

Delay Analysis of NB-IoT

Technology with Quectel Board

TESI DI LAUREA MAGISTRALE IN

Telecommunication Engineering

Author: Karo Amini

Student ID:

Advisor:

Academic Year:

10707670

Giacomo Verticale

2022-23

 i

Abstract

The Internet of Things (IoT) is a rapidly growing technology that is expected to connect

billions of devices and enable innovative applications. Narrowband IoT (NB-IoT) is a

new cellular standard developed by the 3rd Generation Partnership Project (3GPP) to

support low-power, wide-area networks for IoT. This study presents a study of NB-

IoT technology and its deployment scenarios, with a focus on measuring network

characteristics using an evaluation board kit from Quectel Wireless Solutions.

The work environment and measurement tools used in this study are described,

including Python code for AT commands and remote server communication. Data was

collected in various network conditions to evaluate the technology's performance. The

collected data was analyzed using techniques such as histogram analysis and

correlation analysis of delays with channel signal quality, signal power, signal-to-noise

ratio, and reference signal received quality.

The results of this study provide insights into the performance of NB-IoT networks

and can aid in improving their deployment and optimization. Our main objective was

to evaluate the delay performance of NB-IoT under various system parameters

measured at different locations. Our findings revealed that there is considerable

variation in delay, even due to packet size, which may be attributed to non-linear

behavior of the equipment. Additionally, we discovered a clear correlation between

signal quality and delay, with extreme locations experiencing delays in the range of 5

to 10 seconds, while other locations experience delays ranging from 1 to 4 seconds.

Key-words: NB-IoT, Delay measurements, IoT, Internet of Things.

 iii

Abstract in lingua italiana

L'Internet delle Cose (IoT) è una tecnologia in rapida crescita che si prevede connetterà

miliardi di dispositivi e abiliterà applicazioni innovative. Narrowband IoT (NB-IoT) è

uno nuovo standard cellulare sviluppato dal 3rd Generation Partnership Project

(3GPP) per supportare reti a bassa potenza e a vasta area per IoT. Questa tesi presenta

uno studio della tecnologia NB-IoT e dei suoi scenari di implementazione, con un focus

sulla misura delle caratteristiche di rete utilizzando un kit di valutazione dalla Quectel

Wireless Solutions.

Sono descritti l'ambiente di lavoro e gli strumenti di misura utilizzati in questo studio,

tra cui il codice Python per i comandi AT e la comunicazione con il server remoto. I

dati sono stati raccolti in diverse condizioni di rete per valutare le prestazioni della

tecnologia. I dati raccolti sono stati analizzati utilizzando tecniche come l'analisi

dell'istogramma e l'analisi della correlazione dei ritardi con la qualità del segnale del

canale, la potenza del segnale, il rapporto segnale-rumore e la qualità del segnale di

riferimento ricevuto.

I risultati di questo studio forniscono informazioni sulle prestazioni delle reti NB-IoT

e possono contribuire al miglioramento della loro implementazione e ottimizzazione.

Il nostro obiettivo principale era quello di valutare le prestazioni del ritardo di NB-IoT

in diverse condizioni di sistema misurate in diverse posizioni. I nostri risultati hanno

rivelato che c'è una considerevole variazione nel ritardo, anche a causa delle

dimensioni del pacchetto, che potrebbe essere attribuita al comportamento non lineare

dell'attrezzatura. Inoltre, abbiamo scoperto una chiara correlazione tra la qualità del

segnale e il ritardo, con posizioni estreme che sperimentano ritardi nell'intervallo da 5

a 10 secondi, mentre altre posizioni sperimentano ritardi nell'intervallo da 1 a 4

secondi.

Parole chiave: NB-IoT, Delay measurements, IoT, Internet of Things.

iv

v

Contents

Contents

Abstract .. i

Abstract in lingua italiana ... iii

Contents .. v

1. Introduction.. 1

1.1 What is IoT, and how does IoT work? ... 1

1.2 Different technologies of IoT ... 2

1.3 What is NB-IoT? .. 2

1.4 Contribution of this work .. 3

2. 3GPP .. 4

2.1 Improvements in releases .. 4

2.2 NB-IoT Deployment Scenarios ... 5

3. Description of work environment ... 8

3.1 Vendor: Quectel Wireless Solutions ... 8

3.2 General Overview ... 9

3.3 The Evaluation Board Kit .. 11

3.4 Software ... 13

3.5 AT Commands .. 14

3.6 Python Code of AT commands .. 16

4. Measurements tools .. 21

4.1 PySerial ... 21

4.2 SSH protocol .. 22

4.3 Communication Design with Dev Board .. 23

4.4 Python code on the remote server .. 23

5. Measurements .. 25

vi

5.1 Characteristics of the network .. 25

5.2 Dataset .. 27

5.2.1 Delays .. 28

5.2.2 Visualizing all the delays ... 32

5.3 Histogram analysis ... 36

5.3.1 CSQ (Channel Signal Quality) ... 37

5.3.2 Signal power .. 38

5.3.3 SNR .. 39

5.3.4 RSRQ ... 40

5.4 Correlation analysis .. 41

5.4.1 Correlation of Delays and CSQ ... 41

5.4.2 Correlation of Delays and Signal power .. 47

5.4.3 Correlation of Delays and SNR ... 48

5.4.4 Correlation of Delays and RSRQ ... 49

5.5 Histogram analysis of delays .. 50

6. Conclusion and future development .. 55

Bibliography ... 57

List of Figures... 60

List of Tables .. 63

Acknowledgements .. 64

vii

viii

 1

1. Introduction

The Internet of Things or IoT is a revolution's key technology. You have almost heard

this term and are probably familiar with some IoT devices and technologies. IoT can

transform businesses, makes cities greener, save energy, improve efficiency, make

more informed decisions, and generate new revenue streams by connecting various

devices and pieces of equipment through the Internet. [1]

1.1 What is IoT, and how does IoT work?

The Internet of Things (IoT) is a network of connected devices that are able to

communicate with one another and provide data to users through the Internet. IoT

devices have the ability to connect to the Internet and collect data using the sensors

that are implemented. While an IoT device can be useful on its own, when combined

with others, it becomes even more valuable.

Since the number of pieces of equipment that are connected to the internet increased

dramatically, the size of the IoT expands more and more. The Internet of Things

includes a variety of devices. It can encompass anything from electrical substations to

buildings and infrastructure and factory machinery which the number of them

increases daily basis. The Internet of Things is used by manufacturers, energy

companies, city governments, and a variety of other types of organizations.

The Internet of Things enables you to collect data automatically from a variety of

functions, such as how much energy a building's lighting consumes or how much

water flows through a wastewater treatment plant. Through the Internet, IoT solutions

and devices can transmit the data they collect to a central system. Managers can then

use this data to help them make more informed decisions. By employing data analysis

techniques, you can delve deeper into the data in order to uncover new insights and

forecast future outcomes.

Moreover, you can use IoT technology to automate certain pieces of equipment and

processes within your business. Intelligent sensors enable equipment to automatically

adjust its operation to optimize energy consumption, traffic flow, and more. When

they detect a particular input, smart sensors take action or signal for an action to occur.

2

Motion-activated lighting is a simple example. When those sensors detect movement,

they activate the lights. Additionally, smart sensors can detect abnormal conditions or

device operation and notify operators of potential issues. [2]

1.2 Different technologies of IoT

The different technologies of IoT can be categorized into several groups based on their

functionality and application. Wireless communication technologies, cloud computing

and data processing technologies, sensor and actuator technologies, security and

privacy technologies, Industrial and automation technologies. Here we only study

"Wireless communication technologies" which contains:

• Wi-Fi

• Bluetooth

• Zigbee

• LoRa

• NB-IoT

• Cat-M

and we focus on NB-IoT technology. [3]

1.3 What is NB-IoT?

Narrowband IoT (NB-IoT) is a cellular network technology designed for low-power

IoT devices that require long battery life, low data rates, and long-range

communication. It operates on a narrowband frequency, making it ideal for massive

machine-type communication (mMTC) applications such as smart city infrastructure,

remote monitoring and control, and industrial automation. NB-IoT uses advanced

features such as power-saving modes, adaptive modulation, and channel coding to

optimize performance and battery life for IoT devices. It provides wide area coverage

and penetration through buildings and other obstacles, and its standardization and

compatibility with existing cellular infrastructure make it a promising technology for

the IoT, particularly in applications that require secure connectivity. [4]

 3

1.4 Contribution of this work

Narrowband Internet of Things (NB-IoT) is a promising technology for the Internet of

Things (IoT) that offers long-range connectivity with low power consumption and

high coverage. [5] However, there is a need to evaluate the performance of NB-IoT

technology in different situations to understand its suitability for IoT applications. In

particular, there is a need to evaluate the delays of transmitting packets with different

sizes in different situations to determine the impact of network congestion and other

factors on the performance of NB-IoT. This study aims to address this need by

evaluating the performance of Quectel NB-IoT board in different situations and

comparing the delays for different packet sizes.

 4

2. 3GPP

3GPP (Third Generation Partnership Project) is a global standards organization

responsible for the development of wireless telecommunications standards, including

those related to IoT technologies. The organization was formed in 1998 and is

comprised of various telecommunications standards bodies from around the world.

The first time IoT was introduced in 3GPP was with the release of 3GPP Release 12 in

2014, which included specifications for Machine-to-Machine (M2M) communications.

The first introduction of NB-IoT in 3GPP was with the release of 3GPP Release 13 in

2016, which included specifications for narrowband IoT technology designed

specifically for low-power, wide-area IoT applications. Since then, 3GPP has continued

to develop and improve NB-IoT technology with subsequent releases, including

Release 14 and Release 15. [6][7]

2.1 Improvements in releases:

• Release 13 (2016): This release defined the standard for NB-IoT as a new radio

access technology for IoT devices. It introduced several features specifically designed

for IoT, including ultra-narrowband operation, power-saving mode, and extended

coverage in challenging environments. [8]

• Release 14 (2017): This release introduced several new features to enhance the

performance and functionality of NB-IoT, such as higher data rates, improved

coverage, and reduced latency. It also added support for new deployment scenarios,

such as standalone operation, multi-operator support, and positioning services. [9]

• Release 15 (2018): This release introduced several enhancements to improve the

efficiency and flexibility of NB-IoT, such as enhanced carrier aggregation, extended

DRX (Discontinuous Reception), and more efficient signaling procedures. [10]

 5

• Release 16 (2020): This release introduced several new features to address the

emerging needs of IoT applications, such as higher reliability, better positioning

accuracy, and support for massive IoT deployments. It also introduced support for

new spectrum bands, including the 2.4 GHz band, to enable IoT operation in

unlicensed spectrum. [11]

• Release 17 (under development): This release is expected to introduce further

improvements and new features for NB-IoT, such as higher data rates, enhanced

security, and support for new IoT services and applications. It is also expected to

address new use cases, such as IoT operation in high-speed trains and satellite

communications. [12]

2.2 NB-IoT Deployment Scenarios

NB-IoT is a radio interface implemented over the cellular licensed spectrum. It offers

high deployment flexibility and integration with the existing architecture, minimizing

costs and complexity at network and device sides, and providing performance in line

with mMTC expectations. Below, NB-IoT operation modes, possible deployment

strategies are explained. NB-IoT devices operate over either a 200 kHz GSM-like

channel or an LTE physical resource block (PRB) of 180 kHz, allowing coexistence with

both GSM and LTE [8]. The deployment scenario should be transparent to a user

equipment (UE) when it is first turned on and searches for an NB-IoT carrier, similar

to existing LTE UEs.

 Three different operation modes are defined:

• In Guard Band: In guard-band mode of operation, NB-IoT will utilize new

resource blocks within the guard-band of an LTE carrier. An illustration of this

is shown in Figure 1 It may be possible to allocate the NB-IoT PRB right next to

the outer LTE PRB. This, however, will depend on the channel raster for NB-

IoT. In addition, since the NB-IoT carrier has been placed in the LTE guard

band, additional guard band for the adjacent carrier may be required.

6

Figure 1 : Guard Band deployment NB-IoT

• In Band: For in-band operation, one or more PRBs are reserved for NB-IoT. This

is shown in Figure 2 where 1 PRB is reserved. Within this reserved region, NB-

IoT signals must not be transmitted in time-frequency resources reserved for

LTE. Sharing of PRBs between NB-IoT and LTE allows for more efficient use of

the spectrum and seamless increase in NB-IoT capacity as more devices are

added to the network.

Figure 2 In Band deployment of NB-IoT

• Stand Alone: Standalone deployment mainly utilizes new bandwidth as shown

in Figure 3. This option tends to offer the best performance in terms of improved

indoor coverage. In standalone operation, NB-IoT can be used as a replacement

of one or more GSM carriers since it occupies the same amount of bandwidth,

200 kHz. [13][14]

 7

Figure 3 Stand Alone deployment NB-IoT

8

3. Description of work environment

In this chapter, the work environment for the NB-IoT technology evaluation will be

described. The hardware utilized for the evaluation was the Quectel BC95 NB-IoT

development board. The board features a Quectel BC95 module, which is a compact,

high-performance module that supports both NB-IoT and eMTC (enhanced Machine-

Type Communication) technologies. The board also features an ARM Cortex-M0

processor, which is used for running software applications. The software environment

for the evaluation is Qcom, which is a development environment specifically designed

for Quectel modules. Qcom provides a comprehensive set of tools for developing,

testing, and debugging software applications for NB-IoT devices. In this chapter, the

hardware and software components of the work environment will be described in

detail, including the specifications of the Quectel BC95 development board and the

features of the Qcom development environment.

3.1 Vendor: Quectel Wireless Solutions

The work environment utilized for the evaluation of NB-IoT technology included the

use of Quectel Wireless Solutions' cellular modules. Quectel is a global supplier of

GSM/GPRS, UMTS/HSPA, LTE, LPWA, and GNSS modules, and is well-known for its

expertise in IoT technology development. The cellular modules provided by Quectel

are highly versatile and can be used in a wide range of IoT applications, including

smart metering, asset tracking, wireless point-of-sale systems, and healthcare. For this

particular experiment, the Quectel BC95 NB-IoT module was utilized, along with the

UC15 GSM module. These modules are highly reliable and provide advanced cellular

connectivity features that are ideal for low-power, wide-area IoT applications.

Throughout the evaluation process, the Quectel cellular modules provided consistent

and reliable connectivity, enabling the successful testing of NB-IoT technology in a

variety of different scenarios. [15]

 9

3.2 General Overview

The BC95 module from Quectel is a high-performance NB-IoT module that boasts

extremely low power consumption, making it an ideal choice for IoT applications that

require long battery life. Measuring just 23.6mm x 19.9mm x 2.2mm, the compact form

factor of the BC95 makes it an excellent choice for size-sensitive applications. It is also

designed to be compatible with the Quectel GSM/GPRS M95 module, providing a

flexible and scalable platform for migrating from GSM/GPRS to NB-IoT networks. The

BC95 module uses surface-mounted technology, which ensures its durability and

ruggedness. Its low profile and small size LCC package enable easy integration into

space-constrained applications, providing reliable connectivity with the applications.

Due to its compact form factor, ultra-low power consumption, and extended

temperature range, the BC95 module is an ideal choice for a wide range of IoT

applications, including smart metering, bike sharing, smart parking, smart city,

security, and asset tracking, home appliances, agricultural and environmental

monitoring, and more. Additionally, the module can provide a complete range of SMS

and data transmission services to meet the demands of client-side applications.

General features can be seen in the Figure 4. [16]

The BC95 NB-IoT module is capable of operating across multiple frequency bands,

including 700 MHz, 800 MHz, 850 MHz, 900 MHz, 1800 MHz, and 2100 MHz. Its

electrical characteristics set it apart from other technologies used for wireless data

transmission. Notably, the module has a typical supply voltage of 3.6 V and is

designed to operate within a wide temperature range of -40°C to +85°C. The standout

feature of the BC95 module, however, is its exceptionally low power consumption. In

standby mode, the module consumes a mere 5uA current, which is significantly lower

than the current consumption of GSM/GPRS modules, which typically consume

around 10-15mA current. This difference in power consumption allows the BC95

module to operate on battery power for up to 10 years. For this study, the "BC95-B20"

module, which operates at 800 MHz, was utilized. It is shown on Figure 5. [14]

10

Figure 4 General features for BC95 NB-IoT module

Figure 5 B20 module

 11

3.3 The Evaluation Board Kit

1. The NB-IOT EVB bottom and top view are depicted in Figure 6 and Figure 7.

Figure 6 GSM EVB Bottom View

Figure 7 NBIOT EVB top view

12

2. Cables:

• USB to UART converter cable

• USB cable

• RF cable

3. Antenna

4. Adapter - 5V DC adapter

5. Audio – Earphone

6. Disk - Disk involving related documents and drivers

7. Instruction sheet - A sheet of paper giving instructions for EVB connection, details

of EVB accessories, etc. See Figure 8.

Figure 8 EVB and Accessories

 13

3.4 Software

The BC95 module is accompanied by a software package known as QCOM. This

software package provides a user-friendly interface for sending AT commands to the

module, and its functionality is illustrated in Figure 9. By utilizing this software, users

can easily configure and control the BC95 module to suit their specific requirements.

This software is an essential component of the BC95 module, and its user-friendly

interface simplifies the process of interfacing with the module, allowing for efficient

and effective utilization of its capabilities. [16]

Figure 9 Qcom software view

Before using the QCOM software to communicate with the BC95 module, proper

installation and configuration of the Com port settings are crucial. The success of the

installation can be confirmed through the Device Manager of the computer. After

connecting the module to the computer via the serial port, the COM Port will be

14

automatically identified through the Operating System of the computer. The Com port

settings consist of six parameters that need to be set appropriately: COM port, Baud

rate, Stop bits, Parity, Byte size, and Flow control.

The COM port parameter identifies the serial port number that the device is connected

to, such as COM1, COM2, COM3, etc. The recommended setting for the BC95 module

is to use the serial port number that it is connected to. The Baud rate parameter refers

to the speed at which data is transmitted and received over the serial port, and the

recommended value for the BC95 module is 9600 bps. The Stop bits parameter

specifies the number of bits used to signal the end of a character, and the recommended

value for the BC95 module is 1.

The Parity parameter provides a method of error detection in serial communication

and can be set to None, Even, Odd, Mark, or Space. For the BC95 module, the

recommended value is None. The Byte size parameter specifies the number of data bits

that make up each character, and the recommended value for the BC95 module is 8

bits. The Flow control parameter determines how data flow is controlled between the

device and the computer and can be set to None, Hardware, or Software control flow.

The recommended value for the BC95 module is None.

Once the Com port settings have been properly configured, the "Open Port" option can

be selected in the QCOM software, and the Input String can be used to send AT

commands effectively.

3.5 AT Commands

The effective operation of the Dev Board, which integrates the BC95 module, relies on

communication via a serial line. To operate correctly, the Dev Board must be connected

to a device with the appropriate software installed, and AT commands must be

transmitted from this device to the board. The Dev Board can only receive commands

from the serial line, and a specific set of AT commands must be transmitted to register

the BC95 module to a network and enable it to transmit packets successfully. While

the specific set of AT commands required may vary depending on the specific use case

and network configurations, a typical set includes commands for network registration,

setting the APN, defining the PDP context, activating the PDP context, setting the IP

address, and initiating data transfer. It is essential to enter the AT commands

accurately and in the correct sequence to ensure successful packet transmission, as the

 15

successful transmission of these commands is crucial for the proper operation of the

Dev Board. [17][18]

1. AT+NRB: This command stands for "Network Reboot" and instructs the BC95

module to restart the network. It is often used to reset the module when it

encounters an error or malfunction.

2. AT+CFUN=1: This command sets the module's function level to 1, which

enables full functionality. This is often used to activate the module after it has

been powered on or reset.

3. AT+CGDCONT=0,"IP","nb.xxxx.gdsp": This command is used to set the APN

(Access Point Name) and the PDP (Packet Data Protocol) context for the module

which in this case is Vodafone

4. AT+CEREG=2: This command configures the module to report cell registration

and location information. The value "2" indicates that the module should report

when it is registered on a network and when the location information changes.

5. AT+CSCON=1: This command enables the module to report the state of the

circuit-switched domain. The value "1" indicates that the module should report

when the circuit-switched domain is attached or detached.

6. AT+COPS=1,2,"22xxx": selects and registers the EPS network operator using the

USIM card in the currently selected card slot. It has three parameters, with the

first indicating manual network operator selection. The second parameter

specifies numeric operator identification, followed by the operator

identification number as the third parameter. This command is crucial for

successful network registration and proper BC95 module operation.

16

7. AT+CSQ: This command is used to check the signal strength of the module's

connection to the network. It returns a value between 0 and 31, with higher

values indicating a stronger signal.

8. AT+NUESTATS: This command retrieves various statistics about the module's

network connection, including the signal quality, network registration status,

and data usage.

9. AT+NSOCR=DGRAM,17,3365,1: This command creates a UDP socket for the

module to send and receive datagrams. The values "DGRAM" and "17" specify

that the socket should be a datagram socket using the UDP protocol, and "3365"

is the port number to be used for the socket.

10. AT+NSOST=0,131.175.120.22,8883,2,4f4b: This command sends data over the

UDP socket created in the previous command. The values "0" and

"131.175.120.22" specify that the data should be sent using the socket with ID

"0" to the IP address "131.175.120.22," and "8883" is the port number to which

the data should be sent. The remaining values "2" and "4f4b" specify the length

of the data to be sent and the data itself, respectively.

3.6 Python Code of AT commands

In this work, we automated the procedure of testing the board using a custom-written

code. This code replaced the Qcom software that was previously used for this purpose.

The code uses Python's serial and scheduling libraries to open the serial port and

connect the board to the network, send UDP packets, and close the socket and serial

port when the testing is completed. The code simplifies the testing procedure by

automating the repetitive tasks, saving time and effort. It also provides more flexibility

and customization options compared to the Qcom software.

The first part of the code which involves importing necessary libraries and modules is

a crucial step in automating the procedure of measurements which is shown in the

Figure 10.

 17

import serial

import sched

import time

Figure 10 importing necessary libraries and modules.

import serial - This line imports the Python serial module, which provides access to

the serial communication ports on a computer. The serial module allows Python

programs to communicate with external devices (such as microcontrollers, sensors,

and other hardware) over serial connections. [19]

import sched - This line imports the Python sched module, which provides a simple

interface for scheduling tasks to run at specific times or intervals. The sched module is

often used in combination with other Python libraries (such as time and datetime) to

create timed events or periodic tasks. [20]

import time - This line imports the Python time module, which provides various time-

related functions and data types. The time module can be used to measure elapsed

time, delay program execution, generate timestamps, and perform other time-based

operations in Python programs. [21]

The next step involves creating a serial object to connect to the device through the serial

port. The 'serial' library is used for this purpose. In Windows, the COMx represents

the number of the port that the system automatically allocates for the serial connection,

whereas for Linux, it is '/dev/ttyUSB0'. The 'timeout' attribute sets the time in

seconds to wait for data from the serial port. The code is represented in Figure 11.

to open the serial port

ser = serial.Serial('COM3')

ser.timeout = 1

Figure 11 creating a serial object to connect to the device through the serial port.

18

The next part of the code is used to connect the board to the network using AT

commands. The AT commands are sent as strings to the board through the serial

connection. Each AT command is used to configure a specific aspect of the connection

process. The following is a brief explanation of each AT command:

• AT+NRB: This command is used to reset the board to its default settings.

• AT+CFUN=1: This command sets the functionality level of the board to full

functionality.

• AT+CGDCONT=1,"IP","nb.xxxx.gdsp": This command sets the APN (Access

Point Name) to "nb.xxxx.gdsp".

• AT+CEREG=2: This command sets the board to register on the network and to

automatically re-try registration if it fails.

• AT+CSCON=1: This command sets the board to automatically connect to the

network.

• AT+COPS=1,2,"22xxx": This command sets the board to select the network

operator with the MCC-MNC code "22xxx".

• AT+CSQ: This command is used to check the signal strength of the network.

• AT+NUESTATS: This command is used to check the network status.

The Python code is shown in Figure 12.

 19

to connect the board to the network

ser.write(b'AT+NRB\R\N')

ser.write(b'AT+CFUN=1\r\n')

ser.write(b'AT+CGDCONT=1,"IP","nb.inetd.gdsp"\r\n')

ser.write(b'AT+CEREG=2\r\n')

ser.write(b'AT+CSCON=1\r\n')

ser.write(b'AT+COPS=1,2,"22210"\r\n')

ser.write(b'at+csq\r\n')

ser.write(b'at+nuestats\r\n')

Figure 12 the code to connect the board to the network using AT commands.

In the next step, the code sets up a socket to send UDP packets using the NB-IoT

module. The ser.write() function sends an AT command to the module to open a

socket using the command AT+NSOCR=DGRAM,17,3365,1\r\n. The command

specifies that a UDP socket should be created (DGRAM), the protocol should be UDP

(17), the local port number should be 3365, and the socket should be created in non-

blocking mode (1). This command will return a socket ID which will be used in

subsequent commands to send data through the socket. In summary, this code sets up

a UDP socket to enable the NB-IoT module to send packets of data over the network

see Figure 13.

#send UDP packets , first open the socket, then send UDP message

ser.write(b'AT+NSOCR=DGRAM,17,3365,1\r\n')

Figure 13 sets up a socket to send UDP packets.

The next line of the code creates a scheduler object using the sched module. This object

is named s and it will be used later to schedule the sending of UDP packets at a specific

interval of time. The sched.scheduler function takes two arguments: the first

argument is a function that returns the current time, and the second argument is a

function used for delaying a certain amount of time before executing a task. In this

case, the functions time.time and time.sleep are passed as arguments

respectively. The related code can be seen in the Figure 14.

20

s = sched.scheduler(time.time, time.sleep)

Figure 14 creates a scheduler object using the sched module.

The main part of the code is responsible for sending a packet via the NB-IoT network.

It does so by defining a function do_something which retrieves the current

timestamp using time.time() and then sends a 2-byte packet containing the value

"OK" via the ser.write() function. The s.enter() function specifies the interval

at which the packet is sent, while s.run() is responsible for starting the scheduler

and allowing the packet to be sent at the specified interval. The IP address and port

number to which the packet is sent are specified in the ser.write() function, with

the values '131.175.120.22' and '8883' respectively.

This last part of the code is responsible for closing the socket and disconnecting the

board from the network. The first line ser.write(b'AT+NSOCL=0\r\n') sends an

AT command to close the socket which was opened before to send UDP packets. The

argument 0 in AT+NSOCL=0 refers to the socket ID, which in this case is 0 since there

is only one socket used in the code. The second line ser.close() closes the serial

port connection which was established at the beginning of the code using

serial.Serial() function. This step is important to ensure that there is no data loss

or corruption during the connection termination process. The way it should be used is

shown in the Figure 15.

to close the socket

ser.write(b'AT+NSOCL=0\r\n')

close the serial port (disconnect the board)

ser.close()

Figure 15 closing the socket and disconnecting the board from the network.

 21

4. Measurements tools

4.1 PySerial

An RS232 to USB cable is a type of cable that enables the connection of devices using

serial communication protocols via a USB port. This type of cable is commonly used

to connect legacy devices that use RS232 serial communication to modern computers

or laptops. The cable includes a USB interface on one end and a DB9 or DB25 serial

port interface on the other end. The DB9 or DB25 connector plugs into the device using

the RS232 communication protocol, while the USB connector plugs into the computer

or laptop.

The RS232 protocol is a standard communication protocol used for serial

communication between devices. It defines the electrical signals, timing, and data

format used in serial communication. The RS232 protocol defines the number of data

bits, the number of stop bits, and the parity bit used for error checking. The protocol

specifies the use of a fixed baud rate, which determines the speed at which data is

transmitted between devices.

Using the PySerial library and the RS232 to USB cable, the developed python code is

able to communicate with the development board and automate the measurement

procedure. PySerial is a Python module used to interact with the serial port, allowing

the user to read and write data from and to the serial port. PySerial provides support

for different operating systems, including Windows, Linux, and macOS, making it a

versatile and widely-used module for serial communication. In addition, PySerial

supports different protocols, including the RS232. The use of PySerial and the RS232

to USB cable allowed for a reliable and efficient communication between the laptop

and the development board, enabling the successful implementation of the

measurement procedure. [22]

22

4.2 SSH protocol

Secure Shell (SSH) is a widely used network protocol for secure communication

between two systems. It provides a secure channel over an unsecured network by

encrypting all data transmitted between the client and the server. The SSH protocol

has several versions, with the most commonly used being SSH-2.

SSH protocol is typically used for remote login to a computer or server, allowing users

to securely execute commands on the remote system. It can also be used for secure file

transfer and tunneling other network services. SSH is supported by most Unix-based

operating systems, as well as Windows through third-party software.

To establish an SSH connection, the client and the server must both have SSH software

installed. The client initiates the connection by specifying the server's IP address or

domain name and providing authentication credentials such as a username and

password or a public key. Once the connection is established, all communication

between the client and the server is encrypted, providing a secure and private

communication channel.

In summary, SSH is a widely used protocol for secure communication between two

systems over an unsecured network. It provides a secure channel for remote login, file

transfer, and tunneling of other network services. The protocol encrypts all data

transmitted between the client and the server, ensuring a secure and private

communication channel. [23]

BitVise software is utilized in this work to establish a communication channel between

the laptop and the server for measuring delays in the network. The reception time of

these packets can be viewed through BitVise software, facilitating the calculation of

network delays by knowing the time of packet transmission and reception. Therefore,

BitVise software serves as a crucial tool in this work for enabling the accurate

measurement of network delays. [24]

 23

4.3 Communication Design with Dev Board

The control of the Development Board via the serial line is performed by the PC. To

eliminate the need for proprietary software such as "Q-COM" from Quectel to control

the Dev Board, the PySerial library in Python is utilized. Upon issuing a sequence of

commands, the board becomes registered and connected to the nearest Base Station

(eNode B) within the LTE Network.

Additionally, a direct connection between the PC and the bonsai_16 machine is

established, which serves as the Remote Server. This is achieved using an SSH

connection on port 22, allowing for remote login and monitoring of the server's

activity. It is depicted in the Figure 16.

Figure 16 Communication Design with Dev Board. [25]

4.4 Python code on the remote server

In order to accurately measure the delays between the transmission and reception of

UDP packets sent from the Development Board to the remote server, a Python code

was developed to receive the incoming packets and determine their arrival

24

timestamps. This section will discuss the details of this code, including its structure

and functionality, as well as its role in the measurement process.

Server UDP

import time

import socket

UDP_IP_ADDRESS = "131.175.120.22"

UDP_PORT_NO = 8883

serverSock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

serverSock.bind((UDP_IP_ADDRESS, UDP_PORT_NO))

while True:

 data, addr = serverSock.recvfrom(1024)

 ts = time.time()

 print("Message: ", data)

 print("time_stamp: ", ts)

Figure 17 Python code on the remote server.

The code provided in Figure 17 is written in Python and is used to receive UDP packets

on a specific IP address and port number.

The first step is to import the necessary modules for creating the UDP socket and

measuring the timestamp of incoming packets. The code imports the "time" and

"socket" modules.

Next, the code initializes two variables "UDP_IP_ADDRESS" and "UDP_PORT_NO" to

the IP address and port number where the server will listen for incoming packets. After

that, the code creates a UDP socket using the "socket.socket()" function and sets

the socket type to "SOCK_DGRAM" for UDP packets. The code then binds the socket to

the IP address and port number using the "serverSock.bind()" function.

 25

The code then enters an infinite loop, listening for incoming UDP packets using the

"serverSock.recvfrom()" function. When a packet arrives, the code stores the

data and address of the sender in the "data" and "addr" variables, respectively. The

code also measures the timestamp of the incoming packet using the "time.time()"

function and stores it in the "ts" variable.

Finally, the code prints the received message and the corresponding timestamp using

the "print()" function. Overall, this code allows the user to receive UDP packets and

measure their arrival time using Python.

5. Measurements

5.1 Characteristics of the network

In this section, the findings of the measurements will be presented and analyzed. To

begin with, the characteristics of the network were investigated using the "at+csq"

and "at+nuestats" AT commands. The information obtained from these commands

include:

The response to AT+CSQ is +CSQ: XX,YY

CSQ stands for "Channel Signal Quality" and represents the received signal strength

indicator. XX value ranges from 0 to 31. Table 1 represents these indications. YY is the

signal quality index. It is a measurement of the bit error rate (BER), which is the

number of bits that are received incorrectly over a certain period. The lower the value,

the better the signal quality. The value of 99 indicates that the signal quality is not

known or not detectable.

26

CSQ Received

Signal

(dBm)

0 -113

1 -111

2 -109

3 -107

4 -105

5 -103

6 -102

7 -99

8 -97

9 -95

10 -93

CSQ Received

Signal

(dBm)

11 -91

12 -89

13 -87

14 -85

15 -83

16 -81

17 -79

18 -77

19 -75

20 -73

21 -71

CSQ Received

Signal

(dBm)

22 -69

23 -67

24 -65

25 -63

26 -61

27 -59

28 -57

29 -55

30 -53

31 -51

99 unknown

Table 1 Received Signal Strength Indicators (RSSI) for CSQ values.

The response to the AT+CESTATS command provides more information about the

network and connectivity parameters of the NB-IoT board. Here is an explanation of

the different parameters:

• Signal power: This represents the received signal power in centibels (the

power ratio of a signal to a carrier signal expressed as dBc). A higher value

indicates a stronger signal.

• Total power: This represents the total power in dBc that is being transmitted

by the cell tower.

• TX power: This is the transmission power in dBc that is being used by the NB-

IoT board.

• TX time: This represents the total time in milliseconds that the NB-IoT board

has been transmitting data.

 27

• RX time: This represents the total time in milliseconds that the NB-IoT board

has been receiving data.

• Cell ID: This is the unique identification number of the cell tower that the NB-

IoT board is currently connected to.

• ECL: This stands for "EC/N0 Cell Level" and represents the signal quality in

terms of the ratio of energy per chip to background noise. The value ranges

from 0 to 31, with 0 indicating the best signal quality.

• SNR: This stands for "Signal-to-Noise Ratio" and represents the ratio of the

signal power to the noise power. A higher value indicates a better signal

quality.

• EARFCN: This is the "E-UTRA Absolute Radio Frequency Channel Number"

and represents the channel frequency that is being used by the NB-IoT board.

• PCI: This stands for "Physical Cell ID" and represents the unique identification

number of the physical cell that the NB-IoT board is currently connected to.

• RSRQ: This stands for "Reference Signal Received Quality" and represents the

quality of the received reference signal. A higher value indicates a better

signal quality. The value is represented in dBc.

There are several parameters that are crucial and can impact the delay in IoT

communication systems. These parameters include signal power, total power, TX

power, SNR, and RSRQ.

5.2 Dataset

In this study, a total of 30 measurements were carried out under different network

conditions to collect data on various network parameters. The dataset gathered during

these measurements will be presented in this section. The dataset includes information

on the time of measurement, location, delays for different packet sizes, and network

characteristics.

28

5.2.1 Delays

For each measurement, the time, location, and network parameters were recorded, and

a Python code was utilized to transmit packets of different sizes (2, 10, 20, 50, 100, 150,

255, 512 bytes) to the server. Note that the maximum length of received data with the

Quectel BC95 module is 512 bytes. The transmission and receiving timestamps were

then recorded, and the delay between them was calculated. To ensure the accuracy

and reliability of the delay measurements, each packet was transmitted and recorded

20 times during each measurement. Table 2 shows the transmitting and receiving

timestamps, as well as the corresponding delays for each packet size in one of the

experiments.

Table 2 Transmitting and receiving packet timestamps (in seconds) and their

corresponding delays (in seconds) for experiment 2, which investigates the

performance of the system under test. Experiment 2 comprises of 20 repetitions, and

this table presents the transmitting and receiving packet timestamps and the resulting

delay for five selected repetitions, as an illustrative example. The delay is calculated as

the difference between the transmitting and receiving packet timestamps, both

measured in seconds. The payload sizes are represented in bytes.

As delays are of primary interest in our analysis, we will focus exclusively on the delay

measurements moving forward. An example of the delay measurements is provided

in Table 3.

 29

Table 3 Delays for different packet sizes in experiment 2. This table shows the delays,

measured in seconds, for different payload sizes in bytes, obtained in experiment 2.

The delays are computed as the difference between the transmitting and receiving

packet timestamps, for 20 repetitions of the experiment 2.

To identify any outliers and ensure the reliability of the results, a box plot was

generated for each set of delay measurements. The outliers were removed from the

dataset to obtain a cleaned data set, which is used for further analysis and presentation

of results. As an example, the Box Plot of Experiment 2 is presented in the Figure 18.

30

Figure 18 displays the box plot generated for experiment 2 in order to identify outliers

and ensure the reliability of the results. The box plot illustrates the distribution of delay

measurements for different packet sizes and shows the median, quartiles, and any

outliers that were identified in the original data set. The line represents the average

delay. The outliers have been removed from the dataset, resulting in a cleaned data set

that is used for further analysis and presentation of results.

The results can be seen in the Table 4. The yellow cells were removed since they were

considered outliers.

 31

Table 4 Cleaned data. The yellow cells will be removed since they are considered as

outliers.

From the cleaned data, the average and the standard deviation can be calculated. The

results can be seen in the Table 5.

Table 5 Average delay and standard deviation for different packet sizes. The table

shows the results obtained from the cleaned dataset after removing the outliers. The

average delay and standard deviation are calculated from 20 repetitions for each

packet size.

32

To visualize the average delays and standard deviation, a scatter plot is presented in

Figure 19. The blue line represents the average delay time, the dotted blue line shows

the linear regression of the average delays, and the orange line represents the standard

deviation. The standard deviation is an important statistical measure that indicates the

amount of variation or dispersion of the data. A larger standard deviation indicates

that the data points are spread out over a wider range, while a smaller standard

deviation indicates that the data points are closer to the mean.

Figure 19 Scatter plot showing the average delays and standard deviation for the clean

dataset. The blue line represents the average delay time, and the dotted blue line shows

the linear regression of the average delays. The Brown line represents the standard

deviation, which is a measure of the amount of variation or dispersion of the data. A

larger standard deviation indicates that the data points are spread out over a wider

range, while a smaller standard deviation indicates that the data points are closer to

the mean.

5.2.2 Visualizing all the delays

A plot of all the delays recorded in the experiment is shown in Figure 20. Each point

in the scatter plot represents an average of delay measurement for each packet size,

while the x-axis indicates the packet sizes, and the y-axis represents the delay in

second.

Average Delay (s)

Standard Deviation (s)

y = 0.0034x + 0.5835

0

1

2

3

4

5

6

7

8

9

10

0 100 200 300 400 500 600

A
ve

ra
ge

 D
el

ay
s

(s
)

Packet size (Byte)

 33

Figure 20 shows a scatter plot of delay measurements obtained from all 30 experiments

conducted, each of which represents the average of 20 repetitions. Each point in the

plot represents the average delay for a given packet size, with the x-axis representing

the packet sizes in bytes and the y-axis indicating the delay in seconds. This plot allows

for a visual inspection of the delay trends across different packet sizes and

experiments.

Based on the plotted delays, it is observed that the average delays range from less than

1 second to about 10 seconds in the worst cases. Using the average delays as a criterion,

the measurements can be grouped into four categories: the first group with the highest

average delays ranging from 5 to 10 seconds, the second group with high delays, the

third group with medium average delays, and the last group with the lowest average

delays.

To enable better visualization of the delay groups, each group is depicted in a separate

figure using the same scales for all figures. This allows for a direct comparison between

the groups. Figure 21 represents the group with the highest average delays, ranging

from 5 to 10 seconds. Figure 22 shows the group with high delays, while Figure 23

presents the group with medium average delays. Finally, Figure 24 shows the group

with the lowest average delays which is the biggest group.

0

2

4

6

8

10

12

0 100 200 300 400 500 600

A
v

er
ag

e
D

el
ay

s
(s

)

Packet size (Byte)

Exp: 4

Exp: 5

Exp: 17

34

Figure 21 Experiments with highest average delays. The figure displays experiments

with the highest average delays measured under extreme conditions. The signal

quality was undetectable in two cases, and -87 dBm in another case, due to the

measurements being conducted in basements and on floor -1 of the Polimi University's

library. The x-axis represents the different packet sizes in bytes, and the y-axis

represents the average delays in seconds.

Figure 22 Experiments with Medium Average Delays. This figure displays the results

of experiments with average delays ranging approximately from 3 to 5 seconds. The

0

2

4

6

8

10

12

0 100 200 300 400 500 600

A
ve

ra
ge

 D
el

ay
s

(s
)

Packet sizes (Byte)

Exp: 4

Exp: 5

Exp: 17

0

2

4

6

8

10

12

0 50 100 150 200 250 300 350 400 450 500 550

A
v

er
ag

e
D

el
ay

s
(s

)

Packet size (Byte)

Exp: 3

Exp: 8

Exp: 9

Exp: 30

 35

experiments were conducted to investigate the performance of the system under

various conditions, including different signal qualities and locations. The x-axis

represents the different packet sizes in bytes, and the y-axis represents the average

delays in seconds.

Figure 23 Experiments with Low Average Delays. The figure shows the average delay

for experiments with delays ranging approximately from 1.5 to 3 seconds. The x-axis

represents the different packet sizes in bytes, and the y-axis represents the average

delays in seconds.

0

2

4

6

8

10

12

0 100 200 300 400 500 600

A
v

er
ag

e
D

el
ay

s
(s

)

Packet size (Byte)

Exp: 7

Exp: 11

Exp: 12

Exp: 13

Exp: 14

Exp: 15

Exp: 19

Exp: 29

36

Figure 24 Experiments with Lowest Delays. This figure displays the experiments which

have an average delay of approximately under 2 seconds. These experiments were

conducted under good conditions with a good signal quality, including outdoor

environments. The x-axis shows the packet sizes in bytes, and the y-axis represents the

average delay in seconds.

5.3 Histogram analysis

A histogram is a graphical representation of the distribution of numerical data. It

displays the frequency of occurrences of data values in a set of continuous or discrete

intervals known as bins. A histogram can help to identify patterns, trends, and outliers

in the data. It is particularly useful for understanding the shape of a dataset, including

the location, and spread of the values. The histogram can also be used to determine

the mode, median, and mean of the data. By examining the shape and characteristics

of the histogram, one can draw inferences about the underlying population and make

informed decisions about data analysis and modeling. Overall, histograms are a

powerful tool for exploratory data analysis and are commonly used in fields such as

statistics, data science, and machine learning.

0

2

4

6

8

10

12

0 100 200 300 400 500 600

A
v

er
ag

e
D

el
ay

s
(s

)

Packet size (Byte)

Exp: 1

Exp: 2

Exp: 6

Exp: 10

Exp: 16

Exp: 18

Exp: 20

Exp: 21

Exp: 22

Exp: 23

Exp: 24

Exp: 25

Exp: 26

Exp: 27

Exp: 28

 37

5.3.1 CSQ (Channel Signal Quality)

The histogram of Cell Signal Quality (CSQ) shows the distribution of CSQ values

across 30 measurements. The CSQ represents the quality of the received signal in

decibels (dBm). Table 1 presents the signal strength levels corresponding to each CSQ

value. Figure 25 displays the number of occurrences of CSQ values, with the x-axis

representing the CSQ values and the y-axis representing the number of times each CSQ

value was observed.

The histogram shows the values ranging from -87 dBm to -65 dBm, as well as two

measurements where the CSQ value was unknown. The most frequently observed

CSQ values are between -69 dBm and -73 dBm, with -69 dBm being the most common

value within this range, observed nine times. This suggests that the network

conditions during the measurements were generally good, although some

measurements showed lower signal strength levels, with the lowest being -87 dBm,

indicating poor signal quality. There were also two measurements where the CSQ

value was unknown due to extreme conditions and low signal quality.

CSQ (dBm) Count

-87 1

-85 0

-83 1

-81 1

-79 3

-77 2

-75 2

-73 4

-71 4

-69 9

-67 0

-65 1

Unknown 2

Figure 25 Histogram showing CSQ distribution, with two cases excluded due to low

signal quality.

0

1

2

3

4

5

6

7

8

9

10

C
o

u
n

t

CSQ (dBm)

38

5.3.2 Signal power

Histogram of signal power shows the distribution of signal power values across the 30

measurements Figure 26. The x-axis represents the signal power values in centibels

(dBc), and the y-axis represents the number of times each signal power value was

observed in these ranges. The histogram shows that the most frequently observed

signal power values are between -800 dBc and -700 dBc being the most common value.

However, there were also some measurements where the signal power reported as -

32768 which is an indication of a no signal or very weak signal.

Signal Power
(dBc) Count

-1100 to -1000 0

-1000 to -900 1

-900 to -800 1

-800 to -700 13

-700 to -600 13

undetectable 2

Figure 26 Histogram of signal power. The figure shows a histogram of signal power

values in centibels (dBc), with the x-axis representing the signal power values and the

y-axis representing the number of occurrences. Some measurements reported a signal

power value of -32768, indicating no or very weak signal. These measurements are

represented by a separate category in the histogram.

0
2
4
6
8

10
12
14

C
o

u
n

t

Signal Power (dBc)

 39

5.3.3 SNR

Figure 27 illustrate the histogram of signal-to-noise ratio (SNR). This histogram shows

the distribution of SNR values across the 30 measurements. The x-axis represents the

SNR values, and the y-axis represents the number of times each SNR value was

observed in these ranges. The histogram shows that the most frequently observed SNR

values are between 150 and 200. However, there were also some measurements where

the SNR was reported as 0, which means that the signal and noise power are equal,

and some measurements reported negative values, which means that the noise power

is higher than the signal power. Additionally, there were two measurements where

the SNR was reported as -32768, which is an indication of a no signal or very weak

signal.

SNR Count

 -50 to 0 2

 0 to 50 5

 50 to 100 7

 100 to 150 6

 150 to 200 8

undetectable 2

Figure 27 Histogram of SNRs. SNRs related to each experiment are divided into 5

ranges. There were two measurements where the SNR was reported as -32768, which

is an indication of a no signal or very weak signal.

0
1
2
3
4
5
6
7
8
9

C
o

u
n

t

SNR (dBc)

40

5.3.4 RSRQ

This histogram shows the distribution of RSRQ (Reference Signal Received Quality)

values across the measurements. RSRQ is represented in dBc and measures the quality

of the received reference signal. The most frequently observed RSRQ values are

between -110 dBc and -100 dBc which is shown in Figure 28. There were also some

measurements where the RSRQ value was -32768, which is an indication of a no signal

or very weak signal. Overall, the distribution of RSRQ values appears to be bimodal,

with one peak around -100 dBc and another peak around -110 dBc.

RSRQ (dBc) Count

 -170 to -160 1

 -160 to -150 1

 -150 to -140 0

 -140 to -130 1

 -130 to -120 0

 -120 to -110 10

 -110 to - 100 15

Undetectable 2

Figure 28 Histogram of RSRQ. This histogram displays the distribution of RSRQ values

across all the measurements. The most observed RSRQ values range from -110 dBc to

-100 dBc, indicating a fair signal quality. However, some measurements had RSRQ

values of -32768, which implies no signal or very weak signal. The distribution of

RSRQ values is bimodal, with one peak centered around -100 dBc and another peak

centered around -110 dBc, suggesting that there are two types of signal qualities

present in the dataset.

0

2

4

6

8

10

12

14

16

C
o

u
n

t

RSRQ (dBc)

 41

5.4 Correlation analysis

Correlation analysis is a statistical technique used to measure the strength and

direction of the relationship between two variables. The correlation coefficient ranges

from -1 to 1, where a value of -1 indicates a perfect negative correlation, a value of 0

indicates no correlation, and a value of 1 indicates a perfect positive correlation. In this

study, Pearson correlation coefficient is used to measure the linear relationship

between two variables. The formula for the Pearson correlation coefficient is given by

Equation 1. [26]

Equation 1 Pearson correlation coefficient

Where,

• r = Pearson Coefficient

• n= number of pairs of the stock

• ∑xy = sum of products of the paired stocks

• ∑x = sum of the x scores

• ∑y= sum of the y scores

• ∑x2 = sum of the squared x scores

• ∑y2 = sum of the squared y scores

5.4.1 Correlation of Average Delays and CSQ

The correlations between delays of different packet sizes and channel signal quality

(CSQ) were investigated, and it was found that the correlations were negative for all

packet sizes. Specifically, the correlation coefficients ranged from -0.257 to -0.502,

indicating a moderate to strong negative relationship between delays and CSQ. These

results suggest that as the CSQ improves, the delays of packets of different sizes

decrease.

42

The negative correlation between delays and CSQ is an expected result since better

signal quality leads to faster transmission of data packets. The correlation coefficients

provide a quantitative measure of the strength and direction of the relationship

between the two variables. The moderate to strong correlations observed in this study

suggest that the effect of CSQ on delays is substantial, and it is important to consider

the CSQ when evaluating the performance of the network.

The packet size also appears to play a role in the relationship between delays and CSQ,

as the correlation coefficients vary across different packet sizes. For instance, the

correlation coefficient is stronger for larger packet sizes such as 255-byte and 512-byte

packets, compared to smaller packet sizes such as 2-byte and 10-byte packets. This

observation suggests that the impact of CSQ on delays may be more pronounced for

larger packets. Table 6 summarizing the correlations between delays of different

packet sizes and channel signal quality CSQ.

Packet sizes Correlation of Average Delays with CSQ

2-byte -0.344

10-byte -0.257

20-byte -0.494

50-byte -0.369

100-byte -0.284

150-byte -0.416

255-byte -0.502

512-byte -0.446

Table 6 Correlation coefficients between Average Delay of different packet sizes and

Channel Signal Quality (CSQ), indicating stronger correlations for larger packet sizes

such as 255-byte and 512-byte packets compared to smaller packet sizes such as 2-byte

and 10-byte packets.

To enhance the visual representation, the correlation between CSQ and average delays

for different packet sizes are depicted. Specifically, Figure 29 through Figure 36

correspond to correlations between CSQ and average delays of different packet sizes

ranging from 2 to 512 bytes respectively.

 43

Figure 29 Regression line and correlation between CSQs and average delays of 2-byte

packets. R2 is equal to the square of the correlations in Table 6. CSQ is a Received Signal

Strength indicator, and its corresponding Signal Strength is reported in the Table 1.

For example, CSQ = 20 indicates Received Signal of -73 dBm and CSQ = 21 is -75 dBm.

Figure 30 Regression line and correlation between CSQs and average delays of 10-byte

packets. R2 is equal to the square of the correlations in Table 6. CSQ is a Received Signal

Strength indicator, and its corresponding Signal Strength is reported in the Table 1.

For example, CSQ = 20 indicates Received Signal of -73 dBm and CSQ = 21 is -75 dBm.

y = -0.111x + 3.6703
R² = 0.1186

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30

A
ve

ra
ge

 D
el

ay
s

(s
)

CSQ

y = -0.0678x + 2.8061
R² = 0.0662

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30

A
ve

ra
ge

 D
el

ay
s

(s
)

CSQ

44

Figure 31 Regression line and correlation between CSQs and average delays of 20-byte

packets. R2 is equal to the square of the correlations in Table 6. CSQ is a Received Signal

Strength indicator, and its corresponding Signal Strength is reported in the Table 1.

For example, CSQ = 20 indicates Received Signal of -73 dBm and CSQ = 21 is -75 dBm.

Figure 32 Regression line and correlation between CSQs and average delays of 50-byte

packets. R2 is equal to the square of the correlations in Table 6. CSQ is a Received Signal

Strength indicator, and its corresponding Signal Strength is reported in the Table 1.

For example, CSQ = 20 indicates Received Signal of -73 dBm and CSQ = 21 is -75 dBm.

y = -0.1883x + 5.2444
R² = 0.2438

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30

A
ve

ra
ge

 D
el

ay
s

(s
)

CSQ

y = -0.1246x + 4.1361
R² = 0.1362

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30

A
ve

ra
ge

 D
el

ay
s

(s
)

CSQ

 45

Figure 33 Regression line and correlation between CSQs and average delays of 100-

byte packets. R2 is equal to the square of the correlations in Table 6. CSQ is a Received

Signal Strength indicator, and its corresponding Signal Strength is reported in the

Table 1.

Figure 34 Regression line and correlation between CSQs and average delays of 150-

byte packets. R2 is equal to the square of the correlations in Table 6. CSQ is a Received

Signal Strength indicator, and its corresponding Signal Strength is reported in the

Table 1.

y = -0.1128x + 4.0885
R² = 0.0806

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30

A
ve

ra
ge

 D
el

ay
s

(s
)

CSQ

y = -0.2195x + 6.5076
R² = 0.1734

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30

A
ve

ra
ge

 D
el

ay
s

(s
)

CSQ

46

Figure 35 Regression line and correlation between CSQs and average delays of 255-

byte packets. R2 is equal to the square of the correlations in Table 6. CSQ is a Received

Signal Strength indicator, and its corresponding Signal Strength is reported in the

Table 1.

Figure 36 Regression line and correlation between CSQs and average delays of 512-

byte packets. R2 is equal to the square of the correlations in Table 6. CSQ is a Received

Signal Strength indicator, and its corresponding Signal Strength is reported in the

Table 1.

y = -0.2759x + 7.8736
R² = 0.2516

0

1

2

3

4

5

6

7

8

9

0 5 10 15 20 25 30

A
ve

ra
ge

 D
el

ay
s

(s
)

CSQ

y = -0.2474x + 8.1009
R² = 0.1988

0

1

2

3

4

5

6

7

8

9

0 5 10 15 20 25 30

A
ve

ra
ge

 D
el

ay
s

(s
)

CSQ

 47

5.4.2 Correlation of Delays and Signal power

The results of the correlation analysis between Signal Power and delay for different

packet sizes revealed a negative correlation between the two variables. This indicates

that as the Signal Power increases, the delay for packet transmission decreases. The

findings are consistent with previous studies that have shown a strong association

between Signal Power and delay in wireless networks.

The analysis of the correlation coefficients showed that the correlation was strongest

for the 255-Byte packet size, with a coefficient of -0.689. This suggests that Signal Power

has a greater impact on the delay for larger packet sizes.

However, the analysis also showed weaker correlations for smaller packet sizes, such

as the 2-Byte and 10-Byte packet sizes. Table 7 represents the correlation of Delays of

packets with different sizes and Signal Power.

Packet size Correlation of average delay with Signal power

2-byte -0.344

10-byte -0.257

20-byte -0.494

50-byte -0.369

100-byte -0.284

150-byte -0.416

255-byte -0.502

512-byte -0.446

Table 7 Correlation between signal power and average delays for each packet size. The

analysis found a strong negative correlation between signal power and delay for larger

255-Byte and 512-Byte packets, indicating that signal power has a greater impact on

delay for larger packets. However, weaker correlations were found for smaller packet

sizes, such as 2-Byte and 10-Byte packets.

48

5.4.3 Correlation of Delays and SNR

The analysis of the correlation between Delays for different packet sizes and SNR

(Signal-to-Noise Ratio) revealed a negative correlation between these variables. This

means that as SNR increases, the delay in packet transmission decreases. A higher SNR

indicates a better signal quality and lower noise interference, which results in a faster

and more reliable data transmission.

The correlation coefficients for different packet sizes showed that the strongest

negative correlation was for the 512-Byte packet size, with a coefficient of -0.646. This

indicates that for larger packet sizes, the impact of SNR on the delay is more

significant. The correlation coefficients for smaller packet sizes, such as the 2-Byte and

10-Byte packet sizes, were weaker than those for larger packet sizes. Table 8 shows the

correlation coefficients between delays for different packet sizes and SNR.

Delay of each packet Correlation with SNR

2-byte -0.476770216

10-byte -0.441815508

20-byte -0.489958069

50-byte -0.52528022

100-byte -0.592782996

150-byte -0.609079309

255-byte -0.601858027

512-byte -0.6466467

Table 8 Correlation between Delays of different Packet Sizes and SNR: Analysis shows

negative correlation between SNR and average delays, where increasing SNR leads to

a decrease in delay. The strongest negative correlation was observed for 512-Byte

packet size, indicating the greater impact of SNR on larger packet sizes. The correlation

coefficients for smaller packet sizes, such as the 2-Byte and 10-Byte packet sizes, were

weaker than those for larger packet sizes.

 49

5.4.4 Correlation of Delays and RSRQ

The analysis of the correlation between delays of different packet sizes and RSRQ

(Reference Signal Received Quality) indicated a negative correlation between these

variables. This means that as RSRQ increases, the delay in packet transmission

decreases. A higher RSRQ indicates a better signal quality, which results in faster and

more reliable data transmission.

The correlation coefficients for different packet sizes showed that the strongest

negative correlation was for the 512-Byte packet size, with a coefficient of -0.792. This

suggests that for larger packet sizes, the impact of RSRQ on delay is more significant.

The correlation coefficients for smaller packet sizes, such as the 2-Byte and 10-Byte

packet sizes, were weaker than those for larger packet sizes. Table 9 represents the

correlations of Delays and RSRQ.

Packet size Correlation of average delays with RSRQ

2-byte -0.565402992

10-byte -0.474342591

20-byte -0.629408969

50-byte -0.63647146

100-byte -0.688076458

150-byte -0.725635475

255-byte -0.74274506

512-byte -0.791652793

Table 9 Correlation coefficients between RSRQ and average Delays for different packet

sizes. The table displays the strongest negative correlation was for the 512-Byte packet

size, with a coefficient of -0.792. This suggests that for larger packet sizes, the impact

of RSRQ on delay is more significant. The correlation coefficients for smaller packet

sizes, such as the 2-Byte and 10-Byte packet sizes, were weaker than those for larger

packet sizes but still have a significant impact.

50

5.5 Histogram analysis of delays

To evaluate the performance of the NB-IoT, the delays for different packet sizes were

analyzed under various experimental conditions. Delays were computed for packet

sizes of 2, 10, 20, 50, 100, 150, 255, and 512 bytes, and 30 measurements with 20

repetitions for each packet size were conducted. The experimental conditions included

parameters such as CSQ, signal power, total power, TX power, TX time, RX time, cell

ID, ECL, SNR, EARFCN, PCI, and RSRQ.

To visualize the distribution of delays for each packet size, histograms were

constructed. The same bin ranges were used for all histograms to facilitate comparison

across different packet sizes. The bin ranges were set to 0-1 sec, 1-2 sec, 2-3 sec, 3-4 sec,

4-5 sec, 5-6 sec, 6-7 sec, 7-8 sec, 8-9 sec, and 9-10 sec.

The histograms showed that the delays for different packet sizes followed distinct

distributions. For example, the delays for the 2-byte, 10-byte and 20-byte packets

tended to be concentrated in the range of 0-4 sec, while the delays for the 255-byte and

512 packets were distributed from 2 to 9 seconds. Additionally, we observed that the

delays tended to increase as the packet size increased, particularly for larger packet

sizes such as 150, 255, and 512 bytes.

Overall, the histogram analysis of packet delay provided valuable insights into the

performance of the packet network under different experimental conditions. By

visualizing the distribution of delays for each packet size, we were able to identify

patterns and trends that could help inform future improvements to the network.

The histograms and tables presented in this section provide a comprehensive analysis

of the delays observed in the NB-IoT system under various experimental conditions.

The histograms visually depict the distribution of delays for each packet size. These

visualizations enable a better understanding of the performance of the system under

different experimental conditions that can be seen in the Figure 37 for 2-byte packet

size, Figure 38 for 10-byte packet size, Figure 39 for 20-byte packet size, Figure 40 for

50-byte packet size, Figure 41 for 100-byte packet size, Figure 42 for 150-byte packet

size, Figure 43 for 255-byte packet size, and finally Figure 44 for 512-byte packet size.

 51

2-byte packet size

Average
Delays (s) Count

 0 to 1 7

1 to 2 16

2 to 3 2

3 to 4 3

4 to 5 0

5 to 6 0

6 to 7 0

7 to 8 0

8 to 9 0

More 0

Figure 37 Histogram of Average Delays of 2-byte packet sizes. The range of delay is

zero to 4 seconds with a pick in the center of 2 seconds delays.

10-byte packet size

Average
Delays (s) Count

 0 to 1 6

1 to 2 18

2 to 3 3

3 to 4 1

4 to 5 0

5 to 6 0

6 to 7 0

7 to 8 0

8 to 9 0

More 0

Figure 38 Histogram of Average Delays of 10-byte packet sizes. The range of delay is

zero to 4 seconds with a pick in the center of 2 seconds delays.

0

2

4

6

8

10

12

14

16

18

C
o

u
n

t

Average Delays (s)

0

2

4

6

8

10

12

14

16

18

20

C
o

u
n

t

Average Delays (s)

52

20-byte packet size

Average
Delays(s) Count

 0 to 1 8

1 to 2 16

2 to 3 2

3 to 4 1

4 to 5 0

5 to 6 1

6 to 7 0

7 to 8 0

8 to 9 0

More 0

Figure 39 Histogram of Average Delays of 20-byte packet sizes.

50-byte packet size

Average
Delays (s) count

 0 to 1 5

1 to 2 17

2 to 3 4

3 to 4 1

4 to 5 1

5 to 6 0

6 to 7 0

7 to 8 0

8 to 9 0

More 0

Figure 40 Histogram of Average Delays of 50-byte packet sizes. The range of delays

increases to 5 seconds.

0

2

4

6

8

10

12

14

16

18

C
o

u
n

t

Average Delays (s)

0

2

4

6

8

10

12

14

16

18

C
o

u
n

t

Average Delays (s)

 53

100-byte packet size

Average
Delays (s) Count

 0 to 1 5

1 to 2 15

2 to 3 6

3 to 4 0

4 to 5 1

5 to 6 1

6 to 7 0

7 to 8 0

8 to 9 0

More 0

Figure 41 Histogram of Average Delays of 100-byte packet sizes. The range of delays

increases to 6 seconds.

150-byte
packet size

Average
Delays (s) Count

 0 to 1 0
1 to 2 16
2 to 3 8
3 to 4 2
4 to 5 1
5 to 6 0
6 to 7 0
7 to 8 1
8 to 9 0
More 0

Figure 42. Histogram of Average Delays of 150-byte packet sizes.

0

2

4

6

8

10

12

14

16

C
o

u
n

t

Average Delays (s)

0

2

4

6

8

10

12

14

16

18

C
o

u
n

t

Average Delays (s)

54

255-byte packet size

Average
Delays(s) Count

 0 to 1 0

1 to 2 12

2 to 3 10

3 to 4 4

4 to 5 1

5 to 6 0

6 to 7 0

7 to 8 0

8 to 9 1
More 0

Figure 43. Histogram of Average Delays of 255-byte packet sizes.

512-byte packet size

Average
Delays(s) Count

 0 to 1 0

1 to 2 2

2 to 3 13

3 to 4 8

4 to 5 3

5 to 6 0

6 to 7 1

7 to 8 0

8 to 9 1

More 0

Figure 44 Histogram of Average Delays of 512-byte packet sizes.

0

2

4

6

8

10

12

14

C
o

u
n

t

Average Delays (s)

0

2

4

6

8

10

12

14

C
o

u
n

t

Average Delays (s)

 55

6. Conclusion and future development

In this work, we have delved into the world of NB-IoT to understand how this

technology performs under real and extreme conditions. We began by providing a

demonstration of IoT technologies and specifically, what NB-IoT entails. This allowed

the reader to gain a better understanding of the world of NB-IoT in the context of the

Internet of Things.

Next, we explained the implementation of the hardware and software required for this

technology, as well as the necessary commands and codes. We then introduced and

described the measurement tools used in our assessment.

Our main objective was to evaluate the delay performance of NB-IoT under various

system parameters measured at different locations. Our findings revealed that there is

considerable variation in delay, even due to packet size, which may be attributed to

non-linear behavior of the equipment. Additionally, we discovered a clear correlation

between signal quality and delay, with extreme locations experiencing delays in the

range of 5 to 10 seconds, while other locations experience delays ranging from 1 to 4

seconds.

While this work provides a detailed assessment of NB-IoT technology, future work

could include a comparison of NB-IoT with other IoT technologies, such as Cat-M.

 57

Bibliography

[1] Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things

(IoT): A vision, architectural elements, and future directions. Future Generation

Computer Systems, 29(7), 1645-1660. https://doi.org/10.1016/j.future.2013.01.010

[2] Atzori, L., Iera, A., & Morabito, G. (2010). The internet of things: A survey.

Computer Networks, 54(15), 2787-2805.

https://doi.org/10.1016/j.comnet.2010.05.010

[3] Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015).

Internet of things: A survey on enabling technologies, protocols, and

applications. IEEE Communications Surveys & Tutorials, 17(4), 2347-2376.

https://doi.org/10.1109/COMST.2015.2444095

[4] Koubaa, A., Madani, A., & Ben Jemaa, M. (2018). Comparative analysis of IoT

wireless technologies for industrial applications. In 2018 International

Conference on Wireless Networks and Mobile Communications (WINCOM) (pp.

1-6). IEEE. https://doi.org/10.1109/WINCOM.2018.8686745

[5] Guan, X., & Zheng, K. (2018). Performance analysis of narrowband IoT. IEEE

Internet of Things Journal, 6(1), 158-169.

https://doi.org/10.1109/JIOT.2018.2811241

[6] Ratasuk, R., Mangalvedhe, N., & Ghosh, A. (2015). Overview of LTE

enhancements for cellular IoT. In Proceedings of the IEEE 26th Annual

International Symposium on Personal, Indoor, and Mobile Radio

Communications (PIMRC) (pp. 1729-1734). IEEE.

https://doi.org/10.1109/PIMRC.2015.7343665

https://doi.org/10.1016/j.future.2013.01.010
https://doi.org/10.1016/j.comnet.2010.05.010
https://doi.org/10.1109/COMST.2015.2444095
https://doi.org/10.1109/WINCOM.2018.8686745
https://doi.org/10.1109/JIOT.2018.2811241
https://doi.org/10.1109/PIMRC.2015.7343665

58

[7] 3GPP TR 23.887. (2013). Study on Machine-Type Communications (MTC) and

other mobile data applications communications enhancements, v.12.0.0.

December 2013. https://www.3gpp.org/ftp//Specs/archive/23_series/23.887/

[8] 3GPP. (2016). TS 36.300 - LTE; Overall description; Stage 2. V13.4.0.

https://www.3gpp.org/ftp//Specs/archive/36_series/36.300/36300-f40.zip

[9] 3GPP. (2017). Technical Specification Group Radio Access Network; Study on

enhancement of 3GPP support for 5G V2X services (Release 14). 3GPP TS 36.888.

Retrieved from https://www.3gpp.org/ftp//Specs/archive/36_series/36.888/

[10] 3GPP. (2018). The 3GPP specifications: Evolved Universal Terrestrial Radio

Access (E-UTRA); Physical layer procedures (Release 15). [Online]. Available:

https://www.3gpp.org/ftp//Specs/archive/36_series/36.211/36211-f50.zip

[11] Meador, D. (2018). Semaphores in Operating System. Retrieved from

https://www.tutorialspoint.com/semaphores-in-operating-system

[12] 3GPP. (n.d.). Narrowband IoT. Retrieved April 10, 2023, from

https://www.3gpp.org/technologies/keywords-acronyms/98-nb-iot

[13] Kousias, K., Caso, G., Alay, Ö., Brunstrom, A., & D'Antonio, S. (2020). Coverage

and Deployment Analysis of Narrowband Internet of Things in the Wild. IEEE

Access, 8, 123830-123843. https://doi.org/10.1109/ACCESS.2020.3007533

[14] Mangalvedhe, N., Ratasuk, R., & Ghosh, A. (2016, September). NB-IoT

deployment study for low power wide area cellular IoT. In 2016 IEEE 27th

Annual International Symposium on Personal, Indoor, and Mobile Radio

Communications (PIMRC) Workshop (pp. 1-6). IEEE.

[15] Quectel Wireless Solutions. (n.d.). About Us. Retrieved April 10, 2023, from

https://www.quectel.com/about/about-us.htm

[16] Quectel Wireless Solutions. (n.d.). NB-IoT BC95 module.

https://www.quectel.com/product/bc95.htm

[17] Quectel. (2018). BC95-G&BC68 Hardware Design. Retrieved from

https://www.quectel.com/UploadImage/Downlad/Quectel_BC95-

G&BC68_Hardware_Design_V1.1.pdf

https://www.3gpp.org/ftp/Specs/archive/23_series/23.887/
https://www.3gpp.org/ftp/Specs/archive/36_series/36.300/36300-f40.zip
https://www.3gpp.org/ftp/Specs/archive/36_series/36.888/
https://www.3gpp.org/ftp/Specs/archive/36_series/36.211/36211-f50.zip
https://www.tutorialspoint.com/semaphores-in-operating-system
https://www.3gpp.org/technologies/keywords-acronyms/98-nb-iot
https://doi.org/10.1109/ACCESS.2020.3007533
https://www.quectel.com/about/about-us.htm
https://www.quectel.com/product/bc95.htm
https://www.quectel.com/UploadImage/Downlad/Quectel_BC95-G&BC68_Hardware_Design_V1.1.pdf
https://www.quectel.com/UploadImage/Downlad/Quectel_BC95-G&BC68_Hardware_Design_V1.1.pdf

 59

[18] Quectel. (2020). Quectel BC95-G&BC68 AT Commands Manual. Retrieved from

https://www.quectel.com/UploadImage/Downlad/Quectel_BC95-

G&BC68_AT_Commands_Manual_V1.3.pdf

[19] Python Software Foundation. (n.d.). serial — Serial port class. Python

documentation. Retrieved April 6, 2023, from

https://docs.python.org/3/library/serial.html

[20] Python Software Foundation. (n.d.). sched — Event scheduler. Python

documentation. Retrieved April 6, 2023, from

https://docs.python.org/3/library/sched.html

[21] Python Software Foundation. (n.d.). time — Time access and conversions. Python

documentation. Retrieved April 6, 2023, from

https://docs.python.org/3/library/time.html

[22] Electronic Industries Alliance. (1969). RS-232 - Recommended Standard 232:

Interface Between Data Terminal Equipment and Data Communication

Equipment Employing Serial Binary Data Interchange.

[23] Ylonen, T., & Stenberg, P. (2006). The SSH protocol architecture. Internet

Engineering Task Force. https://tools.ietf.org/html/rfc4251

[24] BitVise. (n.d.). SSH Client. https://www.bitvise.com/ssh-client

[25] PECIOSKI, Kliment. Narrow band IoT communication for Modbus/TCP devices.

Thesis (Master of Science in Electrical Engineering) - Politecnico di Milano,

School of Industrial and Information Engineering, 25-Jul-2018. Available at:

http://hdl.handle.net/10589/141817.

[26] Agresti, A., & Finlay, B. (2009). Statistical methods for the social sciences (4th

ed.). Pearson Education

https://www.quectel.com/UploadImage/Downlad/Quectel_BC95-G&BC68_AT_Commands_Manual_V1.3.pdf
https://www.quectel.com/UploadImage/Downlad/Quectel_BC95-G&BC68_AT_Commands_Manual_V1.3.pdf
https://docs.python.org/3/library/serial.html
https://docs.python.org/3/library/sched.html
https://docs.python.org/3/library/time.html
https://tools.ietf.org/html/rfc4251
https://www.bitvise.com/ssh-client
http://hdl.handle.net/10589/141817

60

List of Figures

Figure 1 : Guard Band deployment NB-IoT .. 6

Figure 2 In Band deployment of NB-IoT ... 6

Figure 3 Stand Alone deployment NB-IoT .. 7

Figure 4 General features for BC95 NB-IoT module .. 10

Figure 5 B20 module ... 10

Figure 6 GSM EVB Bottom View .. 11

Figure 7 NBIOT EVB top view .. 11

Figure 8 EVB and Accessories ... 12

Figure 9 Qcom software view ... 13

Figure 10 importing necessary libraries and modules. ... 17

Figure 11 creating a serial object to connect to the device through the serial port. ... 17

Figure 12 the code to connect the board to the network using AT commands. 19

Figure 13 sets up a socket to send UDP packets. .. 19

Figure 14 creates a scheduler object using the sched module. 20

Figure 15 closing the socket and disconnecting the board from the network. 20

Figure 16 Communication Design with Dev Board. [25] .. 23

Figure 17 Python code on the remote server. .. 24

Figure 18 displays the box plot generated for each set of delay measurements in order

to identify outliers and ensure the reliability of the results .. 30

Figure 19 Scatter plot showing the average delays and standard deviation for the clean

dataset ... 32

 61

Figure 20 shows a scatter plot of delay measurements obtained from all 30 experiments

conducted, each of which represents the average of 20 repetitions 33

Figure 21 Experiments with highest average delays. The figure displays experiments

with the highest average delays measured under extreme conditions 34

Figure 22 Experiments with Medium Average Delays ... 34

Figure 23 Experiments with Low Average Delays ... 35

Figure 24 Experiments with Lowest Delay ... 36

Figure 25 Histogram showing CSQ distribution, with two cases excluded due to low

signal quality. ... 37

Figure 26 Histogram of signal power ... 38

Figure 27 Histogram of SNRs .. 39

Figure 28 Histogram of RSRQ ... 40

Figure 29 Regression line and correlation between CSQs and average delays of 2-byte

packets ... 43

Figure 30 Regression line and correlation between CSQs and average delays of 10-byte

packets ... 43

Figure 31 Regression line and correlation between CSQs and average delays of 20-byte

packets ... 44

Figure 32 Regression line and correlation between CSQs and average delays of 50-byte

packets ... 44

Figure 33 Regression line and correlation between CSQs and average delays of 100-

byte packets .. 45

Figure 34 Regression line and correlation between CSQs and average delays of 150-

byte packets .. 45

Figure 35 Regression line and correlation between CSQs and average delays of 255-

byte packets .. 46

Figure 36 Regression line and correlation between CSQs and average delays of 512-

byte packets .. 46

Figure 37 Histogram of Average Delays of 2-byte packet sizes 51

Figure 38 Histogram of Average Delays of 10-byte packet sizes 51

Figure 39 Histogram of Average Delays of 20-byte packet sizes. 52

Figure 40 Histogram of Average Delays of 50-byte packet sizes 52

file:///C:/Users/karo/Desktop/10%20Final%20Thesis%20(CSQ%20Histogram%20fixed,%20CSQ%20and%20Delay%20corr%20remained).docx%23_Toc132040652
file:///C:/Users/karo/Desktop/10%20Final%20Thesis%20(CSQ%20Histogram%20fixed,%20CSQ%20and%20Delay%20corr%20remained).docx%23_Toc132040652

62

Figure 41 Histogram of Average Delays of 100-byte packet sizes 53

Figure 42. Histogram of Average Delays of 150-byte packet sizes. 53

Figure 43. Histogram of Average Delays of 255-byte packet sizes. 54

Figure 44 Histogram of Average Delays of 512-byte packet sizes. 54

63

List of Tables

Table 1 Received Signal Strength Indicators (RSSI) for CSQ values. 26

Table 2 Transmitting and receiving packet timestamps (in seconds) and their

corresponding delays (in seconds) for experiment 2 ... 28

Table 3 Delays for different packet sizes in experiment 2. .. 29

Table 4 Cleaned data. .. 31

Table 5 Average delay and standard deviation for different packet sizes 31

Table 6 Correlation coefficients between Average Delay of different packet sizes and

Channel Signal Quality (CSQ) ... 42

Table 7 Correlation between signal power and average delays for each packet size . 47

Table 8 Correlation between Delays of different Packet Sizes and SNR 48

Table 9 Correlation coefficients between RSRQ and average Delays for different packet

sizes ... 49

64

Acknowledgements

Throughout the writing of this thesis, I have received a great deal of support and

assistance. I would like to acknowledge and give my warmest thanks to my supervisor,

Prof. Giacomo Verticale from Politecnico di Milano University, who made this work

possible. His guidance and advice carried me through all the stages of writing this

project.

In addition, I would like to thank my parents for their wise counsel and sympathetic

ear. They have always been there for me and provided unwavering support.

Finally, I could not have completed this dissertation without the help of my friends.

Their encouragement and assistance were invaluable and greatly appreciated.

