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Abstract

This thesis is about the development of a new numerical method for the analysis of com-
posite shells. The present work is based on Reissner Mixed Variational Theorem (RMVT),
the Sublaminate Generalized Unified Formulation (S-GUF), and the Ritz approximation.

The present work, in order to investigate a more efficient way to compute transverse
stresses (σxz, σyz, σzz), is based upon RMVT, which allows imposing their continuity a
priori. This is a great advantage compared to the results that would be obtained using a
conventional displacement-based approach.

In order to enable computing both a global and local response, depending on the user’s
needs, the S-GUF framework was adopted. The Generalized Unified Formulation (GUF)
enables to develop within a single code the possibility to use a potentially infinite number
of orders of approximation, which can also be different for each variable. In addition to the
GUF, the concept of Sublaminate was utilized: it allows to divide the domain along the
thickness in sub-regions (sublaminates), and it is then possible to apply different formula-
tions in each of these domains. Since the curvature effects of shells depend strictly on the
radius-over-thickness ratio, the flexibility of S-GUF is helpful in order to correctly represent
these effects only when the particular case requires it.

The governing equations obtained applying S-GUF to RMVT were solved in a weak
form using the Ritz approximation. This choice was made to allow a quicker computational
time typical of this method.

Comparing the results obtainable through the present formulation and solutions avail-
able in the literature it was possible to validate the results and therefore the formulation
itself.

Finally, numerical and analytical considerations about the method here developed were
drawn, such as its numerical stability, how to tune its parameters and which models result
more correct from an analytical standpoint.

X



Sommario

Questa tesi tratta lo sviluppo di un nuovo metodo numerico per l’analisi di strutture a
guscio costituite da materiali compositi. Il presente lavoro si basa sul teorema variazionale
misto di Reissner (RMVT), i concetti di sublaminato e formulazione generale unificata
(S-GUF), e l’approssimazione di Ritz.

Il presente lavoro, al fine di investigare un modo più efficiente di calcolare gli sforzi
trasversali (σxz, σyz, σzz), è basata sul RMVT, che permette di imporre a priori la loro
continuità. Ciò è un grande vantaggio rispetto ai risultati che sarebbero ottenuti usando
un approccio convenzionale basato sugli spostamenti.

Per permettere il calcolo sia di una risposta globale che locale, a seconda delle necessità
dell’utente, è stato utilizzato l’approccio S-GUF. La formulazione unificata generalizzata
(GUF) permette di sviluppare all’interno di un singolo codice la possibilità di utilizzare un
numero potenzialmente infinito di ordini di approssimazione, che possono differire anche per
ciascuna variabile. In aggiunta a GUF, anche il concetto di sublaminato è stato adottato:
permette di definire sublaminati all’interno della piastra o guscio, nei quali è poi possibile
utilizzare differenti formulazioni. Dato che gli effetti di curvatura dipendono strettamente
dal rapporto raggio di curvatura su spessore, la flessibilità di S-GUF è utile nel presente
contesto per permettere di rappresentare correttamente tali effetti solo quando necessario.

Le equazioni di governo ottenute attraverso l’applicazione di S-GUF al RMVT sono
state risolte in forma debole utilizzando l’approssimazione di Ritz. Questa scelta è stata
fatta in modo da consentire un minore costo computazionale, tipico di tale approssimazione.

In seguito, confrontando i risultati ottenuti tramite la presente formulazione e le soluzioni
disponibili in letteratura è stato possibile validare i risultati, e quindi la formulazione stessa.

Infine, considerazioni numeriche ed analitiche riguardo al metodo sono state tratte: la
sua stabilità numerica, come fissarne i parametri e quali modelli risultino corretti da un
punto di vista analitico.
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Chapter 1

Introduction

1.1 Overview

The use of composite materials in the aerospace field has increased in the past decades and
they are being adopted for load-bearing parts of the structures. The interest in these mate-
rials by the aerospace industry is driven by their incredible physical properties such as their
stiffness-over-weight ratio, their fatigue and corrosion resistance, and so on. Furthermore,
in addition to their intrinsic peculiarities, these materials can be easily tailored since they
are composed of different laminae sequences. By designing properly the stacking sequence
different results can be obtained. The properties that can be modified in this way are not
only the mechanical ones but also the thermal and electrical. This is an advantage for all
those applications in which high performances are leading the design process and costs are
not limiting the exploitation of the above-mentioned features.

As a consequence, deriving from the increased usage of composite materials for safety-
related functions, it is necessary to develop appropriate instruments for the analysis of their
response and behavior. Therefore, these tools have to take into account the high degree
of anisotropy, the high shear deformability and all additional complexities such as the fact
that often aerospace structures are curved.

Due to the reasons and needs outlined above, in time a vast literature was developed
about theories and numerical methods particularly suitable for the analysis of composite
materials. In prospective of the present work, relevant examples are a series of works
based upon the sublaminate generalized unified formulation and the Ritz approximation.
In the work by D’Ottavio et al. [1], a variable-kinematic model in combination with the
concept of sublaminate was applied to the principle of virtual displacements. Particularly,
this work is based upon the variable-kinematic theory devised by Carrera, later generalized
by Demasi, and the Ritz approximation, utilized to solve in a weak form the governing
equations. This method was firstly applied to the bending analysis of composite structures
[1] - even to non-uniform thickness-wise boundary conditions problems [2] -, and later used
to study the free-vibration and buckling analysis of highly anisotropic plates [3, 4], and
the dynamic response of viscoelastic structures [5]. The formulation was also adopted to
study thermal loads, especially the thermal buckling response of composite structures by
Vescovini et al. [6, 7], and piezoelectric composite plates [8]. The sublaminate generalized
unified formulation and the Ritz approximation formulation was later extended to cylindrical



2 Introduction

geometries by Gorgeri et al. [9, 10].
It is also worth mentioning that important developments were achieved in the appli-

cation of Carrera’s unified formulation to meshless techniques. Relevant studies based on
these frameworks are the work by A.J.M. Ferreira et al. [11, 12, 13] where a radial basis
functions was used in the context of Carrera’s unified formulation for bending, free-vibration
and buckling analysis, and the work by M. Cinefra [14] where a Mixed Interpolation of Ten-
sorial Components (MITC) approach was used. The MITC technique was also extended to
the FEM approach [15].

Significant work about the adoption of variable-kinematics models was also made by
Demasi, who applied a variable-kinematic model to the Reissner mixed variational theorem
[16], and then used a Navier solution to solve the equations in a strong form. Studies about
Reissner mixed variational theorem were also conducted by D’Ottavio, who applied to it
the sublaminate generalized unified formulation [17]; even in this latter work the Navier
solution was adopted.

For further reference, it is reported that the sublaminate generalized unified formulation
was also applied within the FEM approach. The interested reader is invited to read the
works by D’Ottavio et al. [18, 19, 20].

1.2 Objective of the thesis

The present work has the objective of developing the Reissner Mixed Variational Theorem
(RMVT) in the framework of the Sublaminate Generalized Unified Formulation (S-GUF)
and adopting the Ritz approximation to solve the governing equations. Subsequently the
derivation of the equations, a code for the analysis and the study of the response of com-
posite shell structures was developed.

One of the main features of the numerical tool here presented is its capability of being
flexible and adaptable to the structures to study thanks to the variable-kinematic model
implemented. This theoretical framework allows implementing within one single code the
possibility to use any kinematic theory, according to what is requested by the user. By
utilizing the Sublaminate concept, it is possible to adopt different kinematic theories along
the thickness of the structure.

Another feature of the present formulation that makes it particularly adapted for the
analysis of composite materials is the possibility to impose a priori the continuity of trans-
verse stresses between two different plies, enabling to draw considerations about the delam-
ination issue. This characteristic of the program is enabled by the fact that the governing
equations are based upon RMVT.

The code here developed was validated by comparing its results with these available in
the literature.

Finally, the work aims at investigating the stability of the numerical method and the
correct choice of the parameters involved.
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1.3 Structure of the thesis

The thesis is structured as follows:

• In Chapter 2 the theoretical framework is presented. The three main pillars are:
shells, RMVT and the S-GUF.

• In Chapter 3 the Ritz S-GUF RMVT governing equations are derived for doubly-
curved geometries with constant radii of curvature.

• In Chapter 4 the numerical method is validated by comparing the results with those
available in the literature. Static bending and free-vibration analysis are considered
for plate, open cylinder and closed cylinder geometries. Furthermore, one challenging
test case is reported were the present theory based on RMVT is compared with a
similar formulation based on the PVD.

• In Chapter 5 considerations about the numerical method are drawn. In particular, a
study is conducted to provide guidelines regarding the definition of a correct model
in terms of Ritz approximation and orders of the model.

• In Chapter 6 the main achievements of the thesis are summarized and suggestions for
future research directions in this field are given.



Chapter 2

Theoretical framework

The theoretical framework is presented is this Chapter. Firstly, a brief overview on fun-
damental equations of shell kinematics is provided. Then the Reissner Mixed Variational
Principle is presented. Finally, the underlying features of the variable-kinematic formula-
tion, the Sublaminate-Generalized Unified Formulation, are introduced.

2.1 Fundamental equations of shell kinematics

This Section summarizes the basic equations of shell theory. Specifically, the case of doubly-
curved shells with constant radii of curvature is presented. Starting from this general
framework, the case of cylindrical geometries and plates is also briefly discussed, given the
importance of these structures in the context of space applications.

The main features of a doubly-curved shell geometry with constant radii of curvature
are reported in Figure 2.1.

Figure 2.1: Doubly-curved shell geometry.
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Referring to Figure 2.1, x and y are two curvilinear orthogonal coordinates on the reference
surface Ω; the axis z denotes the thickness coordinate in the direction normal to Ω; a and
b are the arc length in the x and y directions, respectively, while h is the total thickness.
Rx and Ry are the radii of curvature in the x and y directions, respectively.

The following relations hold for an infinitesimal area (dΩ) and an infinitesimal volume
(dV ):

dΩ =HxHydxdy

dV =HxHydxdydz
(2.1)

where Hx = A(1 + z
Rx

) and Hy = B(1 + z
Ry

) take into account the curvature effects. The
parameters A and B are the Lamé parameters, whose values are different from one whenever
the curvature is not constant. In the case of constant shells, which are focus of the present
investigation, A = 1 and B = 1.

The strain-displacement relation can be written in matrix form as:

εΩ = (DΩ + AΩ)u (2.2)

εn = (Dn + Dz + λDAn)u (2.3)

where

DΩ =


∂

Hx ∂x
0 0

0 ∂
Hy ∂y

0
∂

Hy ∂y
∂

Hx ∂x
0

 Dn =

0 0 ∂
Hy ∂y

0 0 ∂
Hx ∂x

0 0 0

 Dz =

 0 ∂
∂z 0

∂
∂z 0 0

0 0 ∂
∂z

 (2.4)

AΩ =

0 0 1
HxRx

0 0 1
HyRy

0 0 0

 An =

 0 − 1
HyRy

0

− 1
HxRx

0 0

0 0 0

 (2.5)

The trace λD can be set to 0 or 1, depending on the shell theory to be considered. When
λD = 0, an approximation similar to the Donnell-type shallow shell theory is introduced
[21]; when λD = 1 the curvature effects are entirely retained. In this work, λD is always
taken equal to 1 unless otherwise stated.

The stain-displacement relation for cylindrical and plate geometries can be easily ob-
tained starting from the one for doubly-curved geometries. For cylindrical geometries it
suffices to impose one of the two radii of curvature equal to infinity. This also implies that
either Hx = 1 or Hy = 1. For plate geometries both radii or curvature have to be imposed
equal to infinite, and, therefore, Hx = 1 or Hy = 1.

Finally, the shell can be considered thin or thick depending on the ratios R/h and a/h
(and b/h). Usually if either the radius or the length are one order of magnitude larger than
the thickness it is acceptable to define the shell thin.
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2.2 Reissner Mixed Variational Principle

The solution of the structural problem involves the ability to determine the displacement
field as well as the strain and the stress fields. For this purpose, different variational strate-
gies have been proposed in the years, involving one-, two- or three-field variational princi-
ples. For instance, the well-know Principle of Virtual Displacements (PVD) considers the
displacement field as unknown of the problem. Strains are derived via strain-displacement
relations and stresses via constitutive relations. Other principles involve the introduction
of two fields (Hellinger-Reissner) or three fields (Hu-Washizu) as unknowns. In this thesis,
focus is given to the mixed variational principle proposed by Reissner in 1984 [22], which
is of particular interest for the study of composite structures: the so-called Reissner Mixed
Variational Theorem (RMVT). The unknowns are the displacement field the transverse
stress field. Strains are derived via strain-displacement relations and in-plane stresses via
constitutive relations. The main advantage of this principle consists in the possibility of
introducing assumptions about the transverse stress field. In particular, it allows impos-
ing a priori their continuity at the interface of plies, fulfilling the interlayer equilibrium.
RMVT allows thus to satisfy all the so-called C0

z requirements a priori : compatibility of
the in-plane and out-of-plane displacements at each interface, and equilibrium conditions at
each interface for the transverse shear stress components and the transverse normal stress
component. RMVT is particularly interesting when dealing with composite structures,
where accurate predictions of the interlaminar stresses are crucial to predict the onset of
the delamination phenomena. A consideration that justifies the choice to introduce this
approximation only for transverse stresses and not for every stress variable is the difference
in the order of magnitude between the primary bending and stretching stresses and the
transverse stresses. Transverse stresses have a lower order of magnitude with respect to
primary bending and stretching stresses, therefore it is allowable to make "relatively crude
approximative assumptions [22]" about them. Furthermore, one important benefit deriving
from RMVT is that it automatically yields the correct shear correction factors.

A first possible derivation of RMVT consists in rephrasing the PVD by introducing the
transverse stresses (σxz, σyz, σzz) as Lagrange multipliers. For clarity, the PVD is reported
below:

δ

∫ ∫ ∫
u(εxx, εyy, γxy, γxz, γyz, εzz)dx1dx2dx3 = 0 (2.6)

where u is the specific strain energy, and εxx, εyy, γxy, γxz, γyz, εzz are the strains. It is
recalled here that, under the assumption of infinitesimal displacements, the geometric rela-
tions between strains and displacements are:

εxx =
∂ux
∂x

εyy =
∂uy
∂y

εzz =
∂uz
∂z

γxy =
∂ux
∂y

+
∂uy
∂x

γxz =
∂ux
∂z

+
∂uz
∂x

γyz =
∂uy
∂z

+
∂uz
∂y

(2.7)

After introducing the Lagrange multipliers, Eq.(2.6) becomes:

δ

∫ ∫ ∫
u(εxx, εyy, γxy, γxz, γyz, εzz) + σxz

(
∂ux
∂z

+
∂uz
∂x
− γxz

)
+ σyz

(
∂uy
∂z

+
∂uz
∂y
− γyz

)
+ σzz

(
∂uz
∂z
− εzz

)
dx1dx2dx3 = 0 (2.8)
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Splitting then the energy function u into two parts:

u(εxx, εyy, γxy, γxz, γyz, εzz) = u0(εxx, εyy, γxy) + u1(εxx, εyy, γxy, γxz, γyz, εzz) (2.9)

where: u0(εxx, εyy, γxy) = u(εxx, εyy, γxy, 0, 0, 0) is the energy when only in-plane strains
are present. Since the material is assumed to be hyperelastic, it is possible to compute the
transverse stresses as:

σxz =
∂u

∂γxz
=

∂u1

∂γxz

σyz =
∂u

∂γyz
=

∂u1

∂γyz

σzz =
∂u

∂γzz
=

∂u1

∂γzz

(2.10)

Using these three equations it is possible to determine the transverse strains as func-
tion of the transverse stresses (σn = {σxz, σyz, σzz}T ) and of the in-plane strains (εΩ =

{εxx, εyy, γxy}T ):

γxz = γxz(σn, εΩ)

γyz = γyz(σn, εΩ)

εzz = εzz(σn, εΩ)

(2.11)

where the subscript Ω refers to in-plane quantities and n to out-of-plane quantities.
Through a partial Legendre transformation it is possible to define a complementary

energy function w as a function only of σn and εΩ. Specifically:

w(σn, εΩ) = σzzεzz+σxzγxz+σyzγyz−u1(εxx, εyy, γxy, γxz(σn, εΩ), γyz(σn, εΩ), εzz(σn, εΩ))

(2.12)
It follows as usual: εzz = ∂w

∂σzz
, γxz = ∂w

∂σxz
, γyz = ∂w

∂σyz
.

Substituting then u1 from Eq.(2.12) into Eq.(2.9) it leads to:

u(σn, εΩ) = u0(εΩ)+σzzεzz(σn, εΩ)+σxzγxz(σn, εΩ)+σyzγyz(σn, εΩ)−w(σn, εΩ) (2.13)

Using then this new expression of the specific strain energy, which is function only of in-plane
strains and of transverse stresses, in Eq.(2.8) the mixed variational theorem is obtained as:

δ

∫ ∫ ∫
u0(εΩ)+

∂uz
∂z

σzz+

(
∂ux
∂z

+
∂uz
∂x

)
σxz+

(
∂uy
∂z

+
∂uz
∂y

)
σyz−w(σn, εΩ) dx1dx2dx3 = 0

(2.14)
with arbitrary δux, δuy, δuz, δσxz, δσyz, δσzz.
This derivation of RMVT, since builds upon the PVD, highlights the fact that this principle
is indeed an augmentation of the PVD. Therefore, considering the two unknown fields, the
main conditions to be fulfilled are the essential conditions of the displacement field and not
the natural conditions of the transverse stress field.

To further clarify the variational principle, it is useful to present its derivation under a
different perspective. In particular, a second possible derivation of RMVT was proposed
by Reissner in 1986 [23]. This derivation starts from the mixed variational principle of
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Hellinger-Reissner which considers all displacements and all stresses as independent vari-
ables. Hellinger-Reissner variational principle for a general volume in absence of body forces
and free boundaries:

δ

∫ ∫ ∫
w(σxx, σyy, σzz, σxy, σxz, σyz)− σxxεxx − σyyεyy

− σxyγxy − σxzγxz − σyzγyz − σzzεzz dx1dx2dx3 = 0 (2.15)

where w is a given function and the variations of δσxx, δσyy, δσxy, δσxz, δσyz, δσzz, δux,
δuy, δuz are arbitrary.

Considering now the three constitutive equations coming from the hyperelasticity of the
material:

εxx =
∂w

∂σxx
εyy =

∂w

∂σyy
γxy =

∂w

∂σxy
(2.16)

it is possible to use them to determine σxx, σyy and σxy as:

σxx = σxx(σn, εΩ) σyy = σyy(σn, εΩ) σxy = σxy(σn, εΩ) (2.17)

Using then the new expressions of σxx, σyy and σxy it is possible to define a semi-complementary
energy density v which depends only on σn and εΩ:

v(σn, εΩ) = εxxσxx(σn, εΩ) + εyyσyy(σn, εΩ) + γxyσxy(σn, εΩ)

− w(σn, σxx(σn, εΩ), σyy(σn, εΩ), σxy(σn, εΩ)) (2.18)

The expression of Eq.(2.18) implies the following subset of constitutive equations:

σxx =
∂v

∂εxx
σyy =

∂v

∂εyy
σxy =

∂v

∂γxy
(2.19)

Then substituting the expression of w from Eq.(2.18) into Eq.(2.15) the desired variational
equation is obtained:

δ

∫ ∫ ∫
v(σn, εΩ) + σxzγxz + σyzγyz + σzzεzz dx1dx2dx3 = 0 (2.20)

Finally, to confirm the correctness of Eq.(2.20), it must be verified that through the intro-
duction of the constraint equations (2.19) and the geometric relations (2.7), it indeed gives
three equations of equilibrium and three constitutive equations. The three constitutive
equations give the transverse stains as function of the in-plane strains and the transverse
stresses. We can deduce this beginning from Eq.(2.20):∫ ∫ ∫

∂v

∂εxx
δεxx +

∂v

∂εyy
δεyy +

∂v

∂γxy
δγxy +

∂v

∂σxz
δσxz +

∂v

∂σyz
δσyz +

∂v

∂σzz
δσzz

+σxzδγxz + σyzδγyz + σzzδεzz + γxzδσxz + γyzδσyz + εzzδσzz dx1dx2dx3 = 0

(2.21)

Using Eq.(2.19) it follows that:∫ ∫ ∫
σxxδεxx + σyyδεyy + σxyδεxy + σxzδγxz + σyzδγyz + σzzδεzz

+

(
∂v

∂σxz
+ γxz

)
δσxz +

(
∂v

∂σyz
+ γyz

)
δσyz +

(
∂v

∂σzz
+ εzz

)
δσzz dx1dx2dx3 = 0

(2.22)
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Using then the arbitrariness of the virtual variations it follows that the three constitutive
equations are:

γxz = −∂v(σn, εΩ)

∂σxz
γyz = −∂v(σn, εΩ)

∂σyz
εzz = −∂v(σn, εΩ)

∂σzz
(2.23)

while the three equilibrium equations can be obtained upon expressing εxx, εyy, γxy, γxz,
γyz and εzz through their geometric relations, and by collecting the virtual quantities δux,
δuy and δuz.

RMVT can be rewritten in a more practical form by specifying the volume as V =

Ω × [−h
2 ≤ z ≤ h

2 ] and by making explicit the energy functions in terms of strains and
stresses; loads of inertia and general volume forces are considered:

∫
Ω

∫ h
2

−h
2

δεTΩGσΩH + δεTnGσnM + δσTnM (εnG − εnH) dzdΩ =

−
∫

Ω

∫ h
2

−h
2

δuTρü dzdΩ +

∫
Ω

∫ h
2

−h
2

δuT f dzdΩ (2.24)

where: subscript G identifies the strains evaluated referring to the strain-displacement
relations; subscript H denotes strains and stresses obtained via the mixed form of Hooke’s
law (see Subsection 2.2.1); subscript M denotes the transverse stresses modeled with an
axiomatic approach. Subscript Ω stands for in-plane quantities, subscript n for out-of-plane
quantities. In particular, the vectors above collect the following quantities:

εΩ =


εxx
εyy
εxy

 εn =


γyz
γxz
εzz

 σΩ =


σxx
σyy
σxy

 σn =


σyz
σxz
σzz

 (2.25)

and

u =


ux
uy
uz

 f =


fx
fy
fz

 (2.26)

2.2.1 Mixed form of Hooke’s law

When employing RMVT a constitutive relation expressing in-plane stresses and transverse
strains as a function of in-plane strains and of transverse stresses is needed (see Eqs.(2.11),
(2.17) and (2.23)). For this purpose, the Mixed Form of Hooke’s Law (MFHL) [16] is
introduced. The derivation of the MFHL is straightforward, as outlined next, starting from
a compact form of the Classical Form of Hooke’s Law (CFHL).

Beginning from the CFHL expressed in a laminate frame of reference (further consider-
ations can be found in Appendix A) let’s split the in-plane and out-of-plane components:{

σΩ

σn

}
=

[
C̃ΩΩ C̃Ωn

C̃nΩ C̃nn

] {
εΩ

εn

}
(2.27)
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where the stress and strain components have been collected as follows:

σΩ = [σxx σyy τxy]
T σn = [τyz τxz σzz]

T (2.28)

εΩ = [εxx εyy γxy]
T εn = [γyz γxz εzz]

T (2.29)

From the second relationship of Eq.(2.27), it is possible to derive εn in terms of σn and εΩ:

εn = (C̃nn)−1σn − (C̃nn)−1C̃nΩεΩ (2.30)

Substituting back this expression of εn into the first one of Eq.(2.27), it is obtained:

σΩ = [C̃ΩΩ − C̃Ωn(C̃nn)−1C̃nΩ]εΩ + C̃Ωn(C̃nn)−1σn (2.31)

Therefore, from Eq.(2.31) and Eq.(2.30), the MFHL is obtained as:{
σΩ

εn

}
=

[
CΩΩ CΩn

CnΩ Cnn

] {
εΩ

σn

}
(2.32)

where:

CΩΩ = C̃ΩΩ − C̃Ωn(C̃nn)−1C̃nΩ (2.33)

CΩn = C̃Ωn(C̃nn)−1 (2.34)

CnΩ = −(C̃nn)−1C̃nΩ (2.35)

Cnn = (C̃Ωn)−1 (2.36)

or explicitly:

CΩΩ =



C̃11 −
(C̃13)2

C̃33

C̃12 −
C̃13

C̃33

C̃23 C̃16 −
C̃13

C̃33

C̃36

C̃12 −
C̃13

C̃33

C̃23 C̃22 −
(C̃23)2

C̃33

C̃26 −
C̃23

C̃33

C̃36

C̃16 −
C̃13

C̃33

C̃36 C̃26 −
C̃23

C̃33

C̃36 C̃66 −
(C̃36)2

C̃33


CΩn =


0 0

C̃13

C̃33

0 0
C̃23

C̃33

0 0
C̃36

C̃33



CnΩ =


0 0 0

0 0 0

− C̃13

C̃33

− C̃23

C̃33

− C̃36

C̃33

 Cnn =



C̃55

C̃55C̃44 − (C̃45)2
− C̃45

C̃55C̃44 − (C̃45)2
0

− C̃45

C̃55C̃44 − (C̃45)2

C̃44

C̃55C̃44 − (C̃45)2
0

0 0
1

C̃33


(2.37)

The constitutive law of Eq.(2.32) can be rewritten in extended from as:

σxx
σyy
σxy
γyz
γxz
εzz


=



C11 C12 C16 0 0 C13

C12 C22 C26 0 0 C23

C16 C26 C66 0 0 C36

0 0 0 C44 C45 0

0 0 0 C54 C55 0

−C13 −C23 −C36 0 0 C33





εxx
εyy
γxy
σyz
σxz
σzz


(2.38)

where the elastic coefficients Cik are non-homogeneous quantities given the semi-inverse
nature of the constitutive law (they are not to be confused with the coefficients in the ply
frame of reference adopted in Appendix A).
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2.3 Variable-kinematic formulation

The present work has the objective of deriving a numerical tool that enables to study a
broad class of structures: thin or thick shells, any kind of lamination sequence, sandwich
materials with one or more cores, and so on. The idea is to allow the study of these
structures while minimizing the DOF, and thus the computational cost.

In order to achieve this goal, the adoption of a variable-kinematic model is proposed.
This formulation allows the user to specify the kinematic formulation to be used in the
analysis. For instance, if a thick shell is to be studied, a high-order model is required. On
the other hand, if a thin plate is the object of the study and a global response is sufficient, a
low-order model would suffice, allowing the problem to be solved with less kinematic-related
degrees of freedom.

Furthermore, the inherent heterogeneity of many composite structures along the thick-
ness direction - this is particularly true in the case of sandwich configurations - requires
more refined models only in particular areas, while the implementation of these same mod-
els in other regions would entail a waste of DOF. The sublaminate technique was therefore
implemented. It allows to divide the structure into sub-regions along the thickness and to
use for each one of them the proper model.

The present section introduces the classical Equivalent Single Layer (ESL) and Layer-
Wise (LW) formulations, and the sublaminate technique. Then the S-GUF formulation,
which is capable of embedding both ESL and LW theories at sublaminate level, is presented.

2.3.1 Equivalent single-layer models

The majority of approaches developed in the past decades are based on the reduction
of the 3-D problem to an equivalent 2-D problem. This simplification is made possible
by introducing a reference 2-D surface of the structure and adopting ad-hoc kinematic
assumptions. This approach is known as axiomatic displacement-based approach. Early
examples of these theories are the Kirchhoff plate theory [24] and Mindlin plate theory [25],
for plate geometries, and Kirchhoff-Love theory [26, 27], for shell geometries. These theories
were first applied to single-layer structures and subsequently to multi-layer plates, where
they describe the behavior of the structure as an equivalent single-ply (from here the name
ESL).

One important remark about 2-D models is that their effectiveness is strictly related
to the thickness-to-length ratio (h/a) and the shear deformability. Thin plates (h/a � 1)
have lower 3-D effects and, therefore, even if a low-order 2-D model is employed for their
description only minor errors are introduced. For a given geometry, the effects of shear
deformability - or, to a more general extent, 3-D effects - become larger for decreasing values
of the shear moduli. This aspect is important when considering composite materials, which
are commonly characterized by a lower shear moduli with respect to isotropic materials.
Another aspect to be considered is the radius-over-thickness ratio (R/h). If the ratio R/h
is high then some 3-D effects can be discarded, introducing the Donnell approximation for
shallow shells [28], while if the ratio R/h is low a more rich description is required in order
to deal with a so-called deep shell.

When 3-D effects must be taken into account, due to one of the reasons stated above,
a finer kinematic description must be adopted. This has the consequence of expanding
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the variables through DOF not associated to physical quantities. Theories of this kind are
the Higher-order Shear Deformation Theories (HSDT) and Higher-order Shear and Normal
Deformation Theories (HSNDT). An example of HSNDT is given by:

ux(x, y, z, t) = ux0 + zux1 + z2ux2 + z3ux3

uy(x, y, z, t) = uy0 + zuy1 + z2uy2 + z3uy3

uz(x, y, z, t) = uz0 + zuz1 + z2uz2

(2.39)

The idea of modelling the kinematic variables as an expansion of terms allows to derive a
potentially infinite number of theories. A formal expression valid for different HSNDT can
be obtained using Einstein notation for repeated indexes:

ux(x, y, z, t) = F xαux (z)uxαux (x, y, t) αux = 0, 1, ..., Nαux

uy(x, y, z, t) = F yαuy (z)uyαuy (x, y, t) αuy = 0, 1, ..., Nαuy

uz(x, y, z, t) = F zαuz (z)uzαuz (x, y, t) αuz = 0, 1, ..., Nαuz

(2.40)

where Nαux , Nαuy , Nαuz are the orders of expansion for ux, uy and uz respectively, and the
functions along z are named F for thickness functions. In general, there is no need to use
different kinds of thickness functions depending on the variable, therefore: F xαux = Fαux ,
F yαuy = Fαuy , F

z
αuz

= Fαuz .
One important modification of ESL theories came from Murakami [29]. Aiming at

describing the piece-wise continuous displacement field typical of composite materials,
Murakami proposed to augment the ESL theories with the Murakami Zig-Zag Function
(MZZF). These functions can be effective to improve the accuracy of the ESL model by
requiring one single additional DOF. The MZZF can be expressed as:

FZZ = (−1)pξp (2.41)

where p is a generic ply and zp is the thickness coordinate of a ply respect to its own frame
of reference (Figure 2.5). ξp =

zp
hp

is the nondimensional thickness coordinate of the pth ply.
A general formulation of a model including these functions is:
ux(x, y, z, t) = Fαux (z)uxαux (x, y, t) + FZZ(z)uxZZ(x, y, t) αux = 0, 1, ..., Nαux

uy(x, y, z, t) = Fαuy (z)uyαuy (x, y, t) + FZZ(z)uyZZ(x, y, t) αuy = 0, 1, ..., Nαuy

uz(x, y, z, t) = Fαuz (z)uzαuz (x, y, t) + FZZ(z)uzZZ(x, y, t) αuz = 0, 1, ..., Nαuz

(2.42)

It is important to notice that the MZZF can also be added to an arbitrary sub-set of
variables and not necessarily to all of them.

One final remark about the MZZF is the fact that its employment is mainly justified in
periodic laminates where indeed a peculiar zig-zag path occurs for displacements [30].

2.3.2 Layerwise models

The ESL theories presented earlier are particularly convenient when the structure is thin
or moderately thick because they allow a good global description with low numerical effort.
On the other hand, LayerWise models (LW) assume a variable field satisfying only C0-
continuity through the thickness and apply to every single ply in the layer the specified
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kinematic description. This latter model has a number of unknowns that depends on the
number of plies. It allows an improved description of the structure compared to an ESL
model since the kinematic model is defined ply-by-ply. However, the number of theory-
related DOF becomes larger with respect to an ESL model. Furthermore, the number of
DOF depends on the number of plies.

A general expression for a LW theory is:
upx(x, y, zp, t) = F pαux (zp)u

p
xαux (x, y, t) αux = 0, 1, ..., Nαux

upy(x, y, zp, t) = F pαuy (zp)u
p
yαuy (x, y, t) αuy = 0, 1, ..., Nαuy

upz(x, y, zp, t) = F pαuz (zp)u
p
zαuz (x, y, t) αuz = 0, 1, ..., Nαuz

(2.43)

Since in general there is no need to select different kinds of thickness functions for different
plies: F pαux = F pαuy = F pαuz = Fαuz .

Figure 2.2 shows a comparison between two hypothetical descriptions, obtainable through
the two different models.

Figure 2.2: Comparison between ESL and LW models.

2.3.3 Sublaminate Generalized Unified Formulation

The current work is based on a variable-kinematic formulation, meaning that the orders
of expansion can be set by the user depending on the structure to study. In particular,
the approach used is the Sublaminate Generalized Unified Formulation (S-GUF). This ap-
proach inherits the features of the unified formulation due to Carrera [31] - Carrera’s Unified
Formulation (CUF) - and its successive extension by Demasi [32] - Generalized Unified For-
mulation (GUF). A peculiar aspect regards the introduction of the so-called sublaminates,
i.e. arbitrary clusters of plies, leading to the Sublaminate Generalized Unified Formulation
(S-GUF).

CUF introduced a compact notation that allows to express 2-D ESL and LW theories
within the same framework. Using Einstein notation for repeated indexes:
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ux(x, y, z, t) = Fαux (z)uxαux (x, y, t) αux = 0, 1, ..., N

uy(x, y, z, t) = Fαuy (z)uyαuy (x, y, t) αuy = 0, 1, ..., N

uz(x, y, z, t) = Fαuz (z)uzαuz (x, y, t) αuz = 0, 1, ..., N

(2.44)

where N is the order of expansion, which is taken equal for all the displacement components.
Furthermore, the unified formulation allows to write the governing equations in function of
kernels whose form is independent of the theory adopted.

Demasi introduced the GUF [32], the main features being the possibility of selecting
different orders of expansions for each variable and also to adopt different descriptions for
each one of them (ESL or LW).

u
(p)
x (x, y, z(p), t) = Fαux (z(p))u

(p)
xαux (x, y, t) αux = 0, 1, ..., Nαux

u
(p)
y (x, y, z(p), t) = Fαuy (z(p))u

(p)
yαuy (x, y, t) αuy = 0, 1, ..., Nαuy

u
(p)
z (x, y, z(p), t) = Fαuz (z(p))u

(p)
zαuz (x, y, t) αuz = 0, 1, ..., Nαuz

(2.45)

where Nαux , Nαuy and Nαuz are the orders of expansion of each variable, and the super-
script (p) indicates the possibility to adopt an ESL model or a LW model independently
for each variable.

A sublaminate is defined as a group of adjacent plies sharing the same kinematic de-
scription. Each sublaminate is identified by the plies, and the local kinematic description.
Collecting physical plies into sublaminates is a particularly effective practice when it is
used to separate portions characterized by highly different mechanical properties. In this
manner, an appropriate model based on the GUF can be applied to each sub-portion of the
structure, taking into consideration the local properties. For instance, a sandwich panel
could be modeled using a high-order theory for the core and lower-order theories for the
facesheets. Employing the sublaminate concept, it is possible to partition the structure
and adopt the appropriate model for each part of it, obtaining both an accurate and cost-
efficient solution. A visualization of sublaminates defined as the collection of physical plies
is given in Figure 2.3.

Figure 2.3: Collection of physical plies into three different sublaminates.
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In the general case, after defining the sublaminates within the structure, different GUF
models can be adopted for each sublaminate, being either an equivalent single-layer theory
or a layerwise theory. This process results in a truly multiple-kinematic model. Within the
proposed framework, the classical ESL theory can be interpreted as a special case of the
S-GUF where the sublaminate coincides with the whole laminate, and an ESL theory is
adopted. Similarly, the classical LW theory can be obtained when a sublaminate is defined
for each physical ply, or when a single sublaminate with a LW theory is chosen. A second
possible use of the sublaminate concept is the division of one physical ply into two or
more numerical plies. This choice allows to further increase the accuracy of the solution.
For instance, since the radius of curvature is assumed constant within each sublaminate
(or ply for a LW theory) when performing the computations, partitioning a ply into two
numerical sublaminates allows the geometric description to be improved. Figure 2.4 shows
the advantages of using combinations of the GUF and sublaminate techniques.

Figure 2.4: (a) ESL: low accuracy, low computational cost; (b) LW: high accuracy, high computational cost; (c)
Mixed: local accuracy, medium computational cost.

Thus the S-GUF framework, previously applied to the PVD by D’Ottavio et al. [1], and
here extended to RMVT, allowed to program within one single code a potentially infinite
number of kinematic theories. This enables the user to freely select the kind of description
to adopt, either for the whole structure or for each sub-portion of the domain along the
thickness.

It is convenient to notice that the ESL model can be considered as a particular case of
the LW model, where all the variables of different plies are forced to be the same within
the same sublaminate. This translates in taking zp = zk (zk is the thickness coordinate of
a sublaminate respect to its own frame of reference, Figure 2.5) and:

vp,kr = vkr
vp,krαvr = vkrαvr

∀p ∈ [1, Nk
p ] (v = u, σ; r = x, y, z) (2.46)

Therefore, in the subsequent developments, the 2-D kinematic approximation will be used
with the notation of Eq.(2.47) in both ESL and LW cases.

Finally, as stated in Section 2.2, the present work is based upon RMVT, hence the
S-GUF approach was applied not only to the displacements variables but extended to all
the independent variables: displacements and transverse stresses [16]. A formal writing
of S-GUF in a LW approximation through Einstein notation for repeated indexes is (the
MZZF is formally included into the generic function Fαv):
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up,kx (x, y, zp, t) = Fαux (zp)u
p,k
xαux (x, y, t) αux = 0, 1, ..., Nk

ux

up,ky (x, y, zp, t) = Fαuy (zp)u
p,k
yαuy (x, y, t) αuy = 0, 1, ..., Nk

uy

up,kz (x, y, zp, t) = Fαuz (zp)u
p,k
zαuz (x, y, t) αuz = 0, 1, ..., Nk

uz

σp,kxz (x, y, zp, t) = Fασxz (zp)σ
p,k
xzασxz (x, y, t) ασxz = 0, 1, ..., Nk

σxz

σp,kyz (x, y, zp, t) = Fασyz (zp)σ
p,k
yzασyz (x, y, t) ασyz = 0, 1, ..., Nk

σyz

σp,kzz (x, y, zp, t) = Fασzz (zp)σ
p,k
zzασzz (x, y, t) ασzz = 0, 1, ..., Nk

σzz

(2.47)

where the superscript k refers to the kth sublaminate, the superscript p refers to the pth
ply and Nk

ux , N
k
uy , N

k
uz , N

k
σxz , N

k
σyz , N

k
σzz are the orders of expansion of ukx, uky , ukz , σkxz, σkyz,

σkzz, respectively. For transverse stresses the functions of the thickness coordinate are
formally indicated with the symbol F , instead of the symbol F used for displacements, to
distinguish the cases in which the two type of variables are considered. However, the set of
functions used will be the same for practical purposes.

2.3.4 Thickness functions

The thickness functions used to expand the model are a combination of Legendre orthog-
onal polynomials which, for sake of convenience, are the same whether an ESL or a LW
description is adopted.

A non-dimensional coordinate ξ is introduced for the thickness. It will be specified as
ξk in case an ESL model is adopted or as ξp for a LW model. They are defined as follows:

ξp =
zp
hp/2

ξk =
zk
hk/2

(2.48)

and are related through:

ξp =
hk
hp
ξk +

2

hp
(z0k − z0p) (2.49)

where: hp is the thickness of the ply, hk is the thickness of the sublaminate, zp is the
thickness coordinate in the ply reference system, zk is the thickness coordinate in the sub-
laminate reference system, z0p is the ply middle plane coordinate in the laminate reference
system, and z0k is the sublaminate middle plane coordinate in the laminate reference sys-
tem. Graphic visualization of these frames of reference is given in Figure 2.5.
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Figure 2.5: Representation of frames of reference in the thickness direction and of non-dimensional coordinates ξk,
ξp.

Then, using a non-dimensional coordinate, the thickness functions are given by:

if Nk
vr = 0 : F0(ξ) = 1 (2.50)

if Nvkr
> 0 : F0(ξ) =

1 + ξ

2

F1(ξ) =
1− ξ

2

Fl(ξ) = Pl(ξ)− Pl−2(ξ) l = 2, 3, ..., Nk
vr

(2.51)

where v = u, σ and r = x, y, z; and Pl is the Legendre polynomial of order l which can be
defined recursively as follows:

P0 = 1; P1 = ξ; Pl+1 =
(2l + 1)ξPl − lPl−1

l + 1
(2.52)

This set of functions has one peculiarity which makes it notably adapted for being used in
this context: at ξ = 1, all the thickness functions Fα are equal to zero except for F0:{

F0(1) = 1

Fα(1) = 0 α = 1, ..., N
(2.53)

at ξ = −1, all the thickness functions Fα are equal to zero except for F1:{
F1(−1) = 1

Fα(−1) = 0 α = 0, 2, ..., N
(2.54)
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A representation of the first five thickness functions is reported in Figure 2.6.
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Figure 2.6: Representation of the first 5 thickness functions in a non-dimensional coordinate ξ.

The above features imply that the values of the variables at the top of the layer (either
ply or sublaminate) are determined only by the value of F0, corresponding to the DOF vr0
(v = u, σ and r = x, y, z), while the values at the bottom of the layer are determined by
the value of F1, corresponding to the DOF vr1 .

This property is a great advantage when assembling the various ply and sublaminate
contributions. For this reason, the DOF of the model are organized in a vector in the the
following manner:

vp,kr =



vp,kr0

vp,kr2

vp,kr3

...

vp,kr
Nkvr

vp,kr1


(2.55)

Collecting the terms in this way, the value at the top of the ply/sublaminate is determined
by the variable occupying the first position in the vector, while the value at the bottom is
determined by the variable in the last position. In Subsection 3.4.2 and Subsection 3.4.3,
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the advantage of this choice is clearly shown in the assembly phase, since to complete this
process a simple "superposition" of matrices is required.

2.3.5 Models nomenclature

As shown in the previous section, a vast number of models can be generated due to the
S-GUF approach. It is necessary, therefore, for clarity purposes, to introduce a well-defined
nomenclature for the models adopted.

A generic nomenclature for the models here adopted is:

XY
(Nk

σxz (C4),Nk
σyz (C5),Nk

σzz (C6))

Nk
ux(C1),Nk

uy (C2),Nk
uz (C3)

where:

X = {E,L}
Y = {D,M}

C1, C2, C3 = {−, E, Z,EZ}
C4, C5, C6 = {−, E}

• X: it denotes the model adopted. If X = E an ESL model is adopted, if X = L a
LW model is adopted.

• Y : it denotes the theory upon which the model is built.
If Y = D the PVD is adopted, and therefore the variables σxz, σyz, σzz are discarded
and not reported in the model acronym.
If Y = M RMVT is adopted, and therefore all six variables are retained.

• C1, C2, C3: specify additional characteristics of the model for the displacement vari-
ables. C1, C2, C3 = E denotes that an ESL description is adopted for that specific
variable (such specification of course makes sense only if X = L). C1, C2, C3 = Z

denotes that this specific variable has been augmented with the MZZF (this specifi-
cation makes sense only if X = E). If C1, C2, C3 = EZ then that specific variable
is described by an ESL model and employs also the MZZF (this specification makes
sense only if X = L). C1, C2, C3 may also be completely absent (C1, C2, C3 = −),
and they are all independent from one another.

• C4, C5, C6: specify additional characteristics of the model relative to stress variables.
C4, C5, C6 = E denotes that an ESL description is adopted for that specific variable
(such specification of course makes sense only if X = L). It is not possible to add the
MZZF to stress variables inasmuch it was not reputed to bring additional value to the
model in terms of accuracy. C4, C5, C6 may also be completely absent (C4, C5, C6 =

−), and they are all independent from one another.

• Nux , Nuy , Nuz , Nσxz , Nσyz , Nσzz : are the orders of expansion of each variable. When
Y = D, it follows that Nσxz , Nσyz , Nσzz do not appear.

Any of the above models can be used in each sublaminate. The only constraint is that they
all have to be based upon the same variational principle, i.e., they all need to have either
Y = D or Y = M .
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For clarity, three examples are reported below (they are not meant to have any practical
purpose):

• ED3Z,4,3Z : the PVD is used. An ESL theory is applied to all variables. The orders
of expansion are: Nux = 3, Nuy = 4 and Nuz = 3. Both ux and uz are augmented
with the MZZF.

• LD3E,5,2: the PVD is used. A LW theory is applied. The orders of expansion are:
Nux = 3, Nuy = 5 and Nuz = 2. The variable ux is the only one described through
an ESL theory.

• LM3,4E,4
3,4EZ,3: RMVT is used. A LW theory is applied. The orders of expansion for the

displacement variables are: Nux = 3, Nuy = 4 and Nuz = 3. The orders of expansion
for the stress variables are: Nσxz = 3, Nσyz = 4 and Nσzz = 4. Both uy and σyz are
described through an ESL theory. The variable uy is augmented with the MZZF.



Chapter 3

Ritz S-GUF RMVT governing
equations

In the present chapter the governing equations for a doubly-curved shell are derived by
applying the S-GUF formalism and the Ritz approximation to RMVT.

The main steps in the derivation of the Ritz S-GUF RMVT governing equations are:

• Expansion of stress and strain matrices through the geometric relations and the
MFHL.

• Application of the S-GUF: the displacements and transverse stresses are written ac-
cording to the S-GUF formalism.

• Introduction of the Ritz approximation: the in-plane approximation is applied to all
the independent variables.

• Theory expansion: all independent variables are expanded according to the selected
model.

• Assembly procedure of plies contributions: matrices relative to single plies are assem-
bled at sublaminate level.

• Assembly procedure of sublaminates contributions: matrices relative to single sub-
laminates are assembled to obtain the mass and stiffness matrices relative to the whole
structure.

3.1 RMVT according to S-GUF formalism

The derivation of the governing equations begins from RMVT. Recalling Eq.(2.24):

∫
Ω

∫ h
2

−h
2

δεTΩGσΩH + δεTnGσnM + δσTnM (εnG − εnH) dzdΩ =

−
∫

Ω

∫ h
2

−h
2

δuTρü dzdΩ +

∫
Ω

∫ h
2

−h
2

δuT f dzdΩ (3.1)
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Dividing the shell thickness in k sublaminates and p plies, and considering only the case of
normal forces applied on top and bottom surfaces, it is possible to express the functional
of Eq.(3.1) as:

Nk∑
k=1

Nk
p∑

p=1

∫
Ω

∫ ztopp

zbotp

δεp,k
T

ΩG σ
p,k
ΩH + δεp,k

T

nG σp,knM + δσp,k
T

nM (εp,knG − ε
p,k
nH) dzdΩ =

Nk∑
k=1

Nk
p∑

p=1

[
−
∫

Ω

∫ ztopp

zbotp

δup,k
T
ρp,küp,k dzdΩ

]
+

∫
Ωtop

δutopz f topz dΩtop +

∫
Ωbot

δubotz f botz dΩbot

(3.2)

where Nk is the number of sublaminates, Np
k the number of plies into sublaminate k, and:

dΩtop =

(
1 +

h

2Rx

)(
1 +

h

2Ry

)
dxdy dΩbot =

(
1− h

2Rx

)(
1− h

2Ry

)
dxdy (3.3)

The four terms on the left-hand side of Eq.(3.2) can be elaborated by using the geometric
relationships given by Eqs.(2.2), (2.3) and the MFHL of Eq.(2.32):

δεp,k
T

ΩG σ
p,k
ΩH = δ(DΩu

p,k + AΩu
p,k)T (Cp,k

ΩΩε
p,k
ΩG + Cp,k

Ωnσ
p,k
nM )

= δ(DΩu
p,k)TCp,k

ΩΩDΩu
p,k + δ(DΩu

p,k)TCp,k
Ωnσ

p,k
nM

+ δ(DΩu
p,k)TCp,k

ΩΩAΩu
p,k + δ(AΩu

p,k)TCp,k
ΩΩDΩu

p,k

+ δ(AΩu
p,k)TCp,k

Ωnσ
p,k
nM + δ(AΩu

p,k)TCp,k
ΩΩAΩu

p,k

(3.4)

δεp,k
T

nG σp,knM = δ(Dnu
p,k + λDAnu

p,k + Dzu
p,k)Tσp,knM

= δ(Dnu
p,k)Tσp,knM + δ(λDAnu

p,k)Tσp,knM + δ(Dzu
p,k)Tσp,knM

(3.5)

δσp,k
T

nM εp,knG = δσp,k
T

nM (Dnu
p,k + λDAnu

p,k + Dzu
p,k)

= δσp,k
T

nM Dnu
p,k + δσp,k

T

nM λDAnu
p,k + δσp,k

T

nM Dzu
p,k

(3.6)

δσp,k
T

nM εp,knH = δσp,k
T

nM (Cp,k
nΩε

p,k
ΩG + Cp,k

nnσ
p,k
nM )

= δσp,k
T

nM Cp,k
nΩDΩu

p,k + δσp,k
T

nM Cp,k
nΩAΩu

p,k + δσp,k
T

nM Cp,k
nnσ

p,k
nM

(3.7)

In order to simplify the notation from here on, transverse stresses will be represented by
the following notation:

σxz → sx
σyz → sy
σzz → sz

(3.8)

Expanding vectors and matrices according to their definitions at (2.25), (2.4), (2.5), (2.38),
and using the S-GUF 2-D approximation as expressed in Eq.(2.47), component-wise expres-
sions of the four terms on the left-hand side of Eq.(3.2) are obtained. These equations are
not reported here for brevity but their full expressions can be found in Appendix B (Eqs.
(B.1), (B.2), (B.3), (B.4)).
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3.2 Thickness integrals

Thickness integrals can be introduced to have a more compact writing of the equations
according to the following notation:

(RxRyHxHy)
(RxRyHxHy)Z

p,kαvrβvs
RS(∂)vr(∂)vs

=

∫ ztopp

zbotp

(RxRyHxHy)

(RxRyHxHy)
Cp,kij Fαvr (,z)Fβvs (,z) dz R, S = −, 1, ..., 6

(3.9)

HxHyZp,kαurβusρurus =

∫ ztopp

zbotp

ρp,kFαurFβusHxHy dz (3.10)

where top and bottom prescripts indicate the presence of Rx, Ry, Hx, Hy in the integral, at
the numerator and denominator, respectively.

Therefore, after substituting Eqs.(B.1), (B.2), (B.3), (B.4) into Eq.(3.1), it is possible
to introduce the definitions of the thickness integrals (Eq.(3.9), Eq.(3.10)). The equation
obtained as a result of these steps is not reported here for brevity but its full expression
can be found in Appendix B (Eq.(B.5)).

3.3 Ritz method

Due to the expansions operated in Section 3.1, the volume integrals of the variational
statement can be transformed into surface integrals. It is now possible to proceed to solve
it through an exact solution like the Navier or Levy-type kind or through a numerical
method.

Exact solutions offer in terms of accuracy the best results possible, however they are
obtainable only in few cases: for proper boundary conditions, certain stacking sequences,
and simple geometries. On the other hand, fully numerical methods such as the Finite
Element Method (FEM) can be applied to a wide variety of problems and can be used to
obtain solutions as accurate as required, but, in general, at a high computational cost.

In the present work, a trade-off between a fully analytical method and a fully numerical
one (e.g. FEM) is achieved by referring to the Ritz method. The unknowns are expanded
with polynomial expansions whose orders are generally higher than the orders adopted in a
FEM framework. The method converges quickly to the correct solution for smooth problems
and can be adopted even if discontinuities in the material properties are present. Worth
of mentioning is the possibility - not exploited in the context of this work - of accounting
for planar shapes other than square or rectangular by introducing mapping functions. The
Ritz approximation is therefore expressed as:

ux(x, y, t) = Nuxj(x, y)uxj(t)

uy(x, y, t) = Nuyj(x, y)uyj(t)

uz(x, y, t) = Nuzj(x, y)uzj(t)

σxz(x, y, t) = Nσxzj(x, y)σxzj(t)

σyz(x, y, t) = Nσyzj(x, y)σyzj(t)

σzz(x, y, t) = Nσzzj(x, y)σzzj(t)

j = 1, 2, ...,M (3.11)

The Ritz functions Nj are subjected to the following requirements:
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• Nj must satisfy the essential conditions.

• Nj have to be at least Cn−1-continuous where n is the higher order of derivation in
the variational principle with respect to the variables x or y.

• Nj have to form a complete and linearly independent set of functions.

• Nj have to satisfy complementary conditions: the approximation of the general
stresses should be different than zero when general displacements are prescribed and
vice-versa.

In addition to the above-listed mathematical requirements of the Ritz functions, also some
numerical aspects need to be taken into account. In particular, in order to have a numeri-
cally stable method it is important to use an orthogonal basis of functions so not to have
ill-conditioned matrices [3]. Examples of bases that are commonly used are: Legendre poly-
nomials, Chebyshev polynomials, and trigonometric functions. Furthermore, these kinds of
bases generate matrices with a high degree of sparsity, a highly beneficial feature from a
numerical standpoint.

Finally, a powerful way of building complete and compliant sets of Ritz functions is to
compose them as the product of two functions: one being part of a mathematically complete
base and the other one assuring that essential boundary conditions are satisfied.

A nondimensional domain ξ, η is defined as:

ξ =
x

a/2
η =

y

b/2
(3.12)

where a and b are the sizes of the structure along the physical coordinates of the reference
surface (x, y) respectively. The Ritz functions Nvri (vr = ux, uy, uz, σxz, σyz, σzz) can be
expressed by assuming separation of variables as:

Nvri(ξ, η) = Φvr,m(ξ)Ψvr,n(η)
m = 1, 2, ..., R

n = 1, 2, ..., S
(3.13)

where the Ritz order of approximation M is:

M = R× S (3.14)

and the index i can be expressed as:

i = S(m− 1) + n (3.15)

The two components of the Ritz function, along ξ and η respectively, can be written as:

Φvr,m(ξ) = fvr(ξ)φvr,m(ξ) (3.16)

Ψvr,n(η) = gvr(η)ψvr,n(η) (3.17)

and the boundary functions fvr and gvr are defined as:

fvr(ξ) = (1 + ξ)e1r(1− ξ)e3r

gvr(η) = (1 + η)e2r(1− η)e4r
(3.18)
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In the above, the functions φv,m(ξ) and ψv,n(η) provide the completeness to the set, while
fv(ξ) and gv(η) ensure that boundary conditions are respected. Depending on the type
of boundary condition along the edge (free (F), simply-supported (S), clamped (C)) each
exponent eγr (γ = 1, ..., 4) can be either 0 or 1.

Referring to the Ritz functions used for the displacement variables:

• Free edge (F): there are no particular restrictions to be imposed, therefore eγr =

0 (r = x, y, z).

• Simply-supported (S): if the edge is simply-supported and parallel to the Cartesian
axis, transverse and tangential displacements are locked, considering the function fur
it follows that eγx = 0, eγy = 1 and eγz = 1, while for gur accordingly, eγx = 1,
eγy = 0 and eγz = 1. In case the simply-supported edge is inclined with respect to
the Cartesian axis only the transverse displacement vanishes: eγz = 1.

• Clamped (C): if the edge is clamped, no displacement is possible on the edge, therefore,
eγr = 1 (r = x, y, z).

While each variable, in principle, can be expanded with a different order, it is of practi-
cal interest to distinguish between displacements and stresses. This choice - as shown in
Chapter 5 - enabled to draw considerations about the correct tuning of these parameters.
In particular:

ux(x, y, t) = Nuxj1(x, y)uxj1(t)

uy(x, y, t) = Nuyj1(x, y)uyj1(t)

uz(x, y, t) = Nuzj1(x, y)uzj1(t)

σxz(x, y, t) = Nσxzj2(x, y)σxzj2(t)

σyz(x, y, t) = Nσyzj2(x, y)σyzj2(t)

σzz(x, y, t) = Nσzzj2(x, y)σzzj2(t)

j1 = 1, 2, ...,Mu

j2 = 1, 2, ...,Ms
(3.19)

where Mu is the Ritz order of approximation adopted for displacement variables and Ms is
the Ritz order of approximation adopted for transverse stress variables.

Considering the current S-GUF framework the Ritz approximation is expressed as:

up,kxβux
(x, y, t) = Nuxj1(x, y)up,kxβuxj1

(t)

up,kyβuy
(x, y, t) = Nuyj1(x, y)up,kyβuy j1

(t)

up,kzβuz
(x, y, t) = Nuzj1(x, y)up,kzβuz j1

(t)

sp,kxβsx
(x, y, t) = Nsxj2(x, y)sp,kxβsxj2

(t)

sp,kyβsy
(x, y, t) = Nsyj2(x, y)sp,kyβsy j2

(t)

sp,kzβsz
(x, y, t) = Nszj2(x, y)sp,kzβsz j2

(t)

j1 = 1, 2, ...,Mu

j2 = 1, 2, ...,Ms
(3.20)

The same approximation is carried out for virtual quantities.
It is important to observe that the Ritz functions have no dependency on the ply nor

on the sublaminate under the assumptions that the boundary conditions are homogeneous
throughout the thickness on each side.

The following compact notation is introduced for the integrals of the Ritz functions
(Ritz integrals) (when referring to general Ritz approximations the subscripts 1 and 2 are
omitted):
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Idefgvrvsij
=

∫
x

∫
y

∂d+eNvri

∂xd∂ye
∂f+gNvsj

∂xf∂yg
dxdy (d, e, f, g = 0, 1) (3.21)

Hence, using the approximations at (3.20), and notation (3.21), Eq.(B.5) is re-written as:

Nk∑
k=1

Nk
p∑

p=1

[
δup,k

T

xαux i1
Zp,kαuxβuxρuxux I0000

uxuxi1j1 ü
p,k
xβuxj1

+ δup,k
T

yαuy i1
Z
p,kαuyβuy
ρuyuy I0000

uyuyi1j1 ü
p,k
yβuy j1

+ δup,k
T

zαuz i1
Zp,kαuzβuzρuzuz I0000

uzuzi1j1 ü
p,k
zβuz j1

]
+

Nk∑
k=1

Nk
p∑

p=1

[
δup,kxαux i1

Hy
Hx
Z
p,kαuxβux
11uxux

I1010
uxuxi1j1u

p,k
xβuxj1

+ δup,kxαux i1Z
p,kαuxβuy
12uxuy

I1001
uxuyi1j1u

p,k
yβuy j1

+ δup,kxαux i1Z
p,kαuxβux
16uxux

I1001
uxuxi1j1u

p,k
xβuxj1

+ δup,kxαux i1
Hy
Hx
Z
p,kαuxβuy
16uxuy

I1010
uxuyi1j1u

p,k
yβuy j1

+ δup,kyαuy i1Z
p,kαuyβux
12uyux

I0110
uyuxi1j1u

p,k
xβuxj1

+ δup,kyαuy i1
Hx
Hy
Z
p,kαuyβuy
22uyuy

I0101
uyuyi1j1u

p,k
yβuy j1

+ δup,kyαuy i1
Hx
Hy
Z
p,kαuyβux
26uyux

I0101
uyuxi1j1u

p,k
xβuxj1

+ δup,kyαuy i1Z
p,kαuyβuy
26uyuy

I0110
uyuyi1j1u

p,k
yβuy j1

+ δup,kxαux i1Z
p,kαuxβux
16uxux
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p,k
xβuxj1

+ δup,kxαux i1
Hx
Hy
Z
p,kαuxβuy
26uxuy

I0101
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p,k
yβuy j1

+ δup,kxαux i1
Hx
Hy
Z
p,kαuxβux
66uxux
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uxuxi1j1u

p,k
xβuxj1

+ δup,kxαux i1Z
p,kαuxβuy
66uxuy
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uxuyi1j1u

p,k
yβuy j1

+ δup,kyαuy i1
Hy
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Z
p,kαuyβux
16uyux
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xβuxj1

+ δup,kyαuy i1Z
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yβuy j1

+ δup,kyαuy i1Z
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+ δup,kyαuy i1
HxHyZ
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(3.22)

The mathematical description represented by Eq.(3.22) is independent of the model adopted
and of the Ritz approximation orders, therefore it is completely general, regardless of the
number of sublaminates.

It is here highlighted that the present formulation is based upon fundamental blocks
called kernels. The fundamental blocks constituting the S-GUF framework are:

(RxRyHxHy)
(RxRyHxHy)Z

p,kαvrβvs
RS(∂)vr(∂)vs

Idefgvrvsij

R,S = −, 1, ..., 6
r, s = x, y, z

(3.23)

HxHyZp,kαurβusρurus Idefgurusij
r, s = x, y, z (3.24)

3.4 Expansion and assembly

According to the selected model - among the potentially infinite number available - it is
then required to expand and assembly the fundamental kernels of the formulation (Eq.(3.23,
Eq.(3.24)). Expanding these kernels in accordance with the chosen kinematic model and
assembling them, the stiffness matrix and the mass matrix are obtained.

In the following subsections the processes of theory expansion, ply contributions assem-
bly and sublaminate contributions assembly are illustrated.

3.4.1 Theory expansion

The first indexes to be expanded are those related to the model: αvr and βvs . The explicit
expansion of one of the terms, for two generic variables vr and vs, has the following expres-
sion (top and bottom prescripts (Rx, Ry, Hx, Hy) and possible derivations in the thickness
integral are omitted for brevity):
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δvp,krαvr iZ
p,kαvrβvs
RSvrvs

Idefgvrvsij
vp,ksαvsj =

δvp,kr0iZ
p,k00
RSvrvs

Idefgvrvsij
vp,ks0j + δvp,kr0iZ

p,k01
RSvrvs

Idefgvrvsij
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j
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Z
p,kNk
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0

RSvrvs
Idefgvrvsij
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rNk
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Z
p,kNk
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1

RSvrvs
Idefgvrvsij

vp,ks1j+...+δv
p,k
rNk
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i
Z
p,kNk
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Nk
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RSvrvs
Idefgvrvsij

vp,k
sNk
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j

(3.25)

where Nvkr
and Nvks

are the orders of expansion of the generic variables vr and vs, respec-
tively. A similar expression can be obtained for the terms composing the inertial virtual
work by formally substituting the subscript RS with ρ.

A graphical representation is presented in Figure 3.1 to clarify the expansion at theory
level.

Figure 3.1: Thickness integral matrix size depending of the orders of αv and βv . Example with Nαv = 3 and
Nβv = 2.

Regrouping the DOF of a generic ply p in a generic sublaminate k, it follows:

δvp,kri =



δvp,kr0i

δvp,kr2i

...

δvp,k
rNk

vr
i

δvp,kr1i


vp,ksj =



vp,ks0j

vp,ks2j

...

vp,k
sNk

vs
j

vp,ks1j


(3.26)

By means of the definitions introduced in Eq.(3.26), the generic terms of RMVT become:

δvp,krαvr i
(RxRyHxHy)
(RxRyHxHy)Z

p,kαvrβvs
RS(∂)vr(∂)vs

Idefgvrvsij
vp,ksβvsj

⇒ δvp,kri
(RxRyHxHy)
(RxRyHxHy)Z

p,k
RS(∂)vr(∂)vs

Idefgvrvsij
vp,ksj
(3.27)

δup,krαur i
HxHyZp,kαurβusρurus Idefgurusij

up,ksβusj
⇒ δup,kri

HxHyZp,kρurusI
defg
urusij

up,ksj (3.28)
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Therefore, the grouping of variables into vectors of DOF belonging to the same theory
expansion implies the expansion of the thickness integrals of each ply p with respect to the
order of the theory selected for the sublaminate k. This is symbolically expressed as follows:

(RxRyHxHy)
(RxRyHxHy)Z

p,kαvrβvs
RS(∂)vr(∂)vs

theory expansion−−−−−−−−−−−→
(αvr , βvs ) cycling

(RxRyHxHy)
(RxRyHxHy)Z

p,k
RS(∂)vr(∂)vs

HxHyZp,kαurβusρurus

theory expansion−−−−−−−−−−−→
(αur , βus ) cycling

HxHyZp,kρurus

r, s = x, y, z (3.29)

where the matrices (...)
(...)Z

p,k
(...) have size (Nk

vr + 1, Nk
vs + 1).

3.4.2 Assembly of plies at sublaminate level

The sublaminates are numbered from bottom to top, and the same holds for the plies
within each sublaminate. An example is given in Figure 3.2, where the following notation
is introduced: Nk is the number of sublaminates, Nk

p is the number of plies in sublaminate
k.

Figure 3.2: Notation adopted to number sublaminates and plies.

To clarify the expansion and assembly procedures, an example is presented next. A sand-
wich shell is considered, as illustrated in Figure 3.3, which is composed of three sublam-
inates. The first sublaminate corresponds to the bottom skin and comprises three plies.
The second sublaminate includes the core. The third sublaminate corresponds to the top
skin and comprises three plies. The three models adopted are:
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Figure 3.3: Shell case composed of three sublaminates.

The following models and descriptions are considered for the shell case.

k = 3: LW model, with ESL description for uz and sz. All variables are expanded to the
second order.

LM2,2,2E
2,2,2E



αux , βux = 0, 2, 1

αuy , βuy = 0, 2, 1

αuz , βuz = 0, 2, 1

αsx , βsx = 0, 2, 1

αsy , βsy = 0, 2, 1

αsz , βsz = 0, 2, 1

k = 2: ESL model. ux, uy, sx and sy are expanded to the third order; uz and sz are
expanded to the second order.

EM3,3,2
3,3,2



αux , βux = 0, 2, 3, 1

αuy , βuy = 0, 2, 3, 1

αuz , βuz = 0, 2, 1

αsx , βsx = 0, 2, 3, 1

αsy , βsy = 0, 2, 3, 1

αsz , βsz = 0, 2, 1
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k = 1: ESL model. ux, uy, sx and sy are expanded to the first order; uz and sz are expanded
to the zeroth order.

EM1,1,0
1,1,0



αux , βux = 0, 1

αuy , βuy = 0, 1

αuz , βuz = 0

αsx , βsx = 0, 1

αsy , βsy = 0, 1

αsz , βsz = 0

This case will be referred to in the upcoming schematic depictions of the assembly procedure.

To proceed with the assembly procedure the plies contributions within each sublaminate
k must be summed. Similarly to what was done for the theory expansion, the expansion of
subscript p is formally done by:

(RxRyHxHy)
(RxRyHxHy)Z

p,k
RS(∂)vr(∂)vs

ply assembly−−−−−−−−→
p cycling

(RxRyHxHy)
(RxRyHxHy)Z

k
RS(∂)vr(∂)vs

HxHyZp,kρurus
ply assembly−−−−−−−−→
p cycling

HxHyZkρurus

r, s = x, y, z (3.30)

The assembly procedure of matrices (...)
(...)Z

p,k
(...) depends on the kinematic model applied within

each sublaminate k. The size of the resulting matrix will depend also on whether the
variables involved in the thickness integral are described through an ESL or a LW theory.

If both variables involved in the thickness integral are described in an ESL manner,
then: ∂vp,kri = ∂vp+1,k

ri = ∂vkri and vp,ksj = vp+1,k
sj = vksj .

The assembly procedure consists in the simple superposition of all the matrices rel-
ative to each ply, i.e.: (...)

(...)Z
k
RS(∂)vr(∂)vs

=
∑Nk

p

p=1
(...)
(...)Z

p,k
RS(∂)vr(∂)vs

. In this specific case
(...)
(...)Z

k
RS(∂)vr(∂)vs

has the same size of (...)
(...)Z

p,k
RS(∂)vr(∂)vs

, which is (Nk
vr + 1, Nk

vs + 1). The
process is illustrated in Figure 3.4.

Figure 3.4: Assembly procedure with an ESL description. In particular the assembly of the thickness kernels of
Hy
Hx
Z11uxux is shown, with reference to the case in Figure 3.3.

If both variables involved in the thickness integral are described in a LW manner then
the interply continuity is imposed as ∂vp,kr0i = ∂vp+1,k

r1i and vp,ks0j = vp+1,k
s1j due to the choice
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operated for the thickness functions, see Eq.(2.51), and the way the DOF are collected, see
Eq.(2.55). This continuity condition is easily imposed thanks to the way the terms were
collected. In this case the size of matrix (...)

(...)Z
k
RS(∂)vr(∂)vs

is [(Nk
vr + 1)Nk

p − (Nk
p −1), (Nk

vs +

1)Nk
p − (Nk

p − 1)] its size depending on the number of plies.
The resulting vectors collecting the kinematic parameters after the assembly has been

operated are:

δvkri =



δv
Nk
p ,k

r0i

...

δvp,kr0i = δvp+1,k
r1i

...

δv1,k
r0i = δv2,k

r1i

...

δv1,k
r1i



vksj =



v
Nk
p ,k

s0j

...

vp,ks0j = vp+1,k
s1j

...

v1,k
s0j = v2,k

s1j

...

v1,k
s1j



(3.31)

For clarity, the assembly procedure for a LW sublaminate is graphically presented in Figure
3.5.

Figure 3.5: Assembly procedure with a LW description. The assembly of the thickness kernels of Z12uyux is shown,
with reference to the case in Figure 3.3.

If the two variables involved in the thickness integral have two different descriptions (one
ESL and the other one LW) then it follows that the process of assembly is a combination
of the two methods described above. For instance, in case the virtual variation variable
has a LW description and the real variable has an ESL description: vp,ks0i = vp+1,k

s1i and
vp,krj = vp+1,k

rj = vkrj . Therefore, the size of matrix (...)
(...)Z

k
RS(∂)vr(∂)vs

is [(Nk
vs + 1)Nk

p − (Nk
p −

1), Nk
vr + 1]. The process is illustrated in Figure 3.6.
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Figure 3.6: Assembly procedure with a LW description. In particular the assembly of the thickness kernels of
HxZ36uxsz is shown, with reference to the case in Figure 3.3.

After the kernels are expanded over the theory-related indices and the ply contributions
are assembled, the variational statement of Eq.(3.22) is rewritten as:

Nk∑
k=1

[
δuk

T

xi1
HxHyZkρuxuxI

0000
uxuxi1j1ü

k
xj1 + δuk

T

yi1
HxHyZkρuyuyI

0000
uyuyi1j1ü

k
yj1

+ δuk
T

zi1
HxHyZkρuzuzI

0000
uzuzi1j1ü

k
zj1

]
+

Nk∑
k=1

[
δuk

T

xi1
Hy
Hx

Zk11uxuxI
1010
uxuxi1j1u

k
xj1 + δuk

T

xi1Z
k
12uxuyI

1001
uxuyi1j1u

k
yj1

+ δuk
T

xi1Z
k
16uxuxI

1001
uxuxi1j1u

k
xj1 + δuk

T

xi1
Hy
Hx

Zk16uxuyI
1010
uxuyi1j1u

k
yj1

+ δuk
T

yi1Z
k
12uyuxI

0110
uyuxi1j1u

k
xj1 + δuk

T

yi1
Hx
Hy

Zk22uyuyI
0101
uyuyi1j1u

k
yj1

+ δuk
T

yi1
Hx
Hy

Zk26uyuxI
0101
uyuxi1j1u

k
xj1 + δuk

T

yi1Z
k
26uyuyI

0110
uyuyi1j1u

k
yj1

+ δuk
T

xi1Z
k
16uxuxI

0110
uxuxi1j1u

k
xj1 + δuk

T

xi1
Hx
Hy

Zk26uxuyI
0101
uxuyi1j1u

k
yj1

+ δuk
T

xi1
Hx
Hy

Zk66uxuxI
0101
uxuxi1j1u

k
xj1 + δuk

T

xi1Z
k
66uxuyI

0110
uxuyi1j1u

k
yj1

+ δuk
T

yi1
Hy
Hx

Zk16uyuxI
1010
uyuxi1j1u

k
xj1 + δuk

T

yi1Z
k
26uyuyI

1001
uyuyi1j1u

k
yj1

+ δuk
T

yi1Z
k
66uyuxI

1001
uyuxi1j1u

k
xj1 + δuk

T

yi1
Hy
Hx

Zk66uyuyI
1010
uyuyi1j1u

k
yj1

+ δuk
T

xi1
HyZk13uxszI

1000
uxszi1j2s

k
zj2 + δuk

T

yi1
HxZk23uyszI

0100
uyszi1j2s

k
zj2

+ δuk
T

xi1
HxZk36uxszI

0100
uxszi1j2s

k
zβsz j2

+ δuk
T

yi1
HyZk36uyszI

1000
uyszi1j2s

k
zj2

+ δuk
T

xi1
Hy

HxRx
Zk11uxuzI

1000
uxuzi1j1u

k
zj1 + δuk

T

xi1 RyZ
k
12uxuzI

1000
uxuzi1j1u

k
zj1

+ δuk
T

yi1 RxZ
k
12uyuzI

0100
uyuzi1j1u

k
zj1 + δuk

T

yi1
Hx

HyRy
Zk22uyuzI

0100
uyuzi1j1u

k
zj1

+ δuk
T

xi1 RxZ
k
16uxuzI

0100
uxuzi1j1u

k
zj1 + δuk

T

xi1
Hx

HyRy
Zk26uxuzI

0100
uxuzi1j1u

k
zj1

+ δuk
T

yi1
Hy

HxRx
Zk16uyuzI

1000
uyuzi1j1u

k
zj1 + δuk

T

yi1 RyZ
k
26uyuzI

1000
uyuzi1j1u

k
zj1

(3.32)
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+ δuk
T

zi1
Hy

HxRx
Zk11uzuxI

0010
uzuxi1j1u

k
xj1 + δuk

T

zi1 RxZ
k
12uzuyI

0001
uzuyi1j1u

k
yj1

+ δuk
T

zi1 RxZ
k
16uzuxI

0001
uzuxi1j1u

k
xj1 + δuk

T

zi1
Hy

HxRx
Zk16uzuyI

0010
uzuyi1j1u

k
yj1

+ δuk
T

zi1 RyZ
k
12uzuxI

0010
uzuxi1j1u

k
xj1 + δuk

T

zi1
Hx

HyRy
Zk22uzuyI

0001
uzuyi1j1u

k
yj1

+ δuk
T

zi1
Hx

HyRy
Zk26uzuxI

0001
uzuxi1j1u

k
xj1 + δuk

T

zi1 RyZ
k
26uzuyI

0010
uzuyi1j1u

k
yj1

+ δuk
T

zi1
Hy
Rx

Zk13uzszI
0000
uzszi1j2s

k
zj2 + δuk

T

zi1
Hx
Ry

Zk23uzszI
0000
uzszi1j2s

k
zj2

+ δuk
T

zi1
Hy

HxR2
x
Zk11uzuzI

0000
uzuzi1j1u

k
zj1 + δuk

T

zi1 RxRyZ
k
12uzuzI

0000
uzuzi1j1u

k
zj1

+ δuk
T

zi1 RxRyZ
k
12uzuzI

0000
uzuzi1j1u

k
zj1 + δuk

T

zi1
Hx

HyR2
y
Zk22uzuzI

0000
uzuzi1j1u

k
zj1

+ δuk
T

zi1
HxZkuzsyI

0100
uzsyi1j2s

k
yj2 + δuk

T

zi1
HyZkuzsxI

1000
uzsxi1j2s

k
xj2

− δukTyi1λD
Hx
Ry

ZkuysyI
0000
uysyi1j2s

k
yj2 − δu

kT

xi1λD
Hy
Rx

ZkuxsxI
0000
uxsxi1j2s

k
xj2

+ δuk
T

yi1
HxHyZk∂uysyI

0000
uysyi1j2s

k
yj2 + δuk

T

xi1
HxHyZk∂uxsxI

0000
uxsxi1j2s

k
xj2

+ δuk
T

zi1
HxHyZk∂uzszI

0000
uzszi1j2s

k
zj2 + δsk

T

yi2
HxZksyuzI

0001
syuzi2j1u

k
zj1

+ δsk
T

xi2
HyZksxuzI

0010
sxuzi2j1u

k
zj1 − δs

kT

yi2λD
Hx
Ry

ZksyuyI
0000
syuyi2j1u

k
yj1

− δskTxi1λD
Hy
Rx

ZksxuxI
0000
sxuxi2j1u

k
xj1 + δsk

T

yi2
HxHyZksy∂uyI

0000
syuyi2j1u

k
yj1

+ δsk
T

xi2
HxHyZksx∂uxI

0000
sxuxi2j1u

k
xj1 + δsk

T

zi2
HxHyZksz∂uzI

0000
szuzi2j1u

k
zj1

+ δsk
T

zi2
HyZk13szuxI

0010
szuxi2j1u

k
xj1 + δsk

T

zi2
HxZk23szuyI

0001
szuyi2j1u

k
yj1

+ δsk
T

zi2
HxZk36szuxI

0001
szuxi2j1u

k
xj1 + δsk

T

zi2
HyZk36szuyI

0010
szuyi2j1u

k
yj1

+ δsk
T

zi2
Hy
Rx

Zk13szuzI
0000
szuzi2j1u

k
zj1 + δsk

T

zi2
Hx
Ry

Zk23szuzI
0000
szuzi2j1u

k
zj1

− δskTyi2
HxHyZk44sysyI

0000
sysyi2j2s

k
yj2 − δs

kT

yi2
HxHyZk45sysxI

0000
sysxi2j2s

k
xj2

− δskTxi HxHyZk45sxsyI
0000
sxsyi2j2s

k
yj2 − δs

kT

xi2
HxHyZk55sxsxI

0000
sxsxi2j2s

k
xj2

− δskTzi2
HxHyZk33szszI

0000
szszi2j2s

k
zj2

]
= δu

Nk
p ,Nk

z0i

∫
x

∫
y
f topz Nuzi1

(
1 +

h

2Rx

)(
1 +

h

2Ry

)
dxdy

+ δu1,1
z1i

∫
x

∫
y
f botz Nuzi1

(
1− h

2Rx

)(
1− h

2Ry

)
dxdy
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3.4.3 Assembly of sublaminates

The final assembly procedure is the summation of the sublaminate contributions in order
to take into account the continuity of the generic variables at the interfaces. The assembly
is formally expressed as:

(RxRyHxHy)
(RxRyHxHy)Z

k
RS(∂)vr(∂)vs

sublaminate assembly−−−−−−−−−−−−−→
k cycling

(RxRyHxHy)
(RxRyHxHy)ZRS(∂)vr(∂)vs

HxHyZkρurus
sublaminate assembly−−−−−−−−−−−−−→

k cycling
HxHyZρurus

r, s = x, y, z

(3.33)

matrices (RxRyHxHy)
(RxRyHxHy)ZRS(∂)vr(∂)vs and HxHyZρurus have size (NDOFvr , NDOFvs ), where

NDOFvr =

Nk∑
k=1

Nk
DOFvr

− (Nk − 1) NDOFvs =

Nk∑
k=1

Nk
DOFvs

− (Nk − 1) (3.34)

The sublaminate assembly procedure is always carried out as the LW ply assembly proce-
dure. Therefore, the degrees of freedom of the laminate are grouped as:

δvri =


δvNkri

...

δv1
ri

 vsj =


vNksj

...

v1
sj

 (3.35)

Graphically, the process can be represented as in Figure 3.7.

Figure 3.7: Assembly procedure with a LW description. In particular the assembly of the thickness kernels of
HxZ23uysz is shown, with reference to the case in Figure 3.3.

After the sublaminate assembly procedure is performed and the virtual variables are col-
lected, the variational statement of Eq.(3.32) is re-written as:
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δuTxi1

[
HxHyZρuxuxI

0000
uxuxi1j1ü

k
xj1 +

Hy
Hx

Z11uxuxI
1010
uxuxi1j1uxj1 + Z12uxuyI

1001
uxuyi1j1uyj1

+Z16uxuxI
1001
uxuxi1j1u

k
xj1 +

Hy
Hx

Z16uxuyI
1010
uxuyi1j1uyj1 + Z16uxuxI

0110
uxuxi1j1uxj1

+ Hx
Hy

Z26uxuyI
0101
uxuyi1j1uyj1 + Hx

Hy
Z66uxuxI

0101
uxuxi1j1uxj1 + Z66uxuyI

0110
uxuyi1j1uyj1

+ HyZ13uxszI
1000
uxszi1j2szj2 + HxZ36uxszI

0100
uxszi1j2szβsz j2 +

Hy
HxRx

Z11uxuzI
1000
uxuzi1j1uzj1

+ RyZ12uxuzI
1000
uxuzi1j1uzj1 + RxZ16uxuzI

0100
uxuzi1j1uzj1 + Hx

HyRy
Z26uxuzI

0100
uxuzi1j1uzj1

−λD
Hy
Rx

ZuxsxI
0000
uxsxi1j2sxj2 + HxHyZ∂uxsxI

0000
uxsxi1j2sxj2

]
+

δuTyi1

[
HxHyZρuyuyI

0000
uyuyi1j1üyj1 + Z12uyuxI

0110
uyuxi1j1uxj1 + Hx

Hy
Z22uyuyI

0101
uyuyi1j1uyj1

+ Hx
Hy

Z26uyuxI
0101
uyuxi1j1uxj1 + Z26uyuyI

0110
uyuyi1j1uyj1 +

Hy
Hx

Z16uyuxI
1010
uyuxi1j1uxj1

+Z26uyuyI
1001
uyuyi1j1uyj1 + Z66uyuxI

1001
uyuxi1j1uxj1 +

Hy
Hx

Z66uyuyI
1010
uyuyi1j1uyj1

+ HxZ23uyszI
0100
uyszi1j2szj2 + HyZ36uyszI

1000
uyszi1j2szj2 + RxZ12uyuzI

0100
uyuzi1j1uzj1

+ Hx
HyRy

Z22uyuzI
0100
uyuzi1j1uzj1 +

Hy
HxRx

Z16uyuzI
1000
uyuzi1j1uzj1 + RyZ26uyuzI

1000
uyuzi1j1uzj1

−λD Hx
Ry

ZuysyI
0000
uysyi1j2syj2 + HxHyZ∂uysyI

0000
uysyi1j2syj2

]
+

δuTzi1

[
HxHyZρuzuzI

0000
uzuzi1j1üzj1 +

Hy
HxRx

Z11uzuxI
0010
uzuxi1j1uxj1 + RxZ12uzuyI

0001
uzuyi1j1uyj1

+ RxZ16uzuxI
0001
uzuxi1j1uxj1 +

Hy
HxRx

Z16uzuyI
0010
uzuyi1j1uyj1 + RyZ12uzuxI

0010
uzuxi1j1uxj1

+ Hx
HyRy

Z22uzuyI
0001
uzuyi1j1uyj1 + Hx

HyRy
Z26uzuxI

0001
uzuxi1j1uxj1 + RyZ26uzuyI

0010
uzuyi1j1uyj1

+
Hy
Rx

Z13uzszI
0000
uzszi1j2szj2 + Hx

Ry
Z23uzszI

0000
uzszi1j2szj2 +

Hy
HxR2

x
Z11uzuzI

0000
uzuzi1j1uzj1

+ RxRyZ12uzuzI
0000
uzuzi1j1uzj1 + RxRyZ12uzuzI

0000
uzuzi1j1uzj1 + Hx

HyR2
y
Z22uzuzI

0000
uzuzi1j1uzj1

+ HxZuzsyI
0100
uzsyi1j2syj2 + HyZuzsxI

1000
uzsxi1j2sxj2 + HxHyZ∂uzszI

0000
uzszi1j2szj2

]
+

δsTxi2

[
HyZsxuzI

0010
sxuzi2j1uzj1 − λD

Hy
Rx

ZsxuxI
0000
sxuxi2j1uxj1 + HxHyZksx∂uxI

0000
sxuxi2j1uxj1

− HxHyZ45sxsyI
0000
sxsyi2j2syj2 −

HxHyZ55sxsxI
0000
sxsxi2j2sxj2

]
+

δsTyi2

[
HxZsyuzI

0001
syuzi2j1uzj1 − λD

Hx
Ry

ZsyuyI
0000
syuyi2j1uyj1 + HxHyZsy∂uyI

0000
syuyi2j1uyj1

− HxHyZ44sysyI
0000
sysyi2j2syj2 − Z45sysxI

0000
sysxi2j2sxj2

]
+

δsTzi2

[
HxHyZsz∂uzI

0000
szuzi2j1uzj1 + HyZ13szuxI

0010
szuxi2j1uxj1 + HxZ23szuyI

0001
szuyi2j1uyj1

+ HxZ36szuxI
0001
szuxi2j1uxj1 + HyZ36szuyI

0010
szuyi2j1uyj1 +

Hy
Rx

Z13szuzI
0000
szuzi2j1uzj1

+ Hx
Ry

Z23szuzI
0000
szuzi2j1uzj1 −

HxHyZ33szszI
0000
szszi2j2szj2

]
= δuTzi1L

top
zi1
Itopuzfzi1f

top
0 + δuTzi1L

bot
zi1I

bot
uzfzi1f

bot
0

(3.36)

where the load amplitudes (f top0 , f bot0 ) have been split from the function describing their
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distribution in the (x, y) plane. Ritz load integrals are introduced:

Itopuzfzi1 =

∫
x

∫
y
Nuzi1f

top
z (x, y)

(
1 +

h

2Rx

)(
1 +

h

2Ry

)
dxdy

Ibotuzfzi1 =

∫
x

∫
y
Nuzi1f

bot
z (x, y)

(
1− h

2Rx

)(
1− h

2Ry

)
dxdy

(3.37)

and

Ltopzi1 =



1

0

...

0

0


(NDOFuz×1)

Lbotzi1 =



0

0

...

0

1


(NDOFuz×1)

(3.38)

3.5 Mass and stiffness matrices

Finally, Eq.(3.36) can be written in a more compact manner through the introduction of
the mass matrix (Mij) and the stiffness matrix (Kij):

δvTi Mijv̈j + δvTi Kijvj = δvTi L
top
i f top0 + δvTi L

bot
i f bot0 (3.39)

where

δvi =



δuxi1

δuyi1

δuzi1

δsxi2

δsyi2

δszi2


vj =



uxj1

uyj1

uzj1

sxj2

syj2

szj2


Ltopi =



0

0

Ltopzi1I
top
uzfzi1

0

0

0


Lboti =



0

0

Lbotzi1I
bot
uzfzi1

0

0

0


(3.40)

Mij =



Muxuxi1j1 0 0 0 0 0

0 Muyuyi1j1 0 0 0 0

0 0 Muzuzi1j1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


(3.41)

Kij =



Kuxuxi1j1 Kuxuyi1j1 Kuxuzi1j1 Kuxsxi1j2 0uxsyi1j2 Kuxszi1j2

Kuyuxi1j1 Kuyuyi1j1 Kuyuzi1j1 0uysxi1j2 Kuysyi1j2 Kuyszi1j2

Kuzuxi1j1 Kuzuyi1j1 Kuzuzi1j1 Kuzsxi1j2 Kuzsyi1j2 Kuzszi1j2

Ksxuxi2j1 0sxuyi2j1 Ksxuzi2j1 Ksxsxi2j2 Ksxsyi2j2 0sxszi2j2
0syuxi2j1 Ksyuyi2j1 Ksyuzi2j1 Ksysxi2j2 Ksysyi2j2 0syszi2j2
Kszuxi2j1 Kszuyi2j1 Kszuzi2j1 0szsxi2j2 0szsyi2j2 Kszszi2j2


(3.42)
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where:

Muxuxi1j1 = HxHyZρuxuxI
0000
uxuxi1j1

Muyuyi1j1 = HxHyZρuyuyI
0000
uyuyi1j1

Muzuzi1j1 = HxHyZρuzuzI
0000
uzuzi1j1

Kuxuxi1j1 =
Hy
Hx

Z11uxuxI
1010
uxuxi1j1 + Z16uxux(I1001

uxuxi1j1 + I0110
uxuxi1j1)

+ Hx
Hy

Z66uxuxI
0101
uxuxi1j1

Kuxuyi1j1 = Z12uxuyI
1001
uxuyi1j1 +

Hy
Hx

Z16uxuyI
1010
uxuyi1j1

+ Hx
Hy

Z26uxuyI
0101
uxuyi1j1 + Z66uxuyI

0110
uxuyi1j1

Kuxuzi1j1 =
Hy

HxRx
Z11uxuzI

1000
uxuzi1j1 + RyZ12uxuzI

1000
uxuzi1j1 + RxZ16uxuzI

0100
uxuzi1j1

+ Hx
HyRy

Z26uxuzI
0100
uxuzi1j1

Kuxsxi1j2 = −λD
Hy
Rx

ZuxsxI
0000
uxsxi1j2 + HxHyZ∂uxsxI

0000
uxsxi1j2

Kuxszi1j2 = HxZ36uxszI
0100
uxszi1j2 + HyZ13uxszI

1000
uxszi1j2

Kuyuxi1j1 = Z12uyuxI
0110
uyuxi1j1 + Hx

Hy
Z26uyuxI

0101
uyuxi1j1 +

Hy
Hx

Z16uyuxI
1010
uyuxi1j1

+ Z66uyuxI
1001
uyuxi1j1

Kuyuyi1j1 = Hx
Hy

Z22uyuyI
0101
uyuyi1j1 + Z26uyuy(I

0110
uyuyi1j1 + I1001

uyuyi1j1) +
Hy
Hx

Z66uyuyI
1010
uyuyi1j1

Kuyuzi1j1 = RxZ12uyuzI
0100
uyuzi1j1 + Hx

HyRy
Z22uyuzI

0100
uyuzi1j1 +

Hy
HxRx

Z16uyuzI
1000
uyuzi1j1

+ RyZ26uyuzI
1000
uyuzi1j1

Kuysyi1j2 = −λD Hx
Ry

ZuysyI
0000
uysyi1j2 + HxHyZ∂uysyI

0000
uysyi1j2

Kuyszi1j2 = HxZ23uyszI
0100
uyszi1j2 + HyZ36uyszI

1000
uyszi1j2

Kuzuxi1j1 =
Hy

HxRx
Z11uzuxI

0010
uzuxi1j1 + RyZ12uzuxI

0010
uzuxi1j1 + Hx

HyRy
Z26uzuxI

0001
uzuxi1j1

+ RxZ16uzuxI
0001
uzuxi1j1

Kuzuyi1j1 = RxZ12uzuyI
0001
uzuyi1j1 +

Hy
HxRx

Z16uzuyI
0010
uzuyi1j1 + Hx

HyRy
Z22uzuyI

0001
uzuyi1j1

+ RyZ26uzuyI
0010
uzuyi1j1

Kuzuzi1j1 =
Hy

HxR2
x
Z11uzuzI

0000
uzuzi1j1 + RxRyZ12uzuzI

0000
uzuzi1j1 + RxRyZ12uzuzI

0000
uzuzi1j1

+ Hx
HyR2

y
Z22uzuzI

0000
uzuzi1j1

Kuzsxi1j2 = HyZuzsxI
1000
uzsxi1j2

Kuzsyi1j2 = HxZuzsyI
0100
uzsyi1j2

Kuzszi1j2 = HxHyZ∂uzszI
0000
uzszi1j2 +

Hy
Rx

Z13uzszI
0000
uzszi1j2 + Hx

Ry
Z23uzszI

0000
uzszi1j2

Ksxuxi2j1 = −λD
Hy
Rx

ZsxuxI
0000
sxuxi2j1 + HxHyZsx∂uxI

0000
sxuxi2j1

Ksxuzi2j1 = HyZsxuzI
0010
sxuzi2j1

Ksxsxi2j2 = −HxHyZ55sxsxI
0000
sxsxi2j2
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Ksxsyi2j2 = −HxHyZ45sxsyI
0000
sxsyi2j2

Ksyuyi2j1 = −λD Hx
Ry

ZsyuyI
0000
syuyi2j1 + HxHyZsy∂uyI

0000
syuyi2j1

Ksyuzi2j1 = HxZsyuzI
0001
syuzi2j1

Ksysxi2j2 = −Z45sysxI
0000
sysxi2j2

Ksysyi2j2 = −HxHyZ44sysyI
0000
sysyi2j2

Kszuxi2j1 = HyZ13szuxI
0010
szuxi2j1 + HxZ36szuxI

0001
szuxi2j1

Kszuyi2j1 = HxZ23szuyI
0001
szuyi2j1 + HyZ36szuyI

0010
szuyi2j1

Kszuzi2j1 = HxHyZsz∂uzI
0000
szuzi2j1 +

Hy
Rx

Z13szuzI
0000
szuzi2j1 + Hx

Ry
Z23szuzI

0000
szuzi2j1

Kszszi2j2 = −HxHyZ33szszI
0000
szszi2j2

General subscripts i and j range from 1 to the largest value betweenMu andMs, from here
on denoted withM . The variables expanded with the lowest Ritz order will contribute only
up to that specific order, while for the remaining orders their contributions will be null.

3.6 Ritz expansion

The final step deals with the summation of the Ritz expansion series represented through
indexes i and j. Written explicitly, the shell equilibrium equations in a weak form are:

δvT1 [M11v̈1 + . . .+ M1M v̈M + K11v1 + . . .+ K1MvM ] = δvT1 [Ltop1 f top0 + Lbot1 f bot0 ]

δvT2 [M21v̈1 + . . .+ M2M v̈M + K21v1 + . . .+ K2MvM ] = δvT2 [Ltop2 f top0 + Lbot2 f bot0 ]

...

δvTM [MM1v̈1 + . . .+ MMM v̈M + KM1v1 + . . .+ KMMvM ] = δvTM [LtopM f top0 + LbotM f bot0 ]

(3.46)

Therefore, regrouping all the variables into one vector:

v =



ux1

uy1

uz1
sx1

sy1

sz1
...

uxi
...
szi
...

uxM
...

szM



=



v1
...
vi
...

vM


(3.47)
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Assembling matrices Mij , Kij and Li, symbolically expressed by:

Mij
Ritz expansion−−−−−−−−−→

(i, j) cycling
M

Kij
Ritz expansion−−−−−−−−−→

(i, j) cycling
K

Li
Ritz expansion−−−−−−−−−→

(i) cycling
L

(3.48)

and using the arbitrariness of virtual variations, the set of governing equations is obtained:

Mv̈ + Kv = L (3.49)

where

L = Ltopf top0 + Lbotf bot0 (3.50)

Even if equations for doubly-curved shells have been derived, the present work will focus
on cylindrical geometries (both open and closed) and plate geometries due to their broad
employment compared to general doubly-curved shells.

The governing equations for cylindrical geometries can be easily obtained starting from
the equations for shells by imposing either Rx →∞ or Ry →∞ (it implies that Hx → 1 or
Hy → 1, respectively). Additional details on the cylinder governing equations can be found
in Section C.1, in Appendix C.

The governing equations for plate geometries can be easily obtained starting from the
equations for shells by imposing Rx → ∞ and Ry → ∞ (it implies that Hx → 1 and
Hy → 1, respectively). Additional details on the plate governing equations can be found
in Section C.2, in Appendix C. It is remarked that in plate equations, compared to shell
and cylinder equations, less coupling terms are present. Sub-stiffness matrices Kuxuzi1j1 ,
Kuzuxi1j1 , Kuyuzi1j1 , Kuzuyi1j1 and Kuzuzi1j1 are null.
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3.7 Linear static and free-vibration analysis

After computing matrices M and K it is possible to solve a broad number of problems.
The focus is here posed upon the linear static and the free-vibration analysis.

Linear static analysis The cases here investigated concern normal loads applied to
the top and bottom surfaces. Four distinct load cases can be taken into account in the
code: localized loads, concentrated loads (over a finite portion of the structure), uniform
loads, and bisinusoidal loads.

The solution of linear static problems is of interest to check the potential of the RMVT
formulation in providing improved profiles for the transverse stresses, whose continuity is
enforced a priori.

The problem can be formulated starting from Eq.(3.49) and neglecting time dependence,
resulting in:

Kv = Ltopf top0 + Lbotf bot0 (3.51)

or more compactly:
Kv = L (3.52)

where:
L = Ltopf top0 + Lbotf bot0 (3.53)

The linear system of Eq.(3.52) is then solved numerically and the unknown Ritz amplitudes
are found as part of the solution. The evaluation of the displacement and stress fields can
be operated during the post-processing of the results, as outlined in the next section.

Free-vibration The free-vibration analysis deals with the homogeneous problem, which
is obtained when the loads are set to zero, i.e.:

f top0 = 0 f bot0 = 0 (3.54)

The problem obtained is therefore:

Mv̈ + Kv = 0 (3.55)

As anticipated before, Eq.(3.55) has the structure of an eigenvalue problem. A trivial
solution of the problem is v(t) = 0. In order to obtain non-trivial solutions the following
solution is hypothesized:

v(t) = v̂ejωt (3.56)

Substituting it into Eq.(3.55), the problem is obtained in the form:

[K− ω2M]v̂ = 0 (3.57)

which is a standard eigenvalue problem, whose solution allows the natural frequencies and
corresponding eigenmodes to be found.

Due to the approach here adopted the size of the matrices is very high, and therefore to
compute all of the eigenpairs would result in a too expensive computational effort. There-
fore, usually, only a subset of these eigenpairs will be computed when solving the problem,
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starting from those associated with lower frequencies. Furthermore, to compute all of the
eigenpairs would result in a useless effort, since many would be associated with high fre-
quencies, but since the loads usually have limited spectral content, these modes would be
barely, if not at all, excited.

Compared to the equations obtained through the PVD, the equations based upon
RMVT include both displacement and stress unknowns.

A Static Condensation Technique (SCT) can be operated, as illustrated below, consist-
ing in the elimination of the stress variables. This technique will be here adopted when
performing the free-vibration analysis to directly retrieve physical quantities.

Referring to Eq.(3.49), the vector v can be partitioned into u and s, corresponding to
displacement- and stress-related DOF, respectively. The governing equations in Eq.(3.49)
can then be re-written as: {

Muuü + Kuuu + Kuss = L

Ksuu + Ksss = 0
(3.58)

where

u =



ux1

uy1

uz1
...

uxj1
uyj1
uzj1
...

uxMu

uyMu

uzMu



s =



sx1

sy1

sz1
...

sxj2
syj2
szj2
...

sxMs

syMs

szMs



(3.59)

using the second equation of Eq.(3.58):

s = −(Kss)
−1Ksuu (3.60)

and then substituting into the first equation of Eq.(3.58):

Muuü + (Kuu −Kus(Kss)
−1Ksu)u = L (3.61)

redefining:

Kmix = Kuu −Kus(Kss)
−1Ksu (3.62)

the expression of Eq.(3.61) becomes:

Muuü + Kmixu = L (3.63)

After computing the displacements through Eq.(3.63), the stresses can be obtained a pos-
teriori by means of Eq.(3.60).

Note that the SCT leads to the same results as solving the whole system. The results
would differ in case it was applied at sublaminate or ply level. However, in that case, it
would not be possible to enforce the continuity of transverse stresses at the interfaces.
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3.8 Post-processing of the solution

After solving the problem, either it is linear static or free-vibration, the unknown Ritz
amplitudes are found. From there, the displacements field can be retrieved as:

up,kx (x, y, z, t) = Fβux (z)up,kxβux
(x, y, t) = Fβux (z)Nuxj1(x, y)up,kxβuxj1

(t)

up,ky (x, y, z, t) = Fβuy (z)up,kyβuy
(x, y, t) = Fβuy (z)Nuyj1(x, y)up,kyβuy j1

(t)

up,kz (x, y, z, t) = Fβuz (z)up,kzβuz
(x, y, t) = Fβuz (z)Nuzj1(x, y)up,kzβuz j1

(t)

j1 = 1, 2, ...,Mu

(3.64)

Regarding transverse stresses, it is possible to proceed in three ways to recover them: a
priori by using the test functions used in RMVT, through the classical form of Hooke’s law
or by integration of the indefinite equilibrium equations.

A priori :
sp,kx (x, y, z, t) = Fβsx (z)sp,kxβsx

(x, y, t) = Fβsx (z)Nsxj2(x, y)sp,kxβsxj2
(t)

sp,ky (x, y, z, t) = Fβsy (z)sp,kyβsy
(x, y, t) = Fβsy (z)Nsyj2(x, y)sp,kyβsy j2

(t)

sp,kz (x, y, z, t) = Fβsz (z)sp,kzβsz
(x, y, t) = Fβsz (z)Nszj2(x, y)sp,kzβsz j2

(t)

j2 = 1, 2, ...,Ms

(3.65)

Classical form of Hooke’s law :

For plates:

σp,kyz =Cp,k44

∂Nuzj1

∂y
Fβuzu

p,k
zβuz j1

+ Cp,k44 Nuzj1

∂Fβuy
∂z

up,kyβuy j1
+ Cp,k45

∂Nuzj1

∂x
Fβuzu

p,k
zβuz j1

+ Cp,k45 Nuxj1

∂Fβux
∂z

up,kxβuxj1

σp,kxz =Cp,k45

∂Nuzj1

∂y
Fβuzu

p,k
zβuz j1

+ Cp,k45 Nuzj1

∂Fβuy
∂z

up,kyβuy j1
+ Cp,k55

∂Nuzj1

∂x
Fβuzu

p,k
zβuz j1

+ Cp,k55 Nuxj1

∂Fβux
∂z

up,kxβuxj1

σp,kzz =Cp,k13

∂Nuxj1

∂x
Fβuxu

p,k
xβuxj1

+ Cp,k23

∂Nuyj1

∂y
Fβuyu

p,k
yβuy j1

+ Cp,k33 Nuzj1

Fβuz
∂z

up,kzβuz j1

+ Cp,k36

∂Nuyj1

∂x
Fβuyu

p,k
yβuy j1

+ Cp,k36

∂Nuxj1

∂y
Fβuxu

p,k
xβuxj1

(3.66)
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For cylinders:

σp,kyz =− 1

Ry(1 + z
Ry

)
Cp,k44 Nuxj1Fβuyu

p,k
yβuy j1

+
1

1 + z
Ry

Cp,k44

∂Nuzj1

∂y
Fβuzu

p,k
zβuz j1

+ Cp,k44 Nuyj1

Fβuy
∂z

up,kyβuy j1
+ Cp,k45

∂Nuzj1

∂x
Fβuzu

p,k
zβuz j1

+ Cp,k45 Nuxj1

Fβux
∂z

up,kxβuxj1

σp,kxz =− 1

Ry(1 + z
Ry

)
Cp,k45 Nuxj1Fβuyu

p,k
yβuy j1

+
1

1 + z
Ry

Cp,k45

∂Nuzj1

∂y
Fβuzu

p,k
zβuz j1

+ Cp,k45 Nuyj1

Fβuy
∂z

up,kyβuy j1
+ Cp,k55

∂Nuzj1

∂x
Fβuzu

p,k
zβuz j1

+ Cp,k55 Nuxj1

Fβux
∂z

up,kxβuxj1

σp,kzz = Cp,k13

∂Nuxj1

∂x
Fβuxu

p,k
xβuxj1

+
1

1 + z
Ry

Cp,k23

∂Nuyj1

∂y
Fβuyu

p,k
yβuy j1

+
1

Ry(1 + z
Ry

)
Cp,k23 Nuzj1Fβuzu

p,k
zβuz j1

+ Cp,k33 Nuzj1

Fβuz
∂z

up,kzβuz j1

+ Cp,k33

∂Nuyj1

∂x
Fβuyu

p,k
yβuy j1

+
1

1 + z
Ry

Cp,k36

∂Nuxj1

∂x
Fβuxu

p,k
xβuxj1

(3.67)

Integration of the indefinite equilibrium equations:

For plates:

∂σxx
∂x

+
∂σxy
∂y

+
∂σxz
∂z

= 0⇒ ∂σxz
∂z

= −
(
∂σxx
∂x

+
∂σxy
∂y

)
∂σxy
∂x

+
∂σyy
∂y

+
∂σyz
∂z

= 0⇒ ∂σyz
∂z

= −
(
∂σxy
∂x

+
∂σyy
∂y

)
∂σxz
∂x

+
∂σyz
∂y

+
∂σzz
∂z

= 0⇒ ∂σzz
∂z

= −
(
∂σxz
∂x

+
∂σyz
∂y

) (3.68)

For cylinders:(
1 +

z

Ry

)
∂σxx
∂x

+
∂σxy
∂y

+
∂

∂z

[(
1 +

z

Ry

)
σxz

]
= 0(

1 +
z

Ry

)2∂σxy
∂x

+

(
1 +

z

Ry

)
∂σyy
∂y

+
∂

∂z

[(
1 +

z

Ry

)2

σyz

]
= 0(

1 +
z

Ry

)
∂σxz
∂x

+
∂σyz
∂y

+
∂

∂z

[(
1 +

z

Ry

)
σzz

]
− σyy
Ry

= 0

(3.69)

It is worth specifying that in the code, σxz and σyz are calculated by integrating the
derivatives of σxx, σyy, σxy obtained through the CFHL. Although, this choice may not be
consistent when a mixed approach is adopted, for a "converged" case using the CFHL
or the MFHL will results in practically equal results, as stated by Demasi [33]. For the
same reason, σzz is obtained by integrating the derivatives of the transverse shear stresses
calculated using the CFHL.

Finally, it is important to remark that among the three possible ways to recover the
transverse stresses, only computing them a priori or by integration of the indefinite equi-
librium equations allows satisfying the inter-laminar equilibrium condition.
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As regards with in-plane stresses, they can be evaluated by recalling the MFHL.

For plates:

σp,kxx =Cp,k11

∂Nuxj1

∂x
Fβuxu

p,k
xβuxj1

+ Cp,k12

∂Nuyj1

∂y
Fβuyu

p,k
yβuy j1

+ Cp,k16

∂Nuyj1

∂x
Fβuyu

p,k
yβuy j1

+ Cp,k16

∂Nuxj1

∂y
Fβuxu

p,k
xβuxj1

+ Cp,k13 Nσzzj2Fβσzzσ
p,k
zzβσzz j2

σp,kyy =Cp,k12

∂Nuxj1

∂x
Fβuxu

p,k
xβuxj1

+ Cp,k22

∂Nuyj1

∂y
Fβuyu

p,k
yβuy j1

+ Cp,k26

∂Nuyj1

∂x
Fβuyu

p,k
yβuy j1

+ Cp,k26

∂Nuxj1

∂y
Fβuxu

p,k
xβuxj1

+ Cp,k26 Nσzzj2Fβσzzσ
p,k
zzβσzz j2

σp,kxy =Cp,k16

∂Nuxj1

∂x
Fβuxu

p,k
xβuxj1

+ Cp,k26

∂Nuyj1

∂y
Fβuyu

p,k
yβuy j1

+ Cp,k66

∂Nuyj1

∂x
Fβuyu

p,k
yβuy j1

+ Cp,k66

∂Nuxj1

∂y
Fβuxu

p,k
xβuxj1

+ Cp,k36 Nσzzj2Fβσzzσ
p,k
zzβσzz j2

(3.70)

For cylinders:

σp,kxx =Cp,k11

∂Nuxj1

∂x
Fβuxu

p,k
xβuxj1

+
1

1 + z
Ry

Cp,k12

∂Nuyj1

∂y
Fβuyu

p,k
yβuy j1

+ Cp,k16

∂Nuyj1

∂x
Fβuyu

p,k
yβuy j1

+
1

1 + z
Ry

Cp,k16

∂Nuxj1

∂y
Fβuxu

p,k
xβuxj1

+
1

Ry(1 + z
Ry

)
Cp,k12 Nuzj1Fβuzu

p,k
zβuz j1

+ Cp,k13 Nσzzj2Fβσzzσ
p,k
zzβσzz j2

σp,kyy =Cp,k12

∂Nuxj1

∂x
Fβuxu

p,k
xβuxj1

+
1

1 + z
Ry

Cp,k22

∂Nuyj1

∂y
Fβuyu

p,k
yβuy j1

+ Cp,k26

∂Nuyj1

∂x
Fβuyu

p,k
yβuy j1

+
1

1 + z
Ry

Cp,k26

∂Nuxj1

∂y
Fβuxu

p,k
xβuxj1

+
1

Ry(1 + z
Ry

)
Cp,k22 Nuzj1Fβuzu

p,k
zβuz j1

+ Cp,k23 Nσzzj2Fβσzzσ
p,k
zzβσzz j2

σp,kxy =Cp,k16

∂Nuxj1

∂x
Fβuxu

p,k
xβuxj1

+
1

1 + z
Ry

Cp,k26

∂Nuyj1

∂y
Fβuyu

p,k
yβuy j1

+ Cp,k66

∂Nuyj1

∂x
Fβuyu

p,k
yβuy j1

+
1

1 + z
Ry

Cp,k66

∂Nuxj1
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Fβuxu

p,k
xβuxj1

+
1
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)
Cp,k26 Nuzj1Fβuzu

p,k
zβuz j1

+ Cp,k36 Nσzzj2Fβσzzσ
p,k
zzβσzz j2

(3.71)

where Ry is the mid-surface curvature radius in the y direction.
Note that it is also possible to compute the in-plane stresses through the classical

form of Hooke’s law, but the choice of using the MFHL is more consistent with the mixed
variational theorem here adopted.



Chapter 4

Model validation

In order to benchmark the mathematical model derived and the implemented code, results
present in the scientific literature were used. The test cases reported have been divided
depending on the geometry of the structure: plate, cylindrical panel, closed cylinder; and
on the kind of analysis: linear static deflection, free-vibration. Finally, one challenging
test case is reported where the present theory based on RMVT is compared with a similar
formulation based on the PVD.

In all of the following test cases, a uniform notation has been adopted. a is the size in
the x-direction, b is the size in the y-direction, h is the total thickness in the z-direction.
R is the radius of curvature of the middle surface in the y-direction (Figure 4.1).

Figure 4.1: Notations adopted for plate, cylindrical panel and closed cylinder geometries.

The stacking sequence is for convenience described from top to bottom. When describing
the physical properties of composite materials, the subscript 1 will indicate the direction
parallel to the fibers, 2 the transverse direction, and 3 the thickness direction. θ represents
the angle of each ply with respect to the laminate reference frame and it is measured from
the x-axis, counter-clockwise with respect to the z-axis (Figure 4.2).
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Figure 4.2: Notations adopted for the angles of each ply.

Boundary conditions are represented by a letter: F (free), S (simply-supported) and C

(clamped). Therefore, the boundary conditions of the structure are represented by four
letters, one for each side. The first letter corresponds to the left side (x = 0), and the
others, respectively, to the following sides moving counter-clockwise with respect to the
z-axis. For closed cylinders only two boundaries exist. The first letter corresponds to the
side at x = 0, and the second to the side at x = a.

The Legendre base was utilized for the Ritz expansion in all of the test cases, except for
the circumferential direction of closed cylinders where Fourier polynomials were used. Since
the Ritz functions are built as the product of two separate functions, one in the x-direction
and one in y-direction, it is possible to specify in the code the desired order for each one
of them. Ru and Rs are the orders of Ritz expansion in the x-direction for displacements
and stresses, respectively; Su and Ss are the orders of Ritz expansion in the y-direction for
displacements and stresses, respectively. It follows that:

Mu =Ru × Su
Ms =Rs × Ss

(4.1)

Unless otherwise specified, the employed Ritz orders of approximation are taken sufficiently
high so to ensure the convergence of the results. They were always chosen so that: Rs =

Ru + 1 and Ss = Su + 1. An analysis justifying this choice can be found in Section 5.1.
The SCT was utilized for free-vibration problems, in order to retrieve directly only the

significant physical quantities; while for static bending problems the whole mixed stiffness
matrix has been inverted.

Since in the present RMVT formulation the transverse stress field can be freely chosen,
it is possible to satisfy a priori the equilibrium condition on the top and bottom surfaces.
Unless otherwise stated, however, no top-bottom stress boundary conditions have been
imposed.
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4.1 Plate - Bending

The first problem considered is the bending of a square sandwich plate, for which the ex-
act solution was obtained by Pagano [34]. The problem is illustrated in Figure 4.3 and is
defined as follows.

Geometry Square plate (a = b). The sandwich plate is constituted of one core and
two single-ply skins, each thick one tenth of the total thickness. Different values of length-
over-thickness ratio (D = a/h) are investigated: D = 2, 4, 10.

Composite stack Sandwich material: [0/core/0].
Material properties

E11 [Pa] E22 [Pa] E33 [Pa]
Skin 1.7237× 1011 6.8948× 109 6.8948× 109

Core 2.7579× 108 2.7579× 108 3.4474× 109

G12 [Pa] G13 [Pa] G23 [Pa]
Skin 3.4474× 109 3.4474× 109 1.3790× 109

Core 1.1032× 108 4.1369× 108 4.1369× 108

ν12 [-] ν13 [-] ν23 [-]
Skin 0.25 0.25 0.25
Core 0.25 0.25 0.25

Table 4.1: Pagano test case: skin and core material properties.

Boundary conditions Simply-supported on all four sides: SSSS.
Load Bisinusoidal load applied on the top surface: P = P0sin(πax)sin(πb y).
Results The results are made non-dimensional in the following manner:

(σ̄xx, σ̄yy, σ̄xy) =
1

P0D2
(σxx, σyy, σxy) (σ̄xz, σ̄yz) =

1

P0D
(σxz, σyz) (4.2)

The nondimensional thickness coordinate ξ = z
h has been adopted.

Computational model Three sublaminates are used, one for each skin and one for
the core, in view of minimizing the computational cost without affecting the accuracy. The
models are chosen depending on the thickness ratio D, as reported in Table 4.2. For the
core, which is characterized by a higher shear deformability, higher models compared to the
skins were used.

D Top skin Core Bottom skin Model ID

2 EM3,3,3
3,3,3 EM4,4,3

4,4,3 EM3,3,3
3,3,3 M1

4 EM2,2,2
2,2,2 EM3,3,3

3,3,3 EM2,2,2
2,2,2 M2

10 EM2,2,1
2,2,1 EM3,3,2

3,3,2 EM2,2,1
2,2,1 M3

Table 4.2: Pagano test case: models adopted depending on D = a
h
.

The Ritz orders of expansion adopted are: Ru = 8, Rs = 9, Su = 8, Ss = 9. The transverse
stresses are obtained directly from the assumed field.
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Figure 4.3: Pagano test case: simply-supported square sandwich under bi-sinusoidal pressure load.

First of all, the convergence of the Ritz approximation is addressed. Since it is an approxi-
mation of global quantities over the whole domain, a good way to determine its convergence
rate is through the strain energy U , which is, indeed, a global quantity. Figure 4.4 shows
the convergence of the total energy in function of the Ritz orders for model M1. As it is
shown, the Ritz approximation converges monotonically and quickly to the value obtained
with a high order of expansion (Ru = Su = 6 and Rs = Ss = 7), which is taken as the
reference (Uref ).
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Figure 4.4: Total strain energy in function of different Ritz orders of expansion. Ē = URitz
Uex

is the total strain energy
normalized over the total strain energy for a converged value of the Ritz orders.

Tables 4.3, 4.4, 4.5 compare the results obtained by Pagano’s exact solution and those
obtained through the present theory for the thickness ratios: D = 2, 4, 10. The results are in
excellent accordance with the exact solution. Given the variational principle here adopted,
it is remarked that transverse stresses match up to the fourth digit the exact solution in
all three cases. This confirms the advantageous feature of RMVT when computing the
transverse stresses a priori.
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D Quantity x y ξ Exact [34] Present (M1)

2 σ̄xx a/2 b/2 0.5 3.278 3.278
σ̄xx a/2 b/2 -0.5 -2.653 -2.653
σ̄xx a/2 b/2 0.4 -2.22 -2.22
σ̄xx a/2 b/2 -0.4 1.668 1.668
σ̄yy a/2 b/2 0.5 0.4517 0.4517
σ̄yy a/2 b/2 -0.5 -0.3919 -0.3919
σ̄xz 0 b/2 0 0.185 0.185
σ̄yz a/2 0 0 0.1399 0.1399
σ̄xy 0 0 0.5 -0.2403 -0.2403
σ̄xy 0 0 -0.5 0.2338 0.2338

Table 4.3: Pagano test case: results for D = 2. Model M1 was adopted.

D Quantity x y ξ Exact [34] Present (M2)

4 σ̄xx a/2 b/2 0.5 1.556 1.556
σ̄xx a/2 b/2 -0.5 -1.512 -1.512
σ̄xx a/2 b/2 0.4 -0.233 -0.224
σ̄xx a/2 b/2 -0.4 0.196 0.1873
σ̄yy a/2 b/2 0.5 0.2595 0.2596
σ̄yy a/2 b/2 -0.5 -0.2533 -0.2534
σ̄xz 0 b/2 0 0.239 0.239
σ̄yz a/2 0 0 0.1072 0.1072
σ̄xy 0 0 0.5 -0.1437 -0.1437
σ̄xy 0 0 -0.5 0.1481 0.1480

Table 4.4: Pagano test case: results for D = 4. Model M2 was adopted.

D Quantity x y ξ Exact [34] Present (M3)

10 σ̄xx a/2 b/2 ±0.5 ±1.152 ±1.152
σ̄xx a/2 b/2 ±0.4 ±0.629 ±0.629
σ̄yy a/2 b/2 0.5 0.1099 0.1105
σ̄yy a/2 b/2 −0.5 −0.1099 −0.1099
σ̄xz 0 b/2 0 0.300 0.300
σ̄yz a/2 0 0 0.0527 0.0527
σ̄xy 0 0 0.5 −0.0717 −0.0707
σ̄xy 0 0 −0.5 0.0717 0.0717

Table 4.5: Pagano test case: results for D = 10. Model M3 was adopted.
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4.2 Plate - Free-vibration

As benchmark for the free-vibration problem of plates, the results obtained by Demasi [35]
are considered. The results by Demasi are obtained through a FEM based upon RMVT.
The case named "Benchmark 5" in Demasi’s article [35] is here considered, which is defined
as follows.

Geometry Square plate (a = b). Length-over-thickness ratio: D = a/h = 4.
Lamination Antisymmetric angle-ply: [+30/−30]; 2 plies of equal thickness hp = h/2.
Material properties

E11 [-] E22 [-] E33 [-] G12 [-] G13 [-] G23 [-] ν12 [-] ν13 [-] ν23 [-] ρ
[ kg
m3

]
25 1 1 0.5 0.5 0.2 0.25 0.25 0.25 1500

Table 4.6: Demasi test case: ply material properties. E11, E22, E33, G12, G13, G23 are normalized over E22.

Boundary conditions Three configurations are investigated: CCCC, FCFC and FCCF.
Results The results are normalized in the following manner:

ω̄ =
a2

h

√
ρ

E22
ω (4.3)

Computational model The same RMVT model used by Demasi is employed, i.e.
LM4 = LM4,4,4

4,4,4 . The Ritz orders of expansion adopted are: Ru = Su = 8 (Rs = Ss =

Ru + 1).

Figure 4.5: Demasi test case.
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Table 4.7 compares the results obtained by Demasi’s FEM and those obtained through
the present model. The results by Demasi were computed with 4 × 4 (MESH1) and 5 × 5

(MESH2) quadratic isoparametric plate elements (Q9). Figures 4.6, 4.8, 4.7 compare the
modal shapes of the first 4 vibration modes for the 3 sets of boundary conditions.

Frequency parameter ω̄1 ω̄2 ω̄3 ω̄4

CCCC
MESH 1 [35] 8.819 13.046 15.320 18.701
MESH 2 [35] 8.801 12.970 15.247 18.466

Present 8.782 12.900 15.184 18.195
FCFC

MESH 1 [35] 4.782 6.659 10.080 12.325
MESH 2 [35] 4.759 6.632 9.970 12.228

Present 4.731 6.592 9.866 12.130
FCCF

MESH 1 [35] 2.864 6.220 8.079 9.732
MESH 2 [35] 2.858 6.198 8.057 9.663

Present 2.848 6.171 8.029 9.549

Table 4.7: Demasi test case: comparison of the first four circular frequencies.

Table 4.7 shows a very good agreement between the FEM results of Demasi and the present
Ritz-based results. This benchmark is particularly useful as it allows to compare two
RMVT-based computational models that differ only in the discretization method. It can be
noticed that the present Ritz method predicts lower frequencies compared to those obtained
from the FEM approach: the discretization error using higher order Ritz polynomials is
lower than that of the rather coarse FEM meshes employed by Demasi.
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Figure 4.6: Demasi test case: first four modes corresponding to the plate with boundary conditions CCCC.

Figure 4.7: Demasi test case: first four modes corresponding to the plate with boundary conditions FCFC.

Figure 4.8: Demasi test case: first four modes corresponding to the plate with boundary conditions FCCF.
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4.3 Open shell - Bending

In order to validate the results for the bending problem of an open shell, the exact solu-
tion derived by Ren [36] for the cylindrical bending problem is utilized. In the cylindrical
bending problem a state of plane strain in the plane (y, z) is assumed (i.e., the panel is
considered to extend indefinitely along the x axis). Among the benchmark configurations
studied by Ren, the attention is restricted to the most challenging one, involving a strongly
orthotropic laminate. The problem, illustrated in Figure 4.9, is defined as follows.

Geometry Semi-infinite cylindrical panel. Curvature radius: R = 10. The length of
the middle surface in the y-direction is b = φR, where φ = π

3 . Different values of depth
ratios (S = R/h) are investigated: S = 2, 4, 10, 50, 100, 500. For S = 2, the shell is thick, or
deep, with b/h = ΦR/h = 2Φ; for S = 500, the shell is thin, or shallow, with b/h = 500Φ.

Composite stack 3 plies of equal thickness: [90/0/90] (outer plies have fibers oriented
in circumferential direction).

Material properties

E11 [Pa] E22 [Pa] E33 [Pa]
172× 109 6.9× 109 6.9× 109

G12 [Pa] G13 [Pa] G23 [Pa]
3.4× 109 3.4× 109 1.4× 109

ν12 [-] ν13 [-] ν23 [-]
0.25 0.25 0.25

Table 4.8: Ren test case: ply material properties.

Boundary conditions For the sides at y = 0 and y = b : SS. For the sides normal
to the x-direction, no boundary conditions should be specified. However, due to the way
the cylindrical bending problem was implemented, all four boundary conditions have to be
specified within the code. For this case FF conditions were used.

Load Sinusoidal load applied on the top surface: P = P0sin(πb y).
Results The results are made non-dimensional in the following manner:

ūy =
100E22

P0hS3
uy ūz =

10E22

P0hS4
uz

(σ̄xx, σ̄yy) =
1

P0S2
(σxx, σyy) σ̄zz =

1

σxx(h2 ,
b
2)
σzz σ̄yz =

1

P0S
σyz

(4.4)

The nondimensional thickness coordinate ξ = z
h has been adopted.

Computational model Three models were used depending on the depth ratio S, as
reported in Table 4.9. Due to the cylindrical bending assumption, it is unnecessary to
allocate DOF in the x-direction: in Table 4.9, the symbol "−" indicates that the variables
ux and σxz have been omitted from the model.
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S Model Model ID

2, 4, 10 LM−,6,5
−,6,5 M1

50, 100 LM−,3,2
−,3,2 M2

500 EM−,3,2
−,3,2 M3

Table 4.9: Ren test case: models adopted depending on S = R
h
.

Furthermore, since the results will be independent with respect to the axial direction,
this condition can be represented by imposing Ru = Rs = 1. Setting the Ritz orders of
expansion equal to 1 conveys constant values along the x direction. The Ritz orders of
expansion adopted are: Ru = 1, Rs = 1, Su = 10, Ss = 11.

Figure 4.9: Ren test case: shell panel in cylindrical bending.

In table 4.10 results obtained by Ren’s exact solution and the present theory are compared.
The transverse stresses are obtained from the assumed model.
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Exact [36] Present

S ūz σ̄yy σ̄xx σ̄yz ūz σ̄yy σ̄xx σ̄yz(
0, b2

) (
∓ h

2 ,
b
2

) (
∓ h

2 ,
b
2

)
(0, 0)

(
0, b2

) (
∓ h

2 ,
b
2

) (
∓ h

2 ,
b
2

)
(0, 0)

2 1.436
−3.467
2.463

−0.0347
0.0871

0.394 1.476
−3.122
2.801

−0.0316
0.1063

0.408

4 0.457
−1.772
1.367

−0.0177
0.0293

0.476 0.462
−1.669
1.452

−0.0176
0.0321

0.482

10 0.144
−0.995
0.897

−0.0100
0.0115

0.525 0.144
−0.976
0.912

−0.0098
0.0118

0.526

50 0.0808
−0.798
0.792

−0.0080
0.0079

0.526 0.0810
−0.796
0.785

−0.0080
0.0079

0.525

100 0.0787
−0.786
0.781

−0.0079
0.0078

0.523 0.0788
−0.786
0.780

−0.0079
0.0078

0.523

500 0.0773
−0.780
0.768

−0.0078
0.0077

0.525 0.0779
−0.779
0.778

−0.0079
0.0077

0.554

Table 4.10: Ren test case: comparison of the exact solution with the results from the present theory.

The results present good agreement with the exact solution. Discrepancies are larger for
low R/h ratios, and as the ratio R/h increases, the agreement between the present theory
and the exact solution improves. Furthermore, a higher ratio R/h allows obtaining good
results even if less accurate models are adopted. For instance, for S = 500 an ESL model
has been adopted, nevertheless, the results obtained are still in very good agreement with
the exact solution.

For high orders of depth ratios (S = 100, 500), it is also possible to introduce an approxi-
mation similar to the Donnell shallow shell theory by setting λD = 0 in Eq.(2.3). Table 4.11
compares results obtained from model LM−,3,2

−,3,2 with and without Donnell approximation.
Substantial differences are found, in particular it can be noticed that both displacements
and stresses are underestimated if the contribution to the transverse shear strain of the tan-
gential displacement due to the curvature is neglected. In the present framework, imposing
λD = 0 allows computing fewer terms, but the benefits from a numerical standpoint are
almost negligible since the bottleneck is given by the solution of the linear system. There-
fore, since the benefits of the Donnell approximation are minor and the results are sensibly
worsened by it, it is not optimal to discard part of the curvature effects on the transverse
deformations.
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λD = 1 λD = 0

S ūz σ̄yy σ̄xx σ̄yz ūz σ̄yy σ̄xx σ̄yz(
0, b2

) (
∓ h

2 ,
b
2

) (
∓ h

2 ,
b
2

)
(0, 0)

(
0, b2

) (
∓ h

2 ,
b
2

) (
∓ h

2 ,
b
2

)
(0, 0)

100 0.0788
−0.786
0.780

−0.0079
0.0078

0.523 0.0623
−0.6975
0.6942

−0.0070
0.0070

0.465

500 0.0779
−0.779
0.778

−0.0078
0.0078

0.521 0.0615
−0.6923
0.6916

−0.0069
0.0069

0.464

Table 4.11: Ren test case: Donnell’s approximation effects.

Finally, it is possible to compare the distribution along the thickness obtained through the
present theory of σ̄zz, σ̄yy, σ̄yz and ūy for S = 10, with the exact solution.

As it is shown in Figure 4.10 the present theory is able to retrieve the exact solution
with a high degree of accuracy. Finally, it is remarked that σ̄zz and σ̄yz fit very well
the exact solution and have been computed a priori, without, therefore, the need of any
post-processing computation.
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Figure 4.10: Comparison between the exact solution by Ren and the present theory of the through-the-thickness
distributions of ūy , σ̄yy , σ̄yz and σ̄zz .
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4.4 Open shell - Free-vibration

In order to validate the results for the free-vibration problem for open shells, the results
obtained by Asadi and Qatu [37] are used as benchmark. In particular, among all the lay-
ups investigated by Asadi and Qatu, the focus will be posed on the angle-ply lamination
scheme [−45/45]3, in order to present a challenging test case. The problem is illustrated in
Figure 4.11 and is defined as follows.

Geometry Square cylindrical panel (a = b). The length-over-thickness ratio (D = a/h)

is 10 (moderately thick), the depth ratio (S = R/h) is 5 (very deep).
Composite stack Antisymmetric angle-ply: [−45/45]3, all plies of equal thickness.
Material properties

E11 [-] E22 [-] E33 [-] G12 [-] G13 [-] G23 [-] ν12 [-] ν13 [-] ν23 [-] ρ
[ kg
m3

]
25 1 1 0.5 0.5 0.2 0.25 0.25 0.572 1

Table 4.12: Asadi and Qatu test case: ply material properties. E11, E22, E33, G12, G13, G23 are normalized over E22.

Boundary conditions Different BCs are investigated: SSSS, CCCC, CSCS, CFCF,
CFSF, FSFC.

Results The first 5 natural circular frequencies are considered and are normalized as:

ω̄ =
a2

h

√
ρ

E22
ω (4.5)

Computational model Two ESL theories are adopted for computing the free-vibration
(global) response: a mixed first-order shear deformation theory and a higher-order the-
ory. In both theories top-bottom stress boundary conditions were imposed: σxz(x, y, h2 ) =

σyz(x, y,
h
2 ) = σzz(x, y,

h
2 ) = 0 and σxz(x, y,−h

2 ) = σyz(x, y,−h
2 ) = σzz(x, y,−h

2 ) = 0.

Model Model ID

EM2,2,1
1,1,0 M1

EM4,4,3
3,3,2 M2

Table 4.13: Asadi and Qatu test case: models adopted.

The Ritz orders of expansion adopted are: Ru = Su = 15 (Rs = Ss = Ru + 1).
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Figure 4.11: Asadi and Qatu test case.

Table 4.14 compares the results reported by Asadi and Qatu [37], with those obtained by
the present model. The results reported by Asadi and Qatu are obtained through two dif-
ferent methods. The first one is based upon a first-order shear deformation theory (referred
to as FSDT), which includes both shear deformation and rotary inertia effects, but it does
not include z/R effects; the second method is a 3-D elasticity solution obtained with the
FEM (referred to as 3D). The number of quadratic solid elements used in the FEM by
Asadi and Qatu [37] did not exceed [40× 40× 12].

As it results from Table 4.14 the present mixed first-order shear deformation theory
outperforms the FSDT theory presented by Asadi and Qatu for every set of boundary
conditions and for all of the first five natural frequencies. Furthermore, the present theory
EM4,4,3

3,3,2 conveys results in very good agreement with those of the 3-D FEM analysis. Taking
the 3-D FEM solution as reference, the maximum error committed is of about 5%. These
results prove the capability of the present high order theory to retain the effects due to the
transverse deformability, anisotropic couplings and curvature of deep shells. As a general
remark, a relative error of few percentages is still acceptable as the reference results are
obtained through a 3-D FEM which is, by definition, not exact.

The choice of imposing the correct values of top and bottom transverse stresses not only
has the effect of reducing the number of unknowns, and therefore the computational effort
required to solve the algebraic system, but considerably improves the overall results. Table
4.15 compares the results of the present theories with and without the exact enforcement
of the homogeneous stress boundary conditions at the top and bottom surfaces of the shell.
As can be noticed, imposing top and bottom boundary conditions sensibly improves the
results. In some of the cases here considered, the improvements make the results of the
mixed FSDT (13 DOF) comparable with those of the higher-order model (25 DOF) where
no boundary conditions were imposed. In fact, imposing top and bottom exact values for
transverse stresses allows computing a more accurate stress field. This then enables the
RMVT to estimate better shear correction factors. From Table 4.15, it is also clear that
using correct shear correction factors is particularly important for low order theories: the
improvements introduced for the mixed FSDT are larger than that for the high-order model.



60 Model validation

Frequency parameter ω̄1 ω̄2 ω̄3 ω̄4 ω̄5

SSSS
FSDT [37] 24.859 26.994 41.519 41.181 43.027

Present (M1) 23.701 26.830 38.557 40.634 42.733
3D [37] 22.842 26.432 37.744 38.975 41.111

Present (M2) 22.993 26.599 37.516 39.951 42.152
CCCC

FSDT [37] 39.578 41.011 47.437 50.070 56.788
Present (M1) 38.046 39.045 46.235 48.186 54.268

3D [37] 37.562 38.711 45.369 47.324 53.543
Present (M2) 37.441 38.381 45.692 47.569 53.289

CSCS
FSDT [37] 29.705 36.949 41.861 47.042 52.652

Present (M1) 28.357 36.466 39.188 45.833 50.179
3D [37] 27.675 35.182 38.499 44.261 48.880

Present (M2) 27.778 36.027 38.199 45.080 49.344
CFCF

FSDT [37] 15.980 18.462 28.015 30.252 32.923
Present (M1) 15.194 17.833 27.105 29.028 31.231

3D [37] 15.344 17.798 26.640 28.518 31.178
Present (M2) 14.904 17.493 26.801 28.529 30.567

CFSF
FSDT [37] 13.916 14.368 22.996 24.014 29.325

Present (M1) 13.150 14.204 22.047 23.510 28.070
3D [37] 13.127 14.149 21.550 23.253 27.606

Present (M2) 12.725 13.973 21.647 23.294 27.424
FSFC

FSDT [37] 4.9792 17.060 18.186 29.258 29.487
Present (M1) 4.8114 16.068 17.170 27.835 28.551

3D [37] 4.7332 15.332 17.011 27.282 28.683
Present (M2) 4.7144 15.701 16.833 27.306 28.301

Table 4.14: Asadi and Qatu test case: comparison of the first five circular frequencies.
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Frequency parameter ω̄1 ω̄2 ω̄3 ω̄4 ω̄5

SSSS
Present (M1) 23.701 26.830 38.557 40.634 42.733

Present (M1) no b.cs. 25.189 26.996 41.652 41.875 43.202
Present (M2) 22.993 26.599 37.516 39.951 42.152

Present (M2) no b.cs. 23.246 26.667 38.057 40.166 42.314
CCCC

Present (M1) 38.046 39.045 46.235 48.186 54.268
Present (M1) no b.cs. 39.813 41.345 47.826 50.573 57.138

Present (M2) 37.441 38.381 45.692 47.569 53.289
Present (M2) no b.cs. 37.797 38.919 45.991 48.056 53.898

CSCS
Present (M1) 28.357 36.466 39.188 45.833 50.179

Present (M1) no b.cs. 29.914 41.345 47.826 50.573 52.911
Present (M2) 27.778 36.027 38.199 45.080 49.344

Present (M2) no b.cs. 28.106 36.230 38.771 45.415 49.988
CFCF

Present (M1) 15.194 17.833 27.105 29.028 31.231
Present (M1) no b.cs. 15.916 18.670 27.982 30.511 32.989

Present (M2) 14.904 17.493 26.801 28.529 30.567
Present (M2) no b.cs. 15.063 17.666 26.983 28.870 30.962

CFSF
Present (M1) 13.150 14.204 22.047 23.510 28.070

Present (M1) no b.cs. 13.716 14.624 22.766 24.116 29.356
Present (M2) 12.725 13.973 21.647 23.294 27.424

Present (M2) no b.cs. 12.881 14.070 21.845 23.387 27.713
FSFC

Present (M1) 4.811 16.068 17.170 27.835 28.551
Present (M1) no b.cs. 5.070 16.778 18.242 28.937 29.254

Present (M2) 4.714 15.701 16.833 27.306 28.301
Present (M2) no b.cs. 4.757 15.880 17.040 27.540 28.427

Table 4.15: Top and bottom boundary conditions effects.

Finally, Figure 4.12 compares the modal shapes obtained through the present method (M2)
and those reported by Asadi and Qatu. The perfect agreement between the modal shapes
allows to confirm the pertinence of the comparison of the corresponding natural frequencies.
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Figure 4.12: First five modes comparison between the 3-D FEM by Asadi and Qatu and the present theory.
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4.5 Closed shell - Bending

In order to validate the results for the bending problem of a closed circular cylindrical shell,
the exact elasticity solution reported by Chandrashekhara and Kumar [38] for a closed
cylinder with a localized load is utilized. The problem is illustrated in Figure 4.13 and
defined as follows.

Geometry Closed circular cylinder with mid-surface radius R, length-over-thickness
ratio: D = a/h = 5, and radius-over-thickness ratio: S = R/h = 5.

Composite stack Symmetric cross-ply laminate: [90/0/90] (all plies of equal thick-
ness).

Material properties

E11 [Pa] E22 [Pa] E33 [Pa]
84.4× 109 7.32× 109 7.32× 109

G12 [Pa] G13 [Pa] G23 [Pa]
4.1× 109 4.1× 109 4.1× 109

ν12 [-] ν13 [-] ν23 [-]
0.3 0.3 0.32

Table 4.16: Chandrashekhara and Kumar test case: ply material properties.

Boundary conditions Simple-support (SS ) at x = 0 and at x = a.
Load Localized pressure load of uniform amplitude P0 on the outer surface. The loaded

area extends from x1 = 3
8a to x2 = 5

8a and from y1 = −θ1(R+ h
2 ) to y2 = θ1(R+ h

2 ), where
θ1 = 1

8 rad.
Results Through-thickness distributions of non-dimensional displacements and stresses:

ūx

(
0, 0, ξ =

z

h

)
=

100E22

P0hS4
ux(0, 0, ξ)

(σ̄xx, σ̄yy)

(
L

2
, 0, ξ

)
=

1

P0S2
(σxx, σyy)

(
L

2
, 0, ξ

)
(σ̄xz, σ̄yz, σ̄zz)

(
L

2
, 0, ξ

)
=

1

P0S2
(σxz, σyz, σzz)

(
L

2
, 0, ξ

) (4.6)

Computational model Since we are interested in a local response, a LW model is
adopted.

Model Model ID

LM3,3,2
3,3,2 M1

Table 4.17: Chandrashekhara and Kumar test case: model.

The Ritz orders of expansions adopted are: Ru = Su = 20 (Rs = Ss = Ru + 1). It is here
selected Ru = Su and Rs = Ss for simplicity, however different orders could be investigated
in order improve computational efficiency respect to the Ritz approximation.
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Figure 4.13: Chandrashekhara and Kumar test case.

Figure 4.14 compares the distribution along the thickness of the axial displacement ūx and
of the in-plane stresses σ̄xx and σ̄yy. The distributions predicted by the present theory fit
well the exact solution with small discrepancies, in particular next to the top and bottom
surfaces.
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Figure 4.14: ūx, σ̄xx, σ̄yy : comparison between the exact solution by Chandrashekhara and Kumar, and the present
theory.

In this case, the sources of complexities are the low ratio S and the presence of a localized
load condition. This latter aspect can be particularly difficult to be handled in the context
of a formulation based on the use of global shape functions. However, as demonstrated
by the results, a high number of shape functions can be easily considered thanks to the
efficiency of the implementation, allowing to capture even local effects.

The abrupt changes of stresses justify the decision to adopt a LW theory for this test
case. In fact, even if the LW model is computationally demanding, it assumes fields which
are C0-continuous along the thickness. This allows capturing sudden variations typical of
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the interfaces. It is reported also that the present problem is solved in about 5.5 s on a
regular personal computer equipped with an Intel Core i7 and 16 GB of RAM. Therefore,
even very high order models in the present formulation can be easily solved by nowadays
computational power.

For the sake of completeness, thickness distributions of transverse stresses are also
reported in Figure 4.15, however no comparison with the reference solution of Chan-
drashekhara and Kumar is possible since these results were not reported in [38].
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Figure 4.15: σ̄xz , σ̄yz , σ̄zz : computed a priori using the present theory.
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4.6 Closed shell - Free-vibration

To validate the present implementation against the free-vibration problem of closed shells,
reference is made to the results obtained by Brischetto [39] for a sandwich shell with com-
posite skins. Brischetto computed the frequencies by adopting a 3-D analysis based on
a layerwise approach. The free-vibration analysis was applied to cylinders with different
radius-over-thickness ratios (R/h). The problem, illustrated in Figure 4.16, is defined as
follows.

Geometry Closed circular cylinder of length a = 100 and mid-surface radius of cur-
vature R = 10. Different radius-over-thickness ratios (S = R/h) are investigated : S =

1000, 100, 10, 5. Length-over-thickness ratio: D = a/h = 10S. The sandwich cylinder is
constituted of two skins and one core. The core thickness is: hc = 0.7h. The top and
bottom skins have equal thickness, and it is: hs = 0.15h. Furthermore, each skin is made
of two plies of equal thickness.

Composite stack Sandwich material: [90/0/core/0/90].
Material properties The material properties of the Graphite-Epoxy plies are:

E11 [Pa] E22 [Pa] E33 [Pa] G12 [Pa] G13 [Pa]
132.38× 109 10.756× 109 10.756× 109 5.6537× 109 5.6537× 109

G23 [Pa] ν12 [-] ν13 [-] ν23 [-] ρGE [kg/m3]

3.603× 109 0.24 0.24 0.49 1600

Table 4.18: Brischetto test case: Graphite-Epoxy material properties.

The material properties of the PVC core are:

E11 [Pa] E22 [Pa] E33 [Pa] G12 [Pa] G13 [Pa]
180× 106 180× 106 180× 106 65.7× 106 65.7× 106

G23 [Pa] ν12 [-] ν13 [-] ν23 [-] ρPV C [kg/m3]

65.7× 106 0.37 0.37 0.37 50

Table 4.19: Brischetto test case: PVC material properties.

Boundary conditions Simple-support (SS ) at x = 0 and at x = a.
Results Non-dimensional natural circular frequencies:

ω̄ =
a2

h

√
ρGE
E22GE

ω (4.7)

Computational model For this benchmark, three sublaminates are used, 1 for each
skin and one for the core, in view of minimizing the computational cost without affect-
ing the accuracy. Thanks to the versatility of the formulation, higher-order theories are
implemented straight-forwardly as the curvature effects increase, as shown in Table 4.20.
Furthermore, higher orders are adopted for the highly shear-deformable core, compared to
the orders adopted for the stiff skins.
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S Top skin Core Bottom skin Model ID

10, 5 EM2,2,1
2,2,1 EM4,4,3

4,4,3 EM2,2,1
2,2,1 M1

1000, 100 EM3,3,2
3,3,2 EM5,5,4

5,5,4 EM3,3,2
3,3,2 M2

Table 4.20: Brischetto test case: models adopted depending on S = R
h
.

The Ritz orders of expansion adopted are: Ru = 40, Rs = 41, Su = 40, Ss = 41. The high
orders assure converged results for all the considered modes (convergence study is omitted
for brevity).

Figure 4.16: Brischetto test case.

Brischetto uses a Navier-type solution which allows computing modes corresponding to a
specified pair of half-wave numbers along the axial and circumferential directions. This
type of solution does not introduce any in-plane discretization errors. Since Brischetto’s
solution technique outputs a coarser set of natural frequencies respect to the present theory,
many additional modes obtained through the present method are not reported.

In Table 4.21 the results obtained by Brischetto and the present theory are compared. In
particular, the results refer to the first three frequencies for different radius-over-thickness
ratios relative to different combinations of half-wave numbers (m for the circumferential
direction and n for the axial direction). The results for geometries with high radius-over-
thickness ratios (R/h = 1000 and R/h = 100) match almost perfectly, while results for
low radius-over-thickness ratios (R/h = 10 and R/h = 5) are less accurate but with errors
much lower than 1%, therefore, acceptable.

As previously discussed, high models coupled with a high in-plane discretization allow
to obtain excellent results, Table 4.21 amply confirms it.
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S 1000 (M1) 100 (M1) 10 (M2) 5 (M2)

I mode (m=0, n=1)
Brischetto [39] 8797.8 879.79 87.986 44.004

Present 8797.8 879.79 87.986 44.004
II mode (m=0, n=1)

Brischetto [39] 31038 3103.8 310.42 155.25
Present 31038 3103.8 310.46 155.27

III mode (m=0, n=1)
Brischetto [39] 98885 9888.8 991.38 340.44

Present 98885 9888.8 991.37 340.45
I mode (m=2, n=1)

Brischetto [39] 4597.4 459.76 46.133 23.238
Present 4597.4 459.75 46.135 23.239

II mode (m=2, n=1)
Brischetto [39] 41954 4195.4 419.69 209.84

Present 41954 4200.0 419.72 209.85
III mode (m=2, n=1)

Brischetto [39] 139995 13999 1376.7 395.64
Present 139995 13999 1376.8 395.65

I mode (m=2, n=2)
Brischetto [39] 11287 1128.7 113.47 57.167

Present 11287 1138.7 113.47 57.170
II mode (m=2, n=2)

Brischetto [39] 68111 6811.1 681.1 340.25
Present 68111 6811.1 681.18 340.29

III mode (m=2, n=2)
Brischetto [39] 140500 14049 1382.3 473.05

Present 140499 14050 1382.4 473.09
I mode (m=2, n=3)

Brischetto [39] 17724 1772.6 178.60 89.936
Present 17724 1772.6 178.60 89.937

II mode (m=2, n=3)
Brischetto [39] 96930 9693.0 968.91 481.89

Present 96930 9693.0 969.05 481.81
II mode (m=2, n=3)

Brischetto [39] 141452 14145 1392.4 500.05
Present 141452 14145 1392.5 500.10

Table 4.21: Brischetto test case: first three fundamental frequencies for different radius-to-thickness ratios and for
different combinations of half-wave numbers.
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4.7 RMVT comparison with PVD

Finally, one last test case is proposed in order to highlight the differences of the present
method with the Ritz S-GUF PVD formulation developed by D’Ottavio et al. [1]. A free-
edge bending problem is considered.

Geometry Square cylindrical panel (a = b). The length-over-thickness ratio (D = a/h)

is 5, the depth ratio (S = R/h) is 10.
Composite stack Double-core sandwich: [90/0/90/core/90/0/90/core/90/0/90]. The

thickness of each ply is hp = 0.015h. The thickness of each core is hc = 0.4325h.
Material properties

E11 [Pa] E22 [Pa] E33 [Pa]
Ply 172.5× 109 6.9× 109 6.9× 109

Core 0.276× 109 0.276× 109 3.45× 109

G12 [Pa] G13 [Pa] G23 [Pa]
Ply 3.45× 109 3.45× 109 2.76× 109

Core 0.1104× 109 0.414× 109 0.414× 109

ν12 [-] ν13 [-] ν23 [-]
Ply 0.25 0.25 0.25
Core 0.25 0.02 0.02

Table 4.22: RMVT comparison with PVD test case: ply and core material properties.

Boundary conditions Cantilever cylindrical panel: CFFF.
Load Bisinusoidal load applied on the top surface: P = P0sin(πax)sin(πb y).
Results Through-thickness distributions of non-dimensional displacements and stresses

evaluated at x = a and y = b/2:

(ūx, ūy) =
100Eply22

P0hD3
(ux, uy) ūz =

100Eply22

P0hD4
(ux, uy)

(σ̄xx, σ̄yy) =
1

P0D2
(σxx, σyy) σ̄xy =

10

P0D2
σxy

(σ̄xz, σ̄yz, σ̄zz) =
1

P0D
(σxz, σyz, σzz)

(4.8)

The nondimensional thickness coordinate ξ = z
h has been adopted.

Computational model Five sublaminates are used, one for each skin and one for each
core, in view of minimizing the computational cost without affecting the accuracy. For the
cores, which are characterized by a higher shear deformability, higher models compared to
the skins were used. LW models were used in the sublaminates associated to the skins.

Variational principle Top skin Core 1 Middle skin Core 2 Bottom skin

RMVT LM2,2,1
2,2,1 EM3,3,2

3,3,2 LM2,2,1
2,2,1 EM3,3,2

3,3,2 LM2,2,1
2,2,1

PVD LD2,2,1 ED3,3,2 LD2,2,1 ED3,3,2 LD2,2,1

Table 4.23: RMVT comparison with PVD test case: models adopted.
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The Ritz orders of expansion adopted are: Ru = Su = 10 (Rs = Ss = Ru + 1).

Figure 4.17: RMVT and PVD comparison test case.

Figure 4.18 compares the through-thickness distributions of displacements and stresses
obtained with RMVT and PVD. The transverse stresses for RMVT are obtained a priori
while for PVD are obtained through integration of the equilibrium equations.
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Figure 4.18: Through-thickness distributions of ūx, ūy , ūz , σ̄xx, σ̄yy , σ̄xy , σ̄xz , ūyz and σ̄zz . Comparison between
RMVT and PVD.

The test case is particularly challenging, as can be noticed from the fact that even the
bending stresses σ̄xx and σ̄yy present some small discrepancies between the two models.
As illustrated in Figure 4.19, the differences are mainly located in the bottom skin and in
the top skin. Since this test case presents a difficult configuration it is suited to highlight
the differences between the two similar formulations, based on two different variational
principles, RMVT and PVD.
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Figure 4.19: Through-thickness distributions of σ̄xx and σ̄yy . Comparison between RMVT and PVD.

Considering σ̄xz it can be noticed that the values obtained by RMVT result to be shifted
towards higher values compared to the solution based on the PVD, Figure 4.20. Further-
more, the RMVT solution presents oscillations within the three skins, while the values
obtained by the PVD are smoother. σ̄xz computed through RMVT fails to fulfill the top-
bottom equilibrium conditions σ̄xz(h/2) = σ̄xz(−h/2) = 0. Exploiting the characteristic of
RMVT, it is possible to fulfill these conditions a priori by imposing the correct values of
σ̄xz(h/2) = 0 and σ̄xz(−h/2) = 0, Figure 4.21.
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Figure 4.20: Through-thickness distribution of σ̄xz . Comparison between RMVT and PVD.
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Figure 4.21: Through-thickness distribution of σ̄xz with and without the imposition of top-bottom stress boundary
conditions. Comparison between RMVT and PVD.

The value of σ̄zz was computed at several distances from the free-edge as shown in Figure
4.22. σ̄zz computed through RMVT presents in all cases an almost repetitive distribution
between the bottom half and the top half. σ̄zz computed through the PVD presents a
similar distribution to the one computed through RMVT only at x = 0.9a, as the free-edge
is approached it changes distribution and increases linearly throughout the thickness.
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Figure 4.22: Through-thickness distributions of σ̄zz computed at different distances from the free-edge. Comparison
between RMVT and PVD.

In order to assess which numerical method provides the most accurate results, further
studies should be conducted. For instance, this same problem should be solved using a
commercial FEM software and its solution compared to those presented here.



Chapter 5

Assessment of the numerical tool

The present mixed theory assumes both kinematic variables (ux, uy, uz) and static variables
(σxz, σyz, σzz). These variables are described by a model (through the thickness) and the
Ritz approximation (in-plane). The present chapter presents some considerations about
how these energetically conjugated fields should be chosen so that a stable, and, possibly,
optimal method is obtained. Different aspects play a role: the model orders, the orders
of the Ritz approximation, and the top-bottom stress boundary conditions. Regarding the
stress boundary conditions on the boundary of the domain in the (x, y) plane (∂Ω), no
particular conditions have to be imposed, as it derives from the variational principle.

In the present Chapter, by making the hypothesis that the in-plane approximation
(Ritz) and the out-of-plane approximation (model) do not influence each other, these two
aspects will be studied separately. Therefore, the first section will investigate the effect of
different orders for the Ritz approximation, while the second section will present results
about the model orders and the top-bottom stress boundary conditions. Both the linear
static problem and the free-vibration analysis will be considered.

5.1 Ritz orders of expansion

In a classical displacement-based approach Ritz orders of expansion refer only to the dis-
placement variables and, depending on the specific problem, they need to be set to an order
high enough to reach convergence [1]. Nevertheless, when employing a mixed variational
principle, in addition to convergence considerations, also the relative Ritz orders of expan-
sions for displacement variables and stress variables have to be taken into account. It will
be here shown that the Ritz order of expansion for stress variables has to be higher than the
order for displacement variables: Ms > Mu. In particular, since in the present framework
it is possible to select two independent orders of Ritz approximation, one in the x-direction
(R) and one in the y-direction (S), it is shown that a correct Ritz approximation requires:
Rs > Ru and Ss > Su. In this section, the results are compared with those obtained from
the corresponding displacement-based model.

Test case In order to focus only on the effects of selecting different relative orders of
Ritz approximation for displacement and stress variables, an isotropic plate is considered.

Geometry Square plate (a = b), characterized by a thickness ratio (a/h) of 10.
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Material properties

E11 [Pa] E22 [Pa] E33 [Pa] G12 [Pa] G13 [Pa]
68.9× 109 68.9× 109 68.9× 109 26.7× 109 26.5× 109

G23 [Pa] ν12 [-] ν13 [-] ν23 [-] ρ [kg/m3]

26.5× 109 0.3 0.3 0.3 2740

Table 5.1: Aluminum material properties.

Boundary conditions Three sets are investigated: FFFF, SSSS and CCCC.
Computational model The model here adopted is EM0,0,−

1,1,0 , "-" indicates that no
DOF are used for σzz. No top-bottom stress boundary conditions are imposed. Since
the plate is isotropic and the dimensions in the x and y directions are the same, there is
no reason to select different Ritz orders of expansion along the two directions, therefore:
Ru = Su and Rs = Ss. Four different orders of Ritz approximation are considered (Ru and
Su are fixed at 15):

1. Rs = Ru − 1; Ss = Su − 1 → ∆ = −1.

2. Rs = Ru; Ss = Su → ∆ = 0.

3. Rs = Ru + 1; Ss = Su + 1 → ∆ = +1.

4. Rs = Ru + 5; Ss = Su + 5 → ∆ = +5.

In Figure 5.1 are compared the first twenty-five modes obtained through the RMVT model
and an equivalent PVD model. The PVD equivalent model is ED1,1,0 with Ritz orders of
expansion: Ru = 15 and Su = 15. Furthermore, the first four modes are reported in Figure
5.2 (for brevity only the case with boundary conditions SSSS is shown, similar results can
be observed for any set of boundary conditions).
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Figure 5.1: Comparison of first twenty-five modes of an isotropic square plate obtained through RMVT with different
Ritz orders of expansion and an equivalent PVD model.
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Figure 5.2: Comparison of first four modal shapes of an isotropic simply-supported square plate obtained through
RMVT with different Ritz orders of expansion for displacement and stress variables, and an equivalent PVD model.

Figure 5.1 and Figure 5.2 show clearly that in order to obtain correct results it must hold
that: Rs > Ru and Ss > Su. In particular, the following considerations can be drawn:

1. Rs < Ru; Ss < Su: many natural frequencies with almost zero frequency are present
and they are associated to non-physical modes. This effect is less prominent in con-
figuration FFFF, however macroscopic errors are still present.

2. Rs = Ru; Ss = Su: correct frequencies and modes can be obtained, but in addition
to them also non-physical frequencies and modes are computed.

3. Rs > Ru; Ss > Su: correct frequencies and modes are obtained.

Furthermore, it is sufficient to have: Rs = Ru + 1 and Ss = Su + 1 in order to compute the
correct frequencies and modes, without the presence of any non-physical response. Table 5.2
compares the relative errors for the first five natural frequencies for the simply-supported
configuration. The error is defined as: err = |fRMV T − fPV D|/fPV D × 100.

Mode err:∆ = +1 err:∆ = +5

1 2.4584× 10−13 2.0896× 10−13

2 1.0249× 10−13 1.8448× 10−13

3 2.0498× 10−14 8.1992× 10−14

4 4.0943× 10−13 3.9481× 10−13

5 5.2641× 10−13 3.3632× 10−13

Table 5.2: First five natural frequencies errors for a simply-supported plate between PVD and RMVT, for ∆ = +1

and ∆ = +5.

Increasing more than one the Ritz approximation orders for stress variables in each dimen-
sion, with respect to the orders for displacement variables, would not affect the results.
Therefore, using much higher relative orders of approximation for stress variables would
only increase the computational cost, resulting in a non-optimal selection of parameters.
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5.2 Model orders

The relative orders used for the model expansion of displacements and stresses is important
as it may cause numerical instabilities. The present section discusses which models result
more correct, both from numerical results and from an analytical standpoint.

5.2.1 Free-vibration problem

Regarding the stability of the free-vibration problem, D’Ottavio in his work [40] highlighted
the possibility of instabilities under the form of spurious modes when employing a wrong
mixed model.

Correct models, in this case, are defined as models that satisfy the two following condi-
tions:

1. There are no stress modes not conjugated to any kinematic mode.

2. Apart from the kinematic modes associated with plane stress modes, all the kinematic
modes have to be associated with a transverse stress mode.

These two conditions derive from analytical requirements that need to be fulfilled by the
stiffness matrix K. First of all, it is convenient to collect the displacement variables into
vector U, and the stress variables into vector S. It is then possible to rearrange the elements
of the stiffness matrix into four sub-matrices:

Kv =

[
A BT

B C

]{
U
S

}
(5.1)

where for a flat plate geometry the arrays have the following form:

A =

Kuxux Kuxuy 0

Kuyux Kuyuy 0

0 0 0

 B =

Ksxux Ksxuy Ksxuz

Ksyux Ksyuy Ksyuz

Kszux Kszuy Kszuz

 C =

Ksxsx Ksxsy 0

Ksysx Ksysy 0

0 0 Kszsz


Furthermore, it is useful to separate the coupling matrix B into the contribution due to the
geometric terms only (BG) and the contribution due to the Poisson constitutive coupling
(BC).

B = BG + BC =

Ksxux Ksxuy Ksxuz

Ksyux Ksyuy Ksyuz

0 0 Kszuz

+

 0 0 0

0 0 0

Kszux Kszuy 0

 (5.2)

Since RMVT involves only transverse strains and stresses, membrane strains do not need
to be considered for the analysis of spurious modes: only the contributions of the in-plane
displacements to the transverse stresses, that constitute the BC array, should be examined.

Condition 1 and 2 listed above, derive from the most comprehensive treatment of the
stability analysis of a numerical method discretized as in Eq.(5.1). Condition 1 follows from
the inf-sup or LBB condition on the coupling matrix B:

ker(BTG) = {} (5.3)
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while condition 2 follows from the elker condition on the matrix A, denoting kB the kernel
of BG:

rank(kB
T AkB) = NΩ (5.4)

where NΩ is the number of kinematic modes not-conjugated to any transverse stress, i.e,
plane stress modes.

In an internal report D’Ottavio [40] examined the thickness modes of the fundamental
mode (m = n = 1) by means of the Navier solution. He found that optimal models fulfill
indeed ker(BTG) = {}, and that rank(ker(BG)T A ker(BG))) = 3. The three plane stress
modes identified in his work correspond to those of the classical laminated plate theory
(CLPT). Especially, two membrane modes associated to the z-independent functions ux0

and uy0, and one pure bending deformation mode associated to the z-independent function
uz0.

In the following, the same analysis as the one carried out by D’Ottavio is reported for
the present numerical method, to investigate whether similar considerations still hold true.
Several models are considered, and the two main algebraic indexes previously described are
reported for each one of them:

Nstress = ker(BTG)

Nkin = rank(kB
T AkB)

Furthermore, to get an insight into the influence that the Ritz orders of expansion have on
these parameters, different Ritz orders of approximation were used for each model.

The same test case described in Section 5.1 is here adopted (homogeneous square plate
with a/h = 10) but only the set of boundary conditions SSSS is considered. This corre-
sponds to the configuration examined by D’Ottavio [40]. The Ritz orders of expansion for
displacement variables are fixed at Ru = Su = 10.

Since the models here adopted have Nux = Nuy = Nuα and Nσxz = Nσyz = Nσαz . The
following simplified notation is introduced for mixed models:

EM
NσαzNσzz
NuαNuz

(5.5)
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Rs = Ss 9 10 11 15

Model Nstress Nkin Nstress Nkin Nstress Nkin Nstress Nkin

No top-bottom b.cs.

EM0,−
1,0 0 274 0 250 23 241 231 241

EM1,−
1,0 162 274 200 250 265 241 681 241

EM3,−
1,0 486 274 600 250 749 241 1581 241

EM4,−
1,0 648 274 800 250 991 241 2031 241

EM0,0
1,0 81 274 100 250 144 241 456 241

EM0,1
1,0 162 274 200 250 265 241 681 241

EM1,0
1,0 243 274 300 250 386 241 906 241

EM1,1
1,0 324 274 400 250 507 241 1131 241

σxz and σyz top-bottom b.cs. (plane stress)

EM1,−
1,0 0 400 0 400 0 400 0 400

EM2,−
1,0 0 274 0 250 23 241 231 241

EM3,−
1,0 162 274 200 250 265 241 681 241

EM4,−
1,0 324 274 400 250 507 241 1131 241

EM5,−
1,0 486 274 600 250 749 241 1581 241

σxz, σyz and σzz top-bottom b.cs. (3D law)

EM2,1
1,0 0 274 0 250 23 241 231 241

EM2,2
1,0 81 274 100 250 144 241 456 241

EM2,3
1,0 162 274 200 250 265 241 681 241

Table 5.3: Algebraic parameters for the Reissner-Mindlin kinematics. Ru = Su = 10.

Table 5.3 reports the number of not-conjugated stress modes and not-conjugated kinematic
modes for different mixed models based on the Reissner-Mindlin kinematics and different
Ritz orders of expansion. The results in red are associated with wrong results, i.e. modes
at zero frequency. The results underlined are those models that present the less number of
not-conjugated stress modes and not-conjugated kinematic modes. Additional results are
reported in Appendix D for models of the type: EMNσαzNσzz

3,0 and EMNσαzNσzz
3,2 .

It is clear that correct results can be obtained only for models and Ritz orders of ex-
pansion that minimize the number of not-conjugated kinematic modes. In the present
framework, that differs from the one studied by D’Ottavio only in the in-plane approxi-
mation, the correct number of not-conjugated kinematic modes results to be dependant
on the kinematic model. For the kinematic models here considered the correct number of
not-conjugated kinematic modes results to be:

• EM
NσαzNσzz
1,0 : Nkin = 241 (Reissner-Mindlin kinematics).

• EM
NσαzNσzz
3,0 : Nkin = 259.

• EM
NσαzNσzz
3,2 : Nkin = 221.

Incorrect models are characterized by a higher number of Nkin. Similarly, Ritz orders of
approximation Rs ≤ Ru, Ss ≤ Su present a higher number of not-conjugated kinematic
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modes. The smaller are the Ritz orders used for the stress variables compared to those of
the kinematic variables, the higher is the value of Nkin. This result confirms the conclusion
of Section 5.1, where it is stated that correct Ritz orders satisfy the relations Rs > Ru and
Ss > Su.

Differently from what is obtained when a Navier solution is adopted, there are no mod-
els having zero not-conjugated stress modes and minimizing the not-conjugated kinematic
modes at the same time. This result may be because the in-plane Ritz orders of expansion
for the stress variables have a higher base than those adopted for the displacements. Indeed,
if the Ritz orders for the stress variables are further increased, compared to those used for
the displacement variables, the number of not-conjugated stress modes increases as well.
Nevertheless - as can be noticed from Table 5.4 where the non-dimensional eigenfrequencies
for the first four modes of the Reissner-Mindlin kinematics are reported, for Rs = Ss = 11

and Rs = Ss = 15 - the increase of not-conjugated stress modes due to higher Ritz orders
for the transverse stress variables does not affect the results. This result supports once more
the conclusion of Section 5.1, where it is stated that Rs = Ru+1 and Su = Ss+1 are the op-
timal Ritz orders of expansion due to computational reasons. However, in accordance with
the results obtained by D’Ottavio [40], Table 5.4 shows that higher not-conjugated stress
modes due to the model, may increase the rigidity. Further studies should be conducted to
investigate the reason why not-conjugated stress modes due to the Ritz approximation do
not affect the solution as much as not-conjugated stress modes due to the model.

Finally, it is highlighted that models associated with optimal values for both Nstress and
Nkin fulfill the condition of having the DOF of the displacement variables one unit higher
than the DOF of the stress variables (the imposition of the top-bottom stress boundary
conditions removes two DOF per stress variable).
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Model ω̄1 ω̄2 = ω̄3 ω̄4

ED1,0 (k = 1) 5.7944 13.8987 19.4833
ED1,0 (k = 5/6) 5.7693 13.7637 19.4833

Rs = Ss 11 15

Model ω̄1 ω̄2 = ω̄3 ω̄4 ω̄1 ω̄2 = ω̄3 ω̄4

No top-bottom b.cs.

EM0,−
1,0 5.7944 13.8987 19.4833 5.7944 13.8987 19.4833

EM1,−
1,0 5.7944 13.8987 19.4833 5.7944 13.8987 19.4833

EM3,−
1,0 5.7944 13.8987 19.4833 5.7944 13.8987 19.4833

EM4,−
1,0 5.7944 13.8987 19.4833 5.7944 13.8987 19.4833

EM0,0
1,0 5.7944 13.8987 19.4833 5.7944 13.8987 19.4833

EM0,1
1,0 6.3820 15.2152 19.4833 6.3820 15.2152 19.4833

EM1,0
1,0 5.7944 13.8987 19.4833 5.7944 13.8987 19.4833

EM1,1
1,0 6.3820 15.2152 19.4833 6.3820 15.2152 19.4833

σxz and σyz top-bottom b.cs. (plane stress)

EM1,−
1,0 0 0 0 0 0 0

EM2,−
1,0 5.7693 13.7637 19.4833 5.7693 13.7637 19.4833

EM3,−
1,0 5.7693 13.7637 19.4833 5.7693 13.7637 19.4833

EM4,−
1,0 5.7854 13.8500 19.4833 5.7854 13.8500 19.4833

EM5,−
1,0 5.7854 13.8500 19.4833 5.7854 13.8500 19.4833

σxz, σyz and σzz top-bottom b.cs. (3D law)

EM2,1
1,0 5.7693 13.7637 19.4833 5.7693 13.7637 19.4833

EM2,2
1,0 5.7693 13.7637 19.4833 5.7693 13.7637 19.4833

EM2,3
1,0 6.1819 14.6744 19.4833 6.1819 14.6744 19.4833

Table 5.4: First four non-dimensional frequencies for the Reissner-Mindlin kinematics. Ru = Su = 10.
ω̄ = a2

h

√
ρ
E22

ω

It can be concluded that the number of not-conjugated stress modes and not-conjugated
kinematic modes are deeply connected to the definition of correct mixed models. Despite
the numerical differences in the parameters, the models here identified as correct coincide
with those reported by D’Ottavio to have zero not-conjugated stress modes and three
not-conjugated kinematic modes for the Navier solution [40]. Further studies should be
conducted to investigate the physical meaning of the values here obtained.

5.2.2 Bending problem

Considerations about the model choice can be drawn considering the linear static problem.
Demasi in his work [41], showed that when a LW model is adopted it may lead to oscilla-
tions, either in the displacement field or in the stress field. These oscillations depend on
the relative orders used for the displacement field and the stress field. The main finding
by Demasi is that these oscillations disappear when the order used for the out-of-plane
displacement uz is the same as the order used for σzz. No stress b.cs. were enforced at the
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plate’s top and bottom surfaces by Demasi.
Demasi’s considerations were based on a strong-form solution (Navier) applied to the

GUF. It is shown here that these considerations hold true even in the present framework of a
weak-form solution (Ritz). In fact the very same results obtained by Demasi are recovered.
The capability of the present formulation to reproduce the same results obtained by Demasi
supports the hypothesis made at the beginning of this chapter stating that the in-plane and
the out-of-plane approximation do not influence each other.

The test case utilized by Demasi [41] is considered:
Geometry Square plate (a = b). The plate is constituted of two layers. The thickness

ratio is D = a/h = 4. The two plies have an equal thickness of h/2.
Composite stack Cross-ply laminate: [90/0].
Material properties The material properties of the top ply are:

E11 [-] E22 [-] E33 [-]
25 1 10

G12 [-] G13 [-] G23 [-]
0.5 0.5 0.2

ν12 [-] ν13 [-] ν23 [-]
0.25 0.25 0.25

Table 5.5: Model orders test case by Demasi: top ply material properties. E11, E22, E33, G12, G13, G23 are
normalized over E22.

The material properties of the bottom ply are:

E11 [-] E22 [-] E33 [-]
25 1 1

G12 [-] G13 [-] G23 [-]
0.5 0.5 0.2

ν12 [-] ν13 [-] ν23 [-]
0.25 0.25 0.25

Table 5.6: Model orders test case by Demasi: bottom ply material properties. E11, E22, E33, G12, G13, G23 are
normalized over E22.

Boundary conditions Simply-supported on all four sides: SSSS.
Load Bisinusoidal load applied on the top surface: P = P0sin(πax)sin(πb y).
Results The results are made non-dimensional in the following manner:

(ūx, ūy) =
Ebot22

P0hD3
(ux, uy) ūz =

100Ebot22

P0hD4
uz

σ̄xx =
1

P0D2
σxx σ̄xz =

1

P0D
σxz σ̄zz =

1

P0
σzz

(5.6)

where bot refers to the bottom ply. The following nondimensional thickness coordinate is
adopted: ξ = z

h . ūx and σ̄xz are calculated at x = 0, y = a/2; ūy is calculated at x = a/2,
y = 0 and ūz, σ̄xx and σ̄zz are calculated at x = a/2, y = b/2.

Computational model Seven different LW models are considered:
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Model LM3,3,3
5,5,5 LM3,3,3

5,5,3 LM6,6,6
4,4,4 LM6,6,4

4,4,4 LM3,4,5
5,6,4 LM3,4,4

5,6,4 LM3,3,3
2,2,2

Table 5.7: Demasi model order test case: models.

No top-bottom stress boundary conditions were imposed, unless otherwise specified. Based
on the results of the previous section, the Ritz orders are here set so that Rs = Ru + 1 and
Ss = Su + 1 with Ru = Su = 10, Rs = Ss = 11

Figure 5.3: Demasi model orders test case.

Figure 5.4 reports the results comparing the class of theories in which the orders of displace-
ment variables are lower than the orders of stress variables. It appears that oscillations in
the σzz field appear if Nσzz > Nuz . These oscillations disappear by choosing Nσzz = Nuz .
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Figure 5.4: LM5,5,5
3,3,3 and LM5,5,3

3,3,3 ; Ru = Su = 10, Rs = Ss = 11. Transverse stresses are computed a priori.
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Figure 5.5 compares the class of theories in which the orders of displacement variables are
higher than the orders of stress variables. It appears that oscillations in the σzz field appear
if Nσzz < Nuz . These oscillations disappear by choosing Nσzz = Nuz .
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Figure 5.5: LM4,4,4
6,6,6 and LM4,4,4

6,6,4 ; Ru = Su = 10, Rs = Ss = 11. Transverse stresses are computed a priori.

Even if results for ux and uy are not reported by Demasi [41], for sake of completeness, it
is reported that these fields present oscillations only for the class of theories in which the
orders of displacement variables are higher than the orders of stress variable. As shown in
Figure 5.6, even for ux and uy the oscillations disappear if Nuz = Nσzz is imposed.
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Figure 5.6: LM4,4,4
6,6,6 and LM4,4,4

6,6,4 ; Ru = Su = 10, Rs = Ss = 11. ūx and ūy through-the-thickness field.
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Finally, even when considering a class with general orders of expansion, as in Figure 5.7,
oscillations may arise. Even in this last case, imposing Nuz = Nσzz will solve the oscillation
issue.
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Figure 5.7: LM5,6,4
3,4,5 and LM5,6,4

3,4,4 ; Ru = Su = 10, Rs = Ss = 11. Transverse stresses are computed a priori.

Even if not present in the previous models, oscillations also in the variable σxz (and σyz)
may arise when computed a priori. For instance, as illustrated in Figure 5.8, model LM3,3,3

2,2,2

presents oscillations both in the field σxz and σzz. Finally, it is shown that the impo-
sition of top-bottom stress boundary conditions mitigates the oscillations at the bound-
aries. However, the results are still unacceptable overall. In Figure 5.8 theory LM3,3,3

2,2,2

without top-bottom stress boundary conditions and theory LM3,3,3
2,2,2 with the imposition of

σxz(z = h/2) = σxz(z = −h/2) = 0 are compared.
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Figure 5.8: LM3,3,3
2,2,2 and LM3,3,3

2,2,2 with σxz(z = h/2) = σxz(z = −h/2) = 0; Ru = Su = 10, Rs = Ss = 11.
Transverse stresses are computed a priori.

Recalling the analysis made in Section 5.2.1, it is possible to compute the number of not-
conjugated stress modes (Nstress) and not-conjugates kinematic modes (Nkin) also for the
models presented here. It is particularly interesting to compare the values of these param-
eters with the results in the plots for the classes of theories Nu > Nσ and Nσ > Nu; before
and after the imposition of Nuz = Nσzz . Table 5.8 collects the algebraic parameters for the
models LW 4,4,4

6,6,6 , LW
4,4,4
6,6,4 , LW

5,5,5
3,3,3 and LW 5,5,3

3,3,3 . The class of theories with Nu > Nσ, that
shows oscillations in the displacement field, presents a higher value of both Nkin and Nstress

compared to the modified model with Nuz = Nσzz . The class of theories with Nσ > Nu,
that shows oscillations in σzz, presents a higher value of Nstress compared to the modified
model with Nuz = Nσzz .

The correlation between the oscillations in the linear static problem and these parame-
ters should be further studied. Different models should be considered, in order to make the
conclusions general.

Model Nstress Nkin

LW 4,4,4
6,6,6 510 812

LW 4,4,4
6,6,4 648 672

LW 5,5,5
3,3,3 2174 204

LW 5,5,3
3,3,3 1690 204

Table 5.8: Algebraic parameters for the models adopted by Demasi.
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Conclusions

The present work has developed a novel numerical method based upon RMVT for the solu-
tion of the free-vibration problem and the linear static problem. The governing equations
were derived applying to RMVT the Sublaminate Generalized Unified Formulation (S-GUF)
and the Ritz approximation. The present method was applied to the main geometries of
interest in the aerospace field: plates, cylindrical panels, and closed cylinders.

By comparing the results obtained through the present method with the results in
scientific literature it was possible to assess the correctness of the results and therefore to
validate both the mathematical model and the code. In particular, for each problem, all
three geometries were investigated.

The results show the effectiveness of the method in particular to compute transverse
stresses and to impose their continuity a priori at the interfaces of two plies.

The effects of different parameters relative to the present theory were investigated: the
effect of the relative Ritz orders of expansion for displacements (Mu) and stresses (Ms), the
orders of the model and the imposition of top-bottom stress boundary condition.

It was shown that a correct Ritz approximation must satisfy that: Rs > Ru and Ss > Su.
Furthermore, Rs = Ru + 1 and Ss = Su + 1 results to be the best condition to impose
since an increase in the stress approximation would not improve the results, but only the
computational cost.

The orders of the model must be selected carefully since oscillations may arise in the
linear static problem, and non-physical frequencies and modes may be present in the free-
vibration analysis. The choice of the orders can be guided by analytical parameters on
the stiffness matrix, particularly, by checking that the number of not-conjugated kinematic
modes is minimized.
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6.1 Future developments

The present formulation can be applied to solve other different problems and expanded to
other geometries. For example:

• Generic geometry The equations for doubly-curved shells have been derived. Al-
though it would be possible to extend the present formulation to structures with
generic curvatures such as cylinders with a non-constant radius of curvature, or ellip-
tical cylinders.

• Variable stiffness The present formulation could be expanded in order to account
also for functionally graded materials (FGM) [42] and variable stiffness materials
(VSM), or possibly a combination of the two. FGM are materials whose physical
properties vary along the thickness while VSM are materials whose physical properties
vary in the plane.

• Piezoelectric materials The present models could be expanded so to include piezo-
electric layers within the laminate. These materials deform when under a potential
difference and vice-versa.

• Thermal loads It could be possible to include in the present framework the analysis
of thermal loads.

• Additional analyses Additional analyses other than the free-vibration and the linear
static problem could be performed, for example: forced vibrations, buckling, direct
and modal frequency analysis, transient response, etc.
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Appendix A

Constitutive relation

The models described in Section 2.3 are completely general and applicable to any kind of
structure. However to obtain the solution of a real problem, physical quantities describing
its unique behavior must be introduced. These quantities are represented through the
constitutive relation which relates strains to stresses.

Stresses (σij) and stains (εij) can be represented as symmetric second order tensors,
which can be put in relation with each other through the forth order elasticity tensor Cijkl
by the Classical Form of Hooke’s Law (CFHL), in case the hypotheses of elasticity and
linearity are respected:

σij = Cijklεkl (A.1)

where i, j, k, l = 1, 2, 3. Exploiting the symmetry of the stress and strain tensors, it is
possible to rearrange the quantities according to the Voigt-Kelvin notation, and rewrite
Eq.(A.2) as:

σ = Cε (A.2)

or explicitly as: 

σ11

σ22

σ33

σ23

σ31

σ12


=



C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66





ε11

ε22

ε33

ε23

ε31

ε12


(A.3)

If a strain energy density W = 1
2σijεij exists, then the material is defined as hyperelastic

and it follows that:

σ =
∂W

∂ε
(A.4)

If the material is both linear and hyperelastic, then Eq.(A.2) and Eq.(A.4) both hold true
and it is possible to combine them. According to Schwarz theorem, for a sufficiently regular
function, the sequence of differentiation is arbitrary, therefore:

Cijkl =
∂W

∂εij∂εkl
=

∂W

∂εkl∂εij
(A.5)
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so indexes ij and kl can be interchanged arbitrarily. This implies that the tensor containing
the elastic moduli is symmetric:

σ11

σ22

σ33

σ23

σ31

σ12


=



C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

sym C55 C56

C66





ε11

ε22

ε33

ε23

ε31

ε12


(A.6)

Further simplifications of the constitutive relation may come from the physical proper-
ties of the material. The most simple case of constitutive relation is the one relative to
homogeneous materials, which is defined by only three constants:

σ11

σ22

σ33

τ23

τ31

τ12


=



C11 C12 C12 0 0 0

C11 C12 0 0 0

C11 0 0 0

C44 0 0

sym C44 0

C44





ε11

ε22

ε33

γ23

γ31

γ12


(A.7)

where the engineering stress and strain vectors have been adopted, i.e.: τ23 = σ23, τ31 = σ31,
τ12 = σ12 and γ23 = 2ε23, γ31 = 2ε31, γ12 = 2ε12. The three elastic constants C11, C12 and
C44 can be expressed by means of physical properties as follows:

C11 =
E(1− ν)

(1 + ν)(1− 2ν)
C12 =

Eν

(1 + ν)(1− 2ν)
C44 = G (A.8)

where E is the Young’s modulus, ν is the Poisson’s ratio and G = E
2(1+ν) is the shear

modulus.
Given that the present work has the intent to focus on composite materials whose

plies are often belonging to the category of orthotropic materials (materials that have three
mutually orthogonal planes of elastic symmetry), it is of interest to discuss their constitutive
relation. When considering composite materials it is advantageous to define both a material
coordinate system (specific to each ply) and a laminate coordinate system (valid for the
whole laminate). The definition of a reference system for each ply makes it easier to define
their own properties while a general reference system results more convenient when it comes
down to describing the whole laminate and therefore summing each ply contribution. A
representation of these two frames of reference and of how they relate to one another is
given in Figure A.1.
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Figure A.1: Lamina with material (x1, y1, z1) and laminate (x, y, z) coordinate systems (from Ref. [43]).

If we consider the material coordinate system (x1, y1, z1) Hooke’s law is:

σ11

σ22

σ33

τ23

τ31

τ12


=



C11 C12 C13 0 0 0

C22 C23 0 0 0

C33 0 0 0

C44 0 0

sym C55 0

C66





ε11

ε22

ε33

γ23

γ31

γ12


(A.9)

or compactly:

σm = Cεm (A.10)

In a similar manner to what was done for homogeneous materials, the nine elastic constants
can be related to physical quantities as follows:

C11 =
E1(1− ν23ν32)

∆

C12 =
E1(ν21 + ν31ν23)

∆
=
E2(ν12 + ν13ν32)

∆

C13 =
E1(ν31 + ν21ν32)

∆
=
E3(ν13 + ν12ν23)

∆

C22 =
E2(1− ν31ν13)

∆

C23 =
E2(ν32 + ν31ν12)

∆
=
E3(ν23 + ν21ν13)

∆

C33 =
E3(1− ν12ν21)

∆

C44 = G23

C55 = G31

C66 = G12

(A.11)
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where

∆ = 1− ν12ν21 − ν23ν32 − ν31ν13 − 2ν12ν32ν13 (A.12)

and

νij
Ei

=
νji
Ej

(A.13)

In the previous relations, Ei is the Young’s modulus in the i direction, Gij is the shear
modulus in the (i, j) plane, and νij is the Poisson’s ratio of the strain in the j direction to
the strain in the i direction due to an applied stress in the i direction.

By defining a laminate reference system (x, y, z) respect to which stress and strain
vectors are expressed as:

σ = [σxx σyy σzz τyz τxz τxy]
T (A.14)

ε = [εxx εyy εzz γyz γxz γxy]
T (A.15)

strains and stresses expressed in the two frames of reference can be easily related through
the definition of a rotation matrix T:

σ = Tεm (A.16)

ε = TTεm (A.17)

The rotation matrix T is defined in the following way:

T =



cos2(θ) sin2(θ) 0 0 0 −2sin(θ)cos(θ)

sin2(θ) cos2(θ) 0 0 0 2sin(θ)cos(θ)

0 0 1 0 0 0

0 0 0 cos(θ) sin(θ) 0

0 0 0 −sin(θ) cos(θ) 0

sin(θ)cos(θ) −sin(θ)cos(θ) 0 0 0 cos2(θ)− sin2(θ)


(A.18)

where θ represents the angle between the two frames of reference as in Figure A.1. Sub-
stituting Eq.(A.17) into Eq.(A.19) and then using Eq.(A.16), the CFHL expressed in the
laminate coordinate system results to be:

σ = C̃ε (A.19)

where

C̃ = TCTT =



C̃11 C̃12 C̃13 0 0 C̃16

C̃12 C̃22 C̃23 0 0 C̃26

C̃13 C̃23 C̃33 0 0 C̃36

0 0 0 C̃44 C̃45 0

0 0 0 C̃45 C̃55 0

C̃16 C̃26 C̃36 0 0 C̃66


(A.20)
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Additional equations: Ritz S-GUF
RMVT governing equations

Additional passages in the derivation of the Ritz S-GUF RMVT governing equations are
here reported.

Strains and stresses matrices expansions:

δεp,k
T

ΩG σ
p,k
ΩH =

∂δup,kxαux
∂x

Cp,k11 FαuxFβux

Hp,k
x Hp,k

x

∂up,kxβux
∂x

+
∂δup,kxαux
∂x

Cp,k12 FαuxFβuy

Hp,k
x Hp,k

y

∂up,kyβuy
∂y

+
∂δup,kxαux
∂x

Cp,k16 FαuxFβux

Hp,k
x Hp,k

y

∂up,kxβux
∂y

+
∂δup,kxαux
∂x

Cp,k16 FαuxFβuy

Hp,k
x Hp,k

x

∂up,kyβuy
∂x

+
∂δup,kyαuy
∂y

Cp,k12 FαuyFβux

Hp,k
y Hp,k

x

∂up,kxβux
∂x

+
∂δup,kyαuy
∂y

Cp,k22 FαuyFβuy

Hp,k
y Hp,k

y

∂up,kyβuy
∂y

+
∂δup,kyαuy
∂y

Cp,k26 FαuyFβux

Hp,k
y Hp,k

y

∂up,kxβux
∂y

+
∂δup,kyαuy
∂y

Cp,k26 FαuyFβuy

Hp,k
y Hp,k

x

∂up,kyβuy
∂x

+
∂δup,kxαux
∂y

Cp,k16 FαuxFβux

Hp,k
y Hp,k

x

∂up,kxβux
∂x

+
∂δup,kxαux
∂y

Cp,k26 FαuxFβuy

Hp,k
y Hp,k

y

∂up,kyβuy
∂y

+
∂δup,kxαux
∂y

Cp,k66 FαuxFβux

Hp,k
y Hp,k

y

∂up,kxβux
∂y

+
∂δup,kxαux
∂y

Cp,k66 FαuxFβuy

Hp,k
y Hp,k

x

∂up,kyβuy
∂x

+
∂δup,kyαuy
∂x

Cp,k16 FαuyFβux

Hp,k
x Hp,k

x

∂up,kxβux
∂x

+
∂δup,kyαuy
∂x

Cp,k26 FαuyFβuy

Hp,k
x Hp,k

y

∂up,kyβuy
∂y

+
∂δup,kyαuy
∂x

Cp,k66 FαuyFβux

Hp,k
x Hp,k

y

∂up,kxβux
∂y

+
∂δup,kyαuy
∂x

Cp,k66 FαuyFβuy

Hp,k
x Hp,k

x

∂up,kyβuy
∂x

+
∂δup,kxαux
∂x

Cp,k13 FαuxFβsz

Hp,k
x

sp,kzβsz
+
∂δup,kyαuy
∂y

Cp,k23 FαuyFβsz

Hp,k
y

sp,kzβsz
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+
∂δup,kxαux
∂y

Cp,k36 FαuxFβsz

Hp,k
y

sp,kzβsz
+
∂δup,kyαuy
∂x

Cp,k36 FαuyFβsz

Hp,k
x

sp,kzβsz

+
∂δup,kxαux
∂x

Cp,k11 FαuxFβuz

Hp,k
x Hp,k

x Rp,kx
up,kzβuz

+
∂δup,kxαux
∂x

Cp,k12 FαuxFβuz

Hp,k
x Hp,k

y Rp,ky
up,kzβuz

+
∂δup,kyαuy
∂y

Cp,k12 FαuyFβuz

Hp,k
y Hp,k

x Rp,kx
up,kzβuz

+
∂δup,kyαuy
∂y

Cp,k22 FαuyFβuz

Hp,k
y Hp,k

y Rp,ky
up,kzβuz

+
∂δup,kxαux
∂y

Cp,k16 FαuxFβuz

Hp,k
y Hp,k

x Rp,kx
up,kzβuz

+
∂δup,kxαux
∂y

Cp,k26 FαuxFβuz

Hp,k
y Hp,k

y Rp,ky
up,kzβuz

+
∂δup,kyαuy
∂x

Cp,k16 FαuyFβuz

Hp,k
x Hp,k

x Rp,kx
up,kzβuz

+
∂δup,kyαuy
∂x

Cp,k26 FαuyFβuz

Hp,k
x Hp,k

y Rp,ky
up,kzβuz

+ δup,kzαuz
Cp,k11 FαuzFβux

Hp,k
x Hp,k

x Rp,kx

∂up,kxβux
∂x

+ δup,kzαuz

Cp,k12 FαuzFβuy

Hp,k
x Hp,k

y Rp,kx

∂up,kyβuy
∂y

+ δup,kzαuz
Cp,k16 FαuzFβux

Hp,k
x Hp,k

y Rp,kx

∂up,kxβux
∂y

+ δup,kzαuz

Cp,k16 FαuzFβuy

Hp,k
x Hp,k

x Rp,kx

∂up,kyβuy
∂x

+ δup,kzαuz
Cp,k12 FαuzFβux

Hp,k
x Hp,k

y Rp,ky

∂up,kxβux
∂x

+ δup,kzαuz

Cp,k22 FαuzFβuy

Hp,k
y Hp,k

y Rp,ky

∂up,kyβuy
∂y

+ δup,kzαuz
Cp,k26 FαuzFβux

Hp,k
y Hp,k

y Rp,ky

∂up,kxβux
∂y

+ δup,kzαuz

Cp,k26 FαuzFβuy

Hp,k
x Hp,k

y Rp,ky

∂up,kyβuy
∂x

+ δup,kzαuz
Cp,k13 FαuzFβsz

Hp,k
x Rp,kx

sp,kzβsz
+ δup,kzαuz

Cp,k23 FαuzFβsz

Hp,k
y Rp,ky

sp,kzβsz

+ δup,kzαuz
Cp,k11 FαuzFβuz

(Hp,k
x Rp,kx )2

up,kzβuz
+ δup,kzαuz

Cp,k12 FαuzFβuz

Hp,k
x Rp,kx Hp,k

y Rp,ky
up,kzβuz

+ δup,kzαuz
Cp,k12 FαuzFβuz

Hp,k
x Rp,kx Hp,k

y Rp,ky
up,kzβuz

+ δup,kzαuz
Cp,k22 FαuzFβuz

(Hp,k
y Rp,ky )2

up,kzβuz

δεp,k
T

nG σp,knM =

∂δup,kzαuz
∂y

FαuzFβsy

Hp,k
y

sp,kyβsy
+
∂δup,kzαuz
∂x

FαuzFβsx

Hp,k
x

sp,kxβsx
− δup,kyαuy

λDFαuyFβsy

Hp,k
y Rp,ky

sp,kyβsy

− δup,kxαux
λDFαuxFβsx

Hp,k
x Rp,kx

sp,kxβsx
+ δup,kyαuy

∂Fαuy
∂z

Fβsy s
p,k
yβsy

+ δup,kxαux
∂Fαux
∂z

Fβsxs
p,k
xβsx

+ δup,kzαuz
∂Fαuz
∂z

Fβsz s
p,k
zβsz

(B.2)
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δσp,k
T

nM εp,knG =

δsp,kyαsy

FαsyFβuz

Hp,k
y

∂up,kzβuz
∂y

+ δsp,kxαsx
FαsxFβuz

Hp,k
x

∂up,kzβuz
∂x

− δsp,kyαsy
λDFαsyFβuy

Hp,k
y Rp,ky

up,kyβuy

− δsp,kxαsx
λDFαsxFβux

Hp,k
x Rp,kx

up,kxβux
+ δsp,kyαsyFαsy

∂Fβuy
∂z

up,kyβuy
+ δsp,kxαsxFαsx

∂Fβux
∂z

up,kxβux

+ δsp,kzαszFαsz
∂Fβuz
∂z

up,kzβuz

(B.3)

δσp,k
T

nM εp,knH =

− δsp,kzαsz
Cp,k13 FαszFβux

Hp,k
x

∂up,kxβux
∂x

− δsp,kzαsz
Cp,k23 FαszFβuy

Hp,k
y

∂up,kyβuy
∂y

− δsp,kzαsz
Cp,k36 FαszFβux

Hp,k
y

∂up,kxβux
∂y

− δsp,kzαsz
Cp,k36 FαszFβuy

Hp,k
x

∂up,kyβuy
∂x

− δsp,kzαsz
Cp,k13 FαszFβuz

Hp,k
x Rp,kx

up,kzβuz
− δsp,kzαsz

Cp,k23 FαszFβuz

Hp,k
y Rp,ky

up,kzβuz

+ δsp,kyαsyC
p,k
44 FαsyFβsy s

p,k
yβsy

+ δsp,kyαsyC
p,k
45 FαsyFβsxs

p,k
xβsx

+ δsp,kxαsxC
p,k
45 FαsxFβsy s

p,k
yβsy

+ δsp,kxαsxC
p,k
55 FαsxFβsxs

p,k
xβsx

+ δsp,kzαszC
p,k
33 FαszFβsz s

p,k
zβsz

(B.4)
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Introduction of the thickness integrals:

Nk∑
k=1

Nk
p∑

p=1

∫
x

∫
y

[
δup,k

T

xαux
HxHyZp,kαuxβuxρuxux üp,kxβux

+ δup,k
T

yαuy
HxHyZ

p,kαuyβuy
ρuyuy üp,kyβuy

+ δup,k
T

zαuz
HxHyZp,kαuzβuzρuzuz üp,kzβuz

]
dxdy

+

Nk∑
k=1

Nk
p∑

p=1

∫
x

∫
y

[
∂δup,kxαux
∂x

Hy
Hx
Z
p,kαuxβux
11uxux

∂up,kxβux
∂x

+
∂δup,kxαux
∂x

Z
p,kαuxβuy
12uxuy

∂up,kyβuy
∂y

+
∂δup,kxαux
∂x

Z
p,kαuxβux
16uxux

∂up,kxβux
∂y

+
∂δup,kxαux
∂x

Hy
Hx
Z
p,kαuxβuy
16uxuy

∂up,kyβuy
∂x

+
∂δup,kyαuy
∂y

Z
p,kαuyβux
12uyux

∂up,kxβux
∂x

+
∂δup,kyαuy
∂y

Hx
Hy
Z
p,kαuyβuy
22uyuy

∂up,kyβuy
∂y

+
∂δup,kyαuy
∂y

Hx
Hy
Z
p,kαuyβux
26uyux

∂up,kxβux
∂y

+
∂δup,kyαuy
∂y

Z
p,kαuyβuy
26uyuy

∂up,kyβuy
∂x

+
∂δup,kxαux
∂y

Z
p,kαuxβux
16uxux

∂up,kxβux
∂x

+
∂δup,kxαux
∂y

Hx
Hy
Z
p,kαuxβuy
26uxuy

∂up,kyβuy
∂y

+
∂δup,kxαux
∂y

Hx
Hy
Z
p,kαuxβux
66uxux

∂up,kxβux
∂y

+
∂δup,kxαux
∂y

Z
p,kαuxβuy
66uxuy

∂up,kyβuy
∂x

+
∂δup,kyαuy
∂x

Hy
Hx
Z
p,kαuyβux
16uyux

∂up,kxβux
∂x

+
∂δup,kyαuy
∂x

Z
p,kαuyβuy
26uyuy

∂up,kyβuy
∂y

+
∂δup,kyαuy
∂x

Z
p,kαuyβux
66uyux

∂up,kxβux
∂y

+
∂δup,kyαuy
∂x

Hy
Hx
Z
p,kαuyβuy
66uyuy

∂up,kyβuy
∂x

+
∂δup,kxαux
∂x

HyZ
p,kαuxβsz
13uxsz

sp,kzβsz

+
∂δup,kyαuy
∂y

HxZ
p,kαuxβsz
23uysz

sp,kzβsz
+
∂δup,kxαux
∂y

HxZ
p,kαuxβsz
36uxsz

sp,kzβsz
+
∂δup,kyαuy
∂x

HyZ
p,kαuyβsz
36uysz

sp,kzβsz

+
∂δup,kxαux
∂x

Hy
HxRx

Z
p,kαuxβuz
11uxuz

up,kzβuz
+
∂δup,kxαux
∂x RyZ

p,kαuxβuz
12uxuz

up,kzβuz
+
∂δup,kyαuy
∂y RxZ

p,kαuyβuz
12uyuz

up,kzβuz

+
∂δup,kyαuy
∂y

Hx
HyRy

Z
p,kαuyβuz
22uyuz

up,kzβuz
+
∂δup,kxαux
∂y RxZ

p,kαuxβuz
16uxuz

up,kzβuz
+
∂δup,kxαux
∂y

Hx
HyRy

Z
p,kαuxβuz
26uxuz

up,kzβuz

+
∂δup,kyαuy
∂x

Hy
HxRx

Z
p,kαuyβuz
16uyuz

up,kzβuz
+
∂δup,kyαuy
∂x RyZ

p,kαuyβuz
26uyuz

up,kzβuz
+ δup,kzαuz

Hy
HxRx

Z
p,kαuzβux
11uzux

∂up,kxβux
∂x

+ δup,kzαuz RxZ
p,kαuzβuy
12uzuy

∂up,kyβuy
∂y

+ δup,kzαuz RxZ
p,kαuzβux
16uzux

∂up,kxβux
∂y

+ δup,kzαuz
Hy

HxRx
Z
p,kαuzβuy
16uzuy

∂up,kyβuy
∂x

+ δup,kzαuz RyZ
p,kαuzβux
12uzux

∂up,kxβux
∂x

+ δup,kzαuz
Hx

HyRy
Z
p,kαuzβuy
22uzuy

∂up,kyβuy
∂y

+ δup,kzαuz
Hx

HyRy
Z
p,kαuzβux
26uzux

∂up,kxβux
∂y

+ δup,kzαuz RyZ
p,kαuzβuy
26uzuy

∂up,kyβuy
∂x

+ δup,kzαuz
Hy
Rx
Z
p,kαuzβsz
13uzsz

sp,kzβsz
+ δup,kzαuz

Hx
Ry
Z
p,kαuzβsz
23uzsz

sp,kzβsz

+ δup,kzαuz
Hy

HxR2
x
Z
p,kαuzβuz
11uzuz

up,kzβuz
+ δup,kzαuz RxRyZ

p,kαuzβuz
12uzuz

up,kzβuz
+ δup,kzαuz RxRyZ

p,kαuzβuz
12uzuz

up,kzβuz

+ δup,kzαuz
Hx

HyR2
y
Z
p,kαuzβuz
22uzuz

up,kzβuz
+
∂δup,kzαuz
∂y

HxZ
p,kαuzβsy
uzsy sp,kyβsy

+
∂δup,kzαuz
∂x

HyZp,kαuzβsxuzsx sp,kxβsx

− δup,kyαuyλD
Hx
Ry
Z
p,kαuyβsy
uysy sp,kyβsy

− δup,kxαuxλD
Hy
Rx
Zp,kαuxβsxuxsx sp,kxβsx

+ δup,kyαuy
HxHyZ

p,kαuyβsy
∂uysy

sp,kyβsy

+ δup,kxαux
HxHyZ

p,kαuxβsx
∂uxsx

sp,kxβsx
+ δup,kzαuz

HxHyZ
p,kαuzβsz
∂uzsz

sp,kzβsz
+ δsp,kyαsy

HxZ
p,kαsyβuz
syuz

∂up,kzβuz
∂y
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+ δsp,kxαsx
HyZp,kαsxβuzsxuz

∂up,kzβuz
∂x

− δsp,kyαsyλD
Hx
Ry
Z
p,kαsyβuy
syuy up,kyβuy

− δsp,kxαsxλD
Hy
Rx
Zp,kαsxβuxsxux up,kxβux

+ δsp,kyαsy
HxHyZ

p,kαsyβuy
sy∂uy

up,kyβuy
+ δsp,kxαsx

HxHyZ
p,kαsxβux
sx∂ux

up,kxβux
+ δsp,kzαsz

HxHyZ
p,kαszβuz
sz∂uz

up,kzβuz

+ δsp,kzαsz
HyZ

p,kαszβux
13szux

∂up,kxβux
∂x

+ δsp,kzαsz
HxZ

p,kαszβuy
23szuy

∂up,kyβuy
∂y

+ δsp,kzαsz
HxZ

p,kαszβux
36szux

∂up,kxβux
∂y

+ δsp,kzαsz
HyZ

p,kαszβuy
36szuy

∂up,kyβuy
∂x

+ δsp,kzαsz
Hy
Rx
Z
p,kαszβuz
13szuz

up,kzβuz
+ δsp,kzαsz

Hx
Ry
Z
p,kαszβuz
23szuz

up,kzβuz

− δsp,kyαsy
HxHyZ

p,kαsyβsy
44sysy

sp,kyβsy
− δsp,kyαsy

HxHyZ
p,kαsyβsx
45sysx

sp,kxβsx
− δsp,kxαsx

HxHyZ
p,kαsxβsy
45sxsy

sp,kyβsy

− δsp,kxαsx
HxHyZ

p,kαsxβsx
55sxsx

sp,kxβsx
− δsp,kzαsz

HxHyZ
p,kαszβsz
33szsz

sp,kzβsz

]
dxdy

=

∫
x

∫
y

[
δu

Nk
p ,Nk

z0 f topz

(
1 +

h

2Rx

)(
1 +

h

2Ry

)
+ δu1,1

z1 f
bot
z

(
1− h

2Rx

)(
1− h

2Ry

)]
dxdy



Appendix C

Cylinder and plate governing
equations

In the present appendix, the governing equations for shell geometries are specialized to
cylinder and plate geometries.

C.1 Cylinder governing equations

The governing equations for cylindrical geometries can be easily obtained as a particular
case of the equations for shells by imposing that one of the two radii of curvature is infinite.

For cylindrical geometries, which are characterized by only one radius of curvature (it
is supposed, without loss of generality, that Rx → ∞), the mass matrix (Mij) and the
stiffness matrix (Kij) specialize to:

Mij =



Muxuxi1j1 0 0 0 0 0

0 Muyuyi1j1 0 0 0 0

0 0 Muzuzi1j1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


(C.1)

Kij =



Kuxuxi1j1 Kuxuyi1j1 Kuxuzi1j1 Kuxsxi1j2 0uxsyi1j2 Kuxszi1j2

Kuyuxi1j1 Kuyuyi1j1 Kuyuzi1j1 0uysxi1j2 Kuysyi1j2 Kuyszi1j2

Kuzuxi1j1 Kuzuyi1j1 Kuzuzi1j1 Kuzsxi1j2 Kuzsyi1j2 Kuzszi1j2

Ksxuxi2j1 0sxuyi2j1 Ksxuzi2j1 Ksxsxi2j2 Ksxsyi2j2 0sxszi2j2
0syuxi2j1 Ksyuyi2j1 Ksyuzi2j1 Ksysxi2j2 Ksysyi2j2 0syszi2j2
Kszuxi2j1 Kszuyi2j1 Kszuzi2j1 0szsxi2j2 0szsyi2j2 Kszszi2j2


(C.2)

and

Muxuxi1j1 = HyZρuxuxI
0000
uxuxi1j1 Muyuyi1j1 = HyZρuyuyI

0000
uyuyi1j1 Muzuzi1j1 = HyZρuzuzI

0000
uzuzi1j1
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Kuxuxi1j1 = HyZ11uxuxI
1010
uxuxi1j1 + Z16uxux(I1001

uxuxi1j1 + I0110
uxuxi1j1)

+ HyZ66uxuxI
0101
uxuxi1j1

Kuxuyi1j1 = Z12uxuyI
1001
uxuyi1j1 + HyZ16uxuyI

1010
uxuyi1j1 + HyZ26uxuyI

0101
uxuyi1j1

+ Z66uxuyI
0110
uxuyi1j1

Kuxuzi1j1 = RyZ12uxuzI
1000
uxuzi1j1 + HyRyZ26uxuzI

0100
uxuzi1j1

Kuxsxi1j2 = HyZ∂uxsxI
0000
uxsxi1j2

Kuxszi1j2 = Z36uxszI
0100
uxszi1j2 + HyZ13uxszI

1000
uxszi1j2

Kuyuxi1j1 = Z12uyuxI
0110
uyuxi1j1 + HyZ26uyuxI

0101
uyuxi1j1 + HyZ16uyuxI

1010
uyuxi1j1

+ Z66uyuxI
1001
uyuxi1j1

Kuyuyi1j1 = HyZ22uyuyI
0101
uyuyi1j1 + Z26uyuy(I

0110
uyuyi1j1 + I1001

uyuyi1j1)

+ HyZ66uyuyI
1010
uyuyi1j1

Kuyuzi1j1 = RyZ26uyuzI
1000
uyuzi1j1 + HyRyZ22uyuzI

0100
uyuzi1j1

Kuysyi1j2 = −λD RyZuysyI
0000
uysyi1j2 + HyZ∂uysyI

0000
uysyi1j2

Kuyszi1j2 = Z23uyszI
0100
uyszi1j2 + HyZ36uyszI

1000
uyszi1j2

Kuzuxi1j1 = RyZ12uzuxI
0010
uzuxi1j1 + HyRyZ26uzuxI

0001
uzuxi1j1

Kuzuyi1j1 = HyRyZ22uzuyI
0001
uzuyi1j1 + RyZ26uzuyI

0010
uzuyi1j1

Kuzuzi1j1 = HyR2
y
Z22uzuzI

0000
uzuzi1j1

Kuzsxi1j2 = HyZuzsxI
1000
uzsxi1j2

Kuzsyi1j2 = ZuzsyI
0100
uzsyi1j2

Kuzszi1j2 = HyZ∂uzszI
0000
uzszi1j2 + RyZ23uzszI

0000
uzszi1j2

Ksxuxi2j1 = HyZsx∂uxI
0000
sxuxi2j1

Ksxuzi2j1 = HyZsxuzI
0010
sxuzi2j1

Ksxsxi2j2 = −HyZ55sxsxI
0000
sxsxi2j2

Ksxsyi2j2 = −HyZ45sxsyI
0000
sxsyi2j2

Ksyuyi2j1 = −λD RyZsyuyI
0000
syuyi2j1 + HyZsy∂uyI

0000
syuyi2j1

Ksyuzi2j1 = ZsyuzI
0001
syuzi2j1

Ksysxi2j2 = −Z45sysxI
0000
sysxi2j2

Ksysyi2j2 = −HyZ44sysyI
0000
sysyi2j2

Kszuxi2j1 = HyZ13szuxI
0010
szuxi2j1 + Z36szuxI

0001
szuxi2j1

Kszuyi2j1 = Z23szuyI
0001
szuyi2j1 + HyZ36szuyI

0010
szuyi2j1

Kszuzi2j1 = HyZsz∂uzI
0000
szuzi2j1 + RyZ23szuzI

0000
szuzi2j1

Kszszi2j2 = −HyZ33szszI
0000
szszi2j2
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Furthermore, the load vectors for each Ritz element become:

Ltopi =



0

0

Ltopzi1I
top
uzfzi1

0

0

0


Lboti =



0

0

Lbotzi1I
bot
uzfzi1

0

0

0


(C.4)

where the Ritz integrals are now defined as:

Itopuzfzi1 =

∫
x

∫
y
Nuzi1f

top
z (x, y)

(
1+

h

2Ry

)
dxdy Ibotuzfzi1 =

∫
x

∫
y
Nuzi1f

bot
z (x, y)

(
1− h

2Ry

)
dxdy

(C.5)
after expanding and assembling the Ritz orders, formally, the same equation as for shell
geometries is obtained:

Mv̈ + Kv = L (C.6)

where

L = Ltopf top0 + Lbotf bot0 (C.7)

C.2 Plate governing equations

The governing equations for plate geometries can be easily obtained starting from the
equations for shells by imposing Rx → ∞ and Ry → ∞ (it implies that Hx → 1 and
Hy → 1).

The mass matrix (Mij) and the stiffness matrix (Kij) for each Ritz element become:

Mij =



Muxuxi1j1 0 0 0 0 0

0 Muyuyi1j1 0 0 0 0

0 0 Muzuzi1j1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


(C.8)

Kij =



Kuxuxi1j1 Kuxuyi1j1 0uxuzi1j1 Kuxsxi1j2 0uxsyi1j2 Kuxszi1j2

Kuyuxi1j1 Kuyuyi1j1 0uyuzi1j1 0uysxi1j2 Kuysyi1j2 Kuyszi1j2

0uzuxi1j1 0uzuyi1j1 0uzuzi1j1 Kuzsxi1j2 Kuzsyi1j2 Kuzszi1j2

Ksxuxi2j1 0sxuyi2j1 Ksxuzi2j1 Ksxsxi2j2 Ksxsyi2j2 0sxszi2j2
0syuxi2j1 Ksyuyi2j1 Ksyuzi2j1 Ksysxi2j2 Ksysyi2j2 0syszi2j2
Kszuxi2j1 Kszuyi2j1 Kszuzi2j1 0szsxi2j2 0szsyi2j2 Kszszi2j2


(C.9)

and

Muxuxi1j1 = ZρuxuxI
0000
uxuxi1j1 Muyuyi1j1 = ZρuyuyI

0000
uyuyi1j1 Muzuzi1j1 = ZρuzuzI

0000
uzuzi1j1
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Kuxuxi1j1 = Z11uxuxI
1010
uxuxi1j1 + Z16uxux(I1001

uxuxi1j1 + I0110
uxuxi1j1) + Z66uxuxI

0101
uxuxi1j1

Kuxuyi1j1 = Z12uxuyI
1001
uxuyi1j1 + Z16uxuyI

1010
uxuyi1j1 + Z26uxuyI

0101
uxuyi1j1

+ Z66uxuyI
0110
uxuyi1j1

Kuxsxi1j2 = Z∂uxsxI
0000
uxsxi1j2

Kuxszi1j2 = Z36uxszI
0100
uxszi1j2 + Z13uxszI

1000
uxszi1j2

Kuyuxi1j1 = Z12uyuxI
0110
uyuxi1j1 + Z26uyuxI

0101
uyuxi1j1 + Z16uyuxI

1010
uyuxi1j1

+ Z66uyuxI
1001
uyuxi1j1

Kuyuyi1j1 = Z22uyuyI
0101
uyuyi1j1 + Z26uyuy(I

0110
uyuyi1j1 + I1001

uyuyi1j1) + Z66uyuyI
1010
uyuyi1j1

Kuysyi1j2 = Z∂uysyI
0000
uysyi1j2

Kuyszi1j2 = Z23uyszI
0100
uyszi1j2 + Z36uyszI

1000
uyszi1j2

Kuzsxi1j2 = ZuzsxI
1000
uzsxi1j2

Kuzsyi1j2 = ZuzsyI
0100
uzsyi1j2

Kuzszi1j2 = Z∂uzszI
0000
uzszi1j2

Ksxuxi2j1 = Zsx∂uxI
0000
sxuxi2j1

Ksxuzi2j1 = ZsxuzI
0010
sxuzi2j1

Ksxsxi2j2 = −Z55sxsxI
0000
sxsxi2j2

Ksxsyi2j2 = −Z45sxsyI
0000
sxsyi2j2

Ksyuyi2j1 = Zsy∂uyI
0000
syuyi2j1

Ksyuzi2j1 = ZsyuzI
0001
syuzi2j1

Ksysxi2j2 = −Z45sysxI
0000
sysxi2j2

Ksysyi2j2 = −Z44sysyI
0000
sysyi2j2

Kszuxi2j1 = Z13szuxI
0010
szuxi2j1 + Z36szuxI

0001
szuxi2j1

Kszuyi2j1 = Z23szuyI
0001
szuyi2j1 + Z36szuyI

0010
szuyi2j1

Kszuzi2j1 = Zsz∂uzI
0000
szuzi2j1

Kszszi2j2 = −Z33szszI
0000
szszi2j2

Furthermore, the load vectors for each Ritz element become:

Ltopi =



0

0

Ltopzi1I
top
uzfzi1

0

0

0


Lboti =



0

0

Lbotzi1I
bot
uzfzi1

0

0

0


(C.11)

where the Ritz integrals are now defined as:

Itopuzfzi1 =

∫
x

∫
y
Nuzi1f

top
z (x, y)dxdy Ibotuzfzi1 =

∫
x

∫
y
Nuzi1f

bot
z (x, y)dxdy (C.12)
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after expanding and assembling the Ritz orders, formally, the same equation as for shells
and cylinders is obtained:

Mv̈ + Kv = L (C.13)

where

L = Ltopf top0 + Lbotf bot0 (C.14)



Appendix D

Algebraic results for additional
mixed models

In this appendix algebraic results for additional mixed models are reported. In particular,
models of the type EMNσαzNσzz

30 and EMNσαzNσzz
32 are considered.

Rs = Ss 9 10 11 15

Model Nstress Nkin Nstress Nkin Nstress Nkin Nstress Nkin

No top-bottom b.cs.

EM0,−
3,0 0 659 0 633 23 615 231 615

EM1,−
3,0 0 506 0 455 65 437 481 437

EM2,−
3,0 0 354 0 277 107 259 731 259

EM3,−
3,0 162 354 200 277 349 259 1181 259

EM4,−
3,0 324 354 400 277 591 259 1631 259

EM2,0
3,0 81 354 100 277 228 259 956 259

EM2,1
3,0 162 354 200 277 349 259 1181 259

EM2,2
3,0 243 354 300 277 470 259 1406 259

σxz and σyz top-bottom b.cs. (plane stress)

EM1,−
3,0 0 800 0 800 0 800 0 800

EM2,−
3,0 0 658 0 633 23 615 231 615

EM3,−
3,0 0 506 0 455 65 437 481 437

EM4,−
3,0 0 354 0 277 107 259 731 259

EM5,−
3,0 162 354 200 277 349 259 1181 259

σxz, σyz and σzz top-bottom b.cs. (3D law)

EM4,1
3,0 0 354 0 277 107 259 731 259

EM4,2
3,0 81 354 100 277 228 259 956 259

EM5,2
3,0 243 354 300 277 470 259 1406 259

EM4,3
3,0 162 354 200 277 349 259 1181 259

EM5,3
3,0 324 354 400 277 591 259 1631 259

Table D.1: Algebraic parameters for models of the type: EMNσαzNσzz
30 . Ru = Su = 10.
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Rs = Ss 9 10 11 15

Model Nstress Nkin Nstress Nkin Nstress Nkin Nstress Nkin

No top-bottom b.cs.

EM2,0
3,2 0 399 0 312 109 296 837 296

EM1,1
3,2 0 456 0 375 107 367 731 367

EM2,1
3,2 0 334 0 229 149 221 981 221

EM3,1
3,2 162 334 200 229 391 221 1431 221

EM4,1
3,2 324 334 400 229 633 221 1881 221

EM2,3
3,2 162 334 200 229 391 221 1431 221

EM2,4
3,2 244 334 300 229 512 221 1656 221

EM3,3
3,2 324 334 400 229 633 221 1881 221

EM4,3
3,2 486 334 600 229 875 221 2331 221

σxz and σyz top-bottom b.cs. (plane stress)

EM2,1
3,2 0 578 0 521 65 513 481 513

EM3,1
3,2 0 456 0 375 107 367 731 367

EM4,1
3,2 0 334 0 229 149 221 981 221

EM5,1
3,2 162 334 200 229 391 221 1431 221

EM4,−
3,2 0 464 0 395 69 371 693 371

EM4,0
3,2 0 399 0 312 109 296 837 296

EM4,2
3,2 81 334 100 229 270 221 1206 221

σxz, σyz and σzz top-bottom b.cs. (3D law)

EM4,1
3,2 0 464 0 395 69 371 693 371

EM4,2
3,2 0 399 0 312 109 296 837 296

EM4,3
3,2 0 334 0 229 149 221 981 221

EM4,4
3,2 81 334 100 229 270 221 1206 221

σzz top-bottom b.cs.

EM2,1
3,2 0 464 0 395 69 371 693 371

EM2,2
3,2 0 399 0 312 109 296 837 296

EM2,3
3,2 0 334 0 229 149 221 981 221

EM2,4
3,2 81 334 100 229 270 221 1206 221

EM4,1
3,2 324 464 400 395 553 371 1593 371

EM4,2
3,2 324 399 400 312 593 296 1737 296

EM4,3
3,2 324 334 400 229 633 221 1881 221

EM4,4
3,2 405 334 500 229 754 221 2106 221

Table D.2: Algebraic parameters for models of the type: EMNσαzNσzz
32 . Ru = Su = 10.
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