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1. Introduction
Reinforcement Learning (RL) methods have become very
popular due to their ability of solving complex sequen-
tial decision making problems. In the classic risk-neutral
stream of literature there are powerful solution methods like
Trust Region Policy Optimization (TRPO) (Schulman et al.,
2015) and Proximal Policy Optimization (PPO) (Schulman
et al., 2017) that efficiently maximize the expected value of
the cumulative discounted rewards (called expected return).
Usually when dealing with realistic problems, like finance,
robotics and healthcare, we want also to manage the risk
in order to avoid bad events that can happen even if they
are not very common. The risk can be split into three cate-
gories: inherent risk, which is due to the stochasticity of the
environment; model risk, that refers to the imperfect knowl-
edge of the environment which makes the consequences of
its actions difficult to predict; action risk, which is due to
the stochasticity of the actions done with intention by the
agent, typically in order to do exploration. The action risk is
under direct control of the agent. The inherent risk can be
addressed by optimizing specific objective functions called
risk measures, differently from the commonly used expected
return. The model risk can be reduced using safe policy
updates. Risk-averse Reinforcement Learning is not a new
subject, several risk measures were introduced (Alexander
et al., 2014) like: conditional value at risk (CVaR), variance-
related measures, utility function, entropic risk measure.
More interesting are the coherent risk measures (Alexander
et al., 2014; Tamar et al., 2015), that are characterized by
convexity, monotonicity, translation equivariance and pos-
itive homogeneity. These properties allow for example to
obtain solutions that are more rational like avoiding policies
that always give the lowest possible reward. Furthermore, in
Bisi et al. (2020) was introduced a new risk measure based
on the reward instead of the return: the Mean-Volatility,
which smooths the trajectories avoiding shocks. In this work
we want to capture the advantages of the coherence prop-
erties and of the reward-based measures by introducing two
new risk measures that are both coherent and reward-based:
the Mean-RMAD and the RCVaR, where the Mean is the
normalized expected return, the RMAD stands for Reward-

based Mean Absolute Deviation and RCVaR is the Reward-
based Conditional Value at Risk. Furthermore, we provide
safe updates, thanks to the Performance Difference Lemma
that allows to develop a TRPO-like algorithm for both mea-
sures with guaranteed monotonic improvement. For the RC-
VaR we can use also any risk-neutral Reinforcement Learn-
ing algorithm.
We recall some concepts about the risk measures in Sec-
tion 2. In Section 3 we introduce and motivate the use of
the Mean-RMAD and of the RCVaR. In Section 4 we show
RMAD-TRPO and RMAD-PPO, while Section 5 is dedi-
cated to the algorithms for the RCVaR. Finally, in Section
6, we conduct an empirical analysis of the new algorithms on
a financial environment, on the challenging robotic environ-
ment Hopper from PyBullet and on an easier environment
called Point Reacher.

2. Preliminaries
Mathematical Background. Given a measurable space
(X , σX ), where X is a set and σX a σ-algebra, we denote
with ∆X the set of probability measures and with B(X )
the set of bounded measurable functions. Given any prob-
ability P ∈ ∆X , P = (X , σX ,P) is a probability space.
On this space we define uncertain outcomes Z = Z(x),
which are random functions over the outcomes x ∈ X . The
space ZX of allowable random functions Z we deal with is
Z := Lp(X , σX ,P), where p ∈ [1,∞), so the random vari-
able Z has a finite p-th order moment. We denote with ⪰
a pointwise partial order over Z: given Z,Z′ ∈ Z, Z ⪰ Z′

means that Z(x) ⩾ Z′(x) for P-almost all x ∈ X .

Markov Decision Processes. We consider discrete-time,
discounted Markov Decision Process (MDP) with infinite
time-horizon. An MDP is a tuple (S,A, P,R, γ, µ), where:

• S is the (continuous) state space;
• A is the (continuous) action space;
• P (·|s, a) ∈ ∆S ∀s ∈ S, a ∈ A is the Markovian tran-

sition kernel, indicating the probability of reaching a
specific state when performing action a in state s;

• R : S × A → [−Rmax, Rmax] is the bounded reward
function;
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• γ ∈ (0, 1) is the discount factor;
• µ(·) ∈ ∆S is the starting-state distribution.

The agent’s behaviour is determined by a Markovian, sta-
tionary policy, defined as the mapping π : S → ∆A, where
π(a|s) is the probability of performing action a while being
on state s. We will sometimes restrict our attention to para-
metric policies πθ ∈ ΠΘ identified by a vector of parameters
θ ∈ Θ ⊆ Rm,m ⩾ 1.
Following policy π, the interaction between the agent
and the environment determines a trajectory τ =
(s0, a0, r0, s1, a1, r1, ...), where s0 ∼ µ(·), at ∼ π(·|s), rt =
R(st, at) and st+1 ∼ P (·|st, at) for all t ⩾ 0. We call T
the set of all possible trajectories. A trajectory is a random
variable whose probability density, given some policy π, is:

pπ(τ) = µ(s0)

∞∏
t=0

π(at|st)P (st+1|st, at).

Given a trajectory τ followed by the agent, the discounted
cumulative reward is called return and it is defined as
G(τ) :=

∑∞
t=0 γ

tR(st, at). The expectations of the return
Eτ |π [G(τ)] conditioned to s0 = s and s0 = s, a0 = a
are the value function Vπ(s) and the action value func-
tion Qπ(s, a), respectively. The gain of choosing action a
in state s is given by the advantage function: Aπ(s, a) :=
Qπ(s, a)−Vπ(s). When considering parametric policies, it is
convenient to evaluate the agent performance w.r.t. a scalar
criterion called expected return Jπ := Es0∼µ(·) [Vπ(s0)] =
Eτ∼pθ(·) [G(τ)].
The (discounted) state occupancy measure induced by policy
π is defined as:

dµ,π(s) := (1− γ)

∫
S
µ(s0)

∞∑
t=0

pπ(s0
t−→ s)ds0,

where pπ(s0
t−→ s) is the probability of reaching state s after

t steps starting from state s0 and following policy π.
The expectation of the reward w.r.t. the state occu-
pancy measure is called normalized expected return (some-
times we will use n. expected return for short): J̄π :=
Es∼dµ,π(·)
a∼π(·|s)

[R(s, a)] = (1− γ)Jπ.

Risk-Measures.
Definition 2.1 (Risk-Measure, (Alexander et al., 2014)).
Given a probability space (X , σX ,P), and some uncertain
outcome Z ∈ ZX , we call risk measure a function which
maps Z into the extended real line R̄ = R∪{+∞} ∪ {−∞}.
In order to guarantee that optimizing a risk-measure induces
a rational behavior, such measure needs to respect some
axioms.
Definition 2.2 (Coherent Risk-Measure). A risk-measure
η, defined w.r.t. the uncertain outcome Z, is coherent if it
satisfies the following properties for all Z,Z′ ∈ Z:

• Concavity1: η(tZ + (1 − t)Z′) ⩾ tη(Z) + (1 −
t)η(Z′) ∀t ∈ [0, 1].

• Monotonicity: If Z ⪰ Z′, then η(Z) ⩾ η(Z′).
• Translation Equivariance: ∀a ∈ R : η(Z + a) = η(Z) +
a.

• Positive Homogeneity: ∀t > 0 : η(tZ) = tη(Z).

Risk-Averse Reinforcement Learning. We consider a
risk-averse optimization reinforcement learning context, in
which the agent does not seek to maximize the risk-neutral
objective Jπ, but a risk-averse variant of it, typically a risk-
measure. We introduce the following distinction among the

1In the minimization formulation we have to substitute
this property with convexity.

risk-measures, which classifies them according to the consid-
ered probability spaces.
Definition 2.3 (Return-based and Reward-based Mea-
sures). A risk-measure defined w.r.t. a probability space P
and an uncertain outcome Z is called:

• return-based, if P = (T , σT , pπ), and Z = G(τ);
• reward-based, if P = (S × A, σS×A, dµ,π), and Z =
R(s, a).

As discussed in Bisi (2022), the return-based risk measures
can capture only the risk on the return, thus they are insensi-
tive to short-term risk; while the reward-based risk measures
captures short-term risk because they consider the per-step
reward, smoothing the trajectories that avoid shocks. The
solely reward-based risk-averse objective analysed in litera-
ture so far is the Mean-Volatility (Bisi et al., 2020), where
the Volatility is:

ν2π := E
s∼dµ,π(·)
a∼π(·|s)

[(
R(s, a)− J̄π

)2]
.

3. Coherent Reward-based Risk-Averse
Objectives

3.1. Mean-RMAD and RCVaR
Definition 3.1 (Mean-RMAD). Given the probability space
P = (S × A, σS×A, dµ,π), we define the reward-based mean
absolute deviation (RMAD) as:

ωπ := E
s∼dµ,π(·)
a∼π(·|s)

[∣∣R(s, a)− J̄π
∣∣] .

By setting a risk-aversion factor λ, we can define also a
trade-off measure called reward-based Mean-MAD (Mean-
RMAD): ηλπ := J̄π − λωπ.
It includes the classic mean and it penalizes the deviations
from the mean, that can cause high variability of the re-
sults. Differently from the variance, the MAD doesn’t square
the deviations, but they affect only with the distance from
the mean, while the variance weights more deviations bigger
than one and less the deviations smaller than one.
Definition 3.2 (RCVaR). Given P = (S × A, σS×A, dµ,π)
and α ∈ (0, 1), we define the reward-based conditional value-
at-risk (RCVaR) as:

ηαπ := max
ρ

ρ− 1

α
E

s∼dµ,π(·)
a∼π(·|s)

[
(R(s, a)− ρ)−

] ,

and the value ραπ for which the above program is optimal is
what we call the reward-based value-at-risk (RVaR)2.
The RCVaR (like the CVaR) captures the mean of the
worst outcomes, in this way its optimization reduces the bad
events. The RCVaR is coherent ∀α ∈ (0, 1), while the Mean-
MAD is coherent whenever 0 ⩽ λ ⩽ 0.5 (Alexander et al.,
2014). The following proposition relates the introduced
reward-based risk measures with their corresponding return-
based versions. Given the probability space P = (T , σT , pπ),
we just need to recall the mean absolute deviation:

ωGπ := E
τ |π

[|R(s, a)− Jπ|]

and the CVaR:

ηα,Gπ := max
ρ

{
ρ− 1

α
E
τ |π

[
(R(s, a)− ρ)−

]}
.

2We drop the dependence from π whenever it is clear
from the context.
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Proposition 3.1. The following relationships hold between
reward-based and return-based risk-measures:

ωGπ ≤ ωπ
(1− γ)

, ηα,Gπ ≥ ηαπ
(1− γ)

.

This result tells us that optimizing reward-based risk mea-
sures amounts to bound the corresponding return-based risk
measure, similarly to what happens for the reward-volatility
(Bisi et al., 2020). It is also possible to establish relation-
ships among reward-based measures.
Proposition 3.2. Given an MDP M and a policy π, ∀α ∈
(0, 1), the following relationships hold among reward-based
risk-measures:

ηαπ ≥ ηλπ if λ =
1

2α
,

(ωπ)
2 ≤ ν2π.

Interestingly, the previous proposition lower bounds the RC-
VaR value of some policy w.r.t. the Mean-RMAD one.
Therefore, optimizing the latter quantity can also see as a
proxy to optimize the former one. In Figure 1, we see that
the optimal policies of the Mean-RMAD are different from
the optimal policies of the RCVaR, obtained with brute force
on the environment Point Reacher (Bisi, 2022). The same
happens also if we compare the Mean-MAD with the Mean-
Volatility and the CVaR with the Mean-Volatility. It means
that they capture different preferences w.r.t. risk, thus, the
best risk measure to use in practice may depend on the prob-
lem at hand.

Figure 1: Comparison between the optimal policies of Mean-
RMAD and of RCVaR, obtained with brute force on the
environment Point Reacher (Bisi, 2022).

Our choice of analysing these two risk-measures is motivated
by the particular combination of properties they enjoy. We
compare in Table 1 the measures in exam with state-of-the-
art measures. The dimensions under which we analyse them
involve both coherence features and reinforcement learning
properties. We show that the chosen risk-measures, beyond
being coherent, enjoy expectation Bellman equations and a
formulation of the Performance Difference Lemma. These
features are fundamental for the development of policy gra-
dient approaches, safe improvement bounds and effective
trust-region approaches. Looking at the table, it is possi-
ble to notice that RCVaR and Mean-RMAD share indeed
these properties with Mean-Volatility, which is not coherent
though, due to the lack of the monotonicity property.

Table 1: Properties of various risk measures. In gold there
are the new risk measures introduced in this document.
"NK" means Not Known.

3.2. The Importance of Coherence: a Motivat-
ing Example

Risk-measures have originally been developed by the finan-
cial literature as a way of computing the necessary amount
of cash that need to be reserved to shield against some po-
tential risk. In this context, the coherence axioms have been
selected in order to guarantee a rational behavior: Concav-
ity, it ensures that diversification is always beneficial to risk;
Monotonicity, it makes choices resulting in lower reward for
each outcome riskier. It avoids risk-averse optimization to
converge to degenerate solutions; Translation Equivariance,
it allows to exclude deterministic components from risk com-
putation. In a reinforcement learning perspective, it also al-
low reward translation by a constant quantity, which may
be beneficial in some tasks in order to enhance exploration;
Positive Homogeneity, it encodes the intuition that multi-
plying the exposition directly maps to risk. From a rein-
forcement learning viewpoint, this property allows reward
scaling, which may be useful in practice in case of extreme
reward ranges (very low, or very high) to avoid precision
or overflow errors. By looking at Table 1, it is possible
to notice that important risk-measures as Mean-Variance,
Mean-Volatility and Entropic Risk-Measure (ERM) are not
coherent. Therefore, optimizing these risk-averse objective
may result in irrational behaviors. Violating the monotonic-
ity is of particular concern, since it permits the agent to
possibly converge to solutions which should be excluded in-
stead. With the following example we will try to provide the
reader some further intuition on this point.

Figure 2: Graphical representation of the Grid-World Gar-
den environment. The orange square is the starting-state,
while the yellow square is the goal-state in which the agent
receives the highest reward.

(a) Mean-RMAD (b) RCVaR

Figure 3: Evaluation on the environment Garden of three
policies: the go-fast policy is the one that reaches the goal
state with high speed, the go-slow policy goes to the goal
state with low speed, while the idle policy is the one that
goes on the grass. The vertical dashed line in Figure 3a
indicates that over that value the risk measure is no more
coherent.

The Garden Example. Consider a real-world scenario in
which a gardener-agent has to learn how to cut a hedge and
it must avoid collisions with flowers or people walking on
the garden grass. A pictorial representation of a simplified
2D model with stochastic transitions is given in Figure 2.
The agent can control his direction and speed, with higher
speeds increasing the chance of losing control over its di-
rection. Positive reinforce is provided for approaching and
reaching some goal state. Importantly, the lowest possible
reward is achieved if the agent enters the grass, where people
may be hit. We considered three policies:
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• go-fast : it follows the path to the goal-state with high
speed (two steps per action);

• go-slow : it follows the path to the goal-state with low
speed;

• quit : it quits the task prematurely, by immediately
touching the grass.

We notice that the quit policy has the worse risk-neutral per-
formance, giving always the lowest possible reward. On the
other hand, by instantly quitting the task, this behaviour
allows to obtain a low variability for the reward, hence, it
may be preferred by an extremely risk-averse agent. We re-
call that, entering the grass, the gardener agent might risk
to hurt the people in the area surrounding the hedge, a be-
haviour that we explicitly tried to discourage by providing
a high penalty. Figures 3a and 3b show the performance of
each policies according to, respectively, Mean-RMAD and
RCVaR. Thanks to the monotonicity property, the Mean-
RMAD for 0 ≤ λ ≤ 0.5 and the RCVaR consider the quit
policy as not the best. However, it can be noticed that it is
selected for higher level of λ, the reason is that monotonicity
is no longer guaranteed. Therefore, such risk-aversion levels
may induce convergence of some learning algorithm towards
dangerous policies as a byproduct of an excessive aversion
to risk. While this phenomenon can be avoided a priori for
Mean-RMAD by limiting the range of λ, the same cannot be
done with Mean-Volatility, hence, unwanted behaviors can
only be spotted a posteriori.
Another key tool for making online algorithms reliable is
to provide safe guarantees to ensure a stable performance
improvement, as it is shown in the next sections.

4. Mean-RMAD Optimization

4.1. Value functions
We introduce the value function Wπ(s) and the action value
function Xπ(s, a) of the RMAD, obtained from:

E
at∼π(·|st)

st+1∼P (·|st,at)

[
∞∑
t=0

γt
∣∣R(st, at)− J̄π

∣∣]

by conditioning on s0 = s and s0 = s, a0 = a, respectively.
The value functions of the Mean-RMAD can then be ob-
tained as a linear combination of the classic risk-neutral
value functions and the RMAD value functions:

V λπ (s) :=Vπ(s)− λWπ(s),

Qλπ(s, a) :=Qπ(s, a)− λXπ(s, a).

The definition of the advantage functions of the RMAD and
of the Mean-RMAD automatically follow, respectively:

Aωπ(s, a) := −(Xπ(s, a)−Wπ(s)),

Aλπ(s, a) := Qλπ(s, a)− V λπ (s) = Aπ(s, a) + λAωπ(s, a),

where we included the minus sign because we prefer lower
values of the RMAD.

4.2. Safe Improvement Guarantees and Trust-
Region Algorithms

Monotonic Performance Improvement. We extend the
Performance Difference Lemma to the Mean-RMAD in order
to develop a trust region method (Schulman et al., 2015).
Lemma 4.1 (Mean-RMAD Performance Difference
Lemma). The difference of the performance in terms of
Mean-RMAD between two policies π and π̃ is lower bounded
by:

ηλπ̃ − ηλπ
(1− γ)

⩾ E
τ |π̃

[∑
t

γtAλπ(st, at)

]
− λ

∣∣∣∣∣ Eτ |π̃
[∑

t

γtAπ(st, at)

]∣∣∣∣∣ .

From this lemma we obtain the safe improvement bound for
parametric policies in Theorem 4.1.
Theorem 4.1 (Mean-RMAD Safe Improvement Bound).
Consider the following approximation of ηλπθ

, replacing the
state-occupancy density of the old policy dµ,πθk

:

Lλk(πθ) := ηλπθk
+

∫
S
dµ,πθk

(s)

∫
A
πθ(a|s)Aλθk

(s, a) da ds.

Then, the performance of πθ can be bounded as follows:

ηλπθ
⩾ Lλk(πθ)−

4γϵλ
1− γ

α2
KL − λ(1− γ)M,

where:
α2
KL = max

s
DKL(πθk (·|s), πθ(·|s)),

ϵλ = max
s,a

∣∣∣Aλθk
(s, a)

∣∣∣ , ϵ = max
s,a

|Aθk (s, a)| ,

M := |Aθ
θk

|+ 4ϵγ

(1− γ)2
α2
KL,

Aθ
θk

:= E
τ |πθk

[
∞∑
t=0

γt E
a∼πθ(·,st)

[Aθk (st, a)]

]
and DKL is the Kullback-Leibler divergence.
By optimizing the Safe Improvement Bound we get RMAD-
TRPO, described in Algorithm 1.

Algorithm 1 RMAD-TRPO

1: Input: initial policy parameter θ0, batch size N , num-
ber of iterations K, discount factor γ.

2: for k = 0, ...,K − 1 do
3: Collect N trajectories with θk.
4: Compute advantage values Aλθk

(s, a) and Aθ
θk

(s, a).
5: Solve the constrained optimization problem:

θk+1 = argmax
θ∈Θ

{
Lλk(πθ)−

4γϵλ
1− γ

α2
KL − λ(1− γ)M

}
,

where Lλk(πθ), M , Aθ
θk

, ϵλ, ϵ and α2
KL are defined in

Theorem 4.1.
6: end for

The TRPO version for the Mean-RMAD has the same guar-
antee of monotonic improvement (Corollary 4.1) of the orig-
inal risk-neutral method.
Corollary 4.1 (Monotonic Improvement of
RMAD-TRPO). By optimizing the Mean-RMAD Safe
Improvement Bound of Theorem 4.1 at each iteration k, we
obtain a monotonic improvement of the Mean-RMAD:

ηλπk+1
⩾ ηλπk

∀k ⩾ 0,

where ηλπk
is the Mean-RMAD of policy πk at iteration k.

For the practical version of RMAD-TRPO we followed Schul-
man et al. (2015), using a constraint on the Kullback-Leibler
divergence instead of a penalty.

RMAD-PPO. We can create a version of PPO (Schulman
et al., 2017) for the Mean-RMAD objective using the fact
that one subgradient with respect to θ of the Mean-RMAD
objective is equal to the gradient of:

(1− γ) E
τ∼pπold

[
∞∑
t=0

γt
πθ(at|st)
πθold(at|st)

Aλ,ψπold
(st, at)

]
,

where we used the advantage function of the transformed
reward R̃(s, a) := R(s, a)− λ

∣∣R(s, a)− J̄π
∣∣+ λψπR(s, a):

Aλ,ψπ (st, at) := Aπ(st, at) + λAωπ(st, at) + λψπAπ(st, at).

RMAD-PPO remains the same as PPO, we just need to
substitute the risk-neutral advantage function of PPO with
Aλ,ψπ .
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5. RCVaR Optimization

5.1. Decomposition and Optimization via risk-
neutral RL methods

In order to optimize the RCVaR we exchange the maximiza-
tion with respect to θ with the maximization with respect
to ρ:

max
θ∈Θ

ηαπθ
= max

ρ
max
θ∈Θ

(1− γ)

E
s0∼µ(·),

at∼πθ(·|st)
st+1∼P (·|st,at)

[
∞∑
t=0

γt
(
ρ− 1

α
(R(s, a)− ρ)−

)]
, (1)

which can be solved in a block-coordinate fashion. For a
fixed ρ, the inner problem is an MDP with the transformed
reward R̃(s, a) = ρ− 1

α
(R(s, a)− ρ)−, that allows to apply

any risk-neutral RL method. While for a fixed policy πθ, the
solution of the outer problem is the RVaR. Our approach is
described in Algorithm 2, it alternates the calculation of
the RVaR with the optimization of an MDP. Unfortunately,
we have not found a similar decomposition for the Mean-
RMAD, but future work may investigate more its properties.
Our algorithm is similar to Risk-Averse policy Optimization
by State Augmentation (ROSA) of (Bisi, 2022), where the
exchange between the maximization with respect to the pol-
icy and the maximization with another variable allows to
apply any risk-neutral RL algorithm to a sequence of MDP.
Its inner optimization problem is not an MDP, so ROSA re-
quires also the augmentation of the state at each iteration,
that may cause an increase of the sample complexity, while
our method doesn’t require it.

Algorithm 2 RCVaR Block cyclic coordinate ascent
(RCVaR-BCCA)

1: Input: initial policy parameter θ0, batch size N , num-
ber of iterations K, discount factor γ, risk-neutral RL
algorithm A (e.g. PPO, TRPO, etc.)).

2: for k = 0, ...,K − 1 do
3: Collect a batch {τi}Ni=1 of N trajectories with πθk .
4: Compute the RVaR ραπθk

.
5: Feed {τi}Ni=1 into A and maximize the inner problem

1 with respect to θ ∈ Θ, by fixing ρ = ραπθk
, to obtain

πθk+1 .
6: end for

RCVaR-BCCA is characterized by the monotonic improve-
ment guarantee of the RCVaR.
Theorem 5.1 (Monotonic Policy Improvement for block
cyclic coordinate ascent). Following Algorithm 2, the RC-
VaR grows monotonically:

ηαπθk+1
⩾ ηαπθk

∀k ⩾ 0,

where ηαπθk
is the RCVaR of policy πθk at iteration k.

In the experiments we used RCVaR-BCCA with TRPO and
PPO, which we call RCVaR-TRPO, respectively. The rea-
son is that RCVaR-TRPO allows safe updates that reduce
the model risk and because TRPO and PPO are able to
tackle complex and large-scale control problems.
RCVaR-TRPO can be obtained also by developing the per-
formance difference lemma for the RCVaR, from which it is
possible to get a safe improvement bound that can be maxi-
mized with guaranteed monotonic improvement. The perfor-
mance difference lemma and the safe improvement are equal
to those of the risk-neutral TRPO, instead of the risk-neutral
advantage function they need only the following one, defined
over the transformed reward R̃(s, a) := − 1

α
(R(s, a)− ρ)−,:

Aρπ(s, a) := Qρπ(s, a)− V ρπ (s),

where the value function V ρπ (s) and the action value function
Qρπ(s, a) come from:

E
at∼π(·|st)

st+1∼P (·|st,at)

[
∞∑
t=0

γt
(
− 1

α
(R(s, a)− ρ)−

)
|s0 = s

]

by conditioning on s0 = s and s0 = s, a0 = a, respectively.

6. Experiments
We performed an empirical analysis of the algorithm devel-
oped in the previous sections: RMAD-TRPO (Algorithm
1), RMAD-PPO (Section 4.2), RCVaR-TRPO (Algorithm
2 with TRPO) and RCVaR-PPO (Algorithm 2 with PPO),
and compared them with TRVO (Bisi et al., 2020) in terms
of learning speed and quality of the retrieved approximated
Pareto frontier. The objective is to show the risk-sensitivity,
the trade-off between the normalized expected return and
the risk, the speed of convergence and the ability to optimize
the considered risk measure. The results are the average of
5 independent runs and in each environment we considered
5 risk-aversion levels for each risk measure.

6.1. Noisy Point Reacher
We consider a modified version of Point Reacher (Bisi, 2022)
with more noise, in which the agent controls a point mass
that moves along the real line in order to bring it to a target
location in the minimum number of steps. The goal is to
move the point as near as possible to the origin, but the
higher the speed the higher the risk.

(a) (b)

(c) (d)

Figure 4: Results on Noisy Point Reacher. In Figures 4a
and 4c there are the optimal values for the Mean-RMAD
and for the RCVaR, respectively, obtained with brute force.
Figure 4b shows the trade-off Mean RMAD obtained by the
algorithms indicated in the legend. Figures 4d displays the
RCVaR for different values of α of the policies trained with
RCVaR-TRPO, which tried to optimize the RCVaR with α
indicated in the legend. The lines that connect the points
are showed only for readability.

In Figure 4a and 4c there are the optimal policies obtained
with brute force. The obtained frontier in Figure 4b approx-
imate the frontiers composed by the optimal policies in Fig-
ure 4a. The results of Figures 4d come from RCVaR-TRPO
(similar results were obtained with RCVaR-PPO) and we
can see that for α = 0.2 the highest RCVaR is achieved by
the policy that tried to maximize the RCVaR with α = 0.2;
while for α = 0.78 the best policy is the one that tried to
maximize the RCVaR with α = 0.78 and so on with the
other values of α. Furthermore, the highest values of the
RCVaR for each α of Figure 4d are similar to the optimal
values obtained with brute force in Figure 4c. These results
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indicate that the algorithms have found policies that have a
performance very similar to the optimal one.

6.2. Hopper
We considered one challenging environment in the robotic
setting: Hopper from PyBullet. The state of the robot is
made up of its position and its speed, while the actions con-
sists of torques applicable to various joints. The state space
and the action space are continuous and high-dimensional.
The reward is equal to a linear combination of: a bonus for
being alive, a bonus for its distance from the initial posi-
tion, a cost for large actions in absolute value and a cost if
the joints of the robot are at their limit. The dynamics is
deterministic so to obtain a sensible environment for risk-
averse optimization we added noise with zero mean to the
actions and to the reward. The reward was modified to be
always greater than or equal to zero, so we can exploit the
monotonicity property in order to avoid the policy that al-
ways falls getting zero until the end of the episode. So if
we use the RCVaR or the Mean-RMAD with 0 ⩽ λ ⩽ 0.5,
we have the guarantee that the optimal policy is not the one
that commits suicide because all other policies give a reward
that is always greater or equal to zero.

(a) Mean-RMAD frontier

(b) Algorithms comparison

Figure 5: Results obtained on Hopper, with shaded area rep-
resenting the standard deviation, while the solid lines rep-
resent the mean. Figure 5a shows the trade-off between the
normalized expected return and the RMAD of the policies
trained with the previous algorithms. Figure 5b reports as
comparison the learning curves of the newly introduced al-
gorithms and of the baseline TRVO in a risk-averse setting.
The lines that connect the points in the frontier are showed
only for readability.

Figure 5a shows the trade-off between the normalized ex-
pected return and the RMAD. We can see that the algo-
rithms have found risk-neutral policies with high normalized
expected return and high RMAD and Volatility; policies that
have low normalized expected return and low RMAD and
Volatility; other policies that can obtain a good mean even
if not high with a quite low RMAD and Volatility. Thanks
to the monotonicity property, we obtained that for all val-
ues of α that we used (0.9999, 0.8, 0.6, 0.4 and 0.2) and for
0 ⩽ λ ⩽ 0.5 (we used 0, 0.37 and 0.5) the found policies with
RCVaR-TRPO, RCVaR-PPO, RMAD-TRPO and RMAD-
PPO did never commit suicide. Finally, in Figure 5b we can
see that the algorithms have achieved convergence almost at
the same time.

(a) (b)
Figure 6: Frames from the Hopper environment of policies
trained with RMAD-TRPO. Figure 6a comes from the risk-
neutral policy, while Figure 6b comes by using a risk-aversion
factor 0.5. Similar behaviours came with the other algo-
rithms.

Figure 6a show a frame of the policy risk-neutral obtained
from the learning. The policy risk-neutral moves by oscil-
lating the top part of the robot, in this way it can achieve a
high normalized expected return but there is a higher risk of
falling. While in Figure 6b the frame of a policy risk-averse
shows a more cautious behaviour that maintains fixed the
top part of the robot, allowing to move forward and reduc-
ing the number of falls.

6.3. Trading
The environment consists in a simulated trading task on the
Foreign Exchange (FOREX) market. The agent can trade a
fixed amount of dollars, based on exchange rate prices taken
from real 2017 open data. An episode includes a day of
trading from 01:00 to 21:29 with a step of one minute. There
are three possible actions: short position (0), flat position
(1) and long position (2).

(a) λ = 0

(b) λ = 0.1

Figure 7: Actions selected during the year on the Trading
environment by the policy trained with RMAD-TRPO and
risk-aversion level indicated under each figure. On the x axis
there are the timesteps of the day and on the y axis there
are the days of the year. The green dots indicate the flat
action, the red dots are the short position, while the blue
dots are the long position.

In Figure 7 we can see the actions selected by the policies
trained with RMAD-TRPO for different risk-aversion levels.
The figures with a lot of red and blue dots represent ag-
gressive and risk-neutral policies, while if there are a lot of
green dots the figure represents a risk-averse policy. For each
algorithm, the risk-averse policies tend to choose the flat ac-
tion more times than what the risk-neutral policy does, until
the most risk-averse policy does nothing and exits from the
market. In fact, in Figure 7a we can see that the risk neu-
tral policies trade a lot on the market. While in Figure 7b
the policy is risk-averse and chooses several times the flat
action. We obtained also that the most risk-averse policy
chooses always the flat action. These results indicate that
the algorithms are risk sensitive, they are able to find ag-
gressive policies that maximize the mean, policies that give
a good mean but with lower risk depending on the risk aver-
sion level and policies that don’t want any risk at all. Similar
results were obtained also with the other algorithms.
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7. Related work
Alexander et al. (2014) illustrates risk-averse optimization
and analyzes the coherence properties of several risk mea-
sures: utility model, CVaR, VaR, entropic risk measure,
mean-variance, mean-deviation and mean-semideviation,
which have been used mostly in the form based on the re-
turn. The first work about a reward-based risk measure, the
Mean-Volatility, is Bisi et al. (2020), but it is not coherent.
In Bisi (2022), the author develops the algorithm ROSA, in
which you can use any RL method to optimize some return-
based risk measures, but at the cost of a greater number of
samples due to the augmentation of the state space, while
the RCVaR doesn’t need it thanks to its reward-based na-
ture. An algorithm similar to RMAD-TRPO and RCVaR-
TRPO is TRVO (Bisi et al., 2020), that merged together
two streams: risk-averse objective functions and safe pol-
icy updates. The first one reduces the inherent risk and
the second one reduces the model risk. RMAD-TRPO and
RCVaR-TRPO add also the coherence, which provides ra-
tional solutions. In Tamar et al. (2015) the authors develop
policy gradient for coherent risk measures, but it doesn’t
provide safe updates. The famous risk-neutral algorithm
TRPO, that provides safe updates, was introduced in Schul-
man et al. (2015). An approximation of TRPO is Proximal
Policy Optimization (PPO) of Schulman et al. (2017), both
algorithms are used to deal with complex control problems.

8. Conclusions
In this work, we tackled the risk-aversion problem with two
new risk measures that are both coherent and based on
the reward, which allow to smooth the trajectories avoid-
ing shocks and they allow to obtain solutions that are ra-
tional. These measures bound the corresponding return-
based measures. We obtained trust-region algorithms for
both measures that guarantee safe improvement updates.
For the RCVaR we can also apply any classic risk-neutral
Reinforcement Learning algorithm maintaining the mono-
tonic improvement. We showed the risk-sensitivity on chal-
lenging environments like Hopper and Trading, where we
obtained similar convergence speed to that of TRVO. Fu-
ture studies can further develop the theoretical part of these
algorithms: whether they can achieve the global optimal pol-
icy or an epsilon optimal policy and the convergence rate.
To conclude, we obtained safe methods that share the learn-
ing speed of state-of-the-art risk-neutral algorithms while
taking into consideration the risk and having the guarantee
that the found solutions have good properties thanks to the
coherence.
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