z-axis of an angle 6:

RE, 0= R:(9) (7)

0 = L(Xa, —KZ1 catiby, ) ®

Figure 5: A) N-pose B) Tpose
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where X is the x-axis of G (namely [1,0,0]), and Z7 calip,, , is the z-axis of the IMU placed on the upper arm
and calibrated with respect to the N-pose. If the user can’t reach an AOFE angle of 90°, 6 can be estimated
with the negative of the projection of the z-axis of B on the horizontal plane (G x-y). Eq. (4) can be rewritten
for the N-pose as:

Rf o = R.(0)R7) 9)

The expression of RE_ i is then obtained reversing Eq. (9):

RP'=R.(0)"RY , (10)
Substituting Eq. (7) and Eq. (10) in Eq. (6) it results:

R§ = R.(0)R5°(R.(0)" RS ) (11)

Finally, inverting Eq. (11) the following expression is obtained:
R} = R.(0)" RY (R.(0)"RS )" (12)

where R? is the rotation matrix estimated from the i-th IMU, and jo’o is the matrix that represents, for
the i-th body segment, its orientation in space calibrated with respect to the N-pose and expressed in body
coordinates. Once this matrix is obtained for each body segment, it must be rotated to be expressed in the ISB
reference frame:

SB;, i, ™ ™
Risp" = Rp "Ry (5) Ry (5) (13)

This expression is valid both for the right and the left arm.

2.1.4 1ISB upper limb angles definition

Shoulder and elbow anatomical angles are defined by the International Society of Biomechanics (ISB) [38], in
which joints coordinate systems for the shoulder, elbow, wrist, and hand are described. Given that the analysis
of wrist and hand motion is outside of the scope of this thesis, only shoulder and elbow joint coordinate systems
will be presented.
The shoulder orientation convention is defined as the rotation of the humerus relative to the thorax following
a Y-X-Y (according to the ISB reference system) sequence of Euler angle rotations. The first rotation around
the Y axis defines the Plane Of Elevation angle (POFE)(positive when moving the arm frontally), the rotation
around X the Angle Of Elevation (AOE) (positive when elevating), and the last rotation around the Y axis
represents the Humeral Rotation (HR)(positive when the rotation is internal).
The elbow joint is defined as the motion of the forearm relative to the humerus as a Z-X-Y rotation sequence.
The first rotation around Z is addressed as Flexion-Extension (FE) angle and the rotation around Y as the
Pronation-Supination angle ( PS),. The rotation around X, which is descriptive of the ulnar deviation, will not
be taken into account for this study and considered negligible.
The rotation matrix describing the orientation of the upper arm body segment (ISB,UA) with respect to G can
be defined as:

Rfspua = RispruRy(kPOE)R,(~kAOE)R,(kHR) (14)

where Rfgp oy is the rotation matrix of the thorax body segment with respect to G. R,, R, represent the
rotation matrices deriving from the rotation respectively around the x and y-axis of the angles indicated between
parenthesis. The rotation matrix describing the orientation of the forearm body segment with respect to G can
be defined as:
G G
RISB,FA = RISB,UARz(FE)Ry(HPS) (15)

2.1.5 ISB angle computation

For the sake of clarity, ngg::’o will be referred for each body segment as TH for the thorax, UA for the upper

arm, and FA for the forearm.
The POE can be computed as:

POE = L(projx z;uy (Yua), —kZrm) (16)

that is the relative angle between the projection of the y-axis of UA (Y 4) onto the plane defined by the x-axis
and the z-axis of TH (X Zrg), and the z-axis of TH. It is worth remarking that, in the particular case of a null
AOE Yy 4 is orthogonal to X Zry, thus the projection projxz,,(Yua degenerates to a point, and Eq. (16)
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loses its significance. This means that the POFE is ill-defined when AOFE is null. Indeed, if AOFE is null, POE
and HR coincide.
The AOF can be computed as:

AOE = /(Yya,Yrs) (17)

that is the relative angle between the y-axis of TH and the y-axis of UA.
Inverting Eq. (14), HR can be computed as:

R,(HR) = (R,(~xAOE))"(R,(POE))(TH)"U A (18)

HR = tan™ ' ([Ry(HR)]1 3, [Ry(HR)]1,1) (19)

where [A]; ; indicates the element of the matrix at the i-th row and j-th column.
FFE can be computed as:

FE=/(Yra,Yua) (20)

that is the relative angle between the y-axis of UA and the y-axis of FA.
Inverting Eq. (15), PS can be computed as:

Ry (PS) = (R.(FE))"(UA)TFA (21)

PS =tan ' ([R,(PS)]1 3, [Ry(PS)]1.1) (22)

Preliminary tests on subjects have shown that when the AOF has small values, the estimation of HR and POE
is biased due to the fact that, in this specific case, projxz,, (Yua may not be accurate. In this particular case,
the discrimination between POFE and HR is challenging. Moreover, the soft tissues between the humerus and
the IMU can corrupt the estimation of this angle due to the presence of a relative movement between the sensor
and the bone. For these reasons, inspired by Rab and colleagues [43], an alternative method for the estimation
of HR which reconstructs UArotation matrix exploiting the orientation on the flexed FA is proposed.
Assuming a null ulnar deviation and given the definition of the relationship between FA and UA rotation
matrices (15), the movement of the forearm should always occur in the plane composed by the x-axis and y-axis
of UAXYya. By exploiting this property, it is possible to define an alternative UA rotation matrix U A¢ypr
which takes into account the position of FA when it is flexed. The direction of the x-axis of U Ay, namely
Yua,,,., was defined to be equal to the one of the normalized projection of Y4 onto the plane defined by x-axis
and z-axis of UA( X Zy4 ):

projYrava = |YuaYra| (23)
v = (projYravaYva) — Yra (24)
Xvae,,, =v/|vl (25)

projYpay a represents the projection of the y-axis of FA onto the y-axis of UA. Given that the y-axis of the
upper arm is well defined independently on the AOE or FE, Yy 4,,,. has been defined to be equal to Yy 4.
ZiA,,,, is defined considering that Xy 4 Yva,,,, and Zya,,,., should define an orthogonal basis.

corr)?

ZUAprr = XUAvory X YUAL,,, (26)

Finally, the variant of the HR , namely H R, can be computed exactly like in 14:
Ry(HReopr) = (Re(—KAOE)T (R, (POE)) (TH) U Acorr (27)

HRcorr = tan_l ([Ry(HRcorT)]l,?n [Ry (HRCO’I"I‘)]l,l) (28)

The same "corrected" UA rotation matrix was used to estimate an alternative PS angle, namely PS.orr:
R,(PS) = (R.(FE))" (UA.orr)"FA (29)

PScorr = tan™ ' ([R,(PS.orr))1 3, [Ry(PS.orr)]11) (30)

These two additional corrected angles were exploited only in the validation of healthy participants since the
need for their computation became apparent after moving from the robotic arm to the human arm.
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Figure 6: TIAGO’s joint trajectories during validation protocol. POF is shown in black, AOF in red,
HR in pink, FE in blue, and PS in green. The image was taken from the thesis work of Bortlein C.

Figure 7: TIAGo robot and a drawing showing the IMU positioning (in blue) and the relevant angles
(in orange). Image taken from [44].

2.2. Experimental validation

The validation of the proposed calibration and anatomical angle extraction method has been conducted in two
phases. The first phase consisted in the comparison of the data obtained with the proposed procedure and
those acquired by means of TIAGo’s encoders. During the second phase, the validation on participants has
been performed by comparing the angles obtained with the proposed approach to the ones extracted with the
optoelectronic system described in section 2.1.1.

2.2.1 Validation on the robotic arm

The first phase of the experimental validation was conducted by comparing the values of the ISB angles estimated
from the IMUs with the angles measured by the encoders of the TIAGo robot during the execution of a set of
movements. The movements were designed to explore as many angle combinations as possible within the human
range of motion. The trajectories of the TIAGo joints during the execution of validation tests are depicted in
Figure 6. They are composed of sets of FE, HR , and PS trajectories repeated for varying values of AOF and
POE. The IMUs were positioned on TTAGo’s head, which moves in solidary with the thorax, arm, and forearm
as shown in Figure 12.

The experimental protocol for validation consisted in the execution of tests starting with the registration of TH,
UA, and FA rotation matrices while TIAGo’s arm was set in N-pose and T-pose configurations. These data
were used to perform the calibration procedure described in section 2.1.3. Since TIAGo N-pose cannot be set
via software control, its arm was manually fully extended and aligned vertically.
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Joint Bony landmark
7th cervical vertebrae
Sternum jugular notch

Neck (2 markers)

Right hip Anterior superior iliac spine
Left hip Anterior superior iliac spine
Sacrum Sacrum

Right shoulder Acromion

Left shoulder Acromion

Lateral epicondyle of humerus

Right elbow (3 markers) Medial epicondyle of humerus olecranon

Lateral epicondyle of humerus

Medial epicondyle of humerus olecranon
Radius-Styloid process

Ulna-Styloid process

Radius-Styloid process

Ulna-Styloid process

Left elbow (3 markers)

Right wrist (2 markers)

Left wrist (2 markers)

Table 1: List of markers’ location and relative bony landmarks.

Two tests were conducted namely, 'Test 1’ and 'Test 2’. During Test 1, the IMUs were positioned aligning the
y-axis of the sensors with the robot’s segments. Test 2 was instead conducted after positioning the IMUs in a
non-aligned way in order to test the reliability of the proposed calibration and angle extraction methods in the
event of the occurrence of mispositioning.

Data acquired from TIAGo encoders (35Hz) and IMUs (150Hz) were synchronized by timestamps comparison.
Finally, the root mean square error (RMSE) and the correlation coefficient (r) were computed for each test
and each ISB angle. The proposed method for ISB angle computation and the results of the validation against
TIAGo were published in VIII Congress of the National Group of Bioengineering (GNB) [44].

2.2.2 Validation on healthy participants

A second validation was conducted on healthy subjects by means of an optoelectronic system. 5 subjects (mean
age=24, 2 male, 3 female, 4 right-handed, 1 left-handed) were included in the acquisition protocol and provided
their informed consent for their participation in research projects in accordance with the guidelines established
by the Politecnico di Milano . 17 reflective markers were positioned on bony landmarks of the thorax, upper
arm, and forearm as suggested in Rab et al. [43]. Table 1 provides an indication of markers’ positions and the
respective bony landmarks.

5 IMUs were positioned on the thorax, right and left upper arms, and right and left forearms as depicted in
Figure 8.

Differently from what was done for the validation on the robotic arm, the acquisition protocol consisted of 5
simple tasks, aimed at exploring one single joint at time. Specifically, the tasks were defined as follows:

e Task 1: POF exploration. Subject seated with AOE=90°, FE=0° and PS=180°. Arm was moved from
left to right and vice versa exploring the whole range of motion of the POE. ;

e Task 2: AOF exploration. Subject seated with FE=0° and PS=180°. Arm was moved up and down and
vice versa ;

e Task 3: HR exploration. Subject seated with FE=90°, AOE=90°, and PS=180°. The humerus was
rotated internally and externally;

e Task 4: FFE exploration. Subject seated with FE=90°, AOE=90°, and PS=0°. The elbow was flexed and
extended ;

e Task 5: PS exploration. Subject seated with FE=90° and AOE=0°. The wrist was rotated internally
and externally ;

Each task was repeated 3 times for each arm. For tasks 2, 3, 4, 5 for each repetition, the POE was changed.
Drift control was performed after completing each task by checking the POFE values during the T-pose and
the PS values with null joint angles except for a FE of 90°. If a drift was observable, usually 5°-10°, the
calibration procedure and the task after which the drift was detected were repeated. In order to reset the drift
and re-perform the calibration, the IMUs had to be detached from the subject, aligned on a rigid surface, and
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Figure 8: Markers and IMU positioning on one participant. The IMUs are indicated with a red circle.
The white/gray dots are markers.

re-initialized by sending a reset command with the NGIMU proprietary software.

IMU data were acquired at 50Hz, while videos of the optoelectronic system were recorded at 100fps. The
extraction of ISB angles with the optoelectronic system was automatically performed by BTS proprietary
software in which, YXY and ZXY conventions were set respectively for the shoulder and elbow joint definition.
To enable a comparison between the two measurement systems data were processed in Matlab (Mathworks
Inc. Natick, Massachusetts) environment. Signals acquired with the IMUs were oversampled to 100Hz in order
to match the sampling frequency of the optoelectronic system. Subsequently, a data integrity assessment was
conducted, followed by the removal of portions of data that were undefined and presented as 'NaN’. When
necessary, signals’ discontinuities were eliminated. This was needed since, given the way angles are computed,
they 'wrap’ their values when exceding a certain threshold. For example, in the condition in which an angle
overcomes 180°; its next computed value would be -180°.

Given the ultimate goal of evaluating the correlation between corresponding signals between optoelectronic
and IMU measures, a point-wise subtraction between each sample in a repetition and the mean of all samples
contained in that repetition was performed. This approach was necessary because signals often exhibited an
offset between optoelectronic and IMU measures. Morover, for assessment purposes, is indeed more relevant
to observe the ROM rather than the absolute angles. Zero-mean signals were then aligned in time by means
of the cross-correlation among them: one signal was shifted in time by a value equal to the lag corresponding
to the maximum value of cross-correlation between signals. The portions of the signal that did not overlap
were then trimmed. Finally, the RMSE, RMSE%, and correlation coefficients (r) were extracted to perform
the comparison between IMU-based and optoelectronic measurements. The corresponding Bland-Altman plots
were also drawn. In particular, for tasks 1, 2, 3, 4, and 5 these metrics were extracted only for the angle of
interest.

2.3. Classification of motor primitives

To enable the classification of primitives in both simple ADL (SADL) and complex ADL (CADL) movements,
a data acquisition protocol was designed. This protocol facilitated the systematic collection of data, which was
subsequently used for training, validating, and testing the deep learning algorithm.

2.3.1 Experimental setup

10 volunteers (1 male, 9 females, mean age=30.5, 3 left-handed, 7 right-handed) participated in the data
acquisition process. The inclusion criteria consisted of 18 years of age, good overall health, and no presence of
upper limb impairments. Prior to data acquisition, the subjects provided their informed consent in accordance
with the guidelines established by the Politecnico di Milano for their participation in research projects. The
experiments were approved by the ethical committee of Politecnico di Milano. The acquisitions were carried
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out at the WECOBOT laboratory (Lecco campus, Politecnico di Milano).

Kinematic data were recorded with 5 NGIMU sensors attached on body segments with Velcro straps. They
were positioned on the thorax, right and left upper arm, and right and left forearm. In order to capture even
small variations in upper arms and forearms configurations, the sensors were positioned on the lower part of the
segments, as shown in Figure 8. A GoPro HERO 5 (GoPro Inc.) set at 24fps was used for video acquisition.
Communication with IMUs was possible through a custom-made Python script which also enabled data storage
into .csv files. At the beginning and at the end of each exercise, a command was sent to all the IMUs in order to
make them blink. The time of appearance of the led blinking was supposed to be the initial time at which data
were saved in the .csv file. This feature was in fact employed to perform an initial synchronization of videos
and IMU data. A Python GUI was implemented to support and facilitate the acquisition process.

2.3.2 Acquisition protocol

The acquisition protocol consisted in the execution of two sets of activities: one including 8 simple activities
(SADLs), and another one comprising the execution of 3 complex activities typical of everyday life (CADLs).
Each activity in the two datasets was repeated twice for each subject, one with the right arm and one with the
left arm. In the case of the CADL, the subject was asked to perform the activities two times: one as usual,
and the other one paying attention in using mostly the non-dominant arm. The occurrence of drift was checked
between two exercises by means of a T-pose and N-pose with 90° FE to assess respectively for POE and PS
reliability. If a drift of more than 5°-10° was observed, the IMUs were detached from the subject, aligned, and
reset to restore a shared ground reference frame. The sensors were then repositioned on the body segments,
and the calibration procedure was repeated. The data acquisition process lasted on average 1:45h per subject
(including explanation and sensors positioning). The set of activities defined for this thesis will be explained in
detail in the upcoming sections.

2.3.3 SADL dataset acquisition

SADL activities included both seating and standing tasks. During the seating tasks, the subject was seated
on a chair in front of a desk, with the possibility to move their back. Six regions were drawn on the desk and
corresponded to specific positions that the subject needed to reach during the execution of different exercises.
Regions 1,2,3 (R1, R2, R3) were closer to the subject while 4,5,6 (R4, R5, R6) were farther and required an
elbow extension and, eventually, thorax flexion to be reached. A board with 6 regions (B1, B2, B3, B4, B5,
B6), similar to the one drawn on the desk, was placed in front of the subject. The rest position corresponded
to the subject with the elbow on the table and hand in region 2. The setup is displayed in Figure 9.

The items required for the execution of the sitting tasks were: a smartphone, a glass bottle, a bowl, a glass,
and a spoon.

The subjects were guided vocally in the execution of different activities defined as follows:

e BOTTLE: a bottle was placed in Rn starting from R1. The subject was asked to reach and grasp the
bottle in position Rn, move it to region Rn-+1, leave it, and move back to the rest position. The task was
repeated until reaching R6;

e POUR: a bottle of water was placed in Rn starting from R1, and a glass was always in R2. The subject
was asked to reach and grasp the bottle, pour water into the glass, transport the bottle to Rn+1, and
turn back to the rest position. The task was repeated until reaching R6;

e DRINK: A glass full of water was placed in Rn starting from R1. The subject was asked to reach and
grasp the glass, drink water, transport the glass to region Rn+1 and turn back to the rest position. The
task was repeated until reaching R6;

e PHONE: a smartphone was positioned in Rn starting from R1. The subject was asked to reach and grasp
the phone, keep it close to the ear for a couple of seconds, transport it to the Rn—+1, and move back to
the rest position. The task was repeated until reaching R6;

e MIX: a bowl was positioned in Rn starting from R1, and a spoon was placed within R2. The subject
was asked to reach and transport the bowl using both arms from Rn to R2, then to take the spoon and
simulate mixing movement for a couple of seconds. The bowl was then bi-manually transported to Rn+1
and the arm moved back to the rest position. The task was repeated until reaching R6;

During the execution of the standing SADL-set, the subject stood in front of 3 shelves of different heights.
Three regions were drawn on each shelf and all the regions were identified from 1 to 9 (S1-S9) as in Figure 10.
In this setting, the rest position corresponded to the subject standing with arms along the sides. The items
required for the execution of standing SADL tasks were: a glass bottle, a book, and 9 glass jars. The subjects
were guided vocally in the execution of different activities defined as follows:
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Figure 9: This figure represents the setup for seated SADL. Regions R1-R6 are represented by orange
circles, while B1-B1 by blue ones

e BOOK: a book was initially placed in Sn starting from S1, the subject reached and grasped the book,
simulated reading for a couple of seconds, transported the book to the region Sn+1 and turned back to
rest position. The task was repeated until reaching S9;

e PLANT: 9 jars were positioned in different regions on the shelves. The subject held a bottle full of water
for the entire execution of the activity and was asked to pour water into each jar starting from S1, going
to S9, and moving back to the rest position every time.

2.3.4 CADL dataset acquisition

For the acquisition of the CADL-set, the protocol included three complex activities inspired by ADLs. The
scope of this choice is to enrich the dataset with movements acquired in a semi-uncontrolled environment. In
fact, during the execution of these activities, subjects were free to move in space and decide autonomously the
sequence of action to accomplish the main goal of each exercise. The items provided to the participants were: a
coffee machine, sugar bags, a spoon, a coffee cup, a closet, a trash bin, coffee pods, tea bags, cutlery, a bottle of
water, bread, jam/spreadable cream, a kettle, teacup, clothes (of different sizes), clothes hangers, toothpaste, a
toothbrush, soap, a towel, hair-brush, and an umbrella.

The subjects were guided vocally in the execution of different activities defined as follows:

e BREAKFAST: this macro-activity included preparing and having breakfast;

e PERSONAL CARE: typical morning bathroom activities were included such as brushing teeth, brushing
hair, washing face, and washing hands. The activities involving water were simulated.

e LAUNDRY: folding and hanging clothes.

2.3.5 Ground truth identification

Before the video labeling process, each video was cut so that the first frame corresponded to the moment the
IMUs started blinking following the command of ’Start exercise’ sent through the GUI.

Video labeling was carried out using a custom-made Python script, allowing one to visualize a video, change
the speed of frame sliding, and rewind previous frames. Most importantly this application enabled to receive
keyboard inputs associated with 6 possible labels: ’idle’, 'stabilize’, 'reach’; 'transport’, 'reposition’, and ’cut’
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Figure 10: This figure represents the setup for standing SADL. Regions S1-S9 are represented in the
figure as green circles.

(to be used when the movement was not identifiable as a primitive). These inputs were then associated with the
timestamp corresponding to the frame that was displayed the moment the key was pressed. Motor primitive
recognition was performed according to the following definitions:

e Reach: the purpose is to make contact with a target object. Motion is evident.

e Reposition: the purpose is to move into proximity or move away from a target object. Motion is present.
There is no object contact.

e Transport: the purpose is to transport a target object in space. Motion is evident.

e Stabilize: the purpose is to hold a target object still. The motion is minimal.

e Idle: the purpose is to stand at the ready near of a target object, motion is minimal. The definition of
idle was extended also to the rest position.

Video labeling resulted in the generation of a ".csv" file with timestamps and labels associated with each frame.
A first synchronization between labels and IMU data was performed by means of an alignment of corresponding
timestamps. However, by visually inspecting synchronized data, it was clear that in some cases there was a
delay between IMU data and labels. To account for this problem, a realignment was implemented by shifting
the two signals according to the minimization of the standard deviation of UL angles during ’idle’ and ’stabilize’
movements. Data that appeared inaccurate in terms of labeling even after synchronization were discarded.

2.3.6 Primitive classification: features and model architecture

The model used for the classification of sequences of movement into motor primitives was based on the advanced
version of RNN: LSTM.

The deep learning network was built using the "Sequential" class, provided by "Keras" framework, which allowed
the generation of the neural network model as a stack of sequential layers. The model included a first masking
layer to assure that the algorithm ignored the null values added during zero-padding. The input shape was
equal to (6, 26) where 6 is the number of samples per window, and 26 is the number of features. Then, an LSTM
and a dropout layer with a dropout rate of 0.5 were added. The dropout technique was implemented to prevent
overfitting given the limited dimensionality of the dataset: in fact, this layer randomly sets a fraction of input
neurons to zero. Finally, a 'Dense’ layer was stacked at the end of the model: this layer mapped the input of the
previous layer into a number of outputs equal to one of the possible labels by means of a ’softmax’ activation
function. The model was compiled using Adam optimizer and categorical cross-entropy as loss function. A
schematic of the model is represented in Figure 11.
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Figure 11: Schema of the sequential model built for primitive classification. The number in the arrows
represents the dimensionality of the input/output vector for each layer. The ML model consists of four
key components: a masking layer, a LSTM layer, a dropout layer, and a dense one.

The learning rate was initially set to 0.005 as in Parnandi et al. [37] but this value led to overfitting. Its value
was finally set to 0.01, according to the highest accuracy achieved following a trial and error procedure. The
number of epochs was 100, which represented approximately the number of iterations at which the training
accuracy stopped increasing.

The data resulting from the experimental acquisition and video labeling was a set of files containing information
about coefficients of rotation matrices of the UL body segments, their linear accelerations, angular rotations
along the x-axis, y-axis, and z-axis, and the 7 ISB angles defined previously. An additional angle, the one between
the y-axes of TO and FA was computed. Even though this angle does not have an anatomical meaning, since
it is the angle between two non-connected joints, it provides additional information that could be useful for the
classification algorithm. Indeed, it is not affected by potential inaccuracies of UA angles estimation or drift.
The relative acceleration between the thorax and upper arm, thorax and forearm, and upper arm and forearm
were determined by subtraction among the different segments:

AQUA)TH = OTH — AU A; ApA)TH = OTH — AFA; AFAJUA = QFA — QU A (31)

The same procedure was applied for the angular velocities:

WUA/TH = WTH — WU A; WEA/TH = WTH — WFA; WEA/UA = WFA — W0 A (32)

Each relative vector was described by 3 columns that represent the components along the three axes. The
features that were given as input to the neural network were:

7 ISB angles: POE AOFE HR , FE, PS , HR oy , and PS¢y
3 relative linear accelerations: ay Ajrw,arA)TH, OFA/UA

3 relative angular rotations: wy AyrH,WrA)TH, WFA/UA

The relative angle between y-axes of TO and FA

Prior to feeding data to the neural network, labeled IMU data was segmented in overlapping (overlap=80%)
windows of size 0.12s. This value was chosen given that 6 was the length, in terms of samples (acquired at
50Hz), of the shortest primitive. The choice of the window length was consistent with the definition of minimal
motion given by Schambra et al [34] which defines it as a lack of changes in upper extremity configuration for
at least 0.05s.

Each windowed exercise was then split into 2 segments of dimension 80% and 20% of the total length that were
saved respectively into training and testing datasets. For each exercise in the training dataset, a zero-padding
function was applied to ensure that each exercise had the same size, set to be equal to that of the longest
exercise. In order to allow the neural network to process a whole exercise in a single iteration, the batch size
was chosen to be equal to the maximum exercise length. During training, 5% of the training dataset was used
for validation purposes.

2.4. Algorithm performance assessment

To assess the performance of the algorithm, the LSTM performance was tested for different values of hidden
units: in particular, 50, 100, 200, and 300 were chosen as depth values to be tested. 2 different tests were then
conducted for each hyperparameter choice:

e Train and test with Dataset A: consisting in training and testing with only SADL activities.
e Train and test with Dataset B: consisting in training and testing with both SADL and CADL activities.

A total of 5 repetitions were performed for each test, in each of which the order of exercises within the dataset

was randomly shuffled to ensure different sets of exercises for training and validation in each repetition. Absolute
and relative fl-scores were averaged across repetitions.
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3. Results and discussion

This chapter presents the results achieved in this thesis and their discussion. In the first part, the outcomes
concerning ISB angle estimation are presented and discussed both for the validation with the robot and the
validation with human participants. Then, the motor primitives classification results are illustrated and com-
mented.

3.1. IMU-based estimation of upper-limb angles

3.1.1 1ISB angles: validation on robotic arm

Figure 12 illustrates the results regarding the validation of the 5 ISB angles (POE, AOF HR, FE, PS), computed
with IMU sensors and TIAGo’s encoders during the execution of Test 2.

HR[]

0 : . >
| | | | | | | | | J
0 50 100 150 200 250 300 350 400 450 500

A =

| | | | | | | |
0 50 100 150 200 250 300 350 400 450 500
Time [s]
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Figure 12: Upper limb joint angles measured by the encoders and estimated with the proposed method
during the execution of Test 2. IMU angles are shown in orange, while angles coming from TIAGo’s
encoder are shown in blue.

From this figure, it is possible to notice that the two methods achieved very similar outcomes. However, in the
first part of the acquisition, is possible to observe two pronounced peaks, a positive one for the POE and a
negative one for the HR, in which the values relative to the IMUs and the robot’s encoders are not correspondent.
This discrepancy can be explained because of the POE’s computation method: this angle is in fact determined
by the projection of the y-axis of UA onto the horizontal plane of TH. In the case of a very small AOF the
definition of POF is ill-posed. Errors in the definition of the POFE are directly transferred to the HR , given
the direct relationship that links these two angles (Eq:14).

In Table 2, the results of the two tests (Test 1 and Test 2) in terms of RMSE, RMSE% relative to the ROM,
and correlation coefficient (’r’) are presented.

Test 1 Test 2
r RMSE [°] RMSE[%] r RMSE [°] RMSE[%]
POE 0.998 3.99 3.57 0.998 5.75 5.14
AOE 0.998 3.16 2.48 0.999 2.33 1.83
HR 0.999 3.23 2.67 0.999 2.27 1.87
FE 0.997 4.57 3.61 0.995 5.28 4.16
PS 0.997 2.54 2.41 0.993 7.37 6.99

Table 2: Correlation coefficient (r) and RMSE between TIAGO’s encoders and IMU during two tests.
RMSE% refers to the percentage of the RMSE with respect to the range of motion (ROM).
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The observable correspondence between the two graphs (Figure 12) is further supported by the high correlation
values in Table 2. The proposed algorithm effectively estimated TIAGo’s joint angles by achieving an average
error below 5° [45] and correlation coefficients always above 0.993. Errors for POFE are slightly worse concerning
the other shoulder angles: these errors can be explained, as mentioned earlier, with the ill-posed definition of
this angle when AOFE is near 0°. The results show similar metrics for Test 1 and Test 2. However, the angles
of the elbow during Test 2 exhibit slightly higher errors and lower correlations compared to the one of Test 1.
This might be explained by the introduction of inaccuracies during the calibration procedure.

3.1.2 ISB angles: validation on healthy participants

In this section, the results concerning the validation of the IMU-based angle extraction on 5 healthy participants
are presented. A comparison between the angles computed using the IMUs and the optoelectronic system during
the execution of tasks focused on exploring one angle at a time is presented.

To ensure the absence of offset-dependent errors, which can be caused, for instance, by different settings between
the two systems, the mean was subtracted from all the signals. Table 3 displays the mean and standard
deviation values of the differences between the mean of each signal provided by the optoelectronic system and
the correspondent one computed with IMU data. For each angle, only the corresponding task was considered
for the purpose to conduct the statistical analysis.

Mean [*] SD [
POE 22,724 21,716
AOE 11,014 4,255

HR 23,576 52,503
HReorr 23,621 44,974
FE 12,765 8,437
PS 73,022 26,504

PScorr 69,686 36,944

Table 3: Average and standard deviation (SD) of the mean between subjects

As it is possible to observe from the first column depicted in Table 3, the mean differences between the two
signals are quite different for all the angles. Similarly, the values of the standard deviation suggest that the
offsets were quite different also among the subjects. The smallest values of both mean and standard deviation
are the ones related to the AOE and FE. These two angles, in fact, were computed by the comparison of the
orientation of the y-axes between consecutive segments and, since drift usually manifests as a deviation of the
yaw angle, which is a rotation around the y-axis, is reasonable to infer that there could be a correlation between
the variability of the offsets and drift. Moreover, is not always clear where the zero points of the optoelectronic
system are located.

For the following results, the statistical analysis was conducted considering zero-mean signals.

Figure 13 represents the results obtained during the execution of single-angle tasks by one single subject for a
time window of 20 seconds.
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Figure 13: Shoulder angles (POE, AOE HR , HR o ) for subject 1. The first plot from the top refers
to the POE angle evaluated during Task 1, the second plot represents AOE during the execution of
Task 2, while the third plot represents HR and HR . acquired during Task 3. The fourth and fifth
plots from the top are relative to the FE and PS and PS.,. respectively. Red lines are relative to the
angles computed without correction with IMUs, green refers to the IMU-based angles computer with
UA correction, and the blue ones represent the angles extracted by the optoelectronic system

In Figure 13, the angles computed by means of the optoelectronic system and IMUs are represented. In
particular, green plots refer to the angles registered with the IMUs and estimated by means of the correction
of UA (UAcorr) presented in 2.1.5.

From Figure 13 it is possible to notice that there is an observable correlation between the IMU and optoelectronic
angle. However, it is evident that for small values of AOFE the curve related to the optoelectronic system measure
reverses its concavity unlike the one related to IMU. This phenomenon can be attributed to two factors. The
first is that the AOF computed by the IMUs, by definition, cannot invert signs when the 0 value is overcome.
The second reason can be attributed to errors introduced by different 0° references between the two systems
and by calibration: during the N-pose, in fact, the non-perfect alignment of the upper arms to the vertical
axis due to hips width introduces an offset. However, by looking at the ROM of AOF it seems that the IMUs
better estimated the actual AOE: indeed, the execution of Task 2 required the arm to explore the entire range
of motion, ideally from 0° to 180° but the ROM of AOF estimated by the optoelectronic system is about 100°.
HR_,, performed better than HR . The estimation of the latter angle was probably corrupted by the movements
of soft tissues around the humerus. The correction allowed the definition of a rotation matrix for UA that moves,
theoretically, in unison with the bone.

Consideration can be made about FE angle: the reversion of concavity of the curve associated with IMUs can
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be attributed to the fact that these sensors do not differentiate between flexion and hyperextension of the elbow.
Therefore, if the two systems had different 0° references, in the case of a complete extension one could read
a hyperextension which is described as an angle >0°. It is possible to notice that the range of motion of PS
and PS¢, is reduced for IMU measures with respect to the optoelectronic system. It is possible, in fact, that
FA sensors, which were in a more proximal position compared to the wrist markers, rotated less in relation to
them. The forearm Velcro bending could also have contributed to this effect. Moreover, the estimation of these
angles can be biased by a drift, expected to cause an offset, or by a non-negligible ulnar deviation.

In Table 4, the RMSE, RMSE%, and r of 5 participants are summarized.

RMSE[] RMSE% T
POE 9,459 £5,270 6,525 +3,538 0,976 +0, 028
AOE 16,000 +£4,069 14,004 £3,674 0,952 0,031

HR 15,365 £3,318 11,342 £2,373 0,963 %0, 037
HReore 9,455 £4,380 7,303 £3,859 0,966 +0, 032
FE 24,984 £10,932 16,397 £7,897 0,970 0,019
PS 28,409 £8,239 16,905 £3,866 0,958 +0, 022

PScorr 29,654 +£12,726 18,091 +8,802 0,919 +0, 121

Table 4: Mean and standard deviation of RMSE, RMSE% evaluated on the range of motion (ROM)
and correlation coefficients among 5 subjects.

As it can be seen in Figure 13, the mean and standard deviation values further confirm that POFE is the angle
with the most accurate estimation. The improvement of the HR estimation by the application of the correction
is evident by observing RMSE values: a reduction of approximately 6° is observable between the corrected and
uncorrected values. The correction can therefore compensate for the relative movement between UA sensor and
the humerus caused by soft tissues.

The elbow joint exhibits significant RMSE. Nevertheless, the r values are comparable to the ones of the shoulder
angles. Regarding the FE angle, as depicted in Figure 13, the curves have a similar trend but the IMU value
are generally lower. This can be attributed to the offset present in FA estimation and the limitation that the
FE angle cannot reach negative values.

The following plots represent the Bland-Altman plots for each angle and each participant (P1, P2, P3, P4, P5),
representing the average and difference between two measurements respectively on the x-axis and y-axis.
Figure 14 depicts the Bland-Altman plot for the POE.
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Figure 14: POFE Bland-Altman plot for each participant during the execution of Task 1.

Except for the first participant (P1), the distribution of points is mainly horizontal and centered around the
mean error. P2, P3, and P4 exhibit average error values near 0°. Regarding subject P4, the pattern of the
distribution of points suggests that there was a correlation between the average POE and the difference between
the two measurement systems.

The following figure represents the Bland-Altman plot for the AOE.
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Figure 15: AOE Bland-Altman plot for each participant during the execution of Task 2.

Similarly to the POFE the distribution of points for the AOE of P1 is more scattered with respect to the other
subjects. For P3, P4, P5, and P6 the point mainly cluster around the mean error line (orange). However, they
are more scattered with respect to POE: they exhibit wider ranges of values on the y-axis which are coherent
with the higher mean RMSE illustrated in Table 4. Indeed, the RMSE for the POE was 9.46, while the one for
the AOF was 15.99. Moreover, the inversion of concavity observable in Figure 13 manifests in the Bland-Altman
plots as a peak towards high error for a small average of the signal.
Figure 16 and Figure 17 presented below depict the Bland-Altman plot for HR and HR oy
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Figure 16: HR Bland-Altman plot for each participant during the execution of Task 3.
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Figure 17: HRcor Bland-Altman plot for each participant during the execution of Task 3.

For the HR and HR,,, angles, the pattern of distribution of points is not clear. However, is possible to observe
that in general, the error increases at both the high and low extremities. This suggests that the error between
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the two measurement systems is proportional to the average of the two signals. No particular differences between
HR and HR.,. plots are detected.
The Bland-Altman plot for FFE is depicted below.
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Figure 18: FE Bland-Altman plot for each participant during the execution of Task 4.

The Bland Altman plot for FE angle shows that the distribution of points is mainly horizontal. For P1, P2, and
P3, and less evidently for P3 and P4, it’s possible to observe a vertical distribution of points toward negative
values of errors. As already noticed before, at small FE values, the signals obtained through optoelectronic and
IMU systems exhibit opposite concavities. The definition of FFE, in fact, is such that when the value overcomes
0°, the signal changes its concavity because the angle cannot assume negative values. The error in FE may be
due to the fact that PS, in the case of the human body, is not a perfect rotation around the y-axis.

Finally, the Bland-Altman plots relative to PS and PS., are presented.
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Figure 19: PS Bland-Altman plot for each participant during the execution of Task 5.
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Figure 20: PScor Bland-Altman plot for each participant during the execution of Task 5.
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By observing Figure 19 and Figure 20 is clear that there is a correlation between errors and signal average values.
The Bland-Altman plot for PS and PS.,- confirms that IMU overestimates and underestimates respectively
small values and high values of the pronation/supination angle. This effect could be due to the relative movement
of the IMU placed on the forearm with respect to the segment itself: the velcro wristband, in fact, may displace
from the initial position during forearm rotation. Moreover, the markers for the optoelectronic system were
placed on the bony prominences of the wrist, while the IMU was positioned more proximally causing a lower
sensitivity to rotations.

In summary, the best values were those relative to the POFE both in terms of correlation, RMSE, and distribution
of points in the Bland-Altman plot. These good results can be attributed to the orientation of UA during Task
1: the AOFE was in fact around 90°, that is the configuration in which the projection of the y-axis of UA on
the horizontal plane of TH is maximized. The Bland-Altman plots (Figure 15 and Figure 18) and the temporal
trend of the angles suggest that the errors are mainly caused by the inversion of concavity. For what concerns
the PS and PS¢, the errors appear to be systematic errors.

3.2. Classification of motor primitives

In the following sections, the results for different LSTM complexity trained with different dataset combinations
are presented. Each combination was repeated 5 times and for each repetition, the dataset was shuffled but still
maintaining the temporal order of samples within a single exercise. This approach ensures that the validation
set varies for each repetition. The fl-scores obtained during testing phases were averaged over 5 repetitions for
each combination of LSTM depth and datasets.

3.2.1 Primitives classification: dataset A

The table below depicts the values of training fl-scores for various depth settings (50, 100, 200, 300) of the
LSTM layer. During this first experiment, these models were trained and tested using only the SADL dataset
(dataset A).

Training dataset A

LSTM DEPTH 50 100 200 300

Absolute 0,584 £0,061 0,834 £0,006 0,871 £0,007 0,886 £0,012
Idle 0,885 £0,003 0,897 £0,004 0,909 £0,004 0,916 £0,006
Stabilize 0,725 £0,308 0,889 £0,006 0,900 £0,008 0,893 £0,042
Reach 0,634 +£0,017 0,722 £0,013 0,787 £0,014 0,822 £0,019
Transport 0,428 £0,204 0,865 £0,005 0,897 £0,005 0,911 £0,008
Reposition 0,690 +£0,002 0,751 £0,010 0,818 +£0,011 0,839 £0, 006

Table 5: Training f1 scores (mean and standard deviation for dataset A (SADL) averaged over 5
repetitions in which validation set was chosen randomly among training dataset.

As it is possible to observe from 5, LSTM50 is the model that achieved the lower fl-scores during the training
phase. Moreover, the variability of the performance of this model is high compared to the other one: this means
that the model is less robust with respect to the other, and the accuracy of the classification depends on the
set of data used for training and validation. In general, the fl-score increase directly with the model depth.
The following table represents the values of fl-score achieved during the testing phase of dataset A.

Testing dataset A

LSTM DEPTH 50 100 200 300

Absolute 0,738 £0,006 0,754 £0,005 0,765+0,006 0,762%0, 008
Idle 0,855 £0,008 0,856 0,008 0,862 £0,005 0,855 +0, 010
Stabilize 0,779 £0,015 0,778 0,023 0,789 £0,019 0,794 0,018
Reach 0,544 £0,042 0,612 £0,010 0,621 £0,016 0,623 £0, 014
Transport 0,784 £0,005 0,797 0,007 0,808 £0,005 0,802 =0, 008
Reposition 0,590 £0,007 0,628 £0,013 0,651 £0,005 0,649 £0, 015

Table 6: Testing f1 scores (mean and standard deviations) for dataset A averaged over 5 repetitions in
which validation set was chosen randomly among training dataset.
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Considering that the fl-score is a value between 0 and 1, in which 1 represents the best performance in terms
of precision and recall, it can be stated that LSTM200 performed better compared to the other model. By
looking at the overall (’Absolute’) fl-scores, in fact, LSTM200 has the highest value (0.765), followed closely
by LSTM300 (0.762). The observed lack of improvement in training performance from LSTM200 to LSTM300
suggests potential overfitting due to the limited dataset size and the excessive model complexity.

The performance varies across different primitives: the best results were achieved by ’idle’, and ’transport’
primitives since their fl-score was respectively 0.862, 0.808 for LSTM200. ’Stabilize’ class also achieved an
fl-score of 0.789 for LSTM200, which is worthy of note since this primitive is characterized by a kinematic
similar to the one of ’idle’ primitive. The variation in fl-scores can be attributed to the dataset’s imbalance
toward ’transport’ and ’idle’ classes. The SD is low for all models, with the highest value beign the 'reach’ class
for LSTM50.

The following figure represents the confusion matrix for LSTM200 model trained and tested with dataset A
during one repetition. The diagonal values represent the sensitivity for each primitive, which is representative
of how often the model predicted correctly a primitive.
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Figure 21: Confusion matrix for LSTM200 trained and tested only with data from SADL dataset.

The confusion matrix further describes the performance of the model by providing a comparison between
predicted labels and true labels. By looking at Figure 21, a consideration can be done: stabilization often
occurs between two transports and in CADL scenario it was not always easy to recognize the boundary between
two primitives. Moreover, it is possible to notice that the misclassification of 'reach’ and ’reposition’, was mainly
in favor of the ’transport’ class. This result is reasonable since the dataset contains more windows labeled as
‘transport’ than one of the other classes. Moreover, this primitive includes a variety of movements that can be
similar to the ones of reach’ and ’reposition’ since the models had no information regarding the kinematics of
the hand.

3.2.2 Primitives classification: Dataset B

The table below depicts the training fl-score of different LSTM models trained and tested with both CADL
and SADL data (dataset B).
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Training dataset B

LSTM DEPTH 50 100 200 300
Absolute 0,474 £0,112 0,757 £0,011 0,791 £0,034 0,812 £0, 008
Idle 0,582 +0,380 0,870 £0,017 0,890 £0,008 0,894 0, 005
Stabilize 0,791 £0,022 0,820 0,021 0,849 £0,013 0,857 0,010
Reach 0,348 £0,050 0,510 £0,033 0,594 £0,028 0,652 =0, 020
Transport 0,405 £0,288 0,827 0,006 0,812 £0,082 0,860 =0, 005
Reposition 0,517 £0,040 0,605 0,034 0,685 0,013 0,731 0, 008

Table 7: Training f1 scores (mean and standard deviation) for dataset B averaged over 5 repetitions
in which validation set was chosen randomly among training dataset.

Similarly to dataset A, the model performance during the training phase increases with LSTM depth. Also
with dataset B, LSTM50 shows a higher variability in fl-score across the 5 repetitions.

The following table represents the testing f1-score of different LSTM models trained and tested with both CADL
and SADL data (dataset B).

Testing dataset B

LSTM DEPTH 50 100 200 300
Absolute 0,700 £0,003 0,714 £0,005 0,711 0,005 0,718 +0, 002
Idle 0,824 £0,018 0,828 £0,013 0,823 0,012 0,827 0,012
Stabilize 0,654 £0,024 0,663 £0,017 0,679 0,017 0,674 =0, 008
Reach 0,335 £0,026 0,431 0,011 0,487 £0,017 0,485 £0,013
Transport 0,778 £0,001 0,784 £0,004 0,777 £0,004 0,784 %0, 004
Reposition 0,445 £0,023 0,535 £0,017 0,550 20,026 0,566 0, 009

Table &: Testing fl scores (mean and standard deviation) for dataset B averaged over 5 repetitions in
which validation set was chosen randomly among training dataset.

The classification performance is still good for ’idle’ and ’transport’ primitives. However, it is possible to notice
that the fl-score decreased for the other classes. CADL dataset introduced variability since the movements
during CADLs were faster and the participants in the acquisition protocol were free to move in the space as
they wished. The absolute fl-score increases with model depth: increasing the model’s complexity in fact, the
algorithm could learn more complex representations.

The following figure represents the confusion matrix for LSTM200 model trained and tested with dataset B
during one repetition.
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Figure 22: Confusion matrix for LSTM200 trained and tested with data from dataset B.

As for 3.2.1, from the confusion matrix is possible to notice that the misclassifications were mainly in favor of
the ’transport’ class. Moreover, ’stabilize’ primitive was well distinguished from ’idle’ class.

Results for different LSTM depths with different datasets show that by training the algorithm with only SADL
exercises, the performance is increased. In particular, the main difference can be observed in the classification
of 'reach’ movements. This result was predictable since in SADL dataset acquisition, the same exercises have
been executed in the same way for all participants. On the contrary, some variability has been introduced in
the CADL activities, in which subjects were able to move as they wished and the density of primitives over time
was generally higher with respect to SADL. The same consideration cannot be made for 'reach’ classification in
ADL dataset. From Table 7 is possible to observe that the fl-score for 'reach’ class is better for a depth of 200
with respect to 300. This behavior suggests that increasing the complexity of the model for the ADL dataset
caused an overfitting effect. Datasets were, in fact, unbalanced, with a prevalence of 'transport’ class compared
to the others.

4. Conclusions and future developments

The aim of this thesis is to build the foundation for future works based on the upper limb kinematic analysis of
exosuits users. The final application is twofold: on the one side, upper limb kinematics will be used for gravity
compensation control, on the other side, it will be exploited to assess and monitor the user’s motor performance
progress to provide feedback and sustain engagement.

The first phase of this project was focused on developing an algorithm to compute upper limb joint angles
defined according to the ISB convention from a set of 3 IMUs. To this purpose, a three-step magnetometer-free
calibration procedure, which allows a free-positioning of the sensors on the body segments, was defined.

A first validation of the algorithm to extract ISB angles from the IMU system was conducted using the TIAGo
robot, comparing the angles computed with the ones read by the encoders of the robot’s motors. This validation
led to excellent results, with errors ranging overall between 2.33° to 7.37° and correlation coeflicients above 0.993.
A second validation was conducted on 5 healthy participants whose arm joint angles were simultaneously
recorded with the IMUs and an optoelectronic system that captured markers placed on bony prominences. A
correction was applied to HR and PS (see 2.1.5) in order to compensate for soft tissue movement around the
humerus. The data acquired with the optoelectronic and the IMU-based systems were then compared by means
of RMSE and correlation coefficient. The best results considering all the participants were achieved for POE
and HR .. (RMSE<10°). Results also confirmed that the correction applied to HR and PS effectively mitigated
the effect of soft tissue-bone relative movement (HR o RMSE<10°). Correlation coefficients were above 0.91
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for all the angles. Higher errors were computed for the AOE (average RMSE of 16°). However, counsidering
that during the execution of Task 2, the arm should have been raised to its maximum, is plausible to think
that the IMUs would be more accurate since they estimated a wider ROM. Regarding the FE, by looking at
Figure 13 is possible to notice an inversion of concavity of the IMU plot. Since the metrics have been evaluated
after removing the mean of the signal, the errors might appear larger than the actual discrepancy. The poor
results achieved for PS and PS.,. are related to the underestimation of the IMUs probably due to the relative
movement of the wristband and the more proximal position of FA sensor with respect to the wrist markers.
Furthermore, even if the optoelectronic system is commonly used for assessing upper limb movements, it is
important to note that nowadays, there is not a universally accepted standard for UL kinematic assessment and
that some errors could have been induced by this system itself.

The second phase of this work focused on the classification of motor primitives starting from the angles extracted
with the previously described algorithm, angular velocities, and linear accelerations by means of LSTM neural
networks. The results obtained by training and testing LSTM200 and LSTM300 using only the SADL dataset
show that ’idle’, 'stabilize’, and 'transport’ were classified with a fairly good test fl-score of approximately 0.8,
which represents a reasonable balance between precision and recall. Furthermore, even if ’idle’ and ’stabilize’
are characterized by very similar kinematics since the arm is practically stationary, is interesting to notice
from Figure 21 that they have been clearly distinguished. The classes of 'reach’ and ’reposition’ were instead
misclassified mainly as ’transport’. This outcome was predictable since the dataset was highly imbalanced
toward this class and, moreover, ’transport’ includes movements that can be very similar to the one of 'reach’
and ’reposition’ if the hand’s kinematic is not considered.

To test the capability of the LSTM model to classify primitives acquired in an ADL setting, the model underwent
training and testing using data from both SADL and CADL datasets. CADL movements are in fact faster and
more variegated with respect to the SADL ones. Moreover, during the acquisition of CADL movements, the
participant was moving freely around the space, which made the labeling process more challenging. As expected,
the test fl-scores obtained with these models were lower with respect to the first model but still achieved an
overall f1-score of 0.73 for LSTM300 tested on SADL and CADLs. Also in this scenario, the primitives that were
better classified were ’idle’ and ’transport’, while ’stabilize’ fl1-score decreased due to a significant portion being
misclassified as ’transport’. Also ’reach’ and ’reposition’ primitives were mainly misclassified as ’transport’.
As stated before, this classification error can be justified by the lack of information regarding the grasping
movement of the hand.

The performance of the algorithm was lower with respect to other studies aimed at the classification of the
primitive. Nevertheless, it is important to acknowledge that in this study, a smaller number of IMUs (3 in this
study compared to the 7 in [36] and 9 in [37]) was used. This simplification is necessary to translate research
in the final application that will be in an assistive scenario, where the exosuit must ensure maximum comfort
while minimizing the complexity of the device. Additionally, in this work, the classification relies on a reduced
set of input features (26 compared to 77 [37] and 665 [36]) which can be an advantage in terms of robustness
and generalization ability.

Considering these factors, it is reasonable to view this work as an initial milestone toward the broader objective
of integrating functional movement assessment into exosuits for daily assistance. The promising outcomes
achieved through robot validation, coupled with the recognition of potential factors contributing to errors in
human validation, instill confidence that, by adding proper user-specific parameters, like ulnar deviation and
hip width, the proposed method can become operational and successfully implemented. Further research could
also be conducted to estimate drift, thus allowing the reliability of the measure within long periods of time.
Moreover, the inclusion of activities of daily living did not result in a significant deterioration of the algorithm’s
performance. This finding highlights the feasibility of classifying primitives in an uncontrolled environment,
paving the way for broader applicability and real-world deployment. As previously mentioned, in both models,
a part of this misclassification could be attributed to dataset imbalance and inaccurate data labeling. To improve
classification performance, it is advisable to use a more wider and balanced dataset and ensure accurate labeling
by capturing videos at a higher frames-per-second rate, while also cross-checking for potential labeling errors.
Moreover, algorithm performance could also be enhanced by adding a fourth sensor on the hand as long as it is
compatible with the wearability of the exosuit.
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Abstract in lingua italiana

La qualita della vita di una persona colpita da un problema cronico agli arti superiori pud essere compromessa
in modo significativo. Per questa ragione, la riabilitazione motoria e 'assistenza nelle attivita quotidiane (ADL)
sono fondamentali. Nel contesto dell’assistenza domiciliare, gli esoscheletri rappresentano uno strumento valido
per assistere i movimenti degli arti nell’esecuzione delle ADL grazie alla cooperazione tra sensori e attuatori.
Questa tesi fa parte di un ampio progetto volto allo sviluppo di un esoscheletro per ’assistenza del movimento
degli arti superiori. In particolare, tre sensori inerziali (IMU) sono integrati nel dispositivo per consentire la
compensazione n tempo reale del peso del braccio dovuto alla gravita. L’idea alla base di questo lavoro é quella
di sfruttare i sensori integrati per ricavare un modello cinematico da utilizzare per il controllo dell’esoscheletro e
monitorare quotidianamente la funzionalita dell’arto superiore. In tal modo, le informazioni ricavate potrebbero
essere utilizzate per fornire feedback e favorire il coinvolgimento dell’'utente. A tal fine, sono stati definiti
due obiettivi: i) implementare il calcolo online degli angoli anatomici in conformita allo standard dell’ISB
(International Society of Biomechanics), ii) definire, addestrare e testare una rete neurale per la classificazione
delle primitive motorie. Per raggiungere il primo obiettivo, & stata proposta una procedura di calibrazione
in tre fasi (reset IMU, N-pose e T-pose). Successivamente, ¢ stata completata la formalizzazione del metodo
di calcolo per 5 angoli ISB, compresi il piano di elevazione (POE), 'angolo di elevazione (AOE), la rotazione
dell’omero ( HR ), la flessione/estensione (FE) e la pronazione/supinazione ( PS),. Inoltre, & stato sviluppato
un metodo di correzione per HR e PS al fine di compensare il movimento relativo dei sensori del braccio
superiore rispetto all’osso dovuto alla presenza di tessuti molli. Il metodo é stato convalidato su un braccio
robotico e su 5 partecipanti sani mediante il confronto tra le IMU e, rispettivamente, gli encoder del robot
e un sistema optoelettronico. Per il secondo obiettivo, é stato chiesto a 10 partecipanti sani di eseguire un
insieme di attivita in due scenari diversi: uno caratterizzato da attivita semplici (SADL) e laltro di attivita
complesse (CADL). Durante gli esperimenti, i dati sono stati acquisiti mediante 5 IMU e una videocamera.
I dati sono stati etichettati mediante ispezione video in base alla definizione di 5 primitive motorie: "idle",
"stabilize", "reach", "transport" e "reposition". Successivamente, ¢ stata addestrata e testata una rete neurale
LSTM (Long-Short Term Memory) con diverse combinazioni di dataset: SADL per addestramento e test, e
SADL+CADL per addestramento e test. I risultati della validazione degli angoli ISB hanno mostrato un errore
inferiore durante il test sul braccio robotico (RMSE medio tra 2,75°-4,96°) rispetto a quello sui partecipanti
(RMSE medio tra 9,45°-29,65°). Tuttavia, il coefficiente di correlazione & stato superiore a 0,91 anche durante
la convalida con soggetti sani. Per quanto riguarda le prestazioni della classificazione del modello LSTM sui due
dataset, il primo ha ottenuto un fl-score di 0,75, mentre il secondo, che & piu rilevante per 'applicazione finale,
ha ottenuto uno score f1 di 0,73. L’algoritmo ha ottenuto migliori risultati nel riconoscimento delle primitive
"idle" e "transport", che erano le piu presenti nei dataset. Al contrario, le primitive "reach" e "reposition" sono
state spesso classificate erroneamente come "transport". Questo lavoro rappresenta un punto di partenza per
la valutazione degli arti superiori in scenari di vita quotidiana.
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