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Abstract 

The Internet of Things (IoT) is a rapidly growing technology that is expected to connect 

billions of devices and enable innovative applications. Narrowband IoT (NB-IoT) is a 

new cellular standard developed by the 3rd Generation Partnership Project (3GPP) to 

support low-power, wide-area networks for IoT. This study presents a study of NB-

IoT technology and its deployment scenarios, with a focus on measuring network 

characteristics using an evaluation board kit from Quectel Wireless Solutions. 

 

The work environment and measurement tools used in this study are described, 

including Python code for AT commands and remote server communication. Data was 

collected in various network conditions to evaluate the technology's performance. The 

collected data was analyzed using techniques such as histogram analysis and 

correlation analysis of delays with channel signal quality, signal power, signal-to-noise 

ratio, and reference signal received quality. 

 

The results of this study provide insights into the performance of NB-IoT networks 

and can aid in improving their deployment and optimization. Our main objective was 

to evaluate the delay performance of NB-IoT under various system parameters 

measured at different locations. Our findings revealed that there is considerable 

variation in delay, even due to packet size, which may be attributed to non-linear 

behavior of the equipment. Additionally, we discovered a clear correlation between 

signal quality and delay, with extreme locations experiencing delays in the range of 5 

to 10 seconds, while other locations experience delays ranging from 1 to 4 seconds. 

 

Key-words: NB-IoT, Delay measurements, IoT, Internet of Things. 
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Abstract in lingua italiana 

L'Internet delle Cose (IoT) è una tecnologia in rapida crescita che si prevede connetterà 

miliardi di dispositivi e abiliterà applicazioni innovative. Narrowband IoT (NB-IoT) è 

uno nuovo standard cellulare sviluppato dal 3rd Generation Partnership Project 

(3GPP) per supportare reti a bassa potenza e a vasta area per IoT. Questa tesi presenta 

uno studio della tecnologia NB-IoT e dei suoi scenari di implementazione, con un focus 

sulla misura delle caratteristiche di rete utilizzando un kit di valutazione dalla Quectel 

Wireless Solutions. 

 

Sono descritti l'ambiente di lavoro e gli strumenti di misura utilizzati in questo studio, 

tra cui il codice Python per i comandi AT e la comunicazione con il server remoto. I 

dati sono stati raccolti in diverse condizioni di rete per valutare le prestazioni della 

tecnologia. I dati raccolti sono stati analizzati utilizzando tecniche come l'analisi 

dell'istogramma e l'analisi della correlazione dei ritardi con la qualità del segnale del 

canale, la potenza del segnale, il rapporto segnale-rumore e la qualità del segnale di 

riferimento ricevuto. 

 

I risultati di questo studio forniscono informazioni sulle prestazioni delle reti NB-IoT 

e possono contribuire al miglioramento della loro implementazione e ottimizzazione. 

Il nostro obiettivo principale era quello di valutare le prestazioni del ritardo di NB-IoT 

in diverse condizioni di sistema misurate in diverse posizioni. I nostri risultati hanno 

rivelato che c'è una considerevole variazione nel ritardo, anche a causa delle 

dimensioni del pacchetto, che potrebbe essere attribuita al comportamento non lineare 

dell'attrezzatura. Inoltre, abbiamo scoperto una chiara correlazione tra la qualità del 

segnale e il ritardo, con posizioni estreme che sperimentano ritardi nell'intervallo da 5 

a 10 secondi, mentre altre posizioni sperimentano ritardi nell'intervallo da 1 a 4 

secondi. 

 

Parole chiave: NB-IoT, Delay measurements, IoT, Internet of Things. 
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1. Introduction 

The Internet of Things or IoT is a revolution's key technology. You have almost heard 

this term and are probably familiar with some IoT devices and technologies. IoT can 

transform businesses, makes cities greener, save energy, improve efficiency, make 

more informed decisions, and generate new revenue streams by connecting various 

devices and pieces of equipment through the Internet. [1] 

1.1 What is IoT, and how does IoT work? 

The Internet of Things (IoT) is a network of connected devices that are able to 

communicate with one another and provide data to users through the Internet. IoT 

devices have the ability to connect to the Internet and collect data using the sensors 

that are implemented. While an IoT device can be useful on its own, when combined 

with others, it becomes even more valuable. 

Since the number of pieces of equipment that are connected to the internet increased 

dramatically, the size of the IoT expands more and more. The Internet of Things 

includes a variety of devices. It can encompass anything from electrical substations to 

buildings and infrastructure and factory machinery which the number of them 

increases daily basis. The Internet of Things is used by manufacturers, energy 

companies, city governments, and a variety of other types of organizations. 

The Internet of Things enables you to collect data automatically from a variety of 

functions, such as how much energy a building's lighting consumes or how much 

water flows through a wastewater treatment plant. Through the Internet, IoT solutions 

and devices can transmit the data they collect to a central system. Managers can then 

use this data to help them make more informed decisions. By employing data analysis 

techniques, you can delve deeper into the data in order to uncover new insights and 

forecast future outcomes. 

Moreover, you can use IoT technology to automate certain pieces of equipment and 

processes within your business. Intelligent sensors enable equipment to automatically 

adjust its operation to optimize energy consumption, traffic flow, and more. When 

they detect a particular input, smart sensors take action or signal for an action to occur. 
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Motion-activated lighting is a simple example. When those sensors detect movement, 

they activate the lights. Additionally, smart sensors can detect abnormal conditions or 

device operation and notify operators of potential issues. [2] 

  

1.2 Different technologies of IoT 

The different technologies of IoT can be categorized into several groups based on their 

functionality and application. Wireless communication technologies, cloud computing 

and data processing technologies, sensor and actuator technologies, security and 

privacy technologies, Industrial and automation technologies. Here we only study 

"Wireless communication technologies" which contains:  

• Wi-Fi 

• Bluetooth 

• Zigbee 

• LoRa 

• NB-IoT 

• Cat-M 

and we focus on NB-IoT technology. [3] 

1.3 What is NB-IoT? 

Narrowband IoT (NB-IoT) is a cellular network technology designed for low-power 

IoT devices that require long battery life, low data rates, and long-range 

communication. It operates on a narrowband frequency, making it ideal for massive 

machine-type communication (mMTC) applications such as smart city infrastructure, 

remote monitoring and control, and industrial automation. NB-IoT uses advanced 

features such as power-saving modes, adaptive modulation, and channel coding to 

optimize performance and battery life for IoT devices. It provides wide area coverage 

and penetration through buildings and other obstacles, and its standardization and 

compatibility with existing cellular infrastructure make it a promising technology for 

the IoT, particularly in applications that require secure connectivity. [4] 
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1.4 Contribution of this work 

Narrowband Internet of Things (NB-IoT) is a promising technology for the Internet of 

Things (IoT) that offers long-range connectivity with low power consumption and 

high coverage. [5] However, there is a need to evaluate the performance of NB-IoT 

technology in different situations to understand its suitability for IoT applications. In 

particular, there is a need to evaluate the delays of transmitting packets with different 

sizes in different situations to determine the impact of network congestion and other 

factors on the performance of NB-IoT. This study aims to address this need by 

evaluating the performance of Quectel NB-IoT board in different situations and 

comparing the delays for different packet sizes.
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2. 3GPP 

3GPP (Third Generation Partnership Project) is a global standards organization 

responsible for the development of wireless telecommunications standards, including 

those related to IoT technologies. The organization was formed in 1998 and is 

comprised of various telecommunications standards bodies from around the world. 

The first time IoT was introduced in 3GPP was with the release of 3GPP Release 12 in 

2014, which included specifications for Machine-to-Machine (M2M) communications. 

The first introduction of NB-IoT in 3GPP was with the release of 3GPP Release 13 in 

2016, which included specifications for narrowband IoT technology designed 

specifically for low-power, wide-area IoT applications. Since then, 3GPP has continued 

to develop and improve NB-IoT technology with subsequent releases, including 

Release 14 and Release 15. [6][7] 

 

2.1 Improvements in releases: 

 

• Release 13 (2016): This release defined the standard for NB-IoT as a new radio 

access technology for IoT devices. It introduced several features specifically designed 

for IoT, including ultra-narrowband operation, power-saving mode, and extended 

coverage in challenging environments. [8] 

 

• Release 14 (2017): This release introduced several new features to enhance the 

performance and functionality of NB-IoT, such as higher data rates, improved 

coverage, and reduced latency. It also added support for new deployment scenarios, 

such as standalone operation, multi-operator support, and positioning services. [9] 

• Release 15 (2018): This release introduced several enhancements to improve the 

efficiency and flexibility of NB-IoT, such as enhanced carrier aggregation, extended 

DRX (Discontinuous Reception), and more efficient signaling procedures. [10] 
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• Release 16 (2020): This release introduced several new features to address the 

emerging needs of IoT applications, such as higher reliability, better positioning 

accuracy, and support for massive IoT deployments. It also introduced support for 

new spectrum bands, including the 2.4 GHz band, to enable IoT operation in 

unlicensed spectrum. [11] 

 

• Release 17 (under development): This release is expected to introduce further 

improvements and new features for NB-IoT, such as higher data rates, enhanced 

security, and support for new IoT services and applications. It is also expected to 

address new use cases, such as IoT operation in high-speed trains and satellite 

communications. [12] 

 

 

2.2 NB-IoT Deployment Scenarios 

NB-IoT is a radio interface implemented over the cellular licensed spectrum. It offers 

high deployment flexibility and integration with the existing architecture, minimizing 

costs and complexity at network and device sides, and providing performance in line 

with mMTC expectations. Below, NB-IoT operation modes, possible deployment 

strategies are explained. NB-IoT devices operate over either a 200 kHz GSM-like 

channel or an LTE physical resource block (PRB) of 180 kHz, allowing coexistence with 

both GSM and LTE [8]. The deployment scenario should be transparent to a user 

equipment (UE) when it is first turned on and searches for an NB-IoT carrier, similar 

to existing LTE UEs. 

 Three different operation modes are defined: 

 

• In Guard Band: In guard-band mode of operation, NB-IoT will utilize new 

resource blocks within the guard-band of an LTE carrier. An illustration of this 

is shown in Figure 1 It may be possible to allocate the NB-IoT PRB right next to 

the outer LTE PRB. This, however, will depend on the channel raster for NB-

IoT. In addition, since the NB-IoT carrier has been placed in the LTE guard 

band, additional guard band for the adjacent carrier may be required. 
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Figure 1 : Guard Band deployment NB-IoT 

 

• In Band: For in-band operation, one or more PRBs are reserved for NB-IoT. This 

is shown in Figure 2 where 1 PRB is reserved. Within this reserved region, NB-

IoT signals must not be transmitted in time-frequency resources reserved for 

LTE. Sharing of PRBs between NB-IoT and LTE allows for more efficient use of 

the spectrum and seamless increase in NB-IoT capacity as more devices are 

added to the network. 

 

Figure 2 In Band deployment of NB-IoT 

 

• Stand Alone: Standalone deployment mainly utilizes new bandwidth as shown 

in Figure 3. This option tends to offer the best performance in terms of improved 

indoor coverage. In standalone operation, NB-IoT can be used as a replacement 

of one or more GSM carriers since it occupies the same amount of bandwidth, 

200 kHz. [13][14] 
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Figure 3 Stand Alone deployment NB-IoT 
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3. Description of work environment 

In this chapter, the work environment for the NB-IoT technology evaluation will be 

described. The hardware utilized for the evaluation was the Quectel BC95 NB-IoT 

development board. The board features a Quectel BC95 module, which is a compact, 

high-performance module that supports both NB-IoT and eMTC (enhanced Machine-

Type Communication) technologies. The board also features an ARM Cortex-M0 

processor, which is used for running software applications. The software environment 

for the evaluation is Qcom, which is a development environment specifically designed 

for Quectel modules. Qcom provides a comprehensive set of tools for developing, 

testing, and debugging software applications for NB-IoT devices. In this chapter, the 

hardware and software components of the work environment will be described in 

detail, including the specifications of the Quectel BC95 development board and the 

features of the Qcom development environment.  

 

3.1 Vendor: Quectel Wireless Solutions 

The work environment utilized for the evaluation of NB-IoT technology included the 

use of Quectel Wireless Solutions' cellular modules. Quectel is a global supplier of 

GSM/GPRS, UMTS/HSPA, LTE, LPWA, and GNSS modules, and is well-known for its 

expertise in IoT technology development. The cellular modules provided by Quectel 

are highly versatile and can be used in a wide range of IoT applications, including 

smart metering, asset tracking, wireless point-of-sale systems, and healthcare. For this 

particular experiment, the Quectel BC95 NB-IoT module was utilized, along with the 

UC15 GSM module. These modules are highly reliable and provide advanced cellular 

connectivity features that are ideal for low-power, wide-area IoT applications. 

Throughout the evaluation process, the Quectel cellular modules provided consistent 

and reliable connectivity, enabling the successful testing of NB-IoT technology in a 

variety of different scenarios. [15] 

 

 

 



 

 9 

 

 

3.2 General Overview 

The BC95 module from Quectel is a high-performance NB-IoT module that boasts 

extremely low power consumption, making it an ideal choice for IoT applications that 

require long battery life. Measuring just 23.6mm x 19.9mm x 2.2mm, the compact form 

factor of the BC95 makes it an excellent choice for size-sensitive applications. It is also 

designed to be compatible with the Quectel GSM/GPRS M95 module, providing a 

flexible and scalable platform for migrating from GSM/GPRS to NB-IoT networks. The 

BC95 module uses surface-mounted technology, which ensures its durability and 

ruggedness. Its low profile and small size LCC package enable easy integration into 

space-constrained applications, providing reliable connectivity with the applications. 

Due to its compact form factor, ultra-low power consumption, and extended 

temperature range, the BC95 module is an ideal choice for a wide range of IoT 

applications, including smart metering, bike sharing, smart parking, smart city, 

security, and asset tracking, home appliances, agricultural and environmental 

monitoring, and more. Additionally, the module can provide a complete range of SMS 

and data transmission services to meet the demands of client-side applications. 

General features can be seen in the Figure 4. [16] 

 

The BC95 NB-IoT module is capable of operating across multiple frequency bands, 

including 700 MHz, 800 MHz, 850 MHz, 900 MHz, 1800 MHz, and 2100 MHz. Its 

electrical characteristics set it apart from other technologies used for wireless data 

transmission. Notably, the module has a typical supply voltage of 3.6 V and is 

designed to operate within a wide temperature range of -40°C to +85°C. The standout 

feature of the BC95 module, however, is its exceptionally low power consumption. In 

standby mode, the module consumes a mere 5uA current, which is significantly lower 

than the current consumption of GSM/GPRS modules, which typically consume 

around 10-15mA current. This difference in power consumption allows the BC95 

module to operate on battery power for up to 10 years. For this study, the "BC95-B20" 

module, which operates at 800 MHz, was utilized. It is shown on Figure 5. [14] 
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Figure 4 General features for BC95 NB-IoT module 

 

 

 

Figure 5 B20 module 
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3.3 The Evaluation Board Kit 

1. The NB-IOT EVB bottom and top view are depicted in Figure 6 and Figure 7. 

 

Figure 6 GSM EVB Bottom View 

 

Figure 7 NBIOT EVB top view 
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2. Cables: 

• USB to UART converter cable  

• USB cable 

• RF cable 

3. Antenna  

4. Adapter - 5V DC adapter  

5. Audio – Earphone  

6. Disk - Disk involving related documents and drivers  

7. Instruction sheet - A sheet of paper giving instructions for EVB connection, details 

of EVB accessories, etc. See Figure 8. 

 

 

Figure 8 EVB and Accessories 
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3.4 Software 

The BC95 module is accompanied by a software package known as QCOM. This 

software package provides a user-friendly interface for sending AT commands to the 

module, and its functionality is illustrated in Figure 9. By utilizing this software, users 

can easily configure and control the BC95 module to suit their specific requirements. 

This software is an essential component of the BC95 module, and its user-friendly 

interface simplifies the process of interfacing with the module, allowing for efficient 

and effective utilization of its capabilities. [16] 

 

 

Figure 9 Qcom software view 

Before using the QCOM software to communicate with the BC95 module, proper 

installation and configuration of the Com port settings are crucial. The success of the 

installation can be confirmed through the Device Manager of the computer. After 

connecting the module to the computer via the serial port, the COM Port will be 
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automatically identified through the Operating System of the computer. The Com port 

settings consist of six parameters that need to be set appropriately: COM port, Baud 

rate, Stop bits, Parity, Byte size, and Flow control. 

The COM port parameter identifies the serial port number that the device is connected 

to, such as COM1, COM2, COM3, etc. The recommended setting for the BC95 module 

is to use the serial port number that it is connected to. The Baud rate parameter refers 

to the speed at which data is transmitted and received over the serial port, and the 

recommended value for the BC95 module is 9600 bps. The Stop bits parameter 

specifies the number of bits used to signal the end of a character, and the recommended 

value for the BC95 module is 1. 

 

The Parity parameter provides a method of error detection in serial communication 

and can be set to None, Even, Odd, Mark, or Space. For the BC95 module, the 

recommended value is None. The Byte size parameter specifies the number of data bits 

that make up each character, and the recommended value for the BC95 module is 8 

bits. The Flow control parameter determines how data flow is controlled between the 

device and the computer and can be set to None, Hardware, or Software control flow. 

The recommended value for the BC95 module is None. 

 

Once the Com port settings have been properly configured, the "Open Port" option can 

be selected in the QCOM software, and the Input String can be used to send AT 

commands effectively. 

 

3.5 AT Commands 

The effective operation of the Dev Board, which integrates the BC95 module, relies on 

communication via a serial line. To operate correctly, the Dev Board must be connected 

to a device with the appropriate software installed, and AT commands must be 

transmitted from this device to the board. The Dev Board can only receive commands 

from the serial line, and a specific set of AT commands must be transmitted to register 

the BC95 module to a network and enable it to transmit packets successfully. While 

the specific set of AT commands required may vary depending on the specific use case 

and network configurations, a typical set includes commands for network registration, 

setting the APN, defining the PDP context, activating the PDP context, setting the IP 

address, and initiating data transfer. It is essential to enter the AT commands 

accurately and in the correct sequence to ensure successful packet transmission, as the 
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successful transmission of these commands is crucial for the proper operation of the 

Dev Board. [17][18] 

 

1. AT+NRB: This command stands for "Network Reboot" and instructs the BC95 

module to restart the network. It is often used to reset the module when it 

encounters an error or malfunction. 

 

2. AT+CFUN=1: This command sets the module's function level to 1, which 

enables full functionality. This is often used to activate the module after it has 

been powered on or reset. 

 

3. AT+CGDCONT=0,"IP","nb.xxxx.gdsp": This command is used to set the APN 

(Access Point Name) and the PDP (Packet Data Protocol) context for the module 

which in this case is Vodafone  

 

4. AT+CEREG=2: This command configures the module to report cell registration 

and location information. The value "2" indicates that the module should report 

when it is registered on a network and when the location information changes. 

 

5. AT+CSCON=1: This command enables the module to report the state of the 

circuit-switched domain. The value "1" indicates that the module should report 

when the circuit-switched domain is attached or detached. 

 

6. AT+COPS=1,2,"22xxx": selects and registers the EPS network operator using the 

USIM card in the currently selected card slot. It has three parameters, with the 

first indicating manual network operator selection. The second parameter 

specifies numeric operator identification, followed by the operator 

identification number as the third parameter. This command is crucial for 

successful network registration and proper BC95 module operation. 
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7. AT+CSQ: This command is used to check the signal strength of the module's 

connection to the network. It returns a value between 0 and 31, with higher 

values indicating a stronger signal. 

 

8. AT+NUESTATS: This command retrieves various statistics about the module's 

network connection, including the signal quality, network registration status, 

and data usage. 

 

9. AT+NSOCR=DGRAM,17,3365,1: This command creates a UDP socket for the 

module to send and receive datagrams. The values "DGRAM" and "17" specify 

that the socket should be a datagram socket using the UDP protocol, and "3365" 

is the port number to be used for the socket. 

 

10. AT+NSOST=0,131.175.120.22,8883,2,4f4b: This command sends data over the 

UDP socket created in the previous command. The values "0" and 

"131.175.120.22" specify that the data should be sent using the socket with ID 

"0" to the IP address "131.175.120.22," and "8883" is the port number to which 

the data should be sent. The remaining values "2" and "4f4b" specify the length 

of the data to be sent and the data itself, respectively. 

 

 

3.6 Python Code of AT commands 

 

In this work, we automated the procedure of testing the board using a custom-written 

code. This code replaced the Qcom software that was previously used for this purpose. 

The code uses Python's serial and scheduling libraries to open the serial port and 

connect the board to the network, send UDP packets, and close the socket and serial 

port when the testing is completed. The code simplifies the testing procedure by 

automating the repetitive tasks, saving time and effort. It also provides more flexibility 

and customization options compared to the Qcom software. 

The first part of the code which involves importing necessary libraries and modules is 

a crucial step in automating the procedure of measurements which is shown in the 

Figure 10. 
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import serial 

import sched 

import time 

 

 

Figure 10 importing necessary libraries and modules. 

 

import serial - This line imports the Python serial module, which provides access to 

the serial communication ports on a computer. The serial module allows Python 

programs to communicate with external devices (such as microcontrollers, sensors, 

and other hardware) over serial connections. [19] 

 

import sched - This line imports the Python sched module, which provides a simple 

interface for scheduling tasks to run at specific times or intervals. The sched module is 

often used in combination with other Python libraries (such as time and datetime) to 

create timed events or periodic tasks. [20] 

 

import time - This line imports the Python time module, which provides various time-

related functions and data types. The time module can be used to measure elapsed 

time, delay program execution, generate timestamps, and perform other time-based 

operations in Python programs. [21] 

 

The next step involves creating a serial object to connect to the device through the serial 

port. The 'serial' library is used for this purpose. In Windows, the COMx represents 

the number of the port that the system automatically allocates for the serial connection, 

whereas for Linux, it is '/dev/ttyUSB0'. The 'timeout' attribute sets the time in 

seconds to wait for data from the serial port. The code is represented in Figure 11. 

 

# to open the serial port 

ser = serial.Serial('COM3') 

ser.timeout = 1 

 
 

Figure 11  creating a serial object to connect to the device through the serial port. 
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The next part of the code is used to connect the board to the network using AT 

commands. The AT commands are sent as strings to the board through the serial 

connection. Each AT command is used to configure a specific aspect of the connection 

process. The following is a brief explanation of each AT command: 

 

• AT+NRB: This command is used to reset the board to its default settings. 

• AT+CFUN=1: This command sets the functionality level of the board to full 

functionality. 

• AT+CGDCONT=1,"IP","nb.xxxx.gdsp": This command sets the APN (Access 

Point Name) to "nb.xxxx.gdsp". 

• AT+CEREG=2: This command sets the board to register on the network and to 

automatically re-try registration if it fails. 

• AT+CSCON=1: This command sets the board to automatically connect to the 

network. 

• AT+COPS=1,2,"22xxx": This command sets the board to select the network 

operator with the MCC-MNC code "22xxx". 

• AT+CSQ: This command is used to check the signal strength of the network. 

• AT+NUESTATS: This command is used to check the network status. 

The Python code is shown in Figure 12. 
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# to connect the board to the network 

ser.write(b'AT+NRB\R\N') 

ser.write(b'AT+CFUN=1\r\n') 

ser.write(b'AT+CGDCONT=1,"IP","nb.inetd.gdsp"\r\n') 

ser.write(b'AT+CEREG=2\r\n') 

ser.write(b'AT+CSCON=1\r\n') 

ser.write(b'AT+COPS=1,2,"22210"\r\n') 

ser.write(b'at+csq\r\n') 

ser.write(b'at+nuestats\r\n') 

 
 

Figure 12 the code to connect the board to the network using AT commands. 

 

In the next step, the code sets up a socket to send UDP packets using the NB-IoT 

module. The ser.write() function sends an AT command to the module to open a 

socket using the command AT+NSOCR=DGRAM,17,3365,1\r\n. The command 

specifies that a UDP socket should be created (DGRAM), the protocol should be UDP 

(17), the local port number should be 3365, and the socket should be created in non-

blocking mode (1). This command will return a socket ID which will be used in 

subsequent commands to send data through the socket. In summary, this code sets up 

a UDP socket to enable the NB-IoT module to send packets of data over the network 

see Figure 13. 

 

#send UDP packets , first open the socket, then send UDP message 

ser.write(b'AT+NSOCR=DGRAM,17,3365,1\r\n') 
 

 

Figure 13 sets up a socket to send UDP packets. 

The next line of the code creates a scheduler object using the sched module. This object 

is named s and it will be used later to schedule the sending of UDP packets at a specific 

interval of time. The sched.scheduler function takes two arguments: the first 

argument is a function that returns the current time, and the second argument is a 

function used for delaying a certain amount of time before executing a task. In this 

case, the functions time.time and time.sleep are passed as arguments 

respectively. The related code can be seen in the Figure 14. 
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s = sched.scheduler(time.time, time.sleep) 

 
 

Figure 14 creates a scheduler object using the sched module. 

 

The main part of the code is responsible for sending a packet via the NB-IoT network. 

It does so by defining a function do_something which retrieves the current 

timestamp using time.time() and then sends a 2-byte packet containing the value 

"OK" via the ser.write() function. The s.enter() function specifies the interval 

at which the packet is sent, while s.run() is responsible for starting the scheduler 

and allowing the packet to be sent at the specified interval. The IP address and port 

number to which the packet is sent are specified in the ser.write() function, with 

the values '131.175.120.22' and '8883' respectively.  

 

This last part of the code is responsible for closing the socket and disconnecting the 

board from the network. The first line ser.write(b'AT+NSOCL=0\r\n') sends an 

AT command to close the socket which was opened before to send UDP packets. The 

argument 0 in AT+NSOCL=0 refers to the socket ID, which in this case is 0 since there 

is only one socket used in the code. The second line ser.close() closes the serial 

port connection which was established at the beginning of the code using 

serial.Serial() function. This step is important to ensure that there is no data loss 

or corruption during the connection termination process. The way it should be used is 

shown in the Figure 15. 

 

# to close the socket 

ser.write(b'AT+NSOCL=0\r\n') 

# close the serial port (disconnect the board) 

ser.close() 

 
 

Figure 15 closing the socket and disconnecting the board from the network. 
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4. Measurements tools 

 

 

4.1 PySerial 

An RS232 to USB cable is a type of cable that enables the connection of devices using 

serial communication protocols via a USB port. This type of cable is commonly used 

to connect legacy devices that use RS232 serial communication to modern computers 

or laptops. The cable includes a USB interface on one end and a DB9 or DB25 serial 

port interface on the other end. The DB9 or DB25 connector plugs into the device using 

the RS232 communication protocol, while the USB connector plugs into the computer 

or laptop. 

 

The RS232 protocol is a standard communication protocol used for serial 

communication between devices. It defines the electrical signals, timing, and data 

format used in serial communication. The RS232 protocol defines the number of data 

bits, the number of stop bits, and the parity bit used for error checking. The protocol 

specifies the use of a fixed baud rate, which determines the speed at which data is 

transmitted between devices. 

Using the PySerial library and the RS232 to USB cable, the developed python code is 

able to communicate with the development board and automate the measurement 

procedure. PySerial is a Python module used to interact with the serial port, allowing 

the user to read and write data from and to the serial port. PySerial provides support 

for different operating systems, including Windows, Linux, and macOS, making it a 

versatile and widely-used module for serial communication. In addition, PySerial 

supports different protocols, including the RS232. The use of PySerial and the RS232 

to USB cable allowed for a reliable and efficient communication between the laptop 

and the development board, enabling the successful implementation of the 

measurement procedure. [22] 
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4.2 SSH protocol 

 

Secure Shell (SSH) is a widely used network protocol for secure communication 

between two systems. It provides a secure channel over an unsecured network by 

encrypting all data transmitted between the client and the server. The SSH protocol 

has several versions, with the most commonly used being SSH-2. 

 

SSH protocol is typically used for remote login to a computer or server, allowing users 

to securely execute commands on the remote system. It can also be used for secure file 

transfer and tunneling other network services. SSH is supported by most Unix-based 

operating systems, as well as Windows through third-party software. 

 

To establish an SSH connection, the client and the server must both have SSH software 

installed. The client initiates the connection by specifying the server's IP address or 

domain name and providing authentication credentials such as a username and 

password or a public key. Once the connection is established, all communication 

between the client and the server is encrypted, providing a secure and private 

communication channel. 

 

In summary, SSH is a widely used protocol for secure communication between two 

systems over an unsecured network. It provides a secure channel for remote login, file 

transfer, and tunneling of other network services. The protocol encrypts all data 

transmitted between the client and the server, ensuring a secure and private 

communication channel. [23] 

BitVise software is utilized in this work to establish a communication channel between 

the laptop and the server for measuring delays in the network. The reception time of 

these packets can be viewed through BitVise software, facilitating the calculation of 

network delays by knowing the time of packet transmission and reception. Therefore, 

BitVise software serves as a crucial tool in this work for enabling the accurate 

measurement of network delays. [24] 
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4.3 Communication Design with Dev Board 

The control of the Development Board via the serial line is performed by the PC. To 

eliminate the need for proprietary software such as "Q-COM" from Quectel to control 

the Dev Board, the PySerial library in Python is utilized. Upon issuing a sequence of 

commands, the board becomes registered and connected to the nearest Base Station 

(eNode B) within the LTE Network. 

Additionally, a direct connection between the PC and the bonsai_16 machine is 

established, which serves as the Remote Server. This is achieved using an SSH 

connection on port 22, allowing for remote login and monitoring of the server's 

activity. It is depicted in the Figure 16. 

 

 

Figure 16 Communication Design with Dev Board. [25] 

 

4.4 Python code on the remote server 

In order to accurately measure the delays between the transmission and reception of 

UDP packets sent from the Development Board to the remote server, a Python code 

was developed to receive the incoming packets and determine their arrival 
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timestamps. This section will discuss the details of this code, including its structure 

and functionality, as well as its role in the measurement process. 

 

 

# Server UDP 

import time 

import socket 

 

UDP_IP_ADDRESS = "131.175.120.22" 

UDP_PORT_NO = 8883 

 

serverSock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) 

 

serverSock.bind((UDP_IP_ADDRESS, UDP_PORT_NO)) 

 

while True: 

    data, addr = serverSock.recvfrom(1024) 

    ts = time.time() 

    print("Message: ", data) 

    print("time_stamp: ", ts) 

 
 

 

Figure 17 Python code on the remote server. 

The code provided in Figure 17 is written in Python and is used to receive UDP packets 

on a specific IP address and port number. 

The first step is to import the necessary modules for creating the UDP socket and 

measuring the timestamp of incoming packets. The code imports the "time" and 

"socket" modules. 

 

Next, the code initializes two variables "UDP_IP_ADDRESS" and "UDP_PORT_NO" to 

the IP address and port number where the server will listen for incoming packets. After 

that, the code creates a UDP socket using the "socket.socket()" function and sets 

the socket type to "SOCK_DGRAM" for UDP packets. The code then binds the socket to 

the IP address and port number using the "serverSock.bind()" function. 
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The code then enters an infinite loop, listening for incoming UDP packets using the 

"serverSock.recvfrom()" function. When a packet arrives, the code stores the 

data and address of the sender in the "data" and "addr" variables, respectively. The 

code also measures the timestamp of the incoming packet using the "time.time()" 

function and stores it in the "ts" variable. 

 

Finally, the code prints the received message and the corresponding timestamp using 

the "print()" function. Overall, this code allows the user to receive UDP packets and 

measure their arrival time using Python. 

 

5. Measurements 

5.1 Characteristics of the network 

In this section, the findings of the measurements will be presented and analyzed. To 

begin with, the characteristics of the network were investigated using the "at+csq" 

and "at+nuestats" AT commands. The information obtained from these commands 

include: 

 

The response to AT+CSQ is +CSQ: XX,YY 

CSQ stands for "Channel Signal Quality" and represents the received signal strength 

indicator. XX value ranges from 0 to 31. Table 1 represents these indications. YY is the 

signal quality index. It is a measurement of the bit error rate (BER), which is the 

number of bits that are received incorrectly over a certain period. The lower the value, 

the better the signal quality. The value of 99 indicates that the signal quality is not 

known or not detectable. 
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CSQ Received 

Signal 

(dBm) 

0 -113 

1 -111 

2 -109 

3 -107 

4 -105 

5 -103 

6 -102 

7 -99 

8 -97 

9 -95 

10 -93 
 

CSQ Received 

Signal 

(dBm) 

11 -91 

12 -89 

13 -87 

14 -85 

15 -83 

16 -81 

17 -79 

18 -77 

19 -75 

20 -73 

21 -71 
 

CSQ Received 

Signal 

(dBm) 

22 -69 

23 -67 

24 -65 

25 -63 

26 -61 

27 -59 

28 -57 

29 -55 

30 -53 

31 -51 

99 unknown 
 

 

Table 1 Received Signal Strength Indicators (RSSI) for CSQ values. 

 

The response to the AT+CESTATS command provides more information about the 

network and connectivity parameters of the NB-IoT board. Here is an explanation of 

the different parameters: 

• Signal power: This represents the received signal power in centibels (the 

power ratio of a signal to a carrier signal expressed as dBc). A higher value 

indicates a stronger signal. 

• Total power: This represents the total power in dBc that is being transmitted 

by the cell tower. 

• TX power: This is the transmission power in dBc that is being used by the NB-

IoT board. 

• TX time: This represents the total time in milliseconds that the NB-IoT board 

has been transmitting data. 
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• RX time: This represents the total time in milliseconds that the NB-IoT board 

has been receiving data. 

• Cell ID: This is the unique identification number of the cell tower that the NB-

IoT board is currently connected to. 

• ECL: This stands for "EC/N0 Cell Level" and represents the signal quality in 

terms of the ratio of energy per chip to background noise. The value ranges 

from 0 to 31, with 0 indicating the best signal quality. 

• SNR: This stands for "Signal-to-Noise Ratio" and represents the ratio of the 

signal power to the noise power. A higher value indicates a better signal 

quality. 

• EARFCN: This is the "E-UTRA Absolute Radio Frequency Channel Number" 

and represents the channel frequency that is being used by the NB-IoT board. 

• PCI: This stands for "Physical Cell ID" and represents the unique identification 

number of the physical cell that the NB-IoT board is currently connected to. 

• RSRQ: This stands for "Reference Signal Received Quality" and represents the 

quality of the received reference signal. A higher value indicates a better 

signal quality. The value is represented in dBc. 

There are several parameters that are crucial and can impact the delay in IoT 

communication systems. These parameters include signal power, total power, TX 

power, SNR, and RSRQ. 

 

5.2 Dataset 

In this study, a total of 30 measurements were carried out under different network 

conditions to collect data on various network parameters. The dataset gathered during 

these measurements will be presented in this section. The dataset includes information 

on the time of measurement, location, delays for different packet sizes, and network 

characteristics. 
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5.2.1 Delays 

For each measurement, the time, location, and network parameters were recorded, and 

a Python code was utilized to transmit packets of different sizes (2, 10, 20, 50, 100, 150, 

255, 512 bytes) to the server. Note that the maximum length of received data with the 

Quectel BC95 module is 512 bytes. The transmission and receiving timestamps were 

then recorded, and the delay between them was calculated. To ensure the accuracy 

and reliability of the delay measurements, each packet was transmitted and recorded 

20 times during each measurement. Table 2 shows the transmitting and receiving 

timestamps, as well as the corresponding delays for each packet size in one of the 

experiments. 

 

 

Table 2 Transmitting and receiving packet timestamps (in seconds) and their 

corresponding delays (in seconds) for experiment 2, which investigates the 

performance of the system under test. Experiment 2 comprises of 20 repetitions, and 

this table presents the transmitting and receiving packet timestamps and the resulting 

delay for five selected repetitions, as an illustrative example. The delay is calculated as 

the difference between the transmitting and receiving packet timestamps, both 

measured in seconds. The payload sizes are represented in bytes. 

 

As delays are of primary interest in our analysis, we will focus exclusively on the delay 

measurements moving forward. An example of the delay measurements is provided 

in Table 3. 
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Table 3 Delays for different packet sizes in experiment 2. This table shows the delays, 

measured in seconds, for different payload sizes in bytes, obtained in experiment 2. 

The delays are computed as the difference between the transmitting and receiving 

packet timestamps, for 20 repetitions of the experiment 2. 

 

To identify any outliers and ensure the reliability of the results, a box plot was 

generated for each set of delay measurements. The outliers were removed from the 

dataset to obtain a cleaned data set, which is used for further analysis and presentation 

of results. As an example, the Box Plot of Experiment 2 is presented in the Figure 18. 



 

30 

 

 

 

Figure 18 displays the box plot generated for experiment 2 in order to identify outliers 

and ensure the reliability of the results. The box plot illustrates the distribution of delay 

measurements for different packet sizes and shows the median, quartiles, and any 

outliers that were identified in the original data set. The line represents the average 

delay. The outliers have been removed from the dataset, resulting in a cleaned data set 

that is used for further analysis and presentation of results. 

 

The results can be seen in the Table 4. The yellow cells were removed since they were 

considered outliers. 
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Table 4 Cleaned data. The yellow cells will be removed since they are considered as 

outliers. 

 

 

From the cleaned data, the average and the standard deviation can be calculated. The 

results can be seen in the Table 5. 

 

 

Table 5 Average delay and standard deviation for different packet sizes. The table 

shows the results obtained from the cleaned dataset after removing the outliers. The 

average delay and standard deviation are calculated from 20 repetitions for each 

packet size. 
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To visualize the average delays and standard deviation, a scatter plot is presented in 

Figure 19. The blue line represents the average delay time, the dotted blue line shows 

the linear regression of the average delays, and the orange line represents the standard 

deviation. The standard deviation is an important statistical measure that indicates the 

amount of variation or dispersion of the data. A larger standard deviation indicates 

that the data points are spread out over a wider range, while a smaller standard 

deviation indicates that the data points are closer to the mean. 

 

 

Figure 19 Scatter plot showing the average delays and standard deviation for the clean 

dataset. The blue line represents the average delay time, and the dotted blue line shows 

the linear regression of the average delays. The Brown line represents the standard 

deviation, which is a measure of the amount of variation or dispersion of the data. A 

larger standard deviation indicates that the data points are spread out over a wider 

range, while a smaller standard deviation indicates that the data points are closer to 

the mean. 

 

5.2.2 Visualizing all the delays 

A plot of all the delays recorded in the experiment is shown in Figure 20. Each point 

in the scatter plot represents an average of delay measurement for each packet size, 

while the x-axis indicates the packet sizes, and the y-axis represents the delay in 

second. 
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Figure 20 shows a scatter plot of delay measurements obtained from all 30 experiments 

conducted, each of which represents the average of 20 repetitions. Each point in the 

plot represents the average delay for a given packet size, with the x-axis representing 

the packet sizes in bytes and the y-axis indicating the delay in seconds. This plot allows 

for a visual inspection of the delay trends across different packet sizes and 

experiments. 

 

Based on the plotted delays, it is observed that the average delays range from less than 

1 second to about 10 seconds in the worst cases. Using the average delays as a criterion, 

the measurements can be grouped into four categories: the first group with the highest 

average delays ranging from 5 to 10 seconds, the second group with high delays, the 

third group with medium average delays, and the last group with the lowest average 

delays. 

To enable better visualization of the delay groups, each group is depicted in a separate 

figure using the same scales for all figures. This allows for a direct comparison between 

the groups. Figure 21 represents the group with the highest average delays, ranging 

from 5 to 10 seconds. Figure 22 shows the group with high delays, while Figure 23 

presents the group with medium average delays. Finally, Figure 24 shows the group 

with the lowest average delays which is the biggest group.  
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Figure 21 Experiments with highest average delays. The figure displays experiments 

with the highest average delays measured under extreme conditions. The signal 

quality was undetectable in two cases, and -87 dBm in another case, due to the 

measurements being conducted in basements and on floor -1 of the Polimi University's 

library. The x-axis represents the different packet sizes in bytes, and the y-axis 

represents the average delays in seconds. 

 

 

Figure 22 Experiments with Medium Average Delays. This figure displays the results 

of experiments with average delays ranging approximately from 3 to 5 seconds. The 
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experiments were conducted to investigate the performance of the system under 

various conditions, including different signal qualities and locations. The x-axis 

represents the different packet sizes in bytes, and the y-axis represents the average 

delays in seconds. 

 

 

Figure 23 Experiments with Low Average Delays. The figure shows the average delay 

for experiments with delays ranging approximately from 1.5 to 3 seconds. The x-axis 

represents the different packet sizes in bytes, and the y-axis represents the average 

delays in seconds.  
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Figure 24 Experiments with Lowest Delays. This figure displays the experiments which 

have an average delay of approximately under 2 seconds. These experiments were 

conducted under good conditions with a good signal quality, including outdoor 

environments. The x-axis shows the packet sizes in bytes, and the y-axis represents the 

average delay in seconds. 

 

5.3 Histogram analysis  

A histogram is a graphical representation of the distribution of numerical data. It 

displays the frequency of occurrences of data values in a set of continuous or discrete 

intervals known as bins. A histogram can help to identify patterns, trends, and outliers 

in the data. It is particularly useful for understanding the shape of a dataset, including 

the location, and spread of the values. The histogram can also be used to determine 

the mode, median, and mean of the data. By examining the shape and characteristics 

of the histogram, one can draw inferences about the underlying population and make 

informed decisions about data analysis and modeling. Overall, histograms are a 

powerful tool for exploratory data analysis and are commonly used in fields such as 

statistics, data science, and machine learning. 
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5.3.1 CSQ (Channel Signal Quality) 

The histogram of Cell Signal Quality (CSQ) shows the distribution of CSQ values 

across 30 measurements. The CSQ represents the quality of the received signal in 

decibels (dBm). Table 1 presents the signal strength levels corresponding to each CSQ 

value. Figure 25 displays the number of occurrences of CSQ values, with the x-axis 

representing the CSQ values and the y-axis representing the number of times each CSQ 

value was observed. 

 

The histogram shows the values ranging from -87 dBm to -65 dBm, as well as two 

measurements where the CSQ value was unknown.  The most frequently observed 

CSQ values are between -69 dBm and -73 dBm, with -69 dBm being the most common 

value within this range, observed nine times. This suggests that the network 

conditions during the measurements were generally good, although some 

measurements showed lower signal strength levels, with the lowest being -87 dBm, 

indicating poor signal quality. There were also two measurements where the CSQ 

value was unknown due to extreme conditions and low signal quality. 

 

CSQ (dBm) Count 

 

       

-87 1       

-85 0       

-83 1       

-81 1       

-79 3       

-77 2       

-75 2       

-73 4       

-71 4       

-69 9       

-67 0       

-65 1       

Unknown 2       
 

Figure 25 Histogram showing CSQ distribution, with two cases excluded due to low 

signal quality. 
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5.3.2 Signal power 

Histogram of signal power shows the distribution of signal power values across the 30 

measurements Figure 26. The x-axis represents the signal power values in centibels 

(dBc), and the y-axis represents the number of times each signal power value was 

observed in these ranges. The histogram shows that the most frequently observed 

signal power values are between -800 dBc and -700 dBc being the most common value. 

However, there were also some measurements where the signal power reported as -

32768 which is an indication of a no signal or very weak signal. 

 

 

 

Signal Power 
(dBc) Count 

 
 

       

-1100 to -1000 0        

-1000 to -900 1        

-900 to -800 1        

-800 to -700 13        

-700 to -600 13        

undetectable 2        

         

         

         

Figure 26 Histogram of signal power. The figure shows a histogram of signal power 

values in centibels (dBc), with the x-axis representing the signal power values and the 

y-axis representing the number of occurrences. Some measurements reported a signal 

power value of -32768, indicating no or very weak signal. These measurements are 

represented by a separate category in the histogram. 

 

0
2
4
6
8

10
12
14

C
o

u
n

t

Signal Power (dBc)



 

 39 

 

 

5.3.3 SNR 

Figure 27 illustrate the histogram of signal-to-noise ratio (SNR). This histogram shows 

the distribution of SNR values across the 30 measurements. The x-axis represents the 

SNR values, and the y-axis represents the number of times each SNR value was 

observed in these ranges. The histogram shows that the most frequently observed SNR 

values are between 150 and 200. However, there were also some measurements where 

the SNR was reported as 0, which means that the signal and noise power are equal, 

and some measurements reported negative values, which means that the noise power 

is higher than the signal power. Additionally, there were two measurements where 

the SNR was reported as -32768, which is an indication of a no signal or very weak 

signal. 

 

 

 

 

 

SNR Count 

 

         

 -50 to 0 2         

 0 to 50 5         

 50 to 100 7         

 100 to 150 6         

 150 to 200 8         

undetectable 2         

          

          

          

          

          

          

Figure 27 Histogram of SNRs. SNRs related to each experiment are divided into 5 

ranges. There were two measurements where the SNR was reported as -32768, which 

is an indication of a no signal or very weak signal. 
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5.3.4 RSRQ 

This histogram shows the distribution of RSRQ (Reference Signal Received Quality) 

values across the measurements. RSRQ is represented in dBc and measures the quality 

of the received reference signal. The most frequently observed RSRQ values are 

between -110 dBc and -100 dBc which is shown in Figure 28. There were also some 

measurements where the RSRQ value was -32768, which is an indication of a no signal 

or very weak signal. Overall, the distribution of RSRQ values appears to be bimodal, 

with one peak around -100 dBc and another peak around -110 dBc. 

 

 

 

RSRQ (dBc) Count 

 

        

 -170 to -160 1        

 -160 to -150 1        

 -150 to -140 0        

 -140 to -130 1        

 -130 to -120 0        

 -120 to -110 10        

 -110 to - 100 15        

Undetectable 2        

         

         

         

         

         

         

         

Figure 28 Histogram of RSRQ. This histogram displays the distribution of RSRQ values 

across all the measurements. The most observed RSRQ values range from -110 dBc to 

-100 dBc, indicating a fair signal quality. However, some measurements had RSRQ 

values of -32768, which implies no signal or very weak signal. The distribution of 

RSRQ values is bimodal, with one peak centered around -100 dBc and another peak 

centered around -110 dBc, suggesting that there are two types of signal qualities 

present in the dataset. 
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5.4 Correlation analysis 

 

Correlation analysis is a statistical technique used to measure the strength and 

direction of the relationship between two variables. The correlation coefficient ranges 

from -1 to 1, where a value of -1 indicates a perfect negative correlation, a value of 0 

indicates no correlation, and a value of 1 indicates a perfect positive correlation. In this 

study, Pearson correlation coefficient is used to measure the linear relationship 

between two variables. The formula for the Pearson correlation coefficient is given by 

Equation 1. [26] 

 

 

Equation 1  Pearson correlation coefficient 

Where, 

• r = Pearson Coefficient 

• n= number of pairs of the stock 

• ∑xy = sum of products of the paired stocks 

• ∑x = sum of the x scores 

• ∑y= sum of the y scores 

• ∑x2 = sum of the squared x scores 

• ∑y2 = sum of the squared y scores 

 

5.4.1 Correlation of Average Delays and CSQ 

The correlations between delays of different packet sizes and channel signal quality 

(CSQ) were investigated, and it was found that the correlations were negative for all 

packet sizes. Specifically, the correlation coefficients ranged from -0.257 to -0.502, 

indicating a moderate to strong negative relationship between delays and CSQ. These 

results suggest that as the CSQ improves, the delays of packets of different sizes 

decrease. 
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The negative correlation between delays and CSQ is an expected result since better 

signal quality leads to faster transmission of data packets. The correlation coefficients 

provide a quantitative measure of the strength and direction of the relationship 

between the two variables. The moderate to strong correlations observed in this study 

suggest that the effect of CSQ on delays is substantial, and it is important to consider 

the CSQ when evaluating the performance of the network. 

 

The packet size also appears to play a role in the relationship between delays and CSQ, 

as the correlation coefficients vary across different packet sizes. For instance, the 

correlation coefficient is stronger for larger packet sizes such as 255-byte and 512-byte 

packets, compared to smaller packet sizes such as 2-byte and 10-byte packets. This 

observation suggests that the impact of CSQ on delays may be more pronounced for 

larger packets. Table 6 summarizing the correlations between delays of different 

packet sizes and channel signal quality CSQ. 

 

 

Packet sizes Correlation of Average Delays with CSQ 

2-byte -0.344 

10-byte -0.257 

20-byte -0.494 

50-byte -0.369 

100-byte -0.284 

150-byte -0.416 

255-byte -0.502 

512-byte -0.446 

Table 6 Correlation coefficients between Average Delay of different packet sizes and 

Channel Signal Quality (CSQ), indicating stronger correlations for larger packet sizes 

such as 255-byte and 512-byte packets compared to smaller packet sizes such as 2-byte 

and 10-byte packets. 

 

To enhance the visual representation, the correlation between CSQ and average delays 

for different packet sizes are depicted. Specifically, Figure 29 through Figure 36 

correspond to correlations between CSQ and average delays of different packet sizes 

ranging from 2 to 512 bytes respectively. 
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Figure 29 Regression line and correlation between CSQs and average delays of 2-byte 

packets. R2 is equal to the square of the correlations in Table 6. CSQ is a Received Signal 

Strength  indicator, and its corresponding Signal Strength is reported in the Table 1. 

For example, CSQ = 20 indicates Received Signal of -73 dBm and CSQ = 21 is -75 dBm. 

 

 

Figure 30 Regression line and correlation between CSQs and average delays of 10-byte 

packets. R2 is equal to the square of the correlations in Table 6. CSQ is a Received Signal 

Strength  indicator, and its corresponding Signal Strength is reported in the Table 1. 

For example, CSQ = 20 indicates Received Signal of -73 dBm and CSQ = 21 is -75 dBm. 
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Figure 31 Regression line and correlation between CSQs and average delays of 20-byte 

packets. R2 is equal to the square of the correlations in Table 6. CSQ is a Received Signal 

Strength  indicator, and its corresponding Signal Strength is reported in the Table 1. 

For example, CSQ = 20 indicates Received Signal of -73 dBm and CSQ = 21 is -75 dBm. 

 

 

Figure 32 Regression line and correlation between CSQs and average delays of 50-byte 

packets. R2 is equal to the square of the correlations in Table 6. CSQ is a Received Signal 

Strength  indicator, and its corresponding Signal Strength is reported in the Table 1. 

For example, CSQ = 20 indicates Received Signal of -73 dBm and CSQ = 21 is -75 dBm. 
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Figure 33 Regression line and correlation between CSQs and average delays of 100-

byte packets. R2 is equal to the square of the correlations in Table 6. CSQ is a Received 

Signal Strength  indicator, and its corresponding Signal Strength is reported in the 

Table 1.  

 

 

Figure 34 Regression line and correlation between CSQs and average delays of 150-

byte packets. R2 is equal to the square of the correlations in Table 6. CSQ is a Received 

Signal Strength  indicator, and its corresponding Signal Strength is reported in the 

Table 1. 
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Figure 35 Regression line and correlation between CSQs and average delays of 255-

byte packets. R2 is equal to the square of the correlations in Table 6. CSQ is a Received 

Signal Strength  indicator, and its corresponding Signal Strength is reported in the 

Table 1. 

 

 

Figure 36 Regression line and correlation between CSQs and average delays of 512-

byte packets. R2 is equal to the square of the correlations in Table 6. CSQ is a Received 

Signal Strength  indicator, and its corresponding Signal Strength is reported in the 

Table 1. 
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5.4.2 Correlation of Delays and Signal power 

The results of the correlation analysis between Signal Power and delay for different 

packet sizes revealed a negative correlation between the two variables. This indicates 

that as the Signal Power increases, the delay for packet transmission decreases. The 

findings are consistent with previous studies that have shown a strong association 

between Signal Power and delay in wireless networks. 

 

The analysis of the correlation coefficients showed that the correlation was strongest 

for the 255-Byte packet size, with a coefficient of -0.689. This suggests that Signal Power 

has a greater impact on the delay for larger packet sizes.  

 

However, the analysis also showed weaker correlations for smaller packet sizes, such 

as the 2-Byte and 10-Byte packet sizes. Table 7 represents the correlation of Delays of 

packets with different sizes and Signal Power. 

 

Packet size Correlation of average delay with Signal power 

2-byte -0.344 

10-byte -0.257 

20-byte -0.494 

50-byte -0.369 

100-byte -0.284 

150-byte -0.416 

255-byte -0.502 

512-byte -0.446 

 

Table 7 Correlation between signal power and average delays for each packet size. The 

analysis found a strong negative correlation between signal power and delay for larger 

255-Byte and 512-Byte packets, indicating that signal power has a greater impact on 

delay for larger packets. However, weaker correlations were found for smaller packet 

sizes, such as 2-Byte and 10-Byte packets. 
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5.4.3 Correlation of Delays and SNR 

The analysis of the correlation between Delays for different packet sizes and SNR 

(Signal-to-Noise Ratio) revealed a negative correlation between these variables. This 

means that as SNR increases, the delay in packet transmission decreases. A higher SNR 

indicates a better signal quality and lower noise interference, which results in a faster 

and more reliable data transmission. 

The correlation coefficients for different packet sizes showed that the strongest 

negative correlation was for the 512-Byte packet size, with a coefficient of -0.646. This 

indicates that for larger packet sizes, the impact of SNR on the delay is more 

significant. The correlation coefficients for smaller packet sizes, such as the 2-Byte and 

10-Byte packet sizes, were weaker than those for larger packet sizes. Table 8 shows the 

correlation coefficients between delays for different packet sizes and SNR. 

 

 

Delay of each packet Correlation with SNR 

2-byte -0.476770216 

10-byte -0.441815508 

20-byte -0.489958069 

50-byte -0.52528022 

100-byte -0.592782996 

150-byte -0.609079309 

255-byte -0.601858027 

512-byte -0.6466467 
 

Table 8 Correlation between Delays of different Packet Sizes and SNR: Analysis shows 

negative correlation between SNR and average delays, where increasing SNR leads to 

a decrease in delay. The strongest negative correlation was observed for 512-Byte 

packet size, indicating the greater impact of SNR on larger packet sizes. The correlation 

coefficients for smaller packet sizes, such as the 2-Byte and 10-Byte packet sizes, were 

weaker than those for larger packet sizes. 
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5.4.4 Correlation of Delays and RSRQ 

The analysis of the correlation between delays of different packet sizes and RSRQ 

(Reference Signal Received Quality) indicated a negative correlation between these 

variables. This means that as RSRQ increases, the delay in packet transmission 

decreases. A higher RSRQ indicates a better signal quality, which results in faster and 

more reliable data transmission. 

 

The correlation coefficients for different packet sizes showed that the strongest 

negative correlation was for the 512-Byte packet size, with a coefficient of -0.792. This 

suggests that for larger packet sizes, the impact of RSRQ on delay is more significant. 

The correlation coefficients for smaller packet sizes, such as the 2-Byte and 10-Byte 

packet sizes, were weaker than those for larger packet sizes. Table 9 represents the 

correlations of Delays and RSRQ. 

 

Packet size Correlation of average delays with RSRQ 

2-byte -0.565402992 

10-byte -0.474342591 

20-byte -0.629408969 

50-byte -0.63647146 

100-byte -0.688076458 

150-byte -0.725635475 

255-byte -0.74274506 

512-byte -0.791652793 
 

Table 9 Correlation coefficients between RSRQ and average Delays for different packet 

sizes. The table displays the strongest negative correlation was for the 512-Byte packet 

size, with a coefficient of -0.792. This suggests that for larger packet sizes, the impact 

of RSRQ on delay is more significant. The correlation coefficients for smaller packet 

sizes, such as the 2-Byte and 10-Byte packet sizes, were weaker than those for larger 

packet sizes but still have a significant impact. 
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5.5 Histogram analysis of delays 

To evaluate the performance of the NB-IoT, the delays for different packet sizes were 

analyzed under various experimental conditions. Delays were computed for packet 

sizes of 2, 10, 20, 50, 100, 150, 255, and 512 bytes, and 30 measurements with 20 

repetitions for each packet size were conducted. The experimental conditions included 

parameters such as CSQ, signal power, total power, TX power, TX time, RX time, cell 

ID, ECL, SNR, EARFCN, PCI, and RSRQ. 

To visualize the distribution of delays for each packet size, histograms were 

constructed. The same bin ranges were used for all histograms to facilitate comparison 

across different packet sizes. The bin ranges were set to 0-1 sec, 1-2 sec, 2-3 sec, 3-4 sec, 

4-5 sec, 5-6 sec, 6-7 sec, 7-8 sec, 8-9 sec, and 9-10 sec. 

The histograms showed that the delays for different packet sizes followed distinct 

distributions. For example, the delays for the 2-byte, 10-byte and 20-byte packets 

tended to be concentrated in the range of 0-4 sec, while the delays for the 255-byte and 

512 packets were distributed from 2 to 9 seconds. Additionally, we observed that the 

delays tended to increase as the packet size increased, particularly for larger packet 

sizes such as 150, 255, and 512 bytes. 

 

Overall, the histogram analysis of packet delay provided valuable insights into the 

performance of the packet network under different experimental conditions. By 

visualizing the distribution of delays for each packet size, we were able to identify 

patterns and trends that could help inform future improvements to the network. 

The histograms and tables presented in this section provide a comprehensive analysis 

of the delays observed in the NB-IoT system under various experimental conditions. 

The histograms visually depict the distribution of delays for each packet size. These 

visualizations enable a better understanding of the performance of the system under 

different experimental conditions that can be seen in the Figure 37 for 2-byte packet 

size, Figure 38 for 10-byte packet size, Figure 39 for 20-byte packet size, Figure 40 for 

50-byte packet size, Figure 41 for 100-byte packet size, Figure 42 for 150-byte packet 

size, Figure 43 for 255-byte packet size, and finally Figure 44 for 512-byte packet size. 
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2-byte packet size        

Average  
Delays (s) Count 

 

  0 to 1 7 

1 to 2 16 

2 to 3 2 

3 to 4 3 

4 to 5 0 

5 to 6 0 

6 to 7 0 

7 to 8 0 

8 to 9 0 

More 0 

  

  

  

  

Figure 37 Histogram of Average Delays of 2-byte packet sizes. The range of delay is 

zero to 4 seconds with a pick in the center of 2 seconds delays. 

 

10-byte packet size   

 

      

Average  
Delays (s) Count       

  0 to 1 6 
 

     

1 to 2 18       

2 to 3 3       

3 to 4 1       

4 to 5 0       

5 to 6 0       

6 to 7 0       

7 to 8 0       

8 to 9 0       

More 0       

        

        

        

 

Figure 38 Histogram of Average Delays of 10-byte packet sizes. The range of delay is 

zero to 4 seconds with a pick in the center of 2 seconds delays. 
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20-byte packet size 

 

       

Average  
Delays(s) Count       

  0 to 1 8       

1 to 2 16       

2 to 3 2       

3 to 4 1       

4 to 5 0       

5 to 6 1       

6 to 7 0       

7 to 8 0 
 

     

8 to 9 0       

More 0       
 

 

 

Figure 39 Histogram of Average Delays of 20-byte packet sizes. 

50-byte packet size  

 

       

Average  
Delays (s) count 

 

     

  0 to 1 5       

1 to 2 17       

2 to 3 4       

3 to 4 1       

4 to 5 1       

5 to 6 0       

6 to 7 0       

7 to 8 0       

8 to 9 0       

More 0       

 

 

 

Figure 40 Histogram of Average Delays of 50-byte packet sizes. The range of delays 

increases to 5 seconds. 

0

2

4

6

8

10

12

14

16

18

C
o

u
n

t

Average Delays (s)

0

2

4

6

8

10

12

14

16

18

C
o

u
n

t

Average Delays (s)



 

 53 

 

 

100-byte packet size  

 

       

Average  
Delays (s) Count       

  0 to 1 5       

1 to 2 15       

2 to 3 6       

3 to 4 0       

4 to 5 1       

5 to 6 1 
 

     

6 to 7 0       

7 to 8 0       

8 to 9 0       

More 0       
 

 

 

Figure 41 Histogram of Average Delays of 100-byte packet sizes. The range of delays 

increases to 6 seconds. 

 

150-byte 
packet size        

Average  
Delays (s) Count 

 

  0 to 1 0 
1 to 2 16 
2 to 3 8 
3 to 4 2 
4 to 5 1 
5 to 6 0 
6 to 7 0 
7 to 8 1 
8 to 9 0 
More 0 

 

 

 

Figure 42. Histogram of Average Delays of 150-byte packet sizes. 
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255-byte packet size         

Average  
Delays(s) Count 

 

       

  0 to 1 0       

1 to 2 12       

2 to 3 10       

3 to 4 4       

4 to 5 1       

5 to 6 0       

6 to 7 0       

7 to 8 0       

8 to 9 1       
More 0       

 

 

 

Figure 43. Histogram of Average Delays of 255-byte packet sizes. 

512-byte packet size  

 

        

Average  
Delays(s) Count       

  0 to 1 0       

1 to 2 2       

2 to 3 13       

3 to 4 8       

4 to 5 3       

5 to 6 0       

6 to 7 1 
 

     

7 to 8 0       

8 to 9 1       

More 0       

 

 

Figure 44 Histogram of Average Delays of 512-byte packet sizes. 
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6. Conclusion and future development 

In this work, we have delved into the world of NB-IoT to understand how this 

technology performs under real and extreme conditions. We began by providing a 

demonstration of IoT technologies and specifically, what NB-IoT entails. This allowed 

the reader to gain a better understanding of the world of NB-IoT in the context of the 

Internet of Things. 

 

Next, we explained the implementation of the hardware and software required for this 

technology, as well as the necessary commands and codes. We then introduced and 

described the measurement tools used in our assessment. 

 

Our main objective was to evaluate the delay performance of NB-IoT under various 

system parameters measured at different locations. Our findings revealed that there is 

considerable variation in delay, even due to packet size, which may be attributed to 

non-linear behavior of the equipment. Additionally, we discovered a clear correlation 

between signal quality and delay, with extreme locations experiencing delays in the 

range of 5 to 10 seconds, while other locations experience delays ranging from 1 to 4 

seconds. 

 

While this work provides a detailed assessment of NB-IoT technology, future work 

could include a comparison of NB-IoT with other IoT technologies, such as Cat-M.
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