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Abstract

Planetary exploration rovers represent an essential tool for gathering and studying
scientific information on the surface of other planets and satellites. However,
these vehicles are, currently, controlled by operators on ground, since they do
not have enough autonomy to plan their operations in safety. Nevertheless,
the communication is strongly constrained by delays and limited time windows,
leading to a very slow exploration process, in which the vehicle awaits for
commands from ground for long periods of time.
In this context, the work of this thesis aims to develop a system capable of
increasing the decision making autonomy of rovers, in order to get rid of the
time constraints related to communication and to maximise their possibilities of
exploration.
In particular, a navigation method has been studied for a multi-agent system
composed by a helicopter/drone, used as a scout to map the area of interest,
and a rover. The efforts have, then, been focused on the development of a multi-
objective path planning system able to determine, based on the data previously
gathered by the helicopter, a trajectory that could evaluate simultaneously
competing objectives such as the maximisation of the scientific return and the
optimisation of the path.
For global planning, which is the true decision making part of the system, a
multi-objective Monte Carlo Tree Search (MCTS) based on the generation of a
Pareto front has been developed.
On a local level, the artificial potential fields method has been used to determine
the path among obstacles and dangerous areas. The problem of the generation
of local minima, that usually arises with this method, has been dealt with the
introduction of asymmetric vortex fields, that have been summed up to the
repulsive ones used for obstacles.
Finally, a sensitivity analysis has been carried out to verify efficiency, quality
and safety of the trajectories proposed by the system.
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Sommario

I rover per l’esplorazione planetaria sono uno degli strumenti fondamentali per
lo studio e la raccolta di informazioni scientifiche sulla superficie di altri pianeti
e satelliti. Attualmente, però, la loro gestione è controllata da operatori a Terra,
in quanto tali veicoli non possiedono abbastanza autonomia per poter pianificare
le loro operazioni in sicurezza. Tuttavia, poichè la comunicazione è fortemente
vincolata da ritardi e finestre limitate, il processo di esplorazione risulta molto
lento, in quanto il rover rimane fermo in attesa di comandi da Terra per lunghi
periodi di tempo.
Il presente lavoro di tesi si inserisce in questo contesto e ha l’intento di sviluppare
un sistema capace di aumentare l’autonomia decisionale dei rover, al fine di
eliminare i vincoli temporali legati alla comunicazione e massimizzarne, così, le
possibilità di esplorazione.
In particolare, è stato studiato un metodo di navigazione per un sistema multi-
agente composto da un elicottero/drone, utilizzato come scout per mappare
l’area di interesse, e da un rover. Il lavoro si è, poi, incentrato sullo sviluppo di
un sistema di pianificazione multi-obiettivo del percorso del rover che potesse,
sulla base delle informazioni rilevate dall’elicottero, determinare una traiettoria
considerando contemporaneamente obiettivi in contrasto tra loro quali la mas-
simizzazione del ritorno scientifico e l’ottimizzazione del percorso.
Per la pianificazione globale, che rappresenta il vero elemento decisionale del
metodo, è stato elaborato un sistema di ricerca multi-obiettivo ad albero Monte
Carlo basato sulla generazione del cosiddetto fronte di Pareto.
A livello locale, invece, il metodo dei potenziali artificiali è stato utilizzato
per generare una traiettoria tra ostacoli e zone potenzialmente pericolose. Il
problema dei minimi locali, solitamente legato a questo tipo di sistema, è stato
affrontato con l’introduzione di potenziali asimmetrici a vortice, che sono stati
sommati a quelli repulsivi degli ostacoli.
Infine, è stata condotta un’analisi di sensitività e robustezza per verificare
l’efficienza, la qualità e la sicurezza delle traiettorie proposte dal sistema.
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Chapter 1

Introduction

1.1 Autonomous planetary exploration rovers

Planetary rovers represent a key feature for the exploration of other planets and
satellites, as they are able to collect scientific information on ground where men
are not yet able to land.
However, their rate of exploration is very slow as they require constant human
supervision for decision making, which is heavily constrained by delays and
limited communication windows. In 2022, European Space Agency (ESA) is
going to launch the ExoMars rover, Rosalind Franklin (Figure 1.1), which will
sample the subsurface of Mars in search for traces of life. The Trace Gas Orbiter
(TGO), launched in 2016 as first part of the ExoMars mission, will serve as relay
for the communication between the rover and the ground. This communication,
though, may only happen twice per Sol (Martian day) due to TGO’s orbital
trajectory and constraints on the allocation of deep space antennas [1]. It is
clear how this leads to a very slow exploration process, in which the rover awaits
for commands from ground for long periods of time.

Figure 1.1. Rosalind Franklin rover (ExoMars, ESA)
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Chapter 1. Introduction

Of course, safety is the major concern for these types of missions, given the
amount of work, time and resources invested and it is one of the main reasons
why the navigation planning is carried out under human supervision. Avoiding
risks results in longevity of missions and extended exploration opportunities.
An autonomous navigation system that could prevent the rover from interacting
so frequently with ground and with the capability of keeping the rover safe,
thanks to an efficient obstacle avoidance system, would have a great impact on
the exploration rate of planetary rovers. Meaning that with one single mission
the explored land of the planet or satellite, along with the scientific return, could
be way larger.

1.2 Multi-agent decoupled path planning

The aim of this work is to define a method that could make use of the scientific
information, obtained by a satellite or a helicopter/drone in an area of interest,
to plan the exploration of this zone in an autonomous way, without the need of
human intervention (or at least reducing it).
The helicopter case is of particular interest, since NASA’s mission to Mars
Perseverance, launched in July 2020 and successfully landed in February 2021,
is going to carry out, for the first time, some experimental flights of a Mars
Helicopter, Ingenuity (Figure 1.2).

Figure 1.2. Mars Helicopter Ingenuity (Perseverance, NASA)

Therefore, the possibility of exploiting a multi-agent coordinated path planning,
such as the one presented in [2], combining a helicopter and a rover to explore
an unknown area has been analysed. In the quoted study, the ground and aerial
vehicles are considered as comparable, except for their ability of overcoming
obstacles, as can be seen in Figure 1.3.
However, the flight endurance of the Mars Helicopter is very limited (about 90 s)

2



1.2. Multi-agent decoupled path planning

(a) (b)

Figure 1.3. (a) 3D and (b) 2D trajectories of an exploration team of 2 UGV and 3
UAV [2]

and also for its improved version, called Mars Science Helicopter and currently
under development at NASA, is still less than 7 min [3] [4]. The helicopter could
cover large distances in a small amount of time, while the rover is much slower.
As a consequence, it would not be reasonable to consider the two vehicles as
similar in their motion. Moreover, the cooperative exploration would make more
sense if the two vehicles were carrying the same instruments on board, so that
each scientific target could be visited indiscriminately either by the ground or
the aerial vehicle, as in the framework proposed in [5]. However, this is not the
case since, in general, they will definitely be equipped with different kind of
instruments.
For these reasons, the concept of the mission will be to utilise the helicopter
to map the area with cameras and scientific instruments able to detect useful
information, that will be then used by the rover for its path planning. A similar
solution, in which the images taken from an aerial vehicle are used to improve
the path planning of a ground vehicle, is explained in [6].
In this way, as shown in Figure 1.4, the rover path planning and exploration
phase will take place after the helicopter has landed and the gathered information
has been processed (T0 → Th: helicopter phase, Th → (Th + Tr): rover phase).
Therefore, the multi-agent path planning can be decoupled, which means that it
will be performed separately for helicopter and rover, as their exploration will
not be coordinated.
Moreover, since the helicopter will explore an unknown or little known area (only
satellite imagery may be available) there will not be any privileged direction
or sub-area to investigate. So, the helicopter should perform a Coverage Path
Planning (CPP), that consists of finding the route which covers every point of a

3



Chapter 1. Introduction

Figure 1.4. Decoupled team exploration timeline

certain area of interest.
Many studies have been carried out in this field in order to find ways to define
efficient trajectories that could cover uniformly a given area. The article in
[7] explores and analyses the existing studies in the literature related to the
different approaches employed in CPP problems. Geometric flight patterns based
on energy, such as the energy-aware spiral described in [8], and more complex
grid-based solutions are explained. The review also considers different shapes
of the area of interest. Some examples of these CPP methods are depicted in
Figure 1.5.

Figure 1.5. Coverage Path Planning examples [7]

Eventually, it has been decided to focus only on the more interesting and relevant
rover path planning, with the hypothesis of already having the map generated
with the information detected by a helicopter/drone or by a satellite.

1.3 Multi-objective path planning system

In the context of increasing the autonomy in decision making of planetary rovers,
this thesis proposes an autonomous path planning method that aims to the
maximisation of the scientific return of the mission.
The planning will be, at first, based on the information gathered by a helicopter
or by a satellite, which will then be updated and fused with the new data that

4



1.3. Multi-objective path planning system

the rover will find out during its route.
In addition to the maximisation of science, the method should also consider
other important parameters such as the optimisation of the path. Indeed, it
would be interesting to combine these two competing requirements trying to
maximise the scientific gain and, at the same time, generate a smart short route
for the rover to follow.
In general, there are two main alternatives that may be examined to face this
problem. The first option is to consider it as a constrained optimisation problem,
by defining a limit on the resources (such as a maximum path length or energy)
and optimising the scientific value only. Instead, the second possibility may be
to use a method that could perform an optimisation over multiple objective
functions, such as scientific return and path length or energy used.
In literature, the most common approaches that are used for decision making
involve the formation of a tree, which is explored by the algorithm in order to
find the most promising solutions. Some examples of these methods are the
branch and bound approach and the Monte Carlo Tree Search (MCTS).
Regarding the constrained optimisation problem, different solutions have been
proposed. In the article in [9], the robot is constrained to a total sensing budget,
which includes the energy of both its movements and of its sensing actions
(different sensing modalities are evaluated). In this paper, the MCTS is used
to plan paths and sensing actions that maximise the information gained in
respect of the energetic constraint. A path planning algorithm that makes use
of a branch and bound approach to coordinate multiple robots, each having a
resource constraint, to maximise the “informativeness” of their visited locations
is proposed in [10]. Actually, tree algorithms are not the only tool that has been
chosen as a solution to this constrained optimisation problem. For instance,
dynamic programming has been used in [11] to plan data collection tours of a
robot with an energy constraint.
In relation to the second type of approach, the most commonly used method is
the multi-objective Monte Carlo Tree Search. The authors of the papers in [12]
and [13] both use a MCTS combined with the generation of a Pareto front to
manage the multi-objectivity of the problem. A very interesting aspect of this
approach is that, once it is defined how to deal with two objective functions,
the algorithm could be easily extended to more than two competing objectives
and, so, it may be implemented for more complex decision making problems.
In this study, as it will be better explained in section 2.4, the planning system
has been divided into a global and a local segment. Global planning aims
to determine the waypoints that the rover must follow to achieve the mission
objectives and it represents the actual decision making part of the method.
Therefore, for the reasons previously explained, it has been decided to use the
multi-objective Pareto MCTS for the development of this segment.

5
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On a local level, instead, a system based on artificial potential fields has been
designed to determine the actual path between consecutive waypoints and among
potential hazards. The problems related to the generation of local minima, that
often come with this method, have been solved with the definition of asymmetric
swirling potential fields for the repulsive sources.

1.4 Structure of the thesis

The thesis is organised as follows.
Chapter 2 presents the assumptions defined for the model and the description
of the scenario of work with the rover concept of operations, along with an
overview of the structure of the selected method in all its parts.
In chapter 3, the multi-objective Pareto Monte Carlo Tree Search used for global
path planning is described in detail with its four steps of selection, expansion,
simulation and back-propagation.
Chapter 4 explains the artificial potential fields method used for local path
planning for the definition of the actual trajectory of the rover around obstacles.
The potential fields models utilised are presented as well.
In chapter 5, the results of the application of the studied method to different
simulation environments are reported, together with a sensitivity analysis that
verifies its effectiveness.
Lastly, chapter 6 presents the conclusions and some possible future develop-
ments.

6



Chapter 2

Description of the model

2.1 Model assumptions

Before the actual set up of the path planning method, it is necessary to properly
define the operational framework by establishing some assumptions that will
be considered in the model. These assumptions could be broken down into two
different categories: some general ones, related to the definition of the path
planning method, and some hypotheses on the rover itself. A summary of these
assumptions can be found in Table 2.1 and Table 2.2.

General assumptions

First of all, the human level of intervention has been defined to be possible
only at high level, in order to increase as much as possible the autonomy of the
rover. This means that ground control will decide the long-term direction of
exploration, by selecting the ending point within an exploration area. This last
point, will then become the starting point of the following exploration sector.
Therefore, at least satellite images should be available to ground control, so that
the ending point can be selected. It must be said, however, that the algorithm
may work also without human intervention, as the rover could select one of
the scientific points as its final target. Besides, the role of ground control is
crucial from the long-term point of view. Indeed, the algorithm studied in the
context of this thesis acts within a limited specific area (already explored by
the helicopter/drone). It is the ground control, then, that will define which is
going be the next area to be explored by setting, as said, the overall direction of
exploration. Figure 2.1 shows this process of selection of the long-term direction
of exploration by ground control.
Another important assumption is that the rover will move on a 2-dimensional
surface. Altitude variation within the map will not be considered. In section 6.2,
a possible extension of this method that also includes the 3-D elevation is

7
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Figure 2.1. Long-term direction of exploration

explained.
The 2-D map detected by the helicopter will be available to the rover for path
planning from the beginning, including the scientific information, and will be
then updated continuously with the new data. However, since small obstacles
are difficult to be noticed from air, only the ones that are larger than a certain
dimension will be marked on the map from the beginning. The others will be
detected by the rover along its path.

General assumptions

Human intervention only possible at high level (such as direction of exploration)

Satellite images will be available to ground control

The rover moves within a 2-D map

The map with scientific information will be available to the rover before exploration

Rover is not aware of the obstacles within the map before exploration (except for large ones)

Table 2.1. General assumptions summary

Rover assumptions

In particular, the hazard detection system of the rover is set to operate in a
discrete way to save energy and resources. In fact, the rover stops every 3 m

along its route to detect any new obstacles.
Moreover, rover localisation and trajectory control are considered to be always
satisfied, since they are not the main focus of this study.
Finally, the dynamics of the rover can be neglected given its very low velocity of
motion.
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Rover assumptions

The hazard detection system works in a discrete way

Localisation and trajectory control are always satisfied

The dynamics of the rover can be neglected, since its velocity is very low

Table 2.2. Rover assumptions summary

2.2 Rover concept of operations

In Figure 2.2, a flow chart that shows the operations that the rover shall carry
out to achieve its exploration goal is reported.

Figure 2.2. Rover concept of operations flow diagram

In this process, the input is represented by the scientific information and by the
features of the area to investigate, that have been sent from the helicopter to the
rover. The data processing of this initial information may be done either by the
rover or by the helicopter depending on their computational and communication
capabilities. Indeed, performing the initial data processing on the helicopter
itself would prevent the need of sending a large amount of instrumental data
from the aerial vehicle to the rover. However, it would then be necessary to have
enough computational capabilities on board of the helicopter.
In the chart, the path planning is divided into two different components: global
and local. The global path planning is responsible for generating the high-level
route through the scientific points of interest, by means of the definition of
the trajectory waypoints. During its operational phase, the rover, thanks to
its sensors and cameras, will gather more scientific information that will be
processed and locally updated on the map. Therefore, a feedback control is
needed to replan the path globally any time the scientific data are revised on
the map.
The local path planning method, instead, is in charge of the definition of the
actual trajectory between the waypoints avoiding the obstacles along the path.
The hazard detection system acts as a feedback on the local planning: whenever
a new obstacle is detected, it is added to the map and the on-board computer
of the rover will then be aware of it for its local path planning.
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2.3 Definition of the scientific reward

Before the development of the path planning system, it is important to define
how the scientific reward will be evaluated. The challenging part of this operation
is to find a method that assigns a numerical value to something that is not really
measurable as the scientific return of an object.
Although the work of this thesis is not focused on the feature-to-reward classifi-
cation problem, it is important to briefly analyse how this process may work to
understand which type of data will be available to the rover for path planning.

2.3.1 Feature-to-reward classification in the literature

In literature, different systems have been proposed in this field in order to increase
rover autonomy in the analysis and processing of the surrounding environment.
In [14], a Support Vector Machine (SVM) trained with a supervised learning
has been suggested for performing the classification from the observations to
the reward map. In particular, the authors of this study used trained SVM to
analyse multispectral satellite images and to classify different types of minerals
in the area, depending on their different thermal emission. The scientists will
then assign a reward value to the different minerals based on their importance
for the mission. For instance, as shown in Figure 2.3, goethite and calcite are
selected as minerals of interest, as both are considered to be representative of
areas that may have contained water. Magnetite is assigned the highest reward
value as its presence was not initially known by the scientists and, as the other
two minerals, it provides good indication of presence of water on the surface.

Figure 2.3. High resolution multispectral images obtained from ASTER instrument of
Terra satellite, their mineralogical signatures and their respective reward
value [14]

The functioning of the SVM and the role of the hyperplane in this method are
well explained in [15], where Support Vector Machine is applied to a life science
case study.
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Another interesting class of methods is based on the emulation of the processes
and assessments that a human field geologist would perform to analyse a potential
science target. The basic attributes used in classification of geological features
are structure (e.g. geometric shape, scale, orientation and form), texture (e.g.
luster, relief, grain size, shape and sorting), and composition (e.g. colour, albedo,
specularity and mineralogy).
This approach has been used with good results in Science Assessment and
Response Agent (SARA) [16] and Autonomous Science Target Identification
and Acquisition (ASTIA) [17] methods that with the application of fuzzy logic
assign a Scientific Value Score (SVS) to potential science targets in an image,
based on rock morphology.
In particular, for the development of SARA, a database of parameters used
in terrestrial field geology was compiled for each attribute and each one was
assigned a SVS, based on relative geological significance. The overall SVS of a
scientific target is derived by combining all the values of the features observed.
Therefore, total SVS of an element is function of different parameters:

SVS = f(AS, AT , AC , AX , Q,B) (2.1)

where AS is the overall structural attribute score, AT is the overall textural
attribute score, AC is the overall compositional attribute score, AX is the
composite attribute score, Q is a quality factor and B is a bias factor.
A possible method to evaluate SVS could be:

SVS = (
∑

AS +
∑

AT +
∑

AC + AX) ·Q ·B (2.2)

Finally, there also is a group of methods that uses probabilistic approach.
In [18], Bayesian Networks (BN) calculate the probability that each detected
feature is a particular object, based on the attribute measurements. So, in this
case, there is not a direct classification of the object depending on its attributes.
Indeed, BN define the probability that given those attributes a certain object is,
for instance, a certain type of mineral.
A benefit score Sb is assigned to each feature that was identified by the BN using
the Equation 2.3, which gives different gains to the possibility of discovering
different types of minerals depending on their importance for the mission of the
rover.

Sb = K · P · Σ · [aPr(A) + bPr(B) + ...+ nPr(N)] (2.3)

In the equation, K is a scale constant, P is the apparent size (also known as
angular diameter) of the feature, Σ is the normalised standard deviation of the
probabilities, and a, b, ..., n are the importance weights for minerals A,B, ..., N .
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Pr(A) stands for probability of A. The scale constant K simply scales the scores
to be in an appropriate scale [18].
Finally, the authors in [19] introduce a science hypothesis map, as the proba-
bilistic structure in which scientists initially describe their hypotheses, that is
then improved as the robot makes new measurements. In this context, it has
been considered that sampling the same region repeatedly leads to diminishing
expected returns.

2.3.2 Application to the model for path planning

A common aspect of all the reported methods is that their final output is
a numerical reward value associated to each element that is observed in the
environment. This reward is given to each feature depending on the importance
that it has in relation to the mission of the rover.
As already said, since this thesis is focused on the path planning part of the
problem, the feature-to-reward process is assumed to be already implemented
for hypothesis. Therefore, the input of the decision making method will be a set
of scientific points of interest, each one associated with its Scientific Value Score.
The SVS will be considered as a number from 0 to 1, where 1 corresponds to
the maximum possible scientific return. These scientific points may represent
rocks or particular elements or areas of interest for the mission of the rover.
Moreover, the idea that sampling the same region or the same type of features
would lead to a decrease in the expected scientific return explained in [19], has
been developed as well, but with a different approach. First of all, for each
scientific point, in addition to the SVS domain, a category domain has been
added to classify also the type of feature that is present in that scientific point,
e.g. which kind of mineral. Then, as it will be better explained in section 3.2,
instead of gradually reducing the reward of certain features, depending on
the ones that have already been sampled, as done in the quoted study, a new
objective function was introduced in the multi-objective MCTS: the number of
categories visited by the rover. In this way, the algorithm will try to maximise
the number of visited categories together with the other objective functions and,
so, the scientific points that present categories that have not been visited yet
will be favoured.
Since, in general, there is a connection between the type of feature (category)
and the scientific reward, as for instance a certain mineral is more valuable than
others, the two domains have been linked through Equation 2.4.

SVS = (rand(0, 1) + (cat− 1)) · 1

ncat
(2.4)
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Where rand(0, 1) is a random number between 0 and 1, 1
ncat

is the maximum
value of SVS (which is 1) divided by the total number of existing categories
and cat is the number of category of that specific scientific point. Indeed, the
categories are defined as numbers, for instance from 1 to 10, if there are 10
different types of scientific points. As a consequence, the reward for each category
will be in a certain range and category 1 will be the one with the lowest scientific
return.
An example of a reward map that contains 20 scientific points of interest (blue
circles), belonging to 10 different categories (although not all of them are present
within the map), and 50 obstacles (red circles) is depicted in Figure 2.4. Each
scientific point in the graph is reported together with its SVS and its category
(SVS - category: e.g. 0.35 - 4).

Figure 2.4. Example of the reward map with 20 scientific points and 50 obstacles

2.4 Overview of the selected method

Now that the conceptual operations have been described and the scientific reward
has been established, it is possible to explain which methods have been used
to fulfil the different parts of path planning problem. As previously stated
in section 1.3, the multi-objective Pareto Monte Carlo Tree Search has been
selected for global path planning.
Concerning the local planning, a navigation system based on artificial potential
fields has been developed.
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2.4.1 Global planning with multi-objective Pareto MCTS

Global path planning represents the decision making part and so the most
important and innovative segment of the system.
In [12], Pareto MCTS is used to choose the most promising move between the
primitive paths of a robot, as reported in Figure 2.5a. In the cited study, the
vehicle moves through the environment shown in Figure 2.5b, in which the
hotspots represent high interest areas. In this case, the two competing objectives
considered in the Pareto MCTS path planning method are the maximisation
of information gain and of the exploration of the area. It is possible to notice
how the hotspots are visited and sampled by the robot more frequently than the
cold ones, showing a certain consistency of the method. Moreover, the fact that
the decision making tool chooses the next move amongst the possible primitive
paths of the robot means that the output of the system will not be a set of
waypoints that the robot should follow, but its actual trajectory through the
environment. In other words, global and local path planning are fused together.

(a)
(b)

Figure 2.5. (a) Primitive paths for a wheeled rover. (b) Path and collected samples
determined with Pareto MCTS [12]

In this thesis work, given the discretisation that has been made on the scientific
reward, previously illustrated in section 2.3, the approach has been changed. The
most promising next move will not be selected among some primitive paths the
rover may follow, but between a certain number of the scientific points that are
closer to the current position of the rover, as it is depicted in Figure 2.6a. Also,
the ending point will be added every time as a possible next move. Therefore, the
waypoints will be formed as a sequence of the most promising scientific points
found at each step by the algorithm. An example of this idea is represented in
Figure 2.6b. In the map of these two figures small obstacles are not depicted for
clarity. Only three large Non-Traversable Zones (NTZ), that represent areas in
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which the rover is not able to move through, are shown.
As already said, the trajectory between these waypoints will then be found
thanks to the local path planning system.

(a) (b)

Figure 2.6. (a) Overview of the possible next moves of the rover. (b) Example of
global path planning waypoints output

2.4.2 Local planning with artificial potential fields

The artificial potential fields approach has been chosen for the computation of
the local trajectory of the rover among the obstacles, since this system is very
fast and does not require great computational effort. These are good pros for
a system that will be placed aboard a planetary rover. On the other hand, an
important problem related to this method is the possibility to get stuck in local
minima, but there are ways to avoid or reduce the occurrence of these type of
events. This issue will be addressed more in detail in chapter 4.
The idea of the artificial potential fields method is based on the analogy with
natural conservative force fields, that can be derived as the gradient of a potential
function that only depends on the position. In the same way, the motion of the
rover through the map is driven by a force, that is evaluated in each point as
the gradient of the sum of different potential fields, that represent the different
features of the environment. In particular, the target point will be modelled as
an attractive field, while the obstacles will be shaped as repulsive fields. An
example of a trajectory generated with the artificial potential fields approach is
depicted in Figure 2.7. In this figure the contour lines of the attractive potential
field are represented as well.
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Figure 2.7. Example of a trajectory obtained with an artificial potential fields method
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Chapter 3

Multi-objective Pareto MCTS

3.1 MCTS general overview

The classical version of Monte Carlo Tree Search (MCTS) is a heuristic search
algorithm used for decision making and often applied to software playing of
traditional board games like Go or chess. The main purpose of this algorithm is
to choose, given a state of the game, the most promising next move.
With this method a tree search is built, node-by-node, according to the outcomes
of the simulations that allow to determine its most promising branches [20].
Each node of the tree represents a different state of the system, that in the
context of this thesis could be either a certain scientific target or the start/end
point (cf. Figure 2.6a). The root of the tree is the node that represents the state
in which the search starts.
The process of MCTS can be broken down into the four steps that are depicted
in Figure 3.1: selection, expansion, simulation and back-propagation.
Selection is the core of the search method, since it determines the traversals

(a) Selection (b) Expansion

(c) Simulation (d) Back-propagation

Figure 3.1. MCTS steps of the process
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down the tree and, so, how the tree is explored. A single traversal is a path
from the root to a not expanded node, called leaf node. The selection policy (cf.
section 3.3.1) defines, at each step of the traversal, which one is the best child
node to be explored. In Figure 3.1a, green nodes are the selected nodes for the
traversal that is ongoing, which is represented by the green arrows.
Once a leaf node is found, if it is not a terminal node (an ending point, the
red nodes in the figure), it undergoes the process of expansion and its children
are added to the tree (Figure 3.1b). These new nodes are then chosen one
by one to become the root for a single simulation/rollout (Figure 3.1c), which
consists in a propagation up to a terminal node based on a simulation policy (cf.
section 3.3.3). The results of these rollouts are then back-propagated up to the
root node. In other words, during the back-propagation process, the algorithm
updates the total simulation reward vector Xk and the total number of visits
nk of each node k of the traversal path (Figure 3.1d) [21]. These variables are
attributes of the nodes of the tree and they are defined as follows.

• Xk - Total simulation reward vector of a node k is the sum of the simulation
results that passed through the considered node (in a single-objective
MCTS, the reward vector is scalar).

• nk - Total number of visits of a node k is the counter of how many times
the node has been on the back-propagation path and so it counts how
many times Xk has been updated.

The process is iterated until a predefined time/computational/memory budget
is exhausted. Afterwards, the most promising child of the root node is chosen
depending on the attribute nk: the most visited child of the root node will be
selected as the next move, since the number of visits indicates how promising is
the node. Indeed, the most visited one has resulted to be picked as best child
for more times than the others by the selection policy.

3.2 Objective functions

The main principle of operation of the multi-objective MCTS is identical to the
one that has just been explained in the context of the single-objective. However,
in the multi-objective case, the reward Xk will be a vectorial variable based
on the objective functions considered and, during the back-propagation step,
each component of the vector will be updated separately with its respective new
simulation results (cf. section 3.3.4).
Therefore, it is now necessary to define the four objective functions that will be
evaluated in the path planning process, even though three of them have already
been presented above in the text. The first variable to be maximised is the total
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scientific return of the mission, which is the actual core of the path planning
process and is determined as the sum of the Scientific Value Score of each
scientific point that is sampled by the rover along its path. A second important
function is the path length, which shall be minimised. Since Pareto MCTS
method aims to the maximisation of the objective functions, minimisation will
be managed as a maximisation of the negative of the variable to be minimised
(e.g. minimisation of the path length ltot will be treated as a maximisation of
the variable: −ltot).
Given these first two objective functions, the algorithm will try to gain as much
scientific reward as possible reducing, at the same time, the length of the path
that the rover should travel to sample these targets.
The third function that needs to be maximised is the number of different
categories of the scientific features that are sampled by the rover. As explained
in section 2.3.2, this objective aims to the exploitation of all the different pieces
of information that are present in the environment.
Finally, the last variable has been introduced to force the rover to stay away
from the borders of the area explored by the helicopter/drone and, so, to prevent
it from going outside the (partially) known domain. This function has been
defined as the sum of the distances di between the visited scientific targets and
the point C at the centre of the exploration area, as depicted in Figure 3.2
(Equation 3.1).

f4 =
∑
i

di (3.1)

Figure 3.2. Map showing the distances di between the scientific targets and the central
point of the known area

Indeed, introducing the minimisation of this function f4 into the objectives of
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the MCTS will penalise scientific points that are very close to the borders (such
as point 0.78 - 8 at the bottom-right of Figure 3.2) as they have greater values
of di. Therefore, the planning method may prefer to visit other targets rather
than the ones at the borders.
In Table 3.1, a summary of the four objective functions is displayed.

Function Description Max/min

f1 Total SVS Maximise
f2 Total path length Minimise
f3 Number of visited categories Maximise
f4 Sum of distances from centre Minimise
Table 3.1. Summary of the objective functions

The different functions are scaled, even though it is not actually necessary, in
order to be more or less of the same order of magnitude. For instance total path
length is divided by 100.
Before proceeding, it must be highlighted that the MCTS is not a global optimiser.
Indeed, it works step by step, determining at each step the most promising next
move with a statistical approach, nevertheless the global trajectory will be, in
general, sub-optimal. Moreover, in the multi-objective scenario, the method has
to reach a compromise between the different objective functions and, so, the
overall path will be sub-optimal also for this reason.

3.3 Multi-objective Pareto MCTS steps

The Monte Carlo Tree Search starts from the root node. In the first cycle,
the selection step ends immediately, as the root node is already a leaf node
and, so, its children are added to the tree through the expansion process.
Afterwards, simulation and back-propagation are performed from each one of
them in sequence. The overall process of selection, expansion, simulation and
back-propagation is then iterated until the budget is over.
In the following sections, these steps will be described more in detail starting
from the driving force of the whole method: selection.

3.3.1 Selection

During the selection process, the algorithm has to determine at each step, by
means of a selection policy, the most promising node, in order to perform a
traversal along the tree until an unexpanded node is found (Figure 3.3).
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Figure 3.3. Selection step

Pareto front policy for multi-objective evaluation

In case of scalar reward, the most promising node is simply the one with highest
expected reward. However, in the multi-objective scenario, the reward is a vector
based on the objective functions. Therefore, the optima are not unique and
there is a set of optimal choices that are considered equally best, as some of
them may be good for part of the objectives but worst for others. This set of
equally optimal nodes is defined Pareto optimal node set.
Before establishing a definition for this set of nodes, it is necessary to specify
the concept of dominance. Referring to the definition reported in [12], let Xk be
a D-dimensional reward vector of a choice k and Xk,d be the d-th element of the
vector. A choice is one of the possible child nodes to select between. The i-th
choice is better than, or dominating, another choice j, denoted as i � j or j ≺ i,
if and only if the following conditions are satisfied:

1. any element of Xi is not smaller than the corresponding element in Xj:
∀ d = 1, 2..., D, Xi,d > Xj,d;

2. at least one element of Xi is greater than the corresponding one in Xj:
∃ d ∈ {1, 2, ..., D} such that Xi,d > Xj,d.

As a consequence, it is said that choice j is non-dominated by choice i if and only
if there exists at least one component d of the reward vectors such thatXj,d > Xi,d

(j ⊀ i or i � j). Moreover, two choices i and j are defined incomparable (i‖j) if
and only if there exists one dimension d1 such that Xi,d1 > Xj,d1 and a dimension
d2 such that Xi,d2 < Xj,d2 .
By means of these concepts, a proper mathematical definition of the Pareto
optimal node set can be expressed as follows [12]. Given a set of nodes V , a
subset P ∗ ⊂ V is the Pareto optimal node set, in terms of expected reward, if
and only if: ∀ v∗i ∈ P ∗ and ∀ vj ∈ V, v∗i ⊀ vj

∀ v∗i , v∗j ∈ P ∗, v∗i ‖v∗j
(3.2)
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The first condition states that the nodes belonging to the Pareto front are
not dominated by any other, while the second one means that these nodes are
incomparable with each other. A Pareto optimal node set in a two dimensional
reward case is shown in Figure 3.4a. In this example, the two objective functions
are the SVS and the path length of the rover. It can be seen that the two
conditions needed for the Pareto set are satisfied for the green nodes. In the
2-dimensional case, the Pareto front is approximately placed on a hyperbola, as
in the inversely proportional relation.
Once this set of optimal nodes has been defined and computed at the selection
step during each cycle, the most promising child node is chosen uniformly at
random among the nodes of the Pareto set. Indeed, there is not a specific criteria
to choose between them, as they are all considered equally optimal.
However, if there are objectives that are slightly more important than others,
the Pareto front could be built using non-absolute dominance. Meaning that,
for the objective functions of lower importance and, so, for their respective
dimension d of the reward vector, Xi,d > Xj,d will not be considered enough to
verify the second condition of dominance, that has been previously described. A
stronger condition will be necessary: |Xi,d −Xj,d| > δd, where δd is a positive
value, that has to be defined for each objective function of lower importance.
In other words, the node i, in order to be considered better than the node j in
relation to the dimension d of the reward vector, shall have not only a value of
Xi,d greater than Xj,d, but also a difference between these variables larger than
the defined δd.
For instance, in a 2-objectives scenario, if having a shorter path is considered a
bit more important than the total Scientific Value Score collected, for this last
objective a non-absolute dominance condition may be introduced. In this way,
as shown in Figure 3.4b, nodes in which the reward value related to the SVS of
one node is greater than the other’s but their difference is smaller than δd are
considered equal from the SVS point of view. Therefore, the one with higher
reward value connected to path length will be added to the Pareto optimal node
set, while the other will be discarded.
It is clear how, if δd is set to a higher value, the algorithm will evaluate more
nodes as comparable, in relation to the reward of the scientific return, and will
include in the Pareto set only the one of these with the shortest path length.
Therefore, longer paths will be privileged only if they allow the rover to achieve
a consistent increase in the scientific return.
In section 5.3.2, some simulations carried out with the introduction of the concept
of non-absolute dominance have been reported. Different values of δd have been
assigned to the four components of the reward vector, penalising one or the
others in the various tests.
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(a) (b)

Figure 3.4. Pareto front in case of (a) absolute and (b) non-absolute dominance

Upper Confidence Bound (UCB)

The computation of the Pareto optimal set is based on the Upper Confidence
Bound (UCB) Uk, which is a vector calculated for each child node k from the
total simulation reward vector Xk according to the Equation 3.3. In the context
of this study, the UCB is a vector of four components, since four objective
functions have been considered.

Uk =
Xk

nk
+ C

√
4 lnntot + lnD

2 nk
(3.3)

The first term of the equation represents the average reward that is obtained
from child k, as it is the division between the total simulation reward and the
total number of visits of the node. The second term is added to let the algorithm
search along the whole tree and not get stuck in the nodes that have been found
most promising in the beginning. Indeed, the term increases the UCB value of
the nodes that have been visited a lower amount of times, since the denominator
is 2 nk. In the equation, ntot is the total number of visits of the parent node, so
the total number of visits that have all the children together. D is the number
of components of the vector Uk, which is four in this case, and C is a vector
of scaling constants. In Figure 3.5, is reported an example of the trend of this
second term of the equation in relation to the number of visits of the node. It
can be noticed how as the visits decrease the term increases. The number of
visits is never 0, because, every time a new node is added, a simulation starts
from it and, so, in the back-propagation step of the process the variable nk is
updated to 1.
Vector C is used to scale the second term according to the different order of
magnitude of the several objective functions, although, as explained in section 3.2,
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Figure 3.5. Trend of the second term of the UCB

the variables themselves have already been scaled.
In conclusion, the generation of the Pareto optimal node set is based not directly
on the simulation reward vectorXk, but on the four components of the vectorUk,
that are compared to the other children’s (i, k...) vectors (Ui,Uj...) according
to the two conditions previously defined.

3.3.2 Expansion

Once a leaf node has been found through the search process driven by the
selection policy, its children are determined and linked to it with the expansion
step, as depicted in Figure 3.6. However, if the selected leaf node is a terminal
node (ending node), expansion is not possible. Therefore, simulation (that will
actually stop immediately, as explained in section 3.3.3) and back-propagation
steps will be directly performed from it.

Figure 3.6. Expansion step

The children of each node represent all the possible states that can follow the

24



3.3. Multi-objective Pareto MCTS steps

state of the parent. As explained in section 2.4.1 and shown in Figure 2.6a, the
possible next states are defined as a certain percentage of the closest scientific
points, plus the ending point. In particular, the percentage has been set to
the 50% of the elements of the vector of the possible states considered at the
beginning of the search minus one (that is the current state). Therefore, if the
state vector has 21 elements, the algorithm will select the closest 10, plus the
ending point. So, eleven children will be added to the tree. This number will
remain constant during the construction of the tree, as it is based on the length
of the vector of possible states available at the beginning of the search. It may
happen that, in the most expanded branches, the states that are yet to be visited
are less than eleven. In this case all of them will be added as children.
The ending point is always linked to any node of the tree, to allow the algorithm
to always analyse the reward vector obtained from the possibility of moving the
rover to the ending point after the state of the parent node. In this way, the
rover can decide to conclude its route after having visited any of the scientific
targets of the area.
It must be highlighted that during the time in which the tree is built the rover
is not moving, it is idle at the state position of the root node. The nodes are
explored by the Monte Carlo Tree Search algorithm and not by the rover. Indeed,
the method will determine the most promising node to be next visited by the
autonomous vehicle. Section 3.4 will better explain of how the succession of
MCTS computation and rover moving will take place.
To evaluate the distances between the different points in the area and, so, to
determine the targets that are closer to the root node, the artificial potential
fields method has been used. Of course, this analysis is performed with the data
that the rover knows on the environment at that point of the exploration (not
all obstacles are probably known yet). The distances from each state point of
the map to every other target are saved in a matrix (named path length matrix)
before the starting of MCTS, so that this information is available to the decision
making system.
With respect to other MCTS algorithms, it has been decided to directly expand
all the children of the parent node at once, instead of adding only one child.
In this way, the knowledge on how promising is the node is immediately more
effective than having the information of just one child.
Once the children are added, a simulation process is carried out from each new
node and the data are then back-propagated up to the root node.

3.3.3 Simulation

The role of the simulation step, also called rollout, is to propagate, according to
a policy, the rover moves from the point in which the simulation starts up to
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the ending node and evaluate the reward vector of that path (Figure 3.7). This
process is important to estimate the potential reward of that node and so to
understand how promising is.
If the newly added child node is a terminal node, the simulation will stop
immediately, since the ending point has already been reached. Therefore, the
reward vector will be only based on the data of the path up to this node.

Figure 3.7. Simulation step

The simulation policy determines how the next nodes are chosen during each
rollout. In particular, the next state will be selected each time at random among
the two closest not visited points in the map. In this way, a quite regular path
of the rover within the area will be simulated.
The output of each rollout is a reward vector R of four components built on the
four objective functions.

3.3.4 Back-propagation

Back-propagation is the last step of the cycle and its function is to update the
total simulation reward vector Xk and the total number of visits nk of each node
along the back-propagation path, which is the inverse of the search path up to
the root node, as shown in Figure 3.8 for the three children nodes that have
been linked to their parent.
In each process of back-propagation, the two following calculations are performed
for each node k: the reward vector is added to the total simulation reward
(Equation 3.4) and the number of visits is increased by one (Equation 3.5).

Xk = Xk + R (3.4)

nk = nk + 1 (3.5)
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Figure 3.8. Back-propagation step

3.4 Exploration strategy

3.4.1 Planning-moving sequence

Once the budget is exhausted, the Monte Carlo search stops and the child of
the root node with the greatest nk is chosen as next move.
It is now necessary to establish how the MCTS is integrated with the exploration
of the rover. When does the rover stop for computation and how many waypoints
are defined before the rover moves to the next target?
There are two main possibilities. The first option is to determine, at the
beginning, all the waypoints from the start up to the end, by performing the
search multiple times using the next node as root node of the following search.
Another possibility is that the rover could determine its route point by point
and, so, move to the next point as soon as it is determined.
Both strategies have pros and cons. In the first case, the main issue is related
to the poor knowledge the rover has on the environment at the starting point.
Indeed, during its route it will discover new elements such as obstacles or
scientific points or gain new information about already known targets, that
would definitely force it to change its plan, discarding the old one that becomes
useless. On the other hand, the second scenario totally lacks of long-term
planning.
With regard to the computer memory, both ideas are feasible, as only waypoints,
path length matrix and part of the tree will be stored. Indeed, the actual
trajectory will be, in both cases, computed step by step, as the rover moves
through the area, with the artificial potential field method, as will be explained
in section 4.1.
After these considerations, a compromise solution has been adopted for which, as
soon as the two following waypoints are computed, the rover moves to the first
one and does its sampling. Then another waypoint is determined and added as
second next and the rover travels to the new first. The process is iterated until
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the ending point is reached by the vehicle. Figure 3.9 illustrates an example of
this sequence of computation and travelling.

Figure 3.9. Sequence of MCTS computation and rover moving

3.4.2 Memory management

As said, the memory of the on-board computer will not be particularly challenged
by this method, since only two waypoints, a path length matrix and part of the
tree will be kept in memory.
In particular, each new Monte Carlo search will be built over the tree that has
already been produced in previous computations, while the old parts will be
discarded to empty the memory, as shown in Figure 3.10. In this way, the tree
is just enlarged and updated and not started from scratch every time. As soon
as the rover approaches the first next waypoint, the part of the tree upstream of
that node is erased from the memory.

Figure 3.10. Memory management

However, as will be explained in the following paragraphs, there are cases
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in which the tree has to be completely deleted and regenerated. Indeed, as
discussed regarding the rover concept of operations (cf. section 2.2), a change in
the scientific information will act as feedback on the global path planning system,
whereas local re-planning will be needed when new obstacles are detected.

Change in the scientific information

As the rover performs the trips from one point to another, it stops every 3 m to
observe its surroundings. During these analyses the knowledge about scientific
elements in the area might be locally updated. In particular, these changes may
concern different aspects:

• the scientific object the rover is about to reach is located in a too dangerous
position as it is very close to an obstacle, that had not been previously
detected;

• a generic scientific object along the path is located in a too dangerous
position as it is very close to an obstacle, that had not been previously
detected;

• a new interesting scientific target is observed;

• a scientific point belongs to a category or has a reward that is different
than what expected from the helicopter data.

In these situations, the tree needs to be re-built, because the scientific information
in the scenario has changed. Therefore, the decision making algorithm will be
run again from scratch.
In the first case, the rover will stop at the point in which it has detected the
new obstacle, since the next scientific point is not reachable, and will perform
a new decision making process. As it is shown in Figure 3.11a and b, as the
rover approaches the scientific target 0.95-10, a new obstacle is detected close to
that point, that is then evaluated as too dangerous. Therefore, the rover stops
there, a new MCTS is run and when two new next waypoints are determined,
the vehicle moves to the first one.
In every other situation, the vehicle can complete its route towards the element
that is going to. So, it does not stop immediately, but it reaches that scientific
point and samples it. Only after that, a completely new search tree is built.
In Figure 3.11c and d, an example of the second situation is depicted. During
the traversal from point 0.98-10 to 0.44-5, the rover finds out that the target
0.49-5 is too dangerous and so it deletes it from the targets to be visited. As
a consequence, after the sampling in 0.44-55 a new tree is built. In green it is
possible to see the already sampled points and the first next planned waypoint.
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(a) (b)

(c) (d)

Figure 3.11. (a)-(b) Rover path before and after the global re-planning due to the
discovery of an obstacle that is too close to the target where the rover is
going. (c)-(d) Rover path before and after the global re-planning due to
the discovery of a too dangerous scientific point

It can be noticed that the point the rover eventually samples in Figure 3.11d
(that is 0.91-10) is different than the one that was planned in c, as a proof of
the fact that the old tree and plan have been totally discarded, because of the
change in the scientific information.
In case the rover discovers that the ending point is too close to an obstacle, the
planning algorithm is run in the same way and the vehicle eventually stops its
exploration at the last scientific point before the end.

Detection of a new obstacle

The situation is different in case newly detected obstacles do not interfere with
the scientific targets of the map. In this case, global re-planning is not needed,
because the scientific knowledge has not changed. Local re-planning will be
carried out step by step, thanks to the artificial potential fields method (cf.
section 4.1).
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Moreover, after rover traversals in which new obstacles have been found, the
path length matrix is updated with the new distances of the paths among the
obstacles, while the search tree is kept in memory.
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Artificial potential fields method

4.1 Step by step algorithm

There are two different categories of local path planning systems, the first one
in which the rover computes the whole trajectory between two waypoints at the
beginning of the traversal and the second one in which there is not a predefined
trajectory, as the rover determines its path step by step while it is moving.
The first type of algorithms is used in the situations in which the map is well
known. Therefore, the rover can plan the path among the obstacles from the
beginning and only a hazard detection and avoidance system will be used to
modify it, if new obstacles are detected.
The second class of methods is able to navigate the rover in a less known
environment. The trajectory is computed considering at each step the current
position of the rover, the target location and all the obstacles in the surroundings.
In this thesis, as previously stated, the artificial potential fields method has
been chosen for local path planning. This algorithm belongs to the second class.
Indeed, in the defined scenario the rover has enough scientific knowledge to
plan its global path, but only largest obstacles are determined by the helicopter.
Therefore, the local navigation system shall allow the vehicle to move around
obstacles that are detected step by step.
More in detail, the rover discovers the environment thanks to its cameras
and instruments. In order to save energy and also because of the need of
computational time, these detectors are not continuously active. Indeed, the
rover stops every 3 m to take images and measurements. The data are then
processed and, if the target is still reachable, the vehicle will start moving again.
In particular, as established in [22], two different zones are defined, a known
zone and a shadow zone. The known zone is the section of the map that can be
observed by the rover every time it stops during the traversal. Its geometry is
dependent on the properties of the artificial vision system and of the instruments
on board. In the context of this thesis, it has been considered as a circular area
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around the rover with a radius of 5 m. On the other hand, the shadow zone is
the part of the map the rover does not know, because it is outside of this 5 m

radius circle and so can not be seen by the instruments.
As the rover moves towards the shadow zone and, so, as it reaches the borders of
the known zone it needs to stop and make new observations of the surroundings.
That is why in the algorithm, the rover has been set to stop every 3 m to analyse
the environment. Indeed, after this distance the rover gets close to the borders
of the known zone (2 m far from it) and moving becomes dangerous. Figure 4.1
shows an example of this sequence of observation and motion during the traversal.
The small grey squares with black edges along the path represent the points
in which the rover stops to make new measurements; from each one of these
locations a 5 m radius circular area is observed by on board instrumentation (sky
blue circles). It can be noticed how the point in which the rover stops is pretty
close to the borders of the previous known area. Moreover, in this example the
rover finds out that the target where it is going to, which is 0.91-10, is located
too close to an obstacle and, so, it is in a too dangerous position. Therefore, the
vehicle does not continue its traversal towards that point and starts a completely
new global planning process to determine new next waypoints.

Figure 4.1. Sequence of observation and motion during the traversal of the rover
towards the next waypoint. Sky blue circles represent the known zones

In real systems, the width or the size of the vehicle shall be considered, but,
as stated in [23], in many algorithms, the width of the rover is added to the
dimensions of the obstacle and the actual size of the vehicle is then shrunk to
zero.
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In this study, a generic small rover of 60 cm width was considered. In the code,
however, this method of shrinking the dimensions of the vehicle to zero has been
used. Therefore, the radius of each obstacle has been increased of 30 cm, which
is half-width of the rover, plus other 10 cm as a safety factor. In each plot that
will be presented, every obstacle will be shown with these enlarged dimensions
and the rover will be considered as a point.
Of course, an obstacle will be detected within the known zone only if it falls
within this area with its actual dimensions and not with the enlarged ones.
Since the navigation algorithm is realised considering a 2-dimensional map, the
information on the height of the obstacles is lost. As a consequence, during the
data processing, rocks and elements has to be defined as hazards or obstacles
only if their height is enough to interfere with the rover motion. As depicted in
Figure 4.2, the danger of a rock is related to how high it is, compared to the
clearance of the rover.

Figure 4.2. Example of hazards for NASA’s Mars Exploration Rover Opportunity [24]

4.2 Potential fields definition

The local navigation algorithm defines a potential field U in each position of
the map. The obstacles detected by the rover are considered as a source for
the potential, while the final point, which is the next waypoint, is defined as a
sink. In the next paragraphs, the fields associated to sources and sink will be
described in detail. These single fields represent how the rover feels the different
objects in the environment: it is repulsed by the obstacles and attracted by the
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target.
The total potential field is, then, defined as the sum of all the single fields of the
elements and is used in Equation 4.1 to compute the 2-dimensional force vector
F in each point of the trajectory, that will be then inserted in the dynamic
equations (Equation 4.3) to determine the next step of the path towards the
target.

F = −∇U (4.1)

The state vector of the dynamic system is reported in Equation 4.2. The first
two components are simply the coordinates x and y of the rover in the map and
the other two represent their time derivatives.

X =


x

y

ẋ

ẏ

 (4.2)

The dynamic equations that need to be integrated are defined as follows:

Ẋ =


X3

X4

Fx/m

Fy/m

−


0

0

KdX3/m

KdX4/m

 (4.3)

where m is the mass of the rover, or actually a dummy mass used to perform the
calculations (in this case it has been set to 80 kg). Indeed, the only real output
of the integration of the dynamic equations is the trajectory, and so a sequence
of coordinates x and y. The obtained velocity v = (ẋ, ẏ) is not the actual speed
of the rover in each point of the traversal, but only a dummy velocity that is
the result of the applied force field.
Moreover, the two terms −KdX3 and −KdX4 are dampers. These damping
terms are needed to prevent the system from oscillating harmonically around
the attractive point. Indeed, if only conservative forces were present, the system
would behave like an ideal spring. Dampers allow the system to lose energy in
the same way as air drag does with an oscillating pendulum.
Before proceeding with the description of the different potential fields functions,
it must be said that, in the code, instead of calculating the negative gradient of
the sum of all different potential fields acting in the rover position of the map, it
has been preferred to separately evaluate the negative gradient of the potential
field of each attractive or repulsive element and, then, to sum up the forces. The
total force F will be then the sum of the total attractive, Fa, and of the total
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repulsive force, Fr, acting in that point, as shown in Equation 4.4.

F =

{
Fx
Fy

}
=

{
Fax
Fay

}
+

{
Frx
Fry

}
(4.4)

In the next sections, sink and source artificial potential fields used will be
described.

4.2.1 Sink model

The attractive potential field used is a combination of two different functions: a
conic linear potential field and a Gaussian field, as also proposed in [22]. Their
mathematical expression is shown respectively in the first and in the second
term of Equation 4.5:

Ua = Kaρa −K1ae
(−0.5K2aρ

2
a) (4.5)

in which Ka, K1a and K2a are weighting constants (the values used in this study
are reported in Table 4.1) and ρa is the distance between the current position of
the rover (x, y) and the attractive point (xa, ya) and is defined as follows:

ρa =
√

(xa − x)2 + (ya − y)2 (4.6)

The choice of the conic field has been made because the rover must feel the
attractive field in all the map, in order to be always drawn towards the final
point and not get trapped between two repulsive fields. Quadratic parabolic
potential field has also been tested, but, at greater distances from the attractive
point, the gradient of this potential became too large and influential with respect
to the repulsive ones, making hazard avoidance difficult. Figure 4.3a shows the
3-D plot of the conic field.
On the other hand, the Gaussian field (Figure 4.3b) is the one that will be used,
with an opposite gradient, also for repulsive elements. It mainly acts locally,
close to the attractive sink or to the repulsive source. It is a compromise between
a triangular field and an exponential field, that solves both their problems.
Indeed, the triangular field only acts in a well defined area around the element,
while in the exponential field, that guarantees coverage of the whole exploration
map, the gradient becomes infinite in the position of the object. The Gaussian
function, instead, as shown in Figure 4.4, takes only the advantages of these
two functions. The role of this Gaussian field is to increase the attraction of the
final point in its proximity, where the presence of some obstacles may lead to
getting stuck in local minima.
It is possible to observe the total (conic and Gaussian) attractive potential field
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(a) (b)

Figure 4.3. (a) Linear attractive potential field, (b) Gaussian attractive potential field
(attractive sink in coordinates: x = 30m, y = 30m)

(a) Triangular model (b) Exponential model

(c) Gaussian model (d) Comparison

Figure 4.4. Comparison between triangular, exponential and Gaussian potential field
functions [22]
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in Figure 4.5a, while Figure 4.5b shows the distribution of the attractive force
field. Indeed, each arrow represents the negative gradient of the potential. It can
be noticed that the magnitude and direction of the force field are constant and
symmetric in the all map (because of the conic linear field, that has constant
gradient), with changes in proximity of the attractive point due to the presence
of the Gaussian field.

(a) (b)

Figure 4.5. (a) 3-D total attractive potential field and (b) its resulting force field
(attractive sink in coordinates: x = 30m, y = 30m)

Finally, Equation 4.7 shows the mathematical formula for the total attractive
force, that is the one actually used in the code at each computational step. The
expression is easily obtained as the negative of the 2-dimensional spatial gradient
of the potential field function.

Fa = −(
Ka

ρa
+K1aK2ae

(−0.5K2aρ
2
a)) ·

{
x− xa
y − ya

}
(4.7)

A summary of the values, that have been used in the computations, for the
different parameters of the attractive potential field is reported in Table 4.1.

Variable Ka K1a K2a Kd

Value 100 500 0.05 300
Table 4.1. Values of the parameters of the attractive potential fields

4.2.2 Source model

Moving to the definition of the repulsive potential field, as previously explained,
again, a Gaussian field has been chosen. In this case, however, the potential
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function is different for each obstacle i, as it is dependent on its enlarged radius
ρoi . Indeed, two new radius-dependent weight parameters have been introduced
according to Equation 4.8 [22].

βi = K1rρoi , γi =
K2r

ρoi
(4.8)

So, the repulsive potential field function is defined as follows:

Uri = βie
(−0.5γiρ

2
ri
) (4.9)

in which ρri is the distance between the current position of the rover (x, y) and
the i-th obstacle (xoi , yoi):

ρri =
√

(x− xoi)2 + (y − yoi)2 (4.10)

The parameters of the Gaussian function, reported in Table 4.2, are defined in
order to model the field in such a way to have very high gradients close to the
borders of the obstacles to prevent the rover from crossing them. In Figure 4.6,
both repulsive potential and force fields are shown. It can be noticed how the
value of the force becomes really high outside the borders of the obstacle (red
dashed lines).

(a) (b)

Figure 4.6. (a) 3-D Gaussian repulsive potential field and (b) its resulting force field
(repulsive source with ρoi = 0.5m in coordinates: x = 20m, y = 20m)

As for the attractive field, here is the Gaussian repulsive force used in the code
and derived from the potential.

Fri = K1rK2re
(−0.5γiρ

2
ri
) ·

{
x− xoi
y − yoi

}
(4.11)
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Vortex field

The main problem of the artificial potential fields method is related to the
possibility of getting stuck in local minima. Indeed, there may be some local
stationary points in which the sum of all forces is zero. This problem is mainly
due to the sum of symmetric fields [25].
Another issue is related to a situation in which the target is within the effect
region of an obstacle, such that the repulsive force of the obstacle will push away
the rover from the goal point, as depicted in Figure 4.7 [26].

Figure 4.7. Goals non-reachable with obstacle nearby problem [26]

In the quoted article, as well as in [27], a modified artificial potential field is
defined with the introduction of the distance between robot and goal into the
repulsive force function to guarantee that the global minimum is at the target
position. In this way, the repulsive potential field reduces as the rover gets closer
to the final point as does the attractive potential field, which is quadratic in
these two studies and so its gradient becomes smaller as the rover comes closer
to the final point.
In the context of this thesis, instead, this last problem has been solved thanks
to different expedients. First of all, the conic linear attractive field assures that
the rover feels the same gradient in all the environment allowing a proper tuning
of the repulsive fields, which do not need to be oversized to oppose the gradient
of a quadratic field, that gets really high at large distances from the attractive
point. In this way, also, a strong sink gradient is present in proximity of the
target point and the attraction is even increased by the addition of the Gaussian
field. Moreover, this situation in which the target is in the range of influence of
a hazard does not, actually, occur so frequently in the scenario of this study, as
target points that are too close to obstacles are discarded, because considered
too dangerous.
Regarding the symmetry problem that leads to local minima, different solutions
have been proposed in literature. There are two main possibilities. The first one,
as explained in [28], is to introduce a tangential repulsive force that guides the
rover along the contours of the obstacle, towards the goal. The second option
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is to define a swirling field, that is an asymmetric field generated through a
combination of radial (repulsive) and tangential (vortex) fields [25].
In this work, it has been decided to use the swirling field idea, which seemed
best as it both makes the field asymmetric and it lets the rover turn around the
obstacles.
According to [29], the vortex force field for the i-th obstacle is defined as:

Fvi =

{
−K3

y−yoi
ρ2ri

+K3
x−xoi
ρ2ri

}
(4.12)

where K3 is a weight parameter. This force field assigns in each position (x, y)

of the map a vector which is tangent to the circle centred in (xoi , yoi) and is
oriented in the counterclockwise direction.
The primitive function (−Uv) of the linear differential Fvxdx + Fvydy is not
globally defined, as the components of Fvi are defined in a domain which is not
simply connected ((xoi , yoi) must be removed) and so the integral over a circle
with centre in O is nonzero [29]. As a result, the potential Uvi is a multi-valued
function that can be expressed as:

Uvi = −K3 arctan (
y − yoi
x− xoi

) + c (4.13)

where c is a constant. As shown in Figure 4.8, Uvi represents a helical surface.
It is possible to notice how the gradient in some regions would be infinite, since
the value of the potential function instantly changes, because of the domain
problem.

(a) (b)

Figure 4.8. (a) Vortex potential field, (b) total (Gaussian and vortex) repulsive poten-
tial field (repulsive source in coordinates: x = 20m, y = 20m)

For these issues related to the integration of the vortex force field, its components
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are directly added as forces with Equation 4.12 and not derived from the potential.
In Figure 4.9a, an example of vortex force field is presented. It is possible to
notice that the arrows are tangential circles centred in O, as expected. Figure 4.9b
shows the total (Gaussian and vortex) repulsive swirling force field of the same
obstacle.

(a) (b)

Figure 4.9. (a) Vortex force field, (b) total (Gaussian and vortex) repulsive force field
(repulsive source with ρoi = 0.5m in coordinates: x = 20m, y = 20m)

It is, also, important to properly define the direction of vortex rotation. In
order to avoid problems of dynamic oscillations due to continuous changes in
the direction of rotation, a system of activation-deactivation of the vortexes has
been developed. The vortex of an obstacle is turned on only within a circular
area of interest, centred in O and with a radius of ri = 1.3 · ρoi + 0.5 m, and the
direction of vortex rotation is kept constant until the rover exits the circular
area and the vortex is turned off.
Two versors are defined: v̂o−t and v̂r−o, which represent respectively the direction
between the obstacle and the target and between the rover and the obstacle.
The rover is in the position in which it has entered the area of interest of the
obstacle. The cross product of these two versors is evaluated:

b̂ = v̂o−t × v̂r−o (4.14)

The third component of b̂ determines the direction of rotation:if b3 > 0 −→ θ = +1 −→ Counter-Clockwise

if b3 < 0 −→ θ = −1 −→ Clockwise
(4.15)
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Where θ is a coefficient that multiplies Fvi determining the direction of rotation
of the vortex. If θ = +1 the direction is the standard one, which is counter-
clockwise, as stated before.
Figure 4.10 depicts the reasoning behind this method. Given the position of the
rover in Figure 4.10a, it is clear how it would be easier for the vehicle to pass
on the right side of the obstacle to get to the target. Therefore, the definition
of the vortex rotation as counter-clockwise will force the rover to do so. The
cross product is simply used as a way to determine relative positions of rover,
obstacle and target and to evaluate the best direction to avoid the obstacle. Of
course, in Figure 4.10b the opposite situation is shown. As said, once the vortex
is activated its direction of rotation remains the same until it is turned off once
the rover exits the circular area of interest.

(a)
(b)

Figure 4.10. Illustration of how the system of selection of the vortex direction of
rotation works. In (a) the rover will pass on the right side of the obstacle
as the vortex is activated in the counter-clockwise direction, in (b) the
vehicle will move on the left side of the obstacle because of the clockwise
rotation of the vortex

In Table 4.2, the values of the parameters of the repulsive potential fields used
in the code are reported. It can be noticed that different values have been set,
depending on the radius of the obstacles. Indeed, for larger hazards, specific
tuning of the parameters of the fields has resulted to be necessary, based on the
ratio between repulsive and vortex field.

ρi < 2 m ρi > 2 m

Variable K1r K2r K3 K1r K2r K3

Value 160 0.63 120 190 0.55 150
Table 4.2. Values of the parameters of the repulsive potential fields
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Close obstacles

Another problem to be addressed concerns the necessity of keeping the rover away
from narrow passages between two obstacles avoiding dangerous manoeuvres.
For how the swirling field is defined, the rover is actually encouraged to pass
between hazards. In fact, if the vehicle is positioned as in Figure 4.11, once in
the circular area of interest of the two obstacles, the vortexes are activated in
opposite directions (Figure 4.11a) and their summation field pushes the rover
between them, as depicted in Figure 4.11b. Indeed, according to the system
shown in Figure 4.10, it would be better to pass on the right side of one obstacle
and on the left of the other one.

(a) (b)

Figure 4.11. (a) Swirling potential fields of the two obstacles activated in opposite
directions, according to the position of the rover, and (b) the resulting
field

This system is good for obstacles that are far enough from each other, because
it allows the algorithm to generate smooth trajectories letting the vehicle pass
also between obstacles. However, for hazards that are too close to each other
(closer than a defined distance), a method that permits the rover to avoid them
completely shall be provided to prevent dangerous paths.
Swirling potential fields have been exploited also in this case. Indeed, by
activating both vortexes in the same direction, the repulsive field that is generated
induces the rover to circumnavigate both the hazards instead of passing between
them, as shown in Figure 4.12.
From a practical standpoint, it usually happens that the rover enters the circular
area of interest of one obstacle first. Therefore, in the beginning, just the vortex
of this obstacle is activated and then, when the other needs to be turned on, it is
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(a) (b)

Figure 4.12. (a) Swirling potential fields of the two obstacles activated in the same
direction, according to the position of the rover, with the new system
used if the hazards are close to each other and (b) the resulting field

set in the same direction of rotation of the previous one. Instead, if the vehicle
enters both regions simultaneously, the direction of rotation is chosen with the
system described in the previous paragraph, but considering the barycentre of
the two obstacles (based on their radii) as point O of Figure 4.10.
If more than two obstacles are in this condition of proximity, all their vortex
fields will have the same direction of rotation.
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Simulations and results

5.1 Simulation environment

Before presenting the results, it is necessary to explain some preliminary concepts
regarding how the simulations have been carried out.
Obstacles and scientific points are randomly generated in the 2-D map in all their
properties in a number defined by the user. Of course, category and Scientific
Value Score of the targets are related to each other, as defined in Equation 2.4.
As said, at the beginning of the exploration, the rover is aware of the scientific
targets but not of the hazards, except for the large Non-Traversable Zones
(NTZ).
Computational time has been used as budget of each Monte Carlo search and
has been defined to be proportional to the number of scientific targets still to be
reached.
In section 5.2, the results obtained from the application of the path planning
algorithm to different environments and scenarios are presented. In the second
place, a statistical sensitivity analysis, carried out on the data obtained by
multiple runs of the algorithm, verifies its effectiveness and robustness.

5.2 Multi-objective Pareto MCTS results

5.2.1 General

The general scenario refers to cases in which only small hazards and "traditional"
scientific targets are present within the map. The term "traditional" is used as
an opposite of "high SVS" point, which is a scientific point that has a reward
higher than the defined maximum value of 1. Indeed, in section 5.2.3, a high SVS
point is introduced to represent an element that has such a great importance for
the mission and that is so uncommon that would be a mistake not to sample
it. An example may be a very rare indicator for possible traces of life. The
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(a) (b)

(c) (d)

Figure 5.1. Global paths obtained in different general scenarios (Part 1)

behaviour of the algorithm in this scenario has been evaluated as well.
In Figure 5.1 and Figure 5.2, some examples of the application of the algorithm
to different environments with increasing number of scientific points, categories
and obstacles are reported. In all the figures, the obstacles that are brown
coloured (instead of red) represent close hazards (cf. section 4.2.2) and the grey
ones are the obstacles not yet discovered by the vehicle.
Once again, it must be highlighted how the global planning method is not a
global optimiser, but determines at each cycle the most promising next move,
by considering all the competing objective functions. Therefore the trajectory
will be globally sub-optimal. This explains why, especially for high numbers of
scientific points, the global path may not seem to be the best option to follow.
The trajectory is a compromise between the different objectives.
Table 5.1 shows the numerical results of the path planning method applied to
the scenarios in the figures in terms of total number of scientific points visited by
the rover (nsci vis), number of different categories of targets sampled (ncat vis),
total reward (rewtot) and path length (path l.).
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(a) (b)

(c) (d)

Figure 5.2. Global paths obtained in different general scenarios (Part 2)

Scenario Results
nsci ncat nobs nsci vis ncat vis rewtot path l.

Figure 5.1a 20 10 50 13/19 8/8 8.66/11.48 303 m
Figure 5.1b 20 10 100 11/13 9/9 5.58/6.07 223 m
Figure 5.1c 30 15 50 21/25 12/13 10.79/11.68 410 m
Figure 5.1d 30 15 100 21/22 11/11 8.80/9.14 483 m
Figure 5.2a 40 20 50 35/37 16/17 21.95/23.11 705 m
Figure 5.2b 40 20 100 27/27 13/13 15.16/15.16 714 m
Figure 5.2c 50 20 50 45/49 19/19 22.68/23.14 782 m
Figure 5.2d 50 20 100 36/39 18/18 16.79/16.93 702 m

Table 5.1. Results obtained in different general scenarios
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If a certain target is found to be in a too dangerous position, it is removed from
the interesting points. This explains why, in the environment of Figure 5.1b, for
instance, which has been generated with nsci = 20, only 13 of them are actually
considered as reachable targets. Of course, the same process happens for the
number of categories. In this case, however, the categories located within the
area might be less than ncat from the beginning. Indeed, for example, ncat = 15

is the maximum number of possible categories that can be randomly assigned to
the targets, but it is not certain that all of them will be actually present in the
area.
Considering the results, it can be noticed how the scientific points are rarely
all sampled, since visiting all of them strongly competes with the objective of
having a short path length. Moreover, the targets that are usually not reached
are the ones that are located in proximity of the borders of the exploration area
(see for instance Figure 5.2c), showing the influence of the objective function
f4 (cf. section 3.2). On the other hand, the rover nearly always visits targets
belonging to all the different reachable categories.
Figure 5.1a displays an example of a situation in which the rover discovers that
the ending point is not in a safe position as it is approaching it and, so, it stops
without reaching it.

5.2.2 Non-Traversable Zones

Non-Traversable Zones (NTZ) are large areas that the rover knows from the
beginning of the exploration and that represent larger scale features like big
rocks, craters, steep hills and others that could be hazardous for the vehicle to
move through.
The algorithm has been tested in these environments to prove its capability
of avoiding also these larger type obstacles. Two examples are reported in
Figure 5.3, along with their numerical results in Table 5.2.

Scenario Results
nsci ncat nobs nsci vis ncat vis rewtot path l.

Figure 5.3a 30 15 50 22/26 13/13 10.62/12.81 381 m
Figure 5.3b 30 15 50 24/29 14/14 13.62/15.66 511 m
Figure 5.4 30 15 50 25/27 12/13 12.87/12.92 559 m

Table 5.2. Results obtained in different scenarios with NTZ

By looking at the figures, it can be noticed how the rover is able to avoid these
wide areas during the exploration. Nevertheless, further analyses to evaluate
the satisfaction of the safety constraint have been performed by applying the
planning method to a higher number of different scenarios and the results are
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(a) (b)

Figure 5.3. Global paths obtained in different scenarios with NTZ

reported in section 5.3.
Despite the introduction of the fourth objective function f4 (cf. section 3.2), that
induces the rover to avoid targets that are located close to the borders, it still
may happen that the force produced by the artificial potential fields pushes the
vehicle outside the domain, as depicted in Figure 5.4. Of course, this may lead
to a dangerous situation, since the rover crosses the borders of the exploration
area. However, the vehicle itself has instruments able to detect new elements
and hazards in this unknown environment and, since the local path planning
algorithm has been designed with the step by step approach, it would be able to
navigate also in this region without increasing the risk too much.

Figure 5.4. Situation in which the rover is forced to pass outside of the area previously
explored by the helicopter/drone
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5.2.3 High SVS

As previously explained, the algorithm has been tested also in situations in which
a target with a very high scientific reward is present. In the scenarios depicted
in Figure 5.5, a point that has a SVS two times higher than the maximum of
1 has been introduced. In these cases the global path planning method nearly
always decides to sample that target. Moreover, the vehicle often chooses to
visit this valuable point pretty soon in the exploration.
Table 5.3 reports the numerical results related to the two examples of Figure 5.5.

(a) (b)

Figure 5.5. Global paths obtained in different scenarios with a high SVS point

Scenario Results
nsci ncat nobs nsci vis ncat vis rewtot path l.

Figure 5.5a 20 10 50 20/21 10/10 12.26/12.35 347 m
Figure 5.5b 30 15 50 24/29 11/11 13.58/14.77 424 m

Table 5.3. Results obtained in different scenarios with a high SVS point

Figure 5.5a also presents the particular situation in which the rover finds out
that the ending point is not reachable, before it is actually moving towards it.
Indeed, in this case the obstacle that is close to the ending point is detected
when the vehicle is in the vicinity of the target 0.09-1, as it passes near the
ending point. Therefore, the rover understands that it will not be able to reach
the ending point, since it is not safe, but it continues its exploration-planning
phases until it reaches the point before the end and it stops there.
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5.3 Sensitivity analysis

5.3.1 Definition of the parameters of merit

In order to verify the robustness of the designed system, it is necessary to apply
it to a large number of different scenarios and to analyse its performances, by
evaluating some established parameters of merit.
In particular, these parameters need to assess two main aspects: the efficiency
and quality of the planning algorithm and its safety.
Efficiency and quality aim to evaluate whether the designed trajectory reflects
and respects the objective functions. Therefore, three parameters have been
considered. The first one is the percentage of the scientific points that have
been sampled, with respect to the total number of the ones that are located in
safe positions according to the knowledge of the rover. The second one is the
percentage of visited categories. These two parameters verify how the method is
able to exploit the scientific information present within the exploration area.
The last parameter is the total path length, which is connected with the energy
needed by the rover to follow the designed trajectory and should be minimised.
The safety of the system, instead, is evaluated by analysing how the rover is able
to perform its operations among the hazards without crashing with them. The
parameter that has been considered is the minimum distance d between vehicle
and obstacle in each close passage. Close passages are defined as situations in
which the rover passes at a distance lower than two times its width from the
actual borders of an obstacle. Remembering how the enlarged radius of a hazard
is defined:

ρo = robs + hwrov + sf (5.1)

where robs is the actual radius of the obstacle, hwrov is the half-width of the
rover (0.3 m) and sf is the safety factor (0.1 m), the vehicle performs a close
passage to a certain hazard if the distance d between its centre and the border
robs + hwrov of the obstacle is lower than 3 · hwrov = 0.9 m:

close passage if: d ≤ 0.9 m (5.2)

The boundary situation in which d = 0.9 m is depicted in Figure 5.6, along with
the plot of the different definitions of the radius of the obstacle.
In order to satisfy the safety factor constraint, the distance d shall be always
greater than sf = 0.1 m.
Finally, a summary of the parameters used for the sensitivity analysis is reported
in Table 5.4.
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Figure 5.6. Close passage definition in relation to the enlarged radius of the obstacles

Efficiency and quality Safety

Sampled points Sampled categories Path length d ><= sf
(%) (%) (m) (m)

Table 5.4. Summary of the parameters used for the sensitivity analysis
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5.3.2 Results

The sensitivity analysis has been performed in different ways to evaluate the
response of the algorithm. In the following sections, several applications are
presented along with their results.

Different environments

First of all, the system has been tested on variable scenarios, by running 100
simulations on different environments with a predefined number of scientific
targets, categories and obstacles.
Figure 5.7 depicts the results of the simulations concerning quality and efficiency
of the method. Indeed, each point in the graphs represents a run of the algorithm
from the starting to the ending point on a randomly generated environment and
it is positioned in the diagram according to the percentage of sampled targets
(x axis) and the total path length (y axis). Moreover, the percentage of visited
categories is shown by the colour of the point according to the colour-bar on the
right. The plots also display the mean values of percentage of sampled points
(µsp), path length (µpl) and percentage of sampled categories (µcat), ± their
standard deviation.
The point distributions, as could be expected, show a conflicting connection
between the percentage of the sampled points and the total path length. The
simulations in which all scientific targets have been visited, generally, present a
total path length greater than the average. Moreover, most of the points are
approximately located over a sloped line that assigns greater values of path
length as the percentage of visited targets increases. In any case, the mean value
µsp is about 90%, which is a good value. The standard deviation is quite small
and decreases as the number of scientific points present within the area becomes
greater.
Although the targets are rarely all sampled, the rover often takes samples from
all the different reachable categories in the area. Indeed, µcat is always greater
than 95%, with a low value of standard deviation.
Of course, the mean of path length presents higher values as the number of
scientific points in the area increases, while its standard deviation remains almost
constant (about 70 m).
Regarding the safety of the method, Figure 5.8 shows that the percentage of
satisfaction of the safety factor constraint (d > 0.1 m) is always higher than 95%.
Indeed, only in 2 or 3 tests out of 100 the rover happened to pass at a distance
lower than 0.1 m from an obstacle. The percentage of hit obstacles is greater in
the cases in which more scientific targets are present within the area, since the
rover travels longer trajectories and, so, the number of potentially dangerous
close passages is larger.
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(a) (b)

(c)

Figure 5.7. Results of the efficiency and quality parameters: percentage of sampled
points (x axis), path length (y axis) and percentage of sampled categories
(colour-bar). The histogram below displays the distribution of the output
parameter: percentage of sampled points. The simulations have been
performed on 100 randomly generated environments with: (a) 30 sci, 15
cat, 50 obs; (b) 40 sci, 20 cat, 50 obs; (c) 50 sci, 20 cat, 50 obs

(a) (b) (c)

Figure 5.8. Percentage of satisfaction of the safety factor constraint (d > 0.1m) in 100
randomly generated scenarios with respectively (a) 30 sci, 15 cat, 50 obs;
(b) 40 sci, 20 cat, 50 obs; (c) 50 sci, 20 cat, 50 obs
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As shown in Figure 5.9, the average minimum distance µd from the borders of
the obstacles during close passages is about 0.6 m, with a standard deviation
around 0.15 m. In this way, the vehicle usually passes at a good distance (not
too far and not too close) from hazards. Indeed, a too far passage would be a
waste of energy for travelling more than actually needed to avoid an obstacle.

(a) (b)

(c)

Figure 5.9. Close passages distance distribution in 100 randomly generated scenarios
with respectively (a) 30 sci, 15 cat, 50 obs; (b) 40 sci, 20 cat, 50 obs; (c)
50 sci, 20 cat, 50 obs

Figure 5.10 and Figure 5.11 depict the percentage of satisfaction of the safety
factor constraint in harsher environments. In particular, the plots in Figure 5.10
have been obtained for environments in which large NTZ were present. It is
possible to see how the percentage of failures is higher than before, but it still is
less than 5%.
The safety of the algorithm becomes lower as the number of obstacles within
the area gets really high. For instance, in environments with 100 obstacles the
percentage of tests in which the safety factor constraint is not satisfied at least
in one close passage is higher than 5%, as shown in Figure 5.11.
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(a) (b)

Figure 5.10. Percentage of satisfaction of the safety factor constraint (d > 0.1m) in
100 randomly generated scenarios with NTZ and respectively (a) 30 sci,
15 cat, 50 obs; (b) 40 sci, 20 cat, 50 obs

(a) (b) (c)

Figure 5.11. Percentage of satisfaction of the safety factor constraint (d > 0.1m) in
100 randomly generated very harsh environments (100 obstacles) and
respectively (a) 30 sci, 15 cat, 100 obs; (b) 40 sci, 20 cat, 100 obs; (c) 50
sci, 20 cat, 100 obs
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Variability analysis - same environment

In order to evaluate the variability of the output trajectory, the algorithm has
been applied multiple times to the same scenario and the variations on the
sensitivity parameters have been analysed.
Figure 5.12 reports the results obtained from 100 applications of the planning
algorithm to the same environment. It can be noticed that the variability of
the solutions is pretty high, showing more or less the same values of standard
deviations of the case with different environments displayed in Figure 5.7a. This
is, mainly, due to the high number of objective functions that compete against
each other and to the random selection of the best child from the Pareto front.

Figure 5.12. Results of the efficiency and quality parameters of 100 simulations per-
formed on the same environment with: 30 sci, 15 cat, 50 obs

It must be highlighted how this variability is referred to the global path that the
rover has followed once the exploration phase is over and not to the output of
the next best step that is determined by a single run of the algorithm. Indeed,
this output is more stable, as shown in Figure 5.13, in which the green numbers
represent the number of times a certain scientific point has been selected as
next move from the starting point in 100 runs of the algorithm in the displayed
scenario. It can be seen how the same two points have been chosen in the 50%
of the simulations.
What makes the global path so variable is the sum of all these different possibil-
ities that the algorithm could give at each selection of the next step, leading to
a tree of different overall trajectories.
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Figure 5.13. Number of times each scientific point in the map has been selected as
next step from a single run of the MCTS. If a number is not reported,
the target has never been selected

Dependence on initial conditions - start/end switch

Besides, the dependence on the initial conditions has been tested by switching
starting and ending point of a scenario, as a way to invert the time direction of
exploration, that will be performed in the opposite way.
An example is reported in Figure 5.14, in which triangles represent simulations
carried out from the ending to the starting point. It is possible to notice that the
results are more or less similarly distributed, showing that there is not a strong
dependence on initial conditions and on the direction of exploration. Indeed,
the system is not too bonded to the starting position, as the rover can widely
explore the area from the beginning.

Non-absolute dominance

Finally, some attempts to analyse the variability of the sensitivity parameters,
after the definition of the variable δd for the non-absolute dominance, have been
carried out.
In particular, four different tests have been performed, each time considering
the d-th objective function as less important, by defining δd = 1. A comparison
between the resulting mean values of the sensitivity parameters of quality
obtained with different definitions of dominance is displayed Table 5.5.
Figure 5.15a reports the results obtained in the case in which the objective
function f1, connected with the total SVS collected along the path, is considered
to be a less important goal and, so, δ1 has been set to 1. It is possible to notice
how, in this case, the algorithm never reaches 100% of sampled points and how
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Figure 5.14. Results of the efficiency and quality parameters of 100 simulations per-
formed on the same environment with: 30 sci, 15 cat, 50 obs. 50 simu-
lations were carried out start to end (circular points) and the other 50
were run end to start (triangular points)

Dominance µsp µpl µcat

δd = 0→ Absolute dominance 88.2% 481.1 m 97.3%
δ1 = 1→ Total SVS 79.4% 375.9 m 99.9%
δ2 = 1→ Total path length 86.7% 522.7 m 98.1%
δ3 = 1→ N. of visited categories 87.0% 452.7 m 93.7%
δ4 = 1→ Sum of distances from centre 85.9% 395.2 m 98.7%

Table 5.5. Results of simulations carried out with different concepts of dominance for
the different objective functions in randomly generated environments with
30 sci, 15 cat, 50 obs
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(a) δ1 = 1 (b) δ2 = 1

(c) δ3 = 1 (d) δ4 = 1

Figure 5.15. Results of the efficiency and quality parameters of simulations carried out
with different concepts of dominance for the different objective functions
in randomly generated environments with 30 sci, 15 cat, 50 obs

the average path length, that in the respective scenarios of Figure 5.7a was
µpl = 481.1 m has now reduced to 375.9 m. µsp is also considerably smaller as
it is equal to 79.4%. Moreover, the percentage of visited categories is equal to
100% in almost every simulation.
In Figure 5.15b, path length is of lower relevance and, so, the mean value
µpl turns out to be higher. However, an improvement on the other quality
parameters is not actually observed. Only µcat has increased of about 1%.
Figure 5.15c and Figure 5.15d depict the results in the last two cases.
More studies may be carried out in the future to determine proper values of
δd to obtain the preferred solution depending on the hierarchy of the different
objective functions.
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Conclusions and future
developments

6.1 Conclusions

The aim of this work was to study a method capable of performing a multi-
objective global and local path planning for a multi-agent system composed
by a planetary exploration rover and a helicopter. The efforts have been, then,
focused on the definition of the planning system for the ground vehicle only,
since it has been decided to employ the aerial vehicle as a scout to map the area
of interest before the exploration of the rover.
The multi-objective Pareto Monte Carlo Tree Search designed for global path
planning has been proven to be a good system, that is able to manage strongly
competing objectives such as maximisation of scientific return of the mission
and optimisation of the path. The examination of the parameters defined in the
context of the sensitivity analysis has shown that the algorithm generates positive
results in terms of efficiency and quality and that, with the use of particular tools
such as the non-absolute dominance, the output could be modified according
to the preferences. A drawback of the method is related to the not negligible
variability of the global trajectory between different runs of the algorithm. On
the other hand, the system does not present a marked dependence on the initial
conditions.
Once again, the trajectory output is not globally maximised for two main reasons.
First of all, the multi-objectivity implies that there can not be a single best path.
Indeed, since the objectives compete with each other, the output trajectories
will be good in relation to some goals and worst for others and, so, they will
be placed on a Pareto front. Secondly, the MCTS method itself is not a global
optimiser, but it tries to determine the most promising next move that could be
able to maximise the reward value from the point in which the search starts up
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to the end.
The local planning problem has been addressed with a step by step artificial
potential fields method, which is very fast and light and able to navigate the
rover in an only partially known environment. Its problems related to the
possible formation of local minima has been solved with the definition of an
asymmetric swirling potential field, that is generated with the addition of a
tangential vortex field to the Gaussian repulsive one defined for obstacles.
Eventually, it can be stated that the designed system could be an interesting
solution for planetary rovers, also because of the low requirements on compu-
tational effort and memory. Indeed, both MCTS and artificial potential fields
are computationally light methods, which is an important aspect given the low
specifications of on-board computers of planetary rovers. Moreover, the system
is very fast and could be used for online planning.

6.2 Future developments

Some future developments may be implemented on different aspects of the
method both concerning the Monte Carlo Tree Search and the artificial potential
fields part. In the following sections, some ideas are presented.

New objective functions

A very interesting improvement to the studied method is connected with the
simplicity of adding more objective functions that could consider more aspects
of the exploration area.
Indeed, the idea of multi-mode navigation, explained in [30], could be exploited
by defining different zones based on the terrain difficulty. A new objective might
be to minimise the part of the trajectory that passes in the most hazardous
areas in order to reduce risks.
Moreover, the tridimensionality of the map could be introduced by defining an
objective function that counts the meters of climb and descent the rover has to
make to follow a certain trajectory.

Pareto front evaluation

The Pareto front evaluation with the Upper Confidence Bound is not the only
possibility that has been proposed for multi-objective problems. The article in
[31] summarises different methods of reinforcement learning used in this field
and the authors in [13] apply them to the multi-objective MCTS. However, as
was pointed out in [12], this system is computationally prohibitive and could
not be used for online planning frameworks.
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Nevertheless, in the future it may be interesting to better investigate and improve
this option as well, in order to have a less random selection of the most promising
child from the Pareto front.

Obstacles with non circular shapes

Finally, another possible development is related to the introduction of non
circular obstacles in the map. This represents a challenge in terms of the
definition of the repulsive potential fields connected with this objects. Indeed, if
a non circular obstacle is to be modelled, it is often not possible to encircle it in
a spherical contour without a significant reduction of the workspace.
A possible solution may be to use the Force Inducing an Artificial Repulsion from
the Surface (FIRAS) function, as proposed in [32], that can model polygonal
shaped obstacles very well in their vicinity. However, it can be responsible for
the generation of false local minima far from the obstacle.
In order to avoid this problem, the isopotential contours should assume a circular
shape far from the obstacle, while following the obstacle geometry close to it
[29]. With this idea, the study in [33] proposes a potential field based on ellipses,
which contours are elliptical near the obstacle and circular far from it, thus
preventing the formation of local minima at large distances. The drawback of
this system is that only obstacles that have one large dominating dimension can
be well modelled.
This method has then been improved in [34], where a superquadratic formulation,
that generalises the elliptical method to other shapes of objects, is introduced.
Therefore, this last solution may be added to this thesis work, even though
another option that does not need new concepts could be evaluated. Indeed,
a differently shaped obstacle may be modelled as a fusion of smaller circular
hazards properly placed on its borders forming a sort of wall. Of course, this
would be a less elegant solution, but could be considered as well for its simplicity.
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