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1. Introduction
In recent years, there has been a growing in-
terest in the field of Structural Health Mon-
itoring (SHM) for civil structures like build-
ings and bridges. Indeed, structures are con-
stantly exposed to various environmental fac-
tors that can potentially impact their struc-
tural integrity. To address these challenges, ef-
fective damage detection techniques are needed
and which are encompassed in SHM. In partic-
ular, dynamic response measurements are ana-
lyzed, employing feature extraction algorithms,
and apply statistical analysis techniques. In-
deed, damage in structures can be defined as
changes that affect their current or future dy-
namic performance. Detecting such damage re-
quires a comparison between two different states
of the system, in which one represents the nom-
inal condition, often corresponding to an un-
damaged state of the structure. Visual inspec-
tions are a common method for locating dam-
age. However, they can be imprecise, unreliable,
and time-consuming. In contrast, vibration-
based techniques have proven to offer a more
dependable approach to assessing a structure’s
health. Given the high quantity of data gen-
erated by vibration monitoring, deep learning
has emerged as a powerful tool. It can iden-

tify meaningful features within large datasets us-
ing multiple processing layers. Generally, deep-
learning models for damage detection rely on
supervised learning strategies, where data from
both healthy and damaged structural conditions
serve as training sets to create functions capa-
ble of mapping new input data. However, ob-
taining the data of the input source that ex-
cites the structure can often be prohibitive, lead-
ing to issues of robustness and convergence in
machine learning techniques. Moreover, collect-
ing data from a damaged state of the structure
can be challenging. To overcome these limita-
tions, Convolutional Autoencoders (CAEs) have
been employed to detect damages based solely
on raw vibration data from healthy structures.
Additionally, the adoption of Physics-Informed
Neural Networks (PINNs) allows for the incor-
poration of physical laws governing the time-
dependent dynamics of the structure. The pri-
mary motivation for using PINNs in anomaly
detection is to mitigate the challenges of acquir-
ing abnormal data in physical systems and the
substantial volume of data required for training
neural networks. With PINNs physical laws and
equations of motion are integrated with neural
networks, narrowing the search space for net-
work parameters and reducing the need for ex-
tensive training data. This parameter space
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compression represents a significant advantage
of PINNs over traditional neural network ap-
proaches, making them an attractive option for
anomaly detection and location. This Mas-
ter’s Thesis work serves as an extension of two
research papers that investigate the compari-
son between an unsupervised deep-learning al-
gorithm and a PINN for structural monitor-
ing, using only vibration data acquired from the
healthy state as the training set[1, 2]. Both
neural networks are evaluated on a four-story
building using acceleration data obtained from
accelerometers placed on each floor. The pri-
mary objective is to confirm the higher poten-
tial of AI methods with respect to conventional
methods and to demonstrate the superior capa-
bility of PINNs in detecting structural damages
compared to conventional unsupervised neural
networks.

2. Artificial Intelligence and
Machine Learning

Since the main concern of this Master’s Thesis is
the implementation of an Artificial Intelligence
(AI) based algorithm, a general comprehension
of the methods we are dealing with is needed. AI
is a multidisciplinary field of computer science
focused on creating systems and machines capa-
ble of performing tasks that typically require hu-
man intelligence. These tasks encompass a wide
range of activities, including problem-solving,
learning, reasoning, perception, understanding
natural language, and interacting with the envi-
ronment. Artificial intelligence does not compre-
hends only learning-based approaches, like ma-
chine learning and deep learning, but also ap-
proaches oriented to replicate the human rea-
soning process.

Figure 1: Hierarchical representation of artificial
intelligence.

AI has shown a high potential to revolutionize

industries, improve efficiency, enhance decision-
making, and create new opportunities for inno-
vation and advancement. Its impact on society
and various domains continues to grow, making
it a pivotal field of study and research.

2.1. Machine Learning
In classical programming, a large set of explicit
rules for manipulating knowledge are employed.
This approach, known ad symbolic AI is suitable
to solve well-defined problems and relies on the
idea that humans input rules and data to be pro-
cessed to obtain the required outputs. However,
this paradigm fails when dealing with complex,
fuzzy problems as image classification or speech
recognition. For this reason, Machine learning
was introduced. ML is a sub-method of arti-
ficial intelligence that aims to learn from data
and make predictions or decisions on future sce-
narios. Indeed, the system through a new addi-
tional phase, called training, is able to construct
the knowledge about the case under study. Data
become a key point. Indeed, they are used for
both training and testing ML algorithms, aiming
to be transformed in more meaningfully repre-
sentations for the given task. However, these
representation are searched in a restricted space
of predefined operation, called hypothesis space.
To summarize, a ML algorithm to work properly
needs:
• Input data;

• Examples of the expected outputs;

• A measure of how the algorithm is perform-
ing, in order to measure the distance the
algorithm’s output and the expected one.
This index works as a feedback signal, help-
ing the algorithm to adjust itself through
the learning step.

It must be said that the ability to work with
large dataset through the training phase repre-
sent also one of the biggest limitations of ML. In-
deed, it is impossible to extract generalized rules
of data analysis based on information acquired
and elaborated in the past. If the input dataset
changes a re-training would be necessary.

2.2. Deep Learning
In recent years, Deep Learning (DL), a sub-field
of machine learning, has garnered significant at-
tention due to its remarkable achievements in

2



Executive summary Gianluca Bombaci

various domains. On the contrary of what could
be thought, in deep learning, the term "deep"
does not refer to a class of ML-algorithms with
higher capability of understanding but to a class
of artificial neural networks working with several
hidden layers of increasingly meaningful repre-
sentations. Indeed, while the other approaches
focus on learning by means one or two layers of
representations, and for this reason called shal-
low methods, deep learning relies on tens or hun-
dreds successive layers of data elaboration. Be-
ing inspired by the human brain’s structure and
function, each layer used by deep learning al-
gorithms is composed by neurons, linked to all
neurons present in the previous and successive
layers. Deep learning networks can be thought
as multistage information filtering with the ob-
jective to map inputs into targets. Each layer,
which acts like a filter, is characterized by a
weight. These weights are the way in which the
algorithm improve itself to correctly associate
inputs to targets during the learning phase. The
first layer of an Artificial Neural Network (ANN)
is labeled as input layer. The dimension of this
layer matches the dimension of the data enter-
ing the network. Instead, the last layer of an
ANN, labeled as output layer, has the dimen-
sion of what it is expected from the layer (i.e.
the fixed targets). These deep architectures en-
able the hierarchical extraction of features from
raw data, allowing deep learning models to cap-
ture intricate patterns in data, making them
highly effective in tasks such as image recogni-
tion and speech recognition. The training phase
of deep learning models involves an algorithm
called backpropagation, where the model adjusts
its internal parameters (weights and biases) to
minimize the difference between predicted and
actual outputs. This iterative optimization pro-
cess relies on a mathematical technique known
as gradient descent. Despite its numerous suc-
cesses, it must be said that deep learning is
not without challenges. Indeed, training deep
learning models can be computationally inten-
sive and may require large datasets to general-
ize well. Moreover, one of the key challenges
is interpretability, as deep models are often re-
garded as "black boxes", making it difficult to
understand their decision-making processes.
As already said, the main ingredient of a suc-
cessful neural network are the layers, that can be

thought as filter for data, able to extract repre-
sentation that, hopefully, would be more mean-
ingful for the problem being studied. So, a deep
learning machine is like a series of increasingly
finer data filters. However, to properly train a
ML algorithm three more elements are needed:
• Loss function (also objective function),

which represents the quantity to be mini-
mized during the training phase and which
defines the feedback signal;

• Optimizer, which represents the method
chosen for the updating of the network
based on the feedback signal coming from
the loss function;

• Metrics for training and testing. They al-
low to quantify and study the performances
of the algorithm. Indeed, they are used to
monitor and measure the performance of a
model during training and testing.

3. System description and
model

The system object of this work is a multi-storey
building shown in Figure 2 (a).

(a) A photo of the real
system.

(b) Lumped mass
model of the sys-
tem.

Figure 2: Real system and lumped mass model.

Five aluminum plates, connected by steel lami-
nas, respectively model the storeys and the pil-
lars of the building [3]. The reason behind using
a lumped mass approach in modeling the sys-
tem is the substantial difference in mass between
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each storey and the laminas. This approach sim-
plifies the system into four degrees of freedom,
represented by four masses connected by springs,
as depicted in Figure 2 (b). The equations of
motion that describe the dynamics of the tested
building are derived, as presented in equation1.

[M ] ẍ + [C] ẋ + [K] x = 0 (1)

For the complete analysis of each matrix com-
posing the equation is suggested to refer to the
complete work. However, it must be highlighted
that in this Master’s Thesis the hypothesis of a
clamped-clamped beam is used to calculate the
stiffness matrix of the system. Moreover, also
the influence of the weight of each storey on the
transversal stiffness was considered.

3.1. Experimental Campaign
The techniques considered in this thesis employ
the variations in vibration measurements be-
tween the structure in its nominal state, referred
to as "healthy," and a state with "damage" as
an indicator of potential damage. Hence, the ex-
perimental campaign carried out on the tested
structure is designed to collect raw data for both
the "healthy" and "damaged" states. The ex-
perimental setup for both scenarios includes:
• four TE triaxial capacitive MEMS ac-

celerometers, one per each storey;
• a PCB Piezotronics impact hammer;
• a National Instruments c-DAQ.

The structure is stimulated using an impact
hammer, and the transverse vibrations are cap-
tured. In the "healthy" scenario, a total of 1000
data records, each lasting 70 seconds and sam-
pled at a rate of 128Hz, are recorded. After,
the Frequency Response Functions (FRFs) are
calculated for each accelerometer and the nat-
ural frequencies and mode shapes are deduced
using the Experimental Modal Analysis (EMA)
technique. Specifically, the natural frequencies
of the system are presented in Table 1 for both
the numerical and experimental models.

Table 1: Natural frequencies for both the nu-
merical and the experimental model.

Mode Numerical Experimental
model [Hz] model [Hz]

1 0.79 0.75
2 2.51 2.41
3 3.88 3.74
4 5.01 5.04

It’s crucial to emphasize that the natural fre-
quencies and mode shapes obtained for the
"healthy" structure will serve as a reference for
the vibration-based damage detection method.
This method, in turn, will be used as a bench-
mark to evaluate the performance of the two ma-
chine learning algorithms.
When examining scenarios involving structural
damage, it’s essential to bear in mind that inter-
nal structural issues are typically not caused by
material loss and, consequently, do not result in
changes in mass. Instead, they often stem from
alterations in geometry or material properties
that impact one or more elements within the
stiffness matrix. Therefore, in the "damaged"
condition, the time histories are acquired by al-
tering only the stiffness values of the laminas.
Specifically, six distinct sets of laminas, all fea-
turing the same cross-sectional dimensions but
varying in length as indicated in Table 2, are em-
ployed to reduce the stiffness of the springs con-
necting consecutive floors. These adjustments
result in stiffness values ranging from 10% to
60% of the nominal value.

Table 2: Lengths of the set of laminas used to
reproduce a damage in the structure.

Damage Length
Percentage

0% 180.0 mm
−10% 186.5 mm
−20% 194.0 mm
−30% 203.0 mm
−40% 213.5 mm
−50% 227.0 mm
−60% 244.0 mm

In total, a dataset comprising 240 time records,
each lasting 70 seconds and sampled at a rate of
128Hz, is collected. This dataset encompasses 10
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records for every possible combination of dam-
age extent (represented by the type of lamina)
and damage location (across four floors).

4. Network architectures and
training

The core objective of this Master’s Thesis work
is to compare the ability to detect structural
damage between a physics-informed neural net-
work and a purely data-driven neural net-
work. Furthermore, as already said, conven-
tional vibration-based techniques, which rely on
the analysis of changes in both natural frequen-
cies and vibration modes of the structure, are
used as a reference to evaluate the advantages
of employing machine learning algorithms over
traditional methods.

4.1. Training and test
Following the pre-processing phase and the split
of the dataset, described in detail in the main
work, the training set is employed to train the
autoencoder model illustrated in Figure 3. No-
tably, the training phase for the PINN-CAE and
DD-CAE models differs due to the custom loss
function implemented for the former. During
the CAE training process, 200 epochs are con-
sidered, with Mean Absolute Error (MAE) serv-
ing as the loss function. Additionally, a callback
is applied to monitor the validation loss. MAE
is evaluated separately for each accelerometer
to assess the reconstruction error generated by
the trained model when predicting the test set.
The maximum MAE values observed across the
entire test set are established as thresholds for
anomaly detection. As mentioned earlier, MAE
values exceeding these thresholds are indicative
of time histories representing the damaged struc-
ture.

4.2. Autoencoder
Both machine learning algorithms, referred to
as PINN-CAE and DD-CAE, share a common
neural network architecture based on a convo-
lutional autoencoder. Autoencoders are self-
supervised learning techniques that aim to re-
construct input data at the output with mini-
mal distortion after a series of transformations
and data compression steps. They are widely
used for denoising, data compression, and high-
dimensional data visualization. Convolutional

Neural Networks (CNNs), upon which Convolu-
tional Autoencoders (CAEs) are built, are a sub-
set of Artificial Neural Networks (ANNs) that
leverage convolution operations, offering advan-
tages such as reduced parameter connections
and faster convergence due to dimension reduc-
tion. This architecture is employed to remove
irrelevant features while preserving essential in-
formation. For the description of each layer com-

Figure 3: Autoencoder model.

posing the model used in this work is possible to
refer to the extended Master Thesis work.

4.3. Physic-informed neural network
At this point, it should be clear that training
deep neural networks often necessitates access
to extensive datasets, which can be challeng-
ing to obtain, especially for pre-existing struc-
tures or damaged scenarios. Physics-informed
neural networks offer a potential solution to this
limitation. These networks can be trained us-
ing additional information derived from the un-
derlying physical principles governing the dy-
namic behavior of the system. This approach
integrates both data and mathematical models,
even in situations where the models may not be
fully understood, are subject to uncertainty, or
involve high-dimensional parameters. To facil-
itate the training of PINNs, conventional loss
functions are not suitable. Instead, custom loss
functions are essential. Specifically, these cus-
tom loss functions should incorporate the physi-
cal laws that govern the dynamic response of the
system, thereby constraining the space of allow-
able solutions during autoencoder training. The
outline of the proposed custom loss function is
depicted in Figure 4.
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Figure 4: Custom loss scheme.

The signals denoted as yi, which are the out-
comes of the autoencoder, represent the re-
constructed time histories of the scaled vibra-
tion data acquired during the healthy scenario.
These data, in turn, depict the system’s response
to the input force applied by the hammer. How-
ever, it can be assumed that after a certain pe-
riod, set at 10 seconds in this case, the transient
behavior resulting from the forced motion of the
system completely diminishes. Consequently,
the remaining portion of each reconstructed time
history should exhibit low error when compared
to the previously presented set of Ordinary Dif-
ferential Equations (ODEs) in Equation 1. For
this reason, it’s reasonable to expect a greater
error when considering time histories originat-
ing from the damaged scenario. As a result,
after appropriate time-domain integration, the
error functions shown in Figure 4 are computed
for each time instant. Within these error func-
tions, yi, ẏi, and ÿi corresponding to the dis-
placement, velocity, and acceleration signals are
obtained through the autoencoder’s reconstruc-
tion. Subsequently, the absolute values of their
mean values are calculated and collectively form
the physical component of the custom loss func-
tion. At the end, the obtained custom loss func-
tion considering also the loss accounting for the
data-driven part is:

L = K · [
∑n

i=1 |err1,i|
n

+

∑n
i=1 |err2,i|

n

+

∑n
i=1 |err3,i|

n
+

∑n
i=1 |err4,i|

n
]

+MAE

(2)

where K is a constant to express the physical
part of the custom loss in an adimensional form.

5. Results
The dataset comprising 240 damaged records
is initially subjected to analysis through Ex-
perimental Modal Analysis (EMA). However, it
is observed that natural frequencies and mode
shapes exhibit only slight variations in response
to damages of 10%, as depicted in Figure 5.

(a) 1st mode. (b) 2nd mode.

(c) 3rd mode. (d) 4th mode.

Figure 5: Vibration modes of structure for 10%
reduction of the stiffness value and for different
positions of the damage.

In the case of more significant damages notice-
able differences in natural frequencies and mode
shapes become evident. However, it’s worth not-
ing that pinpointing the precise location of the
damage is not straightforward.
On the other hand, the anomaly dataset, pre-
processed using the same methods used for the
training set, is fed into both the PINN-CAE and
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DD-CAE models. The Mean Absolute Error
(MAE) values are computed for each anomaly
record and for each channel (corresponding to
different accelerometers). These MAE values
are then compared to the previously established
MAE test thresholds. Any record with a loss ex-
ceeding the threshold is classified as an anomaly.
Both architectures successfully identify all the
considered time histories as anomalies. This out-
come confirms the anticipated higher precision
of data-driven algorithms in detecting structural
damage compared to conventional methods. No-
tably, this difference becomes particularly evi-
dent when the extent of the damage is relatively
low.
Moreover, for each detected anomaly, the chan-
nel (corresponding to the accelerometer posi-
tion, i.e., the floor) with the highest MAE loss
is selected as the predicted damage location.
This predicted position is then compared to the
known real damage location. Subsequently, an
accuracy indicator is evaluated for both of the
considered algorithms, with damages ranging
from 10% to 60% serving as the reference point.

A =
nd

ntot
× 100 (3)

In this equation, where nd represents the count
of anomalies with a damage extent equal to or
greater than the reference value, and where the
model accurately identifies their positions, while
ntot stands for the total number of anomalies
with a damage extent equal to or greater than
the reference value. The outcomes of these eval-
uations are presented in Table 3.

Table 3: Anomalies detection rates as function
of the damage percentage for both PINN-CAE
and DD-CAE.

Damage Accuracy A
Percentage DD-CAE PINN-CAE

-10% 33.19% 79.43%
-20% 40.20% 82.81%
-30% 52.24% 87.22%
-40% 65.11% 92.03%
-50% 84.61% 100%
-60% 100% 100%

It is possible to conclude that the PINN out-
performs the results obtained with the purely
data-driven approach, as expected.

6. Conclusions
The main focus of this Master’s Thesis work is
to assess the accuracy of detecting structural
damages using two distinct machine learning
algorithms: a physics-informed convolutional
autoencoder (PINN-CAE) and a purely data-
driven convolutional autoencoder (DD-CAE).
The evaluation is based on raw data obtained
from experimental acquisitions conducted on a
four-storey building, and both algorithms share
the same structural architecture. The Mean
Absolute Error (MAE) of the reconstruction is
employed as an indicator to identify anomalous
records.
Both the PINN-CAE and the DD-CAE outper-
form conventional vibration-based methods in
their ability to detect structural damages and
pinpoint their locations. They successfully iden-
tify all anomalous time histories and exhibit a
high level of precision in detecting structural
changes. Notably, the physics-informed network
demonstrates greater accuracy in locating dam-
age compared to the data-driven approach, es-
pecially for lower levels of damage severity. This
emphasizes the significant potential of combin-
ing a data-driven architecture with information
derived from the physical model of the studied
system.
Future developments of this research will involve
altering the mass of the system and utilizing
the model in conjunction with neural networks
to detect anomalies in more complex structures
such as bridges or viaducts. Analytically repre-
senting such structures can be challenging, but
a numerical model based on simulation meth-
ods like the Finite Element Method can be em-
ployed. The expansion of this work by consider-
ing a numerical model of more complex system
will be developed in future by the authors.
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