
Executive Summary of the Thesis

Hardware-in-the-Loop Simulation of Nano-satellite Constellations

Laurea Magistrale in Computer Science and Engineering - Ingegneria informatica

Author: Mattia Siriani

Advisor: Prof. Luca Mottola

Academic year: 2022-2023

1. Overview
With the rising costs of regular satellite opera-
tions, together with the issues intrinsic in plan-
ning, scheduling, and operating large space mis-
sions, nano-satellites increasingly represent a vi-
able alternative for a number of space appli-
cations due to their reduced cost and easier
scheduling. De-facto standards for nano-satellite
designs, such as CubeSats [3], are simultane-
ously emerging as a mobile computing platform,
enabling both education and research on space
systems with reasonable costs and timing.
Nano-satellites may be deployed as stand-alone
devices or in groups, forming constellations that
operate as a single system. The latter deploy-
ment configuration enables, for example, higher
coverage, better resilience to individual hard-
ware or software faults, and shorter revisit times.
These features are key for space applications
such as Earth imaging, weather monitoring, and
telecommunications [5].
Developing nano-satellite constellations is a
multi-disciplinary effort that spans mechanical
engineering, computer engineering, and control.
Many of the related challenges boil down to two
issues: i) the extremely limited energy envelope
available to nano-satellites, which mainly rely on
solar energy harvesting, and ii) the harsh condi-
tions found in outer space, which possibly cause

all sorts of faults in hardware and software alike.
These issues complicate every phase of develop-
ment, from the early designs all the way to ex-
perimentation and testing.
Simulators play a crucial role in the latter phase,
due to difficulties in carrying out these activ-
ities in the target environment. Existing sim-
ulators concentrate on specific issues, for ex-
ample, orbital mechanics or wireless transmis-
sions in space. A common simulator of wireless
transmission in space is NS-3, which is an open-
source networks simulator, designed to assist in
the analysis of various networking protocols and
scenarios [4]. Instead, a standard orbital simu-
lator is STK, which is a physical simulator able
to simulate the whole space mission, from simu-
lating the communications between the devices
used in the space mission to simulating the tra-
jectories of the deployed devices [1].
We concentrate on constellations of nano-
satellites that offer sensing, computing, and
communication functionality, effectively provid-
ing an orbital edge computing platform [2]. Un-
derstanding the energy trade-offs between the
processing of different application scenarios is
relevant to dictating the scope of a space mis-
sion, therefore we aim to implement a system
that is able to simulate the specific space mission
scenario desired by the user for a constellation
of nano-satellites.

1



Executive summary Mattia Siriani

Figure 1: Tasks and jobs.

However, space simulators have one problem in
common: they do not rely on the energy con-
sumption data of real nano-satellites. This leads
to the development of simulations that cannot
realistically predict the behavior of the devices
involved in the simulated space mission.
Our efforts focus on enhancing the realism of
our system by implementing a simulation that
interacts with a real device in real time. In the
literature, this type of simulation is also referred
to as Hardware-In-the-Loop (HIL) simulation.

2. Design and
Implementation

For the development of our system, we take as a
basis the cote orbital simulator [2]. Our contri-
bution consists of a simulation of a constellation
of nano-satellites, which enhances its realism by
retrieving data directly from a real nano-satellite
and simulating the user’s desired space mission
scenario. To provide further realism, the system
can be configured to simulate radiation-induced
errors along the orbit, directly on the real nano-
satellite. Our system is scalable and able to in-
teract with multiple physical nano-satellites si-
multaneously, decreasing the execution time of
the simulation.

2.1. Components and
Communication

The specification of the mission scenario desired
by the user is simulated by two important com-
ponents, which are tasks and jobs, described in
Section 2.1.1. Furthermore, our system is di-
vided into two main components: the simulation
and the nano-satellite, analyzed correspondingly
in Section 2.1.2 and in Section 2.1.3. These two
main components are interconnected by multi-
ple communication channels, illustrated in Sec-
tion 2.1.4.

Figure 2: Tasks and jobs in orbit.

2.1.1 Jobs and Tasks

To enhance the realism provided in our system,
we let the user define his desired space mission
scenario. The constructs that fulfill this goal are
the jobs and their sub-components, i.e. tasks,
which are shown in Figure 1. A job is the ob-
jective that a nano-satellite in a space mission
needs to fulfill in a specific position along the
orbit. A task is a real program that is executed
by the physical nano-satellite, and the execution
of one task or the consecutive execution of mul-
tiple tasks forms a job.
The ordering of how the tasks are executed is
defined by the utilization of two mechanisms:
the specification of dependencies between tasks
and the application of a priority policy. The
output of a task could be used as input for the
next task of the job, as we can see in the example
of Figure 1. For instance, in Figure 1 we can see
a possible subdivision of the tasks of an Earth
monitoring job.
An important aspect of every task is that its
simulation involves the retrieval of the data
recorded on the physical nano-satellite during
the execution of the task. A subset of these data
is composed of non-functional data, which rep-
resents the voltage and current retrieved from
the Power Supply Unit (PSU), from the battery,
and from the solar panels mounted.
The simulation organizes different jobs on dis-
tinct orbital positions of each nano-satellite, as
shown in Figure 2. This job structure is already
provided by cote. In Figure 2, the cube repre-
sents the nano-satellite and the other icons rep-
resent the jobs. This structure of the jobs en-
ables the system to simulate the same or mul-
tiple different objectives in the various orbital
positions. For instance, in Figure 2 when the
nano-satellite has an orbital position close to the
Equator it can simulate a job regarding the mon-
itoring of the temperature and when the orbital

2



Executive summary Mattia Siriani

position is close to the South Pole it can simulate
a job regarding ice observations.

2.1.2 Simulation

For the simulation, we modify the cote simulator
to convert it into a HIL simulator, leaving un-
altered the orbit calculations and the modeling
of the nano-satellite components. We structure
the nano-satellites in the constellation, which we
refer to as "simulated nano-satellites", as they
are the simulated counterparts of the physical
nano-satellite. Therefore, each simulated nano-
satellite must interact with a physical nano-
satellite to be simulated, as shown in Figure 3.
In our system we must deal with two important
aspects related to the integration of the physical
nano-satellite inside the simulation:

1. Coordination: This aspect is related to
the coordination between the simulation
and the physical nano-satellite on the job
to simulate. To achieve this, a priori of the
execution of the simulation, the system gen-
erates and transfers to the physical nano-
satellite a file, which coordinates the two
artefacts on the jobs to execute.

2. Synchronization: The physical nano-
satellite works in real-time, while the simu-
lation is faster; but, they must work in con-
junction to ensure seamless operation. Our
approach is to temporarily freeze the sim-
ulation whenever a simulated nano-satellite
requests the processing of a job. This pause
enables the physical nano-satellite to exe-
cute the different tasks of the job requested
and send to the simulation the real data re-
trieved. Once the simulation receives all the
data for the simulated nano-satellite, the
simulation is unfrozen and can proceed with
its execution. The scalability we provide to
our system, described in Section 2.4, im-
proves the synchronization of the two arte-
facts.

Figure 3: Scalability architecture.

2.1.3 Nano-satellite

For the physical nano-satellite involved in our
HIL simulation, we use the CubeSat Simulator
(CubeSatSim). The CubeSatSim is an open-
source, cost-effective device, which is able to em-
ulate the functionality of a standard CubeSat.
The CubeSatSim is equipped with a Raspberry
PI, which is interconnected to the other com-
ponents of the CubeSatSim, from which it re-
trieves the data recorded from the different sen-
sors mounted. These sensors record data from
the environment and from the behaviors of the
nano-satellite, providing fundamental data for
the development of our HIL simulation.
The data retrieved from the physical nano-
satellite is used to simulate a job regarding the
objective of a space mission scenario.
Lastly, we reason about the fidelity of the en-
ergy consumption data that we retrieve from the
physical nano-satellite. We focus on gathering a
higher amount of data because, in this way, there
is a higher probability of retrieving current peaks
unseen by collecting fewer data.

2.1.4 Communication

The two main components of our system are in-
terconnected by two communication channels,
which are used at different times of the simula-
tion. We designed the communication channels
with platform-independent protocols, avoiding
tying ourselves to the hardware in use. Further-
more, the communication channels we used are
reliable because we want to guarantee that both
artefacts receive what they need. The first com-
munication channel is a unidirectional channel
used to coordinate the simulation with the phys-
ical nano-satellite before the beginning of the
simulation. As a protocol for this communica-
tion channel, we use SSH because it is platform-
independent and reliable.
The latter communication channel is a bidirec-
tional communication channel used by the sim-
ulation to request the execution of the tasks of
the different jobs and retrieve the real data in
response. As a protocol for this communication
channel, we use MQTT because it is platform-
independent, reliable, scalable, enables bidirec-
tional communication, and is lightweight, mak-
ing it ideal for our purposes since we are using
embedded devices.

3



Executive summary Mattia Siriani

2.2. User Configuration
While developing our HIL simulation, we focus
on making the system as user-configurable as
possible, allowing the end user to configure var-
ious aspects of the simulation.

• Simulation parameters: The user can
configure parameters regarding the func-
tioning of the simulation, the nano-satellite,
and the communication channels. Exam-
ples include the number of simulated nano-
satellites, the simulation of radiation errors,
and the topics used for MQTT communica-
tion.

• Tasks and jobs: The user must provide
the programs that are used as tasks, as it is
the user who determines the desired space
mission scenario. For instance, if the user
needs to simulate an Earth monitoring sce-
nario, he must provide the programs needed
to execute Earth monitoring activities, such
as those in Figure 1. The user must com-
pose the jobs with the different tasks he pro-
vides, controlling their order, and then he
must assign the jobs to the simulated nano-
satellites. Lastly, the user can control the
number of jobs that each simulated nano-
satellite simulates.

• Changing nano-satellite: The general-
ity, provided by the design choices we made,
is broad to such an extent that it is possi-
ble to modify the physical nano-satellite in
use. The only steps required to do this ope-
ration are: i) provide hardware-dependent
software to record the real data from the
new nano-satellite and ii) modify the task
component to support the new data struc-
ture. At this point, the nano-satellite is
integrated into the system and can start
working without further modification to the
rest of the system.
Therefore, the following aspects of the sim-
ulation remain unchanged: i) the interac-
tion between the simulation and the nano-
satellite, ii) the initial configuration of the
simulation, iii) the functioning mechanism
of the simulation, iv) the use and configura-
tion of the tasks and jobs, v) the simulation
of radiation-induced errors, vi) the configu-
ration capabilities provided to the user, and
vii) the scalability provided to the system.

2.3. Radiation-Induced Errors
Simulating radiation-induced error is not triv-
ial because it involves accurately modeling the
intricate interactions between radiation and the
nano-satellite components. However, this obsta-
cle becomes manageable by using the HIL sim-
ulation approach, leveraging the physical nano-
satellite to directly simulate radiation-induced
errors. Our approach involves the random cor-
ruption of the tasks before their execution.
Specifically, we randomly bit-flip or corrupt the
memory addresses of a task. In this way, we
simulate a radiation error occurring during the
objective mission. The system provides insights
into how the physical nano-satellite involved in
the system supports corruption errors.

2.4. Scalability
The use of a single physical nano-satellite can
introduce bottlenecks in the simulation caused
by our approach to the synchronization issue,
described in Section 2.1.2. To enhance the scal-
ability of our system, we can address both the
nano-satellite side and the simulation side. In
Figure 3, we can see the working mechanism of
our scalability approach, where the elements at
the top represent the simulated nano-satellites,
while the elements at the bottom represent the
physical nano-satellites.
Our approach on the physical nano-satellite side,
shown at the bottom of Figure 3, involves using
multiple physical nano-satellites. Our approach
on the simulation side, shown at the top of Fig-
ure 3, focuses on parallelizing the execution of
the simulated nano-satellites. For instance, if a
simulated nano-satellite of the constellation has
to process a long job, the other simulated nano-
satellites are not forced to wait for the job exe-
cution to end, but they can continue with their
own simulation. The two approaches combined
enable the simulation to communicate with mul-
tiple physical nano-satellites simultaneously, as
we can see in the center of Figure 3.

2.5. Implementation Highlights
We now focus on some implementation high-
lights of our system.

2.5.1 HIL Simulation

By using the cote simulator as a starting base,
our system is written in C++. Before the ex-

4



Executive summary Mattia Siriani

ecution of the simulator, the simulation coordi-
nates with the physical nano-satellite, using a
file called mapper. The mapper shows the al-
location of the tasks into the different jobs and
how these jobs are distributed among the vari-
ous simulated nano-satellites, following the con-
figuration of the user. Furthermore, once the
simulation starts, whenever it asks and then re-
trieves the real data from the physical nano-
satellite, it dynamically integrates this data into
the corresponding task component for the simu-
lated nano-satellite that requests the processing
of the job. In conclusion, the simulation out-
puts the results of all the events occurring for
the simulated nano-satellites, which are used to
generate different plots useful for the user to vi-
sualize the simulation results.

2.5.2 Nano-satellite

The nano-satellite has two main objectives: in-
teracting with the simulation and recording the
real data during the execution of the tasks re-
quested. The first objective is accomplished by
a single program, which receives the request to
process the jobs from the simulation, starts the
executions of the tasks, and for each task sends
back to the simulation the data recorded. The
latter objective is achieved through two pro-
grams. One program records the voltage and the
current of the nano-satellite components, while
the other records the data related to the envi-
ronment and the behavior of the nano-satellite.
The two programs store the data retrieved on
separate files, accessed by the program interact-
ing with the simulation to retrieve the data it
needs to send.

3. Results
We now showcase the results obtained from the
experimental evaluation we conducted on two
different metrics: realism and scalability. The
metrics are evaluated using 10 simulated nano-
satellites, 1 physical nano-satellite, with 10 jobs
for realism and 20 jobs for scalability.

3.1. Realism
For this metric, we want to evaluate if our sys-
tem is able to retrieve and integrate real data
from a physical nano-satellite. This metric is
crucial to understand if our system provides a
comprehensive HIL simulation. To evaluate this

metric, we compare the energy consumption re-
trieved from the physical nano-satellite and inte-
grated into the various simulated nano-satellites,
to the energy consumption retrieved from the
datasheets of the components of the CubeSat-
Sim. We opt to use the power consumption of
datasheets found online because these data rep-
resent a real-world scenario.
To convert the power consumption of the
datasheets to energy consumption, which is the
measure we use in Figure 4, we multiply for ev-
ery simulated nano-satellite the power consump-
tion of the datasheets by the interval in which
the physical nano-satellite processes all the jobs
of the simulated nano-satellite.
As we can see in Figure 4, for every simu-
lated nano-satellite, the energy consumption has
nearly the same magnitude as the energy con-
sumption retrieved from the datasheets. The
variations between the datasheets and the simu-
lated nano-satellites could be related to multiple
factors: i) environmental factors such as temper-
ature or humidity, ii) different CPUs usage, iii)
different programs used to stress the component,
and iv) variation in the voltage in a real-case sce-
nario, compared to the use of a standard voltage
value in the datasheets.
Since the energy consumption we compared has
nearly the same magnitude, we can conclude
that our simulation is able to integrate the real
data provided by the physical nano-satellite in
the various simulated nano-satellites.

0 1 2 3 4 5 6 7 8 9
Simulated nano-satellite

0.000

42.799

85.597

128.396

En
er

gy
 c

on
su

m
pt

io
n 

[J]

Evaluation simulation reality
Our system energy consumption
Datasheets energy consumption

Figure 4: Realism evaluation.

3.2. Scalability
We aim to test the enhanced scalability we pro-
vide to our system. The simulation runs on a
server with 48 CPUs, 256 GB of memory, and
1 TB of disk. In Figure 5, we evaluate if our
system is capable of scale, to understand if it

5



Executive summary Mattia Siriani

20 22 24 26 28 210
Number of simulated and physical nano-satellites

0%

8%

17%

25%

34%

Pe
rc
en
ta
ge
 o
f t
im
e

co
m
pa
re
d 
to
 th

e 
ba
se
lin
e

Evaluation scalability - System
Missing MQTT messages
MQTT fails in creating publishers

Figure 5: System scalability.

can parallelize the execution, maintaining the
performance when the number of simulated and
physical nano-satellites increases. Initially, the
curve is flat because there is always a physical
nano-satellite ready to process the job requested
by a simulated nano-satellite.
At a certain point, we can observe an exponen-
tial increase. This situation is attributed to the
saturation of the processing cores on the ma-
chine that runs the simulation, which is forced
to limit its concurrent processes, reducing the
parallelization.
Once we reach the X-marks, we encounter er-
rors related to the communication channel, i.e.
MQTT, which results in an erroneous simula-
tion. This test enables us to understand that
our system is capable of managing ∼700 physi-
cal nano-satellites simultaneously.
In Figure 6, we evaluate how the number of
physical nano-satellites involved in the simula-
tion impacts the simulation performance.
Increasing the number of physical nano-satellites
reduces the execution time of the simulation due
to the parallel execution of the simulated nano-
satellites and the use of multiple physical nano-
satellites, following our scalability approach of
Figure 3. So, if a physical nano-satellite is work-
ing for a simulated counterpart, the other sim-
ulated nano-satellites can request the data from
the free physical nano-satellites.
However, when the number of physical nano-
satellites equals the simulated nano-satellites the
curve flattens out because every simulated nano-
satellite always has a physical nano-satellite to
interact with, therefore, when we have more
physical than simulated nano-satellites, the ex-
tra physical nano-satellites never work.
In conclusion, from the results we obtained, we
can say the scalability provided to our system is
able to decrease the overall execution time of

1 2 4 8 10 16
Number of physical nano-satellites

-93%

-73%

-54%

-34%

-14%

Pe
rc

en
ta

ge
 o

f t
im

e
co

m
pa

re
d 

to
 th

e 
ba

se
lin

e

Evaluation scalability - Nano-satellites

Figure 6: Physical nano-satellites scalability.

the simulation by a factor of 88% when using
multiple nano-satellites, compared to using a
single physical nano-satellite.

4. Conclusions
In this thesis, we provide a HIL simulation,
which is able to use real data, retrieved from
a real nano-satellite. The system can also simu-
late radiation-induced errors, in real time, on
the real nano-satellite. Lastly, the scalability
provided by our system, enables the simula-
tion to be interconnected with multiple nano-
satellites simultaneously. Our results prove that
our simulation can use data retrieved from a
physical nano-satellite. Furthermore, we empir-
ically verify that our scalability approach short-
ens the overall execution time of the simulation
by a factor of 88% when using multiple nano-
satellites, compared to using a single physical
nano-satellite, also enabling the HIL simulation
to manage ∼700 physical nano-satellites simul-
taneously.

References
[1] Ansys. Stk space simulator, ansys.com, 2022.

[2] Bradley Denby and Brandon Lucia. Or-
bital edge computing: Nanosatellite constel-
lations as a new class of computer system.
In Proceedings of the Twenty-Fifth Interna-
tional Conference on Architectural Support
for Programming Languages and Operating
Systems, 2020.

[3] A Johnstone. Cubesat design specification
(rev. 14.1). Cal Poly SLO, 2022.

[4] Nsnam. Ns-3 simulator, nsnam.org, 2023.

[5] Roger Walker. Esa, cubesats specifications,
esa.int.

6


	Overview
	Design andImplementation
	Components andCommunication
	Jobs and Tasks
	Simulation
	Nano-satellite
	Communication

	User Configuration
	Radiation-Induced Errors
	Scalability
	Implementation Highlights
	HIL Simulation
	Nano-satellite


	Results
	Realism
	Scalability

	Conclusions

