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Abstract: Upper extremity (UE) function recovery is essential to improve the
quality of life and it is a top priority for people with spinal cord injury (SCI) and
stroke. Recent years have seen advancements in daily life assessment and rehabili-
tation using wearable technologies like first person vision (FPV), which has however
some limitations. The aim of this thesis is to develop a multi-modal system that
combines FPV and surface electromyography (sEMG) to record activities involv-
ing the UE and validate its performance on healthy adults during standardized
tasks in a lab setting. The performance of sEMG in detecting functional inter-
actions (i.e., manipulation an object for a functional purpose) was evaluated by
training and testing four machine learning algorithms. A deep learning algorithm
was utilized to detect hand-object interactions from the FPV frames. The result-
ing detections were analyzed to obtain the FPV classification performance. Three
different combinations of FPV and sEMG were then tested. The first involved
concatenating the interaction state from the FPV analysis with the most relevant
features extracted from the sEMG signal. The second and third approaches used
the AND and OR logical operators, respectively, to combine the interaction state
predicted by the sEMG signal and FPV analysis. The performance of single-modal
and multi-modal approaches were evaluated using accuracy, F1-score, precision, re-
call, and specificity metrics. Hand–object interactions were automatically detected
with a median accuracy of 0.653 (0.044) for sEMG, 0.650 (0.067) for FPV, 0.716
(0.067) for the FPV and sEMG combination. Our results demonstrated that the
multi-modal strategy outperformed the two single-modal approaches, as demon-
strated by most of the evaluation metrics used in this study. This study suggested
that the combination of FPV and sEMG is an effective way to capture both func-
tional and non-functional hand-object interactions in healthy individuals. Future
research will involve validating our findings in subjects with SCI or stroke, both in
a clinical setting and in their homes.

Key-words: first person vision, surface electromyography, multi-modal approach, hand-object interac-
tion, hand function
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1. Introduction

1.1. Upper limb impairment

1.1.1 Stroke

Stroke is a potentially fatal illness that is the leading cause of disability and fatalities globally [1].
Stroke has two primary causes: ischemic, which accounts for 87% of occurrences and is caused by a blood clot
that blocks blood flow, and hemorrhagic, which accounts for 13% of instances and is caused by a weak blood
vessel supplying the brain that bursts [1]. Over the last three decades, the risk of developing a stroke has
increased by 50% [2]. The 2022 Global Stroke Fact sheet indeed reports a substantial increase in cases and
deaths due to stroke from 1990 to 2019 [2].
The main risk factors for stroke are depicted in Figure 1, taken form [2].

Figure 1: Stroke risk factors [2]

Stroke survivors have to deal with life-long problems and the severity of the disability is determined by several
factors such as the duration of the lack of oxygen and the area of the brain involved [3].
Stroke may suffer a range of cognitive, psychological, and physical deficits, including difficulties with speech,
memory, judgment, spatial awareness, attention, and somatic sensations like touch, warmth, pain, and propri-
oception [3][4]. Motor deficits include limb weakness or paralysis, with hemiparesis of the contralateral upper
limb being the most common (77.4%) [5]. The American Stroke Association defines hemiparesis as a weakness
or inability to move on one side of the body, which can lead to challenges in walking, balance, coordination, and
physical fatigue [6]. As a result, daily activities may be significantly impacted. In fact, the majority of stroke
survivors struggle to perform basic actions like reaching, picking up, and holding objects [4].
Automatic recovery mechanisms, such as neuroplasticity, take place after a stroke [7]. Especially during the
first month after stroke, the brain reorganizes and rewires itself to make up for the damaged areas [8].
Rehabilitation is crucial for stroke survivors to regain lost function and promote brain plasticity for maximum
recovery [9]. Its implementation should depend on the stage of neurological recovery, and timing and intensity
are crucial to its success [9]. Improvement profiles might change over time and don’t always follow a predictable
pattern [10].
Recovery after a stroke usually follows a proportional recovery rule [11]. Patients with mild initial deficits
tend to recover better and faster than those with severe deficits (Figure 2) [11]. Personalized approaches that
consider individual differences in the nature and severity of the stroke, as well as the patient’s age and overall
health, are necessary [10].
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Figure 2: Proportional motor recovery in the upper limb taken from [11]: plot of the observed changed
against the predicted changes 3 months post stroke. The recovery of patients in the blue area cor-
responds to the predicted outcomes, whereas those in the red area experience less favorable recovery
than expected. Patients located above the dotted line initially exhibit severe impairment, with approx-
imately equivalent numbers of individuals experiencing either good or poor (proportional) recovery.

1.1.2 Spinal cord injury

Another frequent reason for upper limb disability is spinal cord injury (SCI) [12]. The World Health Organization
(WHO) reports that SCI occurs at a global rate of 40 to 80 cases per million individuals per year, with 90% of
cases caused by traumatic incidents [12].
SCI is characterized by damage to the spinal cord that can lead to lasting or temporary changes in its typical
operation [13]. When the spinal cord in the cervical region is injured, it can cause tetraplegia, which is the
paralysis and loss of function of all four limbs and the trunk [14].
This type of injury can lead to other health issues such as deep vein thrombosis, urinary tract infections, muscle
spasms, osteoporosis, pressure ulcers, chronic pain, and problems with bladder and bowel control [12][15].
The degree of neurological recovery in patients with traumatic SCI is influenced by various factors, such as the
level and severity of the injury, as well as the age and general health of the patient [16]. Patients generally
show some recovery of motor function in the weeks and months after the injury, with significant improvement
by the nine-month mark [17]. The rate of recovery tends to slow down over time, typically reaching a plateau
by 12 to 18 months [17]. However, some patients may continue to experience improvements in motor function
for several years after injury [17]. They can achieve high level of function and self-reliance through appropriate
therapy and rehabilitation [18].

1.2. Continuum of care

Recovery can vary significantly from person to person, depending on many factors (see section 1.1). The priorities
identified by stroke survivors include improvement of upper limb function, recovery of mobility, reduction of
spasticity, interventions for language and communication, and support for psychological and emotional problems
[19]. Research studies ([20][21]), have also highlighted the importance of upper limb function recovery in
improving the quality of life of people with SCI.
Assessment scales are frequently used to evaluate and monitor the recovery of individuals with stroke including
the National Institutes of Health Stroke Scale (NIHSS) [22], Modified Rankin Scale (mRS) [23], Fugl-Meyer
Assessment (FMA) [24], Action Research Arm Test (ARAT) [25], Motor Activity Log (MAL) [26], Stroke
Impact Scale (SIS) [23] and Barthel Index [23]. These scales assess various aspects, such as motor function,
cognition and language. Scales used to assess UE function in SCI patients include the International Standards
for Neurological Classification of Spinal Cord Injury (ISNCSCI) [14][27], Upper Extremity Motor Score (UEMS)
[28], the Spinal Cord Independence Measure (SCIM) [28], and Graded Redefined Assessment of Strength, Sen-
sibility and Prehension (GRASSP) [28].
Although such scales are useful for measuring functional capacity, they may not accurately assess real-world
performance due to their subjective nature and lack of specificity [22]. Furthermore, they are typically designed
for use at specific time points for example at hospital admission or discharge, which may influence their accuracy
and usefulness [23].
Recovering the use of UE can be challenging for several reasons [29][30]:
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• Lack of outcome measures that take into account the performance (and not only capacity);
• Limited access to rehabilitation services, including issues with distance, transportation, cost, and inade-

quate insurance coverage;
• Patients may also face difficulties engaging in rehabilitation due to depression, fatigue, and anxiety;
• Specialized interventions may be necessary as standardized conventional therapies may not consider in-

dividual differences;
• Financial pressure on the healthcare system, which results in early discharge.

Monitoring the functional use of the upper extremities in real-life settings is crucial to tailor therapy and
maximize rehabilitation outcomes [30].

1.3. Method of daily life assessment

Researchers have suggested integrating robotics, cameras, and wearable systems to overcome the limitations
of clinical assessments and improve rehabilitation outcomes. These devices can provide more objective and
reliable assessments in uncontrolled environments and offer effective exercises tailored to the patient’s needs
and progress [31][32].
There is growing interest in wearable technologies, such as accelerometers that measure the acceleration of
motion, gyroscopes that measure orientation and rotation, and surface electromyography (sEMG) that measures
electrical activity generated by skeletal muscles [33].

1.3.1 Accelerometer and IMU

Gomez-Arrunategui J. et al. (2022) presented the Arm Rehabilitation Monitor (ARM). This wrist-worn device
uses an Inertial Measurement Unit (IMU) and machine learning techniques to detect reaching actions of stroke
survivors during assessment tasks and Activities-of-Daily-Living (ADL) [34]. Similarly, Lum et al. (2020) also
adopted a wrist-worn accelerometer to collect data, which was then analyzed using machine learning algorithms
to measure upper limb movement directly of stroke patients [35]. Additionally, Biswas et al. (2014) proposed an
algorithm for detecting arm movements during daily activities. They used tri-axial accelerometers strapped to
the wrist to detect movement [36]. Nevertheless, these tools cannot tell whether a user has effectively gripped
an object [30][37].

1.3.2 Force myography

The ability of force myography (FMG) to record hand actions like grabbing has also been examined [37][38].
FMG is a method of evaluating the condition of the underlying muscle-tendon complex by monitoring the
pressure or force on the surface of the limb. The band detects arm movement before or after the wrist activity
detection, and the device generates a unit called a hand count, which counts as one [37][38]. Sadarangani G.
et al. (2017) demonstrated its capability to differentiate between grasping and non-grasping movements during
daily activities. They proposed using force myography combined with machine learning methods to monitor
the practical use of the hand in everyday activities [37]. Grasping was also analyzed by Lisa A.Simpson et al.
(2019) [38] and Yang C. et al. (2021) [39] using a prototype version of the TENZR wristband (BioInteractive
Technologies, Canada) to capture reach-to-grasp repetitions. The wristband featured proximity sensors, inertial
measurement units, and force myography sensors. However, this device cannot differentiate between various
grasp and object interactions when minimal wrist and finger movement occurs [33] [39].

1.3.3 Smart glove

A smart glove was presented by Dutta D. et al. (2022) to asses patients’ grasping abilities. The device was
equipped with multiple sensors, including bend and force sensors and an accelerometer, and it was coupled with
a machine learning algorithm to quantify grasping abilities [40].
However, those with spasticity and a limited range of motion could find it difficult to use such devices. Moreover,
patients who wear them may notice less palmar feeling [37].

1.3.4 Surface electromyography

sEMG is a non-invasive technique that involves placing small electrodes on the surface of the skin in order to
detect the electrical signals produced by the muscle contractions [33][41].
Tang W. et al. (2018) investigated neuromuscular changes in proximal and distal muscles post-stroke [42]. Jones
C. et al. (2018) measured involuntary coupling activity in the thumb and finger during hand movements, a
compensatory mechanism to generate sufficient force during hand movements [43]. Furthermore, Hesam-Shariati
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N. et al. (2017) explored the correlation between improvements in motor function resulting from therapy and
changes in muscle activation patterns, highlighting the significance of utilizing objective measures like EMG
signals to track progress [44]. Lee S. et al. (2011) suggested a method of sEMG pattern classification to identify
the muscle activation patterns of stroke survivors by placing electrodes on the hand and the forearm [45].
Wearable technology that incorporates sEMG sensors enables non-intrusive, continuous data collection while
patients move about and go about their everyday activities, providing direct feedback on muscle activation
[33]. One example of an sEMG-embedded armband is the Myo armband (MYB), whose design has made it a
well-liked option among researchers [46]. It has been used, for example, for hand gesture recognition, among
other applications [46][47][48].
Xie1 T. et al. (2020) examined the changes in muscle activity in stroke patients with spasticity using high-
density EMG [49]. With HD-sEMG, EMG signals from numerous channels are simultaneously recorded across
a particular body region [50]. This is achieved using an array of electrodes displayed in a specific arrangement
to capture muscle activity patterns. HD-sEMG can provide information on the activity and coordination of
specific muscles during movement by identifying relevant patterns [50]. However, most of the HD-EMG recording
systems currently available like the Refa (TMSi, The Netherlands) are typically stationary, they require a main
power source and are therefore too bulky and heavy to be used on wearable devices [50]. There have been
proposals such as those described in [51], [52] and [50] address the need for more portable and flexible HD-EMG
recording systems that can be worn comfortably for extended periods.
sEMG can be combined with various devices to enhance their effectiveness in rehabilitation and training. For
example, it can be used with exoskeletons to stimulate the muscles and improve the range of motion in the
joints. Studies such as those of Lu Z. et al. (2017) [53] and Qian Q. et al. (2017) [54] investigate the
effectiveness of (EMG)-controlled robotic arms. Through the use of surface electrodes, the patient can control
the movements of the robotic hand. Mulas M et al. (2005), for example, proposed an exoskeleton comprised
of two support structures: one for the hand and the other for the wrist, interconnected by a set of actuators
and sensors controlled by surface EMG. However, even though the device has demonstrated validity in clinical
trials, additional testing is needed to determine its effectiveness in home-based rehabilitation scenarios [55].

1.3.5 First person vision

The development of telemedicine and remote monitoring may completely alter how post-acute stroke care is
provided by introducing more convenient and affordable solutions [29].
Egocentric vision (or First-Person Vision - FPV) is a potential tool for monitoring hand use in natural environ-
ments. Through FPV it is possible to capture the user’s point of view and, if the camera is worn on the head,
to focus on hand movements and manipulation, minimizing the presence of self-occlusions [21][56]. An example
is depicted in Figure 3.

Figure 3: A sample frame captured with a wearable camera worn on the head, during writing tasks.

FPV devices have been developed since 1997 [57], mainly for research purposes. With recent technical de-
velopments, several businesses have displayed an inclination toward such devices [57]. Through their survey,
Betancourt et al. (2015) explored the evolution of FPV methods and the advancement of commercial FPV
devices like Google Glass (Google, USA) and GoPro (GoPro Inc., California) [57].
Unlike the previously mentioned wearable sensors, FPV can provide information on functional hand-obect in-
teraction and grasp types, offering valuable insights into functional hand use: it enables the automatic detection
of hands and objects and the specific actions and activities taking place [30].
Third person vision (TPV), which refers to the use of visual feedback tools such as mirrors or video recordings
to view upper limb movements from an external perspective, can also be used as a rehabilitation technique [58].
Several articles developed FPV approaches to detect and analyze hand movements [20] and to use in various
contexts, such as rehabilitation for people with from SCI [30][59] or upper limb impairment [56], as well as
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for stroke recovery [60]. Tsai et al. (2023) offered the first proof that hand-use ratios determined from the
egocentric video can be used to assess hand function after stroke [61].
Bandini et al. (2020) [21] summarized the existing hand-based FPV techniques used to examine egocentric data.
These approaches can be divided into three primary categories: localization, interpretation, and application.
The first step is localization, which involves identifying the position of the hands within the camera’s frame.
Hand detection, segmentation, and identification are subareas of hand localization (Figure 4). Hand detection
involves locating the hands in an image or video frame, usually by fitting a bounding box around the detected
hand, while hand segmentation implicates separating the outline of the hand from the background in an image or
video frame based on color, texture, and shape. The identification of hands distinguished between, for example,
the left and right hands.

Figure 4: Hand detection and segmentation from [21]: A schematic diagram outlining the process of
hand localization and segmentation in FPV.

The interpretation category provides a way to capture more detailed information about what the hands are
doing beyond just their physical location, for instance, if hand-object interaction occurs. According to Tsai M.
et (2021), a functional hand-object interaction is manipulating an object for a functional purpose. Detecting
hand-object interaction can serve as a valuable metric to assess the independent use of the hand in everyday
tasks at home [60]. Application is the final category in the taxonomy of hand-based methods in FPV. It
involves taking the information gained from the previous categories and applying them to create useful real-
world applications to solve specific problems. For instance, one of the primary application areas is healthcare,
where this technology can be used to monitor and improve patient rehabilitation and motor skills [21].

1.4. Objectives

Although FPV is a helpful tool for recording activities involving the upper extremities, it fails to discriminate
interactions in presence of "non-standard" grasps and compensatory strategies [61]. The research hypothesis is
that such limitation can be overcome by combining FPV with sEMG. However, sEMG alone does not provide
contextual information about how hand-use activity relates to daily life.
Therefore, this thesis aims to develop a multi-modal system that combines FPV and sEMG to record activities
that involve the use of the upper extremities. The goal is to validate this system’s performance in detecting
functional and non-functional interactions among healthy adults during standardized tasks in a lab setting. In
this study, we defined functional interaction as a manipulation of the object, any contact with a fixed or portable
object, while non-functional interaction referred to no contact between the hand and an object, any self-contact
and any contact with another person. Once the system’s effectiveness is verified, it will be utilized on SCI and
stroke patients to provide more precise and detailed information about their hand-use activity. This will make
it possible for physicians to create individualized rehabilitation plans that are tailored to each patient’s needs.
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2. Materials and Methods

2.1. Participants

A group of 10 healthy adults was recruited for this experiment at the Biorobotics Institute, Scuola Superiore
Sant’Anna, Pisa (Italy). The Joint Ethical Committee of Scuola Superiore Sant’Anna and Scuola Superiore
Normale (Nr. 3/2023) approved this study and all subjects provided their written informed consent before
starting the acquisition. The average age of the group was 27, comprising six males and four females, all
right-handed.
Inclusion Criteria

• Adult men or women >18 and <65 years;
• To be able to use their hands during regular ADLs at home, based on self-report;
• To be able to turn off the camera on their own.

Exclusion Criteria
• Presence of wrist or hand deformities or injuries to the UEs;
• Presence of UE impairments that prevent them from using their hands in any ADLs.

2.2. Experimental set up

The study consisted of a series of predetermined tasks that required participants to use ULs while wearing a
sleeve equipped with sEMG sensors and a wearable camera mounted on their heads. The instrumentation used
in the experiment included:

2.2.1 OTBioelettronica Sessantaquattro

OTBioelettronica Sessantaquattro hardware is comprised of an EMG acquisition system, with a portable and
compact design. sEMG signals were acquired with the OTBiolab + software (OTBioelettronica, Turin, Italy)
[62]. The software offers a range of features, including real-time visualization of signals, which can provide direct
feedback for quantitative assessments during acquisition [62]. Additionally, it offers signal filtering, calibration,
and the option to save and export data for further analysis [62]. It comprises a surface electromyographic
amplifier equipped with Wi-Fi communication, creating a wireless access point capable of supporting up to 64
channels. During the acquisition process, only 32 channels were utilized and no filtering was applied, leading
to a raw signal sampled at 2k Hz. Additionally, it was possible to convert OTB+ files directly to Matlab files,
including multiple files at once.

2.2.2 Synchronization circuit

The device included two additional auxiliary channels (AUX), one of which was directly linked to a synchro-
nization circuit. This circuit was composed of a button and two LEDs. When the button was pressed, power
was supplied to the LEDs, and 3.3mV-pulses were transmitted to the two AUX. This LED-activated switch
provided synchronization cues to the camera. The other AUX connected to the reference electrode, which was
a wet electrode.

2.2.3 MXene electrodes

The experiment utilized MXene dry electrodes (Figure 5), made of a silicon substrate and a two-dimensional
transition metal carbide nanomaterial [63]. Dry electrodes do not require conductive paste or gel to make
contact with the skin, unlike wet electrodes [64]. Due to their excellent electrical properties, MXene electrodes
are susceptible and almost as effective as wet electrodes [63]. They are also reusable, making them more cost-
effective than disposable wet electrodes [63]. Moreover, the flexibility to place electrodes in any desired pattern
enables researchers to achieve optimal configurations. As a result, the electrodes can be positioned in the most
effective locations for measuring the electrical signals of interest.
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Figure 5: Maxine electrodes used for sEMG acquisitions: it is composed of 32 dry electrodes

2.2.4 Camera

The camera was a GoPro Hero 8 (GoPro Inc., California), which was strapped to a headband to allow for
hands-free acquisitions. The camera was set to record video footage at a resolution of 1080p, which produced
images with a 1920 x 1080 pixel width and height. The footage was recorded at a rate of 30 frames per second,
which meant that 30 still images were captured every second.

2.3. Experimental protocol

During the single session that lasted about 60 minutues, sEMG signals indicating muscle activation of the
forearm and video of activities performed were recorded. The experimental session consisted of three phases:

1. setup of the EMG system;
2. setup of the wearable camera;
3. data collection during task execution

2.3.1 Step 1

Step 1 involved setting up the sEMG system on the subject’s forearm, which took about 5 minutes.
The length of the ulna was first measured for each participant from the olecranon (tip of the elbow) to the
styloid process (head of the ulna) [65]. Also, the forearm’s maximum and minimum circumferences (i.e., its
proximal and distal halves, respectively) were measured. These measurements will allow researchers to develop
customized sEMG sensors based on anatomical dimensions in the near future.
Before positioning the electrodes, the skin of the forearm was cleaned with an alcohol solution and then hydrated
with a damp cloth. The sEMG array was wrapped around the proximal part of the participant’s forearm. The
crest of the ulna was used as the starting position for the wrapping direction, moving from the crest of the ulna
to the dorsal side and finally to the ventral side. The reference electrode was placed on the styloid process, an
electrically unaffected but nearby area. The OTBioelettronica Sessantaquattro hardware and connectors were
placed on the forearm and kept in place with elastic bands and medical tape. The recordings were started and
stopped from a dedicated laptop by the research team.

2.3.2 Step 2

Step 2 involved setting up the camera, which took around 2 minutes to be completed. The GoPro camera was
mounted on the headband to conduct egocentric recordings of the tasks. The camera tilt angle was adjusted so
that the hands and synchronization led were always within the frames. The recordings were also started and
stopped from a smartphone by the research team using the GoPro app.
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2.3.3 Step 3

The third step concerned the recording of task execution. This step lasted approximately 20 minutes and
included several tasks. It was essential to check that the data streaming was operating correctly and that the
electrodes were positioned accurately on the skin before starting the acquisitions. Once this was verified, the
video recording and sEMG were initiated. The synchronization switch was clicked twice and three times at the
beginning and end of each task, respectively. The following tasks were repeated:

1. Maximum voluntary contraction (MVC);
2. Box and block test;
3. Pretend to pour a full water bottle into a glass and pretend to drink;
4. Write a sentence on a sheet of paper;
5. Use a smartphone to type a message and scroll web pages;
6. Non-functional hand movements (opening-closing fist, raising arm, etc.);
7. Walking;
8. Rest position.

Finally, the multimodal data collection was terminated by stopping the video and sEMG recordings. The data
collection was repeated twice to capture data from both ULs. Examples of frames captured with the GoPro
camera during the task executions are illustrated in Figure 6.

Figure 6: Examples of egocentric frames collected form the study during the task executions.
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2.4. Data analysis

2.4.1 sEMG data analysis

Labelling An extensive manual labeling process was performed to obtain the ground truth of the hand-object
interaction state (presence or absence of interactions). Each video was watched in slow motion to observe the
hand-object interactions carefully. Whenever a contact was detected, the video was paused and rewound to
mark the frames corresponding to the start and end of the interactions. All frames in between the start and
end frames of each movement were labeled as functional interactions (label = 1), while the periods between
task repetitions or hand/arm movements were labeled as non-functional (label = 0). To synchronize the ground
truth frames with the sEMG samples, a process of alignment was performed. A Matlab script was created to
automatically align the spike from the trigger channel with the corresponding frame that detected the LED.

sEMG processing Matlab R2022b was used for all sEMG processing. The sEMG acquisitions obtained
using the OTBlab+ software were converted into .mat files and subsequently imported into Matlab for analysis.
First, inter-task pauses (i.e., intervals when the participants prepared themselves for the next task) were re-
moved. This was achieved by utilizing the trigger channels, specifically, the 33rd channel containing square
waves resulting from the taps on the synchronization switch. To remove such intervals, spikes were derived
from the square waves. The samples between the conclusion of one task (three spikes) and the beginning of the
following task (two spikes) were then eliminated. In some of the sEMG recordings, spikes were not detected
because some subjects failed to press the LED buttons accurately. In such cases, it was necessary to identify
the beginning and end of the task manually.
In Figure 7, all the start and end spikes are depicted, and red rectangles correspond to the deleted samples.

Figure 7: Trigger spikes: 2 consecutive spikes represent the start of the task, while 3 spikes depict the
end. The red rectangles correspond to the deleted samples.

After performing a spectral analysis with a Fourier Transform on the signal, a power line interference at 50
Hz was detected, causing distortion of the signal. To minimize this effect on sEMG recordings, a Notch filter
(2nd-order infinite impulse response (IIR) bandstop filter) with cut-off frequency was at 49 Hz and 51 Hz was
applied.
The bandwidth of interest for the sEMG signal is typically below 500 Hz . However, there may be motion
artifacts below 5 Hz that alter the signals [66], For this reason, the signal was filtered with a Butterworth
bandpass filter between 10-250Hz.
The next step was signal normalization. The maximum amplitude value was obtained from the first portion of
the signal of each of the 32 channels, corresponding to the Maximum Voluntary Contraction (MVC). Firstly,
this portion of the signal was rectified to capture both positive and negative components equally. The maximum
value was calculated over a 100ms moving average window. A 100ms window was chosen to level out the peaks
without distorting the signal (see Figure 8).
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Figure 8: Maximum Voluntary Contraction: the blue signal is the rectified MVC while the yellow one
is the MVC calculated over a 100ms moving average window.

After this procedure, the portion relative to MVC was removed from each channels. All of the remaining
recordings were then normalized with the previously determined maximum value.
Afterward, all silent channels were eliminated. Due to damaged electrodes or incorrect electrode placement, the
actual number of usable channels was, on average, less than 28.
A method for minimizing the dimension is Principal Component Analysis (PCA) [67]. A dataset benefits
from having fewer variables while maintaining as much data as possible. A dataset’s first principal component
captures the most variability in the data and is the direction in which the data varies the most [67].
PCA was applied and the signal was projected onto the first 11 principal components. The decision to retain
only the first 11 principal components was based on two main factors: (1) these 11 components accounted
for more than 90% of the total variance present in the data, making them the most important for accurately
representing the sEMG signal channels (2) there are approximately 11 detectable superficial forearm muscles,
and therefore retaining the first 11 principal components may allow for better characterization and identification
of the underlying muscle activations. The twenty forearm muscles (twelve superficial and eight deep muscles,
Figure 9) play an essential role in controlling the grasping and mobility of the hands as they regulate the wrist
and fingers’ flexion, extension, abduction, and adduction by inserting directly into the wrist and hand [68].

Figure 9: Cross section of the forearm. Brachioradialis (BR), Extensor carpi radialis longus (ECRL),
Extensor digiti quinti (EDQ), Extensor carpi radialis brevis (ECRB), Extensor digitorum communis
(EDC), Extensor carpi ulnaris (ECU), Flexor carpi ulnaris (FCU), Flexor carpi radialis (FCR), Flexor
digitorum sublimis (FDS), Flexor pollicis longus (FPL), Flexor digitorum profundus (FDP), Palmaris
longus (PL), Pronator teres (PT), Supinator (SUP) [69].

Feature extraction The filtered sEMG signals were windowed. Windows of 250ms, 500ms, 750ms, and 1s
with 50% overlap were chosen to segment the signal. With the use of this approach, it was possible to analyze
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how the outcomes changed depending on the window length. Twenty-one features were extracted from each
window, twelve in the time domain (TD) and nine frequency domain (FD).
Six time-domain features were generated based on the rectified signal amplitude, while the other six required
the signal to be enveloped before feature extraction. Enveloping was carried out using a moving average with
a window of 100 ms, i.e. 200 samples. This window length (the same one used for normalization), was chosen
as it allowed to smooth the peaks without distorting the signal.
The considered TD features were [70] [71] [72] [73]:

• The Integrated EMG (IEMG), which represents the total muscle activation within a certain period, is
frequently used as a pre-activation signal for muscular activity. It is the area under the curve of the
rectified EMG signal, so it’s calculated with the following formula.

IEMG =

N∑
i=1

|xi| (1)

with N being the signal length in samples and x the data set.
• Average Amplitude Change (AAC) tracks the overall change in signal amplitude over a specified time

period. It is determined by averaging the absolute differences between adjacent samples taken within a
specific time range.

AAC =
1

N

N∑
i=1

(|xi+1 − xi|) (2)

• Mean Absolute Value (MAV) calculates the average amplitude of the rectified signal during a specified
time period. Because MAV is measured by averaging the absolute value of the EMG signal, it is an easy
way to measure the force of muscle contractions.

MAV =
1

N

N∑
i=1

|xi| (3)

• Mean Absolute Deviation (MAD) measures the average difference between each data point and the mean
of the entire dataset.

MAD =
1

N

N∑
i=1

|xi − x̄| (4)

• Waveform Length (WL) measures the signal waveform’s overall length over a time period. It is calculated
as the sum of the absolute differences between adjacent samples

WL =

N∑
i=1

|xi − xi−1| (5)

• Log Detector (LD) provides an estimate of the muscle contraction force. It is measured by calculating the
logarithm of the rectified EMG signal, therefore is based on the logarithmic connection between muscle
force and EMG amplitude.

LD = exp(
1

N

N∑
i=1

log |xi|) (6)

• Root Mean Square (RMS) is obtained by taking the square root of the mean of the squared values of the
EMG signal over a time window. It gives an indication of the force and contraction of the muscles.

RMS =

√√√√ 1

N

N∑
i=1

x2
i (7)

• Variance (VAR) calculates the amount of variability in the amplitude of the EMG signal over a specific
time period. It is calculated by taking the average of squared value of each sample.

V ar =
1

N − 1

N∑
i=1

x2
i (8)
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• Simple Square Integral (SSI) reflects the overall strength of muscular contraction over time. It is calculated
by squaring the EMG signal at each time point, then summing the resulting values.

SSI =

N∑
i=1

x2
i (9)

• The coefficient of variation (COV) expresses how variable a set of data is. It is calculated as the ratio
between the standard deviation and the mean value of the data.

COV =
std(x)

mean(x)
(10)

• Kurtosis (KURT) defines the pattern of the EMG amplitude distribution across a specific time interval.
It is a measure of how prone a distribution is to outliers. A more peaked distribution is indicated by a
greater kurtosis value, whereas a more flat or dispersed distribution is indicated by a lower kurtosis value.
The formula for calculating kurtosis is:

Kurtosis =
1

n

n∑
i=1

(xi − x̄)4(
1
n

∑n
i=1(xi − x̄)2

)2 (11)

• Skewness (SKEW) is a measure of the asymmetry of the data around the sample mean. The data spread
more to the left of the mean than to the right if skewness is negative. The distribution of the data moves
closer to the right if skewness is positive. The normal distribution has zero skewness. The skewness is
defined as:

Skewness =
1
N

∑N
i=1(xi − x̄)3(

1
N

∑N
i=1(xi − x̄)2

)3/2
(12)

The Fast Fourier transform was used to transform the EMG signal from the time domain to the frequency
domain, producing therefore the power spectral density (PSD). The following FD features, often employed
in estimating muscular force and exhaustion, were extracted from the PSD [71].

• Mean frequency (MNF) is determined by multiplying the frequency by the total sum of the power spectra
divided by the EMG power spectrum.

MNF =

M∑
j=1

fjpj

M∑
j=1

pj

(13)

where M is the frequency bin’s length, pj is the EMG signal’s power spectrum at frequency bin j, and fj
is the frequency variable at that frequency bin.

• Median Frequency (MDF) is a frequency point that separates the power spectrum of EMG signal into
two regions with equal amplitude. It is defined as half of the total power.

MDF =
1

2

M∑
j=1

pj (14)

• Total power (TP) indicates the total power of the EMG power spectrum. It is also known as the energy
and the zero spectral moments. (SM0). It is calculated with the sum of power across all frequencies in
the signal.

TP =

M∑
j=1

pj (15)

• Mean Power (MP) denotes the average power of the EMG power spectrum. It is calculated by dividing
the signal’s total power by the number of frequency components in the signal.

MP =

M∑
j=1

pj

M
(16)
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• Peak frequency is the frequency at which maximum power is obtained in the EMG power spectrum.

PKF = max (pj) (17)

with j=1,..M.
• The First, Second and Third Spectral Moments (SM1, SM2, SM3) are calculated by multiplying the

EMG power frequency spectrum by the frequency raised to the power of k, which acts as a weighting
function. The degree to which the frequency is raised determines the current order. The area under the
resulting spectral curve represents the value of the spectral moment of order k. They describe the overall
distribution, symmetry, and concentration of the frequency content of the signal.

SM1 =

M∑
j=1

pjfj (18)

SM2 =

M∑
j=1

pjf
2
j (19)

SM3 =

M∑
j=1

pjf
3
j (20)

• Variance of central frequency (VCF) displays the variation in the power spectrum’s center frequency over
a given time interval. The frequency where the power spectrum is at its peak is known as the central
frequency. It is derived using the EMG signal’s spectral moments (SM).

V CF =
SM2

SM0
−
(
SM1

SM0

)2

(21)

The array of ones and zeros representing the interaction state ground truth was also divided into windows.
Within each window, the value of 1 was assigned if the majority of samples were ones, and 0 otherwise.
All of the data resulting from the sEMG signal preprocessing were displayed in table format to facilitate further
analysis. The table contained all the samples in the rows and all the features in the columns. With each of the
11 PC windowed and all 21 TD and FD features extracted, the total number of features amounted to 11*21,
meaning 231. Furthermore, the first column represented the participant’s ID, while the last column contained
the interaction state ground truth. Therefore, the total number of columns in the table was 233.
In addition, by using four different window lengths, four separate datasets were produced.

2.4.2 First person vision data analysis

Labelling Extensive manual labeling was required beforehand to obtain several ground truths. The ground
truth regarding the interaction state, previously described in section 2.4.1, was obtained by manually identifying
the hand-object interaction by reviewing the videos.
Another type of ground truth was obtained to analyze the performance of the hand localization algorithm.
Specifically, for each of the 20 recordings, 20 frames were randomly chosen and subjected to manual analysis.
We extracted the following information from each of the 400 frames: the subject, frame number, bounding box
coordinates, and the identified side.
In addition, the device’s LED, which turned on with a tap on the switch, was used to manually mark the
beginning and end frames of each task for the FPV recordings.

FPV processing First, the video clips were split into frames to perform data preparation. All frames were
reduced from 1920x1080 original resolution to 848x480 pixels to aid future processing.
Shan et al.’s deep learning model (Figure 10), which uses a Faster-RCNN (Region-based Convolutional Neural
Network) evaluated on the PASCAL VOC 2007 detection benchmark [74], was used to locate the hands, de-
termine their interaction state, and identify the object they are in contact with [75]. The main advantage of
the Faster R-CNN is that it merged in a single network the Region Proposal Network (RPN) [76][75] with Fast
R-CNN [77], which reduced the time required for object detection.
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Figure 10: Faster-RCNN taken from [75]: A schematic diagram outlining the process of hand localiza-
tion and hand-object contact detection in FPV.

The detection results obtained with the Faster R-CNN proposed by Shan et al. [75] were saved on a CSV file
(one file per video) composed of 12 columns. Specifically: column 1 contained the frame’s name; column 2
indicated whether the row referred to a detected hand or object; columns 3 to 6 contained the four bounding
box coordinates (i.e., the x and y coordinates of the top-left and bottom-right corners); column 7 contained the
prediction’s confidence score, which is a value between 0 and 1 that represents how confident the network was
in detecting the hand or the object; column 8 reported the interaction state, which indicated whether the hand
physically touched another object or hand (possible contact state values were 0 = no contact, 1 = self contact,
2 = contact with another person, 3 = contact with a portable object, 4 = contact with a fixed object); columns
9 to 11 reported the offset vector, which was defined as the offset between the hand and the object; and column
12 indicated the side of a detected hand (0 = left, 1 = right).
A visual representation of the bounding box, hand and object identification, and contact state is reported in
Figure 11.

Figure 11: Hand-object interaction. The figure depicts the correct left and right-hand identification.

Just like the sEMG signal processing (see section 2.4.1), the inter-task pauses and the MVC portion were
eliminated using the manually marked start-end frames of each task.
During the data collection, we ensured not to interfere with the subjects’ task execution so that only the
participant’s hands were present within the camera view.
Due to the presence of at least two hands (participants’ right and left hands) and objects, each frame resulted
in more than one detection. A series of processing steps were required to obtain a maximum of two detections
per frame (i.e., one for each hand). The first step involved removing the object detections, to focus only on
detections relative to hands. The second step was filling in the missing frames, corresponding to moments when
the hand was not detected. Except for the interaction state, which was given a value of "0" (i.e., non-functional
interaction), all 12 columns were filled with "NaN" values. Filling in the missing frames with appropriate values
made the resulting data set complete, with no temporal gaps, and ready for further processing.
Afterwards, hand detections that displayed a confidence value lower than 0.5 were removed.
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Considering that each frame was supposed to have a maximum of one hand per side, strategies to remove
duplicated hands (i.e., two or more hands with the same side, see Figure 12) had to be devised. A side
correction step was implemented to solve this issue.

Figure 12: The figure is an example of duplicate detections.

Four criteria were developed and tested to choose the best approach for the side correction. The first three
were:

• Criterion 1: In case of multiple hand detections with the same side, only the one with the highest
confidence was retained;

• Criterion 2: Given that the participant’s left (right) hand is more likely to appear more often in the
left (right) half of the image, the retained left (right) hand was the one with the most-left (most-right)
coordinates.

• Criterion 3: Among multiple detections for the same side, only the detected hand with the highest centroid
was retained.

The best criterion was chosen by comparing the correct side with the ground truth side manually obtained on
the 400 randomly selected frames. A different strategy (i.e., Criterion 4) was also explored in which several
machine learning algorithms were trained to recognize the correct side based on input bounding boxes. Data
from 70% of the patients were used for training and validating multiple machine learning algorithms, with the
remaining 30% serving as a test-set. Specifically, we used: Support Vector Machines (SVMs), Random Forest
(RF) and k-Nearest Neighbors (kNN)(see paragraph 2.4.3). Each was run twice using the ground truth relative
to the side detection as the response variable: once using all four bounding box coordinates as predictors and
once using just the x-coordinate as predictors.
Afterward, we focused on binarizing the interaction states following the strategy from Bandini et al. (2022)
[30]. We selected as functional interactions (label = 1) frames were the predicted interaction state was either
3 or 4 (i.e., contact with a movable and fixed object, respectively), whereas frames with interaction state < 3
belonged to the non-functional interaction class (label = 0).
The interaction state output and the relative ground truth (ones and zeros arrays, see section 2.4.2) were
processed similarly to the EMG signal (see section 2.4.1), using consecutive windows of 250 ms, 500 ms, 750
ms, and 1 s with a 50% overlap. The most frequent interaction state value was assigned to each frame of the
window.
The results of the processing of FPV were expressed in a table format with the frames in the rows and the
predicted interaction state and the relative ground truth in the columns.
Like EMG signal processing, four distinct datasets were collected, each corresponding to a different window
length.
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2.4.3 Detection of hand-object interactions

To obtain a balanced dataset with an equivalent amount of functional and non-functional interactions, the
sEMG signal activity and egocentric video detections corresponding to non-functional tasks were removed (i.e,
non-functional hand movements, walking and resting). The sEMG signal and FPV detections corresponding to
the functional tasks already consisted of active and inactive periods.
We randomly chose seven participants from the dataset (representing 70% of the total data) for the training
and validation set, and three subjects (30%) were set aside for the test set.
Once sEMG and FPV processing were concluded, we evaluated the classification performances in automatically
identifying the presence of functional interactions from: (1) sEMG features alone; (2) FPV; and (3) sEMG and
FPV approaches combined together.

Interaction detection from sEMG To identify the most important features and exclude any that were
irrelevant or redundant ones, a feature selection was carried out on the training set to reduce the dimensionality
of the problem. The Maximum Relevance Minimum Redundancy (MRMR) algorithm was considered. It
ranks features sequentially to select a subset of highly relevant features to the target variable while minimizing
redundancy among the selected features [78]. The algorithm examines the pairwise mutual information between
all potential pairs of characteristics to determine redundancy [78]. If two features share a lot of information
and have a high pairwise mutual information, they may be redundant. The algorithm considers the mutual
information between each feature and the response variable to determine relevance, it measures how much
information that feature provides about the response variable. This algorithm ranks feature significance using
the mutual information quotient (MIQ) metric. The formula of MIQ is the following:

MIQ(x) =
I(x, y)

1
n

∑
z∈S,z ̸=x I(x, z)

where I(x, y) is the mutual information between feature x and the response variable y, I(x, z) is the mutual
information between feature x and all other features z in the dataset, and n is the total number of features in
the dataset S.
A feature is highly relevant and offers valuable information for predicting the response variable if it has high
mutual information with the response variable (i.e., the interaction state ground truth) [78].
We considered the top 6, 12, and 23 most predictive features, representing 2.5%, 5%, and 10% of the total
number of features.
Both training and testing sets were standardized using Z-score. Its formula is [79]:

Z =
x−M

SD

Four classifiers were compared for detecting the functional interactions from sEMG features. These included
support vector machines (SVM) with linear and RBF kernels [80], random forest (RF) [80] and K- Nearest
Neighbor (kNN) [80][81].

1. SVM identifies the hyperplane that separates the data points into two classes while maximizing the
distance between the hyperplane and the closest data points of both classes [81].
It uses a mathematical function to transform data into a feature space with a high number of dimensions,
allowing for the classification of data points that may not be linearly separable in their original form [82].
(a) The RBF kernel is suitable when the data cannot be separated linearly and the relation between

predictors and response value is nonlinear [83]. Its main hyperparameters are C and gamma, C is a
parameter that controls the cost of misclassification in a model, while gamma affects the shape of
the RBF kernel [84].

(b) The linear kernel is the most basic kernel employed when the data can be partitioned by line, plane,
or hyperplane [83]. Its main hyperparameter is C.

2. RF constructs multiple decision trees in parallel, trained on different subsets of the training data and
each tree predicts a given input. The final prediction of the RF model is then obtained by combining the
predictions of all the individual trees [80]. The settings that can be modified to fine-tune the performance
of the model are the quantity of trees, the maximum number of characteristics to consider when dividing
a node, and the number of tiers in each decision tree [85].

3. kNN uses existing data points in a dataset to predict new data points. The algorithm first creates a
multidimensional space in which it stores all instances corresponding to the training data [81]. It then
uses these instances to classify new data points according to their similarity to the training data using
similarity indices like the Euclidean distance function. The value of ’k’ in kNN represents the nearest
neighbors considered when predicting a new data point [80][81]. K and the distance metric are the model’s
main hyperparameters.
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The selected features of sEMG served as the predictors, while the ground truth of the interaction as the response
variable.
Hyperparameter tuning was done by defining a list of values for the specific hyperparameters required by each
machine learning algorithm. The model was then trained and evaluated for each combination of hyperparam-
eters. The leave-one-subject-out cross-validation (LOSO-CV) method, was applied to the training validation
set. It implies that one subject is excluded from each fold while the other subjects are used to train the model.
We used metrics of accuracy and F1-score to determine the best-performing algorithm.
Once the hyperparameters that allowed for achieving the best performance for the training and validation had
been obtained, the model with those hyperparameters was applied to the test set. Table 1 displayed all values
of the main parameters used for each classification model.

Classifier Parameter1 Parameter2 Parameter3
SVM kernel: RBF, linear C=[0.01, 0.1, 1, 10, 100] gamma=[0.0001, 0.01, 0.1, 1, 10]
RF trees=[10,20,50,100,200,500,1000]
kNN k=[3,5,7,9] distance= Euclidean

Table 1: Hyperparameters of the classifiers used in this work.

The sEMG classification performance was evaluated using the following metrics: accuracy, F1-score, precision,
recall, and specificity [86].

• Accuracy: measures how often, out of all predictions produced, the model accurately predicts the correct
class (i.e., the true positive and true negative predictions).

Accuracy =
TP + TN

TP + TN + FP + FN
(22)

• F1-score: measures the overall performance of a classification model, taking into account both precision
and recall.

F1score = 2 · Precision · Recall
Precision + Recall

=
2TP

2TP + FP + FN
(23)

• Precision: measures how often, out of all positive predictions, the model accurately predicts the positive
class.

Precision =
TP

TP + FP
(24)

• Recall: measures how often, out of all the actual positive cases in the data, the model correctly predicts
the positive class.

Recall =
TP

TP + FN
(25)

• Specificity: measures how well the model can correctly identify the negative class.

Specificity =
TN

TN + FP
(26)

where TP stands for true positive, TN for true negative, FP for false positive and TN for false negative.

Interaction detection from FPV By comparing the interaction state of the test set with the manually
identified ground truth, we were able to obtain the performance of the FPV in detecting hand-object interactions,
evaluated with accuracy, F1-score, precision, recall, and specificity metrics.

Interaction detection by combining sEMG and FPV After obtaining the individual performances
of the EMG and FPV modalities, we calculated the performance of the multimodal approach combining the
two modalities.
Specifically, we tested three different combinations:

1. FPV + EMG: we concatenated the interaction state from the FPV analysis with the most significant
features extracted from the sEMG signal (which served as predicotrs), creating a new dataset. This
dataset was split into training and test sets, following the same procedure as the individual modalities.
We trained the model that performed best in the single modalities. This approach aimed to explore the
possibility that the two modalities could complement each other and provide better overall performance.

2. AND logical operator: The AND operator was used to combine the interaction state predicted by the
sEMG signal and that derived from the FPV analysis. The AND operator returns true only if both
operands are true, meaning that it only predicted a functional interaction when both modalities indicated
that there was one (Table 2).
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EMG Egocentric AND
1 1 1
1 0 0
0 1 0
0 0 0

Table 2: AND logical operator

3. OR logical operator: The OR operator was also tested, which returns true if at least one of the operands
is true. In this case, if either the EMG or FPV modality predicted a functional interaction, the OR
operator predicted that there was one (Table 3).

EMG Egocentric OR
1 1 1
1 0 1
0 1 1
0 0 0

Table 3: OR logical operator

The interaction state ground truth used to calculate the performance for all three combinations. The perfor-
mance of each combination was evaluated with accuracy, F1-score, precision, recall, and specificity.

Performance comparison (single mode vs multimodal) The analysis described in section 2.4 was
repeated 12 times, each time with a different dataset split. This allowed us to evaluate the robustness of each
approach to variations in the data across subjects.
The non-parametric Kruskal-Wallis test, which is the non-parametric version of the one-way ANOVA test
for comparing multiple groups [87], was used to compare the classification performance obtained with single
and multimodal techniques. If the obtained p-value was lower than 0.05, implying that group medians were
significantly different, a post-hoc analysis was performed. In particular, the multiple comparison test (i.e.,
Dunn’s test) with the Bonferroni correction was carried out to identify which approaches were significantly
better than others. The statistical analysis was conducted twice:

1. In the first analysis, three techniques for combining EMG and FPV (FPV + EMG, FPV AND EMG,
FPV OR EMG) were compared to determine whether there was a significant difference between them,
and if so, to identify the best performing one.

2. The second analysis compared the most accurate combination method identified in the first analysis with
the two single modal approaches. The objective of this comparison was to determine whether there were
any significant differences between the approaches and to identify the one with the best performance.

For every analysis conducted, five distinct results were generated, with each result corresponding to one of the
following five evaluation metrics: accuracy, F1-score, precision, recall, and specificity.
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3. Results

3.1. sEMG Results

3.1.1 PCA

PCA was used to reduce the dimensionality of the sEMG data. Only the first 11 PCs were considered, as, on
average, they covered over 90% of the variance, and because there are approximately 11 detectable superficial
forearm muscles [68]. We determined the percentage of variance explained by the first 11 components by
calculating and averaging the results across ten subject acquisitions for both the right and left hand. The
average percentage of variance explained by these components was 92.2%. Figure 13 depicts the percentage of
variance covered by the first 11 PC for one subject.

Figure 13: Barplot that depicts the percentage of variance: on average 92% of the variance was covered
by the first 11 PCA. The bars represent the percentage of variance for each PC and are arranged in
decreasing order. The red line represents the cumulative distribution of the PC.

3.1.2 Feature selection

To identify the key sEMG features while removing any irrelevant or redundant ones, we conducted a feature
selection. The MRMR algorithm was a reliable option for feature selection because it ranked a subset of
characteristics pertinent to the target variable and uncorrelated with one another.
Figure 14 represents the first 23 selected features for window lengths of 1 second.
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Figure 14: The 23 most relevant features are displayed for window length of 1 second. The vertical
axis shows the predictor’s important score, specifically the mutual information quotient (MIQ). The
horizontal axis lists the selected features from the most to the least significant. Overall, the time
domain and frequency attributes selected across all four window lengths were: Average amplitude
change (AAC), Log detector (LD), Simple Square Integral (SSI), Variance (VAR), Waveform Length
(WL), Coefficient of Variation (COV), Kurtosis (KURT), Skewness (SKEW), Mean frequency (MNF),
Median frequency (MDF), Variance of central frequency (VCF), Peak frequency (PKF), First Spectral
Moment (SM1), Second Spectral Moment (SM2), Third Spectral Moment (SM3). The number after
the acronym of the features represents the PC number (1 to 11).

3.1.3 sEMG performance

Training and validation The classification results are shown in figure 15. We concluded that the support
vector machine with the RBF kernel and with the top six sEMG features (ranked according to MRMR) produced
the best performance across all four window lengths.
Notably, Figure 15 demonstrates that increasing the window size did not significantly improve model perfor-
mance.
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Figure 15: Performance EMG with 6, 12, and 23 features for each window size: the blue rectangles
represent the performance of the SVM model with RBF kernel, the orange one the RF and the yellow
one the kNN.

Additionally, we conducted training and validation on the SVM model with a linear kernel using a window
length of 1 second. However, the model exhibited poor performance and required a considerable amount of run
time. As a result, we decided against using this model for the other window lengths.
Table 4 depicts classifier and the relative training and validation performance. The SVM classifier with linear
kernel clearly underperformed.

Features Classifier Accuracy F1score
6 SVM (RBF kernel) 0.685 0.720
6 SVM (linear kernel) 0.616 0.587
6 RF 0.679 0.703
6 kNN 0.650 0.669
12 SVM (RBF kernel) 0.666 0.683
12 SVM (linear kernel) 0.601 0.584
12 RF 0.661 0.683
12 kNN 0.618 0.640
23 SVM (RBF kernel) 0.667 0.681
23 SVM (linear kernel) 0.608 0.590
23 RF 0.676 0.696
23 kNN 0.625 0.650

Table 4: EMG training and validation performance on window length of 1 second. The best classifica-
tion performances are highlighted in bold.

Testing The five metrics that were used to assess sEMG classification performance of the test set on the
best model (SVM with RBF kernel, 6 features and 1-second window length) are listed in Table 5.

Accuracy F1score Precision Recall Specificity
0.660 0.708 0.626 0.814 0.501

Table 5: sEMG classification performance

The overall performance of the approach was promising, with favorable results across various metrics. Notably,
the F1-score and recall were particularly strong. However, the approach demonstrated lower specificity compared
to other metrics.
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We created a confusion matrix, illustrated in Figure 16, to assess the sEMG’s performance further. The matrix
revealed that the system identified many true positives and true negatives, but also produced several false
positives. Its limitation, however, was its potential to incorrectly classify positive cases as negative (FN).

Figure 16: sEMG confusion matrix obtained with the 1-second window length. Label = 1 represents
a functional interaction while label = 0 represents a non-functional one.

3.2. FPV results

3.2.1 Side correction

Each participant’s video was 8 minutes and 30 seconds long on average, and roughly 15,300 total frames were
recorded.
One fundamental step in processing the FPV recording was the filtering of duplicate hands (i.e., with the same
side, see section 2.4.2). Table 6 depicts the accuracy of each criterion described in section 2.4.2.

Criterion Features Classifier Accuracy
Criterion 1 / / 0.833

Criterion 2 / / 0.907
Criterion 3 / / 0.923
Criterion 4 2 SVM (RBF kernel) 0.722
Criterion 4 2 SVM (linear kernel) 0.707
Criterion 4 2 RF 0.707
Criterion 4 2 kNN 0.707
Criterion 4 4 SVM (RBF kernel) 0.692
Criterion 4 4 SVM (linear kernel) 0.714
Criterion 4 4 RF 0.669
Criterion 4 4 kNN 0.654

Table 6: Comparison between the criteria used for hand side correction. Criterion 1 = retaining the
duplicated detection with the highest confidence score; Criterion 2= assigning "right" ("left") to the
right-most (left-most) detection, Criterion 3 = retaining the duplicated detection with the uppermost
coordinates and Criterion 4 = implementing machine learning algorithms that were trained to recognize
the correct side based on the coordinates of the hand bounding boxes. The best results are highlighted
in bold.

Criterion 2 (i.e., assigning "right" ("left") to the right-most (left-most) detection) and 3 (i.e., retaining the
duplicated detection with the uppermost coordinates) performed the best, with Criterion 3 having the highest
accuracy but being less generalizable. Our acquisitions were recorded following a standardized protocol in which
participants were asked to use and record the hand under analysis, keeping the other one lower in the frame.
However, subjects use both hands during at-home recording without following such instructions. Therefore, we
opted for criterion 2, which had an accuracy value of 0.91 and was more suitable for daily life activity recording.
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Criterion 4 involved training and testing different classification algorithms. However, the accuracy value of each
model was lower than that obtained using the CNN algorithm (0.750). Therefore, we proceeded with the side
correction using Criterion 2.

3.2.2 FPV performance

Table 7 summarizes all five metrics that describe FPV performance in detecting hand-object interactions.

Window length Accuracy F1score Precision Recall Specificity
1 s 0.528 0.682 0.518 0.997 0.047

750 ms 0.529 0.680 0.517 0.995 0.057
500 ms 0.534 0.681 0.519 0.991 0.074
250 ms 0.537 0.680 0.519 0.987 0.086

Table 7: FPV performance in detecting hand-object interactions

Similar to the sEMG performance (see section 3.1.3), based on the F1-score, the one that performed the best
was the 1-second window length.
Based on the data presented in Table 7, the FPV exhibited high recall values, but had a significant limitation
in terms of specificity, resulting in a large number of false positives and few true negatives. Furthermore, the
precision values were also relatively low.
The confusion matrix displayed in Figure 17 provides further insight into the performance of the FPV approach.

Figure 17: FPV confusion matrix obtained with the 1-second window length. Label = 1 represents a
functional interaction while Label = 0 represents a non-functional one.

Indeed, while there are very few FN, the number of false positives FP is considerably high, and the count of
true negatives TN is notably low.

3.3. Combination results

This section presents the results of the two separate statistical analyses conducted on all 12 data set split
combinations. The first analysis compared the combination techniques, while the second analysis compared the
performance of the best multi-modal approach with that of the single modalities.

3.3.1 Comparison of combination techniques

The median values, interquartile range, Kruskal-Wallis test p-value and post-hoc test p-value for each evaluation
metric are depicted in Table 8.
In terms of accuracy, precision, and specificity, significant differences were observed across the three multi-modal
approaches. Specifically, the "FPV OR EMG" combination performed significantly worse (post-hoc test p-value
< 0.01) than both "FPV + EMG" and "FPV AND EMG", while "FPV + EMG" and "FPV AND EMG"
had similar results (post-hoc test p-value > 0.05). However, in terms of recall, "FPV OR EMG" outperformed
"FPV + EMG" and "FPV AND EMG", which once again showed no significant difference. There were no
significant differences among the three groups for the F1-score metric.
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Metric Median (interquartile range) Kruskal-Wallis p-value Post-hoc p-value
FPV + EMG FPV AND EMG FPV OR EMG A B C

Accuracy 0.716 (0.067) 0.719 (0.080) 0.598 (0.043) <0.01 1 <0.01 <0.01
F1score 0.743 (0.061) 0.723 (0.092) 0.717 (0.030) 0.055 / / /
Precision 0.712 (0.075) 0.722 (0.059) 0.560 (0.036) <0.01 1 0.01 <0.01
Recall 0.849 (0.118) 0.771 (0.124) 0.998 (0.004) <0.01 0.525 0.01 <0.01

Specificity 0.631 (0.143) 0.665 (0.133) 0.165 (0.069) <0.01 0.969 <0.01 <0.01

Table 8: Statistical analysis on three combination options. A= FPV + EMG compared to FPV AND
EMG; B= FPV + EMG compared to B=FPV OR EMG; C= FPV AND EMG compared to FPV OR
EMG. Significant difference p-value=0.05.

3.3.2 Single-modal vs multimodal approach

For our second statistical analysis, we focused on comparing the "FPV + EMG" combination to the single
modality options. We chose this combination as it showed a lower interquartile range for both accuracy and F1
score, indicating less variability in the data. Table 9 presents the results.
Based on the Kruskal-Wallis test, we saw that there were significant differences between the three approaches
for all five metrics.
The analysis found that the combined approach of using both FPV and EMG data (FPV+EMG) performed
significantly better than using only FPV or EMG data in predicting functional and non-functional hand-object
interactions. This was demonstrated by the higher scores in accuracy, precision, and specificity metrics. For
recall, the FPV approach displayed high scores, which was anticipated in the findings in section 7. The FPV
performed better than the other two approaches for this particular metric.
In terms of F1-score, both FPV and FPV+EMG had very similar scores, and no significant difference was found
between these approaches. On the other hand, the F1-score value for the multi-modal approach was significantly
higher than that of the EMG approach.

Metric Median (interquartile range) Kruskal-Wallis p-value Post-hoc p-value
FPV EMG FPV+EMG D E F

Accuracy 0.650 (0.067) 0.653 (0.044) 0.716 (0.067) 0.003 1 0.005 0.016
F1score 0.745 (0.037) 0.698 (0.068) 0.743 (0.061) 0.017 0.082 1 0.023
Precision 0.598 (0.048) 0.635(0.036) 0.712 (0.075) <0.01 0.114 <0.01 0.173
Recall 0.990 (0.007) 0.776 (0.125) 0.849 (0.118) <0.01 <0.01 <0.01 1

Specificity 0.297 (0.146) 0.520 (0.081) 0.631 (0.143) <0.01 0.002 <0.01 0.913

Table 9: Statistical analysis single-modal vs multi-modal approach: D=FPV compare to EMG; E=FPV
compare to the multimodal approach FPV+EMG; F=EMG compare to the multimodal approach
FPV+EMG. Significant difference p-value=0.05

Overall, the multi-modal strategy consistently outperformed the two single-modal approaches in detecting func-
tional and non-functional interactions between the hand and object, as demonstrated by the majority of the
evaluation metrics.
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4. Discussion

We introduced a novel multi-modal approach that integrates FPV and sEMG to automatically detect hand-
object interactions. This approach has the potential to be used for conducting assessments of the upper ex-
tremities in individuals with neurological impairments affecting the upper limbs.
Our primary objective was to validate the system by testing it on healthy participants during standardized
tasks in a controlled laboratory setting.
Firstly, we analyzed the performance of the sEMG approach. As stated in section 2.4.1, its performance was
evaluated using four different classifiers: sSVM with both linear and RBF kernels, RF, and kNN. The results
showed that the SVM with the RBF kernel and the first six significant features (WL, MDF, KURT, MNF, SM3,
PFK) best predicted functional and non-functional interactions.
The selection of these specific features is attributed to their ability to capture different aspects of the EMG
signal. For example, WL, MDF, MNF and PKF can provide information about the frequency content of the
EMG signal, which can be used to identify changes in muscle activation and endurance during different hand-
object interactions [71]. KURT and SM3 can provide information about muscle co-contraction and asymmetry
in the EMG signal, which may be relevant for distinguishing between functional and non-functional hand-object
interactions [71].
Because the SVM model with a linear kernel can only separate the data points using a straight line or a
hyperplane [83], it may not be able to adequately reflect the complexity of the data, which may explain why it
did poorly. The SVM model with the RBF kernel, on the other hand, can capture the non-linear correlations
between the data points with more intricate decision limits, potentially improving performance with the available
data [83].
Among four different window lengths, the 1-second window length achieved the highest accuracy and F1-score.
sEMG alone showed promising results in predicting functional interactions, as shown by the high recall and
precision values. However, the system had lower specificity, which indicates its lower ability to identify non-
functional interactions correctly.
These findings suggest that the sEMG has the potential to be a helpful tool for identifying functional and
non-functional interactions, even though there is room for improvement in reducing FPs and FNs.
The second single approach we analyzed was the FPV. One crucial aspect of FPV processing involved side
correction, which aimed to accurately identify the correct side (i.e. left or right hand) that the CNN algorithm
had misclassified. Four criteria were tested: Criterion 2 (i.e., assigning "right" to the one with the coordinates
furthest to the right and "left" to the one with the coordinates furthest to the left) and Criterion 3 (i.e, retaining
the detection with the highest centroid) were found to have the best performance. Ultimately, Criterion 2, which
assigned "right" to the hand with coordinates furthest to the right and "left" to the hand with coordinates
furthest to the left, was selected due to its high accuracy, as well as its suitability for daily life activity recording.
Using different window lengths, the FPV approach was tested to recognize functional interactions. By comparing
the interaction state of the test set with the manually identified ground truth, we were able to assess the accuracy,
F1-score, recall, precision, and specificity of FPV. More specifically we found that the 1-second time frame was
the most effective in terms of F1-score, similar to how sEMG performed. FPV had a high recall score, indicating
that it recognized most functional interactions, but it had very low specificity values, meaning it struggled to
identify non-functional interactions, resulting in many false positives and few true negatives.
Overall, these findings imply that while FPV is capable of accurately identifying functional interactions, however,
additional advancements are required to increase accuracy, precision, and specificity.
Three different options for combinations of FPV and EMG were tested. The first (FPV + EMG) consisted of
simply concatenating the most significant features from the EMG analysis and the contact state from the FPV
one. The second approach involved merging the interaction states predicted by the EMG and FPV analysis
using the AND logical operator (FPV AND EMG), while the third approach utilized the OR logical operator
(FPV OR EMG).
Only the dataset related to the window length of one second was used as it delivered the best performance in
both single-modal approaches. We were interested in detecting hand-object interactions. These occur over a
span of a few seconds rather than milliseconds, which may explain why the longer window length of 1 second
performed better.
To compare the five approaches and determine whether there were any statistically significant differences we
utilized the non-parametric Kruskal-Wallis test. To determine which showed significant differences, we next
performed a post-hoc analysis. First, we analyzed the three techniques for combining EMG and FPV. Second,
we compared the most accurate technique from the first analysis with the two single-modal approaches.
From the first analysis, it was observed that the "FPV + EMG" and "FPV AND EMG" combinations had
promising and comparable performance. Even though the "FPV OR EMG" combination was successful in
identifying almost all hand-object interactions, as demonstrated by the very high recall, it had the poorest
performance across every other metric.
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In the second statistical analysis, the single-modal approaches were compared to the "FPV + EMG" combina-
tion, selected based on its lower interquartile range. The results showed significant differences between the three
approaches for all five metrics. The "FPV+EMG" combination outperformed the two single-modal approaches
in terms of accuracy, precision, and specificity, implying its effectiveness in accurately predicting functional and
non-functional hand-object interactions. In terms of recall the FPV performed the best, as demonstrated by
the very low number of FN. However, the multi-modal approach also exhibited a high recall, demonstrating
once again its ability in identifying functional interaction.
In summary, this analysis found that different evaluation metrics showed varying performances for each ap-
proach. Overall, these findings suggest that the combination of FPV technology and sEMG analysis is an
effective approach for capturing functional and non-functional interactions, minimizing errors related to inter-
action identification.
Previous studies ([30] [59] [60]) have investigated the feasibility and validity of using FPV technology to measure
hand use and function in individuals with SCI and stroke survivors. For example, Likitlersuang J. et al. (2019)
[59] and Bandini et al. (2022) [30] found FPV technology to be a feasible and valid tool for capturing hand use
and function in individuals with SCI. Similarly, a study by Tsai and colleagues (2021) investigated the validity
of using FPV technology to record hand use and function in stroke survivors [60]). All three studies suggest
that the technology accurately captured hand movements and identified functional hand-object interactions,
and the use of FPV technology combined with computer algorithms is an effective method for analyzing hand
use and hand roles in individuals with these conditions during daily activities. However, they also mentioned
several limitations including small sample sizes, limited diversity, lack of control groups, and a focus on a limited
range of hand function tasks. Additionally, the computer algorithm may not accurately classify hand use and
hand roles in certain situations: FPV fails to discriminate interactions in presence of "non-standard" grasps
and compensatory strategies. Nevertheless, FPV was found to be more effective than TPV for upper limb (UL)
rehabilitation. This is because FPV provides a more immersive and engaging experience, allowing the user to
feel as if they are actually performing the movements themselves [58].
sEMG is a widely used technology for assessing muscle activity and designing rehabilitation interventions for
patients with upper-limb impairments [42][43][44][49][53][54][55]. For instance, Lee et al.(2011) developed a
classification system to determine the intended manual task based on the sEMG data of stroke survivors [45].
The system was able to differentiate between open-hand and grip tasks, however, accuracy was lower for similar
grip tasks, particularly for severely impaired subjects.
Wearable sensors, such as IMUs, can also provide valuable information on upper-limb kinematics and movement
patterns after stroke as proven by [35][34][36][39]. Overall, the application of IMUs in rehabilitation demon-
strated promising results in terms of delivering precise and objective measurements, customizing therapies, and
enhancing patient outcomes [33]. However, these methods might fail to capture complex hand and finger move-
ments [35]. Unlike our proposed multimodal approach, IMUs are limited to measuring kinematics and do not
provide information on other important aspects of upper-limb function, such as muscle activity or hand-object
interactions[33][37].
On the other hand, force myography has been explored as a means to distinguish between grasping and non-
grasping movements during daily activities [38]. For instance, Sadarangani et al. (2017) demonstrated that
FMG achieved a high average grasp detection accuracy across all tasks for both stroke patients and healthy
participants [37]. However, FMG has several limitations, as it cannot capture dynamic changes in force during
movement or the force generated by individual muscles. In addition, it is only capable of measuring the force
generated during gross motor movements and not the fine ones [38].

4.1. Limitations and future work

The study was limited by a small sample size (10 healthy individuals) which reduced the generalizability of
the results. Additionally, it only tested the multi-modal approach on healthy subjects, and it still needs to be
determined how well it performs with individuals with hand impairments, for example, stroke survivors and
individuals with SCI. The acquisitions were conducted in a laboratory setting, which may only partially reflect
the real-world experience of individuals with hand impairments. Moreover, the study focused on analyzing
hand use during specific and standard task execution, which may only capture part of the range of hand use in
individuals. In addition, the placement of the sEMG array of the subject hand required, in some cases, several
attempts. This issue prolonged the acquisition time, which was already limited due to the short battery life of
both the OTB Sessantaquattro device and GoPro Hero 8. Finally, a significant amount of manual labeling was
required to establish the ground truth regarding the contact state, hand side, and bounding box. It involved
scrutinizing each video frame, which was time-consuming and mentally taxing.
Although this thesis offers insightful information, more investigation is required to address some of its limitations.
For instance, expanding the sample size would provide access to a population that is more representative and
diverse, potentially exposing new insights. In addition, further research should consider a wider range of
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upper limb movements, focusing especially on everyday activities. To further validate this approach, testing
it on individuals who have experienced a stroke or SCI could provide valuable information about its potential
clinical applications. Additionally, evaluating the approach’s performance outside of the clinical setting’s tightly
controlled environment could entail examining hand use during routine activities at home. Such validation could
help overcome the limited access to rehabilitation services that complicate the accurate tracking of neurological
and functional recovery. It could provide more objective and reliable and offer effective exercises tailored to the
patient’s needs and progress. To increase the duration of the recording sessions, battery limits and usability
need also be addressed. To increase usability, it is essential to optimize the design of the wearable sleeve by
making it more comfortable, appropriate, and user-friendly. An excellent example is the Myo armband, which
has an adjustable and compact design that can contribute to a more user-friendly acquisition process. Finally,
the distribution of the labeling task among a large number of researchers may help speed up the process of
ground truth extraction.

5. Conclusion

We demonstrated that the combination of FPV and sEMG is an effective method for automatically capturing
both functional and non-functional hand-object interactions in healthy individuals. This is important because
understanding how the hand interacts with objects provides valuable insights into functional hand use. From
a clinical perspective, monitoring the functional use of upper extremities in real-life settings is crucial to tailor
therapy and maximize treatment outcomes.
Specifically, we have established that the multi-modal approach consistently outperformed the two single-modal
approaches. The sEMG single-modal approach shows promising results for both functional and non-functional
interactions, although there is room for improvement in reducing false positives and negatives. Our results
demonstrated that while the FPV single-modal approach accurately identifies most functional interactions, it
does not perform as well in detecting non-functional interactions, as indicated by the low specificity. Further-
more, our study highlights that the choice of FPV and EMG combination significantly impacts the model’s
performance. The "FPV + EMG" and "FPV AND EMG" combinations showed comparable outcomes, while
the "FPV OR EMG" combination performed worse. Overall, the combination of FPV and EMG resulted in
positive outcomes for all five evaluation parameters.
Future research will involve validating our findings in subjects with SCI or stroke, both in a clinical setting and
in their homes.
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7. Abstract in lingua italiana

La ripresa della funzionalità dell’estremità superiore (UE) è essenziale per migliorare la qualità della vita ed è
una priorità assoluta per le persone con lesioni al midollo spinale (SCI) e ictus. Negli ultimi anni sono stati fatti
progressi nella valutazione della vita quotidiana e nella riabilitazione utilizzando tecnologie indossabili come la
visione in prima persona (FPV), che tuttavia ha alcune limitazioni. Lo scopo di questa tesi è quello di sviluppare
un sistema multimodale che combina FPV ed elettromiografia superficiale (sEMG) per registrare attività che
coinvolgono l’UE e convalidare le sue prestazioni su adulti sani durante attività standardizzate in un ambiente
di laboratorio. Le prestazioni di sEMG nel rilevare interazioni funzionali (ad esempio, la manipolazione di un
oggetto per uno scopo funzionale) sono state valutate addestrando e testando quattro algoritmi di machine
learing. È stato utilizzato un algoritmo di deep learing per rilevare le interazioni tra mano e oggetto dai frame
FPV. Le rilevazioni risultanti sono state analizzate per ottenere le prestazioni di classificazione FPV. Sono stati
quindi testati tre diverse combinazioni di FPV e EMG. La prima ha coinvolto la concatenazione dello stato di
interazione dall’analisi FPV con le caratteristiche più rilevanti estratte dal segnale EMG. Il secondo e il terzo
approccio hanno utilizzato gli operatori logici AND e OR, rispettivamente, per combinare lo stato di interazione
predetto dal segnale EMG e dall’analisi FPV. Le prestazioni degli approcci single-modal e multi-modal sono
state valutate utilizzando metriche di accuratezza, F1-score, precisione, recall e specificità. Le interazioni tra
mano e oggetto sono state rilevate automaticamente con una mediana di accuratezza del 0,653 (0,044) per sEMG,
0,650 (0,067) per FPV, 0,716 (0,067) per la combinazione FPV e sEMG. I nostri risultati hanno dimostrato che
la strategia multimodale ha superato i due approcci single-modal, come dimostrato dalla maggior parte delle
metriche di valutazione utilizzate in questo studio. Questo studio suggerisce che la combinazione di FPV ed
EMG è un modo efficace per catturare interazioni tra mano e oggetto funzionali e non funzionali in individui
sani. Ricerche future prevederanno la convalida dei nostri risultati su soggetti con SCI o ictus, sia in un contesto
clinico che nelle loro case.

Parole chiave: visione in prima persona, elettromiografia di superficie, approccio multimodale, inter-
azione mano-oggetto, funzione della mano
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