
Dipartimento di Elettronica, Informazione e Bioingegneria

Master Degree in Music and Acoustic Engineering

Audio Splicing Detection and
Localization Based on

Recording Device Cues

by:
Daniele Ugo Leonzio

matr.:
940102

Supervisor:
Prof. Paolo Bestagini

Co-supervisor:
M.Sc. Luca Cuccovillo

Academic Year
2020-2021

Abstract

In recent years, we have witnessed an increasing spread of technology.
Artificial intelligence and machine learning are now part of our daily
lives. The availability of these sophisticated techniques, even on the
consumer market, has made it possible for anyone to create multime-
dia content at a professional level. This has also created a new kind of
problem to deal with: it has become very easy to create very realistic
fake content that can be used to convey targeted messages by exploiting
the notoriety of certain people. For this reason, the possibility of ver-
ifying the reliability of a multimedia object is becoming of paramount
importance, especially if these files are used as evidence in trials. The
problem we have addressed in this thesis goes in this direction. Our goal
is to determine whether an audio track under analysis has been manip-
ulated through splicing. Moreover, if a recording is detected as spliced,
we identify where it has been modified. The method we propose is based
on a Convolutional Neural Network (CNN) to extract certain features
from the audio recording. After extracting the features, we determine
through a clustering algorithm if there has been a manipulation. Finally,
we identify the point where the modification has been introduced with a
distance-based technique. The results achieved are very satisfactory as
we are able to reach 98% accuracy for the identification phase and a very
small error for the localisation task on a dataset we built on purpose to
study this problem.

Sommario

Negli ultimi anni, abbiamo assistito a una crescente diffusione della tec-
nologia. L’intelligenza artificiale e l’apprendimento automatico fanno
ormai parte della nostra vita quotidiana. La disponibilità di queste tec-
niche sofisticate, anche sul mercato consumer, ha reso possibile a chi-
unque creare contenuti multimediali a livello professionale. Questo ha
anche creato un nuovo tipo di problema da affrontare: è diventato molto
facile creare contenuti falsi molto realistici che possono essere utilizzati
per trasmettere messaggi mirati sfruttando la notorietà di alcune persone.
Per questo motivo, la possibilità di verificare l’affidabilità di un oggetto
multimediale sta diventando di fondamentale importanza, soprattutto se
questi file vengono utilizzati come prove nei processi. Il problema che ab-
biamo affrontato in questa tesi va in questa direzione. Il nostro obiettivo
è quello di determinare se una traccia audio in analisi è stata manipolata
attraverso lo splicing. Inoltre, se una registrazione viene rilevata come
manipolata, identifichiamo dove è stata modificata. Il metodo che pro-
poniamo si basa su una rete neurale convoluzionale (CNN) per estrarre
alcune caratteristiche dalla registrazione audio. Dopo aver estratto le
caratteristiche, determiniamo attraverso un algoritmo di clustering se c’è
stata una manipolazione. Infine, identifichiamo il punto in cui la modi-
fica è stata introdotta con una tecnica basata sulla distanza. I risultati
ottenuti sono molto soddisfacenti in quanto siamo in grado di raggiun-
gere il 98% di accuratezza per la fase di identificazione e un errore molto
piccolo per la localizzazione su un set di dati che abbiamo costruito ap-
positamente per studiare questo problema.

Ringraziamenti

Questa tesi rappresenta la conclusione del mio percorso al Politecnico di
Milano.

Vorrei iniziare ringraziando il Prof. Paolo Bestagini e il M.Sc. Luca
Cuccovillo per avermi guidato in questo progetto di ricerca. Grazie per
tutti i consigli utili dati in questi mesi di lavoro insieme, avete reso sicu-
ramente tutto più semplice.

Ringrazio poi i miei genitori per avermi sempre dato la possibilità di
seguire le mie passioni, sostenendomi e aiutandomi in ogni occasione.

Ringrazio mia sorella Eugenia per aver sempre creduto in me. Magari
a volte non sono capace di dimostrarlo, ma sai che ti voglio bene.

Vorrei poi ringraziare Gabriella per essermi stata, nonostante le dif-
ficoltà che sono passate, sempre vicino.

Ringrazio Aldo, per avermi fatto scoprire diverso ai miei occhi. Mi ha
dato una sicurezza che era ancora inespressa, ti sarò per sempre grato.

Ringrazio anche Ema, Franci e Andrea. Amici sinceri che hanno reso
sicuramente l’ultimo periodo delle mia vita più divertente.

Ringrazio Simone, mio compagno di avventure per tutta la magistrale.
Grazie per tutto l’aiuto che mi hai dato nei mille progetti da fare.

Ringrazio infine tutti coloro che per un motivo od un altro hanno
incrociato la mia vita in questo percorso.

Daniele

Contents

Abstract i

Sommario ii

Ringraziamenti iii

List of Figures vii

List of Tables viii

Glossary ix

1 Introduction 1

2 State of the Art 4
2.1 Microphone Identification 4
2.2 Localization . 8
2.3 Conclusive Remarks . 10

3 Theoretical Background 11
3.1 Time-Frequency Representation 11

3.1.1 STFT . 12
3.1.2 Mel Spectrogram 14

3.2 Machine Learning . 16
3.2.1 Overview . 16
3.2.2 Taxonomy . 16
3.2.3 Neural Networks 18
3.2.4 Clustering and K-Means 22

iv

Contents v

3.3 Conclusive Remarks . 23

4 Splicing Detection and Localization 24
4.1 Problem formulation . 24
4.2 Proposed Method . 26

4.2.1 Preprocessing . 27
4.2.2 Features Extraction 29
4.2.3 Detection . 31
4.2.4 Localization . 34

4.3 Conclusive Remarks . 36

5 Results 37
5.1 Dataset . 37
5.2 Metrics . 39

5.2.1 Balanced Accuracy 39
5.2.2 Precision . 40
5.2.3 F1-score . 40
5.2.4 ROC . 41
5.2.5 Confusion Matrix 41

5.3 Experimental Setup . 42
5.4 Experiments . 44

5.4.1 Experiment 1: The CNN for feature extraction . . 45
5.4.2 Experiment 2 : The Threshold for Splicing Detection 52

5.5 Detection and Localization 54
5.5.1 Clustering . 54
5.5.2 Localization . 55
5.5.3 Additional Results 57

5.6 Conclusive Remarks . 61

6 Conclusions and Future Works 63

List of Figures

2.1 Identification problem 6

3.1 Example of digital signal 12
3.2 Example of Discrete Fourier transform (DFT) of the signal

in 3.1 . 12
3.3 An example of log spectrogram. 14
3.4 Mel frequency conversion. 15
3.5 An example of log Mel spectrogram. 16
3.6 An example of perceptron. 19
3.7 Gradient descent method. 20
3.8 An example of Multilayer Perceptron Network. 21
3.9 An example of Convolutional Neural Network (CNN). . . 22
3.10 K-Means algorithm. 23

4.1 Two example signals x1 and x2 25
4.2 Concatenation between the two signals x1 and x2 26
4.3 Proposed method pipeline. 27
4.4 Input audio signal cut to T/N 28
4.5 Short-Time Fourier Transform (STFT) of the audio signal

in Figure 4.4. 28
4.6 CNN used for feature extraction. 30
4.7 CNN topology and parameters. 30
4.8 An example of clustering with same class samples. 33
4.9 An example of clustering with two classes. 34
4.10 Distances between consecutive samples of the feature vector. 35
4.11 Distances between consecutive samples of the feature vector. 36

vi

List of Figures vii

5.1 Definition of TP, TN, FP, FN. 40
5.2 An example of ROC curve. 42
5.3 An example of Confusion Matrix with multiple class. . . 43
5.4 Training curves: Accuracy and loss of the training stage. 44
5.5 Confusion Matrix of CNN [1] with STFT 46
5.6 Confusion Matrix of CNN [2] 48
5.7 Confusion Matrix of CNN [1] with log Mel Spectrogram . 50
5.8 ROC of the clustering algorithm. 54
5.9 ROC of the clustering algorithm with modified threshold. 55
5.10 Histogram of the error measure. 56
5.11 Cluster of classes 10 and 11 of the same brand “Samsung”. 58
5.12 Cluster of classes 0 and 12. 58
5.13 Cluster of classes 5 and 6 of the same brand “LG”. 59
5.14 Cluster of classes 17 and 18 of the same brand “Sony Er-

icson”. 59
5.15 Localization on classes 0 and 12. 60
5.16 Localization on classes 17 and 18. 61
5.17 Localization on classes 9 and 12. 61

List of Tables

5.1 List of MOBIPHONE devices 38
5.2 Classification report of CNN [1] with STFT. 47
5.3 Classification report of CNN [2] 49
5.4 Classification report of CNN [1] with log Mel Spectrogram 51
5.5 Balanced accuracy computed pairwise. 53
5.6 Result K-Means. 54
5.7 Result K-Means with modified threshold. 55

viii

Glossary

ANN Artificial Neural Network. 16, 18, 21

AUC Area Under the Curve. 41, 42, 52, 55

BFCC Bark Frequency Cepstrum coefficient. 7

CNN Convolutional Neural Network. vi–viii, 2, 3, 21, 22, 26–31, 34, 38,
42, 44–47, 51, 52, 63, 64

DFT Discrete Fourier transform. vi, 11, 12

DL Deep Learning. 16

ENF Electric Network Frequency. 2, 8

FN False Negative. 39

FP False Positive. 39, 40

FPR False Positive Rate. 41, 42

GMM Gaussian Mixture Model. 6, 7

GSV Gaussian Support Vector. 6, 7

LFCC Linear Frequency Cepstrum coefficient. 7

LPCC Linear Prediction Cepstrum coefficient. 7

MFCC Mel Frequency Cepstrum coefficient. 2, 6, 7

ix

Glossary x

ML Machine Learning. 2, 16, 22

MLP Multilayer Perceptron. 20–22

RBF Radial Basis Function. 9

ROC Receiver Operating Characteristic. 41, 52, 55, 64

STFT Short-Time Fourier Transform. vi–viii, 2, 12–15, 23, 27–29, 42,
45–47, 52, 56

SVM Support Vector Machine. 2, 6, 9

TN True Negative. 39, 40

TP True Positive. 39, 40

TPR True Positive Rate. 42

1
Introduction

Rapid developments in technology and the increased widespread avail-
ability of more advanced techniques have made the creation and distri-
bution of multimedia content more accessible to everyone. It has also
become much easier to create fake content or modify existing content
without anyone being able to tell the difference between originals and
copies anymore. This is especially true in the field of audio files where
the latest technologies developed can synthesize very realistic voices or
put together different tracks as if they were a single piece. The latter is
the problem we have chosen to address, that is, trying to determine if an
audio track has been manipulated and to identify the point at which it
has been modified. This is an important problem to solve because, for
example, if audio recordings are presented as evidence in a court of law,
it becomes crucial to determine if they present traces of manipulation or
not.

For instance, several methods that investigate the task of microphone
identification have been proposed in the literature. There are methods

Chapter 1. Introduction 2

based on some audio features such as [3], that use descriptors extracted
from the audio recording and then cluster them with K-Means. Al-
ternatively, in [4] the authors use Mel Frequency Cepstrum coefficients
(MFCCs) and a Support Vector Machine (SVM) to identify different mi-
crophones. More advanced methods are based on CNNs and extract some
features directly from the audio recording. An example in this direction
is [1] in which the authors adopt a CNN to extract the microphone char-
acteristics from the STFT of the signal.

The problem we face in this thesis is that of detecting whether an
audio recording is pristine, or it is a composition of multiple recordings
from different devices. If the track is a splicing composition, we are also
interested in detecting the splicing point location in time. While micro-
phone identification is a topic full of studies and different methodologies,
the task of determining the location of a editing point by exploiting mi-
crophone characteristics has not been thoroughly investigated. There are
some studies that deal with the localization of editing points by exploit-
ing different clues, such as [5] that use the Electric Network Frequency
(ENF) to detect the discontinuity. However, very few methods use micro-
phone traces as source to localize the splicing point. To our knowledge,
the only work which investigated the usage of microphone clues to de-
tect editing traces is [6], which however present some issues that can be
improved. In particular, it started from the assumption of knowing the
splicing point. So our study wants to focus the attention on a problem
not deeply investigated until now and on the same gives a solution that
improves the previous studies.

To develop our work we rely on some basic tools of signal processing
and some Machine Learning (ML) techniques. In particular, we use the
STFT and Mel spectrogram to transform the signal into time-frequency
domain and a CNN to extract audio features. We adopt also the K-means
as clustering technique.

To solve the problem described above we propose a method based on
a CNN and a clustering technique. We start from the audio recording
and we transform it with a STFT in order to have a 2-D signal. After
the time-frequency transformation we exploit a CNN based on the work

Chapter 1. Introduction 3

[1] as a features extractor. We decided to use this type of network be-
cause it has good performance for the microphone identification task [1].
After the feature extraction phase, we make use of K-Means algorithm
to understand if the analyzed track has been tampered or not. In fact
the output of the K-Means are k clusters, for each cluster we compute
the centroid and then we compute the distances among the centroids. If
this distance is higher than a predefined threshold we can say that the
track has undergone tampering.

Furthermore, we localize the splicing point in time. To do this we
rely on the euclidean distance. From the feature array extracted from the
CNN, we compute the euclidean distances between consecutive samples.
We find the maximum of this distance array and then the sample position
of the found maximum is our splicing point.

Our algorithm reached remarkable results for the task we were able
to reach a balanced accuracy of 98%.

In the localization pipeline we measured the error of localization as
the difference in seconds between the predicted splicing point and the
true one. The final result show that we were able to detect the correct
point position and in the worst case we did and an average error of 0.5s.

This thesis is organized as follows:
In Chapter 2 there is a summary of the-state-of-the-art regarding the

microphone identification and localization. In Chapter 3 we introduce
the theoretical background needed to understand the rest of the work.
In Chapter 4 we describe the problem we want to solve by means of a
rigorous mathematical formulation and describe in details our proposed
method. In Chapter 5 we introduce the dataset used in the study, we
define the metrics adopted to evaluate our results, and we illustrate all
the experiments and test done to evaluate both the identification and the
localization algorithms. Chapter 6 contains our conclusions and some
future improvements.

2
State of the Art

In this chapter we report an overview of the state-of-the-art methods
related to the topic of this thesis. We start introducing methods allowing
to solve the microphone identification problem, i.e., recognizing which
microphone was used to acquire an audio recording under analysis. We
then report a few examples of methods using microphone traces to expose
audio forgeries. Finally, we conclude the chapter with a few conclusive
remarks.

2.1 Microphone Identification

Due to the continuous development of technology and its application on
consumer devices, we are all now able to produce audio and video items
at an almost professional level. It is also becoming increasingly easy
to produce fake multimedia contents that are indistinguishable from the
authentic ones. This is the case of politician speech for example, in which
we can extract just words from different speeches and create a new file

Chapter 2. State of the Art 5

convey a message we want with the politician voice. These malicious
files, however, may end up being used as evidence in a trial, so it becomes
essential to be able to recognize their authenticity.

Audio forensics is a branch of the wide field of forensic science. Audio
forensics, as said in [7], refers to the acquisition, analysis, and interpre-
tation of audio recordings as part of an official investigation. Typical
investigations involve these three primary fields:

• Authenticity

• Enhancement

• Interpretation

As explained in [8], the authenticity and integrity of an audio source
can be divided in two main categories: container based method and
content based method. The file structure and file metadata are part of
container based method, whereas the actual bytes of the file are content
based. The container analysis consists of HASH calculation, MAC and
file format analysis. The content analysis is the core of audio forensic
examination and relies on exploring the audio recording to find traces
of tampering. Most of existing audio forensic methods use the actual
content for authentication and integrity.

In our work we focus on audio source identification from a recorded
audio signal, that can be used to verify the authentication and integrity
of the file. Figure 2.1 illustrate what is the goal of this investigation. The
initial works on audio source identification used microphones as source
devices. But due to the increasing amount of mobile phone users, most
recordings are required nowadays using cellphones or–even more often–
smartphones. Hence, also the source identification domain evolved, and
the most recent studies focus on associating an audio recording to the
mobile phone used to record it [9].

In literature there are several methods to solve the problem of au-
dio source identification. One of the first method has been proposed by
Kraetzer et al. in [3]. In this work the authors suggest a set of au-
dio steganalysis-based features to cluster, with K-means, or to predict,
with Naive Bayes classifiers, both the microphone and the environment.

Chapter 2. State of the Art 6

Figure 2.1: This figure shows the goal of the identification problem.

Buchholz et al. [10] instead, proposed to use features extracted from
the Fourier coefficients from the near-silence segments to solve the mi-
crophone classification task used. Both these works were improved by
Kraetzer et al. in [11], where was demonstrated that with the combina-
tion of statistical features and unweighted information fusion it is possible
to improve the classification accuracy. Another method was proposed by
Garcia-Romero and Wilson in [12]. In this paper the classification was
performed using Gaussian Support Vectors (GSVs), derived from the
means of a trained Gaussian Mixture Model (GMM). A new study by
Jiang and Leung [13] added a kernel-based transformation from the orig-
inal GSV feature vector to another projected space, resulting in a better
performance for the microphone recognition task. In [14] Panagakis and
Kotropoulos proposed random spectral features and a classifiers based
on the sparse representation. The same authors improved this study in
[15] with labeled spectral features and SVM as classifier.

Given that the most commonly used devices nowadays are mobile
phones, and given that our study is also based on microphones from mo-
bile devices, we now discuss the state of the art on cell phone identifica-
tion. The first study focusing on mobile phones is [4], in which Hanilci et
al. used MFCC and a SVM to classify 14 different cell-phones. In another
study [16] they did a comparison among different acoustic features for
mobile phone classification. The study concluded that in general, MFCC

Chapter 2. State of the Art 7

performs better compared to other cepstral based features such as Linear
Frequency Cepstrum coefficients (LFCCs), Bark Frequency Cepstrum co-
efficients (BFCCs) and Linear Prediction Cepstrum coefficients (LPCCs).
Nevertheless, with mean and variance normalization, LPCCs, provided
the best classification results. Moreover, they observed that the addition
of corresponding delta features (derivatives of order one and two) to the
original cepstral features resulted in better performances.

Non-speech regions of the recorded audio were used in [17] for the
cell phone recognition task. Pandey et al. [9] have used the estimate of
power spectral density of the speech-free regions of the audio recording
for source cell-phone classification tasks. Noisy part of the speech was
utilized in [18] to extract MFCC feature vectors. In [19], intrinsic traces
of cell-phone left on the recorded audio were captured by first extracting
the MFCC feature vector at the frame level, then training a GMM, and
finally GSVs were taken as a template for each of the devices. Maximum
classification accuracy of 97.6% has been achieved on 21 cell-phones of
seven different brands. GSVs have also been used for cell-phone verifica-
tion [20].

Li et al. in [21] proposed an unsupervised method for cell-phone clus-
tering. Deep auto-encoder networks were used to extract intrinsic signa-
tures of a recording device. Spectral clustering was used to form a single
cluster for the audio recordings of the same cell-phone. Concatenation
of MFCC and inverted MFCC (IMFCC) feature vectors was used in [22]
to depict device specific traces. Additionally, Luo et al. [23] proved that
the frequency response curve computed from the recorded audio could
represent a robust device signature. Feature vector named as BED (Band
Energy Difference) has been derived to capture device-specific signatures.
Qin et al. in [24] have explored the problem of cell-phone classification in
the presence of five different types of noises. Cell-phone identification in
presence of AWGN noise has been faced in [1], and [25]. However, these
two systems use synthetic tones as compared to the real-world recorded
audio signals. The method in [25] requires the suspected cell-phone to
be available during the identification or authentication phase.

Chapter 2. State of the Art 8

2.2 Localization

Another problem of audio forensics is the localization of a forgery. With
localization we mean to identify, within a manipulated track, the point
where the original file has been altered.

To our knowledge, localization has not been still deeply explored in
the literature. Furthermore, the existing works on tampering localization
are not based on microphone analysis.

An example is the study [5] in which the authors proposed and audio
forensic tool for access audio authenticity. Their tool is based on the
ENF, that is a signal embedded in audio files when the recording is
taken with the device connected to an electrical outlet or when certain
microphone are inside a magnetic field. They analyzed discontinuity in
the phase of the power grid signal and then localized the splicing point
at the discontinuities.

Another approach was used by Grigoras and Smith in [26], based on
quantization level analysis to detect the tampering in the audio signal.
The authors underlined that PCM files with low bit-depth, whenever
processed by classic editing softwares, exhibits 16-bit of quantization in-
stead than the original 8 or 12 only in correspondence of the tampering
borders, or whenever external 16-bit content was spliced in the file.

In [27] Gartner et al. the tool chosen to detect manipulation inside
the audio signal was the analysis of discontinuities in the framing grid.
Also in this case when the discontinuity is found a tampering is detected
and localized at the corresponding time instant.

Another different approach by Alan J. Cooper can be found in [28].
In this work the author proposed a method based on the analysis of
butt-spliced edits. Forgeries are often created using simple editing tech-
nique as butt-splicing. This can leave traces as discontinuity in the audio
waveform. The method is time domain based, uses an high pass filter
on the audio data and models the discontinuity at higher frequencies.
The method than adopts a template to discover potential edits in the
filtered signal. A different process was used by Capoferri et al. [29].
They explored in this paper the reverberation cues as a feature to detect

Chapter 2. State of the Art 9

and localize the point of splicing in an audio recording. In fact distinct
recordings may be recorded in different environments that are typically
characterized by different reverberation cues. This method can be ex-
plained in three steps. They firstly apply a time-frequency transform on
the time domain signal, then they estimate the reverberation time in the
free decay region and finally they analyzed the estimated reverberation
times to determine the splicing location.

The authors got successfully results but the approach present some
intrinsic problem that affected the localization results. The main problem
is that the reverberation time can be estimated only in the free decay
region, so they were not able to localize the correct time instant of the
splicing. In our work we based the localization on a different method, we
compute the euclidean distance between consecutive feature frames and
lead us to get a better precision in localization.

Now we introduce the work in the literature that deals with local-
ization based on the microphone analysis. A study in this direction can
be found in [6]. In this work the authors proposed a method of audio
tampering based on the microphone classification but without providing
any algorithm for localization. The authors assumed that the location of
the splicing borders was known beforehand, to simulate a setup similar
to the one often happening in court cases. This setup is of course not
applicable if the splicing location is unknown, which is often the case
and that we are going to address in the following pages. The microphone
classification algorithm is based on the work [30], but in this case the
channel models the frequency response of the microphone instead of the
environment. After that they built the tampering algorithm that rely
on a SVM with a Radial Basis Function (RBF) kernel. They tested the
method on different encoding types and different bitrates reaching an
overall accuracy of 95%.

Since the methods that explored this problem are few, we were en-
couraged to investigate this task.

Chapter 2. State of the Art 10

2.3 Conclusive Remarks

In this chapter we showed the state of the art regarding microphone
identification and the problem of forgery localization. We have seen
that there are several methods for the microphone identification and
classification, whereas the localization problem has been less explored in
the literature despite its interesting aspects. In the next chapter we will
introduce the theoretical background needed to understand the following
sections.

3
Theoretical Background

In this chapter we describe the basic theoretical background and the tools
we used in this work. This will give to the reader the theory knowledge
to understand completely what it is explained in the next sections. In
particular in this chapter we focus on the time-frequency representation
of audio signals, neural networks and clustering.

3.1 Time-Frequency Representation

An audio signal is the variation of a specific variable, usually pressure,
over time. An analog time domain signal can be transformed in its digital
form with a process called sampling. The sampled signal is the discrete
version of the analog one. We can pass from the time domain to the
frequency domain using the Fourier transform. The Fourier transform
gives us the variation of the signal with respect to the frequency domain.
In case of digital signal, i.e. discrete signals, we deal with the DFT. So
given a digital signal x[n] in the time domain, with n ∈ 0, ..., N − 1, its

Chapter 3. Theoretical Background 12

DFT is defined as:

Xk =
N−1∑︂
n=0

xn · e−
i2π
N

kn =
N−1∑︂
n=0

xn ·
[︃
cos

(︃
2π

N
kn

)︃
− i · sin

(︃
2π

N
kn

)︃]︃
, (3.1)

with k ∈ 0, ..., N − 1.
In Figure 3.1 and Figure 3.2 we have an example of digital signal with

its DFT.

Figure 3.1: Example of digital signal

Figure 3.2: Example of DFT of the signal in 3.1

Time-Frequency transforms are representations of a signal in which
we can obverse both temporal and frequency evolution. There are differ-
ent type of time-frequency transforms, depending on how the frequency
scale is selected.

3.1.1 STFT

The Short-Time Fourier Transform (STFT) is a time-frequency represen-
tation obtained directly from the discrete Fourier transform of the signal.

Chapter 3. Theoretical Background 13

The STFT adopts the linear frequency scale. Given a digital signal x[n]
in the time domain, its STFT is defined as:

STFT{x[n]}(m,ω) = X(m,ω) =
∞∑︂

n=−∞

x[n] · w[n−m] · e−jωn, (3.2)

where w[n] represents the chosen window, m the window bin and ω the
frequency bin. Several windows have been proposed in the literature, for
instance the hann (eq. (3.3a)), sine (eq. (3.3b)), kbd (eq. (3.3c)) ones:

w(n) = 0.5

(︃
1− cos

(︃
2πn

N − 1

)︃)︃
(3.3a)

w(n) = sin

(︃
πn

N − 1

)︃
(3.3b)

w(n) =

I0

(︄
πα
√︂
1− (2n

N−1
− 1)2

)︄
I0(πα)

, (3.3c)

the type of windows determines the spectral leakage, which may also in-
fluences the analysis quality and resolution. Since the STFT is a complex
quantity we can represent it with its magnitude and phase. In Figure 3.3
an example of an STFT magnitude is reported. In this image we have a
log spectrogram, this means that the vertical axis has been scaled with
a logarithmic function.

Chapter 3. Theoretical Background 14

Figure 3.3: An example of log spectrogram.

3.1.2 Mel Spectrogram

The Mel spectrogram is obtained starting from the magnitude of the
STFT, but the frequency axis is converted from the liner to the mel
scale. The mel scale is a perceptual scale in which pitches are judged to
be equal in distance from one another. The following formula describes
the relationship between Hertz and mels:

m = 2595 log10

(︃
1 +

f

700

)︃
(3.4)

where f is the frequency in Hertz and m the frequency in mels. In Figure
3.4 there is curve that represents the equation 3.4.

Chapter 3. Theoretical Background 15

Figure 3.4: Mel frequency conversion.

In Figure 3.5 an example of Mel spectrogram, i.e., of the projection of
STFT magnitudes into a space in which the frequency bins are uniformly
spaced in Mel domain is reported. On the x axis there is the temporal
evolution whereas on the y axis the frequency one. The color of each pixel
denotes the magnitude associated to the mel bin at the corresponding
time instant. The frequency axis in based on the mel scale and also in
this case the axis is scaled using a logarithmic function.

Chapter 3. Theoretical Background 16

Figure 3.5: An example of log Mel spectrogram.

3.2 Machine Learning

In this section, we will give a brief overview to the core ideas and concepts
behind Machine Learning (ML) and Deep Learning (DL).

3.2.1 Overview

Machine Learning (ML) is a field of study which allow computers to learn
from data or experience in order to make predictions that are based on
this knowledge. These programs or algorithms are designed in a way
that they learn and improve over time when are exposed to new data.
Deep Learning (DL) instead, is a subcategory of machine learning where
the used algorithms attempt to find a mathematical representation of
information processing that emulates the structure and functioning of
the brain. For this reason, they are called Artificial Neural Network
(ANN).

3.2.2 Taxonomy

ML problems can be broadly divided in three classical categories:

Chapter 3. Theoretical Background 17

• Supervised Learning;

• Unsupervised Learning;

• Reinforcement Learning.

In addition to these three main categories, there are two main subcat-
egories of supervised learning: Semi-Supervised Learning, which can be
considered a mix between supervised and unsupervised learning, and
Self-Supervised Learning that can be regarded as autonomous learning
in that the model does not necessarily require sample data classified in
advance by humans.

3.2.2.1 Supervised Learning

Supervised learning is focused on predicting a target value given input
observations. In machine learning, input data to a model are normally
called “features”. The target values instead are often called “labels”.
The latter are the elements on which the supervised models are trained
to make a prediction. Supervised learning problems can be categorized
into two major subcategories: regression analysis and classification.

In regression analysis, the labels are continuous variables. In classifi-
cation, the labels are so-called class labels, which can be understood as
discrete class-membership or group-membership indicators.

3.2.2.2 Unsupervised Learning

While supervised learning is based on labeled data, unsupervised learning
aims to model the hidden structure of the input features without label
information. The main tasks addressed in unsupervised learning are:

• Feature Learning;

• Dimensionality Reduction;

• Clustering.

Feature learning techniques replace manual feature engineering and
allow a machine to automatically discover the representations needed to
perform a specific task.

Chapter 3. Theoretical Background 18

Instead, the dimensionality reduction methods, aims to a data trans-
formation from a high-dimensional space into a low-dimensional one so
that the low-dimensional representation still preserves some meaningful
properties of the original data. This is crucial since working in high-
dimensional spaces can be undesirable: raw data are often sparse as a
consequence of the curse of dimensionality, and analyzing the data in this
sparse domain is usually computationally intractable.

Lastly, clustering methods can be seen as a task similar to classifica-
tion but without labeling information in the training dataset. Without
this information, the main goal is to group data by similarity and define
distinct groups based on similarity thresholds. These algorithms can be
divided into three major groups: prototype-based, density-based, and hi-
erarchical clustering. While in the first type, a fixed number of cluster
centers is defined, in a density-based clustering this number is not fixed
but assigned by identifying regions of a high density of data. Finally in
hierarchical clustering a distance metric is used to group examples in a
tree-like fashion, in such a way that examples at the root are more re-
lated to each other. The depth of the tree defines the number of clusters
to be used.

3.2.2.3 Reinforcement Learning

Reinforcement learning is tightly connected to the development of reward
systems to model complex decision processes and learning a series of
actions that lead to a particular outcome. In a reinforcement learning
algorithm, a so-called agent learns how to act by interacting with its
environment. The agent receives rewards for performing correctly and
penalties for performing incorrectly. The agent learns without human
intervention by maximizing its reward and minimizing its penalty.

3.2.3 Neural Networks

3.2.3.1 Multilayer Perceptron

The basic building block of an ANN is the perceptron, which is the
equivalent of a brain neuron. The perceptron follows the “feed-forward”

Chapter 3. Theoretical Background 19

model, meaning that inputs are sent into the neuron, are then processed
for producing an output result, which eventually becomes the input to
a new layer of perceptrons. Figure 3.6, represents a generic neuron j.
Given a series of input sin

i , the output of a neuron is computed as:

Figure 3.6: An example of perceptron. In this example we have a perceptron
j with N inputs, each one with its proper weight. The input are multiplied
for the weights and then summed up together. Then the bias is added to the
result and this sum pass through the activation function gj .

sout
j = gj (zj + bj) = gj

(︄
N∑︂
i=0

wijs
in
i + bj

)︄
. (3.5)

Where ωji are the weights of each input. The activation procedure is
divided in:

• the activation value zj

• the activation function gj

• the bias bj

There exist different activation functions that can be used and they
are chosen in relation to task we want to resolve. Initially the weights
and the bias are assigned randomly, but to work well the net needs to
learn the proper values. In order to learn these values we need a measure
of error, L(ŷ, y) where ŷ is the target value and y the ground truth value.
Neural network compute the gradient of this error with respect to the
model weights, i.e., they compute a term

∂

∂W (l)
L, (3.6)

Chapter 3. Theoretical Background 20

for every (l)-th layer of the network. In order to minimize the error
of the network, the aforementioned gradient is used to move the weights
in the opposite direction, e.g. by applying:

W (l)(t+ 1) = W (l)(t)− α
∂

∂W (l)
L, (3.7)

an update rule which is is often called either “backpropagation,” since
the error influence is propagated backward through the network layers, or
“gradient descent”, since the weights are moving in the opposite direction
to the gradient. In Figure 3.7 there is the plot of a loss function with
respect the model weights. The arrows indicate the iterative process done
for the optimization.

Figure 3.7: Gradient descent method.

The Multilayer Perceptron (MLP) is a artificial neural network where
multiple perceptron are linked together. Figure 3.8 is an example of MLP
network. Each neuron of an MLP works as explained before, but in this
case the “feed-foward” and “backward propagation” involve the entire
network. In this case, the first layer is called input layer. The last layer
is called output layer. All middle layers of stacked neurons are known as
hidden layers. In a MLP, one can decide how many layers and how many
neurons per layer should be used, thus defining different architectures.
Architectures with different depths may be more appropriate to certain
problems, also depending on the available amount of data. As we will see

Chapter 3. Theoretical Background 21

in the next section, CNNs increase even more the amount of the available
degrees of freedom in designing the architecture.

Input 1

Input 2

Input n

Output 1

Output n

Input layer Hidden layers Output layer

Figure 3.8: An example of Multilayer Perceptron Network. In this example
we have n inputs that are processed through a series of four hidden layers.
The output layer of the network contains n neurons.

3.2.3.2 Convolutional Neural Netwoks

CNNs a type of ANN inspired by the human biology of the visual cortex.
Each neuron of the CNN operates in a restricted region, the receptive
region. As in the case of MLP, a CNN is composed of an input layer, a
variable number of hidden layers and an output layer. The hidden layer
is usually composed by a convolutional layer, an activation function and
a pooling layer. The result of the convolutional operation is called feature
map. In case of a 2-D input signal the mathematical operation can be
expressed using the following equation:

y(t, f) = (x ∗ w)[t, f] =
∑︂
m

∑︂
n

x[m,n] · w[t−m, f − n] (3.8)

where x is the input signal, w is the kernel or filter matrix and ∗ is the
operation of convolution. The feature map obtained is then the input
of the activation function layer, usually a Rectified Linear Unit (ReLU).
The pooling layer instead is used to reduce the dimension of the feature
map to decrease its complexity. Also in this case we need a minimize a
cost function to learn the proper weights and biases. The output layer

Chapter 3. Theoretical Background 22

normally is a fully-connected MLP. In the image 3.9 there is an example
of CNN used for image classification. In this example the input is image
that we want to classify. The network is composed by a convolutional
layer with ReLU as activation function followed by a pooling layer. After
that we have another similar block formed by convolutional layer and
ReLU followed by a pooling layer. Then we have a flatten layer and after
it there is a MLP fully connected layer. The last layer is a softmax layer.

Figure 3.9: An example of CNN. In this example we have a CNN used for
image classification. After the the input layer we have the first convolutional
block formed by a convolutional layer with ReLU as activation function and
a pooling layer. The second block is made up as the first one. After the last
convolutional layer there is a Flatten layer, then a MLP fully connected layer
and the output is a softmax function.

3.2.4 Clustering and K-Means

Clustering is the task of grouping a set of objects in such a way that
objects in the same group, called cluster, are more similar to each other
that to those in other groups. Clustering algorithms are a part of ML,
specifically they are part of unsupervised learning. Unsupervised learning
means to deal with unlabeled data.

A good clustering method will produce clusters with an high intra-
class similarity and a low inter-class similarity. The similarity between
objects is measured using a proper distance, e.g., the Euclidean distance,
or the cosine distance, or any metric is proper for the specific feature
space.

The K-Means is an iterative algorithm to cluster n objects into k

clusters. The aim of this algorithm is to find the local maxima in each

Chapter 3. Theoretical Background 23

iteration. Given a predefined amount of clusters, denoted by k, K-means
is carried out in three steps after the initialization:

1. Initialization: set seed points randomly.

2. Assign each object to the cluster of the nearest seed point measured
with a specific distance measure.

3. Compute new seed points as the centroids of the clusters of the
current partition.

4. Go back to step 2 until there are not new assignment, so objects
in each cluster remain the same.

In Figure 3.10 there is a visual example of how this algorithm works.
The three clusters are highlighted with different colors and for each clus-
ter we have the centroid represented by the cross.

Figure 3.10: K-Means algorithm.

3.3 Conclusive Remarks

In this chapter we explained the theory of the techniques that we will
use in the our work. In particular we explained:

• Two time-frequency transform: STFT and Mel spectrogram.

• A quick overview of the working principles of Neural Networks.

• How clustering, specifically K-Means, works.

Given the theory knowledge we can now introduce the problem we want
to solve and the solution we adopted to solve it.

4
Splicing Detection and Localization

In this chapter we present the proposed method we developed to solve
the problem of splicing detection and localization based on traces left by
the recording device. At first there is a brief explanation of the problem
we face. Then, the method is divided in blocks and each block is formally
discussed in details.

4.1 Problem formulation

In this work we focus on the problem of detecting if an audio recording
has been modified. It is very important to study deeply this problem
because nowadays we can easily create fake audio recordings and change
completely the original meaning of the speech tampered with. This can
lead to serious problem if we think, e.g., to a politician speech.

If we want to modify the meaning of an audio recording often we add
excerpts from different recordings to the original one. It is possible that
this added tracks were recorded using different mobile phones, each one

Chapter 4. Splicing Detection and Localization 25

with its own microphone. Since each microphone leaves traces in the
recording, it is possible to explore these traces to find if the audio was
manipulated or not. Moreover with this presented method we were able
not only to detect the presence of a tampering, but also to localize the
point where the change of device was introduced.

Formally, let us take into account two speech audio recordings x1(n), n =

0, 1, ..., N1−1 and x2(n), n = 0, 1, ..., N2−1. A spliced recording xtampering(n)

can be built by concatenating x1(n) and x2(n), i.e., by applying:

xtampered(n) = [x1(n), x2(n)] (4.1)

. At this point, we would like to highlight that if the two files x1(n) and
x2(n) belong to two different microphone classes, then the microphone
characteristics of xtampered(n)should change at the (N1−1)-th sample. In
Figure 4.1 there are the two signals x1 and x2 respectively. The Figure 4.2
shows the concatenation of the two signals. Moreover we highlighted the
splicing point too.

Figure 4.1: In this figure there are two examples of generic audio recordings.
Each recording has class 0 and this means that they are pristine recordings.

The objective of our study is to detect if an audio recording is a
composition of two different recordings or not. Formally, given a generic
input audio recording x(n), solving the detection problem is equivalent to
associating a label c ∈ [0, 1], where 0 means that the recording is pristine,
whereas 1 means that the recording results from a splicing operation.

If we detect a tampering in the audio recording we also try to estimate
the splicing point, i.e, an approximation of the sample index where there

Chapter 4. Splicing Detection and Localization 26

Figure 4.2: In this figure we show the concatenation between the two signals
x1 and x2. The final result has class 1, so it means that was manipulated.
With the black arrow we point out the splicing point.

the concatenation took place. Formally, this means estimating the sample
position n̂, which in principle should be coincident to N1 in the reported
example.

We will now see a general description of the method we adopted to
reach this goal.

4.2 Proposed Method

In this section we discuss the general idea of the proposed method, de-
scribe the corresponding processing pipeline, and define in details every
block which are composing it.

The coarse idea behind our pipeline is to use a microphone classifica-
tion algorithm and try to explore it to build an identification and local-
ization algorithm. After an initial pre-processing step, we use a modified
version of a CNN architecture originally devised for microphone identifi-
cation [1] to extract some features vectors, that supposedly contain the
intrinsic characteristics of the input microphone, are used as input to a
clustering technique, to decide if the analyzed recording is made of two
different files or not. If we detect a tampering in the recording we apply a
distance procedure on the features vector samples to localize the splicing

Chapter 4. Splicing Detection and Localization 27

cut point, an overview of the pipeline is also depicted in Figure 4.3

Figure 4.3: Proposed method pipeline.

4.2.1 Preprocessing

The first block of our pipeline is the preprocessing one. In this section
we explain all the operations we apply to the signal before the CNN and
the features extraction process.

Given that the audio recordings may have different lengths, as first
operation we set a fixed maximum length of T seconds. Then, from each
recording we extract N tracks, each one with a length of T/N seconds 1.
To each extracted track we apply the STFT obtaining a log magnitude
spectrum. This spectrum is the starting point of the feature extraction
algorithm.

Formally consider we have an audio recording as x(n). The i-th track
or excerpt is defined as xi(n), and i ∈ 0, ..., N − 1. The STFT of the i-th
track is Xi, where we omit the time and frequency indexes for the sake
of notational compactness. The output of the pre-processing step is a
matrix Xi, which contains the log magnitude of the STFT:

Xi = log (∥Xi∥) , (4.2)
1If T is not an exact multiple of N the last sample should not be analyzed. However

this procedure was chosen by us to increase the number of input samples but it does
not influence the network.

Chapter 4. Splicing Detection and Localization 28

with i ∈ [1, N] once again denoting the track index. In order to visualize
the input and the output of this stage, Figure 4.4 reports an example of
a input recording, whereas Figure 4.5 shows the output of a processed
track. This is the STFT of the audio file showed in Figure 4.4.

Figure 4.4: Input audio signal cut to T/N . This is the signal we used as input
for our algorithm. The image represent the audio waveform of the signal.
The x axis represents the time in seconds, whereas on the y axis there is the
amplitude of the signal.

Figure 4.5: STFT of the audio signal in Figure 4.4. This is the input of our
CNN from which we extract a corresponding feature vector.

Chapter 4. Splicing Detection and Localization 29

4.2.2 Features Extraction

Before explaining how the features are extracted, we introduce the CNN
we use to obtain these features. This CNN is based on the work presented
in [1], in which the authors illustrate a possible approach to solve a
microphone classification problem. The results they achieved were very
successful, so we use it as a starting point for our algorithm. This type of
network is trained to solve a microphone classification task, but we use
the features extracted at specific point of the net. Figure 4.6 shows the
whole scheme of the CNN. The first element of the network is an input
layer used to adjust the size of the STFT, it add a channel to the input
signal in order to have an size input compatible with the CNN. After
that there are two first convolutional blocks, each one composed by this
elements:

• a convolutional layer

• ReLU activation function

• MaxPooling layer

The convolutional layer takes care of extracting high-level information
from the input feature map. The ReLU activation function, which is
common to associate with convolutional layer, introduce the non-linearity
needed by the network. The MaxPooling layer is necessary to reduce the
dimension of the convolution output. The network ends with a convolu-
tional layer and a dense layer with softmax as activation function. The
softmax function is defined as:

σ(z)i =
exp zi∑︁k
j=1 exp zj

, (4.3)

with i ∈ 1, ..., K and z = (z1, ..., zk) ∈ RK . In Figure 4.7 there are sum-
marized the CNN layers with the related parameters, which we adapted
compared to the original one in [1].

Chapter 4. Splicing Detection and Localization 30

Figure 4.6: CNN used for feature extraction. In this image there are all the
blocks we used to build our CNN.

Figure 4.7: CNN topology and parameters. In this figure there is the list of
the layer of the CNN. The output we used to extract the feature is the first
dense layer.

To train the CNN we use sparse categorical cross-entropy as loss mea-

Chapter 4. Splicing Detection and Localization 31

sure, i.e., we effectively train the network for a microphone classification
problem. After this stage, the output layer we chose to extract the fea-
tures is, however, the first dense layer. The last layer of the network
can be considered a one-hot encoding of the microphone label, which
would not fit our task. By using as feature vector the output of the
first dense layer, we instead reached a sufficient separation between the
various classes and also an higher number of feature per sample, with
respect the only label given as output by the last dense layer. Formally
describing what we introduce before we can say that when the CNN is fed
with the input Xi as in eq. (4.2), it returns as output the feature vector
fi with dimensionality (1,m). So for each spectrogram Xi we extract a
feature vector fi having a fixed length F . We selected F as being equal
to the amount of window in Xi

4.2.3 Detection

The next step is to detect if the audio recording has been tampered
with by means of splicing. To do this we applied a clustering technique
to the features vectors F = fi extracted by the CNN from each audio
track of the input audio recording under analysis. The idea is that, a
pristine recording is composed by tracks that all share very similar device
information, hence feature vectors. Conversely, if an audio recording is
a composition from multiple devices, at some point the feature vectors
extracted in time should change.

In our method we proposed to use the K-Means algorithm. The
detection pipeline can be summarize in the following steps:

• Apply the K-means clustering algorithm

• Compute the centroids of the corresponding clusters

• Compute the distance between cluster centroids

• Label the input recording as being tampered or not

In the first step we apply a K-Means algorithm on the feature vec-
tors. From the K-Means we obtained as many clusters as we set for the
algorithm. For each cluster we compute the centroid, i.e, the center of

Chapter 4. Splicing Detection and Localization 32

the cluster. Then we compute a distance between the found centroids,
and in our study we decided to use the Euclidean distance as distance
measure.

K-means assigns each feature vector fi to a cluster. Let us consider
Fk the set of all features belonging the cluster number k. The k-th cluster
centroid can be computed as

µk =
1

|Fk|
∑︂

i:fi∈Fk

fi, (4.4)

where | · | indicates the cardinality of a set, and the sum is performed
element-wise on each element of the vectors fi. The distance between
two centroids is defined as

djk = ∥µj − µk∥2, (4.5)

where ∥·∥2 is the l2 norm. In our case we set K=2 and the distance is
defined as

d = ∥µ1 − µ2∥2 (4.6)

The final decision is taken based on a threshold mechanism. We set
a threshold and if the distance computed between the two centroids is
higher than the threshold, we state that the recording has been modified.

Formally, we assign the tampering class label as

c =

⎧⎨⎩0 if d ≤ γ,

1 if d > γ.
(4.7)

The threshold γ has been set following a procedure explained in the
next chapter.

In the following, we report the outcome of this block when applied
to two examples: the case of a pristine recording, and the case of a
manipulated recording obtained by splicing two different source files. For
all the examples we plotted the results obtained with the K-Means, by
projecting the result in a two dimensional space. The results are plotted
in the cluster space, that is represented by two features. The features
are directly derived from the K-Means algorithm.

In Figure 4.8 we have a block of samples belonging all to the same
class. Instead in Figure 4.9 we have an example of two classes. As we

Chapter 4. Splicing Detection and Localization 33

can see clearly from this images in the first case we do not have a definite
separation between the two clusters because all the samples are taken
from the same microphone class. When we analyze a recording with
two classes is very simple to identify the two clusters and the distance
between the centroids is much bigger than the first example.

Figure 4.8: An example of clustering with same class samples. The samples
are plotted in the cluster space, in fact on the axis the are the two features
that describe this space. Since the samples are all from the same class we
cannot identify to distinct clusters.

Chapter 4. Splicing Detection and Localization 34

Figure 4.9: An example of clustering with two classes. In this case the classes
are different and the clusters are easy to identify by sight.

4.2.4 Localization

If the analyzed signal is labeled as fake, i.e., formed by two different
recordings as in eq. (4.1), the localization algorithm is applied to find the
samples in which there is the change of device. Now we illustrate the
proposed localization algorithm.

The starting point are the feature vectors computed by the CNN.
From these vectors we compute the Euclidean distance between consec-
utive elements and save the distance results in an array. After we take
the maximum of the distance array and the sample associated to it. The
sample corresponding to the element with the highest distance will be
our splicing cut point.

Formally, let us consider that we have an input recording xtampered de-
fined as in eq. (4.1), i.e., by concatenating two different sources of length
N1 and N2 and we want to find the sample index N1.We can build the
distance array ydistance by computing the Euclidean distance among con-
secutive features extracted from windows or tracks of the signals xtampered

under analysis. Formally, we compute

ydistance(i) = ∥fi − fi+1∥2, i ∈
[︃
0,

N1 +N2

T
− 1

]︃
, (4.8)

Chapter 4. Splicing Detection and Localization 35

with those being the lengths, and T being the length in sample of each
analysis window, as discussed in Section 4.2.1.The ∥·∥2 computes the l2
norm. The splicing point is identified in the position in which ydistance(i)

shows its maximum. The first and last 10 elements of the distance vector
ydistance(i) were discarded as explained in [29]. Formally,

n̂ = argmax
i

(ydistance(i)) · T. (4.9)

The procedure can also be described with the help of some figures.
The result after computing the distance vector ydistance(i)is shown in the
Figure 4.10. From this vector we need to localize the maximum and its
position. In the Figure 4.11 we highlighted with a red point the maximum
of the sequence and its sample position will be our splicing point.

Figure 4.10: Distances between consecutive samples of the feature vector.
On the x axis there is the sample number, on the y axis the distance value
measured with the Euclidean distance.

Chapter 4. Splicing Detection and Localization 36

Figure 4.11: Distances between consecutive samples of the feature vector with
highlighted the predicted splicing cut point. This point is obtained computing
the maximum of the distance values.

4.3 Conclusive Remarks

In this chapter we introduced the formulation of the problem. Then
we explained in details how we solve it with our proposed method. In
particular we explained:

• The preprocessing phase

• The feature extraction

• The detection process

• The localization algorithm

In the next chapter we will discuss the parameters details and the results
we obtained.

5
Results

In this chapter we introduce the dataset used in our study and the metrics
adopted to measure the results. After that, we discuss the experiments
we performed to tune the parameters of our method. At the end, we
present the final results obtained for splicing detection and localization.

5.1 Dataset

In this section we describe the dataset adopted for the study and how
we divided it for the training and test of the network.

The dataset we decided to use is the MOBIPHONE dataset [19].
MOBIPHONE is a collection of audio files, recorded with 21 cell phones
model from seven different brands. For each phone there are 24 speakers
from TIMIT [31], 12 male and 12 female speakers. For each speaker we
have 10 sentences, so at the end the dataset is formed by 4800 utterances.
The TIMIT is a corpus designed to provide speech data for acoustic-
phonetic studies and for the development and evaluation of automatic

Chapter 5. Results 38

Table 5.1: List of MOBIPHONE devices

Class Name Brand and Model
0 Apple iPhone 5
1 HTC desire c
2 HTC Sensation xe
3 LG GS290
4 LG L3
5 LG Optimus L5
6 LG Optimus L9
7 Nokia 5530
8 Nokia C5
9 Nokia N70
10 Samsung e1230
11 Samsung E2121B
12 Samsung E2600
13 Samsung Galaxy GT-I9100 s2
14 Samsung Galaxy Nexus S
15 Samsung GT-I8190 mini
16 Samsung GT-N7100
17 Sony ericsson c501i
18 Sony ericsson c902
19 Vodafone joy 845

speech recognition systems. We followed the same approach explained in
[32] and [33] in which they excluded the device “Samsung s5830i" due to
the small duration of its recording. In Table 5.1, we report the complete
list of brands and cell phone models used in this study. There is also
the class label tag associated to each mobile phone class. We used also
a training/test split to train and then validate our CNN. In our work
we use 67% for training and 33% for test. We split the dataset in this
way: for each class we took the first 16 speakers for the training and
the remaining 8 for the test class. In this way we a sufficient number of
samples for the training and also all the class were represented in the test

Chapter 5. Results 39

phase. During the training phase we divided the training set into training
and and validation set with a proportion 67% to 33% respectively. The
validation set is necessary to get an evaluation of the system and tune
the model hyper-parameters.

5.2 Metrics

In the following we introduce the metrics adopted in this work to evaluate
our results.

5.2.1 Balanced Accuracy

Before defining the balanced accuracy we need to defined the following
quantities:

• True Positive (TP) = Recordings from different devices detected
as such.

• True Negative (TN) = Recordings from the same devices detected
as such.

• False Positive (FP) = Recordings from the same devices detected
as being from different ones.

• False Negative (FN) = Recordings from different devices detected
as being from the same device.

The Figure 5.1 shows graphically what we described before.
Balanced accuracy is a metric that it is used when evaluating how

good a supervised classifier is. It is especially useful when the classes
are not balanced, i.e. one of the two classes appears a lot more often
than the other. This happens often in many settings such as anomaly
detection. Balanced accuracy is based on two more simple metrics: the
sensitivity, also known as true positive rate or recall, and the specificity,
also known as true negative rate. Sensitivity is defined as:

Sensitivity =
TP

TP + FP
(5.1)

Chapter 5. Results 40

Figure 5.1: Definition of TP, TN, FP, FN. Positive samples are denoted by full
circles, while negative samples are denoted by empty circles. In the picture
we highlighted true positive with a green background, and false positives with
a red one.

and Specificity is:
Specificity =

TN

TN + FP
(5.2)

The balanced accuracy is simply the arithmetic mean of the two, so

Balanced accuracy =
Sensitivity + Specificity

2
. (5.3)

5.2.2 Precision

Precision indicates the portion of relevant instances among the retrieved
instances. It is computed as :

Precision =
TP

TP + FP
(5.4)

5.2.3 F1-score

The F-score measure the test accuracy. It is derived from the preci-
sion and the recall. In particular the F1-score is the harmonic mean of

Chapter 5. Results 41

precision and recall. Formally it is expressed as:

F1 =
2

Recall−1 + Precision−1
(5.5)

5.2.4 ROC

The Receiver Operating Characteristic (ROC) curve is a graphical plot
that shows the ability of a binary classifier as its threshold is varied. This
curve is created by plotting the Sensitivity against the False Positive
Rate (FPR). The FPR is obtained as 1−Specificity and represents the
fraction of samples of the negative class detected as positives.

The best possible prediction method would give a point in the up-
per left corner or coordinate (0,1) of the ROC space, representing 100%
sensitivity and 100% specificity. The (0,1) point is also called a perfect
classification. A random guess would give a point along a diagonal line
from the left bottom to the top right corners. The diagonal splits the
ROC space in two parts. Points above the diagonal represent good classi-
fication results, points below the line represent bad results. The quantity
Area Under the Curve (AUC) is the area under the ROC and represent
the accuracy of the binary classifier. In Figure 5.2 there is an example
of ROC.

5.2.5 Confusion Matrix

The Confusion Matrix is a specific table that allows to visualize the per-
formance of a multi-class classifier. Each column of the matrix represents
the predicted class instances. whereas each row represents the ground
truth instances. The name derives from the fact that this table makes it
easy to understand whether the system is confusing two classes.

In Figure 5.3 there is an example of a confusion matrix. In this case
the values of the table have been normalized, so each value represents
a percentage of correct predictions with respect to the total amount of
samples of that class.

Chapter 5. Results 42

Figure 5.2: An example of ROC curve. On the x axis there is the FPR and on
the y axis there is the True Positive Rate (TPR). The AUC value is specified
in the right bottom corner of the image.

5.3 Experimental Setup

In this section we explain the parameters we chose in our pipeline. First
of all, as explained in Section 4.2.1, the audio recordings have all different
length so we decided to set T = 20s. Then the N parameter was set to
20, so at the end we ended up with 20 tracks for speaker each one with
a duration of 1s.

The sampling frequency was equal for all the classes, so we decide to
use the default one that is 16KHz.

Then we set the parameters of the STFT. The STFT was computed
with the default parameters, so with 2048 NFFT points, hanning window
as window function and no overlap between consecutive windows. After
this stage we got as result a 2-D array, with size of (1025, 32).

After that there is the CNN. The parameters of the network are
summarized in the Figure 4.7. For the first block the convolutional layer
has a kernel size of (24, 24) and the padding layer has a stride equal to
(2, 2) and the padding option is set to “same”. For the second convolution
block we set a kernel size of (4, 4) for the convolutional layer whereas the
pooling layer is equal to the previous one. The last convolutional layer has

Chapter 5. Results 43

Figure 5.3: An example of Confusion Matrix with multiple class. Each cell
represent the percentage of correct prediction with respect to the the total
sample number of that class. In this example the values under a certain
threshold have been discarded to have a better readability of the matrix.

a kernel of (1, 1). In the first Dense layer we add also a kernel regularizer,
in particular an L2 regularizer with a penalty of 0.01. The Dropout is
equal to 0.3. The training was done on the training set, composed as
explained before by 16 speakers per class. The optimizer used is the
RMSPprop with a learning rate set to 0.0001 [34]. The number of epochs
was set to 100. The loss function to minimize is the sparse categorical
cross-entropy function. As explained in Section 4.2.2 the network has
been trained to solve a microphone classification task.

We used also three callbacks function that are:

• Model Checkpoint

• Reduce Learning Rate on Plateau

Chapter 5. Results 44

• Early Stopping

The “Model Checkpoint” callback is used to save the model when the
results get better. The quantity we monitor was the validation accuracy.

The “Reduce Learning Rate on Plateau” callback is useful to reduce
the value of the learning rate when there are not progress in the learning.
Also in this case the monitored quantity was the validation accuracy. The
parameters used are the factor equals to 0.1 and the patience set to 2.

The “Early Stopping” callback is a callback function which allows
to stop the training when there are not improvements in the monitored
quantity. The monitored quantity was the validation loss with a patience
of 15. The patience is the number of epochs with no improvement after
which training will be stopped.

Figure 5.4 summarizes the training process. It represents how the
accuracy and loss, both for training and validation, change along the
number of epochs.

Figure 5.4: Training curves: Accuracy and loss of the training stage. The
curves show the training process both for train set and for validation set. The
horizontal axis corresponds to the epoch number, while the vertical corre-
sponds to the the accuracy or the loss value, as appropriate.

5.4 Experiments

In this section we explain how we selected the CNN to use and how we
computed the threshold γ we adopted in our algorithm.

Chapter 5. Results 45

5.4.1 Experiment 1: The CNN for feature extrac-
tion

In order to choose the best microphone classification networks, we did
some experiment on different architectures and combinations. We tried
two networks, the first one taken by Baldini et al. [1] and the second one
by Zeighidour et al. [2]. The first one is the network we decided, with
hyper-parameters set as discussed in the previous section. The second
CNN is slightly different from the first one because it has more layer and
a higher number of hyper-parameters, which we set as explained in [2].
The results obtained by each network and respective hyper-parameter
configuration are discussed in the following with the help of a confusion
matrix and the final classification report. The results presented here have
been computed on the test set.

The first result we show is the output of the CNN introduced in [1]
and the log magnitude of the STFT as input. With this combination we
obtained the results shown in Figure 5.5 and Table 5.2:

Chapter 5. Results 46

Figure 5.5: Confusion Matrix of CNN [1] with STFT

Chapter 5. Results 47

Table 5.2: Classification report of CNN [1] with STFT. The support
column represent the number of true positive occurrences in that class.
The accuracy results show both macro averaged and weighted average
accuracy. The macro average mediates the unweighted mean per label,
so it does not take into account a misbalance in the labels. The weighted
average mediates the support-weighted mean per label.

Class Name precision recall f1-score support
0 0.88 0.86 0.87 160
1 0.96 0.85 0.90 160
2 0.93 0.62 0.75 160
3 0,95 0.88 0.91 160
4 0.90 0.96 0.93 160
5 0.93 0.70 0.80 160
6 0.82 0.98 0.89 160
7 0.79 0.69 0.74 160
8 0.91 0.90 0.91 160
9 0.70 0.91 0.79 160
10 0.97 0.89 0.93 160
11 0.84 0.91 0.87 160
12 0.98 0.99 0.98 160
13 0.93 0.97 0.95 160
14 0.89 0.91 0.90 160
15 0.84 0.87 0.85 160
16 0.77 0.74 0.76 160
17 0.89 0.94 0.91 160
18 0.81 0.88 0.94 160
19 0.87 0.99 0.92 160

accuracy 0.87 3200
macro avg 0.88 0.87 0.87 3200

weighted avg 0.88 0.87 0.87 3200

Then we tried the approach explained in [2], which consists on a

Chapter 5. Results 48

deeper net and a log Melspectrogram as input1. The final results are
showed in Figure 5.6 and Table 5.3:

Figure 5.6: Confusion Matrix of CNN [2]

1See Section 3.1.2.

Chapter 5. Results 49

Table 5.3: Classification report of CNN [2]

precision recall f1-score support
0 0.91 0.96 0.93 160
1 0.97 0.93 0.95 160
2 0.98 0.68 0.80 160
3 0,99 0.95 0.97 160
4 0.81 0.92 0.86 160
5 0.95 0.70 0.81 160
6 0.95 1.00 0.97 160
7 0.87 0.77 0.81 160
8 0.95 0.95 0.95 160
9 0.68 1.00 0.81 160
10 0.98 1.00 0.99 160
11 0.95 0.89 0.92 160
12 1.00 1.00 1.00 160
13 0.96 0.96 0.96 160
14 0.99 0.94 0.96 160
15 0.81 1.00 0.90 160
16 0.92 0.76 0.83 160
17 0.96 0.88 0.92 160
18 0.73 0.89 0.81 160
19 0.96 0.91 0.94 160

accuracy 0.90 3200
macro avg 0.92 0.90 0.90 3200

weighted avg 0.92 0.90 0.90 3200

Lastly, we tried an hybrid approach, with the first network using a
log melspectrogram as input. The results of this approach are summarize
in Figure 5.7 and Table 5.4:

Chapter 5. Results 50

Figure 5.7: Confusion Matrix of CNN [1] with log Mel Spectrogram

Chapter 5. Results 51

Table 5.4: Classification report of CNN [1] with log Mel Spectrogram

precision recall f1-score support
0 0.84 0.89 0.86 160
1 0.99 0.80 0.89 160
2 0.88 0.77 0.82 160
3 0.91 0.98 0.95 160
4 0.80 0.79 0.80 160
5 0.79 0.62 0.70 160
6 0.82 0.96 0.88 160
7 0.80 0.76 0.78 160
8 0.88 0.95 0.92 160
9 0.71 0.90 0.79 160
10 0.99 0.97 0.98 160
11 0.95 0.81 0.88 160
12 1.00 0.99 1.00 160
13 0.86 0.95 0.90 160
14 0.99 0.85 0.91 160
15 0.81 0.89 0.85 160
16 0.92 0.83 0.87 160
17 0.91 0.85 0.88 160
18 0.76 0.86 0.80 160
19 0.90 0.97 0.93 160

accuracy 0.87 3200
macro avg 0.88 0.87 0.87 3200

weighted avg 0.88 0.87 0.87 3200

As we can observe from these results, all the combinations tested per-
formed well on our dataset. So the choice of the network we adopted was
taken according to the trade-off between results and computational costs.
In fact the CNN of the paper [2] allowed us to reach an higher accuracy
with respect the other two, but the computational cost associated with
this net was very high and the gain in accuracy did not justify this cost.

Chapter 5. Results 52

So we decided to use the CNN as explained in [1], with log magnitude
of the STFT as input: we preferred to follow the approach explained in
the paper since the results were the same both for STFT and log Mel.

5.4.2 Experiment 2 : The Threshold for Splicing
Detection

In order to detect the presence of splicing, we threshold the quantity d

computed as in eq. (4.6) representing the distance between features from
different devices. To do so, we computed the value d for multiple track
pairs (belonging or not to the same device), and we evaluated the results
by means of ROC curves and AUC.

To perform this evaluation, we had to work with pairs of classes, since
the ROC measures a binary classifier. So we built all the possible pairs
among the various classes. Then we built the distance array ydistance(i),
as explained in eq. (4.8).

From the ROC curve we extracted the threshold as the one that
maximized the AUC. The value we obtained for the threshold γ used in
eq. (4.7) is 12.2381.

After setting this threshold we computed the balanced accuracy for
each pair, in order to verify that this approach was adequate for each
class. From this analysis we extracted the Table 5.5, that summarize
the value of Balanced Accuracy computed pairwise. This test had good
results, in fact for every pair of classes we were able to get an accuracy
higher than 70%. The minimum results are for the class 15, and in
general the value is low for classes from the same brand. The maximum
value we got is 97% of accuracy, which almost perfect accuracy.

Chapter 5. Results 53

Table 5.5: Balanced accuracy computed pairwise. Each cell represents
the balanced accuracy with which the two classes are distinguished from
each other by analyzing the distance between the features

C
LA

SSES
0

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
0

0,9308
0,7852

0,9233
0,7834

0,9417
0,7772

0,9137
0,9291

0,7955
0,9705

0,9366
0,7152

0,9449
0,7709

0,8866
0,8027

0,9459
0,9677

0,9031
1

0,9308
0,7837

0,8245
0,8092

0,9280
0,8134

0,8721
0,9436

0,8092
0,7723

0,8571
0,9048

0,9372
0,9580

0,7208
0,7866

0,8862
0,9436

0,7150
2

0,7852
0,7837

0,9121
0,7791

0,9158
0,7895

0,7816
0,9229

0,8497
0,9489

0,9518
0,8265

0,9455
0,9664

0,7532
0,8591

0,9137
0,8014

0,8351
3

0,9233
0,8245

0,9121
0,8397

0,8793
0,8601

0,8775
0,9020

0,7146
0,7533

0,9377
0,7504

0,9378
0,9545

0,7523
0,8511

0,9479
0,9509

0,9070
4

0,7834
0,8092

0,7791
0,8397

0,9617
0,8096

0,8715
0,9378

0,8345
0,9419

0,9702
0,8144

0,9311
0,9728

0,7314
0,8173

0,9257
0,8877

0,9046
5

0,9417
0,9280

0,9158
0,8793

0,9617
0,8278

0,9413
0,8428

0,8818
0,9664

0,9040
0,7617

0,9362
0,8791

0,7235
0,8137

0,8506
0,9414

0,9508
6

0,7772
0,8134

0,7895
0,8601

0,8096
0,8278

0,9337
0,9410

0,8679
0,9621

0,9833
0,9470

0,9453
0,9097

0,7284
0,8317

0,9140
0,9327

0,9473
7

0,9137
0,8721

0,7816
0,8775

0,8715
0,9413

0,9337
0,8326

0,8665
0,8233

0,7594
0,8419

0,9132
0,9496

0,7506
0,7669

0,7129
0,7204

0,7076
8

0,9291
0,9436

0,9229
0,9020

0,9378
0,8428

0,9410
0,8326

0,7731
0,9138

0,7654
0,7679

0,9437
0,9150

0,7589
0,8405

0,9391
0,8495

0,9279
9

0,7955
0,8092

0,8497
0,7146

0,8345
0,8818

0,8679
0,8665

0,7731
0,9421

0,9215
0,7506

0,8961
0,9545

0,7256
0,7968

0,9414
0,8228

0,9171
10

0,9705
0,7723

0,9489
0,7533

0,9419
0,9664

0,9621
0,8233

0,9138
0,9421

0,8505
0,7344

0,9030
0,9513

0,7393
0,8139

0,9542
0,8905

0,8268
11

0,9366
0,8571

0,9518
0,9377

0,9702
0,9040

0,9833
0,7594

0,7654
0,9215

0,8505
0,7692

0,8902
0,9775

0,7205
0,8261

0,8114
0,8206

0,8761
12

0,7152
0,9048

0,8265
0,7504

0,8144
0,7617

0,9470
0,8419

0,7679
0,7506

0,7344
0,7692

0,7831
0,7734

0,7865
0,7144

0,8344
0,8734

0,8718
13

0,9449
0,9372

0,9455
0,9378

0,9311
0,9362

0,9453
0,9132

0,9437
0,8961

0,9030
0,8902

0,7831
0,9443

0,9284
0,8063

0,8990
0,9707

0,9145
14

0,7709
0,9580

0,9664
0,9545

0,9728
0,8791

0,9097
0,9496

0,9150
0,9545

0,9513
0,9775

0,7734
0,9443

0,9079
0,8252

0,9505
0,9570

0,9341
15

0,8866
0,7208

0,7532
0,7523

0,7314
0,7235

0,7284
0,7506

0,7589
0,7256

0,7393
0,7205

0,7865
0,9284

0,9079
0,7828

0,9232
0,9461

0,9022
16

0,8027
0,7866

0,8591
0,8511

0,8173
0,8137

0,8317
0,7669

0,8405
0,7968

0,8139
0,8261

0,7144
0,8063

0,8252
0,7828

0,9556
0,9411

0,9093
17

0,9459
0,8862

0,9137
0,9479

0,9257
0,8506

0,9140
0,7129

0,9391
0,9414

0,9542
0,8114

0,8344
0,8990

0,9505
0,9232

0,9556
0,8190

0,8699
18

0,9677
0,9436

0,8014
0,9509

0,8877
0,9414

0,9327
0,7204

0,8495
0,8228

0,8905
0,8206

0,8734
0,9707

0,9570
0,9461

0,9411
0,8190

0,8742
19

0,9031
0,7150

0,8351
0,9070

0,9046
0,9508

0,9473
0,7076

0,9279
0,9171

0,8268
0,8761

0,8718
0,9145

0,9341
0,9022

0,9093
0,8699

0,8742

Chapter 5. Results 54

5.5 Detection and Localization

5.5.1 Clustering

After determining the optimal threshold and verifying that it was ade-
quate for all the classes we tested the clustering algorithm.

As explained in Section 4.2.3, the clustering is based on a K-Means
algorithm and was set to cluster the input in two groups. This because we
built the testing array with two different class in each testing sample, but
this can ideally be generalized to a higher class clustering. The test was
done on 2000 class pairs, with the pairs chosen randomly. The outcome
of the clustering algorithm is showed in Table 5.6 and Figure 5.8

Table 5.6: Result K-Means. The 0 class stands for same class samples,
the 1 class is for different class samples. In the table there are the results
for each metric and the final balanced accuracy.

precision recall f1 score
0 0.75 1.00 0.86
1 1.00 0.67 0.80
Balanced accuracy 0.834

Figure 5.8: ROC of the clustering algorithm. This curve was obtained using
the centroids distance and the groud truth labels.

Chapter 5. Results 55

Since with the pipeline explained in Section 5.4.2 we maximized the
AUC of the ROC curve but not the accuracy, we tried also different value
of thresholds for the clustering algorithm. We noticed that if we work
around the selected threshold, but we lower its value about the 10% we
can achieve better results in terms of accuracy. In fact in this way we
were able to get the results showed in Table 5.7 and Figure 5.9.

Table 5.7: Result K-Means with modified threshold. The 0 class stands
for same class samples, the 1 class is for different class samples. This is
the best result achieved and was obtained by lowering the threshold of
10%.

precision recall f1 score
0 0.96 1.00 0.98
1 1.00 0.96 0.98
Balanced accuracy 0.9795

Figure 5.9: ROC of the clustering algorithm with modified threshold. This
results is equal to the Figure 5.8 beacuse the cluster distances do not depend
on the threshold value.

5.5.2 Localization

Once the tampering is detected we need to find the splicing point. To do
this we used the localization algorithm explained in the Section 4.2.4.

Chapter 5. Results 56

To evaluate how well the localization works we set an error measure
as the difference between the predicted point and the true splicing cut
point. The error is defined as:

e = n− n̂, (5.6)

where n is the true splicing point and n̂ is the predicted one. To visu-
alize the performance we show the histogram of this error measure in
Figure 5.10

Figure 5.10: Histogram of the error measure. This plot represent the error
frequency in a test of 1000 samples. The error was computed as the difference
between the predicted splicing point and the true one.

The horizontal axis represents the localization error, divided in bins.
The vertical axis represents the occurrence. Each bin represents the
distance between the true and the predicted point. Since each point
is a frame of the original STFT, this distance can be translate also in
seconds. So we can measure how far in seconds we are from the correct
prediction. Every bin is approximately 30ms. So as we can notice from
the histogram the prediction is almost always correct, but in the worst
case we have an error around 0.6s. We need to specify that to compute
the distance between the consecutive samples we discarded the first and
last 10 bins as suggested in [29].

Chapter 5. Results 57

5.5.3 Additional Results

In this section we present some additional results about clustering and
localization based on some aspect we wanted to analyze. For example
we investigated the differences between mobile phone classes of the same
brand and classes of different brands. In Figure 5.11 we have the clus-
tering results for classes 10 and 11. The two classes are from the same
brand, Samsung, and in fact their clusters are not so well separated. We
assumed they used the same microphone technology on the different de-
vices and this results in a similarity between the two different classes. If
we observe Figure 5.12 we can see two completely separated clusters in
the cluster space. The two clusters are derived from classes 0 and 12,
i.e., from two competitor brands Apple and Samsung. We can assume
that the two brands use a totally different construction technology for
the microphone and this give us the possibility to identify in a easy way
the two clusters. The same reasoning can be applied to all classes of the
same brand available in Table 5.1. In Figures 5.13 and 5.14 we can
observe other comparisons done on the same brand and conclude are that
maybe for technological reason the different classes present similarities
reflected in the corresponding clusters.

Chapter 5. Results 58

Figure 5.11: Cluster of classes 10 and 11 of the same brand “Samsung”. Since
the two classes are from the same brand the cluster are near in the cluster
space.

Figure 5.12: Cluster of classes 0 and 12. This is an example of two classes
from different brands. In this case the clusters are clearly separated and
recognizable.

Chapter 5. Results 59

Figure 5.13: Cluster of classes 5 and 6 of the same brand “LG”. This is another
example of clusters from different class but same brand.

Figure 5.14: Cluster of classes 17 and 18 of the same brand “Sony Ericson”.
This is another example of clusters from different class but same brand.

This behavior can also be observed in the localization phase. Our
algorithm is based on a distance measure and so, given that the distance
is not so high in case of same brand classes, we have more difficulties
in the localization of the splicing cut point. In fact the maximum error

Chapter 5. Results 60

that we commit happens in this configuration. We present now some
localization results both for different brand and for same brand classes.
In Figure 5.15 we have the localization result applied on classes 0 and
12. The two classes, as also shown in the cluster Figure 5.12, are very far
in the cluster space, this means that also the localization is simple and
the splicing point is easily detectable. On the other hand in Figure 5.16
we have the localization algorithm applied on the class 17 and 18. The
detected splicing point is on the analysis window 40 but the truth splicing
point is on analysis window 60. So we have an error of 20 samples that is
about 0.5s. Additionally the figure shows more fluctuations with respect
to the Figure 5.16. We show also another example of two different classes,
9 and 12, from different brands in Figure 5.17. In this case we have a
correct prediction, but it is useful to highlight that the splicing point
does not need to be in the middle of the sequence.

Figure 5.15: Localization on classes 0 and 12. Localization done on two classes
very far in the cluster space, in fact the maximum, and so the splicing point,
is easy to detect in this case.

Chapter 5. Results 61

Figure 5.16: Localization on classes 17 and 18. Example of an error in lo-
calization. In this case the localization algorithm detected as splicing point
the analysis window 40, but the true one is the 60. This is possible also be-
cause the two classes are from the same brand, so present similarity in the
construction process.

Figure 5.17: Localization on classes 9 and 12. Another example of localization.
In this case the classes are from different brands, so it is easier to detect the
true splicing point.

5.6 Conclusive Remarks

In this chapter we have evaluated the proposed methodology through
simulations and experiments. We presented first the dataset and the
metrics we used. Then we showed the process we followed to take our

Chapter 5. Results 62

decision for the network and the threshold. At the end we illustrated the
results we were able to get with our algorithm.

6
Conclusions and Future Works

This thesis proposes a new methodology for audio forensic analysis ex-
ploiting traces left on a recording by acquisition devices. Specifically, we
have addressed two main tasks:

• Detecting if a an audio track comes from a single recording or it is a
splicing generated concatenating recordings from different devices.

• Localizing the splicing cut point in order to separate the concate-
nated track from the original one.

The devised methodology is based on a CNN able to extract suitable
features from the audio file, K-Means clustering algorithm to recognize
the presence of traces from multiple devices, and a distance measure to
localize the splicing point.

The main contributions of the proposed work are:

• We have proposed a splicing detection algorithm that performs
very well thanks to the clustering stage. In fact, with the CNN we

Chapter 6. Conclusions and Future Works 64

extract microphone intrinsic properties and with clustering we are
able to identify the different classes.

• We are one of the first works that explore the problem of splicing
localization. Within this context, we have been able to achieve an
excellent result for the splicing point prediction, improving all the
previous works in this field.

The dataset used in this work is the MOBIPHONE dataset, that we
use both for training the CNN and to test the entire algorithm. We
tested different CNNs and different types of input signals to select the
best one to suit our goals. To choose the threshold value we evaluated
the ROC characteristics taking into account all the possible class pairs.

The proposed approach has shown promising results both in detec-
tion and localization. In particular the pipeline described in our work is
very fast and achieves high accuracy. The identification stage shows an
accuracy of 98%, whereas the maximum error committed in localization
is about 0.5s. This results remark that the proposed method is a valid
approach to resolve both the detection and localization task, and that
we therefore improved the existing state of the art.

Even if we were able to achieve successfully results there are some
aspects that need a deeper investigation. The first suggestion is about
the dataset. In fact, we used a collection of mobile phone recordings,
but the phones included in the MOBIPHONE dataset are a bit old. So
it would be very interesting to see how this work performs also with the
most modern mobile phones.

Another possible improvement is related to the identification pipeline.
In our study we decided to use the CNN that gave us a fair balance
between accuracy and computational cost. But if the computational
time is not a problem it would be nice to compare also the features
extracted from the CNN with the best accuracy on how they perform
in the identification task. Moreover it is necessary to verify that the
algorithm is valid for microphones other than those present during the
CNN training, i.e. it can operate in total open set conditions.

Finally, also the localization needs a deeper research. We used a dis-
tance measure among consecutive samples but this is not the only method

Chapter 6. Conclusions and Future Works 65

to retrieve the splicing point. Moreover we tested the algorithm with the
euclidean distances, but it would be a great study also a comparison
among the various distances and their performances.

Bibliography

[1] G. Baldini, I. Amerini, and C. Gentile, “Microphone identification
using convolutional neural networks,” IEEE Sensors Letters, vol. 3,
no. 7, pp. 1–4, 2019.

[2] N. Zeghidour, O. Teboul, F. D. C. Quitry, and M. Tagliasac-
chi, “Leaf: A learnable frontend for audio classification,” ArXiv,
vol. abs/2101.08596, 2021.

[3] C. Krätzer, A. Oermann, J. Dittmann, and A. Lang, “Digital audio
forensics: a first practical evaluation on microphone and environ-
ment classification,” in MM&Sec, 2007.

[4] C. Hanilçi, F. Ertas, T. Ertas, and Ö. Eskidere, “Recognition of
brand and models of cell-phones from recorded speech signals,”
IEEE Transactions on Information Forensics and Security, vol. 7,
pp. 625–634, 2012.

[5] D. P. N. Rodríguez, J. A. Apolinário, and L. W. P. Biscainho, “Au-
dio authenticity: Detecting enf discontinuity with high precision
phase analysis,” IEEE Transactions on Information Forensics and
Security, vol. 5, no. 3, pp. 534–543, 2010.

[6] L. Cuccovillo, S. Mann, M. Tagliasacchi, and P. Aichroth, “Au-
dio tampering detection via microphone classification,” in 2013
IEEE 15th International Workshop on Multimedia Signal Processing
(MMSP), pp. 177–182, 2013.

[7] R. C. Maher, Principles of Forensic Audio Analysis. Springer, 1 ed.,
2018.

66

Bibliography 67

[8] M. Zakariah, M. Khan, and H. Malik, “Digital multimedia audio
forensics: past, present and future,” Multimedia Tools and Applica-
tions, vol. 77, pp. 1009–1040, 2016.

[9] V. Verma and N. Khanna, “Speaker-independent source cell-phone
identification for re-compressed and noisy audio recordings,” Multi-
media Tools and Applications, pp. 1–23, 2021.

[10] R. Buchholz, C. Krätzer, and J. Dittmann, “Microphone classifica-
tion using fourier coefficients,” in Information Hiding, 2009.

[11] C. Krätzer, M. Schott, and J. Dittmann, “Unweighted fusion in mi-
crophone forensics using a decision tree and linear logistic regression
models,” in MM&Sec ’09, 2009.

[12] D. Garcia-Romero and C. Espy-Wilson, “Automatic acquisition
device identification from speech recordings,” 2010 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing,
pp. 1806–1809, 2010.

[13] Y. Jiang and F. H. F. Leung, “Source microphone recognition aided
by a kernel-based projection method,” IEEE Transactions on Infor-
mation Forensics and Security, vol. 14, pp. 2875–2886, 2019.

[14] Y. Panagakis and C. Kotropoulos, “Automatic telephone handset
identification by sparse representation of random spectral features,”
in Proceedings of the on Multimedia and Security, (New York, NY,
USA), p. 9196, Association for Computing Machinery, 2012.

[15] Y. Panagakis and C. Kotropoulos, “Telephone handset identification
by feature selection and sparse representations,” in 2012 IEEE Inter-
national Workshop on Information Forensics and Security (WIFS),
pp. 73–78, 2012.

[16] C. Hanilçi and F. Ertas, “Optimizing acoustic features for source
cell-phone recognition using speech signals,” in IH&MMSec ’13,
2013.

Bibliography 68

[17] C. Hanilçi and T. Kinnunen, “Source cell-phone recognition from
recorded speech using non-speech segments,” Digit. Signal Process.,
vol. 35, p. 7585, Dec. 2014.

[18] R. Aggarwal, S. Singh, A. K. Roul, and N. Khanna, “Cellphone
identification using noise estimates from recorded audio,” 2014 In-
ternational Conference on Communication and Signal Processing,
pp. 1218–1222, 2014.

[19] C. Kotropoulos and S. Samaras, “Mobile phone identification us-
ing recorded speech signals,” 2014 19th International Conference on
Digital Signal Processing, pp. 586–591, 2014.

[20] L. Zou, Q. He, and X. Feng, “Cell phone verification from speech
recordings using sparse representation,” 2015 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 1787–1791, 2015.

[21] Y. Li, X. Zhang, X. Li, Y. Zhang, J. Yang, and Q. He, “Mobile
phone clustering from speech recordings using deep representation
and spectral clustering,” IEEE Transactions on Information Foren-
sics and Security, vol. 13, pp. 965–977, 2018.

[22] V. Verma, P. Khaturia, and N. Khanna, “Cell-phone identification
from recompressed audio recordings,” 2018 Twenty Fourth National
Conference on Communications (NCC), pp. 1–6, 2018.

[23] D. Luo, P. Korus, and J. Huang, “Band energy difference for source
attribution in audio forensics,” IEEE Transactions on Information
Forensics and Security, vol. 13, pp. 2179–2189, 2018.

[24] T. Qin, R. ding Wang, D. Yan, and L. Lin, “Source cell-phone iden-
tification in the presence of additive noise from cqt domain,” Inf.,
vol. 9, p. 205, 2018.

[25] G. Baldini and I. Amerini, “Smartphones identification through the
built-in microphones with convolutional neural network,” IEEE Ac-
cess, vol. 7, pp. 158685–158696, 2019.

Bibliography 69

[26] C. Grigoras and J. M. Smith, “Quantization level analysis for foren-
sic media authentication,” in AES International Conference on Au-
dio Forensics, pp. 4–1, 2014.

[27] D. Gärtner, C. Dittmar, P. Aichroth, L. Cuccovillo, S. Mann, and
G. Schuller, “Efficient cross-codec framing grid analysis for au-
dio tampering detection,” in AES 136th International Convention,
p. 9094, 2014.

[28] A. J. Cooper, “Detecting butt-spliced edits in forensic digital audio
recordings,” in AES International Conference on Audio Forensics,
pp. 1–1, 2010.

[29] D. Capoferri, C. Borrelli, P. Bestagini, F. Antonacci, A. Sarti, and
S. Tubaro, “Speech audio splicing detection and localization exploit-
ing reverberation cues,” in 2020 IEEE International Workshop on
Information Forensics and Security (WIFS), pp. 1–6, 2020.

[30] N. D. Gaubitch, M. Brookes, P. A. Naylor, and D. Sharma, “Single-
microphone blind channel identification in speech using spectrum
classification,” in 2011 19th European Signal Processing Conference,
pp. 1748–1751, 2011.

[31] J. Garofolo, L. Lamel, W. Fisher, J. Fiscus, D. Pallett, N. Dahlgren,
and V. Zue, “TIMIT Acoustic-Phonetic Continuous Speech Corpus,”
1993.

[32] V. Verma and N. Khanna, “Cnn-based system for speaker indepen-
dent cell-phone identification from recorded audio,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR) Workshops, June 2019.

[33] Z. Borsos, Y. Li, B. Gfeller, and M. Tagliasacchi, “Micaugment:
One-shot microphone style transfer,” ICASSP 2021 - 2021 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 3400–3404, 2021.

Bibliography 70

[34] T. Tieleman and G. Hinton, “Lecture 6.5—RmsProp: Divide the
gradient by a running average of its recent magnitude.” COURS-
ERA: Neural Networks for Machine Learning, 2012.

	Abstract
	Sommario
	Ringraziamenti
	List of Figures
	List of Tables
	Glossary
	Introduction
	State of the Art
	Microphone Identification
	Localization
	Conclusive Remarks

	Theoretical Background
	Time-Frequency Representation
	STFT
	Mel Spectrogram

	Machine Learning
	Overview
	Taxonomy
	Neural Networks
	Clustering and K-Means

	Conclusive Remarks

	Splicing Detection and Localization
	Problem formulation
	Proposed Method
	Preprocessing
	Features Extraction
	Detection
	Localization

	Conclusive Remarks

	Results
	Dataset
	Metrics
	Balanced Accuracy
	Precision
	F1-score
	ROC
	Confusion Matrix

	Experimental Setup
	Experiments
	Experiment 1: The CNN for feature extraction
	Experiment 2 : The Threshold for Splicing Detection

	Detection and Localization
	Clustering
	Localization
	Additional Results

	Conclusive Remarks

	Conclusions and Future Works

