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Abstract

As small bodies interest by the scientific community continues to grow, spacecraft design tries
to adapt itself to the particular environment these targets dictate. The use of optical images to
navigate around these bodies has become nearly a standard in the last years, but the request
of precision, robustness and autonomy push the research toward different and more innovative
approaches. The field of machine learning and deep learning has offered many tools to improve
the existing technology, such that it can substitute completely the GNC loop or some of its
parts. In this work the possibility to use a convolutional neural network (CNN) for solving
the problem of centroid is investigated. The resulting output is compared with other two
traditional image processing techniques, which are analysed in the work. Initially, the CNN is
trained, taking advantage of transfer learning, on a set of 21000 synthetic images obtained with
Blender, composed of 6 small body shape models. Then is faced the problem of specialising
the network to some new shapes, investigating also the effect of lack of data to the training.
The CNN has shown to be better than the other techniques developed, with all the bodies
considered.
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Sommario

Come l’interesse della comunità scientifica per gli small bodies cresce, così il design delle sonde
cerca di adattarsi al particolare ambiente che questi impongono. L’uso di immagini per navigare
attorno a questi corpi è diventato quasi uno standard negli ultimi anni, ma la richiesta di
maggiore precisione, robustezza e autonomia spinge la ricerca verso nuovi approcci. Il campo
del machine learning e del deep learning ha offerto molti strumenti per migliorare l’attuale
tecnologia, tanto che con loro è possibile sostituire del tutto o in parte la GNC. In questo lavoro
è indagata la possibilità di utilizzare una rete neurale convoluzionale per risolvere il problema
del centroiding. Il risultato è poi confrontato con altre due tecniche, provenienti dall’image
processing, che sono analizzate. Inizialmente, la rete è sottoposta a un training, sfruttando la
tecnica del transfer learning, con un set fatto di 21000 immagini sintetiche ottenute con Blender
dai modelli di 6 corpi. In seguito, è affrontato il problema della specializzazione del network
su alcuni nuovi corpi, indagando anche l’effetto della mancanza di immagini per il training. Il
CNN ha mostrato una performance migliore delle altre tecniche sviluppate, con tutti i corpi
considerati.

v





Contents

1 Introduction 3
1.1 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Research question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Structure of the document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Optical Navigation 9
2.1 Reference Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Pinhole camera model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Review of optical navigation techniques . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Center of Brightness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 Center of Figure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.3 Analytic Function Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.4 Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.5 Correlation with Lambertian Spheres . . . . . . . . . . . . . . . . . . . . 14
2.3.6 Limb Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.7 Limb Scanning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.8 Landmark Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Machine Learning 19
3.1 Overview of ML Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.1 Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.2 Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.3 Support Vector Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.4 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.5 K-means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.1 Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.2 Activation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.3 Understanding CNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Analysis of centroiding techniques 31
4.1 Synthetic images generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.1 Setting of the scene and rendering . . . . . . . . . . . . . . . . . . . . . 31
4.1.2 Image sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Center of Brightness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3 Center of Figure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3.1 Curve fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4 Correlation with Lambertian Sphere . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4.1 Drawing the lambertian sphere . . . . . . . . . . . . . . . . . . . . . . . 45
4.4.2 Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4.3 Radius search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

vii



Contents

4.5 Convolutional Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.5.1 VGG16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.5.2 ResNet-34 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.5.3 Network specialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 Results 57
5.1 Performances comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2 Network specialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6 Conclusion and Future Work 67
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

viii



List of Figures

2.1 Body fixed reference frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Pinhole camera model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Projection of triaxial ellipsoid on the image plane. . . . . . . . . . . . . . . . . 15
2.4 Scan vector over the pictured ellipsoid. . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 AI, Machine Learning and Deep Learning in a Venn diagram. . . . . . . . . . . 19
3.2 Comparison of different fitting techniques. . . . . . . . . . . . . . . . . . . . . . 20
3.3 Logistic function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Cost function for single training example. . . . . . . . . . . . . . . . . . . . . . 23
3.5 Deep neural network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.6 Recurrent neural network scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.7 CNN basic architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.8 Some ReLU class activation functions. . . . . . . . . . . . . . . . . . . . . . . . 28
3.9 Some CNN first layers filters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 Camera and Sun direction in the Body Fixed Reference Frame. . . . . . . . . . 33
4.2 Intervals of angles λc considered around λs. . . . . . . . . . . . . . . . . . . . . 35
4.3 Variation of CoB position changing phase angle. . . . . . . . . . . . . . . . . . . 37
4.4 Phase angle α in the λc − φc plane. . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.5 Error of CoB with respect to CoM. . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.6 Error of CoB with respect to the phase angles α. . . . . . . . . . . . . . . . . . 40
4.7 Offset factor γ after fitting with original function. . . . . . . . . . . . . . . . . . 42
4.8 Offset factor γ after fitting with sinusoidal function. . . . . . . . . . . . . . . . 43
4.9 Geometry of the 3D lambertian sphere on the image plane. . . . . . . . . . . . 45
4.10 Geometry of the 3D lambertian sphere on the image plane. . . . . . . . . . . . 46
4.11 Two spherical triangles considered and relative angles. . . . . . . . . . . . . . . 47
4.12 101955 Bennu renders with corresponding lambertian spheres. . . . . . . . . . . 48
4.13 Graphical representation of the dimensions involved in the template matching. . 49
4.14 101955 Bennu renders and corresponding DIC maps. . . . . . . . . . . . . . . . 50
4.15 VGG16 architecture with new head. . . . . . . . . . . . . . . . . . . . . . . . . 52
4.16 VGG16 architecture without last convolutional block. . . . . . . . . . . . . . . . 52
4.17 ResNet-34 architecture with new head. . . . . . . . . . . . . . . . . . . . . . . . 54
4.18 Synthesis of architectures training and resulting validation losses. . . . . . . . . 55
4.19 Training process with Toutatis sets. . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1 Errors made using CoF method fitted with original law. . . . . . . . . . . . . . 58
5.2 Errors made using CoF method fitted with sinusoidal law. . . . . . . . . . . . . 58
5.3 Errors made using lambertian sphere correlation method. . . . . . . . . . . . . 59
5.4 Errors made using ResNet-34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.5 Centroiding example on 101955 Bennu. . . . . . . . . . . . . . . . . . . . . . . . 60
5.6 Centroiding example on 2867 Šteins. . . . . . . . . . . . . . . . . . . . . . . . . 60
5.7 Centroiding example on 67P/Churyumov-Gerasimenko. . . . . . . . . . . . . . . 61

ix



List of Figures

5.8 Error distribution after training with Toutatis specific set, changing its size. . . 63
5.9 Error distribution after training with 2008 HW1 specific set, changing its size. . 64
5.10 Error distribution after training with 65803 Didymos specific set, changing its size. 65

x



List of Tables

4.1 Shape models characteristics for each considered body. . . . . . . . . . . . . . . 32
4.2 Comparison of average rendering times with EEVEE and Cycles. . . . . . . . . 34
4.3 Principal parameters characterizing each set. . . . . . . . . . . . . . . . . . . . 36
4.4 Coefficient a obtained after curve fitting for each body. . . . . . . . . . . . . . . 41
4.5 Coefficients of the sinusoidal function obtained after curve fitting for each body. 41

1





Chapter 1

Introduction

In the last years the interest in small bodies, like asteroids, comets but also objects from the
Kuiper belt and the Oort cloud, has grown more and more and it is demonstrated by the
increasing number of space mission targeting these bodies. Is is in fact believed they can be
an important evidence to understand the birth and the evolution of the Solar System and of
our planet. Moreover, they could bring with themselves the answers to the questions about the
origin of life in our planet.

Small bodies are all over the Solar System: starting from the Trans Neptunian Objects
(TNOs), to which the furthest Oort cloud and the Kuiper belt objects belong, passing by the
Main belt asteroids between Mars and Jupiter, and arriving to the most accessible Near Earth
Asteroids (NEAs). The last ones in particular have been the target of many recent missions,
obviously because they are less expensive to reach from the Earth, but also because there
is a group of them that is continuously threatening the safety of our planet. This subset of
NEAs is called Potentially Hazardous Asteroids (PHAs) and they are all characterized by their
Minimum Orbit Intersection Distance (MOID) with our planet, that is less than 0, 05 AU. For
this reason a lot of work is made on ground through optical observations, with the intent of
discovering new bodies. Despite the rate of discovery has surged in the last years, and the total
number of detected asteroids is 300000, only about half of them have their orbit determined, as
Sheeres states [1]. Through optical and radar observations has been possible to determine some
physical characteristics like the shape, the albedo and in some cases the rotational state. But
many times the predicted properties have not found confirmation from reality. Thanks to fly-by
and rendezvous missions it has been possible to acquire knowledge about the structure and the
composition of these bodies. Now it is clearer that most of them are rubble pile bodies and only
some are monolithic. Evidence of this fact is also given by analysis of their rotation state, as
super-fast rotators are associated to monolithic asteroids [2]. Also the fact that the grain density
is higher than the bulk density suggests a porous structure. But are evidences of their process
of formation – the aggregation of small bodies in larger ones and impacts producing smaller
bodies – also the complexity of their shape and the large diffusion of binary systems, nearly 15%
of NEAs [3]. Comets are characterised by a much lower density due to the presence of volatile
substances in their nucleus. They are responsible of the gaseous envelope that surrounds these
bodies which, as the comet migrates into Sun proximity, can evolve in a tail.

All these uncertainties and the great variety of characteristics, that in the above lines have
been briefly framed, make the design of space missions to small bodies particularly challenging.
In this work will be addressed the problem of the navigation around small bodies. Navigation
is the problem of estimating the position of a traveller with respect to a reference frame. Given
a system as a point in the space, its state is defined by its position and velocity vector. To
make an estimation of the state it is needed to rely on external sources, making the process
intrinsically affected by errors. The main objective of navigation is to minimize estimation
errors. If, thus, the navigation aim is to find the position and the velocity of the spacecraft,
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1.1. State of the art

and so its orbit, the guidance has to define the orbit that needs to be followed. As during its
mission the spacecraft will be for sure subjected to disturbances and the orbit will be affected
by errors, the control aim is to command actuators in order to follow the path set by guidance.
The guidance, navigation and control (GNC) subsystem has the role to determine and correct
the trajectory of the spacecraft.

What is really important for the design of a spacecraft GNC subsystem is the level of
autonomy. Given all the uncertainties that characterize small bodies environment, it becomes of
vital importance for the mission to have an high reactivity to unexpected situations. Autonomy
is also needed when communication delays makes the ground control response time larger than
the mission characteristic time. But additionally, autonomy could allow a downsizing of costs
and operation teams, which becomes really relevant in long interplanetary missions.

Usually, when a small body is approached, aims are two: one is the impact or the fly-
by, the other one is the rendezvous. In the first case, time to impact is not controlled, so
only deflection maneuvers are required. Generally some guidance and control strategies are
implemented (predictive-impulsive guidance or proportional navigation). In the second case,
the approach velocity need to be controlled too and most of the relative velocity is canceled out
by means of breaking maneuvers. The approach phase will last longer than the fly-by one and
for this reason requirements on autonomy are relaxed and some processes can be carried out on
ground. In both cases, given the uncertainties in the estimation of the target orbit, a transition
is made between traditional ground-based navigation, which takes advantage from systems like
the NASA’s Deep Space Network (DSN) and the European ESTRACK, and relative navigation,
where the position of the spacecraft is estimated with respect to the target body. The aim of
this transition is to reduce the target orbit uncertainties too.

When the estimation of the relative state is made starting from an image, obtained by
an optical sensor, we are talking about optical navigation. Through image processing, some
information useful for the navigation filter can be extracted from the image. For example line of
sight (LOS), but also range and relative attitude. Even though optical navigation allows to take
advantage of a relative cheap sensor – moreover usually already present on the spacecraft both
as star sensor or as scientific instrument – the processing of the image can be computationally
too expensive to be done on-board. For this reason in many cases the image is processed on
ground.

1.1 State of the art

Optical navigation has been widely used in planetary exploration since Mariner 6 and Mariner
7 missions to Mars in 1969, when the technology was demonstrated. The practice was to take
pictures of the celestial body against a background of star to determine the relative position.
Another way to determine the range and LOS was to process planet images extracting the
body lit limb and localizing it in the image given previous knowledge of the expected shape.
This technique is called horizon-based optical navigation. Also in recent missions where relative
navigation was required, the optical navigation have been exploited. For example, during the
New Horizon extended mission to Kuiper Belt Objects, the position of the spacecraft was
determined by radio tracking during cruises, but it was also used star-based optical navigation
when approaching Ultima Thule for improving knowledge of both B-plane target and the time
of closest approach [4]. Similarly, during the fly-by of 2867 Šteins, both the navigation camera
(NAVCAM) and the scientific optical instrument (OSIRIS NAC) of Rosetta have been used for
obtaining spacecraft-centered measurement of right ascension and declination of the target [5].
In both previous cases the processing of images was taken on ground.

Also in Hera mission, the European component of the ESA–NASA AIDA mission whose
aim is to explore a binary asteroid, 65803 Didymos, and to investigate the outcome of a ki-
netic impactor test, is expected to use optical navigation: in particular the navigation team
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Chapter 1. Introduction

is developing a technique that involves the correlation of the asteroid image with a template,
containing a lambertian sphere [6] [7]. This method would be useful in determining both range
and LOS.

Another widely used technique, especially during proximity operations, is landmark nav-
igation. It has been exploited by both Rosetta mission when navigating in proximity of
67P/Churyumov-Gerasimenko, and Osiris-Rex around 101955 Bennu. The basic functioning
of the technique is that given the 3D surface around a landmark (a feature of the asteroid
surface), an albedo map and a photometric model, it is possible to predict a landmark visual
appearance in any other observation conditions. A maplet is then produced on ground from
multiple images of the same location. Once the database is ready, every new images can be
used for tracking landmarks.

As landmark navigation needs previous observations and mapping of the asteroid, the
method seems in a certain way related to a problem typical of robotics, the SLAM problem,
that consists in the simultaneous creation of a map and localization on it. Indeed, there have
been some studies trying to employ the structure of this problem to asteroids navigation. For
example in [8] Nakath tries to apply a graph-based SLAM in asteroid navigation. Also Co-
caud and Kubota in [9] proposes a SLAM which uses octree occupancy grids to store observed
landmarks, mapping the topography of the asteroid while providing inertial data to the space-
craft position and attitude controller. Moreover, it is interesting because Speeded Up Robust
Feature Extraction (SURF) is used for extracting and describing each feature. Despite SURF
is computationally intensive (it takes up to 6 seconds for 100 features on a 512x512 image on
a space-harden computer with a speed in the order of 100 to 200 MHz [9]), it is invariant to
illumination changes and orientation and has good robustness to affine and perspective changes.
SURF belongs to a class of feature extractor and descriptor algorithms. Inside this class there
are also SIFT, FAST (it has also an improved version taking advantage of machine learning),
BRIEF (a descriptor only) and ORB.

Other studies are being made in order to improve the applicability of horizon-based optical
navigation to the irregular shapes of small bodies. In [10] Zhongming developes a system that
computes LOS vector by comparing the observed image contour with the best matching tem-
plate in the database, after having extracted Hu moments, that are invariant to translation,
rotation and scaling of the objects. The database is constructed starting from the creation of
the images using a 3D shape model of the asteroid and a viewpoint generator, but the illu-
mination condition is not considered. A similar approach is developed in [11] by Lyzhoft. In
this case though, the entire shape of the target body is considered. The process starts with
a blob detection algorithm, Otsu’s method, in order to create a binary image of the observed
body. Principal Component Analysis is then applied for computing eigen axes of the figure and
edge interest points (EIP) are obtained by determining the point in the blob that is farthest
away from the center-of-mass along a given eigen axis or rotated eigen axis. The Affine Trans-
formation is then obtained by minimizing the squared differences of the transformed template
EIPs and the scene object EIPs. Scale, rotation about CoB and displacements in vertical and
horizontal directions are the variable of the minimization.

Another subject that is strongly contributing in optical navigation is machine learning,
and in particular deep learning. Actually, deep learning could cover different tasks belonging to
classical GNC, in different ways: it can completely substitute GNC, taking as input some images
and giving back some optimal controls [12] [13] [14], or can take the place of navigation only,
therefore taking as input images and producing an estimation of the state [15], or only taking
the place of some tasks usually reserved to image processing or computer vision, for example
compute centroid of an asteroid given an image, or recognize some features from surface images
[16].

In [12] two moon landing cases are taken in consideration: 1) a simple vertical 1D landing
where the output of a CNN is a classification between two classes, thrusters ON or OFF, and
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2) a 2D planar moon landing, meaning that the output need to be both a thruster command
as before, plus a direction of the thrusting action, which need to solve a regression. While in
the first case a classical convolutional neural network (CNN), composed by 5 convolution layers
and 2 fully connected layers, is used for the classification problem, in the second case, where
both classification and regression are needed, the network is composed by a first unique branch
(made of convolution layer, fully connected layer and a recurrent neural network with a long
short-term memory (LSTM) cell) which is divided into two branches, each one for a task. In
both cases the network is trained using labeled data. Images are produced with POV-Ray,
which takes as input the locations belonging to the optimal-fuel trajectories, obtained with the
General Purpose OPtimal Control Software (GPOPS). At each location is also computed the
optimal control action which is used for labelling data (images rendered). Images rendered are
in grey scale, meaning that each one has only one color channel. Images are anyway taken by
the network as groups of three sequential images, so that it can track velocity too. The first
network is trained in 200 epochs, using 6000 256x256 images divided in batches of 59. An Adam
optimizer has been used, setting the initial learning rate and the decay rate. The accuracy of
the classification has also been improved from 97.63% to 99.15%, thanks to the use of DAgger
approach. The second one reached an accuracy of 98.51%.

The same problem of finding the optimal control actions for autonomous lunar landing is
faced in [14], where reinforcement learning (RL), is used for mapping images and altimeters
readings directly into optimal thrust commands.

RL is used in [13] too for finding ON/OFF thrust commands given LIDAR measurements
for a 6-DOF body-fixed hovering over an unmapped asteroid. The adaptability to unknown
environment is achieved through RL-Meta Learning, where different asteroid shapes and envi-
ronmental dynamics are treated as a range of partially observable Markov decision processes.

In [15] instead, the problem of reconstructing the state of the S/C using a CNN is faced.
The simple case of estimating the position for a 1D motion is considered. It is faced as a
classification problem between 1024 classes, corresponding to the dimension of the rendered
map, over which the S/C is passing. For the training only a subset of all the 1024 possible
positions has been used, as each 128x128 image is moved of a stride of 8 pixels with respect to
the other. Therefore the 113 images along the direction of the movement are rendered in 11
different illumination conditions, giving a total of 1243 images used for the training. For testing
the network, 128x128 images were used but this time taken from 30 random locations, always
in the same direction. Plots of training versus testing accuracy showed a fast convergence to
the maximum accuracy for the training set, but only a medium accuracy of 25% with peaks
up to 70% for the testing set. Results improve just a bit by training the network with images
produced every 4 pixels.

In [16] a network, LunaNET, is trained for recognizing known craters on moon surface, such
that they can be used as landmarks for localization. LunaNET is an improvement of some
existing techniques. For example its network takes advantage of the U-net, already used in
the DeepMoon algorithm, but it’s retrained using images properly adapted to closely match
the intensity distribution of a DEM image. The output of the CNN is a greyscale image with
brighter pixels corresponding to predicted crater rims. These outputs are then processed to
obtain the discrete detected craters. Finally the detected craters are matched with the known
ones by means of nearest neighbor matching. LunaNET has shown way better capabilities of
detecting craters with respect to the other algorithm, especially in case of addition of noise and
changes in brightness.

Another interesting perspective is to use a CNN for finding the centroid of an asteroid in
the sensor reference frame, allowing to determine the line of sight. A network could be trained
from scratch using synthetic images labelled with the actual position, or taking advantage of
transfer learning, an already existing network could be trained. This is what has been done
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during the Local Training Workshop I organized by Stardust-R1.

1.2 Research question

Considering all the inputs given by the studies reported above, the aim of this thesis is to
understand how a machine learning based technique compares with respect to classical image
processing techniques. The research question is therefore:

Can machine learning perform better than classical image processing techniques?

The attention is thus focused specifically on the area of optical navigation that directly deals
with images. The area where image processing simply transforms the original image in another
one simplifying or enhancing the original one, while computer vision, powered by deep learning,
tries to extract useful information, in an intelligent way.

Anyway, the big problem of deep learning is the availability of data, which is needed for
training the network. On ground, it can be exploited the possibility to train these networks
using data obtained in simulated environments. The result of the training, that is the truly
computationally expensive task, is a network that can be used on board and that allows the
solution of the problem it was trained for to be very fast. However, there is not a small body
equal to the other. As a complement to the main research question, a second question is
formulated:

How many labelled images are needed to ensure an adequate performance of the network?

The situation where a new asteroid needs to be explored and its images are needed for the
training is therefore faced, in the attempt to answer to this last question.

1.3 Structure of the document

After this First Chapter, where the small bodies environment has been introduced, together
with concepts of navigation, optical navigation and recent works in the field, in the Second and
Third Chapter a literature review of optical navigation techniques and of machine learning is
given in order to prepare the reader to concepts needed in the following chapters. The Fourth
Chapter contains all the development and the analysis of the the image processing techniques,
together with the training process of the convolutional neural network. At the end of the chapter
is also presented the analysis of the network performance in the case of scarcity of data.

In the Fifth Chapter the resulting performance of the developed techniques are compared.
In the final chapter conclusions are drawn and possible improvements to the work are presented.

1http://www.stardust-network.eu/. Last accessed: 24th of November 2020
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Chapter 2

Optical Navigation

In this chapter will be given the theoretical introduction to Optical Navigation. After the main
reference frames and the simple pin-hole camera model are faced, the principal techniques are
described.

2.1 Reference Frames

Body fixed reference frame (BRF) It is the reference frame centered in the center of mass
and rotating along with the body. The z axis points toward the North pole, while x and y axes
lie in the equatorial plane, with the positive x direction corresponding to the prime meridian.
The fact that the z axis points to the North pole means that the rotation axis of the body may
differ.

This reference frame will be used for describing the position of a camera with respect the
body considered and it is also used by 3D shape models.

Equatorial Plane

y
B

z
B

x
B

OB

Figure 2.1: Body fixed reference frame.

Camera reference frame (CRF) The camera reference frame is centered in the pinhole of
the camera, or the aperture, with the z axis perpendicular to the aperture and directed toward
the image plane.

In order to relate the CRF with the BRF a rotation matrix is needed.

Image plane (IP) This coordinate system has the same axes as the CRF, but it is shifted
by the focal length f in the z direction of the CRF. This transformation is strictly related to
the definition of pinhole camera model that is explained below.
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2.2. Pinhole camera model

Image Plane (IP
)
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Reflected Im
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Figure 2.2: Pinhole camera model.

2.2 Pinhole camera model

The pinhole camera model is the simplest camera system. It is capable of recording an image
on a film, or sensor, of an object in a 3D scene, allowing a one-to-one mapping between the real
object and the projected image. This is possible thanks to its most important approximation:
the light reflected by the real object passes through a very small aperture, allowing just few
rays to reach the sensor. In the real case the aperture is larger and corresponds to the one of
the camera lens.

The camera reference system is centered in the pinhole point O, while the image plane is
shifted by the focal length f along the zc direction. If we have a point P in the real 3D world,
with coordinates P = [xP , yP , zP ], it is possible to get the projection on the image plane Q′.
The coordinates of this point will be reversed with respect to those of P point. In order to
avoid that, it will be considered the point Q on the reflected image plane, the plane distant f
from the pinhole point O but in the opposite direction with respect to the image plane. Since
OOP P and OOQQ are similar triangles, according to the law of similar triangles, it is possible
to find the relation between the real world coordinates and the ones of the projected image.

Q =
[
xQ yQ zQ

]T
=

f

zP

[
xP yP zP

]T (2.1)

Therefore, generalizing the transformation between the two reference frames, given a generic
point in the camera reference frame, its projection in the image plane will be:xy

f

 =
f

zc

xxyc
zc

 (2.2)
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Chapter 2. Optical Navigation

2.3 Review of optical navigation techniques

In the following pages an overview of the most important techniques in optical navigation will
be presented. A raw classification of these techniques can be made based on the mission phase
they will be applied to.

During the far approach phase, when the body that need to be approached is yet resolved
as few pixels or at most a blob of pixels, the most suitable techniques are:

• Center of brightness (CoB) is a basic image processing technique capable of finding the
position of a body in the sensor, especially if it occupies few pixels. It can be used also
when the body is much larger in the image plane, but a correction needs to be applied in
order to obtain the true center of the body;

• Analytic function fitting is mostly used when the body projected in the image plane can
be approximated as a point spread function;

• Correlation is a generalization of the function fitting concept: a template of the expected
appearance of the body in the sensor is compared with the actual image, to find its
location; this is a very general technique and can be applied also during the other approach
phases.

When the target is near enough to be well resolved inside the image plane but it is still
entirely within the sensor frame, the mission will probably be in the close approach phase. In
this case the most considered optical navigation techniques are:

• Center of figure (CoF), is the result of the application of a corrective term, dependent
on the phase angle, to the CoB; it allows to take advantage of the simplicity and speed
of the CoB, avoiding those errors linked to the extension of the body in the sensor frame
and varying with the illumination conditions;

• Correlation with lambertian sphere is a particular case of correlation, that, as stated
previously, has a wide application in optical navigation: it takes advantage of a simplified
template, that is a lambertian sphere;

• Limb fitting is very useful in the case of regular shape bodies, taking advantage of the
contour for determining its center and range;

• Limb scanning is another technique based on the survey of the target edges, but, differently
from the limb fitting, it is an iterative method.

Instead, during the proximity operations the target will hardly stay within the sensor frame
and the surface characteristics will become the most important reference for navigation. In
this situation the most suitable techniques will be landmark navigation, which is based on the
correlation of some known features of the target surface.

2.3.1 Center of Brightness

The CoB is the most basic solution to the problem of centerfinding, that is the problem of
finding the position of an object in an image. As explained in [17], the center of an image can
be defined in different ways. A typical definition is that of centroid, which practically represent
the "center of gravity" of the image pixels, and it is defined in the following way:

xCG =

∑
xi

Area
(2.3)

yCG =

∑
yi

Area
(2.4)

where xi and yi are the coordinates of all non-null pixels in the sensor reference frame, and
Area correspond to the summation of all non-null pixels.
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2.3. Review of optical navigation techniques

However, this very basic definition does not consider the intensity value of pixels. This,
though, is done in the case of density weighted center, that is defined in this way, following the
brightness moment algorithm:

xCG =

∑
i

∑
j i ·DNi,j∑

i

∑
j DNi,j

(2.5)

yCG =

∑
i

∑
j j ·DNi,j∑

i

∑
j DNi,j

(2.6)

where DNi,j is the intensity value of the (i, j) pixel. Usually, when talking about CoB, this
definition is used. In space applications, the image whose center need to be found is the shape of
the asteroid already isolated from the star background of the original picture and a thresholding
function is applied in order to bring non-null pixels outside the asteroid shape to zero. If this
kind of process is not applied, the result would be heavily affected by pixels not linked to the
body we are interested in.

The asteroid, based on distance from the target and the focal length, could appear as a
single pixel, a blob of pixel or bigger. As the appearance of the target depends also from the
illumination conditions, the computed CoB could be adjusted with a corrective term taking in
consideration the phase angle and the direction of the Sun illumination.

2.3.2 Center of Figure

As reported in [18] and [19] the CoB is used as starting point for the evaluation of the center
of the body, obtained applying a correction that depends on the phase angle and the direction
of the Sun.

In [18] an offset factor γ is computed starting from the phase angle α and the assumed
object radius R:

γ =
3πR

16

[
sinα (1 + cosα)

(π − α) cosα+ sinα

]
(2.7)

It is important to notice that this formulation has been developed for a spherical shape the size
of Wild-2 nucleus. The offset factor is a fraction of the expected size of the body Rc in pixel
units, therefore its value is comprised in the interval [0, 1]. This formulation is valid when the
object are spherical, but even if most of asteroids and comets have irregular shapes, it can be
enough for removing the gross error from CoB.

The offset factor is then multiplied by the expected radius of the body in the sensor Rc,
to obtain an estimate of the correction in pixel units. The direction in which the correction is
applied is obtained from the Sun direction in the image, expressed as the angle φ, measured
clockwise from the positive X direction. This angle is therefore defined as:

φ = arctan

(
Acy
Acx

)
(2.8)

where Acx and Acy are the components in X and Y directions respectively of the Sun direction
vector in the camera reference frame Ac, which is obtained from the inertial direction of the
Sun A multiplying by the transformation matrix TIC . The position of the Center of Figure is
then expressed, starting from the position of the CoB, in the following way:

xCoF = xCoB − γRc cosφ (2.9)
yCoF = yCoB − γRc sinφ (2.10)

12



Chapter 2. Optical Navigation

It can be noticed that this method is anyway affected by the uncertainties coming from the
estimation of the range r and of the body size R, needed for the computation of Rc. Moreover
the information about the Sun direction is required to compute the correction, and could be
affected by errors and noise too.

The formulation of the correction term for obtaining the CoF shown above will be object of
further analysis in Section 4.3.

2.3.3 Analytic Function Fitting

Another centerfinding technique is the analytic function fitting. It is useful if the object is
resolved as few pixels or a blob of pixels in the camera sensor. It consists in finding the analytic
function, usually a Gaussian curve, which better approximates the intensity of the pixels group.
It is done by finding the parameters of the function with least-squares in an iterative way.

The function, whose parameters we want to look for, is the brightness functions, defined in
the following way in [20]:

B(s, l) =
h

2π
exp

(
−(s− sc)2 + (l − lc)2

2σ2

)
+ b (2.11)

= hN

(
s− sc
σ

)
N

(
l − lc
σ

)
(2.12)

with h the amplitude in Data Numbers (DN), (sc, lc) the coordinates of the center and so the
peak of the gaussian, σ the standard deviation and b the constant background. It can be seen
that the first expression corresponds to the superposition of two normal distributions N , in the
directions of line l and sample s.

The expected DN values are now computed making the integral of the brightness function
in the pixels. Therefore assuming that the integer values of pixels are located at their center,
the integral is defined in this way:

DN(s, l) =

∫ s+1/2

x=s−1/2

∫ l+1/2

x=l−1/2
B(x, y)dydx (2.13)

Then, the procedure for finding the model parameters {sc, lc, h, σ, b} can be synthesized in
these passages:

1. begin with a priori values, perhaps crudely calculated from the image, of model parame-
ters;

2. calculate expected DN values in each pixel of the subset of the picture;

3. compute the partial derivatives of DN(s, l) with respect to the solution parameters and
form the residuals to construct each equation of condition;

4. apply a data weight according to the expected noise (in DN);

5. feed the resulting weighted equation into a least squares algorithm;

6. iterate, possibly taking partial steps, until convergence is achieved.
Other functions can be used for the fitting: for example, another point-spread function, the

Lorentzian function.
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2.3. Review of optical navigation techniques

2.3.4 Correlation

Correlation can be considered as another centerfinding technique, even if it would suite bet-
ter in the template matching domain. With correlation we are referring to the operation of
crosscorrelation in spatial domain.

Following the definition formalized in [21], given the correlation mask w(x, y) of size m×n,
and an image f(x, y), the spatial correlation can be defined as:

c(x, y) =
∑
s

∑
t

w(s, t)f(x+ s, y + t) (2.14)

Usually the normalized correlation coefficient is preferred, as it gives back a map with values
γ(x, y) ∈ [−1, 1], such that the maximum value of γ corresponds to the maximum correlation.
The normalized correlation coefficient is defined as follows:

γ(x, y) =

∑
s

∑
t [w(s, t)− w̄]

∑
s

∑
t

[
f(x+ s, y + t)− f̄(x+ s, y + t)

]
{
∑

s

∑
t [w(s, t)− w̄]2

∑
s

∑
t

[
f(x+ s, y + t)− f̄(x+ s, y + t)

]2} 1
2

(2.15)

with w̄ the average value of the mask (template) and f̄ the average value of the image
portion under the mask.

The correlation operation can be performed in the frequency domain too. In order to do
that, template and image are transformed using the discrete Fourier transform (DFT), shown
in Eq. (2.16), and then, thanks to the correlation theorem shown in Eq. (2.17), correlation
becomes simply the product between the complex conjugate of F and W .

F (u, v) =
M−1∑
x=0

f(x, y)e−j2π(ux/M+vy/N) (2.16)

f(x, y)⊗ w(x, y)⇔ F ∗(u, v)W (u, v) (2.17)

Correlation can be widely used in various approach phases to the target. In fact the template
can be whatever it’s needed to track. It therefore can be a pixelated point-spread function for
matching a faint target, or an entire celestial body synthetic image, or a small patch of terrain
for terrain relative navigation.

The main limitation of the correlation stays in the fact that it is not capable of relating to
an image a template which is not in the correct orientation. In fact correlation is not invariant
to some transformations like scaling, rotation, change of brightness and contrast. To overcome
this problem usually many templates are rendered in the attempt to find the one that best
relates to the image.

2.3.5 Correlation with Lambertian Spheres

The main concept is to compare the picture of the asteroid with a template; in this case though
the template is a lambertian sphere, that is a sphere with a diffusely reflecting surface rendered
with a defined illumination condition. Correlating the spheres, rendered with different radius
and center position, is possible to find the best matching lambertian sphere and therefore the
best estimated center of the asteroid.

This method is being studied by the navigation team of the Hera mission, in order to solve
the problem of centroiding when the asteroid is well defined in the camera sensor. The main
passages of the algorithm, that are described in [6] and [7], are listed below:

1. the image is binarized;

2. lambertian spheres are generated based on a set of angular sizes to search the “best” sphere
size, and for each size:
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Chapter 2. Optical Navigation

• an image of the sphere is synthesised,
• the digital image correlation (DIC) map is built.

3. Peak in DIC map represent the “best” position of the sphere centre, while the best achiev-
able correlation obtained changing the size correspond to the “best” angular size.

The interesting thing of this method, is that a surrogate model, a lambertian sphere, of the
target body is used, instead of the precise 3D shape model. In this way there is no need to
have knowledge of the shape and the required computational effort is lower. Moreover with
respect to the classical CoB algorithm, it doesn’t suffer from the problem of parts of the target
in shadow, that are therefore neglected in the centroid computation, altering the CoB position.

2.3.6 Limb Fitting

Limb fitting consists in finding the relative distance vector r, taking advantage of the visible
contour of the target body. It needs to be a quite regular body, which can be approximated as
a triaxial ellipsoid and whose contour in the sensor can be approximated as an ellipse.

The typical procedure, described in [22], is to compare the ellipse, obtained fitting the
contour, in turn obtained through an edge detection algorithm, such as Canny edge detection
algorithm, with the projection of the target body triaxial ellipsoid in the camera sensor.

There is also another approach that doesn’t need the ellipse fitting. By taking advantage of
the Cholesky factorization [23], it’s possible to obtain the range vector r, only using the horizon
of the ellipsoid.

Referring to Fig. 2.3, we can write the equation of the body in the pixel reference frame
(PRF) as a vectorial equation with p

P
, the surface vector and a matrix A

P
containing the

semimajor axes of the ellipsoid.

p
P

=

xPyP
zP

 A
P

=

 1
a2

0 0
0 1

b2
0

0 0 1
c2

 pT
P

A
P

p
P

= 1 (2.18)

Figure 2.3: Projection of triaxial ellipsoid on the image plane. Courtesy of Vattai N. (2019)
[24].

By using the transformation matrix TP
C
and its transpose TC

P
, we can convert the vectorial
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equation in Eq. (2.18) in the camera reference frame (CRF), obtaining

pT
C

TC
P

A
P

TP
C

p
C

= pT
C

A
C

p
C

= 1 with A
C

= TC
P

A
P

TP
C

(2.19)

Now everything is considered in CRF and subscripts can be dropped. As illustrated in Fig. 2.3,
we can define p

i
as a vectorial summation:

p
i

= si + r = t ŝi + r (2.20)

And putting this definition inside the vectorial equation defined in Eq. (2.19), a quadratic
equation is found. Setting its determinant to zero to find points tangent to the ellipsoid, a new
condition is found:

sTi M si = 0 with M = A r rTA−
(
rT A r− 1

)
A (2.21)

Now, considering an implicit ellipse equation on image plane and transforming it in the
CRF, we can obtain the following equation:

[
xi yi zi

]
·

Af2
Bf2

2
Df2

2
Bf2

2 Cf2 Ff2

2
Df2

2
Ff2

2 G

 ·
xiyi
zi

 = 0 → sTi C si = 0 (2.22)

where {A,B,C,D, F,G} are the coefficients of the ellipse equation, which need to be found
solving a fitting problem. Fitting problem can be solved by usingmaximum likelihood estimation
(MLE), whose goal is to minimise the euclidean distance between the measured and the ideal
point, otherwise, using algebraic distance, we can solve a least-square problem or using the
Fitzgibbon method.

Once the fitting problem is solved, it is possible to equate the two conical surfaces obtained
before, in order to find the r vector. To do so, the eigenvalue problem should be solved, as
shown in Eq. (2.23).

λM = C → λ
[
A r rTA−

(
rT A r− 1

)
A
]

= C → λ r = A−1 C r (2.23)

As stated before, it’s also possible to use the Cholesky factorization such that there is no
need of C matrix and therefore no need to solve the fitting problem. In order to do that,
variables are transformed in the Cholesky factorised space. The geometry is simplified as the
ellipse is transformed in a much simpler circle.

2.3.7 Limb Scanning

As Owen reports in [20], this method was developed because of computer speed and memory
limitations for objects that occupy more than a few pixels in the sensor.

Here are reported the main passages of the algorithm, by referring to Fig. 2.4.

1. Assume scan vector center C;

2. Determine a set of angles Φ, and for each angle:

• Determine the limb or terminator point: it will have some nominal (s, l) coordinates
in the picture and a vector p in the space,

• determine the observed DN values along the scan line, on either side of limb point,
• compute the expected DN , by projecting previous points onto the body and deter-

mining angle of incidence, angle of emission and phase angle,
• 1D correlation between observed and expected DN .

3. All observed offsets go into a least-square fit to solve for (s, l).

4. Iterates step 2. and 3. until convergence.
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Figure 2.4: Scan vector over the pictured ellipsoid. Courtesy of Owen M. (2011) [20].

2.3.8 Landmark Navigation

Landmark navigation allows to obtain a precise state estimation of the S/C thanks to the
properties and the features of the target surface.

The general procedure, explained in [25] and [26], is based on the correlation of some rendered
features with the imagery collected by the navigation camera.

Features are rendered on-board starting from a catalogue of digital terrain maps (DTM),
called also L-maps. These maplets contain information about shape and albedo and are pro-
duced on-ground. The production of the maplets is very difficult and time consuming. In the
case of OSIRIS-Rex’s Natural Feature Tracking (NFT), the DTMs are produced on-ground by
the Altimetry Working Group using the laser altimeter OLA or stereophotoclinometry (SPC).
With SPC slope and albedo are determined in a linear estimation solution minimizing the
summed square brightness residuals at a pixel in at least three to hundreds of images, each with
different illumination and viewing conditions. This is obviously computationally demanding
and requires strong supervision; it’s not suitable for on-board implementation.

Once the catalogue is ready, images obtained by the navigation camera can be used for
searching landmarks. Before the actual landmark matching, in order to compensate lager errors,
an image matching could be done. The rendered feature is then cross-correlated with the true
image; the quality of the matching can be quantified by a correlation score, and the location of
the landmark can be found at the peak of the correlation.

When selecting a feature attention is needed: features with steep slopes could be good for
the correlator, but could be difficult to render. The feature needs also to be unique when
compared to the surroundings in order to avoid mistakes in matching. Illumination plays an
important role: matching performance could decay if shadows are missing in the scene or it is
too dark.
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Chapter 3

Machine Learning

Machine learning is a sub-field of the huge category of AI techniques. And Deep Learning, in
turn, is just one of the sub-fields of machine learning. Machine learning is a tool for building
models and understanding complex datasets.

Artificial

Intelligence

Machine

Learning

Deep 

Learning

Figure 3.1: AI, Machine Learning and Deep Learning in a Venn diagram.

There are two main approaches machine learning follows.
• Supervised learning, the aim is to predict the response given a ground truth, so the al-

gorithm learn from "labeled" data; two main classes of algorithms follow this approach:
one is the regression, when a continuous function output is needed, and the other is
classification, if the output is a discontinuous function, a class or a category.

• Unsupervised learning, in this case ground truth is not available, so the machine learning
algorithm must be capable of determining itself some patterns; an example of technique
is clustering that is able to find "groups" in the available data.

When working with machine learning, one could be interested in prediction or in infer-
ence. In case the interest is in prediction, the model built from data is treated as black-box,
interest is therefore oriented only towards accuracy of the output. In case of inference, on the
contrary, interest is more oriented into understanding the link between the input and the output.

It’s not always simple to understand properly a model produced by a machine learning
technique. Sometimes the model can be very flexible and it will adapt well to the data, giving
back an excellent accuracy. Accuracy will come at cost of interpretability though, because the
most flexible, the most difficult is to understand the model. An example could also be the one
represented in Fig. 3.2. In the left plot three different estimates of function f is given: one
is a linear regression, the yellow straight line, while the green and blue lines are some splines.
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The black line is the original function which training data has been created from. It can be
clearly understood that the linear regression, despite its simplicity, is not sufficiently accurate to
represent the original function, while the blue line, at cost of simplicity is capable of. A trade-
off between accuracy and interpretability needs to be taken in consideration when choosing a
machine learning algorithm.

Figure 3.2: Comparison of different fitting techniques. Courtesy of James G. (2013) [27].

In the right plot, in Fig. 3.2, the two lines represent the variation of the error in the modeling,
that is the mean square error (MSE), with respect to the flexibility of the estimated model. This
is done for the training set, the set of data used for training the model, represented by the grey
curve, and for the testing set, the set of data used only for evaluating performance of the model,
represented in the red line. It can be noticed that, beside the fact already outlined, that the
simplest linear model is not capable of representing properly the data (high training error and
high testing error), the most flexible model that is a spline, it’s not capable of generalizing the
behaviour of the original function, leading to an high testing error. The two opposite behaviors
just described are called underfitting and overfitting.

Underfitting is characterized by an high bias error, the error caused by the incapacity of the
model to catch the relevant relations between features and target outputs. Overfitting, instead,
is characterized by a high variance error, the error coming from sensitivity to small fluctuations
in the training set, which leads to modeling also random noise, rather than the intended output.

Some of the most important machine learning techniques are now shown below: some su-
pervised learning techniques, like regression, logistic regression, support vector machine, and
neural networks, and unsupervised like clustering with K-means algorithm. Convolutional Neu-
ral Networks (CNN) will be analyzed in detail in Section 3.2.

3.1 Overview of ML Techniques

3.1.1 Regression

The problem of regression consists in predicting the output ytest for new unlabelled examples
xtest, given a training set of m labelled examples (x(i), y(i)) with i = 1 : m.

The approach employed is the one typical for parametric methods, where an assumption is
made about the functional form, or shape, of function f . In fact, after having made an as-
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sumption about the model f , parameters of the model are estimated and finally a prediction
ytest = f(xtest) is performed.

The simplest regression is the univariate linear regression, where a simple linear model with
only one variable x1 is supposed. As can be seen in Eq. (3.2), x0 = 1, making θ0 the intercept
term or bias. θ0 and θ1 are instead called weights.

f(x) = θ0 x0 + θ1 x1 (3.1)
= θ0 + θ1 x1 (3.2)

A more general model is represented by the multivariate linear regression, where f(x) is a
linear function with a feature vector x = (x1, x2, ..., xn).

In order to find parameters θj , parameter learning need to be performed. The objective is
to find parameters θj which minimize the training mean-square error, defined as:

MSE =
1

m

m∑
i=1

(
f(x(i))− y(i)

)2
(3.3)

The minimization of MSE is done through batch gradient descent algorithm. Parameters θj
are randomly initialized and then iteratively and simultaneously updated to reduce MSE. The
formulation of gradient descent is presented in Eq. (3.4).

θj = θj − α
∂

∂θj
MSE(θ0, θ1, ..., θn) (3.4)

A really important parameter is α, the learning rate. A value too small makes the convergence
too slow, while a value too high can lead to divergence.

In the case of multivariate linear regression some problems on convergence can arise if fea-
tures take on values in very different ranges. This problem can be solved by applying feature
scaling and mean normalization.

Another generalization is the polynomial regression. In this case f(x) can be a polynomial
of different order, to increase flexibility and improve the fit. The order can be increased by
manipulating the original features.

Regression can be performed also dividing features space in “sectors”, where different hy-
pothesis and parameters are assumed. Further constraints (continuity, continuity of 1st and
2nd derivatives, etc.) can be added at “knots” between each sector to limit model flexibility and
smooth the overall hypothesis, giving origin to splines.

3.1.2 Logistic Regression

Logistic regression is a supervised learning technique used for classification problems. The
technique aims at predicting the class ytest for new unlabelled examples xtest, given a training
set with m labelled examples. Being a classification problem, ytest takes only discrete values.
It can be a binary classifier if classes are only two, or a multi-class classifier if classes are more
than two.

The approach followed by logistic regression is the same of parametric methods. In this case
though, f(x) can’t be linear anymore. A new function is used, which is called logistic function
or sigmoid. The function is defined in the following way and it’s represented in Fig. 3.3:

σ(z) =
1

1 + ez
(3.5)
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Figure 3.3: Logistic function.

So for z → −∞ : g(z) → 0 while for z → ∞ : g(z) → 1. In place of variable z we can
substitute the function f(x) which represent the decision boundary, and contains weights θj
that need to be optimized through gradient descent.

As this is a classification problem, it’s not possible to use MSE. In its place the following
cost function is used:

J(θ) = − 1

m

m∑
i=1

[
y(i) log(f(x(i))) + (1− y(i)) log(1− f(x(i)))

]
(3.6)

3.1.3 Support Vector Machine

Support vector machine is another technique for classification. It can be considered like an
improvement of the logistic regression. In support vector machine f(x) is a sort of exaggeration
of the sigmoid function, a step function defined in the following way:

f(x) =

{
1 if θTx ≥ 0

0 otherwise
(3.7)

The optimization objective is defined as follows:

J(θ) =
1

m

m∑
i=1

[
y(i) cost1(θ

Tx(i))) + (1− y(i)) cost0(θTx(i)))
]

(3.8)

In the plots below Fig. 3.4 it can be seen how the objective function is different between
logistic regression and support vector machine, for a single training example (x, y) as function
of θ. The gap between 0 and 1 for y = 1 and between -1 and 0 for y = 0, in Fig. 3.4b, is
the intuition behind large margin classification. Large margin classification allows to find the
decision boundary which optimize the margin between the boundary and the support vectors,
that are the nearest points.

The decision boundaries can be both linear and polynomial. But in case of complex bound-
aries, polynomial it’s not the best choice. Usually kernels are used: the idea is mapping the
non-linear separable data-set into a higher dimensional space where we can find a hyperplane
that can separate the samples 1.

1https://towardsdatascience.com/understanding-support-vector-machine. Last accessed: 24th of November
2020
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(a) Logistic regression.

(b) Support vector machine.

Figure 3.4: Cost function for single training example. Courtesy of Musumeci F. (2019) [28].

3.1.4 Neural Networks

If polynomial regression requires many features, it can lead to an increased feature space: in
case of n features there will be O(n2) terms. Neural networks can help in keeping track of the
complexities by using multiple layers of logistic units.

A logistic unit can be considered as the basic neural network. An input layer composed of
parameters xi is linked through the weights θi to the output layer, where they are processed
by an activation function. The output would be then f(x) = 1/(1 + e−(θ

T x)) if the activation
function is a sigmoid.

When the number of layers is increased there will be L− 2 hidden layers, besides the input
and the output layer Fig. 3.5. Neural networks with multiple hidden layers are called deep
neural networks.

Figure 3.5: Deep neural network. Courtesy of Musumeci F. [28].

In hidden layer l there can be hl neurons. The value of the neuron i at layer l is given by:

ali = g(θ
(l−1)
i0 a

(l−1)
0 + ...+ θ

(l−1)
inl−1

a(l−1)nl−1
) (3.9)

where g is the activation function.
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The process of computing values of neurons from the input layer toward the output is called
forward propagation.

Neural networks can be used also for classification. In this case the output layer will be a
binary output vector with length k corresponding to the number of classes. The classification
is then read through a one-hot encoding.

The cost function for neural networks is a generalization of the cost function for logistic
function, just referring to the more general case of K classes.

J(θ) = − 1

m

[
m∑
i=1

K∑
k=1

[
y
(i)
k log(f(x(i)))k + (1− y(i)k ) log(1− (f(x(i)))k)

]]
(3.10)

Parameter learning is performed by adjusting iteratively parameter θ(l)ij via batch gradient
descent.

θ
(l)
ij = θ

(l)
ij − α

∂

∂θ
(l)
ij

J(θ) (3.11)

The derivative term ∂

∂θ
(l)
ij

J(θ) though is substituted by an error term ∆
(l)
ij to simplify the

computation. The error is computed starting from the output layer and it is then propagated
towards the input layer. For this reason the procedure described below is called error backprop-
agation. Given a training set with m examples:

1. Set ∆
(l)
ij = 0 for all i, j, l;

2. for each training example p = 1 : m

(a) Initialize forward propagation a(1) = x(p) ;

(b) Compute a(l) for all layers l = 2 : L;

(c) Initialize backpropagation by setting δ(L) = a(L) − y(i);

(d) Compute δ(l) =
[∑

i θ
(l)
ij δ

(l+1)
i

] [
a
(l)
j (1− a(l)j )

]
;

(e) Update ∆
(l)
ij = ∆

(l)
ij + a

(l)
j δ

(l+1)
i for all i, j, l;

3. Compute derivatives and update weights ∂

∂θ
(l)
ij

J(θ) = 1
m∆

(l)
ij .

In [29] is also presented a method for backpropagation based on chain rule and local gradient
of known functions, which allows a modularized implementation of a forward/backward API.

In order to make the convergence faster, different algorithms, called optimizers are available.
They try to do so by adjusting the learning rate α or the derivative term ∂J

∂θ .

Backpropagation, as described up to now, consider that in the algorithm all the m training
examples are contributing to the estimation of the cost function, needed for the update of
parameters. These procedure though can be computationally intensive. For this reason dataset
can be split in B batches. When the training set is divided into 1 < B < m batches, we are
talking about mini-batch gradient descent. It is a good trade-off between the case where B = 1,
the batch gradient descent (heavy and slow convergence), and the opposite case where B = m,
the stochastic gradient descent (convergence could be fast, but cost function is very noisy).

When a neural network is trained, the number of batches, the training set is divided in,
corresponds to the numbers of iterations in one epoch. For each epoch the entire data set is
passed forward and backward through the network, once.
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Recurrent Neural Networks

They are neural networks that can be applied to time series. They have been very useful in
neuro linguistic programming (NLP), so speech and text recognition, and sentiment analysis.

In a recurrent neural network each cell takes the input sequence x<t> and the activation
from previous time step a<t−1>, giving back the output sequence ŷ<t> and the new activation
a<t>. Each cell share the same weights in all time steps.

Figure 3.6: Recurrent neural network scheme. Source: Andrew Ng [30].

Inside the cells there are many activation functions and gates, which remember or discard
information along the time series. Beside the cell of recurrent neural network, there are also
other cells, like the gated recurrent unit (GRU) and the long-short-term memory (LSTM) unit.

3.1.5 K-means

K-means is the most popular clustering algorithm. Clustering is part of the unsupervised
learning technique. The problem it try to solve is therefore to find "structures" in the available
data, which is composed of m unlabelled examples. As this technique is able to find groups of
data with similar properties, it can be used before a classification problem.

K-means algorithm starts considering a set of examples x(i) = {x(i)1 , x
(i)
2 , ..., x

(i)
n } with i =

1 : m. K clusters are assumed. Considering also that c(i) is the index of the cluster for a certain
example x(i), we can write this algorithm:

1. Randomly initialize cluster centroids {µ1, µ2, ...µK}

2. Repeat untile convergence:

(a) Cluster assignment → for i = 1 : m c(i) = argminj ||x(i) − µj ||

(b) Update centroids → for j = 1 : K µj = 1
nj

∑
i:c(i)=j x

(i)

with nj the number of examples currently assigned to the j cluster.

The cost function consists in the summation, for each example, of the error between the
current example and the centroid of the cluster it is associated with.

J(c(i), µj) =
1

m

m∑
i=1

||x(i) − µc(i) || (3.12)
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3.2 Convolutional Neural Networks

Convolutional neural networks are a particular type of neural network, capable of elaborating
images. Despite only in recent years there has been an explosion in the study and in the applica-
tion of this technique, first attempts in this field can be dated back to the 1957, when the Mark I
perceptron was built. At the time though the adjustment of the parameter composing the single
layer was completely manual. Meanwhile in the sixties, a great push in the develop was given
by the research lead by Hubel and Wiesel in visual perception. In particular they discovered
that perception of visual stimulus happens through a hierarchical scheme of alternating simple
and complex cells. The first application in the field was the neocognitron in 1980: a "sand-
wich" architecture was invented, where simple cells, in which parameters could be changed, and
complex cell, performing pooling, were alternated. The great step forward though was made
thanks to advances in the research about backpropagation by Rumelhart (1986). The first true
application of a convolutional neural network has come only in 1998 with LeNet, a network
capable of recognizing characters, and thus used by the USA postal service. After this, there
was a period of stall due, on one side, to the lack of an adequate amount of data for training
networks, and on the other, by the unsuitableness of the hardware available at the time. Only
in the 2000s with Internet, capable to provide a great amount of data, and the enhancement
of computing capabilities, thanks also to the introduction of parallel computing and GPU, the
research in deep neural network and convolutional neural networks exploded again. The most
important example is the AlexNet, a deep CNN developed by Alex Krizhevsky which competed
in the ImageNet Large Scale Visual Recognition Challenge in 2012. AlexNet was one of the first
neural networks taking advantage of the GPU acceleration for overcoming the complexity of
the problem, due to its 8 layers.

In Fig. 3.7 a graphical representation of the structure of a simple CNN is shown. Given an
image the network is capable of recognizing the class the object belongs to. In the middle there
is a variable number of layers. A typical architecture is to pack together a convolution and
an activation layer, and to repeat this group two or three time before a pooling layer, and to
repeat in turn the stack of convolution-activation-pooling some times. Finally a group of fully
connected layers completes the classification task.

Figure 3.7: CNN basic architecture. Courtesy: Fei-Fei Li [29].
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3.2.1 Layers

Fully Connected Layer In the fully connected layer each neuron looks on the full input
volume. If, for example, the input is an RGB image, its size could be 32x32x3, where 3 is
the number of color channel. The tensor would be then "unrolled" to form a vector 3072x1,
and would become the input layer of a simple neuron, a filter, with 3072 weights. In the fully
connected layer there could be also more than filter acting on the same input. If 6 layers were
acting on the same 3072x1 input, our output would be a matrix 3072x6.

Convolution Layer The core of CNN lies in the convolution layer. This one rests on the
operation of convolution. As shown in [21] the convolution operation is very similar to the
correlation operation, already seen in Section 2.3.4. As can be represented in Eqs. (3.13)
and (3.14), the difference between correlation and convolution stays in the rotation by 180° of
the filter w(s, t). A filter is slided over spatial locations of the image. So, differently from the
fully connected layer each neuron looks at a small area of the input.

corr(x, y) =
∑
s

∑
t

w(s, t)f(x+ s, y + t) (3.13)

conv(x, y) =
∑
s

∑
t

w(s, t)f(x− s, y − t) (3.14)

The filter is usually much smaller than the input. A typical dimension is 5x5 or 3x3 while
it has the same depth as the input. The output of the convolution of a filter on a location of
the input is then just a scalar. Sliding the filter over the input, a matrix, called activation map,
is obtained as output. Usually more than one filter is slided over the input, giving origin to a
set of activation maps. If for example we have 6 5x5 filters, we’ll get 6 activation maps.

The operation of convolution naturally make the input smaller. This is due to the size of
the filter F and the stride S, that is the spatial jump the filter makes on the input. If the size
of the input is N , the the size of the output is (N − F )/S + 1. Usually in order to solve this
problem and avoid losing information, the technique of zero-padding is used: a certain number
of rows containing only zeros is added at the borders of the input to compensate the decreasing
size. It’s needed a zero-padding border of size P = (F − 1)/2 to recover the original size if the
stride S = 1.

The convolution layer is therefore defined by four hyperparameters, the number of filters K,
their spatial extent F , the stride S and the amount of zero-padding P .

Generally after each convolution layer an activation function is placed. A brief description
of activation functions is given in Section 3.2.2.

Pooling Layer It’s useful for making the representations smaller and more manageable. It
acts directly on each activation map. Usually max pooling is used. It works like a filter, so it
it defined by two hyperparameters, its size F and the stride S it is moved by. At each spatial
filtering only the maximum value of the input under the filter is given back. The size of the
output is defined, as previously said, for convolution, (N − F )/S + 1.

3.2.2 Activation Functions

Sigmoid It’s the most common activation function and it gives a nice interpretation of the
saturating “firing rate” of a neuron. However it is afflicted by two problems mainly: 1) saturated
neurons "kill" the gradient, being the region far from the y-axis flat; 2) the outputs are not zero-
centered, as they are [0, 1]. Being not zero-centered allows only the all-positive or all-negative
gradient update directions, making convergence very difficult.
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Tanh The hyperbolic tangent functions solve the problem of the zero-centering, but still "kill"
gradients at saturation.

ReLU A very efficient activation function is the rectified linear unit, ReLU (Fig. 3.8a). It is
defined as f(x) = max(0, x). Therefore it does not saturate in the positive region. It is very
computationally efficient, and it allows the convergence to be 6 times faster than the previous
functions. The problem of zero-centering still remain though, and being the negative part flat
and equal to zero the problem of dead ReLU can arise.

Leaky ReLU In order to solve the problem of dead ReLU, the leaky ReLU (Fig. 3.8b) has
been proposed. It is defined as: f(x) = max(0.01x, x).

PReLU A generalization of leaky ReLU is the parametric ReLU, where a parameter α can
be adjusted to set the slope of the negative part of the function. It is defined as: f(x) =
max(αx, x).

ELU Also the exponential linear unit ELU (Fig. 3.8c) has been proposed. In this case the
negative part is approximated as an exponential function f(x) = x if x > 0; while α(ex −
1) if x ≤ 0. Because of the exponential function it is more computationally expensive.

(a) ReLU. (b) Leaky ReLU. (c) ELU.

Figure 3.8: Some ReLU class activation functions. Courtesy: Fei-Fei Li [29].

Maxout It is a generalization of the ReLU and the leaky ReLU. There’s no saturation as it’s
always in linear regime. It is defined as: f(x) = max(wT1 x + b1, w

T
2 x + b2). It can be noticed

that it doubles the number of parameters though.

3.2.3 Understanding CNN

One of the causes of criticism towards CNN has been the incapacity to understand properly
how a CNN works. The network takes as input an image but what’s happening in between,
how do all those layers look like and how do they work? So some studies have been done in this
direction.

First Layer Some useful information can be extracted by the filters of the first convolution
layer. Differently from the following convolution layers, these filters work directly with the
input images, while the others work on already processed and abstracted data. As can be seen
in Fig. 3.9, these filters are trying to catch oriented edges in different directions and change in
colors.
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Figure 3.9: Some CNN first layers filters. Courtesy: Fei-Fei Li [29].

Last Layer It is possible to extract some useful information from the last layer before the
output too. Alex Krizhevsky in [31] has used the 4096-dimensional feature vector of the last
fully connected layer and applied an L2 nearest neighbors in the feature space. All images were
linked by a semantic connection in this way, in contrast to the nearest neighbors in the pixel
space which led only at gathering images by shape and color similarity. Another approach has
been used in this study [32], where to the 4096-dimensional feature vector a dimensionality
reduction algorithm (PCA or t-SNE) has been applied to reduce the dimension to 2, allowing
to plot images in a plane. The images, as before, seem to be grouped by similarity [33].

Other experiments Another approach is trying to visualize the activation maps. It is pos-
sible to link stable appearing blobs on the activation map with respect to some features on the
image. Otherwise, some heat maps, indicating the probability an image is recognized based
on the position of an occluding square on the image, can be produced to understand which
areas of the picture are more important for the CNN. Something similar is done by saliency
maps, indicating which pixels are more useful for the classification. Saliency maps are obtained
computing the gradient of the class score with respect to image pixels. Other approaches try to
visualize intermediate feature, via guided backpropagation, finding the part of an image that
a neuron responds to, or via gradient descent, generating a synthetic image that maximally
activates a neuron.
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Chapter 4

Analysis of centroiding techniques

After having described the most important techniques used in optical navigation in Chapter 2,
three of them have been selected to be further analysed. The performance of these techniques
will be then compared against the performance of some CNN architectures adapted to the task
of centroiding, as described in Section 4.5.

The optical navigation techniques that have been selected are:
• center of brightness, described in Section 2.3.1;
• center of figure, as proposed in [18] and already described in Section 2.3.2;
• correlation with lambertian sphere, following the procedure presented in [6] and [7] and

already reported in Section 2.3.5.

In order to test the accuracy of the optical navigation methods selected, and later of the
CNNs, it has been fundamental the process of generation of synthetic images. Taking advantage
of the availability of many asteroids and comets 3D shape models it has been possible to test
the developed algorithms in many different situations.

The synthetic images generation process will be described in the following Section 4.1, before
analyzing the selected optical navigation methods, that will need the generated images sets to
assess their working principles and performance.

4.1 Synthetic images generation

In order to generate images a 3D computer graphics software has been used. Usually the
most common solutions are POV-Ray, a ray-tracing program that generates images from a
text-based scene description, and Blender1, an open-source 3D computer graphics software
capable also of rendering images given a scene described by a Python code. Moreover, Blender
allows to choose from different rendering engines, both internal (Cycles, EEVEE, Workbench)
and external (among which POV-Ray itself). Given these possibilities, to describe the scene
inside a Python code and to choose from different render engines, Blender has been adopted as
platform for the generation of images.

4.1.1 Setting of the scene and rendering

The scene is the environment where it is possible to build the relationships between three
important elements:

• the 3D shape model of our small-bodies,
• the illumination, in our case of the Sun, and

1https://www.blender.org/. Last accessed: 24th of November 2020
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• the camera, whose settings will determine the appearance of the body in the image.
Once the scene is ready, the image can be created with the render engine, that is a sort of

interpreter of the relation between light and surface.

Shape model The model rendered is imported in Blender through an Wavefront .obj file.
This type of file is a simple data-format containing information about the geometry of the body:
it contains the position of each vertex, vertex normals and the faces, that are defined by a list
of vertices. Moreover it contains also UV positions of each vertex, allowing the application of a
texture, via texture mapping. The position of vertices is defined without units, but a readable
comment at the beginning of the file usually defines actual dimensions.

Each 3D model comes with its own reference frame, that is centered in the estimated center
of mass of the body. Axes are defined following the definition of the body fixed reference frame
described in Section 2.1, with the z axis directed towards the North Pole and the other two axes
laying in the equatorial plane, with the x axis fixed with the prime meridian of the body.

Shape models used for the experiments described in the following pages are representa-
tive of different kind of asteroids and comets. There are regular asteroids, like 101955 Bennu
and 4 Vesta, semi-regular asteroids, like 2867 Šteins and 21 Lutetia, oblong ones, like 25143
Itokawa and 4179 Toutatis, and also the very irregular shapes of some bodies, like comet
67P/Churyumov-Gerasimenko and asteroid 2008 HW1.

The most relevant characteristics about the aforementioned 3D shape models are reported
in Table 4.1. In the table are distinguished those models obtained by an optical survey operated
by a mission in proximity of the asteroid by those obtained from radar observation from ground.
The resolution and accuracy of the two kind of model are very different, with the first much
accurate and leading to much more detailed models. Very accurate models, anyway, leads to
an high number of vertices and faces, higher computational requirements for rendering and so
higher rendering time. In the same table are reported the average time needed for rendering
512x512 gray-scale .png images, considering 100 different random scenes for each body.

Body Method Faces
Avg. rend.
time [ms]

Source

101955 Bennu Optical 196608 599 2

4 Vesta Optical 64000 305 3

2867 Šteins Radar 20480 302 3

21 Lutetia Optical 47784 292 3

65803 Didymos Radar 1996 259 4

25143 Itokawa Optical 49152 381 3

4179 Toutatis Radar 39996 340 5

67P/Churyumov-Gerasimenko Optical 95858 446 3

2008 HW1 Radar 2780 270 5

Table 4.1: Shape models characteristics for each considered body.

Illumination Blender allows to define the illumination in the scene with four different options:
1) Point, an omni light located in a single point and emitting light in all directions; 2) Sun,
a light coming from a single direction, therefore position is not really relevant; 3)Spot, like for

2https://www.asteroidmission.org/. Last accessed: 24th of November 2020
3https://sbn.psi.edu/pds/shape-models/. Last accessed: 24th of November 2020
4https://dart.jhuapl.edu/DART-Proposal-Reference/. Last accessed: 24th of November 2020
5https://echo.jpl.nasa.gov/. Last accessed: 24th of November 2020
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Point light source is a point, but in this case light is concentrated in a cone; and 4)Area, where
the light source is a surface.

Given the nature of our scene which try to reproduce the small body with the light of the
Sun coming from a distance and from a certain direction, the Sun light source has been used.
With this configuration the only parameter that need to be defined each time is the orientation
of the illumination, a vector that lies in the equatorial plane of the body and is characterized
by the angle λs with respect to the x axis of the Body Reference Frame. This angle is depicted
in Fig. 4.1.

Camera Main parameters defining properties of the camera, besides its position and orien-
tation are: focal length, size and pixels of the sensor. For all the images generated, the focal
length has been set to 50mm, the size of the sensor is 36× 36mm, with 1024 px for each side.

In all datasets generated, the camera position is defined with spherical coordinates rc, λc, φc
in the body fixed reference frame, with rc being the distance from the estimated center of mass
of the body, λc being the longitude increasing positively eastward (0◦ to 360◦), and φc the
latitude increasing positively northward (−90◦ to 90◦).

In Fig. 4.1 these angles are represented together with the Sun orientation, defined by λs.
The angle between the two directions of the Sun and of the camera is the phase angle α. The
orientation of the camera will be defined specifically for each dataset in Section 4.1.2.

Equatorial Plane

y
B

z
B

x
B

φC

α

rC

S

OB

λS

λC

C

Figure 4.1: Spherical coordinates describing camera position and Sun direction in the Body
Fixed Reference Frame.

Render engine For the rendering of the scene two render engines have been considered:
Cycles and EEVEE. The first one is based on ray tracing, it is therefore slower but more
accurate, as it computes each light ray starting from the camera and bouncing on the body
surface, taking back accurate information about the brightness and the color of the material.
The second one instead – even if is always a physically based rendering (PBR) engine like Cycles,
meaning that both are trying to model light and material as accurately as in reality – is not a
ray tracing render engine. It is therefore slightly less accurate but faster.

An estimation of the rendering times for the two methods is presented in Table 4.2. As
before, the measures of time reported in the table are an average over 100 different random
scenes for each asteroid. The product of the rendering is a 512x512 gray-scale .png file. In
order to highlight the difference between the methods, in the last column are show the percentile
differences of Cycles rendering times over the EEVEE rendering times.
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Given the big difference between these methods and the big number of images that is needed
to generate for each set, the EEVEE rendering engine has been used for the creation of all image
sets.

Body EEVEE [ms] Cycles [ms] Diff.

101955 Bennu 599 2512 +319%
21 Lutetia 292 2371 +712%
67P/Churyumov-Gerasimenko 446 2557 +473%

Table 4.2: Comparison of average rendering times with EEVEE and Cycles.

4.1.2 Image sets

Different images sets have been produced during the work in order to understand and evaluate
performance of the developed algorithms. Parameters varying with images sets are mainly:

• Bodies to be rendered;
• Sun light directions in the equatorial plane of the body-fixed reference frame;
• Camera positions in the body-fixed reference frame, defined by distances from the body

CoM rc, and intervals of longitude λc and latitude φc;
• Rendering settings, like image dimension and file compression.

Image set n.1 This image set has been created with the intention of map the distribution
of the error in centroiding of methods like CoB, CoF and correlation with lambertian sphere
on all the possible combinations of camera position around the body and Sun light directions.
Moreover bodies of different shapes, as 101955 Bennu, 2867 Šteins, 4 Vesta, 25143 Itokawa,
67P/Churyumov-Gerasimenko and 21 Lutetia, have been considered to understand the effect of
the irregularity of the shape on centroiding algorithms. The pointing of the camera is supposed
to be perfect, therefore the CoM will always appear in the center of the camera frame, that has
size 1024x1024 pixels.

For each body will be considered a set of Sun longitudes Λs = [0◦, 330◦] with a step of
30◦, such that the complete surface of the body is crossed by the light; for each illumination
condition then, a set of images will be generated based on the position of the camera with
respect to the body: camera positions will stay on a grid of latitudes Φc and longitudes Λc.
Longitudes covered will depend on the illumination condition, because the attempt is to avoid
largest phase angles. For this reason intervals of longitudes λc covered, based on the illumination
direction defined by λs, are defined as follows:

Λc =


[0◦; λs + 150◦] ∪ [λs + 210◦; 360◦] , if λs < 150◦

[180◦; (λs + 150◦) mod 360◦] ∪ [λs − 150◦; 360◦] , if 150◦ ≤ λs < 210◦

[180◦; 360◦] ∪ [0◦; (λs + 150◦) mod 360◦] ∪ [λs − 150◦; 180◦] , if 210◦ ≤ λs < 360◦

(4.1)

A graphic representation of these angles, which are dependent on λs, is given below in
Fig. 4.2. The set of longitudes Λc will be always of the same dimension, being the step angle
10◦. For each body, therefore, will be created a set of 12 λs x 19 φc x 32 λc = 7296 images.
Images have a size 1024× 1024, in gray-scale and .png format.

Image set n.2 This is the image set specifically created for training the convolutional net-
works. It will be randomly separated in two portions, the training set and validation set at the
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Figure 4.2: Intervals of angles λc considered around λs.

moment of setting the training. The characteristics of the set must be as general as possible,
so that networks are able to generalise the relation they are learning, between the the input
image and the center of the body. For this reason λs, φc and λc have been chosen randomly for
each rendering from their relative sets Λs, Φc and Λc, as already defined for image set n.1. An
additional parameter randomly changing is the distance of the camera from the center of the
shape model. The distance can vary in an interval that depends on the specific body, so that
the size of the body in the sensor frame is Rc ∈ [40, 150] px. Moreover, like for set n.1, have
been rendered the same amount of images for each asteroid. In this case, exactly 3500 images
for each one of the six bodies already mentioned above. The total amount of images is therefore
3500× 6 = 21000. Images are in .png format and have size of 512× 512.

An important difference with respect the first set stays in the position of the body in the
sensor frame. In this case, always in the attempt to provide the most general situation to
networks, also the position of the body is chosen randomly within an interval of coordinates
which is limited by the expected size of the body, so that the body is completely rendered within
the frame.

Image set n.3 This is the test set used to validate models after training. It contains images
from the same bodies mentioned before and rendered following the same criterion. Only the
size of the set is changing: it has 165× 6 = 990 images.

Image set n.4, 5 and 6 These three sets have been generated for train again the network
trained with set n.2, with three totally new bodies, 4179 Toutatis, 2008 HW1 and 65803 Didy-
mos. Also these sets have been generated with same parameter of sets n.2 and 3. In this case
though, for each body, and so for each set, 21000 images are generated.

Image set n.7, 8 and 9 In order to validate the performance of the networks trained on
each specific body of sets n.4,5,6, these three sets of images have been created. They share the
same characteristics of previous sets and each contains 165 labeled images.

In Table 4.3 the principal parameters characterizing each image set are reported.
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ID Bodies λs [◦] Rc [px] λc [◦] φc [◦] N. Img. Img. Size [px]

1

Bennu

[0 : 30 : 330] 350 Λc [−90 : 10 : 90] 7296 1024

Steins
Vesta
Itokawa
67P
Lutetia

2

Bennu

rnd[0 : 330] rnd[40 : 150] rnd(Λc) rnd[−90 : 90] 21000 512

Steins
Vesta
Itokawa
67P
Lutetia

3 // // // // // 990 //

4,5,6
Toutatis

rnd[0 : 330] rnd[40 : 150] rnd(Λc) rnd[−90 : 90] 210006 512HW1
Didymos

7, 8, 9 // // // // // 1656 //

Table 4.3: Principal parameters characterizing each set.

4.2 Center of Brightness

As already explained in Section 2.3.1, the computation of the CoB is the basic way to deter-
mine the center of an illuminated body on a dark background. However, as can be seen from
Fig. 4.3, the point obtained through the brightness moment algorithm, is only a "barycenter" of
the illuminated pixels blob. In order to find the best estimation of the actual center of mass of
the body imagined, a correction, dependant on the direction of the illumination and the phase
angle, is applied to the CoB. The point obtained is the Center of Figure.

In order to compute the CoB the Eq. (2.5) of the brightness moment algorithm is applied.
However, to avoid a loop counting pixels position in the x and y direction of the sensor, a
matrix approach is applied: two matrices having same dimensions as the original image matrix
are created, matrix J with values corresponding to the number of the column and I = JT with
values corresponding to the number of the row. These two matrices are the used to compute
xCoB and yCoB as shown in Eq. (4.2), where the� symbol represents element-wise multiplication
and A is the image interpreted as a matrix.

xCoB =

∑
i,j (A� J)i,j∑

i,j Ai,j
(4.2)

yCoB =

∑
i,j (A� I)i,j∑

i,j Ai,j
(4.3)

In Algorithm 1 is reported a brief schematic of main passages needed for computing the
Center of Brightness.

6For each body.

36



Chapter 4. Analysis of centroiding techniques

Algorithm 1 Center of Brightness
1: Image is opened and interpreted as a matrix, A.
2: A thresholding is applied to remove any background noise, setting any value below 10 to 0.
3: The denominator of Eq. (2.5) is computed summing up all values of the image matrix A.
4: Matrices I and J are created, based on matrix A dimensions.
5: Values xCoB and yCoB are computed following Eq. (4.2).

In order to understand the performance of the CoB and evaluate the error with the respect
the known Center of Mass, the algorithm described above has been applied to images set n.1
described in Section 4.1.2. Remembering that the pointing of the camera in this set is optimal
– meaning that the CoM will be always in the center of the sensor frame – it is possible to
compute the difference between the position of the CoB and the CoM, that is the ground truth.
In the following plots, reported in Fig. 4.5, is shown the distribution of the distance between
the computed CoB and CoM, with respect the positions of the camera around the body. For
each combination of longitude λc and latitude φc is therefore reported an error equivalent to
the distance between the two points.

From the graphs can be noticed that the minimum error usually happens when λc = 0 and
φc = 0. This is the condition where, in combination to the condition of λs = 0, the camera
is just over the interception point of the body prime meridian and equator and it has the Sun
perfectly behind, therefore phase angle is α = 0 and the body is perfectly and symmetrically
illuminated. As λc and φc shift from 0◦, phase angle increases and the distance between the
CoB and the CoM increases too. In Fig. 4.3 are shown images corresponding to Bennu, as seen
from three different angles: λs and φc are set to zero, while λc is changing from λc = 0◦ in
Fig. 4.3a, to λc = 70◦ in Fig. 4.3b and to λc = 150◦ in Fig. 4.3c. It is evident how the CoB gets
further and further away from the CoM as phase angle α increases.
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Figure 4.3: Variation of CoB position changing phase angle from α = 0◦ (a) to α = 70◦ (b)
and α = 150◦ (c).

This effect of the error that follows the phase angle, is very clear for regular bodies, like
101955 Bennu, 2867 Šteins and 4 Vesta, it is much less appreciable, instead, for the other more
irregular bodies.

Following the intuition that the distance of the CoB to the CoM increases with the phase
angle, it is plotted the dependence of α with respect to any combination of longitude λc and
latitude φc of the camera, in a way analogous to what has been done for the CoB error. The
results, shown in Fig. 4.4, highlights how similar are the behaviours of α and of the CoB error
in the λc − φc plane. From this clarification can be understood why in the Center of Figure
method, described in Section 2.3.2, a correction is applied to the CoB based on the phase angle
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α and on the direction of the illumination.
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Figure 4.4: Phase angle α in the λc − φc plane, in the case λs = 0.

4.3 Center of Figure

As seen in Section 2.3.2, Center of Figure is the point obtained after applying a correction to the
CoB in order to reduce its error to the actual CoM, especially at higher phase angles. Moreover
after having analysed CoB method in Section 4.2, it has been possible to highlight a clear link
between CoB error and the phase angle – in particular for the most regular bodies – comparing
the distribution of the first and of the second in the λc − φc plane.

In Eq. (2.7) it has been shown the relation developed in [18] for computing the offset factor
γ from phase angle α. The correcting factor is a number included in between 0 and 1, and
represent the fraction of the error with respect the body radius in the sensor frame, as shown
in Eq. (2.9).

Is is possible to make the suggestion coming from the analysis of the CoB error and the
relation of the offset factor γ converge together by plotting the CoB error – that once normalized
dividing by the body radius in the sensor frame Rc gives a measure of the offset factor γ – of
each combination of λs, λc and φc with respect to the corresponding phase angle α.

The result of this work is visible in Fig. 4.6. Here are reported, for each body, the scatter
plots containing all the CoB errors for each image of image-set n.1, that are correlated to the
phase angle α, rather than to λc and φc. In each plot are reported two scales for the y axis:
one on the left, that corresponds to the actual distance of the CoB to the CoM in pixels, and
the other on the right, that is the offset factor γ, obtained simply dividing the CoB error by
the radius Rc in pixels.

From the scatter plots three behaviours in particular can be noticed:
1. There is a quasi-linear dependence between the CoB error and the phase angle α: usually

the relation is nearly linear up to α = 100◦, then there is a little decline.

2. To most regular bodies, like 101955 Bennu, 2867 Šteins and 4 Vesta, is associated a much
smaller dispersion of the errors in the y direction of the plot, while more irregular bodies
show a larger dispersion. This should be due by the fact that the brightness moment
algorithm is mislead by the different appearances an irregular body can have in the sensor
frame and by the concavities that could lead to "internal" shadows.
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Figure 4.5: Error of CoB with respect to CoM of the bodies considered in image-set n.1, in
the case λs = 0.

3. Despite all the bodies have been rendered to have the same appearance in the sensor
frame, setting Rc = 350 pixels, peaks of the curves seem to reach different amplitudes
of the CoB error, leading to different maximum values of γ; this is evident for irregular
bodies like 25143 Itokawa and 21 Lutetia and it could be due to the radius of the body
chosen as reference for its dimension, which is not univocal like for the more spherical-
shaped bodies. In practical terms, it means that for an irregular body, based on the value
of the radius chosen as reference, a figure with an Rc grater than 350 could be obtained,
or smaller too, based on the view point or the illumination condition.
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4.3. Center of Figure

Figure 4.6: Error of CoB with respect to the phase angles α, considering all the possible
combinations of illumination, λs, and camera position, λc and φc.

4.3.1 Curve fitting

A logical continuation is now to find the mathematical relation that best fits with all the points
in our CoB error-Phase angle plane. As a starting point Eq. (2.9) is considered and for this
reason we will refer to it as "original function" in the following lines.

Original function As can be noticed, Eq. (2.9) is composed by a coefficient part 3πR/16
that then multiplies the function strictly dependant on the phase angle α. The coefficient does
not strictly depend on the actual size of the body, but in this case it has been normalized on
the radius R of the body. In any case, the coefficient regulate the behaviour of the law changing
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slope. For this reason the candidate function for the curve fitting is:

γ = aπR

[
sinα (1 + cosα)

(π − α) cosα+ sinα

]
(4.4)

with the coefficient a that is the unknown to be determined by the fitting algorithm, and R
the radius of each body. The problem has been solved using the Python module SciPy, that
has implemented the Levenberg–Marquardt algorithm in the optimize.curve_fit function7.
The results of the fitting, using as initial guess a0 = 2/3, is summarized in Table 4.4, and
corresponding functions are shown in Fig. 4.7.

Body a

101955 Bennu 6.897 254 82× 10−1

2867 Šteins 8.021 607 23× 10−2

4 Vesta 6.299 369 07× 10−4

25143 Itokawa 2.018 795 24× 10−1

67P/Churyumov-Gerasimenko 6.580 214 08× 10−2

21 Lutetia 2.117 390 18× 10−3

Table 4.4: Coefficient a obtained after curve fitting for each body.

From the plots it can be noticed how this kind of function limits the fitting as it seems not
to be able to follow the decline at he top of the curve. Moreover, from the most regular bodies,
like 101955 Bennu and 4 Vesta, it is possible to notice a slight bending also at low phase angles.
In order increase the accuracy of the fitting, a new sinusoidal function has been considered as
guess.

Sinusoidal function The new guess function is a sinusoidal function, that can be adjusted
through four parameters, a, b, c, d, is shown in Eq. (4.5).

γ = c sin (aα+ b) + d (4.5)

Parameters obtained for each body considered have been reported in Table 4.5.

Body a b c d

101955 Bennu 1.38877895 4.59127164 0.35423676 0.38044301
2867 Šteins 1.22958049 4.98982963 0.39734094 0.41317226
4 Vesta 1.33986713, 4.73683347 0.32521464 0.36775284
25143 Itokawa 1.31584702 5.29440782 0.10746648 0.14071763
67P/C.-G. 1.48568477 4.63842777 0.21120736 0.30847308
21 Lutetia 1.23540247 4.98007479 0.23968084 0.27534144

Table 4.5: Coefficients of the sinusoidal function obtained after curve fitting for each body.

The corresponding offset factor γ function for each body are then shown in Fig. 4.8. From
the plots it is possible to notice how much better the new laws now follow the evolution of
the points cloud. All of them stay just in the middle of the cloud and are able to reproduce
the bending of the cloud at low phase angles and the decline at high phase angles. It must be

7https://docs.scipy.org/. Last accessed: 24th of November 2020
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4.3. Center of Figure

Figure 4.7: Offset factor γ function for each body, after proper curve fitting with the original
function.

said anyway that this type of function needs four parameters in order to be specialized to the
particular body, while the original function needs only one. Moreover, despite the fitting allows
to follow better the evolution of the points cloud, it can not overcome the great dispersion of
those clouds associated to the most irregular bodies. We, therefore, cannot expect to have a
big impact in the containment of the centroiding error with the most irregular bodies, or in any
case with those characterized by a disperse CoB errors cloud.

4.3.2 Procedure

Once the optimal function linking the offset factor γ and the phase angle α is found, we have
determined only the amplitude of the correction that need to be applied to the CoB. What is
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Figure 4.8: The offset factor γ functions for each body, after proper curve fitting with the
sinusoidal function.

needed now is the direction of the Sun in the camera reference frame. In order to do this, firstly
it is needed to define the transformation matrix TBC that represents the orientation of the
camera with respect to the Body Reference Frame. The transformation matrix TBC is defined
in the following way:

TBC =

xc
yc
zc

 with


zc = rc/ ‖rc‖
xc = (zB × zc) / ‖(zB × zc)‖
yc = zc × xc

(4.6)

with rc that is the camera position vector. Once the transformation matrix is defined, it is
possible to obtain the direction of the sun in the Camera Reference Frame multiplying the Sun
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direction in the Body Reference Frame by the transformation matrix. Therefore:

AC = TBC AB (4.7)

And finally apply the correction to the already computed CoB position:

xCoF = xCoB − γRc
[
cos Φ
sin Φ

]
with Φ = arctan

(
ACy
ACx

)
(4.8)

The entire procedure for computing the CoF – assumed the offset factor law has already
been determined through fitting of the CoB error – is then summarized in Algorithm 2.

Algorithm 2 Center of Figure
1: Compute CoB following Algorithm 1.
2: Phase angle α is computed from the camera position vector and the Sun direction vector

in the Body Reference Frame α = arccos
(

RC ·RS
‖RC ·RS‖

)
.

3: The offset factor γ is computed from the law specifically prepared fitting the CoB error of
the body considered.

4: The transformation matrix TBC is computed, as shown in Eq. (4.6).
5: The illumination direction in the CRF is obtained rotating the illumination direction in the

BRF with TBC .
6: The correction is applied to the already known CoB, applying Eq. (4.8).

From Algorithm 2 it can be highlighted that in order to find the CoF, besides the CoB, it is
needed the size of the body in the image plane Rc, that can be estimated from the image itself
or given the distance from the body Rc. Moreover, in the real case also the phase angle need
to be estimated.

4.4 Correlation with Lambertian Sphere

As explained in Section 2.3.5, with this technique it is possible to find the center of the target
body by correlating a lambertian sphere with equivalent geometric and illumination properties;
the peak in the correlation map represent the best estimation of the target center. The strength
of this method stays in the fact that the template, the correlation is made with, is an image
obtained without the need of a shape model and without rendering complex geometries. The
image of the lambertian sphere can be obtained rendering a sphere with proper illumination and
surface properties (the surface in order to have a lambertian reflectance has to be a diffusely
reflecting surface) or, even better, can be obtained in an analytical way, taking advantage of
the simple geometry. The only unknown variable needed for drawing the lambertian sphere is
its radius. For this reason an optimization process is undertaken for finding the radius of the
lambertian sphere that gives back the highest value of correlation.

The core phases of the process are therefore:
• first of all, the proper drawing of the lambertian sphere: for doing this the Lambert’s
cosine law has been applied to the simple geometry of the sphere (Section 4.4.1).

• Then the template image generated is correlated with the original image, which a padding
has been applied to, producing a DIC map (Section 2.3.4).

• Both previews processes are integrated in the optimizer, that tries to find the radius of
the lambertian sphere giving the highest correlation score
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4.4.1 Drawing the lambertian sphere

The Lambert’s cosine law states that the light reflected I from a body, is proportional to the
intensity of the incoming light IL, and the cosine of the angle between the vector normal to the
local point of the surface n and the light-direction vector L, pointing from the surface to the
source, as shown in Eq. (4.9):

I = IL n · L = IL ‖n‖ ‖L‖ cosα (4.9)

In order to have a link between points on sphere surface and the corresponding points on
the image plane, points on the surface are defined through spherical coordinates, as shown
in Fig. 4.9. Vector n is defined starting from the radius R of the sphere and the spherical
coordinates Λ and Φ:

n =

R cos Λ cos Φ
R sin Λ cos Φ
R sin Φ

 (4.10)

Image Plane

yC

zC

xC
Λ
S

n

L

Φ
SO

S

Figure 4.9: Geometry of the 3D lambertian sphere on the image plane.

Defining r = R cos Φ, and therefore being Φ = arccos (r/R), n is finally defined in the
following way:

n =

 r cos Λ
r sin Λ

R sin (arccos (r/R))

 (4.11)

In such a way that any pixel, defined by r and Λ, staying inside the radius R can be directly
related to the normal n.

The light direction L is defined through spherical coordinates ΛS and ΦS too:

L =

cos ΛS cos ΦS

sin ΛS cos ΦS

sin ΦS

 (4.12)
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However, in order to have the values of ΛS and ΦS in the camera reference frame, it is needed
to link these values with the orientation of the Sun λS and the position of the camera, defined
by λc and φc, in the body reference frame. This is possible by applying spherical trigonometry
laws.

In Fig. 4.10 are represented the two reference frames, the body reference frame and the
camera reference frame. Point C corresponds to the position of the camera in the body reference
frame, and as camera points perfectly to the CoM of the body, axis zc of the camera reference
frame, that is perpendicular to the image plane, connects the origin O to point C.

yB

zB

zC
xC

yC

xB

O

A

B

D

C

S

λS

ΦS

φC

Figure 4.10: Geometry of the 3D lambertian sphere on the image plane.

In order to have an idea of the relationship between the two reference frames, it can be
imagined that the camera reference frame is defined by a sequence of rotations, starting from
the body reference frame. In the initial condition zc ≡ xB, xc ≡ yB, and yc ≡ zB. Then the
reference frame is rotated by λc around yc, and later by φc around xc. The position of the
Sun is defined by λS in the body reference frame, while by ΛS and ΦS in the camera reference
frame.

In order to relate the aforementioned quantities, two spherical triangles have been high-
lighted. The first 4ACS, with arc AC being equal to φc, having a right angle in A and with
arc SC being equal to π/2−ΦS . The angle between xB and OA is λc, while the angle between
xB and OS, and so arc SA is equal to λc − λS . The second one, 4SDB, instead, has arc
BS equal to ΦS and a right angle in B. Being arc DA equal to π/2, arc DS will be equal to
π/2 − (λc − λS). Arc DB, instead is equal to ΛS − π. All the quantities just obtained have
been reported in Fig. 4.11.
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Figure 4.11: Two spherical triangles considered and relative angles.

Applying the spherical law of cosine to triangle 4ACS, it can be written:

cos (π/2− ΦS) = cos (λc − λS) cos (φc) + sin (λc − λS) sin (φc) cos (90◦) (4.13)

Being cos (90◦) = 0, it is possible to find a direct relation between ΦS and coordinates of camera
and Sun in the body reference frame:

ΦS = π/2− arccos (λc − λS) (4.14)

For finding the other relation instead, we start from the the spherical law of cosine applied
to the other triangle 4SDB. It is shown and then simplified in the following equations:

cos (π/2− λc + λS) = cos (ΦS) cos (ΛS − π) + sin (ΦS) sin (ΛS − π) cos (90◦) (4.15)

cos (ΛS − π) =
cos (π/2− λc + λS)

cos (ΦS)
(4.16)

However, to have an unambiguous angle ΛS , the sin counterpart – sin (ΛS − π) – is needed.
The relation is obtained taking advantage of the spherical laws of sine, applying them to the
two triangles, as shown in Eqs. (4.17) and (4.18).

sinS

sin (ΛS − π)
=

sin (π/2)

sin (π/2− λc + λS)
(4.17)

sinS

sin (φc)
=

sin (π/2)

sin (π/2− ΦS)
(4.18)

Simplifying sin (π/2) and equating the two equation through sinS, it can be found:

sin (ΛS − π) =
sin (φc) sin (π/2− λc + λS)

sin (π/2− ΦS)
(4.19)
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Putting together Eqs. (4.16) and (4.19) and using arctan, ΛS is found. The two relations for
finding ΛS and ΦS based upon λS , λc and φc are therefore summed up in Eqs. (4.20) and (4.21).{

ΛS = π + arctan [sin (φc) tan (π/2− λc + λS)]

ΦS = π/2− arccos (λc − λS)

(4.20)
(4.21)

In Fig. 4.12 are shown the resulting lambertian spheres given λS , λc and φc. In order to
give an idea of the result, they have been matched with the corresponding renders of 101955
Bennu. All the images have same λS = 0 and φc = 0, while λc is increasing from left to right.
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Figure 4.12: Three renders of 101955 Bennu at different camera longitudes, with correspond-
ing lambertian spheres.

4.4.2 Correlation

Once the template is ready, correlation is the operation to employ in order to obtain the DIC
map. Differently from what reported in [6] and [7], the operation of correlation has been per-
formed in the space domain and not in the frequency domain, after having transformed images
with the discrete Fourier transform. For sure the correlation will take more time, but in this
way it is possible to take advantage of the normalized correlation coefficient, whose formulation
has been reported in Eq. (2.15). As stated before in Section 2.3.4, the normalized correlation
coefficient is always γ = [−1, 1], thus it is normalized over changes in the image and the tem-
plate. For computing the normalized correlation coefficient, it has been used the formula already
implemented in the function matchTemplate(), through method cv.TM_CCOEFF_NORMED, in
the Python package opencv-python8.

A clarification must be done for the dimensions of the template and of the original image.
If the template has dimensions m×n, in order to have a DIC map of the same dimension of the
input image, such that a direct correspondence between the correlation peak position and the

8https://opencv.org/. Last accessed: 24th of November 2020
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center of the image is possible, it is needed to add a padding to the input image corresponding
to (m− 1)/2 and (n− 1)/2 on each side. As input images we are considering are 1024× 1024,
the template will be rendered with dimension of 1025×1025, adding therefore a padding to each
side of the original image of (1025 − 1)/2 = 512 pixels. Correlation, thus, will be performed
between the padded image, of size 2048 × 2048, and the template, whose size is 1025 × 1025.
Must be noticed that in this way it is possible to find the correlation peak even if the target
body is not rendered in the center of the frame. A graphical representation summarizing the
geometry just explained is available below.

Padding

Original Image

Template

(x,y)

+1024px

+1024px 1024x1024

1025x1025

y
P

x
P

Figure 4.13: Graphical representation of the dimensions involved in the template matching.

In Fig. 4.14 instead are reported the results of the correlation between the original images
and the corresponding lambertian spheres already shown in Fig. 4.12. There are reported also
the location of correlation peaks in the DIC maps and the same locations are then reported also
in the original images, showing the estimation of the center.

4.4.3 Radius search

However, once the image is given and the template with the proper lambertian sphere need
to be generated an ingredient is missing and it is the dimension of the sphere in the template
image. In [6] and [7], after a first rough estimation of the size counting the bright pixels of the
binarized version of the original image, a set of lambertian spheres with different radii around
the first estimation are generated, and for each one the maximum correlation score is computed.
Based on these results, an interpolation is made to find an estimation of the radius associated
to the peak of the interpolated relation.

In this work instead, after the first rough estimation which is made by choosing the max-
imum distance between active pixels in the vertical and horizontal direction - such that the
algorithm is not tricked too much in case of internal shadowing, especially for concave shapes -
an optimization process is started aiming at maximizing the peak correlation score. An advan-
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Figure 4.14: Original images (above) and DIC maps obtained correlating with the lambertian
spheres shown in Fig. 4.12 (below). Peaks of DIC maps and corresponding estimated center are
also reported.

tage of this process is that the peak is found with more accuracy, though, many iterations lead
to longer computational time.

In this case the function optimize.minimize_scalar() from Python module SciPy 9 has
been used. The bounded method has been used, choosing as bounds the half and 1, 5 times the
first rough radius estimation.

9https://docs.scipy.org/. Last accessed: 24th of November 2020

50

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize_scalar.html


Chapter 4. Analysis of centroiding techniques

4.5 Convolutional Neural Network

The work described here is the further development of the workshop dedicated to the applica-
tion of AI to image processing for autonomous navigation around small bodies, organized by
Stardust-R team in the context of the Local Training Workshop I10. The aim of the workshop
was to apply transfer learning to some pre-trained convolutional networks, enabling them to
determine the center of an asteroid. Networks were trained using a set of 1368 synthetic im-
ages of a single asteroid, rendered from various points of view, and the linked ground truth,
containing the position of the CoM in the sensor frame. During the workshop a particular class
of deep convolutional networks has been considered, the one of residual networks, in particular
the architectures of ResNet 18, 34 and 50 [34] have been considered. These networks are an
evolution the VGG deep convolutional networks [35], aimed at easing the training, that becomes
very difficult as the depth increases.

The original architecture of the networks considered is made for accomplishing the task of
classification, while in this case a regression is needed. This means that given the image as
input, the network shall give back two continuous values, that are the coordinates of the body
center. To do that the last part of the network called head, that contains the fully connected
layers and the softmax activation function, is substituted with a new one specifically designed
for the regression task. The last fully connected layer will have only two outputs, instead of the
K classes, and the activation function is changed with a sigmoid function, having the output
in the interval [-1,1].

During the workshop, and also for this thesis, the Python deep learning library fastai 2 [36],
based on PyTorch platform, has been used. This library allows an higher level management of
neural networks and it is particularly suitable for transfer learning. Given the lack of a GPU
suitable for training big neural networks, some on-line services, like Google Colaboratory11 and
Paperspace12 notebooks, providing free GPU instances, have been used for training networks in
reasonable time.

In the following pages will be described how the chosen network, the VGG16 and ResNet-34
have been modified and trained for the purpose of centroiding.

4.5.1 VGG16

The major difference between the original VGG16 architecture and the one used in this work
stays in the head. The original head was composed of three fully connected layers: the first two
have 4096 channels each, with the last one 1000 channels, one for each class. The head in our
case is composed of three FC layers, the first one made of 1024 channels, the second one 512
and the last one made of 2, that are the number of coordinates. While in the original head the
activation function after the last FC layer was a Softmax, in our case there is a sigmoid with
output in the range [−1, 1].

While the input of the original network was 224 × 224 size RGB image, in this case the
input size is set to 256 × 256, with three equal channels, given that our grayscale images no
not have color information. This leads to a slight increase of the size of following layers. The
halving of the layers size block after block is anyway maintained. Anyway cause images from
set n.2 and 3 have size 512 × 512, they will be resized through a down-sampling before being
used for training. In Fig. 4.15 is shown the architecture of the network with the new head.

10http://www.stardust-network.eu/. Last accessed: 24th of November 2020
11https://colab.research.google.com/. Last accessed: 24th of November 2020
12https://www.paperspace.com/. Last accessed: 24th of November 2020
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4.5. Convolutional Neural Network

In the scheme, obtained thanks to PlotNeuralNet tool13, are shown the sizes of convolutional
layers (in yellow), that are always followed by the rectification (ReLU) non-linearity (in light
orange). After each stack of convolutional layers, a max pooling (in orange) decreases the size
of the layer before the following convolutional layers.
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Figure 4.15: VGG16 architecture with new head.

As seen in Section 3.2.3, especially in the first layers filters are contained the most generic
and universal information about images. Here there are the filters catching elemental shapes,
oriented edges and changes in color. For this reason weight of these layers will never be re-
trained.

Instead, on the opposite side, in the last convolutional layers and in the head are contained
more specific information about the class of the object to recognize, in case of classification.
That’s the reason why the head is substituted - besides output dimensions reasons – and why
only last layers are trained. That is the principle of transfer learning, taking advantage of a
qualified architecture already trained for long time, for a new purpose.

Following this reasoning, an attempt has been done in trying to remove completely the last
block of convolutional layers before the head, because it is expected they contain only specific
information about the classes the were trained on before. The result is, however, a shallower
network, probably less capable of learning the non-linearity between the input and the output.
The resulting network architecture is shown in Fig. 4.16.

Trainable

layers

Case 2

Case 2b

256

conv1

conv2

conv3

conv4

fc6

fc7

fc8+sigmoid

64 64

256

128 128

128

256 256 256

64
512 512 512

32

1

1024

1

512
1

2

Figure 4.16: VGG16 architecture without last convolutional block.

13https://github.com/HarisIqbal88/PlotNeuralNet. Last accessed: 24th of November 2020
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The network is trained on images from image set n.2 Section 4.1.2. The set is automatically
divided by dataloader in training set and validation set, with a ratio 8:2. The batch size has
been always set to 64, even though a larger one would have been better for the training. The
constraint is due to memory limitation, encountered using P5000 Paperspace GPU instance.

The most important parameter for the training is the learning rate. This parameter is chosen
each time the network need to be trained, selecting the best value from the the plot generated
by the lr_finder function. In the plot is shown the behaviour of the loss as function of the
learning rate. The typical behaviour is the one where the loss decreases, increasing the learning
rate, until a minimum is reached before the loss explodes. The optimal learning rate is chosen
one order of magnitude before the minimum loss.

For the network training has been used the fastai function fit_one_cycle(), which allows
the training to take advantage of the 1cycle policy developed by Leslie Smith [37]. The cycle
takes the optimum learning rate, found with the learning rate finder lr_finder, as the max-
imum learning rate. The learning rate is progressively changed during the training, increasing
during the first half up to the maximum and then decreasing again, down to the minimum
learning rate value. The same is done with the value of momentum, decreasing first and then
increasing back. For all the training Adam optimizer has been used.

The two versions of VGG16 created have been trained following this procedure:
1. the trainable layers are defined;

2. the optimal learning rate is decided based on the loss plot made with lr_finder;

3. the network is trained for 10 epochs, with the selected learning rate and batch size of 64,
using fit_one_cycle().

4. the model corresponding to the minimum value of validation loss reached during the 10
epochs training is saved.

This procedure is repeated two times for both architectures: 1) with the only head layers
trainable (case 1 and 2) and 2) with the saved network obtained from the first training and the
first underlying convolutional block trainable too (case 1b and 2b). In both Figs. 4.15 and 4.16
the different levels of trainable layers are highlighted.

4.5.2 ResNet-34

The same process has been applied to the original architecture of the ResNet-34. The head has
been removed and substituted with a new one allowing the regression task needed for obtaining
the two coordinates of the center. The size of the FC layers is identical to the VGG16 ones.
The obtained architecture is visible in Fig. 4.17. It can also be noticed that the network is much
deeper than the VGG16, given its 32 convolutional layers plus the 2 FC layers. Differently from
the VGG16 there is not a max pooling at the end of each block of convolutional layers.

Also in this case the size of the input has been set to 256 × 256 × 3 identical channels,
given the grayscale origin of the images. Differently from before, anyway, has been applied
data augmentation, in order to avoid overfitting and increase the generalization of the training.
Data augmentation virtually increases the size of the image set, because, despite the number of
images in the disk is always the same, each time an image is loaded to the batch, it is augmented
through a transformation. The allowed transformations for the training set are random flipping,
variation of illumination and zoom.

It is important to notice that a modification of the original image implicates the alteration
of the center of the figure too. The fastai package is the only one at the moment capable of
automatically provide augmentation and adapt also the ground truth.
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Figure 4.17: ResNet-34 architecture with new head.

Differently from the VGG16, with this architecture has not been tried to remove the last
convolutional block before the head. The training has been therefore organized in the following
way:

1. the first training is made on the only head that just substituted the original one, for 10
epochs;

2. the best model obtained is trained again, unlocking also the last convolutional block layers,
this time for 20 epochs;

3. the network is trained again for 10 epochs, updating only the learning rate;

4. another convolutional block is unfrozen and everything is trained for 30 epochs.

All the procedures and all the resulting validation losses of models selected after a training are
reported in Fig. 4.18. For each starting architecture is shown the total number of parameters,
while for each training case is shown the number of trainable parameters.

4.5.3 Network specialization

In this section is faced the problem of the specialization of the network above trained. It
is considered therefore the situation in which a convolutional neural network trained on a
large dataset containing many different asteroids, like image set n.2, needs to be specialized in
preparation of a mission directed toward a single small body.

For this experiment, three image sets (n.4, n.5 and n.6), described in Section 4.1.2, have
been created for training the network, obtained in case 1d of ResNet-34. Each image set is
made specifically for each small body considered. The three small bodies are all of them totally
new with respect to those previously considered, and are 2008 HW1, 4179 Toutatis and 65803
Didymos. The image set of each small body has the same size of image set.2, 21000 pictures.

In order to determine the minimum number of labeled images needed for properly training
the network, an iterative process is started. At each iteration always the same network, the
one obtained after ResNet-34 case 1d, is trained on the specific dataset, whose size is decreased
iteration after iteration. As it is decreased, a subset of the original set will be considered. After
the original dataset made of 21000 images, subsets of 10500, 5120, 2560, 1280, 540, 320, 160,
80, 40, 20 and 10 images are considered. Because each set will be then divided in training set
and validation set, the actual number of training images will be the 80% of the set size. As the
size shrinks, also the batch size will be forced to decrease. For the last three subsets batch size
will be 32, 16 and 8.
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Figure 4.18: Synthesis of architectures training and resulting validation losses.

Each training lasts for 30 epochs. In Fig. 4.19 is shown the behaviour of training and
validation loss for each iteration.

It can be noticed how while in the first six datasets the trend is clear, with both losses
decreasing, starting from the subset of size 320 trend is less clear and start to be pretty chaotic
for the smallest subset, arriving to the last two cases, with datasets of size 20 and 10, where
training and validation losses diverge. Besides the drop of the dimension of the training set, a
factor that could have contributed to the problem is the batch size, as the smallest the batch
size, the less general is the correction applied by the backpropagation at each iteration.

After each training the obtained network is validated on the test set corresponding to the
specific small body. These sets (n.7,8,9) have been introduced in Section 4.1.2. The resulting
performance of networks obtained from each combination of dataset size and body is reported
in Chapter 5.
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Figure 4.19: Training process with Toutatis sets.
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Chapter 5

Results

In this chapter are shown the resulting performances of the developed centroiding techniques.
In order to properly compare methods described before, they have been tested on image set n.3
(Section 4.1.2). It contains 990 images from 6 different bodies, each one rendered 165 times, in
random conditions of orientations and illumination.

Then, the results from the network specialization test described in Section 4.5.3 are reported.

5.1 Performances comparison

In the following scatter plots are shown the centroiding errors as deltas in x and y coordinates,
with the number of pixels as units. These results have been obtained using images from set n.3,
that contains 512 × 512 images of six different bodies. A color code has been applied to the
error points to have an idea of the illumination condition through the phase angle α. Moreover
in every subplot the ellipse corresponding to the 1-σ of the error distribution is shown and in
the box on the top left are displayed values of the distribution mean and covariance matrix
diagonal values σxx and σyy.

In Fig. 5.1 are reported results for the Center of Figure algorithm, adopting the original
correction function from [38], which is then adapted to the specific body, following the procedure
explained in Section 4.3.1.

In Fig. 5.2 instead are reported results for the Center of Figure algorithm, adopting the
sinusoidal function as corrective term. The procedure is always explained in Section 4.3.1.

In both the graphs is evident the difference in the error dispersion between the most reg-
ular bodies, like 101955 Bennu and 4 Vesta, and the least regular like 25143 Itokawa and
67P/Churyumov-Gerasimenko. Surprisingly the difference between the two CoF methods is
not so relevant. Some small improvements have been done in the two most regular bodies,
101955 Bennu and 4 Vesta, but there is no evidence of improvements in the other bodies error
distribution. This could be explained by the different dispersion of the CoB error each body has
when related to the phase angle α (see Fig. 4.6). As can be seen only 101955 Bennu and 4 Vesta
have a distribution of error concentrated in a narrow area, therefore only for these bodies the
selection of a more suitable function for the fitting has a positive effect on the final centroiding
error.

The same behaviour is even much more evident for the correlation with lambertian sphere.
As the appearance of the body in the sensor frame is compared to that of a sphere, the quality
of the centroiding degrades a lot as the irregularity of the shape of the body increases.

With a proper training instead has been possible to obtain a network capable of performing
very well with both kinds of bodies. Below, in Fig. 5.4, are reported the errors made using the
ResNet-34 trained following procedure shown in Section 4.5.2.

Moreover, in figures below, are shown some examples of centroiding on different bodies, in
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Figure 5.1: Errors made using CoF method fitted with original law.

Figure 5.2: Errors made using CoF method fitted with sinusoidal law.

different illumination condition. The body considered are 101955 Bennu (Fig. 5.5), 2867 Šteins
(Fig. 5.6) and 67P/Churyumov-Gerasimenko (Fig. 5.7). In the first line of each figure are shown
the original images, while in the second line there are crops on the CoM.
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Figure 5.3: Errors made using lambertian sphere correlation method.

Figure 5.4: Errors made using ResNet-34.
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Figure 5.5: Centroiding example on 101955 Bennu.

Figure 5.6: Centroiding example on 2867 Šteins.
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Figure 5.7: Centroiding example on 67P/Churyumov-Gerasimenko.
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5.2 Network specialization

In this section are reported the results of the experiment described in Section 4.5.3 designed to
understand what is the effect of a transfer learning applied on a network already trained on a
generic set of images from different bodies in order to specialize it to a specific body. At the
same time the effect of image set size wants to be investigated, and the minimum number of
images needed is to be found.

In Figs. 5.8, 5.9 and 5.10 are shown the centroiding errors computed on 4179 Toutatis, 2008
HW1 and 65803 Didymos sets. To have a measure of the effect of the training, the 1σ ellipses
of the error distribution obtained after the training (red) is plotted against the 1σ ellipses of
the error distribution obtained from the network before the training (green).

What can be noticed from the plots is that, as the size of the image set increases, the
error gets smaller. However, comparing the results for each set size with the result of the
network before training, it can be noticed that the number of images needed for improving the
network performance on the specific body are dependent on the shape of the body. Both 4179
Toutatis and 2008 HW1, for example, are characterized by an error pre-training larger than
that of 65803 Didymos. This fact leads to a different number of images needed for improving
the original network: for the first two bodies an evident improvement in the error distribution
starts from the data set of size 540, for 65803 Didymos instead, as the error pre-training is
smaller, an improvement is evident from data set of size 5120.
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Figure 5.8: Error distribution after training with Toutatis specific set, changing its size.
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Figure 5.9: Error distribution after training with 2008 HW1 specific set, changing its size.
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Figure 5.10: Error distribution after training with 65803 Didymos specific set, changing its
size.
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Chapter 6

Conclusion and Future Work

The aim of this thesis was to understand if a machine learning technique could provide a better
performance with respect to the classical image processing technique. In Chapter 2 a literary
review of the most important image processing techniques and optical navigation methods are
used. While in Chapter 3 a general introduction to machine learning and neural networks is
given. Once the theoretical part is concluded, the analysis and the development of the optical
navigation techniques selected for centroiding is undertaken together with the training of two
architectures of CNN through transfer learning, in Chapter 4. The results of the development
of the centroiding methods and of the training of the CNN is shown in Chapter 5. In the same
chapter are also presented results of the experiment aimed at understanding the minimum size
of the dataset needed for training the network on a specific body.

This thesis has been for sure a great opportunity for examining in depth optical navigation
and the great challenges the particular environment of small bodies dictates. Moreover, a great
addition has been provided by studying machine learning and neural networks. It allowed me to
learn coding with Python and to explore some of its most know modules, like Numpy, OpenCV
and some of the deep learning modules like Keras, Pythorch and fastai. After months studying
the subject it feels like there so much to understand and to learn yet. And obviously, a lot of
things that could improve this work too.

6.1 Conclusions

In this work a CNN has been trained taking advantage of transfer learning and of the ResNet-
34 architecture. It has been trained on a set of 21000 images containing 6 different shape
models. The resulting performance, reported in Chapter 5, have been compared with respect
the other methods developed. Looking at the results obtained on the image set n.3, the CNN
has outperformed the other methods, in particular considering the results on the less regular
shaped bodies. Some considerations can be made.

The shape of the body seems to be the most important factor in the distribution of the error,
together with illumination conditions. A behaviour common in all plots and most evident in
CoF and lambertian sphere centroiding plots, is, in fact, the increased dispersion for bodies
having an irregular shape and less comparable to the ideal shape of a sphere. It can be also
noticed how outside the 1σ ellipse there are mainly error points associated to images rendered
with a phase angle α larger than 80◦.

For sure a lot of data has been required to train the network – an image set of 21000 labelled
images – but as long as 3D shape models are available, there are no limits in the growth of the
set. The strong advantage with respect to the other image processing techniques considered
stays in the fact that, once the network has been trained, no previous information about the
body shape or size of the body, nor information about range, nor about illumination, are needed
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to the method for computing the center of the body.
Also CoF algorithms performs well, especially with most regular bodies. It must be said

anyway that a previous knowledge about the shape of the body and its dimensions is required.
The algorithms in fact, have been optimized based on the error distribution of the corresponding
CoB. Moreover, differently from the procedure followed in this work for analysing the method
(summarized in Algorithm 2), in a real mission an estimation of the Sun direction and of the
camera orientation would be required for computing the phase angle and the corrective term
direction in the image plane; and also the estimated size of the body in the sensor frame, which
is needed for properly scale the offset factor, requires or an image processing technique, or
information about the distance to the body.

The correlation with lambertian sphere instead does not require nor information about
range, nor prior information about the size of the target body, as the radius of the lambertian
sphere used as template is found in the optimization process aimed at finding the highest value
of correlation. The viewing phase remains to be estimated, but a Sun sensor should make the
job. The biggest limitation of the method stays in the fact that the template is a simple geom-
etry like a sphere: this leads to a working condition that is limited on bodies having a regular
shape. The method performances degrade as the shape of the body become more irregular and
more elongated.

For what concern the second research question, from the results obtained it can be can be
concluded that in order to have a relevant and significant improvement of the performance on
the specific body, a set with at least 500 or 1000 images is needed. Even if, as explained in
Section 5.2, for more regular bodies more images are needed for improving the starting perfor-
mance of the network, simply because the network performs better already without training.
When the dataset is larger than 1000 images, the dispersion ellipse is reduced and the mean
of the distribution is moved more toward the axes origin. When, instead, the number is lower,
the behaviour is much less coherent and anyway there is not any relevant improvement. In
particular, the lack of images can introduce bias error in the error distribution. It becomes of
great importance, thus, the effect of data augmentation.

The experiment executed for estimating the set size needed for improving the network is
also interesting because it allowed to understand how the network trained over set n.2 behaves
when used with other bodies out of the previous set. Comparing error distributions covariance
coming from testing the network with image set n.3 and with image set n.7, 8 and 9, each one
made only of 4179 Toutatis, 2008 HW1 and 65803 Didymos, can be noticed that there is a factor
of 10 between the covariance of the first error distributions and the second ones. A factor that
is obviously decreased with further training, but it is a sign of the non perfect generalization of
the network. Increasing the zoo of shapes in the training set could mitigate the problem.

6.2 Future work

All the thesis work is based upon the synthetic image generation. All the results obtained are
therefore a consequence of the quality and of the settings of rendering and of shape models. It
is therefore needed to quantify the effect of the image appearance on the discussed centroiding
techniques. Some assumptions, for example, have been made during this work. Images are
rendered with out any kind of noise, flare, blur nor distortion of the lens. All shape models
have been rendered with an homogeneous gray color surface diffusely reflecting. Moreover, it
has not been considered the case of a binary asteroid. In the work the 65803 Didymos has been
used, without considering though the presence of its smaller twin, which could also cast shadows
on the main surface. In the case of comets, like 67P/Churyumov-Gerasimenko, the presence
of a coma has been completely neglected. The effect of all these elements need therefore to be
assessed.
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Chapter 6. Conclusion and Future Work

For what concern the database generation, a fact must be highlighted: from the diagonal
elements of the covariance matrix, σxx, σyy, of error distribution of irregular shaped bodies,
like 25143 Itokawa, 2867 Šteins and 67P/Churyumov-Gerasimenko, it is possible to recognize
a larger value in the x direction. Given the fact that these bodies appearance is most pro-
nounced in one direction and that therefore an error in that direction is more probable, it could
be a symptom of a larger presence of images where the body is represented horizontally. It
means that, even if images are created choosing the geometric parameters randomly, in order
to guarantee the best uniformity of conditions, something else need to be considered in order
to improve the generality of the image set, especially to improve the neural network training
quality.

In the context of the CNN some options need to be considered. Other architectures, for
example, can be trained. The ResNet family is large and some deeper architectures are available.
The training process can be largely improved considering also other hyperparameters, like weight
decay or dropout. An hyperparameter tuning can be applied to the problem. Also the batch
size could be increased, if the hardware allows it. Finally, given the lack of data the data
augmentation can be improved, considering more image transformations, randomly applying
noises and disturbances. It could be used to actually increase the size of dataset too, so that
the problem of data scarcity is mitigated.

The family of bodies to be considered in the image set for training the network can be
increased, with the aim of making the model as general as possible, and therefore reducing the
difference between the error obtained testing the network with bodies it has been trained with
and the error obtained testing with new bodies. Besides existing shape models, new artificial
ones could be considered for rendering images, enlarging even more the zoo of shapes. The use
of original images from previous missions could be an interesting option, both for validate and
training models.

Finally, a possible improvement could be made on the lambertian sphere correlation using
a slightly more complex shape, like an ellipsoid, in order to reduce the centroiding error with
the less regular shaped bodies.
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