
POLITECNICO DI MILANO
Master of Science in Computer Science and Engineering

Dipartimento di Elettronica, Informazione e Bioingegneria

TracksCAD - Computer Assisted Track

Design Tool for Racing Games

Supervisor: Prof. Daniele Loiacono

Co-supervisor: Prof. Pier Luca Lanzi

M.Sc. Thesis by:

Davide Pons, 939643

Academic Year 2020-2021

Abstract

With the increasing costs of modern videogames production, developers are

in continous search of new ways to reduce the effort taken to create them,

without having to sacrify their overall quality. One of the aspects that has

a major impact on such costs is the creation of game content which, in the

case of racing games, largely consists in designing the greatest number of

unique circuits on which to compete. The goal of this thesis is to develop a

computer assisted design (CAD) tool that helps in the process of designing

tracks for racing videogames, and that is capable of providing suggestions

and feedback related to both the driving alone experience and the dynamics

that show up when racing in group. The way the tool comes up with such

suggestions is based on the analysis of a set of simulations that are performed

whenever the designer needs them. Additionally, we discuss how Machine

Learning techniques can be exploited to estimate some of the metrics that

can usually be extracted only from simulations, using as inputs just the

topological features of the track being created.

I

Sommario

Con il continuo aumento dei costi di produzione dei videogiochi moderni,

gli sviluppatori sono alla costante ricerca di nuove metodologie per ridurre

gli sforzi necessari al loro sviluppo, senza però essere costretti a sacrifi-

carne la qualità complessiva. Uno degli aspetti che impatta maggiormente

su questi costi è la creazione dei contenuti di gioco che, nel caso dei video-

giochi di guida, consiste in gran parte nella progettazione di tracciati unici

sui quali competere. L’obbiettivo di questa tesi è quello di sviluppare uno

strumento di progettazione assistita al computer (CAD) che aiuti nel pro-

cesso di creazione dei tracciati di videogiochi di guida, e che sia in grado

di fornire suggerimenti e feedback riguardanti sia l’esperienza di guida in

solitaria che di tutte quelle dinamiche che vengono a crearsi nelle compe-

tizioni di gruppo. Il metodo con cui lo strumento genera questi consigli è

basandosi sull’analisi di simulazioni, che vengono eseguite ogniqualvolta il

designer ne avesse bisogno. Inoltre, si discute di come tecniche di Machine

Learning possono essere sfruttate per stimare alcune delle metriche normal-

mente estratte dalle simulazioni, usando come soli input le caratteristiche

topologiche della pista che si sta creando.

III

Acknowledgements

I would like to thank all those who inspired and supported me during my

academic path. My family, who have always been present in both diffi-

cult and joyful moments. All friends and colleagues who encouraged and

accompanied me. A special mention goes also to my supervisor and co-

supervisor, Daniele Loiacono and Pier Luca Lanzi, who guided me through-

out this project with patience and professionalism, and gave me the chance

to work on a thesis concerning a field I feel extremely passionate about.

V

Contents

Abstract I

Sommario III

Acknowledgements V

1 Introduction 1

1.1 Context: Track design in Racing Games 1

1.2 Scenario and Problem Statement 2

1.3 Methodology . 3

1.4 Contributions . 3

1.5 Structure of Thesis . 4

2 State of the Art 5

2.1 Brief Introduction to Racing Games Editors 6

2.2 Developing Tracks in Racing Games 7

2.3 Testing and Evalutation of Racing Tracks 9

2.4 TORCS and Speed Dreams 10

2.4.1 Introduction to the simulator 10

2.4.2 Races in Speed Dreams 11

2.5 Unity . 13

3 Developed Tools for Tracks Analysis 15

3.1 Changes made to Speed Dreams 15

3.1.1 Track Representation in Speed Dreams 15

3.1.2 Data Extraction of Simulations 18

3.1.3 Choice of Races Start Configurations 18

3.2 Other Tools . 21

3.2.1 Track Format Converter 22

3.2.2 Remote Simulations Execution 23

VII

4 Track Editor 27

4.1 Overall Architecture . 27

4.2 Track Design and Editing . 28

4.2.1 Creating and Loading Tracks 28

4.2.2 Segment Editing . 31

4.3 Automatic Track Closure System 37

4.4 Track Evaluation . 40

4.4.1 Average Speed . 43

4.4.2 Collisions analysis . 43

4.4.3 Overtaking dynamics analysis 43

4.4.4 Analysis of Time Gaps 44

4.4.5 Heatmaps . 44

4.5 Replaying Races . 46

5 Estimation of Dynamic Track Characteristics from Topology

Metrics 49

5.1 Metrics and Data Extraction 49

5.2 Training the Models . 53

5.3 Results . 54

6 Conclusions and Future Work 61

References 65

VIII

List of Figures

1.1 Average videogames production cost from 1980 to 2020 [12] . 2

2.1 Screenshots of Stunts (left) and Gene Rally (right) track ed-

itor windows . 7

2.2 Screenshot of the Unity editor user interface 14

3.1 Geometric meaning of Straight and Turns mandatory param-

eters . 17

3.2 High level view of the remote simulation framework 22

3.3 Example of json track encoding 24

3.4 UML Communication Diagram 25

4.1 High level components scheme of the TracksCAD architec-

ture. The arrows represent data flow, the yellow blocks are

the main components of the system, while the dashed lines

link components that extend other components. 29

4.2 TracksCAD Utility window - Loading of a new track and new

track setup fields are displayed before beginning designing . . 30

4.3 Unity scene when track E-Track 1 is loaded 31

4.4 Segment editor screenshot . 32

4.5 Example of pit lane 3D object 35

4.6 Segment borders, sides, and barriers 35

4.7 Screenshot of the tool while editing a segment 36

4.8 Examples of automatic track closures. All have been found

in less than 300ms (5× 103 iterations), and with a tolerance

of less than 0.5m. 39

4.9 Simulation window . 40

4.10 Simulation report window of track Forza 41

4.11 Simulation report window of track Karwada 42

4.12 Position variations recorded across 4 races on Aalborg track . 44

4.13 Heatmaps computed from simulations on track Aalborg 45

IX

4.14 Screenshot of the tool while viewing heatmaps of track Corkscrew 46

4.15 Timeline Navigation System screenshots 48

5.1 Model estimation procedure 53

X

List of Tables

3.1 Attributes required to define a Speed Dreams track and seg-

ments . 16

3.2 Metrics extrapolated by the race logger (rlog) during each

simulation, with their description 19

3.3 Bots performances across four races at Brondehach circuit.

Those marked as default are the ones that come with the

Speed Dreams game, while the TORCS EWC ones are those

imported from the TORCS Endurance World Championship . 21

5.1 List of tracks used to create the dataset 52

5.2 Performance metrics of prediction models for estimating av-

erage speed from length, number of turns, and average of

inverse radius . 55

5.3 Performance metrics of prediction models for estimating first-

to-last time gap from track length, number of turns, average

and variance of radiuses . 56

5.4 Performance metrics of prediction models for estimating num-

ber of overtakes from length and width of track 57

5.5 Performance metrics of prediction models for estimating num-

ber of absolute position changes from track length, width,

number of straights and turns, average elevation, and radius

variance . 58

5.6 p-values of the F-Statistic for each 〈feature, target〉 tuple . . 59

XI

XII

List of Algorithms

1 Structure representing current driver state 12

2 Finding points and tangents of left/right turns 33

XIII

XIV

Chapter 1

Introduction

1.1 Context: Track design in Racing Games

One of the major aspects that determines the quality and fun factor of racing

games is the quality and quantity of their tracks. Since the release of the

first videogames belonging to this genre, developers had to carefully think

about the way obstacles were laid down and how turns and straights had to

be placed to convey the maximum level of fun. With the introduction of 3D

graphics and new, more realistic simulation techniques, the task of designing

racetracks became more and more important, as it is now necessary to keep

into consideration advanced gameplay mechanics introduced throughout the

years. For instance, while in some older 2D games players had only to drive

on a straight road avoiding other cars and obstacles, nowadays they have

to frequently change direction, elevation, and sometimes they can even use

power-ups and jumping platforms positioned on the surface of the track.

A second aspect to keep in mind while developing circuits, especially

when talking about multiplayer games, concerns how different drivers will

behave when competing against each other or versus the artificial intelli-

gence. Here the layout of the track and the positioning of other functional

elements (power-ups, escape routes, shortcuts etc.) have great importance,

and doing a good job on this front means making the whole game more

enjoyable, hence inducing more players to buy and play it.

The way designers build racetracks is often based on custom built tools

that allow to visually place the asphalt strip and all decorations around it.

Then, a great deal of effort is devoted to the testing phase, during which

they have to actually perform a number of races to evaluate how well the

topology of the circuit suits the expected dynamic behaviour of cars, and

how unique it feels when driving on it. This building and testing process is

Chapter 1. Introduction

Figure 1.1: Average videogames production cost from 1980 to 2020 [12]

then reiterated multiple times, until it reaches a point where all the static

requirements (those relative to the structure of the circuit) and dynamic

ones (those regarding racing behaviour) are met.

1.2 Scenario and Problem Statement

Production costs in the videogame industry are increasing every year, reach-

ing numbers that exceed the hundreds of millions of dollars for the largest

productions (Figure 1.1). A big part of these costs resides in the creation

of the content that establishes the longevity and variety of the game itself

(e.g. levels, quests, items). The resulting question that developers regularly

pose to themselves is: how can we reduce costs when working at our games?.

Unfortunately there is no simple solution to this problem, and in reality it

strictly depends on the genre of videogames we are working on.

For what concerns racing games, we already mentioned that creating fun

and unique tracks is one of the core aspects for their success. However, it is

also very expensive to produce each circuit, especially if designers have to

take into consideration many racing dynamics arising from the presence of

complex mechanics inside the game. Our focus for this thesis then turns to

answering the question of whether it is possible to exploit automatic racing

simulations and machine learning techniques to make designing of racing

game tracks more efficient.

By automating the testing phase, we would indeed be able to reduce

significantly the number of testing sessions that require real players, there-

fore sparing lots of resources. Finally, we would need less time to develop

2

1.3. Methodology

tracks if we were able to predict the behaviour of drivers in realistic rac-

ing scenarios, as we would need to run only few of those time consuming

simulations.

1.3 Methodology

The work for this thesis has been divided into 3 phases: Development of

the simulation engine, Development of the track editor, and Model fitting of

dynamic behaviours.

The first phase consists on chosing an appropriate racing game that will

be used as simulator for running races on circuits we create. For this purpose

we decided to use Speed Dreams (SD), whose details will be better explained

in Chapter 2, which needs to be modified for allowing the extraction of data

while running the simulations.

During the second phase, we develop a track editor that allows to create

and modify custom circuits, and that is capable of giving the designer feed-

back based on the simulations ran with the game that we chose during phase

one. We use the game engine offered by Unity, which allows the addition

of new functionalities through the use of the C# language, as the basis on

which to develop the core architecture of this tool.

In the third phase we concentrate our efforts on the estimation of dy-

namic characteristics, those that are usually extracted from simulations,

through the use of machine learning techniques. Once we have fitted the

models used to estimate such features, we evaluate their performances and

discuss them. The whole fitting and evaluation process is performed using

the Python language, which offers many modules that already implement

many of the most important machine learning algorithms.

1.4 Contributions

In this thesis we present as main contribution a set of tools that not only

allows the creation and editing of race tracks for racing game, but also

performs automatically a set of analyses that are used to give designers

feedback and suggestions for the development of their circuits. This software

is also built in such way to have the maximum flexibility with respect to the

simulator in use, allowing to change it with any other game by applying only

a minimum set of modifications.

We provide also objective evidences that, by analyzing the right set of

topological features of a track, we are indeed able to predict in a quite precise

3

Chapter 1. Introduction

way some of its main dynamic characteristics.

1.5 Structure of Thesis

The rest of this thesis is structured on five chapters:

• Chapter 2 introduces the state of the art, presenting briefly how track

design in videogames has been carried out throughout the years, how

testing and evaluation of tracks is performed, and we also present the

main technologies used in the project of this thesis (Unity 1 and Speed

Dreams [19]).

• Chapter 3 presents the changes we had to make to Speed Dreams as

for being able to extract races evolution and other metrics that are

needed in the next chapters. It is also shown how the game represents

tracks, and the additional tools that we had to develop to allow the

execution of simulations remotely.

• Chapter 4 shows the main architectural decisions made during the de-

velopment of the editor built in Unity, and explains the set of analyses

performed on data retrieved from simulations.

• Chapter 5 explains what is the procedure carried out to find predictors

of dynamic features of tracks using machine learning techniques. We

also give an interpretation of the set of evaluation metrics we computed

for determining the performances of such models.

• Chapter 6 concludes the thesis. Here we provide a summary of the

work we performed, and the conclusions we can draw from it. We

also mention the main limitations of the software developed, and some

possible additions that can be done in the future to expand it.

1https://unity.com/

4

Chapter 2

State of the Art

This chapter is dedicated to introduce the video game industry, particularly

racing games, together with the main technologies used while developing

this thesis.

Section 2.1 is a short overview of racing games, with a special focus on

those that offered their players ways to expand their content with additional

editors and tools. Given the fact that this is a very wide-ranging topic, this

is not to be taken as a complete and exhaustive guide to the history of racing

games, but more as a brief introduction aimed at better understanding the

industry field of videogames production.

Section 2.2 presents the key elements to be considered when developing

tracks in racing games and the main professional roles involved. It is also

discussed what are the major issues that can arise while designing them,

and how the industry tries to cope with such issues.

Section 2.3 explains what is the current standard workflow to test and

evaluate tracks designed in racing games. It first shows what are the main

reasons behind tesing and evaluation of tracks, how the current industry

performs such operations, and some examples of emerging alternatives to

the modern approach.

Section 2.4 is devoted to introducing TORCS and its direct evolution

Speed Dreams, the video game used to develop this thesis. After a brief de-

scription about its main features and how it is used in the research commu-

nity, it is explained how it is possible to access data concerning simulations.

The last section (Section 2.5) is focused on describing what is a game

engine and, more specifically, what is the Unity game engine and what are

the core features we will make use of in the following chapters.

Chapter 2. State of the Art

2.1 Brief Introduction to Racing Games Editors

Racing games are one of the most common and most played genre of video

games nowadays. Their origin can be traced back to 1974, with the release

of Gran Trak 101 (Atari) and Speed Race2 (Taito), two arcade video games.

Both had a top-down view and the controls were based on the cabinet equip-

ment, composed of a steering wheel, throttle, and brake pedals. With the

evolution of technology and the increasing success of home entertainment

solutions (Consoles and Personal Computers), the industry quickly reached

high levels of visual quality, realism, and variety in the gameplay. Some

games were developed pursuing realism as the main goal (e.g. Indianapolis

500: The Simulation3), while others tried to maximise the fun factor and

gameplay uniqueness, even if this meant to sacrifice fidelty in the simulation.

In 1984 Excitebike4 (Nintendo) was released. It was a motocross, side-

scrolling video game developed for the Nintendo Entertainment System

(NES). This was one of the first racing games which gave the players the

ability to play on their own designed tracks [5]. Indeed, the game had a

specific ”design” mode with which the player could place obstacles, ramps,

and platforms throughout the level.

Another example of racing game with an editor that allowed users to cre-

ate custom tracks is Stunts5 (Distinctive Software, 1990), where the player

drives around a circuit with the aim of completing a number of laps as

quickly as possible. Having relatively advanced physics simulation capabil-

ities and 3D graphics, its editor allowed to also customize aspects like the

surface of the track (dirt, asphalt, ice, grass), and to add special types of

buildings like bridges and tunnels [3].

From the early 2000s to the most recent years we can name countless

racing video games, both arcade and realistic ones, which implement some

kind of track editing system. Gene Rally6 (Curious Chicken Games) has a

powerful track editor similar to that of Stunts (Figure 2.1), but with a much

more modern and complete user interface. Analyzing Stunts and Gene Rally

editors, we can distinguish two very distinct ways of designing such tools.

In the former case, the player is provided with some predefined building

blocks that can be placed in a grid-based terrain, whereas in the latter case

the user can draw the road shape at hand, without limitations. A third

1https://en.wikipedia.org/wiki/Gran_Trak_10
2https://en.wikipedia.org/wiki/Speed_Race
3https://en.wikipedia.org/wiki/Indianapolis_500:_The_Simulation
4https://en.wikipedia.org/wiki/Excitebike
5https://en.wikipedia.org/wiki/Stunts_(video_game)
6https://gene-rally.com/

6

https://en.wikipedia.org/wiki/Gran_Trak_10
https://en.wikipedia.org/wiki/Speed_Race
https://en.wikipedia.org/wiki/Indianapolis_500:_The_Simulation
https://en.wikipedia.org/wiki/Excitebike
https://en.wikipedia.org/wiki/Stunts_(video_game)
https://gene-rally.com/

2.2. Developing Tracks in Racing Games

Figure 2.1: Screenshots of Stunts (left) and Gene Rally (right) track editor windows

way to let users build their circuits can be seen in the highly simulative

Assetto Corsa7 (Kunos Simulazioni, 2014). The developers, together with

the release of the game, published an independent software which allows to

import external 3D models that, once assembled, would make up the circuit

itself. This approach, despite allowing a better customization of the visual

appearance of the different track elements (e.g. trees and barriers), is less

user-friendly, as it requires the player to pick up an external 3D modeling

tool (such as Blender8), or to buy the necessary assets from external sources.

For this reason, the majority of racing games provided with track editors

(TrackMania9 by Nadeo is one of the most famous examples) opt for the

much more straightforward experience of giving players a large number of

building blocks to assembly their circuits.

This approach works fine when the editor is developed to let the end

users design their own tracks. However, developers usually tend to use

much richer and more complex editors for developing the circuits that are

released officially with the game. Such programs allow to highly customize

the environment on and off the track, giving designers and artists a much

higher level of freedom during the development of the game.

2.2 Developing Tracks in Racing Games

Two of the most important aspects that make a racing game enjoyable

and fun to play are the number of tracks and their quality. Having a large

number of circuits means more longevity to the game, together with a higher

level of replayability. Still, developing tracks is no easy task. The main

professional roles who deal with the designing of racing games tracks are

designers and artists. Designers decide the overall layout of the road, the

7https://www.assettocorsa.it/en/
8https://www.blender.org/
9https://en.wikipedia.org/wiki/TrackMania

7

https://www.assettocorsa.it/en/
https://www.blender.org/
https://en.wikipedia.org/wiki/TrackMania

Chapter 2. State of the Art

racing line shape, where to put run-off areas and what kind of terrain is

placed around the asphalt. They also choose the positioning of all those

items that may influence the mechanics of the game such as power-ups,

traps and checkpoints. During the pre-production phase, they have to decide

whether to opt for a real-life circuit or to build one from scratch (if the former

option is chosen, the license for that track has to be obtained), and whether

to adopt a more realistic approach instead of a more creative one. Artists

are in charge of developing the visual elements of the track. They have to

create the 3D models, the textures, and the materials that will be assembled

together to make the actual virtual circuit. They also have to keep in mind

the impact of their work on performances, optimizing as much as possible

the graphical elements they create by lowering the number of polygons and

the overall complexity of the assets.

The actual production of the virtual circuit can be done in several ways,

one consisting of directly scanning the real circuit with a laser scan technol-

ogy, as done for the game iRacing10. This is a time consuming operation

requiring expensive tools, so it is usually adopted in games that aim at the

maximum available level of realism. Another option is to draw the track

manually, or to procedurally generate it with a procedural content gener-

ation algorithm. An example of this latter option is Trackgen11 [2, 14], a

track generation system based on genetic algorithms developed at Politec-

nico di Milano. During the production phase the layout of the circuit is

defined by deciding where to put straights and turns, and by setting some

specific road parameters. These can vary between numerous different val-

ues, including road bank angle, slope and surface type. Eventually the track

is enriched with run-off areas and barriers, together with aesthetic props

like trees, buildings, and bleachers. This whole process is repeated after the

track is tested and the critical aspects that need to be changed are identified.

The costs of development raise accordingly every time a modification to the

layout of the track is carried out.

Realistic racing games that simulate specific championships, like the F112

(Codemasters) and MotoGP13 (Milestone) game series, are strictly bound

with respect to the choice and fidelty level of tracks to the corresponding

organization who grants the license. Therefore, in this case, the designers

role is limited to the tweaking of the Artificial Intelligence (AI) and that of

the vehicles setup for each race. On the contrary, designers play a core role

10https://www.iracing.com/track-technology/
11http://trackgen.pierlucalanzi.net/
12http://www.formula1-game.com/
13https://motogpvideogame.com/

8

https://www.iracing.com/track-technology/
http://trackgen.pierlucalanzi.net/
http://www.formula1-game.com/
https://motogpvideogame.com/

2.3. Testing and Evalutation of Racing Tracks

in racing games like Mario Kart14 (Nintendo) and TrackMania15 (Nadeo).

In this type of games tracks have to be carefully crafted in order to match

the style of play of the average targeted user. A game like Mario Kart will

need circuits that are large and quite simple to be appropriate for children,

while games like TrackMania aim at faster and more technical ones.

As mentioned in Section 2.1 some software houses, with the aim of re-

ducing tracks production costs, give their players the tools required to build

their own levels. This approach often pays off very well, especially in creative

video games (not only in the racing games industry, see Nintendo’s Super

Mario Maker16, 2015), as designers can release less official tracks, relying on

the players themselves to increase the contents of their video game. Indeed,

even if the costs for developing a user-friendly editor may increase the over-

all game production budget, the resulting collection of tracks created by the

community will greatly increase its value and longevity in the long run.

2.3 Testing and Evalutation of Racing Tracks

As discussed in the previous section, testing plays an important role for the

good design of a racing game track. While, for real-life circuits, this process

can be usually reduced to a minimum, it becomes of vital importance for

newly created ones. But how can developers be sure that they are creating

high quality tracks? What actually makes a track a good track?

The overall enjoyment of a circuit has correlations with a large number

of parameters, mainly concerning dynamic aspects emerging when racing

on it. Examples are the average speed throughout the racetrack, number of

collisions, and overtaking probability. These may be linked to intrinsic topo-

logical characteristics of the track itself, like its length, width, and amount of

turns [18]. Also, in the case of real circuits, the influence of real-life factors

on their satisfaction must not be understimated. Most famous tracks will be

perceived in-game similarly to how their real-life counterparts are perceived,

even more so if they are frequently present in well-known championships [4].

Both for real-life and fictional circuits, it is extremely useful to have

some kind of evaluation metrics that could steer the designers into the right

direction during the development phases. Moreover, it can also help them to

better understand the aspects of their game that differ from reality. Reason

for this is that they can compare how well famous tracks behave with respect

to real-life scenarios. As an example, we could take a very fast track like

14https://en.wikipedia.org/wiki/Mario_Kart)
15See note 9
16https://en.wikipedia.org/wiki/Super_Mario_Maker

9

https://en.wikipedia.org/wiki/Mario_Kart)
https://en.wikipedia.org/wiki/Super_Mario_Maker

Chapter 2. State of the Art

Monza17, and try it on our game. If, after having tested the track, the

feelings we perceive are not those of a high speed circuit, we can tweak our

simulation parameters to better emulate the expected behaviour.

Nowadays the most common way of performing testing on video games is

by playing them. Often developers arrange special testing sessions that can

be private, if the testers are chosen individually, or public, if the game to be

tested is provided to the public without restrictions and before its actual re-

lease. These kinds of operations are quite expensive and time consuming, as

they require getting in touch with many players and make them try different

aspects of the game. In some cases, for private sessions, it may also prove

dangerous as some testers could cause information to leak outside of the test-

ing environment, causing potential harm to the company. An alternative to

real-life testing sessions is based on Computational Intelligence (CI) [13],

which represents a promising technology for greatly increasing the racing

quality of the AI, making it behave much more realistically. A sufficiently

sophisticated artificial intelligence would indeed allow to fully replace human

players, allowing designers to rely exclusively on simulated races, therefore

largely reducing the costs of expensive testing sessions. When using simu-

lations ran with only bots (artificial intelligence agents driving around the

circuit), the amount of data to gather from the races can become quite heavy

to handle. Bots cannot communicate to designers what are the feelings and

the possible improvements to perform on the track. It is now the job of

the designers themselves to make such inferences by interpreting the ana-

lytic data taken from the progression of the races. It follows that choosing

which metrics to record and which not is a quite delicate task. For this

purpose, Machine Learning (ML) techniques can be exploited to find the

relevant correlations between the dynamics of the race and the topological

characteristics of the track being tested [18], hence limiting the data to be

gathered during the simulations.

2.4 TORCS and Speed Dreams

2.4.1 Introduction to the simulator

The Open Racing Car Simulator (TORCS) [23] is a 3D car racing simulator

developed in C++ as an open source project. As such, it is released with a

General Public License (GNU), and it is available for a number of platforms.

The video game can be classified as a simulative one, as it implements an

accurate physics engine (SimuV2) and 3D graphics for rendering images.

17https://www.monzanet.it/

10

https://www.monzanet.it/

2.4. TORCS and Speed Dreams

Apart from being open source, another of its main characteristics is the

ease in extending its core functionalities, given by a modular system which

allows the programmer to only recompile what has been actually modified or

added, instead of doing so for the whole project every time. As an example,

it is possible to add new racetracks and bots just by adding the required

files and recompiling, respectively, the tracks and AI modules. These fea-

tures have granted TORCS a large community of players, that modifies and

extends its functionalities with new tracks and cars every year. The simula-

tor is also widely used in the academic field, with students and researchers

modyfing the simulator and using it as a platform on which to carry on

their studies. In particular, there is a large interest regarding the fields of

artificial intelligence [10], cars setup optimizations [11], and procedural con-

tent generation [20]. New, custom tools can be easily developed also thanks

to well-defined data structures representing the behaviour of the artificial

intelligence and the shape of tracks. Examples can be found concerning

racetracks editors18, tools to import vehicles from other games19, and the

previously mentioned procedural generation of tracks20 [2, 14].

Speed Dreams (SD) is the racing car simulator used for the purpose of

this thesis. It is also known as TORCS-NG (TORCS Next Generation), as

it is the direct evolution of TORCS. The two video games share the same

underlying architecture, the same interfaces, and the same data structures

for circuits and bots. As a consequence, backward compatibility is preserved

for the majority of game contents. Nevertheless, Speed Dreams implements

a new version of the physics engine (SimuV4), introduces custom weather

conditions, and it comes with more advanced artificial intelligence robots.

It also supports performing simulations without running any video output,

allowing to perform races at increased speed by just calling a specific com-

mand on the Command Line Interface (CLI). This method requires to give

all parameters about the simulation to perform, such as the circuit to load

and each drivers’ starting position, through an XML document.

2.4.2 Races in Speed Dreams

As mentioned in the previous section, Speed Dreams uses the same TORCS

interfaces in most of its code. This also applies to those representing the

race current situation and evolution, together with the ones from which it is

possible to access data about the individual drivers. The interfaces provided

18http://www.berniw.org/trb/index.php?page=downloads
19torcs.sourceforge.net/index.php?name=Sections&op=viewarticle&artid=31
20http://trackgen.pierlucalanzi.net/

11

http://www.berniw.org/trb/index.php?page=downloads
torcs.sourceforge.net/index.php?name=Sections&op=viewarticle&artid=31
http://trackgen.pierlucalanzi.net/

Chapter 2. State of the Art

Algorithm 1: Structure representing current driver state

structure {
InitCar Info;
PubCar Public;
CarRaceInfo Race;
PrivCar Private;
CarCtrl Control;
CarSetup Setup;
CarPitCmd PitCommand;
RobotInterface Robot;
DriverCurrentState* Next;

} DriverCurrentState;

to the programmer that are needed to access the current race state are in

the form of data structures, instead of being implemented as methods to be

called during the execution of the simulation. Algorithm 1 shows an example

of such structure. DriverCurrentState represents, as the name says, the

current state of each driver at a given instant in time.

InitCar contains information about the initialization of the car, like the

name of the driver, its number, measures and other parameters that remain

constant throughout the entire race.

PubCar and PrivCar are, respectively, data accessible by all drivers

in the race and data accessible only by the considered driver. Examples of

public data are the position of the car on the circuit and its current state

(racing, at pits, DNF etc.), while in the private section we find fields like

the damage taken by this car, the current gear and the level of fuel.

CarRaceInfo contains some of the most relevant information about

the driver we are taking into consideration. It keeps track of the laps driven

so far, the top speed reached, the current position in the leaderboard, the

time difference between this driver and the leader of the race, the one behind

the previous driver, and that before the next one.

CarCtrl, CarSetup and CarPitCmd represent, respectively, the

current inputs given by the player (or the artificial intelligence) to the car,

the current setup of the car, and the instructions to perform the next pit

stop (whether to change tires and how much fuel to load).

RobotInterface exposes the common interface of functions imple-

mented by every bot [22], while the field Next tells that this is one of many

nodes that are part of an unidirectional linked list containing all drivers of

the race.

12

2.5. Unity

2.5 Unity

Unity21 is a game engine developed by Unity Technologies, available for all

major operating systems on the market. It is one of the most used engine

nowadays, having around 1.5 million active creators each month [7].

A game engine is a piece of software which implements the basic frame-

work for the development of video games. Generally, it includes useful li-

braries, and exposes an API (the interface required to use the framework)

for helping developers in making their games. Also, one of the main fea-

tures that make such programs very popular among a number of different

industry fields, is the presence of a rendering engine for displaying 2D and

3D graphics. Other core functionalities provided may include physics sim-

ulation, support for sounds, animations, artificial intelligence, networking

frameworks and many more. Often game engines offer generic components

that can be reused and assembled by the user according to what the game

needs. For instance, if we are developing a 2D game, we could attach colli-

sion boxes provided with the engine to our 2D images, with the intention of

making objects in our levels react when they collide with each other. On the

contrary, the contents of the game, models, textures, and the way objects

interact with the world, are elements that need to be defined by developers,

designers and artists [21].

Unity engine implements a graphical user interface (Figure 2.2), from

which it is possible to see what items are currently in the scene, what it

is currently shown in the game, and from which it is possible to select and

modify the individual objects we have created. We can also test the game

without having to build a separate executable every time. Moreover, we are

able to perform debugging easily, by looking at what is happening in the

scene while we are testing the game itself.

From a technical point of view, Unity offers a powerful but quite simple

C# framework, based on a system of classes, libraries, and data structures.

All objects placed in the scene have one or more components. Every custom

component implements a functionality and/or keeps some data about the

object it is part of. More precisely, every user-made component (script) is

a C# class that has to inherit from the MonoBehaviour one. A custom

script can modify and access all other components and all other objects in

the scene, and it can even create new components and objects while the

game is being played. All other types of components, those not inheriting

from the same class as the scripts do, represent additional functionalities

built into the editor that can be used to add elements to the game.

21https://unity.com/

13

https://unity.com/

Chapter 2. State of the Art

Figure 2.2: Screenshot of the Unity editor user interface

Another useful feature offered by Unity is the ability to easily extend

the editor itself by adding new windows, buttons and even completely new

functionalities to the engine. This allows users to create shortcuts for redun-

dant operations, or to implement ways of better managing their resources

(models, textures, audio files etc.). It is also frequently exploited to make

custom interfaces for designers, with the aim of making their workflow more

organized. This specific feature plays a central role in the development of

this thesis, as the editor has been considerably extended for allowing the

designing and testing of racetracks.

14

Chapter 3

Developed Tools for Tracks

Analysis

In Section 3.1 the set of changes made to the Speed Dreams game is de-

scribed. These consist in the addition of a new module that performs the

data gathering process during races.

In Section 3.2 we describe the overall architecture of the framework that

will expose the interface to perform simulations remotely, its components,

and the way they work.

3.1 Changes made to Speed Dreams

For being able to run simulations on Speed Dreams and extract data about

their progress, it is necessary to apply some changes to its code. This section

explains how SD handles the information we need, how it is possible to

extract it, and how to create and load new, custom tracks that satisfy its

format. Eventually, the process of how the simulations starting grid are

chosen is discussed, together with a generic overview of the performances of

the chosen bots.

3.1.1 Track Representation in Speed Dreams

Every Speed Dreams track is loaded from an eXtensible Markup Language

(XML) file, which follows a well defined structure [1]. This document, for

being recognized by the video game as a valid track, must contain a number

of mandatory specifications. In Table 3.1a it is possible to see what are such

parameters. The meaning of fields Track name, Authors, Description,

and Road width is quite straightforward. Value of Track type is needed

Chapter 3. Developed Tools for Tracks Analysis

Track attributes

Track name
Authors
Description
Track type (Circuit, Dirt, Speedway)
Road width
Segment step length
Pit lane width
Pit lane side
List of pit lane segments
List of segments

(a) Generic track attributes

Segments attributes

Name
Road slope (%)
Starting bank angle (deg)
Ending bank angle (deg)
Segment type (Straight, Left turn, Right turn)

Straight Turn
Length (m) Arc (deg)

Starting radius (m)
Ending radius (m)

(b) Segment attributes

Table 3.1: Attributes required to define a Speed Dreams track and segments

to correctly classify the track in the game, helping it understand what types

of cars are able to race in the considered circuit. For instance, in racetracks

classified as dirt, the game will only allow rally cars to attend races located

there. Segment step length is used when building the track and its

meaning will be better described later on, when discussing about what seg-

ments are, and how they are generated in practice. Another core part of a

racetrack is its pit lane, which is described by its Pit lane width, together

with the side of the road where it resides (Pit lane side).

The actual structure of the track is defined as a double linked list of

segments, which are its basic building blocks. Segments can be straights

or turns and, depending on their type, they need specific parameters to be

correctly recognized by the track building algorithm (Table 3.1b). In the

case of straights, it is sufficient to define their length. When dealing with

left or right turns, instead, three values are needed. The Arc is the angle,

measured in degrees, between the tangents of the first and last points of

16

3.1. Changes made to Speed Dreams

Figure 3.1: Geometric meaning of Straight and Turns mandatory parameters

the segment. To support variable radius curves, the Starting radius and

Ending radius parameters can be defined. The latter value is optional,

as it is set equal to the former by default. In Figure 3.1 it is shown the

geometric interpretation of these parameters in a graphical way.

It is also possible to specify values like the slope of the segment (the

height difference every 100 meters of road), and the starting and ending

angles at which the road is inclined around its longitudinal axis, with respect

to the horizontal (bank angles). Every segment can be also enriched with

information about the precence of curbs, the type of terrain around the

asphalt, and the type of safety barriers (guard rails and tire walls) placed

on the border of the track.

The first segment is always placed at the origin of the spacial reference

system, unless the z start parameter is added and it is different from zero.

In such scenario, the whole track will be constructed beginning from that

height value, which will represent its starting altitude.

For a track to be considered valid, it is also mandatory that the ending

position of the last segment is equal (or very close) to the starting position of

the first segment. Moreover, the last point tangent vector needs to be equal

(or very close) to the starting tangent vector of the track. The game does not

automatically close the circuits it loads, nor it fixes its tangents, therefore

it is job of the designer to enforce the satisfaction of these constraints.

17

Chapter 3. Developed Tools for Tracks Analysis

When building the track, Speed Dreams subdivides each segment into

other, smaller pieces. These sub-segments, whose length is equal to Seg-

ment step length, are necessary primarly to correctly approximate the

shape of variable radius turns. A more in-depth view on how this type of

segment is built can be found in Chapter 4 - Section 4.2.

3.1.2 Data Extraction of Simulations

As seen in Section 2.4, it is quite simple to keep track of the progress of

races. It is sufficient to access the right data structures, and from there we

can gather all the information we need. Furthermore, the modular structure

inherited by TORCS allows to efficiently expand the simulator with new

functionalities, without having to rebuild the whole project every time we

need to modify our code. We can benefit from this feature by developing

a new module responsible for keeping track of different metrics during the

simulations. We will call this piece of code rlog (race log). Whenever a race

is loaded, an instance of rlog is created, and its data structures are initialized.

Whenever a relevant event takes place during the race, the corresponding

information aimed at describing such event is collected and stored in these

data structures. Once the race ends, the module creates a new file on which

it writes the recorded data. A list of all metrics tracked and saved by rlog,

together with their detailed description, is availabe in Table 3.2.

The format chosen to represent race reports is json. The main reason

behind this choice is that, having a large number of entries to write (mainly

given by the timeline), it is necessary to keep to a minimum the average

overhead given by keywords of the chosen standard. Json only defines single

character tokens, hence reducing the potential overhead and, consequently,

the reports file size.

3.1.3 Choice of Races Start Configurations

Once the metrics to be tracked have been fixed, it is time to setup the actual

files with all the instructions needed to perform the races. We define a total

of four different competitions and, for each of them, we need to specify:

• Name: the name of the race. This is particularly useful as it uniquely

identifies it with respect to other races.

• Type: structure of the competition. In SD it is possible to define both

single event races, and more structured events, like championships with

multiple tracks and qualifying sessions.

18

3.1. Changes made to Speed Dreams

Metric Description

Track name
Laps Total number of laps executed during the race
Track length
Track width

Grid start Starting race grid. Each element is the name of the
bot which started at the corresponding array position.

Grid end Grid at the end of the race. Other than the names of
each bot in finishing order, this array contains:
• Top speed reached by each bot
• Time gap from each bot to the preceding one
• Total amount of damage taken by each bot

Overtakes Each element represents an overtake that took
place during the race, and it contains:
• Name of segment in which the overtake happened
• Timestamp during which the overtake took place
• Lap during which the overtake took place

Collisions Each element represents a collision between two drivers
or between a driver and some part of the circuit, and
it contains:
• Type of collision (Driver-Driver, Driver-Track)
• Damage of each of the cars involved
• Name of segment the collision took place
• Lap during which the collision happened

Time gaps Information about the time between each bot
and the one preceding it, computed once for each lap

Timeline Complete timeline of the race. For each second, it holds
the full race grid and, for each bot, it tracks its:
• Name
• Position (segment name and distance from its start)
• Speed
• Laps completed so far

Table 3.2: Metrics extrapolated by the race logger (rlog) during each simulation, with
their description

19

Chapter 3. Developed Tools for Tracks Analysis

• Description: a brief description of the race.

• Track(s): a list of one or more circuits for this race, depending on

what the type of the competition is.

• Starting grid: a list of the race competitors, ordered with respect

to their starting position. Each driver (or bot) is uniquely identified

by its 〈module, index 〉 tuple. Module is its AI name (in the case of

real players, this is the player module), while the index is the specific

instance of the chosen module. In Speed Dreams there can indeed be

a maximum of 10 bots using the same AI module, each with an index,

a name, and its custom car configuration.

The need of performing multiple races is given by the fact that, in this

way, we can put the track to the test in different starting conditions, hence

obtaining data that is more descriptive of the group racing dynamics we

decide to extrapolate (e.g. collisions and overtakes). Ideally we would need

to perform a number of races equal to the number of distinct permutations

that we can build with the chosen set of bots. Despite allowing to consider

every possible starting scenario, this would result in the need of an exces-

sive amount of time to obtain simulation results. A potential solution to

this problem would be to run a reduced number of races, each with a ran-

domized starting order. For the work of this thesis, however, the results of

the simulations need to be deterministic, as to ensure the evaluation of two

structurally equivalent circuits to yield the same outcomes. Consequently,

no starting grid randomization can be implemented and, on the contrary, a

set of only four races is defined, each of them having a predefined starting

grid order. We can therefore analyze the starting dynamics with multiple

simulations, while still obtaining deterministic results with respect to the

topology of the track we are designing.

First, it is necessary to choose the more suitable set of bots. Speed

Dreams offers three quite advanced artificial intelligence modules, coming

from improvements made to the previous generation ones present in TORCS:

Simplix, Usr, and Dandroid. Simplix generates numerous stability issues to

the game when starting races in particular tracks, mainly those with very

large turns. Looking more in-depth into the source code, it seems that this

is caused by its different approach to the generation of the racing line. The

resulting list of bots that seems to be more suitable is composed of the

modules Usr, Dandroid, Mouse and Shadow. Every bot is tested by first

making it drive a lap around a circuit alone, and then by running races

with random starting order, checking the behaviour of each driver when

20

3.2. Other Tools

Driver Best Lap
Avgerage
Damage

Average
Positions
Gained Bot Type

Dandroid 1:37:910 63.83 -1.6 default
Usr 1:39:291 379.5 3 default
Mouse 1:42:935 193.5 0.5 TORCS EWC
Shadow 1:45:538 134 -4.33 TORCS EWC

Table 3.3: Bots performances across four races at Brondehach circuit. Those marked
as default are the ones that come with the Speed Dreams game, while the TORCS
EWC ones are those imported from the TORCS Endurance World Championship

racing against others. The results of these tests can be seen in Table 3.3. As

mentioned above, Usr and Dandroid come by default with the simulator, and

demonstrated a pretty advanced level of skill when dealing with overtakes

and solitary racing, scoring the two best laps. The other two modules need

to be added from TORCS, in particular they have been developed for the

TORCS Endurance World Championship (TORCS EWC). Mouse is the

winner of the last iteration of the championship (2019), and it performed

quite well both driving alone and with other competitors. Shadow has a

more conservative racing technique, which grants it not to suffer too much

damage when playing with others, although scoring slower lap times.

Eventually, the actual starting grids are chosen. Each of these is a per-

mutation of the 8 drivers whose behaviour is based on the above four bot

modules, each considered twice (two instances for each module).

3.2 Other Tools

In order to perform the simulations necessary to extrapolate the dynamic

metrics from races, we develop a framework that allows to easily execute

simulations remotely. The architecture of this framework, of which a high-

level diagram is shown in Figure 3.2, must guarantee the maximum level of

interchangeability of the simulator in use. In other words, the system must

expose an interface that is independent of the video game to perform the

simulations with. Therefore it is necessary to define and use a new format

with which to represent tracks, that is also unconstrained by, in this specific

case, Speed Dreams.

The resulting architecture is composed of three main components: the

TracksCAD Simulation Server, the Track Converter, and the Simulator.

The first two items are programs developed using the Python language,

21

Chapter 3. Developed Tools for Tracks Analysis

Figure 3.2: High level view of the remote simulation framework

and a more detailed description for each one of them is presented later in

this section. Instead, as for the requirement seen before, the Simulator is

represented as a generic component that can be selected based on the type

of designing aids one wants to achieve, and on what kind of racing game we

are working with (e.g. simulative or arcade).

To make everything as independent as possible of the operating system in

use, an image was created for a Docker1 container, containing all the modules

mentioned above, combined with the dependencies required for them to

work. Docker is a set of software products that uses OS-level virtualization

to run individual, isolated packages of software called containers. Every

change made when operating within a container are discarded once that

container is deleted.

3.2.1 Track Format Converter

Still with the aim of ensuring maximum versatility in the choice of the

simulator, the proposed approach is not to represent tracks in the Speed

Dreams XML format, but rather to use a generic standard that includes

only the essential information, and which can be easily converted to the

format required by the simulator in use. When defining tracks, SD also

requires a considerable amount of information useful exclusively for that

specific game, introducing a significant overhead to the representation of

1https://www.docker.com/

22

https://www.docker.com/

3.2. Other Tools

tracks: another reason for finding a more compact way of describing them.

For consistency, and for the same reasons described in the previous section

concerning overhead avoidance, we choose json also as our new track format.

An example of how a track is represented using the generic standard can be

seen in Figure 3.3.

The job of the Track Converter module is thus to convert tracks from

the generic representation to the simulator one. As a result, this tool can be

changed whenever using a game that requires a different track specification

standard. For instance, if our simulator requires binary files to represent its

tracks, we would need to build a new converter from scratch which performs

such conversion from json text to binary.

3.2.2 Remote Simulations Execution

This module starts a remote server that listens for TCP connections on a

specific port. It exposes an interface that can be called up through plain

text messages. Examples are:

• Load Track Json: Start loading a new track in json format into

the server. This will then be saved locally, converted using the Track

Converter tool and, eventually, saved into the simulator folder.

• Start Benchmark: Communicates to the server that the required

track has been loaded, and that we are ready to receive the results of

the simulations. The server will then perform the races, and send the

respective logs one after the other.

• Get Logs: Repeats the process of sending logs to the user, without

the need of simulating again the races.

Figure 3.4 shows a UML Communication Diagram representing a typical

interaction between a program that wants to run a simulation, the server,

and all the components mentioned in this section. In the example, the client

is the Unity tool developed in this thesis, and whose details will be explained

more in depth in the next chapter.

23

Chapter 3. Developed Tools for Tracks Analysis

(a) Top-down view of track Forza

{
"name": "Forza",

"category": "circuit",

"version": 4,

"author": "A. Sumner",

"description": "A very fast

and smooth circuit in

Northern Italy",

"width": 11,

"profil_steps_length": 4,

"pits": {
"side": "right",

"entry": "pit entry",

"start": "pit start",

"end": "pit end",

"exit": "pit exit",

"length": 13,

"width": 5

},
"segments": [

{
"name": "main straight",

"type": "str",

"lg": 120,

"grade": {
"val": "0.0",

"unit": "%"

},
...

},
...,

{
"name": "curva grande",

"type": "rgt",

"arc": 3.5,

"radius": 376.5,

"end_radius": {
"val": "342.0",

"unit": "m"

},
...

},
...,

]

}

(b) A piece of json representation of the Forza track

Figure 3.3: Example of json track encoding

24

3.2. Other Tools

Figure 3.4: UML Communication Diagram

25

Chapter 3. Developed Tools for Tracks Analysis

26

Chapter 4

Track Editor

In this chapter we discuss the main architectural decisions made during

the development of the TracksCAD editor tool, and we take a brief look

at some of the most relevant implementation details. No actual code, nor

architectural schemes that are too specific (e.g. UML diagrams), have been

placed in the sections of this chapter, as they would dive too deeply into the

designing details of the tool, hence diverting from the description of how the

editor itself can be used by designers to help developing new tracks.

In Section 4.1 the overall high-level architecture is described, together

with the interactions between the editor and the simulation server.

Section 4.2 shows the main features developed for the creation and edit-

ing of new custom tracks. Screenshots of the tool user interface are also

present to better understand how users can interact with it.

In Section 4.3 the working principles of a system that automatically

closes tracks are discussed.

Section 4.4 presents the set of analyses that are carried out after per-

forming the simulations, and after retrieving the corresponding reports.

Eventually, Section 4.5 shows how, directly from the editor tool, it is

possible to inspect the evolution of the performed races.

4.1 Overall Architecture

A major contribution of this thesis is the design of a tool that allows the cre-

ation, editing, and automatic evaluation of racing game tracks. We develop

the mentioned piece of software in the form of an extension to the Unity

editor. We can therefore take advantage of its already existing 3D renderer,

as well as its APIs. Some of the particularly useful features implemented

by Unity, or directly offered by the C# language, concern data structures

Chapter 4. Track Editor

(lists and dictionaries), vectors manipulation, and garbage collection. A big

role in the choice of such underlying technology is played by the ease with

which it is possible to customize it by adding functionalities and new custom

windows. In regard of this aspect, Unity user interface can be conveniently

extended by adding new classes which inherit from the built-in Editor-

Window class. From there, it is possible to override a specific method

(OnGUI()) whose job is to update, several times per second, the interface

displayed to the user, whenever it is active on the screen. Part of Unity

APIs are devoted to facilitate the writing of graphical interface elements,

with functions that add buttons, text fields, dropdowns and other types of

items. The programmer is therefore discharged from writing any HTML or

CSS piece of code, as these are automatically generated by the mentioned

methods.

From a designing point of view, the track editor tool needs to be able both

to create a new track from scratch, and to load existing ones from external

sources. Accordingly, another necessary functional requirement is the ability

to save the current track on a file, using the same generic representation

format discussed previously in this thesis (Chapter 3, Section 3.2.1).

Similarly to the way they are implemented in Speed Dreams, racetracks

are represented as double linked lists of segments, and the designer can edit

the circuit by adding, removing and modifying them through the use of an

ad-hoc Graphical User Interface (GUI). Once the design phase is completed,

it is possible to automatically generate a closing segment that precisely

connects the last point of the track built so far with the start line.

The high-level architectural scheme in Figure 4.1 shows how the editor

interacts with the tools discussed in Chapter 3. It employs the simulation

server with the aim of obtaining data about the metrics collected while

racing in custom designed tracks. It then uses this information to generate

suggestions which can help the designer in fixing some of the critical aspects

of the circuit. Also, by loading into the editor each log returned by the

simulator, it is possible to view the progression of races by looking at the

drivers’ position and speed over time.

4.2 Track Design and Editing

4.2.1 Creating and Loading Tracks

In TracksCAD editor there are two ways of starting the designing of a track,

one being to create a completely new one, and the other consisting of loading

an existing file from our local machine. An exception to this is represented

28

4.2. Track Design and Editing

Figure 4.1: High level components scheme of the TracksCAD architecture. The arrows
represent data flow, the yellow blocks are the main components of the system, while
the dashed lines link components that extend other components.

by the scenario in which a track was still loaded the last time Unity was

closed. In such case, the tool reloads the information of that track from

its corresponding file, and uses the already existing segments in the scene

for the 3D representation. When opening the TracksCAD Utility window

(Figure 4.2), both options are displayed. In the upper part of the interface,

the tool shows all track json files found in the /StreamingAssets/Tracks

folder. In the case in which the designer wants to start the creation of a

completely new circuit, it is possible to do so after filling all the mandatory

parameters, and by using the New Track button. All required fields have

been already discussed in the previous chapter except for the Reverse start

flag. This toggle is used to tell the editor that the newly generated track

will be traversed in the opposite direction with respect to the order in which

the segments of the circuit will be laid down. In such case the starting grid

will be directed towards the last piece of the track (the one that closes it)

instead of the actual second segment built. This is particularly useful if,

later on, the designer wants to test the circuit by racing in both clockwise

and counterclockwise directions.

The tool performs different operations whether we are loading an existing

track or creating a new one. In the former case, the relative json document

is loaded, parsed, and the generic attributes are stored in a specific class

29

Chapter 4. Track Editor

Figure 4.2: TracksCAD Utility window - Loading of a new track and new track setup
fields are displayed before beginning designing

Track. Afterwards, the list of segments is read and each of them is con-

structed following the specifications described in the file. If, instead, the goal

is to generate a circuit from scratch, a new Track object is instantiated

and populated with its name, type, authors, description, width, segment

precision, and pit lane specifications. The segment precision attribute de-

termines how precisely variable radius turns are approximated with respect

to the corresponding geometric shape (Euler spiral). The lower the preci-

sion, the more turns are approximated to circular arcs having as radius the

average between the start and end turn radiuses. Since a track without any

segment would make no sense to exist, TracksCAD always adds one short

straight to newly generated circuits, and sets it to be the start line. On the

contrary, no pit lane entry or exit is set by default, as it would be too short

to support the presence of all the teams’ garages.

Once the racetrack is loaded the segment editing interface is displayed,

and the designer can now start working on its layout. To view its current

shape, the 3D object of each segment is generated automatically in the

Unity scene (Figure 4.3), and the current racing direction is shown to the

user through the use of purple arrows placed on its surface.

30

4.2. Track Design and Editing

Figure 4.3: Unity scene when track E-Track 1 is loaded

4.2.2 Segment Editing

The main way of changing the layout of a circuit is to edit its segments.

To do so, the TracksCAD Utility window offers all the necessary tools for

adding, deleting, and setting segment parameters. Once the track is loaded

and ready to be modified, the window changes its appearance, switching to

the segment editor view shown in Figure 4.4.

Analyzing this piece of GUI from top to bottom, we can see the name of

the currently selected segment and two arrowheads buttons for shifting the

selection to the previous (left arrow) and next (right arrow) segment. An-

other, more intuitive way of switching between segments, is to directly pick

up their 3D object from the Unity scene. The buttons below the navigation

controls are meant to add segments to the track: left turns, straights, and

right turns respectively. The three on the left part of the window will add

a segment before the current selection, while those on the right will add it

in front. At the center of the screen, just beneath the segment name, it is

possible to set the current segment as the new start line of the track. This

means that, once the circuit is passed to the simulator, the starting grid will

be placed just behind the beginning of such segment. The bottom half of

the window is dedicated to the editing of the selected segment, showing its

specific parameters depending on whether it is a turn or a straight. The

Auto-Close and Heat map buttons will be better discussed in Section 4.4.

Whenever the Apply button is pressed, the program checks the validity of

the inserted parameters, updates the track model and its 3D representation

31

Chapter 4. Track Editor

Figure 4.4: Segment editor screenshot

in the scene. This process causes a chain reaction that requires to recur-

sively recompute the position and rotation of all segments that are placed

after the modified one.

The practical construction of a segment depends on whether it is a

straight or a turn. The former case is the simplest, as it only needs two

points connected by a line. On the contrary, a turn needs an iterative proce-

dure that approximates the points and tangents of an Euler spiral (Clothoid)

based on its arc, start radius, and end radius parameters. Algorithm 2

shows the main steps of such process. The general idea is to subdivide the

turn into smaller, fixed length sections lstep, each being a circular arc whose

radius is chosen as a linear interpolation between the starting and ending

radiuses, and the angle being computed with the formula

θi =
lstep
ri

(4.1)

32

4.2. Track Design and Editing

Algorithm 2: Finding points and tangents of left/right turns

Input: Rstart, Rend, Arc
deg, Slope%;

Output: 〈 p⃗0, t⃗0 〉, 〈 p⃗1, t⃗1 〉, ..., 〈 p⃗n, t⃗n 〉;

begin

1 L← Arcrad · (Rstart+Rend)
2 ;

2 steps←
⌈

L
lstep

⌉
;

3 ∆r ← (Rend −Rstart)/steps;

4 ∆h← lstep × Slope
100 ;

5 r0 ← Rstart;

6 h0 ← 0;

7 i← 0;

repeat

8 Compute θi using (4.1);

9 〈 p⃗i, t⃗i 〉 ← point and tangent of circular arc A(ri, θi, hi);

10 ri+1 ← ri +∆r;

11 hi+1 ← hi +∆h;

12 i← i+ 1;

until i >= steps;

end

33

Chapter 4. Track Editor

More precisely, lstep is computed by interpolating linearly the segment pre-

cision in such a way that a value of 0% results in having the maximum step

size, while 100% corresponds to the minimum length. The number of sec-

tions to divide the turn into is computed approximating it as a circular arc,

with radius equal to the average of its radiuses.

Every type of segment can also be customized with respect to its bank

angles and slope attributes. A banked road is defined as one in which vechi-

cles incline while they drive along it. Usually we talk about banked turns,

and the direction in which they are rotated is, most of the times, towards

their inside edge. Nonetheless, the editor allows to have both banked turns

and banked straights, and their angle can be directed in clockwise as well as

counterclockwise direction. The slope of the road is the amount of height, in

percentage, that it gains after one unit of horizontal length. When generat-

ing segments, the height of each point is computed using linear interpolation

between 0 and the final height that must be reached.

At the end of the building procedure, segments objects are moved so that

their starting position is in the same location than that of the final point of

the previous segment, and they are also rotated so that their starting tangent

is correctly directed as well. Eventually, the pit lane attributes are applied,

and the corresponding 3D object is generated in the scene (Figure 4.5).

The pit lane is considered incomplete if there exists one flag among those

described below that is not checked on any segment.

• Pit Entry: piece of road that connects the racetrack with the start

of the pit lane.

• Pit Start: point from which the pit lane speed limit starts to be valid.

• Pit End: point from which the speed is no more constrained by the

pit lane limiter.

• Pit Exit: piece of road that connects the end of the pitlane with the

racetrack.

Eventually, the designer can add or modify the borders, sides and barriers

of the road for the selected segment. These consists, respectively, on the

presence and physical characteristics of curbs, the type of terrain around

the asphalt, and the type of safety barriers on the track (tirewalls or guard

rails). Figure 4.6 better explains the meaning of each of the above mentioned

elements, while Figure 4.7 shows an example of the entire TracksCAD GUI

that is presented to the user while editing a segment.

34

4.2. Track Design and Editing

Figure 4.5: Example of pit lane 3D object

Figure 4.6: Segment borders, sides, and barriers

35

Chapter 4. Track Editor

F
igu

re
4.7:

S
creen

sh
ot

of
th
e
to
ol

w
h
ile

ed
itin

g
a
segm

en
t

36

4.3. Automatic Track Closure System

4.3 Automatic Track Closure System

When working on a new track, the designer will get to a point where only one

segment is left to complete the job. The choice of the closing piece is decisive

for the correctness of a circuit, as it must be perfectly aligned with the start

line and, if not done properly, it may generate unexpected behaviour when

racing. For instance, if the starting and ending points of a track are too

far from each other, cars would fall under the road when encountering the

discontinuity caused by this design mistake. Another example consists on

placing the last point at a largely greater height with respect to the beginning

of the track. In such case vehicles would perform a severe jump, falling on

the road below, and potentially undergo a lot of unnecessary damage.

The solution proposed in TracksCAD is to offer the designer a button

that, if pressed, finds and adds automatically the segment which closes the

current track. To do so, the program exploits a useful property of segments:

given two points 〈p⃗s, p⃗e〉 and two vectors 〈t⃗s, t⃗e〉, it exists at most one segment

connecting the two points, and having as first and final tangents the two

vectors, respectively. This tells us that not every set of points and tangents

allows the creation of a segment but, if it does, then the segment is unique.

Evaluating the existance algorithmically is not a trivial task, although it is

possible to check it qualitatively by looking at the points and tangents from

a graphical point of view. On the other hand, we will now see how to find

the parameters that make the connecting segment. In our specific case we

are talking about closing a track, therefore 〈p⃗s, p⃗e〉 is the tuple consisting,

respectively, by the last and first points of the circuit, while elements of

〈t⃗s, t⃗e〉 represent the corresponding tangent vectors.

First of all, it is important to understand whether the closure can only

be obtained using a turn, or if the goal can be achived also with a simple

straight. To verify what kind of segment we need to build, we can check the

alignment of t⃗s and t⃗e. If the two vectors are aligned with the straight line

connecting the two points, then a straight segment is sufficient to close the

circuit, and its length is trivially computed. On the other hand, if that is

not the case, we need to find the values of start radius, end radius, and

arc. This operation cannot be performed simply by solving an equation,

because of the iterative procedure necessary for finding the points in variable

radius turns (Algorithm 2). However, an efficient way of approximating

these parameters can be found considering gradient method algorithms such

as the Multivariate Newton’s method [6] and Gradient Descent method [15].

Our problem can be reformulated as finding the set of input radiuses

37

Chapter 4. Track Editor

r⃗ = 〈rs, re〉 which minimizes the function:

d(r⃗) = |p⃗e − (f(r⃗, θ) + p⃗s)| (4.2)

where p⃗e is the target endpoint of the turn (i.e. the start point of the track),

p⃗s is its start point (i.e. the current endpoint of the track), f(r⃗, θ) is the

function that outputs the end point of the turn segment built with r⃗, and

θ is the angle between tangents t⃗s and t⃗e. By minimizing function d(r⃗), we

can retrieve the set of radiuses that, together with parameter θ, make a turn

segment which starts at p⃗s, ends at p⃗e, and has starting and ending tangents

equal to t⃗s and t⃗e, respectively.

The idea behind the mentioned gradient methods is to make, at each

iteration, small steps in the direction of the local slope of the function,

eventually finding its minimal point. Newton’s method for multivariate

functions would be the fastest solution, as it searches for the optimum in

the direction of maximum slope [6], therefore its update rule is:

x⃗i+1 = x⃗i − αiH(x⃗i)
−1∇f(x⃗i) (4.3)

This additional information, however, requires the invertibility of the Hes-

sian matrix H(xt), which in our case is a condition often not satisfied. As a

result of that, we use a slightly slower algorithm like the Gradient method,

which only uses the function gradient and does not require any invertibility

condition [15]:

x⃗i+1 = x⃗i − αi∇f(x⃗i) (4.4)

For the computation of the gradient, we use the forward finite difference

formula [16] adapted for the multivariate case.

The resulting system is able to create precisely and with quite good

performances a closing segment, whenever there exist one (Figure 4.8). If

the existance is not satisfied, then the algorithm finds a tentative closure

with the shortest distance between the endpoint and the target.

38

4.3. Automatic Track Closure System

(a) Custom track #1 - open (b) Custom track #1 - closed

(c) Custom track #2 - open (d) Custom track #2 - closed

(e) Custom track #2 - open (f) Custom track #3 - closed

Figure 4.8: Examples of automatic track closures. All have been found in less than
300ms (5× 103 iterations), and with a tolerance of less than 0.5m.

39

Chapter 4. Track Editor

Figure 4.9: Simulation window

4.4 Track Evaluation

As discussed previously in this chapter, another important portion of the

work for this thesis resides in the development of a system that interacts

with the simulator and gives the designer useful information about the track

dynamic characteristics. The primary requirements for being able to run

simulations are:

• TracksCAD tool is connected to the TracksCAD Simulation Server.

• A track is loaded in the tool.

• All segments have unique names.

• The track has a complete pit lane (see 4.2.2).

Once the above specifications are satisfied, the designer can use the cus-

tom window shown in Figure 4.9 to start the execution of races and retrieving

the corresponding reports. As soon as the simulations are ended and the

logs are returned to the Unity tool, their data is aggregated.

Button View Report can then be pressed to open a new piece of interface

which displays the results of the races (Figures 4.10 and 4.11), in conjunction

with the outcomes of the analyses performed by the tool on such data. In

the following subsections we describe how these aggregation and analysis

procedures are performed for each of the metrics we considered in the race

logs.

40

4.4. Track Evaluation

Figure 4.10: Simulation report window of track Forza

41

Chapter 4. Track Editor

Figure 4.11: Simulation report window of track Karwada

42

4.4. Track Evaluation

4.4.1 Average Speed

The average speed of the track is computed by looking at the timeline of

each race. For each time frame, the tool gets the sum of speed values of all

drivers in the grid and adds it to the sum of speeds computed so far. Once

all logs are read, this sum can be divided by the total number of samples

considered, that is:

Nsamples =

nlogs∑
i=1

T (i)×Nbots(i) (4.5)

where T (i) is the number of elements in the i-th race timeline, and Nbots(i)

is the amount of bots that competed in the i-th race. The same operation is

also performed so to have the average speed of each segment individually.

4.4.2 Collisions analysis

For what concerns collisions, the tool counts the number of incidents both

throughout the entire racetrack, and for each segment, by way of the ded-

icated collisions section of the logs. The value is then divided by the

number of simulations, returning the average amount of collisions during

one race.

These operations are performed also considering data exclusively within

the 30%, 50% and 100% of the first lap.

4.4.3 Overtaking dynamics analysis

This type of analysis consists in finding how many overtakes took place in

total, and on each part of the track. The aggregation is performed summing

up the number of overtakes and then dividing them by the number of races

performed. Similarly to the aggregation of collisions data, the resulting value

represents the average number of position swaps during one race.

Another operation concerning overtakes consists on the analysis of the

number of positions gained by the drivers during a race. During this phase

we compare the bots order in a specific time frame with respect to the

starting grid order, and we count the number of positions gained or lost by

each bot. For each number of positions, we then count the number of bots

that gained or lost them, as shown in Figure 4.12. While computing the

average of this metric gives us no useful information (it is always equal to

zero, as for each driver gaining a position one loses it), the variance and

skewness are used to classify the track as one in which there is either a

43

Chapter 4. Track Editor

Figure 4.12: Position variations recorded across 4 races on Aalborg track

high or low probability of overtakes. This is done with the help of the work

performed in [18], in which K-Means clustering algorithm [17] was used to

identify the two mentioned classes on a set of TORCS circuits. We compare

the euclidean distance of our set of 〈var, skew〉 with the centroid positions

of the two clusters, associating the current track with the nearest one.

The same analysis is executed considering data exclusively within the

30%, 50% and 100% of the first lap.

4.4.4 Analysis of Time Gaps

At the end of each lap the simulator records the time gaps between each bot

and the one preceeding it. The analysis of such gaps consists on performing

similar aggregations to those discussed for the gained positions. The main

difference is that this time each bar of the graph represents the number of

gaps found in the specified time interval.

Another computed metric is the total time gap between the first and last

drivers, considered at the end of the first lap and at the end of the race.

Tracks are classified also with respect to the average, variance, and skew-

ness of their time gaps. As a result, a circuit can be considered either with

low or high time differences between players.

4.4.5 Heatmaps

TracksCAD tool takes advantage of the 3D representation of the track built

in Unity to show designers some of the metrics computed previously in the

44

4.4. Track Evaluation

(a) Top-down view of track Aalborg (b) Inverse of curve radiuses heatmap

(c) Average speed heatmap (d) Overtakes heatmap

(e) Collisions heatmap (f) Collisions during first lap heatmap

Figure 4.13: Heatmaps computed from simulations on track Aalborg

form of heatmaps. This color-coded view can be activated by pressing the

dedicated buttons in the GUI, and some examples are shown in Figure 4.13.

The first heatmap (Figure 4.13b) shows, for each segment, the inverse of its

curve radius. The reason behind using the inverse instead of the actual turn

radius resides in the fact that in the tool straights have a default radius

value of zero instead of infinity. Figure 4.14 shows how the same type

of information is actually displayed to the user by coloring the 3D model

of each segment coherently with the corresponding heatmap value. The

other heatmaps in Figure 4.13 allow to graphically see the metrics extracted

from the simulations after the aggregations performed using the previously

discussed techniques.

45

Chapter 4. Track Editor

Figure 4.14: Screenshot of the tool while viewing heatmaps of track Corkscrew

4.5 Replaying Races

After simulating races on the tracks we designed, it may be convenient to

actually see their evolution over time, and check how drivers behaved while

competing against each other. Figure 4.15 shows how TracksCAD allows

to review simulations, informing the user about each bot position in the

leaderboard, its speed, and the lap it is currently performing. The Unity 3D

scene is also populated with small coloured spheres, each one representing a

driver that attended the chosen race. The window devoted to the navigation

of the timeline is the timeline control panel, from which we are able to

navigate back and forth time frames, analyzing snapshots of the race.

From a technical point of view, the implementation of this system is

quite straightforward. The tool searches inside the /StreamingAssets/Logs

folder for existing logs, and displays them to the user with a dropdown menu.

The two requirements for opening a specific log are:

• A track is loaded in the tool.

• The current track has the same name as the one defined in the log.

The tool simply reads the content of the timeline section inside the selected

document, and finds almost all the necessary information already ready to

be displayed to the user. The only computation it performs concerns finding

the right 3D coordinates in which to place the drivers spheres. In order to

do this, it gets from the current timestamp the segment name of each driver,

46

4.5. Replaying Races

and then it computes the coordinates using the value of the distance from

the start of that segment.

Inspecting simulations is especially useful for exhibiting anomalies and

atypical behaviours of the AI. It may also help understanding the reasons

behind certain values of the extracted metrics. For instance, if we notice that

during the simulations the game registered an exceptionally large number of

collisions, we could inspect the timeline and discover that this irregularity

came indeed from an incorrect closing of the track, which caused cars to

crash (therefore stopping their movement) whenever crossing the start line.

47

Chapter 4. Track Editor

(a) Timeline control panel

(b) View of the scene while replaying a race

Figure 4.15: Timeline Navigation System screenshots

48

Chapter 5

Estimation of Dynamic Track

Characteristics from

Topology Metrics

In this chapter we try to understand whether it is possible to use Machine

Learning techniques to predict some of the dynamic metrics that we usually

extract during simulations, by using a subset of the most relevant topological

features of tracks (length, width, number of turns etc.).

In Section 5.1 we briefly discuss why it is useful to perform this type of

study. After that, we present the procedure carried out to extract the values

we used to build our dataset and train our models, and the list of metrics

we picked to be predicted.

Section 5.2 shows how we performed the training of the models, their

testing and, if necessay, how we chose their hyper-parameters. We do not

dive into the details of how each ML technique works or how it is imple-

mented, as this would diverge too much from the scope of this thesis.

In Section 5.3 the resulting performances of each trained model are dis-

cussed by presenting the values of the most relevant evaluation metrics.

5.1 Metrics and Data Extraction

Now that we have a working system that allows us to run simulations on

tracks we create, we want to understand whether it is possible to find accu-

rate models that are able to predict some of the dynamic characteristics that

we usually obtain from races, starting from the topological features of the

track in use. If this was possible it would allow designers to work on circuits

faster, limiting the number of simulations to the sole purpose of confirming

Chapter 5. Estimation of Dynamic Track Characteristics from
Topology Metrics

results coming from prediction models. Furthermore, if the performance of

such models turns out to be sufficiently good, it would be possible to extract

high-level knowledge about the relations between the topological features of

the track and the racing dynamics emerging when competing. For instance,

we could discover that a particular set of characteristics plays a significant

role in the amount of collisions taking place just after the start of the race.

With such knowledge we would be able to design circuits knowing what

decisions to make as to decrease (or increase) the probability of accidents

occurring during the first phase of races.

The dynamic metrics that we would like to be able to estimate are:

• Average speed: the average speed across all the bots throughout

the entire simulation. As to avoid this value to be altered by first

lap dynamics such as collisions, and to avoid the starting acceleration

phase during which all cars have near-zero speed, we exclude from the

computation of this value the entire first lap of each race.

• Number of overtakes (end of race): total number of overtakes

which took place during the entire race.

• Number of overtakes (first lap): total number of overtakes, this

time computed considering only three distinct phases of the first lap

of the race: at the 30%, 50% and 100% of the first lap.

• Position changes from starting grid (end of race): sum of the

absolute values of positions gained/lost by each driver at the end of

the race, with respect to their position on the starting grid.

• Position changes from starting grid (first lap): sum of the ab-

solute values of positions gained/lost by each driver at the end of the

30%, 50% and 100% of the first lap, with respect to their position on

the starting grid.

• Time gap from first to last driver (end of race): total time

difference (gap) from first to last driver at the end of the race.

• Time gap from first to last driver (first lap): total time difference

from first to last driver at the end of the first lap.

All values concerning time gaps, overtakes, and collisions are normalized

with respect to the length of the circuit, using the formula

log
1 + x

length
(5.1)

50

5.1. Metrics and Data Extraction

where x is the target we are taking into consideration and for which we want

to find an estimator.

Between all the available track topology features, we consider the follow-

ings as the most relevant for our purpose:

• Track length

• Track width

• Number of straights

• Number of turns

• Average Track elevation: average between all track segments of

their mean elevation.

• Inverse of turn radiuses (Average, Variance): average and vari-

ance, between all track segments, of the inverse of their mean turn

radius.

The fitting procedure of the regression models starts by picking a large

enough number of existing circuits on which to perform the simulations,

that will constitute our basic dataset. The resulting list of tracks (Table 5.1)

has elements coming from different sources and, if necessary, they have been

slightly adapted to fit the Speed Dreams representation requirements. Some

of them are original SD racetracks, others come from the game TORCS,

while four of them have been created by an automatic track generation

tool developed by Politecnico di Milano [14, 2]. The actual dataset is then

created by running four races on each of the selected tracks, and writing

on a json file both inputs (the track topology features) and outputs (the

dynamic metrics extracted from simulations).

Before we can start fitting the models, we need to prepare the data

by performing standardization and normalization. The former procedure

consists on rescaling the inputs in such way to making it have zero mean

and unitary variance, while the latter consits on applying Formula 5.1 to the

outputs. This last operation makes the targets independent from the length

of the circuit and rescales them into a logarithmic scale, hence reducing the

impact of outliers.

51

Chapter 5. Estimation of Dynamic Track Characteristics from
Topology Metrics

Track name Source

Aalborg Speed Dreams
Alpine-1 TORCS
Alpine-2 TORCS
Berhet-hill Trackgen
Brondehach Speed Dreams
Chemisay Speed Dreams
Corkscrew Speed Dreams
Espie Speed Dreams
E-Track-1 TORCS
E-Track-2 TORCS
E-Track-3 TORCS
E-Track-4 TORCS
E-Track-6 TORCS
Forza Speed Dreams
Hidden Valley Speed Dreams
Karwada Speed Dreams
Noye-hill Trackgen
Ruudskogen Speed Dreams
Spring TORCS
Volcan-mountain Trackgen
Watorowo-city Trackgen

Table 5.1: List of tracks used to create the dataset

52

5.2. Training the Models

Figure 5.1: Model estimation procedure

5.2 Training the Models

After having prepared the data, we can start training the models that will

predict our output targets. We first try to understand what are the most

relevant topology features that can be exploited to predict each output. To

do so, it is useful to visualize graphically the input-output space, and check

whether there are significant linear or polynomial relationships. If we find

some, we can start fitting models using as inputs the ones with the most

promising relations. Otherwise, we include all inputs and then try feature

selection techniques later on [9].

With the preselected topology characteristics, we fit linear, LASSO,

Ridge, polynomial, and random forest regression models to our data [17].

The training procedure is schematically explained in the center block of Fig-

ure 5.1, and it is performed by running Leave-One-Out Cross Validation [17].

For each type of regression model, we subdivide the evaluation into N steps

(N being the cardinality of the dataset). At each step, we train a model

of the current type on the basis of N − 1 data samples, while performing a

prediction on the remaining one.

Eventually we can determine the overall performance of the type of re-

53

Chapter 5. Estimation of Dynamic Track Characteristics from
Topology Metrics

gression model we have trained by computing the evaluation metrics on

its predictions. Given the relatively small dataset, LOO Cross Validation

technique allows us to find a more accurate and generalized measure of per-

formance, mitigating the risk of overfitting the data.

In the case of LASSO and Ridge regression, the entire training procedure

is repeated multiple times, and with different values of λ.

5.3 Results

The performance of each model is represented by the evaluation metrics we

choose to compute on its predictions. The RMSE [8] and R-squared (R2) [17]

values are the operators we use for this study. The former is estimated as

the average of the values scored at each iteration of the Leave-One-Out

algorithm, while the latter is computed at the end of the cross validation

procedure as it needs at least two predictions to be found. For Ridge and

LASSO regression models, we also compute the optimal λ value between

those tried during the training process.

Increasing the order of the polynomial used for regression from linear

(n=1) to quadratic (n=2) did not introduce any significant improvement.

On the contrary, it always resulted in worse predictions than the linear case,

therefore such models have not been considered in the following analyses.

Table 5.2 shows that there is a quite good relationship between the av-

erage speed assumed by the drivers throughout the races and the length of

the track, its turns number and average radius. Ridge regression performs

particularly well having the lowest RMSE and a R2 over 0.6. Given that the

mean average speed across all tracks is 130.66 km/h, this results in RMSE

indicating an error of 8.42% with respect to that value. These results are

coherent with the expectations as, intuitively, tracks with less changes in di-

rection and wider turns are more likely to allow cars to reach higher speeds.

In the same way, having a long circuit with a small number of turns means

having longer straights, which is also a relevant factor that determines the

average speed drivers may adopt when racing.

We analyze now the evaluation metrics for the prediction models con-

cerning the total time difference from first to last driver, considering as

inputs the track length, number of turns, average and variance of radiuses.

The best fraction of variance expressed correctly by the models (R2) is found

using linear regression, both for the metric computed at the end of the race,

and that computed at the end of the first lap. A behaviour that repeats it-

self in the majoriy of cases is that first lap dynamics seem easier to perdict,

showing better coefficients of determination R2 and lower average errors.

54

5.3. Results

Model RMSE R2 Avg. Error

Linear regression 13.2 ± 11.78 0.41 10.07%
LASSO regression (λ = 1.459) 11.31 ± 8.59 0.62 8.63%
Ridge regression (λ = 3.99) 11.04 ± 8.86 0.62 8.42%
Random Forest 11.38 ± 8.83 0.59 8.68%

Table 5.2: Performance metrics of prediction models for estimating average speed from
length, number of turns, and average of inverse radius

In Table 5.4 we find the performances resulting after training the models

with the goal of predicting the number of overtakes, both at the end of the

race and in three phases of the first lap. In this case the selected features do

not allow to estimate very well the target. Indeed, we can see that the R2

value is negative in almost every case. As to better understand what this

means, we can review the formula to compute this metric:

R2 = 1− RSS

TSS
= 1−

n∑
i=1

(yi − ŷi)
2

n∑
i=1

(yi − ȳ)2
(5.2)

where RSS (Residual Sum of Squares) represents how much the model de-

viates from the real values, and TSS (Total Sum of Squares) represents the

sum of the quadratic errors between the real values and the constant model.

Having a negative R2 then means that our regression performs worse than

by just using the average number of overtakes as prediction (RSS > TSS).

These findings suggest that even for Random Forest models, which provide

an average error of less than 10% of the mean value, the analysis of the R2

value actually shows that the selected features are not predictive of the real

racing behaviour, and therefore that the variation of the target is not well

explained by the models we chose to fit.

The best performances can be found by estimating the number of ab-

solute position changes using as inputs the track length, width, number of

straight and turns, the average elevation and the radius variance. Table 5.5

presents such results, with R2 values showing that a significant fraction of

the target variance is expressed by the adopted models, particularly for first

lap dynamics. Also, looking at the set of best models of the considered out-

put metrics, the worst Root Mean Square Error consists in little more than

4% of the corresponding average value.

In Table 5.6 we report the p-values resulting from computing the F-

55

Chapter 5. Estimation of Dynamic Track Characteristics from
Topology Metrics

Model RMSE R2 Avg. Error

Linear regression 0.18 ± 0.12 0.24 9.06%
LASSO regression (λ = 0.004) 0.19 ± 0.13 0.18 9.56%
Ridge regression (λ = 0.217) 0.19 ± 0.12 0.23 9.56%
Random Forest 0.21 ± 0.15 -0.36 10.57%

(a) First-to-last time gap - end of race

Model RMSE R2 Avg. Error

Linear regression 0.13 ± 0.1 0.32 5.3%
LASSO regression (λ = 0.003) 0.14 ± 0.11 0.24 5.7%
Ridge regression (λ = 1.428) 0.14 ± 0.11 0.23 5.7%
Random Forest 0.15 ± 0.12 0.03 6.11%

(b) First-to-last time gap - end of first lap

Table 5.3: Performance metrics of prediction models for estimating first-to-last time
gap from track length, number of turns, average and variance of radiuses

statistic for the evaluation of the overall significance of each model. Each

column is a track topology feature, while rows are the target metrics to

predict. The F-statistic tests whether the selected input feature is represen-

tative of the considered target, and obtaining a smaller p-value for such test

means that the corresponding 〈input, output〉 metrics have a more significant

relation with each other.

Looking at the overall results found in this chapter we can say that,

indeed, it is be possible to predict some of the dynamic characteristics that

are usually extracted from races using a subsets of track topology features.

Such estimations can be considered as hints of what values the real metrics

might assume during the actual simulations, allowing designers to use them

to roughly estimate the quality and peculiarities of their tracks, and without

the need of running numerous time consuming races in the simulator.

56

5.3. Results

Model RMSE R2 Avg. Error

Linear regression 0.22 ± 0.32 -0.64 8.72%
LASSO regression (λ = 0.034) 0.23 ± 0.32 -0.64 9.12%
Ridge regression (λ = 6.229) 0.2 ± 0.27 -0.22 7.93%
Random Forest 0.2 ± 0.26 -0.15 7.93%

(a) Number of overtakes - end of race

Model RMSE R2 Avg. Error

Linear regression 0.21 ± 0.27 -0.17 8.52%
LASSO regression (λ = 0.027) 0.21 ± 0.28 -0.17 8.52%
Ridge regression (λ = 2.961) 0.19 ± 0.23 0.09 7.71%
Random Forest 0.19 ± 0.23 0.09 7.71%

(b) Number of overtakes - 30% of first lap

Model RMSE R2 Avg. Error

Linear regression 0.2 ± 0.26 -0.25 8.36%
LASSO regression (λ = 0.03) 0.2 ± 0.25 -0.18 8.36%
Ridge regression (λ = 3.229) 0.19 ± 0.23 -0.03 7.95%
Random Forest 0.19 ± 0.22 0.1 7.95%

(c) Number of overtakes - 50% of first lap

Model RMSE R2 Avg. Error

Linear regression 0.21 ± 0.3 -0.84 9.36%
LASSO regression (λ = 0.036) 0.2 ± 0.3 -0.84 8.92%
Ridge regression (λ = 5.171) 0.2 ± 0.27 -0.58 8.92%
Random Forest 0.18 ± 0.23 0.17 8.02%

(d) Number of overtakes - end of first lap

Table 5.4: Performance metrics of prediction models for estimating number of overtakes
from length and width of track

57

Chapter 5. Estimation of Dynamic Track Characteristics from
Topology Metrics

Model RMSE R2 Avg. Error

Linear regression 0.09 ± 0.08 0.61 3.67%
LASSO regression (λ = 0.013) 0.09 ± 0.09 0.55 3.67%
Ridge regression (λ = 1.056) 0.09 ± 0.09 0.62 3.67%
Random Forest 0.1 ± 0.1 0.36 4.08%

(a) Number of absolute position changes - end of race

Model RMSE R2 Avg. Error

Linear regression 0.11 ± 0.09 0.53 4.29%
LASSO regression (λ = 0.01) 0.11 ± 0.08 0.62 4.29%
Ridge regression (λ = 2.115) 0.1 ± 0.07 0.69 3.9%
Random Forest 0.11 ± 0.09 0.38 4.29%

(b) Number of absolute position changes - 30% of first lap

Model RMSE R2 Avg. Error

Linear regression 0.1 ± 0.07 0.69 3.93%
LASSO regression (λ = 0.009) 0.08 ± 0.06 0.81 3.14%
Ridge regression (λ = 1.222) 0.09 ± 0.06 0.78 3.54%
Random Forest 0.11 ± 0.11 0.31 4.32%

(c) Number of absolute position changes - 50% of first lap

Model RMSE R2 Avg. Error

Linear regression 0.07 ± 0.06 0.82 2.81%
LASSO regression (λ = 0.007) 0.08 ± 0.07 0.8 3.21%
Ridge regression (λ = 0.486) 0.07 ± 0.06 0.82 2.81%
Random Forest 0.09 ± 0.11 0.39 3.61%

(d) Number of absolute position changes - end of first lap

Table 5.5: Performance metrics of prediction models for estimating number of absolute
position changes from track length, width, number of straights and turns, average
elevation, and radius variance

58

5.3. Results

L
e
n
g
th

W
id
th

N
.
S
tr
a
ig
h
t

N
.
T
u
rn

s
A
v
g
.
R
a
d
iu
s

V
a
r.

R
a
d
iu
s

A
v
g
.
E
le
v
.

A
v
g
.
S
p
e
e
d

0
.2
8

0.
24

0
.3
3

0.
69

1.
20
×
10

−
6

2.
39
×
10

−
4

0.
86

O
v
e
rt
a
k
e
s:

•
E
n
d
o
f
ra
ce

0
.0
4

0.
08

0
.0
5

0.
04

0
.8
8

0
.7
3

0.
39

•
F
ir
st

L
ap

-
3
0%

2.
14
×
1
0−

3
0.
17

5.
43
×
10

−
3

3.
84
×
10

−
3

0
.7
1

0
.6
2

0.
23

•
F
ir
st

L
ap

-
5
0%

1.
97
×
1
0−

3
0.
14

0
.0
1

2.
78
×
10

−
3

0
.7
1

0
.5
4

0.
23

•
F
ir
st

L
ap

-
1
00

%
4.
74
×
1
0−

3
0.
07

0
.0
2

8.
25
×
10

−
3

0
.6
7

0
.4
8

0.
24

P
o
si
ti
o
n
s
G
a
in
e
d
:

•
E
n
d
o
f
ra
ce

4.
48
×
1
0−

7
0.
12

0
.0
3

2.
34
×
10

−
5

0
.3
7

0
.1
4

0.
18

•
F
ir
st

L
ap

-
3
0%

2.
95
×
1
0−

6
0.
14

7.
66
×
10

−
3

1.
10
×
10

−
5

0
.2
1

0
.1
1

0.
27

•
F
ir
st

L
ap

-
5
0%

5.
25
×
1
0−

7
0.
17

0
.0
2

4.
75
×
10

−
6

0
.2
4

0
.0
9

0.
23

•
F
ir
st

L
ap

-
1
00

%
2.
10
×
1
0−

7
0.
16

0
.0
2

6.
65
×
10

−
6

0
.2
5

0
.1

0.
1

F
ir
st
-T

o
-L

a
st

D
e
lt
a
:

•
E
n
d
o
f
ra
ce

0
.2
3

0.
34

0
.6
6

0.
69

0
.0
7

0
.0
2

0.
18

•
F
ir
st

L
ap

-
1
00

%
0
.0
2

0
.2

0
.9
8

0.
13

0
.0
5

0
.0
1

0.
37

T
ab
le

5.
6:

p
-v
al
u
es

of
th
e
F
-S
ta
ti
st
ic

fo
r
ea
ch

〈f
ea
tu
re
,
ta
rg
et

〉
tu
p
le

59

Chapter 5. Estimation of Dynamic Track Characteristics from
Topology Metrics

60

Chapter 6

Conclusions and Future

Work

In this thesis we presented the design and development of TracksCAD, a

Computer-Aided Design (CAD) tool that gives racing game designers the

ability to create, edit, and run simulations on their tracks. Moreover, we

implemented a system that performs a set of different analyses on data ex-

tracted from those simulations, therefore helping the designer to better un-

derstand the dynamics that can arise while racing on the developed circuits.

We discussed the necessary changes to retrieve that data from the game we

chose to use (Speed Dreams), and the meaning of each considered metric.

The tool, which was developed as a plugin to the well-known Unity editor

software, allows also to review races performed into the simulator directly

inside a three-dimensional scene, and it is able to perform automatically the

closing procedure of tracks.

One of the requirements of the system was that its architecture had to

be as independent as possible from the game used to run simulations. This

was achived thanks to the decoupling of the functional block concerning the

editing of the circuit from that designated to perform races, and thanks to

the definition of a more generalized track representation which is still easily

convertible to the one required by the simulator in use.

Eventually, we have shown that it is possible to exploit Machine Learning

techniques to reduce the number of simulations to be performed by directly

estimating the metrics generally extrapolated from races, using as inputs

the topological features of the designed tracks. As we have discussed in

the thesis, their dynamic characteristics can indeed be related to the set of

structural choices a designer usually makes during development. We have

seen that we can estimate quite accurately the average speed that drivers

Chapter 6. Conclusions and Future Work

will adopt during the laps of a race by looking at the number and types of

turns of the track. The error we make during such predictions is all in all

acceptable, and it is suitable for giving us an idea about what characteristics

make our circuit unique and whether we have area for improvements. Even

more precisely we can compute a reasonable value for the number of position

changes with respect to the starting grid at certain points during a race,

using as inputs a number of topological parameters, and with a maximum

error that resides around the 4% threshold.

During the work of this thesis, we had the opportunity to examine in

depth the design process of racetracks and to try making it more efficient

through the use of simulations and Machine Learning techniques, an ap-

proach that can also be extended outside the videogame industry. Analyzing

the driving dynamics showing up during actual races is, in fact, at the basis

of the creation procedure of every type of circuit. A track must first of all be

fun and, as to ensure this condition, the designer must pay great attention

in the definition of its layout, whether it belongs to the virtual world or to

the real one. A similar approach might also be followed to facilitate the

creation of levels in other types of racing games. As an example, in kart

racing games (videogames with simplified driving mechanics, obstacles, and

vehicular combat) an alike tool could be developed implementing metrics

describing dynamics concerning, for example, fighting between players and

power-ups usage.

To make the data extracted from simulations as reliable as possible, we

would need to use more sophisticated bots as drivers, since those that come

with Speed Dreams tend to not behave in a sufficiently realistic way when

managing group racing dynamics (overtakes and collision avoidance espe-

cially). The need of an artificial intelligence that imitates human behaviour

in a sufficiently precise way is certainly the biggest limitation of the approach

followed in this thesis.

For what concerns possible future works, this thesis can be used as a

starting point by racing game developers and designers to improve the work-

flow related to the creation of tracks for their games. As we have seen, the

tool is completely detached from the simulator, therefore it is also possible

to adopt a more realistic game, or even a completely different type.

If we would like to keep using Speed Dreams (SD), it would be useful

to add races taking advantage of the weather engine built into the game.

This would add variety in the simulations, and a whole new set of analyses

could be performed concerning cars behaviour under adverse conditions (low

visibility, low grip etc.).

Another possible addition would be to include a procedural content gen-

62

eration system that creates automatically some sections of the tracks, for

example one that closes circuits with more than one segment, maybe follow-

ing some kind of heuristic in the process.

As discussed in the thesis, the current classification that the tool per-

forms on tracks is limited to determining whether it has a low or high proba-

bility of overtakes, and whether it has high or low average time gaps between

players. The process of binding the circuit to one or the other can be made

more precise, using a larger dataset on which to run the K-Means algorithm,

or even trying new classification models. Additional analyses could be per-

formed looking more at the group racing dynamics between bots, like those

regarding the damage taken by their car, or estimating the probability with

which each class of collision could happen.

We can also extend the work done with the prediction of dynamic metrics

using Machine Learning techniques to other characteristics. One could also

integrate such estimations directly into the editor tool, and try to fit new

regression models that were not taken into consideration in this thesis.

63

Chapter 6. Conclusions and Future Work

64

Bibliography

[1] Speed Dreams — The greatest open source racing sim on Earth: my

part in its success. https://commut3r.wordpress.com/, 2009.

[2] Luigi Cardamone, Daniele Loiacono, and Pier Luca Lanzi. Interactive

evolution for the procedural generation of tracks in a high-end racing

game. In Proceedings of the 13th Annual Conference on Genetic and

Evolutionary Computation, GECCO ’11, page 395–402, New York, NY,

USA, 2011. Association for Computing Machinery.

[3] Lance Carter. Lance carter’s history of racing games - installment

twelve. https://historyofracinggames.wordpress.com/12-2/.

[4] Riccardo Galdieri, Cristian Camardella, and Marcello Antonio Car-

rozzino. What makes a circuit likeable and how different input devices

can influence the perception of tracks in racing games. Computers in

Human Behavior Reports, 3:100072, 2021.

[5] Jeff Gerstmann. Classic nes series: Excitebike - review.

https://web.archive.org/web/20040810000317/http://www.

gamespot.com/gba/driving/famicomminiexcitebike/review.html,

2004.

[6] Kris Hauser. Algorithms for Optimization and Learning CS B553

Multivariate Newtons Method and Quasi-Newton methods. Lec-

ture. http://people.duke.edu/~kh269/teaching/b553/newtons_

method.pdf, January 2012.

[7] Sean Hollister. Unity’s IPO filing shows how big a threat it poses to

Epic and the Unreal Engine. The Verge, 08 2020.

[8] Rob J. Hyndman and Anne B. Koehler. Another look at measures of

forecast accuracy. International Journal of Forecasting, 22(4):679–688,

2006.

65

https://commut3r.wordpress.com/
https://historyofracinggames.wordpress.com/12-2/
https://web.archive.org/web/20040810000317/http://www.gamespot.com/gba/driving/famicomminiexcitebike/review.html
https://web.archive.org/web/20040810000317/http://www.gamespot.com/gba/driving/famicomminiexcitebike/review.html
http://people.duke.edu/~kh269/teaching/b553/newtons_method.pdf
http://people.duke.edu/~kh269/teaching/b553/newtons_method.pdf

BIBLIOGRAPHY

[9] Mohammed J. Zaki and Wagner Meira Jr. Data Mining and Analysis:

Fundamental Concepts and Algorithms. Cambridge University Press,

May 2014.

[10] Muhammet Köle, A. Etaner-Uyar, Berna Kiraz, and Ender Özcan.

Heuristics for car setup optimisation in torcs. In 2012 12th UK Work-

shop on Computational Intelligence, UKCI 2012, 09 2012.

[11] Muhammet Köle, A. Etaner-Uyar, Berna Kiraz, and Ender Özcan.

Heuristics for car setup optimisation in torcs. 2012 12th UK Work-

shop on Computational Intelligence, UKCI 2012, 09 2012.

[12] Raph Koster. The cost of games. https://venturebeat.com/2018/

01/23/the-cost-of-games/, January 2018.

[13] Daniele Loiacono. Learning, evolution and adaptation in racing games.

In Proceedings of the 9th Conference on Computing Frontiers, CF ’12,

page 277–284, New York, NY, USA, 2012. Association for Computing

Machinery.

[14] Daniele Loiacono, Luigi Cardamone, and Pier Luca Lanzi. Automatic

track generation for high-end racing games using evolutionary computa-

tion. Computational Intelligence and AI in Games, IEEE Transactions

on, 3:245 – 259, 10 2011.

[15] Boris Polyak. Introduction to Optimization, chapter The gradient

method: Heuristic Considerations, pages 20–21. Optimization Soft-

ware, Inc., Publications Division, 2020.

[16] Alfio Quarteroni, Fausto Saleri, and Paola Gervasio. Scientific comput-

ing with MATLAB and Octave, chapter 4, pages 109–111. Springer-

Verlag Berlin Heidelberg, 2010.

[17] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine

Learning: From Theory to Algorithms. Cambridge University Press,

2014.

[18] Jacopo Sirianni. Supporto alla progettazione e analisi di tracciati per

un simulatore di guida. Master’s thesis, Politecnico Di Milano, 2016.

[19] Joe Thompson, Simon Wood, and Xavier Bertaux. Speed Dreams -

A free Open Motorsport Sim and Open Source Racing Game. http:

//www.speed-dreams.org/, 2016.

66

https://venturebeat.com/2018/01/23/the-cost-of-games/
https://venturebeat.com/2018/01/23/the-cost-of-games/
http://www.speed-dreams.org/
http://www.speed-dreams.org/

BIBLIOGRAPHY

[20] Julian Togelius, Renzo De Nardi, and Simon Lucas. Towards automatic

personalised content creation for racing games. In Proceedings of the

2007 IEEE Symposium on Computational Intelligence and Games, CIG

2007, pages 252 – 259, 05 2007.

[21] Jeff Ward. What is a Game Engine? https://www.gamecareerguide.

com/features/529/what_is_a_game_.php, 2008.

[22] Bernhard Wymann. TORCS Robot Tutorial. http://www.berniw.

org/tutorials/robot/, 2013.

[23] Bernhard Wymann, Espié Eric, Christophe Guionneau, Christos Dim-

itrakakis, Rémi Coulom, and Andrew Sumner. TORCS, The Open

Racing Car Simulator. http://www.torcs.org, 2014.

https://www.gamecareerguide.com/features/529/what_is_a_game_.php
https://www.gamecareerguide.com/features/529/what_is_a_game_.php
http://www.berniw.org/tutorials/robot/
http://www.berniw.org/tutorials/robot/
http://www.torcs.org

	Abstract
	Sommario
	Acknowledgements
	Introduction
	Context: Track design in Racing Games
	Scenario and Problem Statement
	Methodology
	Contributions
	Structure of Thesis

	State of the Art
	Brief Introduction to Racing Games Editors
	Developing Tracks in Racing Games
	Testing and Evalutation of Racing Tracks
	TORCS and Speed Dreams
	Introduction to the simulator
	Races in Speed Dreams

	Unity

	Developed Tools for Tracks Analysis
	Changes made to Speed Dreams
	Track Representation in Speed Dreams
	Data Extraction of Simulations
	Choice of Races Start Configurations

	Other Tools
	Track Format Converter
	Remote Simulations Execution

	Track Editor
	Overall Architecture
	Track Design and Editing
	Creating and Loading Tracks
	Segment Editing

	Automatic Track Closure System
	Track Evaluation
	Average Speed
	Collisions analysis
	Overtaking dynamics analysis
	Analysis of Time Gaps
	Heatmaps

	Replaying Races

	Estimation of Dynamic Track Characteristics from Topology Metrics
	Metrics and Data Extraction
	Training the Models
	Results

	Conclusions and Future Work
	References

