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Abstract

This thesis work aims at developing a machine learning algorithm for a data driven pre-
dictive maintenance technique. Maintenance is a well known problem in industry that is
responsible for economic and efficiency losses. The algorithm is meant to be integrated in
the distributed control system of the Itelyum Regeneration plant in Pieve Fissiraga (LO).
The development of such algorithm is carried out in Python programming language and
developed with the free open source library Scikit Learn. The time series data is mod-
eled through a Gaussian Process Regression and linear regression. The two approaches
are than compared. The case study implemented describes the furnace of the thermal
de-asphalting section of the plant. A key unit of the refinery plant for which maintenance
and control must be ensured and optimize in order to ensure energy efficiency and safety
and to avoid economic losses and downtime.

Keywords: chemical engineering, process unit, predictive maintenance, process furnace,
machine learning, data driven, gaussian process, big data, industry 4.0





Abstract in lingua italiana

Questo lavoro di tesi mira a sviluppare un algoritmo di machine learning per un approccio
data driven al problema della manutenzione predittiva. La manutenzione negli impianti
è un problema ben noto in quanto essa è responsabile per ingenti perdite economiche
e riduzione dell’efficienza delle unità. L’algoritmo è pensato per essere integrato con il
sistema di controllo distribuito dell’impianto di rigenerazione Itelyum, situato a Pieve
Fissiraga (LO). L’algoritmo è implementato attraverso il linguaggio di programmazione
Python e sviluppato utilizzando Scikit Learn, una liberira gratuita e open source per
il machine learning. I dati vengono modellati tramite metodi di regressione lineare e
Gaussian Process e i due metodi vengono poi comparati. Il case study implementato
riguarda la fornace nella sezione di de-asfaltazione termica dell’impianto. Un’unità chiave
dell’impianto di raffinazione per la quale manutenzione e controllo devono essere assicurati
in modo tale da garantire efficienza energetica, sicurezza ed evitare perdite economiche e
tempi morti.

Parole chiave: ingegneria chimica, unità di processo, manutenzione predittiva,
forno industriale, data driven, machine learning, gaussian process, big data,
industria 4.0
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1| Introduction

1.1. Overview

The chemical industry has always been the joining ring between raw materials and con-
sumers, allowing the development of the modern society as we know it. It is responsible for
delivering goods, its a source of employment and it represents a playground for scientific
improvements and applied research.

Chemical plants are often huge structures composed of hundreds of different units of large
volumes for which safety and control must be ensured. On the other hand, the economic
aspects shall not be neglected in order for the plant to remain competitive on the market.
Last but not least, the environmental sustainability is something to account for, especially
when dealing with chemicals.

The monitoring of operative conditions is a main aspect to ensure safety, optimal logistic,
low environmental impact and in general high efficiency of the process. The monitoring is
done by installing sophisticated control systems that elaborates the signals coming from
the sensors. After many stages in the evolution of process control, the introduction of a
distributed control system allowed an easy interconnection of plant controls. The data
coming from the sensors are collected and gathered in a single interface for visualization.
In the last decades, along with the interest in data analytic and with the development
of affordable storage devices, chemical plants have began to stock the data for further
elaboration. Indeed, data are informative of the process and by studying the history of
the plant, it is possible to predict its future state to further increase its management and
control.

These aspects shade light on a whole new way of managing a chemical plant by exploiting
the full potential of the data through artificial intelligence and big data analytic tech-
niques.



2 1| Introduction

1.2. Research objective

Currently, Itelyum Regeneration Spa is embracing the era of big data starting from the
installation of the Exaquantum monitoring system at its refinery plant in Pieve Fissiraga
(LO). Nevertheless, the process of accessing, elaborating and showing the data is intricate
and slow, making the system not exploitable at its full potential.

The aim of this thesis work is to develop an algorithm able to elaborate the data history
coming from the furnace PH-401B operating in the thermal de-asphalting section of the
plant. The work was mainly focused on the development of a ML model able to learn
the structure of the time series explanatory of the process. The model is than used to
return a long term forecast in order to predict the evolution of the process and plan for
maintenance of the furnace. The algorithm should have the following features:

• Robustness. In order to deal with discrepancies of the model from the real data.
These discrepancies are inevitable since data from the furnace are subjected to
sudden changes due to process conditions.

• Easy to use. In order to overcome the distance between the data and the plant
operators, the results should be obtained easily, the algorithm should have few
input parameters.

• Insights. The algorithm should extract valuable information form the data otherwise
not obtainable such as long term predictions and correlations between the data.

• Computationally affordable. The algorithm should run in no more than few hours
in order to deliver new information every day.

The output of the algorithm is than showed in a dashboard to be used during daily
operational meetings in order to have better insights on the unit. This system will help o
better exploit the valuable information offered by the data in a fast and easy manner.
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2| State of The Art

2.1. Background

The new era of Big Data (BD) is currently driving the secondary sector in what has been
called "The Fourth Industrial Revolution" [18]. In particular, chemical industries are
given an important opportunity for shifting towards smart manufacturing. Indeed, the
large amount of data produced in a chemical plant merged with the use of software for
Big Data Analysis (BDA) is the key to successful decision making and planning [6].

BD is an expression for massive data sets consisting of both structured and unstructured
data that are particularly difficult to store, analyze and visualize [11]. Every chemical
industry produces large amount of data acquired every second by the sensors that moni-
tor variables such as pressure, temperature, density, level, flow, etc. Without mentioning
all the data generated from finance, maintenance and communication during normal op-
erations on the plant. Whereas previously these data were used instantly or partially
stored, nowadays the industries have started to store the majority of the data thanks to
the availability of more advanced storage devices [23]. This is surely the starting point
to gain benefit from the massive amount of data generated over the years. Some of the
analysis expected form BDA in chemical plants are:

• Descriptive: provide information on a historical process event that helps in under-
standing the nature of the process;

• Diagnostic: provide explanation on why a specific event occurred. Useful for hazard
identification;

• Predictive: provides forecasting based on historical and current data. The forecast-
ing can be short-term or long-term.

Under this perspective, it is clear that professional figures such chemical engineers should
have competences in BDA in order to match the skills required by the so called Industry
4.0 [20]. Some of these skills are proficiency in programming languages such as MATLAB,
Python, C++, MySQL and R, education in statistics and data analytic and knowledge
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of software libraries for Machine Learning (ML) and Deep Learning [14]. With these
competences, a process engineer would be able to perform BDA in order to:

1. Identify problems in product specifications such as if an off-spec product is an outlier
or part of the process;

2. Identify relationship between several sensors by conducting multivariate analysis;

3. Identify the unit that can maximize the production;

4. Generate explanatory plots and graphs to represent the performance of a unit.

Such a professional figure could be of great importance in the management of a plant and
the application of the mentioned tools of great effectiveness in operational meetings and
decision making.

2.2. Predictive maintenance

The opportunities for chemical plants which will embrace the digital revolution are nu-
merous. Among these, one of the most attractive is predictive maintenance. In contrast
with other maintenance technique such as preventive or corrective, the aim of a predictive
approach is the prediction of trends, behavior patterns and correlations by statistical or
machine learning models for anticipating failure and ordinary operations and therefore
reducing downtime [27].

The impact of maintenance is a well known problem in industry. In the field of the chemical
industry, entire sections of the plants are periodically stopped for restoring units that
undergo notorious aging phenomena such as coking, sintering or fouling. According to the
2018 Maintenance Survey by Plant Engineering, 35% of respondents said they spend more
than 10% of their operating budgets on maintenance, and another 34% spend between 5%
and 10%. Traditional maintenance strategies consist in regularly scheduled or occasional
interventions. This means that when components wear down or break, the equipment
is stopped until it is fixed. Abnormal event management is estimated to cost around 20
billion a year to the petrochemical industries, rating this as their number one problem to be
solved [22]. On the other hand, predictive maintenance focuses on anticipating problems
and therefore predict failures before they occur. Predictive maintenance is classified as
[27]:

Physical based. The life cycle of the equipment is described by an analytical model
whose inputs are data from the sensors measuring the conditions of the component.

Knowledge based. Uses expert systems approach or fuzzy logic when no physical model
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is available.

Data driven. Development of statistical based models or artificial intelligence based
models through machine learning.

The latest approach, that is of main interest for this thesis work, implies the analysis and
elaboration of time series data that are descriptive of the unit life cycle. Through the
employment of artificial intelligence based techniques, the time series is modeled in order
to learn its structure and therefore forecast the future state of the unit.

Several physical based degradation models have been developed, such as the one deal-
ing with sintering of the catalyst [12], fouling of heat exchangers [5] or coking of steam
crackers [3]. Nevertheless, these models have been extrapolated form laboratory envi-
ronments that are not fully explanatory of real world apparatus. The former issue is
the main reason why these mechanistic models of degradation dynamics are rarely used
in production environment. For this reason, the research has shifted to modelling time
series data coming from process units with a non deterministic approach. Nevertheless,
few advanced machine learning methods have been applied for the prediction of the life
of chemical process equipment [4], leaving a gap in the literature. For example Wu et al.
[25] have modeled fouling in heat exchangers through a classical statistical method such
as the partial least squares regression; while Radhakrishnan et al. [16] and Aminian and
Shahhosseini[2] have trained recurrent neural network also to predict an heat exchanger
fouling process.

In recent years, Gaussian Process has received extensive attention in the world of machine
learning due to its advantages in data modelling given by the Bayesian framework of this
approach [26]. Indeed, these non parametric models are flexible enough to model highly
complex data whilst prevent over fitting and also they aim at making predictions which
quantify the uncertainty due to limitations in the quantity and quality of the data [7].
GPR was successfully applied in order to predict the quality of polypropylene at industrial
level [8].

In order to train a GP model, it is necessary to have a previous knowledge about the
shape of the dataset so to specify the covariance function with which the time series
is modelled. Rasmussen and Williams, approached the structure modelling of complex
kernels by observing the structure of the data and choosing the right combination of
kernels according to the observations [17]. Nevertheless, this method can be tedious and
time consuming especially if one does not have sufficient knowledge about the theory of
GP. That is why Duvenaud et al. proposed an automatic kernel search procedure by the
construction of a search tree [19].
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3.1. Time series

In mathematics, time series is a sequence of data points taken orderly in time:

y = [y(t1), y(t2), ..., y(tn)] (3.1)

Nevertheless a time series reflects a continuous process, in practice data points are col-
lected discretely and usually sampled uniformly. In Figure 3.1, it is possible to see a
time series for which data were collected every 8h so that the vector of Equation 3.1 is
composed by values taken at time t1 = 0, t2 = 8, tn = 8n hours, where n is the number
of samples and y is a process variable such as CH4 flow rate in this example.
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Figure 3.1: Example of a Time Series. The number of samples are reported on the x-axis,
while the data points indicate the instantaneous methane consumption.

Some structure properties of a time series are reported hereafter.

Deterministic and Statistical Time Series. If the values of a time series are exactly
determined by a mathematical function, the series is said to be deterministic. On the
other hand, a non deterministic or statistical time series is one whose future values can
only be described in terms of statistical distribution.

Stochastic process. Is a statistical phenomenon that evolves in time according to
probabilistic laws. The time series to be analyzed may then be thought of as a particu-
lar realization, produced by the underlying probability mechanism, of the system under
study [24]. In other words, we can study a time series as if it was the realization of a
stochastic process where every observation is a random variable [y(t1), y(t2), ..., y(tn)] with
probability distribution P [y(t1), y(t2), ..., y(tn)].

Mean. The mean of a time series can be defined as the expected value of the time series,
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that is the level about which it fluctuates.

µ = E[yt] =

∫ ∞

−∞
yP (y)dy (3.2)

A time series can be stationary or non stationary depending on if the mean changes in
time. In the second case, the time series will exhibit a mean shift.

Variance and Standard Deviation. The variance σ2 is defined as

σ2 =
1

n

n∑
i=1

(yi − µ)2 (3.3)

It is a measure of variability of the data and represents the average squared deviation
from the mean. Since the variance is not expressed in the same units as the original data,
for interpretation purposes the standard deviation σ is frequently used. It is obtained
from the squared root of the variance.

Covariance. Measure of the statistical dependence between observations in a time series.
It reflects the degree of correlation between data points at two different times. Given two
observations at time s and t, the covariance is defined as

k(ys, yt) = E[(ys − µs)(yt − µt)] (3.4)

3.1.1. Time series forecasting

A typical application of time series is structure modelling and forecasting. This is the
process of understanding and mathematically define the structure of a time series. Once
the structure of the time series is learned, it is possible to extrapolate future data for
predictions. An example of time series forecasting is reported in figure 3.2.
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Figure 3.2: Example of a Time Series Forecasting. The prediction of the flow rate trend
is represented by the orange curve. The confidence interval in green accounts for the
uncertainty of the prediction.

The blue part of the time series is the observed data used to "learn" the structure of the
model, while the orange part of the time series is the extrapolation of future data. The
green region represents the interval within which the data will fall with 95% accuracy. It is
possible to notice that the green region enlarges over time. This means that the prediction
becomes more uncertain as the forecasting horizon becomes longer as one could expect.

The forecasting horizon is the ensemble of points in the future that we want to forecast
and it can fall into three categories: short-term, medium-term and long-term. Where
the former is closed to the present observations while the latter spans further away. The
spans that classify the length of the horizon depend on the kind of process that one
wants to describe. Long term forecasting is the most difficult. An effective way to obtain
accurate long term predictions would be to have a a physical model describing the system.
However, such a model is not always available and also its simulation is time consuming
and requires appropriate computational power. For these reasons, statistical models are
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favoured, with the drawback of loosing accuracy faster.

In order to correctly forecast a time series, one should be able to find some regularities
in its structure. Stationarity is an example of regularity that is often assumed because
of several advantageous mathematical properties such as the independence of the mean
form time. On the other hand, for many time series the stationarity property does not
hold and some structures like trend and seasonality are found. In figure 3.3 we can see
an example of time series that exhibit an increasing trend and an irregular seasonality.
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Figure 3.3: Example of a time series that exhibits patterns in its structure: the trend is
given by the increasing value of the flow rate, while seasonality is given by the repeating
patterns.

3.1.2. Modelling approach of time series

Given the difficulty to describe a system with a physical model, statistical models are
used the most. There are different approaches used to explore the structure of a time
series. The most common modelling approaches are Linear Regression, Auto Regressive
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Integrated Moving Average model (ARIMA) and Exponential Weighted Moving Average
(EWMA). On the other hand, due to the increasing interest in Artificial Intelligence (AI)
and easier access to high computational power and open source algorithms, Artificial Neu-
ral Networks (ANN) and other ML models such as Gaussian Process Regression (GPR)
are gaining momentum.

A general time series model is given by

y(t) = f(X(t);θ) + ϵ(t) (3.5)

where y(t) is the vector of values observed in time. This latter is function of the regressors
expressed by the design matrix X(t) and the vector of parameters θ. The model also
takes into account the noise term ϵ(t) modeled as Independent Identically Distributed
(IID) with a Gaussian distribution with mean 0 and variance σ2,

ϵ ∼ N (0, σ2). (3.6)

The aim of a time series modelling task is to "learn" the optimal values of θ̂ from the
available data. In this way it will be possible to extrapolate future data at time t = t+ h

by substituting θ̂ in Equation (3.5). In this work, the structure modelling of the time
series is performed by means of the linear regression and Gaussian process regression.

3.2. Linear regression

A linear regression model is a straightforward and effective model that is often able to
describe adequately the relation between the data. An important class of linear regression
is the polynomial regression, that is the one considered in this work. When referring to
linear regression, polynomial is implied.

Due to the the simple mathematical formulation and the low computational power re-
quired for its learning, linear regression is used in many engineering and science applica-
tions [13]. Depending on the number of regressors implied, it is possible to distinguish
simple and multiple linear regression models. The resulting forecasting model of the
former is

y = θ0 +
n∑

i=1

θix
i
1 + ϵ (3.7)

where n is the maximum order of the polynomial with which we want to describe our
model.
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In case the data result from the combination of more than one regressor, multiple linear
regression is employed and the forecasting model becomes

y = θ0 +
n∑

i=1

θix
i
1 +

n∑
i=1

θjx
j
2 +

n∑
i,j=1

θijx
i
1x

j
2 (3.8)

Such a model is able to capture more complex patterns since it s able to model possible
interactions between two variables.

In general, any regression model that is linear in the parameters θ is a linear regression
model regardless of the shape of the surface that it generates. While a multiple linear
regression model can capture wiggles in the data, a simple linear regression will only be
able to describe the mean of the time series and therefore capture its trend. This aspect
makes the linear regression approach suitable for long term predictions.

3.2.1. Training of a linear regression model

With the expression "training of a linear regression model", it is intended the estimation
of the values of the regressors θi. Let us consider the case of a simple linear regression
problem where we have n pairs of observations (t1, y1), ..., (tn, yn) to which we want to
fit the model y = θ0 + θ1t + ϵ. The method used to estimate the parameters that best
fit the observations is the least squares. It consist in the minimization of the sum of the
squares of the deviation of the observations from the true regression line. This sum of the
deviation is expressed as

L =
n∑

i=1

ϵ2i =
n∑

i=1

(yi − θ0 − θ1ti)
2 (3.9)

Therefore, the optimal values θ̄0 and θ̄1 of the parameters must satisfy

∂L

∂θ0
= −2

n∑
i=1

(yi − tθ̄0 − θ̄1ti) = 0

∂L

∂θ1
= −2

n∑
i=1

(yi − tθ̄0 − θ̄1ti)ti = 0

(3.10)

(3.11)

Equation 3.10 is solvable analytically.
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If we identify the values estimated by the model with

ȳi = θ̄0 + θ̄1ti, (3.12)

than the quantity ei = yi − ȳi is called residual and it describes the error in the fitting of
the model.

Once the model is trained, it is possible to extrapolate unseen observations by substituting
future values of t in Equation 3.12. Besides, it is useful to have a prediction interval on
future observations y∗ in order to take into account uncertainty in the prediction. The
prediction interval is defined as

ȳ∗i = ±δσerr (3.13)

where σerr is the standard deviation of the error and δ is set in accordance with the degree
of confidence with which the interval is computed. For a 95% confidence interval, δ is set
to 1.96, while for a 75% confidence interval δ = 1.15.

3.3. Gaussian Process

The GP regression is a model based on few restrictive assumptions on the function f .
A GP regression only assumes that the function f is smooth enough so that mean and
covariance function exist. Furthermore, the non parametric nature of the model implies
that the GP does no rely on any parametric model assumption, instead the GP is flexible
with the capability to adapt the model complexity as more data arrive [17]. GPR finds its
roots in the Bayesian modelling approach since a GP can be used as a prior probability
distribution over functions in Bayesian inference.

In practice, given two data points, the GPR approach consists in giving a prior proba-
bility distribution to every possible function that could interpolate these points. Higher
probabilities are given to functions that we consider to be more likely, for example be-
cause they have some properties with respect to other functions [17]. This reasoning is
extended to every data point in the time series. The combination of the data with the
prior distribution leads to the posterior distribution that is the result of the regression.
Under this assumptions, the specification of the prior distribution is needed before fitting
and the learning process is the problem of finding the proper prior and its properties.

In other words, we build a probabilistic model for the function itself. Indeed by considering
a set of inputs [t1, t2, ..., tn], we assume that the function values [y(t1), y(t2), ..., y(tn)] are



3| Methods 15

distributed according to a multivariate Gaussian distribution with mean µ and covariance
k. Therefore, given two data points y(t1) and y(t2) the GPR model is defined as

[
y(t1)

y(t2)

]
∼ N

[[
µ(t1)

µ(t2)

]
;

[
k(t1, t1) k(t1, t2)

k(t2, t1) k(t2, t2)

]]
(3.14)

Through this technique, different kind of functions can be modelled by varying the mean
and covariance function of the normal distribution.

The benefits of a GPR are the following:

• Flexibility. The high flexibility of GPR through kernel modification allows to model
time series with a broad range of complexity.

• Probabilistic. Prediction of a GPR model is a distribution of function and not a
punctual forecast. Therefore, the output of the GPR is the punctual datum (the
mean of the distribution) plus its uncertainty (the variance of the distribution).

• Robustness. Presence of outliers and noise in the data set do not strongly affect the
result of the GPR due to the probabilistic assumptions.

On the other hand, computational power can be an issue with GPR since it scales as
O(n3) with the data. Since GPR is directly inferred from Bayesian modelling, this latter
will be introduced in the next section.

3.3.1. Bayesian modelling

Bayesian probability is an interpretation of the concept of probability as a degree of belief
in an event. The degree of belief is based on a prior knowledge about the event. A prior
hypothesis is made without looking at the data and a prior probability is assigned to this
hypothesis. This prior probability is than updated to a posterior probability in the light
of new data acting as evidence. The Bayesian modelling is based on the Bayes’ Theorem
by the statistician Thomas Bayes.

Let us consider a linear regression model y = θf(t). Following the notation used in
section 3.1.2 we have that

t = [t1, ..., tn]

f(t) = θ0 + θ1t1 + ...+ θntn

θ = [θ1, ..., θn]
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where t is the vector of input and θ is the vector of parameters we want to infer from the
data. Than the inference is done through the Bayesian Theorem

p(θ|t,y) = p(y|t,θ)p(θ)
p(y|t)

(3.15)

where the denominator, a normalization factor, can be computed as

p(y|t) =
∫

p(y|t,θ)p(θ)d(θ) (3.16)

We can refer to each component of Equation 3.15 as

posterior =
likelihood× prior

evidence
(3.17)

where the term at the denominator is a normalization factor. If the normalization factor
is disregarded, the Bayes’ Theorem becomes

p(θ|t,y) ∝ p(y|t,θ)p(θ) (3.18)

Assuming that the observations are independent, the likelihood can be written as a Gaus-
sian distribution

p(y|t,θ) =
n∏

i=1

p(yi|ti,θ) =
n∏

i=1

1

σn

√
2π

exp

(
−(yi − t⊤i θ)

2

2σ2
n

)
=

=
1

(2πσ2
n)

n/2
exp

(
− 1

2σ2
n

|y − t⊤θ|2
) (3.19)

Also, we need to make an hypothesis about the prior over the parameters that expresses
our beliefs about the parameters before any observation is taken. We assume that the
prior is Gaussian distributed with zero mean and known covariance matrix K

p(θ) ∼ N (0, K) (3.20)

The choice and role of the prior will be better discussed in section 3.3.3.

By substituting Equations 3.19 and 3.20 in Equation 3.18, we obtain
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p(θ|t,y) ∝ exp

(
−1

2
(θ − θ̄)⊤(

1

σ2
n

tt⊤ +K−1)(θ − θ̄)

)
(3.21)

where θ̄ = σ−2
n (σ−2

n tt⊤ + K−1)−1ty. It is possible to recognize that the form of the
posterior distribution is a Gaussian with mean θ̄ and covariance matrix A−1

p(θ|t,y) ∝ N (θ̄, A−1) (3.22)

where A = σ−2
n tt⊤ +K−1.

In order to make predictions all the possible parameter values are averaged and weighted
by their posterior probability. Thus, it is possible to predict the unseen data y∗ as

p(y∗|t∗,y) =
∫

p(y∗|t∗,θ)p(θ|t,y)dθ =

= N
(
1
1

σ2
n

t∗⊤A−1ty, t∗⊤A−1t∗
) (3.23)

It is possible to see how prediction made using the Bayesian linear regression differs from
the classical linear regression. Indeed in the former, the average of all possible values of
the parameters based on their probability of existence are taken into account.

3.3.2. Gaussian Process Regression

In section 3.3.1, the function f used to fit the data was obtained through the inference
of the parameters θ. However, the Gaussian Process Regression employs a different but
equivalent way to obtain the same result overcoming the limits of a parametric model.
Indeed, the GPR considers inference directly in the function space by describing the
distribution over functions.

A GP is defined completely by its mean function m(t) and covariance function k(t, t′) so
that it can be written as

f(t) ∼ GP(m(t), k(t, t′)) (3.24)

In realistic modelling situations we have to deal with noisy observations. The practice used
to model noise in time series was already discussed in section 3.1.2. For what concerns
GPR, the noise term must be taken into account when specifying the prior. Therefore,
assuming that σ2 is the variance of the noise, the prior of the noisy observations becomes
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k(y) = K(t, t′) + σ2I (3.25)

where K(t, t′) is the covariance matrix and I is the identity matrix. By following the same
procedure seen in section 3.3.1 we can write the distribution of the prior as

[
y
y∗

]
∼ N

(
m(t);

[
k(t, t) + σ2I k(t, t∗)

k(t∗, t) k(t∗, t∗)

])
(3.26)

and the predictive equation as

p(f∗|t,y, t∗) ∼ N (̄f∗, k(f∗)) (3.27)

and the prediction interval can be computed as m(t) = ±σerr(t).

In order to grasp the concept, it may be useful to give a visual example of the GPR.
Given a data set D = [(t1, y1), ..., (t10, y10)] of ten observations, imagine we want to find
the functions that better interpolates the observations. At first we specify the prior, a
group of functions that is more likely to interpolate the observations due to its properties.
The combination of the prior and the data leads to the posterior distribution over the
functions. If more data points are added, the parameters adjust itself to pass through the
points and the uncertainty decreases. This situation is illustrated in figure 3.4.
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Figure 3.4: Illustrative example of prior and posterior distribution. In the first panel
it is shown the sample drawn from the prior distribution while in the second panel the
sample after that the data points are added. The dashed lines are the samples from the
distributions of functions while the solid line is the mean prediction. The shaded region
is twice the standard deviation at each point and represents the uncertainty of the model.
It is possible to see how the uncertainty reduces near the observations

In the first panel we can see the sample drawn from the prior distribution while in the
second panel is the sample after that the data points are added. The dashed lines are the
samples from the distributions of functions while the solid line is the mean prediction. The
shaded region is twice the standard deviation at each point and represents the uncertainty
of the model. It is possible to see how the uncertainty reduces near the observations.

Since the GP is not a parametric model, one does not have to worry if it is possible for
the model to fit the data. While this would be an issue when trying to fit a linear model
on non linear data. On the other hand, the specification of the prior is important since it
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represents the properties of the functions considered for inference. These properties are
induced by the covariance function k(t, t′). Once the covariance function is specified it is
possible to change some properties of the function to better fit the data. Therefore, the
learning step in GPR is the problem of finding the suitable covariance function and its
parameters. The learning process will be discussed in details in section...

3.3.3. Covariance function

In the previous section we have seen the importance in the GPR to specify a prior dis-
tribution over functions. That is a prior belief over the kind of functions that we expect
to observe before seeing any data. This prior belief is specified by defining the covariance
function k(t, t′) also known as kernel. In time series, two points with inputs t and t′ that
are close, are likely to return values f(t) and f(t′) that are similar. Under the GP view,
is the kernel function that expresses this similarity. In general, not all the functions with
input variable t and t′ are valid kernels. Indeed, a valid covariance function must have a
positive semi-definite covariance matrix. This section will give an overview on the most
common kernels and their properties and how to combine them in order to model complex
patterns. The term kernel and covariance function will be used interchangeably.

Linear Kernel. The linear (LIN) kernel, also known as the Dot Product kernel, it is the
simplest kind of covariance function and it is defined as

k(t, t′) = σ2 + t · t′ (3.28)

The variance σ2 determines the intercept of the function as illustrated in figure 3.5. If the
variance is null, we call it homogeneous linear kernel. If only the linear kernel is used in
a GPR, than it is like doing a Bayesian linear regression as the one in section 3.3.1. That
is why the linear kernel is often used to build more complex covariance functions as we
will see in section... . The linear kernel is non-stationary since it depends on the absolute
location of the inputs t · t′ and not on their relative position |t− t′|.
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Figure 3.5: Linear kernel on varying of σ2.

Radial Basis Function. This covariance function is also known as the Radial Basis
Function (RBF) kernel. The RBF kernel is widely used in GPR since it can be integrated
against many functions thanks to its properties. It is a non stationary kernel and it is
defined as

k(t, t′) = σ2 exp

(
−(t− t′)2

2λ2

)
(3.29)

The length scale parameter λ determines the length of the wiggles in the function. On
the other hand, the variance σ2 controls the average distance of the function from its
mean. A small length scale causes a rapid change in the wiggles of the function making
it quickly decaying to zero when forecasting data points outside the data set. Conversely,
large values of λ make the function smoother due to the slower change in wiggles. RBF
functions with high values of λ can predict on longer horizons.
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Figure 3.6: RBF kernel on varying of σ and λ. In the first figure the value of λ is fixed
at λ = 1, while in the second figure the value of σ is fixed at σ = 1.

Periodic Kernel. The Periodic (PER) kernel is defined as

k(t, t′) = σ2 exp

(
−
sin2(π|t−t′|

p
)

2λ2

)
(3.30)

This kernel is able to model a function that has a periodic structure. The terms λ and
σ2 have the same effect on the periodic kernel as the one on the RBF kernel. The term
p is the period of the function. Larger values of p determines longer distances between
repetitions of the function.
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Figure 3.7: PER kernel on varying of σ, λ and p. When not specified, the values of the
parameters are fixed to 1.

Rational Quadratic Kernel. The Rational Quadratic kernel (RQ) is defined as

k(t, t′) = σ2
(
1 + (t−t′)2

2αλ2

)−α

(3.31)

This kernel is the equivalent of adding together many RBF kernels with different length
scales. This allows to model functions that vary smoothly across many length scale. In
addition to the λ and σ2 parameters, the RQ kernel presents the parameter α called
power of the kernel. This latter defines how quick the change between length scales is.
For α → +∞, the RQ kernel tends to the RBF kernel.
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Figure 3.8: PER kernel on varying of σ, λ and α. When not specified, the values of the
parameters are fixed to 1. It is possible to observe the equivalence between the RBF
kernel and the PER kernel when α → +∞: the green function is the same as the blue
function in the upper panel of figure 3.6.

Composition of Complex Kernels. There could be situations in which a more complex
covariance function is needed. For example, when the time series exhibits a trend or a
parabolic structure. Since the definition of a completely new covariance function is not a
trivial problem, a solution is to combine different base kernels in order to obtain a complex
kernel. Considering that the resulting covariance matrix must be positive semi-definite
as stated in section 3.3.3, the operations used to build complex kernels are addition and
multiplication. With the former, the characteristic of each added kernel is retained. On
the other hand, the properties of the kernels are fused together with the multiplication. In
figure 3.9 it is possible to see the effects of the operations on RBF, LIN and PER kernels.
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Figure 3.9: Composition of complex kernels starting from base kernels. The multiplication
of n linear kernels returns the effect of a polynomial of degree n. he combination of a
PER and RBF kernel is able to model patterns in which the characteristic length scale
varies along the axis.

From the figure above, it is possible to see the effects of the different kernels. Of great
interest is the effect of the linear kernel through which the modelling of non linear trend is
possible. Indeed, the multiplication of two linear kernels results in a curvilinear structure.
On the other hand, it is evident that the combination of a PER and RBF kernel is able
to model patterns in which the characteristic length scale varies along the axis.

3.3.4. Training of a GP model: hyperparameters selection

In the previous section, we have seen that the shape of the covariance functions depend
on properties such as the length scale λ, the variance σ2 or the period p. We will refer to
these properties as hyperparameters. Given a complex covariance function composed by
the addition and multiplication of two kernels k1 and k2, the ensemble of hyperparameters
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is represented by the vector θ = (σ1, λ1, σ2, ...).

Since the hyperparameters are responsible for shaping the covariance function so that it
fits the data the best, the training of a GP model implies searching for the best family of
hyperparameters. Actually, the best hyperparameters could be selected manually if one
has sufficient knowledge of the time series to model. Nevertheless, this manual approach
is impractical in most cases, especially when dealing with real data from a chemical plant.
That is why a systematic approach is used. This latter consists in the maximisation of the
evidence as defined in Equation 3.16, also called marginal likelihood. Since the marginal
likelihood usually results in small numbers, the logarithm is applied so to avoid numerical
instabilities. The integral can be computed analytically and the logarithm of the result
is the so called Log Marginal Likelihood (LML):

log (p(y|t,θ)) = −1

2
y⊤K−1

y y − 1

2
log|Ky| −

n

2
log(2π) (3.32)

Equation 3.32 can be written as function of the vector of hyperparameters by making ex-
plicit Ky, the covariance matrix of the target. 1

2
log|Ky| is a complexity penalty term while

n
2
log(2π) is a normalization constant. In order to obtain the best set of hyperparameters,

the maximum of the partial derivative of the log marginal likelihood with respect to θ is
computed.

As an example, consider a function f(t) = t · sin(t) from which a synthetic data set is
created by adding a noise term that is Gaussian distributed. Now, let us try to fit a RBF
kernel with three different length scales and compute the log marginal likelihood. The
results are reported in the table below:

λ2 = 0.1 λ2 = 1 λ2 = 25

LML -104.08 -93.90 -287.68

Table 3.1: Log marginal likelihood of RBF kernel with three different length scales

From table 3.1 we can see that small and big length scales are penalized by the log
marginal likelihood. By looking at figure 3.10, it is clear that a length scale that is too
small tends to over fit the data. On the contrary, a big length scale is not able to properly
go with the model. Since the log marginal likelihood penalizes the complex models, the
GPR is less prone to over fitting.
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Figure 3.10: Fitting a RBF kernel with different length scale on synthetic data set. The
LML penalises the the model that overfits the data.

From a computational point of view, the bottleneck in the calculation of the derivative
is given by the inversion of the covariance matrix in the term K−1

y . Actually during the
computation, the matrix is not inverted due to the excessive computational cost. Whilst,
the Cholesky decomposition is applied. Nevertheless, the cost of this operation is still
O(n3), making it the computational cost of a GPR model.

3.4. Model selection: search strategies

In the previous chapters, it was seen that in order to predict the evolution of a time
series, it is necessary to learn its structure from previous observations during the structure
modelling step. In this thesis work, we are interested in finding the linear model and GP
model that best capture the structure of the time series.

In the field of search strategy, it is possible to distinguish between different approaches.
Among these, there are the greedy search strategy and the exhaustive search strategy.
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Once the domain of possible models is set, one could apply an exhaustive search, with
which all eh possible options are explored. The downside of this approach is the compu-
tational power required to do such operation, on the other hand it is more likely to find
the best result. Conversely if the greedy search is applied, a path composed of locally
optimum solutions is followed, thus making the search less effective but computational
affordable. An illustration of the greedy search is reported in Figure 5.8.

For what concerns the linear model, the problem is to find the degree of the polynomial
able to best fit the data. In order to complete such task, an exhaustive search strategy
can be used to explore all the possible degrees of the polynomial up to a desired order.
In this case, the exhaustive search is applicable since the computational power required
to compute polynomial regression is very low.

For what concerns the GPR, it is useful to build an automatic method for the selection
of the best kernel combination. The search is done among all the possible combinations
of base covariance functions. By applying this method, the domain of possible solutions
assumes the shape of a decision tree, as reported in Figure 3.11. In the case in figure,
only three kernels are used to build the tree.

Figure 3.11: Search scheme for optimal kernel combination. The search domain assumes
the shape of a tree. In the case in figure, the RBF, PER and LIN kernels are used to build
the tree. The complexity of the tree and therefore scales up exponentially with the depth
and the number of base kernels. The depth of the tree in figure is 5. Figure reference [19]
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We can see that the complexity of the tree scales quickly with his depth, that is the
level of the ramifications. Since the computational power required for GPR is O(n3), an
exhaustive search is impractical. In general, there will be n× (2n)d−1 number of nodes,
where n is the number of base kernel and d is the maximum level or depth of the tree.
By this calculation, a three-level, four-level, and five-level tree will have 108, 648, and
3888 number of nodes. We can see that the number of nodes grows exponentially with
the number of search level. The level or depth of the tree depends on the complexity of
the time series.

3.5. Cross validation

The cross validation (CV) technique is used to avoid the problem of the over fitting in
the training set. In CV, the training data is split into several folds and for each fold a
training and test set is made. The model is trained on the training set of each fold and
than the predictive accuracy is evaluated on the test set of the fold. The most known CV
technique is the k-fold cross validation. Nevertheless, CV should be treated differently
when dealing with time series due to the dependencies between the data. Indeed in this
case, data should be sampled orderly in time. The chose scheme was a time series split
as reported in figure 3.12.

Figure 3.12: Time series split cross validation. In this case, the entire dataset reported in
green, is split in 4 folds. The size of the train set changes at every fold. It is also possible
to leave a gap between the train and test set.

In the example in figure, the data set is divided into 4 folds, the training set differs
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from the previous one due to the addition of new data points while the size of the test
set remains unchanged while shifting towards the horizon. The model is trained on the
training set and is tested on the test set for four times. In the end, the total error of the
model is computed as the mean of the error of the k folds. In the case of figure 3.12, the
total error of the model is 1

4

∑4
k=1 ek where ek is the error of the model trained on the

k − th fold. It is also possible to leave h steps between the train and test set in order to
train the model in forecasting h − steps ahead. On the other hand, the downside of the
CV is that it requires more computational power for the training of the model since it has
to be trained k times. Also, a portion of the data can not be used for training the model
because of the fold structure.

3.6. Evaluation metric

In order to evaluate the accuracy of a model with respect to another, an evaluation metric
is needed since it explains the performance of the model. In this work the Mean Absolute
Error (MAE) is used as evaluation metric. MAE is the average of differences between
predictions ȳi and actual observations yi:

MAE =
1

n

n∑
i=1

|yi − ȳi| (3.33)

The metric ranges between 0 and +∞ and is indifferent to the direction of the errors. It
is a negatively oriented score, meaning that lower values are indicative of a better model.
MAE does not penalize large errors, thus making it more desirable when working with
noisy dataset.

In the CV technique, the final MAE is given by averaging the MAE calculated on every
fold:

MAECV =
1

k

k∑
i=1

MAEi (3.34)

3.7. Dummy variable

The aim of a dummy variable is to account for a particular event that happened in a point
in time. Such variable assumes a value that is either 1 or 0. Given a time series with
regressor t = (t1, ..., T, ..., tn), let us consider an event happening at time t = T . Than a
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dummy variable can be defined in two ways as

d =

 1 t ≥ T

0 t < T
(3.35)

d =

 1 t = T

0 t ̸= T
(3.36)

The definition of the dummy variable shown in Equation 3.35 is used when the event still
affects the process after it happened. For example, when the event causes a significant
mean shift in the time series for t ≥ T . On the other hand, the definition given by
Equation 3.36 is used for a point-wise evaluation of the event. Dummy variables should
be included in the estimation of predictive models as regressors, otherwise the evaluation
metrics could return false estimates about the model.

3.8. Ensemble forecast

An ensemble forecast is a machine learning technique able to return models with higher
robustness. In the ensemble forecast, the train set is sampled in different ways and
different models are trained on different samples. The final model will be a mean of the
different models obtained.
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4| Tools

In order to conduct this thesis work, a set of computational tools was used. Python pro-
gramming language was used to implement ML algorithm and carry out the experiments,
while Microsoft Excel was used as an interface between the DCS and Python. The free,
open source environment used to write the algorithms in Python is Spyder. The exper-
iments were conducted on a laptop ThinkPad P53s with 24GB of RAM and processor
Intel CORE i7-8565U CPU @ 1.80GHz with 4 cores .

4.1. Python

Python is an interpreted, object-oriented, high-level programming language with dynamic
semantics. Python’s simple, easy to learn syntax emphasizes readability and therefore re-
duces the cost of program maintenance. Python supports modules and packages, which
encourages program modularity and code reuse. The Python interpreter and the exten-
sive standard library are available in source or binary form without charge for all major
platforms, and can be freely distributed [21].

These characteristics made the Python programming language one of the most used world-
wide. This success allowed the development of a numerous free, open source libraries for
predictive analysis, ML and much more. A library is a collection of classes and functions
that users import into Python programs. In this work, the libraries form Scikit Learn
where used for ML an predictive data analysis.

Other libraries used and that are worth of mention are Pandas to format and organize the
data coming from excel, NumPy that provides Python with a contiguous numeric array
datatype and Matplotlib for creating static, animated, and interactive visualizations.

4.2. Scikit Learn

Scikit Learn (SKL) provides an open source machine learning library for the Python
programming language. The ambition of the project is to provide efficient and well-
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established machine learning tools within a programming environment that is accessible
to non-machine learning experts and reusable in various scientific areas. The library has
been designed to tie in with the set of numeric and scientific packages centered around
the NumPy and SciPy libraries [15].

gaussian_process, model_selection, preprocessing and linear_model are the most
important modules called from the SKL library. Once the module is imported, it is
possible to call the functions belonging to the model. The process is done by executing the
following line of code: from library.module import function. After the functions
execute, the methods of the functions can be called with the line of code function.method
for further actions. Hereafter, it is reported an overview on the modules, functions and
methods used and their application.

4.2.1. gaussian_process

Is the module responsible for dealing with GP methods in order to solve regression and
classification problems. The functions called from the modules are:

kernel. To call the base kernels from the list of kernels available in the SKL library.
The base kernels can be used as they or to build more complex kernels by addition and
multiplication.

GaussianProcessRegressors. To perform the GP regression. The function requires
different parameters for the computation.

• kernel: the kernel specified as prior to be used in the regression.

• n_restarts_optimizer: since the maximization of the log marginal likelihood has
different solution, the optimizer can be started several times.

• alpha: this value is added to the diagonal of the kernel matrix during fitting. This
can prevent a potential numerical issue during fitting by ensuring that the calculated
values form a positive definite matrix. Since it can be interpreted as the variance of
additional Gaussian measurement noise on the training observations, it is computed
as alpha = σ2

noise.

After the algorithm solves the optimization problem, the fit method is called to fit the
regression model. Also, the predict method is used to return the prediction on train and
future data and the prediction interval. These methods requires the vector of training
data and the vector of regressors as input.
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4.2.2. model_selection

Is the module used to deal with CV techniques. The function imported from this method
was TimeSeriesSplit which creates k-folds as explained in section 3.5. This function
requires the following parameters:

• n_splits: the number of folds in which the time series is split.

• gap: the number of data points that divide the train and test set.

4.2.3. preprocessing and linear_model

The preprocessing module is used for scaling, centering, normalization and binarization
methods while the linear_model module implements a variety of linear models.

The function imported from the preprocessing module is the PolynomialFeatures and
it is used to build the polynomial combinations. This function generates a new feature
matrix consisting of all polynomial combinations of the features with degree less than or
equal to the degree specified with the parameter degree.

LinearRegression is the function imported from the module linear_model. No param-
eters are needed for initialization, instead the methods fit and predict are called for
fitting and prediction as in the GaussianProcessRegression.
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5| Data

This chapter reports an overview on the data used for the implementation of the ML
algorithms. The data were made available by the Itelyum regeneration plant in Pieve
Fissiraga (LO) that has an historian of several years collected thanks to the information
management system installed. The data are accessible through an Excel add-in and from
there are imported to Python for visualization and elaboration.

5.1. Big Data use case: Itelyum Regeneration

Itelyum Regeneration Spa is a European leader in the regeneration of exhausted lubricant
oils and a great example of circular economy. Exhausted lubricant oil is a dangerous waste,
therefore its collection must happen trough a qualified and authorized company. On the
basis of accurate physical-chemical analysis, the exhausted oil is sent to the re-refinery
plant to undergo the regeneration process. The regenerated lubricant oil is sent to the
market to close the life cycle.

The re-refining process consists in three steps [9]:

1. Preflash: the used oil is heated up to 140 ◦C and distilled in a vacuum column.
This operation allows the separation of light compounds such as light hydrocarbons
and water from the oil. The light hydrocarbons are than used for energy supply to
the plant.

2. Thermal de-Asphalting : the dehydrated oil is heated up and distilled at 360 ◦C in a
vacuum column. the three cuts are sent to storage ready for the catalytic process.

3. Hydrofinishing : the oil and the hydrogen are heated up to 300 ◦C and sent to a
catalytic reactor. The catalyst favours the reaction of hydrogen with unsaturated
compounds, sulphur and nitrogen.
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Figure 5.1: Block flow diagram of the Itelyum Regeneration process. 72.63% of the
exhausted oil is recovered through a regeneration process consisting of three steps: pre-
flash. thermal de.asphalting and hydrofinishing.

Starting from 100 Kg of waste oil, the process allows to recover:

• 65 Kg of new oil.

• 22 Kg of bitumen and gasoil.

• 8 Kg of purified water.

• 5 Kg of waste to be treated by thirds.

The plant processes about 200.000 Kg of exhausted oil in one year, therefore reinserting
about 130.000 Kg of regenerated product in the lubricant life cycle.

5.1.1. Exaquantum

The Itelyum regeneration plant located in Pieve Fissiraga (LO), is currently embracing
the digital revolution. Since 2018, the plant has been equipped with the Exaquantum
system by Yokogawa. Exaquantum is one of the most comprehensive Plant Information
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Management Systems (PIMS) available for process industries. Exaquantum can acquire
data from all facets of a process and transform that data into easily usable, high-value,
widely distributed information [1].

This technology employs a client/server architecture based on Microsoft Windows oper-
ating system. The Exaquantum PIMS acts as a server by integrating data coming from
other sources and from the plant management system such as Distributed Control Sys-
tem (DCS), Programmable Logic Controllers (PLCs), Process Control System (PCS), etc.
The client can than access the server by a local computer located at the plant or via web
and employ the interface by Exaquantum for real time data visualization, administration
tools, etc. Furthermore, the data are stored in a long term archive so that it is possible
to access historical trends and events. In this way, data becomes an integral part of the
set of tools used by the plant engineers in vital decision-making processes.

Figure 5.2: Overview of Exaquantum PIMS by Yokogawa. Data are collected from the
control systems of the plant and gathered in servers that are accessible by the client
through a local or web server.

In addition to the data coming from the Exaquantum PIMS, further information on
special routines at the plant was taken directly from an Excel file that is filled daily by
the operators of the plant in order to keep track of the process. In this file, the daily
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average of some critical variables is computed and stored along with information about
the day in which maintenance is carried out. Nevertheless, this practice implies a huge
loss of information about the data. The excel file was mainly used to identify the days in
which special interventions were done.

5.2. Dataset

A furnace is a key unit in a chemical plant, since a proper heating allows for a correct ex-
ecution of the process in order to obtain the desired specifications of the output product.
Furthermore, it is a highly energy-intensive unit, contributing in large part to the opera-
tional expenditures (OPEX) of the plant. In particular, a furnace that processes mineral
oils is prone to fouling phenomena due to the formation of carbon coke that deposits on
the tube’s walls. This causes the restriction of the tube section and sudden spikes in
pressure drops. Therefore from time to time, an intervention of maintenance is needed
in order to unclog the tubes. This is done by a process called blowing, during which a
current of high pressure steam is fed to the tubes in order to wash the coke away. Also,
the skin temperature of the tubes should be monitored in order to ensure integrity and a
correct heat exchange with the oil.

For the reasons stated above and in accordance with the manager of the plant Eng.
Francesco Gallo, the study was focused on the furnace PH-401B in the thermal de-
asphalting section of the plant. The furnace can be divided into three sections: lower,
upper and middle. Methane is fed to the lower section, making it the hottest part of
the furnace. For what concerns the tube skin temperatures, the measure of one tube
per section was taken, so that every measure is indicative for all the tubes belonging to
that section. When furnace PH-401B is stopped for maintenance, the oil feed is sent to
the by-pass furnace PI-401A in order to carry out the maintenance without stopping the
entire plant.

The list of variables analyzed and their description is reported in Table 5.1, while a
qualitative scheme of the furnace is reported in Figure 5.3. When importing the data
to Excel from the Exaquantum add-in, other than the variable it is possible to specify
the period of time and the time step ∆t between the data. The plots in this section
were obtained in the period ranging from 11/06/2021 to 11/12/2021 with ∆h = 8h or
∆h = 10min. Dummy variables were obtained form an excel sheet provided by teh
operators of the plant.
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Label Description SI unit

FI-4091 Methane feed to furnace Sm3/h

PI-4301 Oil pressure at furnace inlet bar

PI-4304 Oil pressure at furnace outlet mmH2O

SK-4072 Tube skin temperature in furnace lower section ◦C

SK-4070 Tube skin temperature in furnace upper section ◦C

SK-4067 Tube skin temperature in furnace middle section ◦C

db Blowing −
dpm General plant maintenance −
dBA Furnace switch −

Table 5.1: Description of analyzed variables: methane feed to furnace, pressure at inlet
and outlet of the tubes, tube skin temperatures for lower, middle and upper section and
dummy variables describing special interventions.
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PI-4301 SK-4070

SK-4067

SK-4072 SK-4072

FI-4091

Dehydrated oil
from pre-flash

CH4 feed 

To column

Figure 5.3: Qualitative scheme of furnace PH-401B : the oil feed goes through different
sections of the furnace to ensure a proper heating. The methane feed is placed at the
bottom, making the lower part the hottest.

In order to take into account the total pressure drop inside the tubes, the pressure differ-
ence ∆P = |PI4301-PI4304| is considered. Nevertheless, being PI-4304 ≃ 0 bar, the total
pressure drop is indicated as PI-4301.

In Figure 5.4, the time series plots of the dataset are reported for a period of six months.
The time interval ranges from 11/06/2021 to 11/12/2021. Starting from the first plot, we
have the time series data of variable FI-4091, that is the CH4 feed to the furnace. The
second plot represents the pressure drop PI-4301 inside the tubes that process the mineral
oil. In the third plot, it is reported the time series of the tube skin temperatures SK-4067,
SK-4070, SK-4072 for the three sections of the furnace. The tube skin temperature of
the lower section is represented by the green curve, while the orange curve describes the
upper section. The last plot shows the dummy variables for general maintenance of the
plant: blowing, switch from furnace PH-401B to PH-401A and general plant maintenance
indicated as db, dBA and dpm respectively.
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Figure 5.4: Overview of variables coming from furnace PH-401B. From above, time series
of methane feed, pressure drop, tube skin temperatures in lower, middle and upper section
and dummy variables indicating blowing, general plant maintenance and switch from
furnace PH-401B to furnace PH-401A. The time series share the same x-axis. Three
different cycles, interrupted by maintenance operations, are clearly visible. ∆t = 8h

First of all, it is clear that there is an irregular seasonality in the structure of the time
series. The furnace goes through different life cycles whose periods are defined by the
maintenance operations. Three of these cycles are shown in the plots. Also, the time
series are non-stationary since they exhibit a mean shift. This is due to the fouling
process. Indeed, given that the coke deposits inside the tubes with time, it reduces the
heat exchange with the charge, so that a higher skin temperature is gradually needed to
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ensure a proper heating. The target temperature is reached by feeding more methane
to the furnace and this explains the mean shift of FI-4091. Also, the effects of the coke
deposition on pressure drops are clearly visible by looking at PI-4301, since it causes
spikes in pressure due to the reduction of the tube section. Additionally, the effects of
maintenance intervention are recognizable. The furnace was stopped from 23/07 to 18/08
for a general maintenance of the plant during which the production was interrupted.
Whereas, in the periods 11/06 - 21/06 and 24/10 - 3/11 the furnace PH-401B was stopped
for maintenance without shutting the plant down thanks to the presence of the back-up
furnace PH-401A.

By looking at Figure 5.5 and Figure 5.6 it is possible to have a better insight on the effects
of the blowing on the variables. In the figures, the blowing of the day 22/09 and 01/10
is directly highlighted in red over the variable of interest. The upper plot in Figure 5.5
clearly shows the beneficial effects of the blowing on the pressure drop. The threshold
value over which the blowing is needed is around 12 bar. Conversely, by looking at the
upper plot, it can be seen that the methane feed is drastically reduced during the blowing
phase. The mean of variable FI-4091 is not affected by blowing as it is for PI-4301.
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Figure 5.5: Starting from above, effects of blowing on methane feed and pressure drop
in furnace PH-401B. A significant mean shift after the maintenance only happens for the
pressure drop since the tubes are unclogged. The grey dashed line indicates the pressure
around which the blowing is conducted that is 10 bar. The time series share the same
x-axis. ∆t = 10min

Figure 5.6 shows that the blowing procedure also affects the skin temperature of the tubes.
Starting form the top, it is possible to reason that the mean of the time series representing
the lower and middle sections of the furnace is not affected by blowing. On the other hand,
the tube skin temperature of the upper section SK-4070 shows a significant mean shift
only after the intervention of 22/09.
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Figure 5.6: Starting from above, effects of blowing on tube skin temperature in the lower,
middle and upper section of furnace PH-401B. The red part highlights the days in which
blowing is carried out. A significant mean shift is visible only in the upper section after
the intervention in day 22/09. The time series share the same x-axis. ∆t = 10min

Nevertheless, the dummy variables indicated in the excel file provided by the operators of
the plant do not explain all the abnormal fluctuations of the data. For example, this can
be seen in Figure 5.7 where a close-up on the methane feed in the period ranging from
16/08 to 25/10 is shown with a ∆t = 100min.
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Figure 5.7: The time series presents many irregularities. Whilst the effects of blowing
are highlighted in red, no assignable cause is available for other irregularities such as the
jump at 15/09 and the mean shift after 5/10.

The one highlighted in red are the blowing operations as explained previously. Never-
theless, a jump can be seen in the day 15/09 and after the 05/10. Also, a significant
mean shift is detectable from day 20/10 on. Since there are no assignable causes for these
irregularities at least by integrating the history of events from the sources available, it is
not possible to assign a dummy variable.

It is clear that the structure of the time series presents irregular patterns characterized by
trends, sudden mean shifts, irregular seasonality and outliers. On top of that, there are
significant fluctuations and noise. Due to these anomalies, the development of a predictive
model is a tedious work especially for a long term forecasting. According to Hyndman and
Athanasopoulos, the key to a successful long term forecast is to model and extrapolate
the underlying pattern that exists in the past data and ignore the random fluctuations
that occur [10].
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5.3. Problem statement

The aim of this work is the development of an algorithm for a data driven approach to
predictive maintenance of the furnace PH-401B by monitoring and predicting the trend
of the methane feed, tube pressure and tube skin temperature.

The monitoring system consists in data that continuously arrive from the Exaquantum
PIMS, are stored in a CSV file and are fed to the algorithm. The algorithm elaborates
the data, find the best model able to describe the time series and returns the long-term
prediction. Therefore, every time there is availability of new data, for example after one
day of plant operations, the model is refitted in order to give new predictions.

The system is rebooted every time the furnace is shut down for maintenance. Therefore,
at time t = 0 the furnace is turned on after maintenance, while at time t = T the furnace
is turned off for maintenance. Therefore, the period of one life cycle is given by the
array t = (t0, ..., T ). The choice to reboot the system at every cycle is given by the high
irregularities present in the data that make it too difficult for the model to learn the
structure of the time series.

5.4. Experiment setup

In the experiment, GPR and Polynomial Regression (PR) are compared along with three
different learning approaches to see which model is better at extrapolating the patterns
in the time series for long term forecasting.

Three different learning approaches were compared on the dataset of the second cycle
of the methane feed to furnace FI-4091, reported in Figure 5.5 by simulating the real
application of the algorithm. After choosing a refitting period ∆tr, the models were
trained with a gradually increasing number of data points in order to return the prediction
on a prediction range h. Afterwards, the score of the model obtained with one of the
three learning approaches was computed on the prediction. The scores were than used to
compare the performances of the three learning approaches to choose the most suitable.

The learning approaches are reported in Table 5.2. CV implies a 60-20-20 train-validation-
test split, while the training without CV implies a 80-20 train-test split. Finally, the
ensemble forecast approach returns the mean of two models, one trained on even days
and one trained on odd days.
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Model name Description
PRCV Polynomial regression with CV
PRnCV Polynomial regression without CV
PRE Polynomial regression with ensemble method and no CV
GPRCV GPR with CV
GPRnCV GPR without CV
GPRE GPR with ensemble method and no CV

Table 5.2: Description of the three different learning approaches applied to PR and GPR.

During the experiments, the refitting period is set to ∆tr = 1day, while the time step
between the data points is set to ∆t = 8h, making three new data points per day. The
value of ∆t was arbitrary chosen by seeing that the performance of the model would
decrease with too many data points. This is due to the extreme noise in the data. The
score used for comparison is the MAE.

In order to search for the best degree of the polynomial and the best combination of base
kernels to fit the data, two different search strategies were used for PR and GPR. Also,
the dummy variables were implemented as regressors in the PR only, since the GP is able
to automatically model the irregularities caused by the maintenance intervention.

5.4.1. Polynomial model

Since the time series follow an increasing linear or quadratic trend, it was chosen to start
with the linear regression model. The learning phase focuses on finding the adequate
degree of the polynomial and than compute its vector of parameters θ by minimizing the
sum of squares as explained in Section 3.2. In this phase, an exhaustive search strategy
is adopted: the highest allowable degree of the polynomial is set to dmax = 5 and all the
possible models of order up to dmax are evaluated. After the computation, every model
is tested on the test set and its MAE is computed. This operation must be done k-times
in the case of a CV with k folds. According to the value of the metric, the best model is
selected and it is trained on the totality of the train and test set. The prediction interval
of the model is than evaluated with Equation ?? and than the forecast is computed along
with the prediction interval. Finally the prediction is computed along with the confidence
interval as seen in Section 3.2.
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5.4.2. GP model

GP model was chosen for its versatility and robustness against the outliers and its ability
to model wiggles and sudden mean shifts in the data. The learning phase focuses on
finding the best combination of base kernels from the decision described in Section 3.4
tree and the optimal hyperparameters of the covariance function by minimizing the LML
as described in Section 3.3.

In order to search for the optimal combination of base kernels, it was developed a hybrid
approach between the method used by Rasmussen and Williams [17] and the one used
by Duvenaud et al. [19], described in Section 2.2. The kernels that could best model the
structure of the time series are chosen among the base kernels by looking at the data and
are than used to build the search tree in Figure 3.11. In this way, less combinations are
explored since a previous knowledge about the time series allows to discard from the start
the kernels that for sure are not able to model the structure. By doing so, the model will
not be fully automated but the options to search for will be less. In order to search for
the optimal combination of kernels, a greedy search is applied. The depth of the tree is
set to depth = 5 in order not to have too complex kernels. Furthermore, the addition of
two linear kernels is avoided since it results in another linear kernel.

By looking at the structure of the time series, the chosen kernel for the structure modelling
are RBF, LIN and RQ. Indeed, the first is able to model the trend of the time series by
addition and multiplication with itself or with the RBF and RQ. On the other hand, the
RBF and RQ kernel are responsible for modelling the small fluctuations and the smooth
fluctuations of the data respectively. The combinations of these three kernels define the
decision tree in Figure 5.8 with the RQ kernel in place of the PER kernel.
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Figure 5.8: Example of greedy search strategy with the RBF, LIN and PER kernel. A path
of local optima is followed, thus this approach does not assure the best result possible,
but computational power and time required for the search are largely diminished. The
tree implemented in this work uses the RQ kernel in place of the PER kernel. Figure
reference [19].

Every model evaluated form the search tree is trained on the test set and tested on the
train set to compute the error metric. As in the PR, the model with the lowest metric is
chosen as the best model and is trained on the totality of the test and train set to obtain
the prediction. Of course, in the case of CV, the search tree must be computed for every
fold, making it computationally very expensive.

A stated in Section 4.2, the GaussianProcessRegressors function is the one used to per-
form the GPR. The value of the parameters given as input to the function are the following:
GaussianProcessRegressors(kernel=k, n_restart_optimizer=50, alpha=σ2

noise).
Where k is the kernel computed from the decision tree. The number of restart of the
optimizer is set to 50 in order to have a better search of the maxima of the objective
function. The value σ2

noise is the variance of the noise, where the noise is computed by
taking the first difference of the training set.
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6| Results and discussions

In this chapter, it is reported an overview on the results obtained during the training and
testing of the models. The two approaches, PR and GPR, are compared and discussed
along with the three different ML approaches implied to train the models. Based on the
results, the best approach to implement the online monitoring system is chosen along with
the best model.

6.1. Learning approach comparison

In the following experiments, the three learning approaches are compared both on the PR
and GPR. The refitting period is set to ∆tr = 1day, that is the model is refitted with new
data every day. Since the time step between the data is set to ∆t = 8h, three new data
points are used to refit the model every day. The long term prediction and its MAE are
computed for a prediction range of h = 10days.

In Figure 6.1, the results for the PR are reported. The upper plot shows the total MAE
of every model divided by the number of times the model has been refitted. The MAE is
shown both for the train and test sets. The second plot shows, the point wise MAE on
the test set for every iteration. While the last plot is for comparing the trend of the MAE
with the time series of interest; that is the methane feed to the furnace as explained in
Section 5.2.

By looking at the first plot, it would be possible to conclude that the best approach
is the PRCV. Nevertheless, by looking at the point wise MAE, it can be seen that the
PRCV performance are the lowest for the majority of the times. PRnCV and PRE mostly
perform better than PRCV since the orange and green lines are under the blue line for
most of the iterations. The exceptions are after major disturbances in the data such as
after the 16/09 and after the 7/10. Also at start, the PRnCV and PRE seems to be
uncertain.

The values of the MAE on the train set are not close to zero meaning that the model does
not over-fit the data on the train set. This is a sign that the model is able to generalize
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well on the test set.
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Figure 6.1: Comparison of the performances of PRCV, PRnCV and PRE. From above,
are reported the average MAE on train and test set, the MAE for every day of refitting
and the methane feed to funace for comparison. From the first plot, the PRCV seems the
best choice. Nevertheless, by looking at the second plot, it is possible to see that PRnCV
and PRE perform better the majority of times. ∆tr = 1day, ∆t = 8h, h = 10days.

By looking at the degree of polynomials chosen by the algorithm, it was seen that the
PRCV always chooses the linear model. This results in a lower total MAE, but the model
can not properly go with the time series that has a clear quadratic trend. The linear model
will always be under the mean of the curve when tying to predict. On the other hand,
PRnCV and PRE choose different orders for the model at every iteration, the large MAEs
are caused since a model of order grater than one rears up very fast when extrapolating
therefore they are more influenced by disturbances. Also it is possible to see that blowing
does not affect the MAE considerably.

In the case of the GPR, the results plotted in Figure 6.1 show that the GPRnCV is the
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best method to choose among the tree. It has a lower average MAE and also the point-
wise MAE has lower values and less fluctuations. Also in this case, the blowing does not
affect the performance of the model that on the contrary seems to be influenced more
by the fluctuations generated by unknown causes in day 16/09 and 07/10. Furthermore,
the computational time required to train a GPR with an ensemble method or with CV is
much higher than the time required to train the GPRnCV.
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Figure 6.2: Comparison of the performances of GPRCV, GPRnCV and GPRE. From
above, are reported the average MAE on train and test set, the MAE for every day
of refitting and the methane feed to furnace for comparison. From the first plot, the
GPRnCV seems the best choice. This is confirmed by the second plot since the GPRnCV
is always lower than GPRCV and GPRE. ∆tr = 1day, ∆t = 8h, h = 10days.

For what concerns the train and test errors, the models seem to over-fit on the train set
more than the linear regression model. This is caused by the higher flexibility of the GPR
that is able to model also the wiggles in the data.

In conclusion, the best approach for the learning phase is with a simple train-test technique
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with a 80-20 split. The approaches with CV and ensemble method seems to give worst
results. The former tends to always choose a linear model, thus keeping the error low but
actually unable to extrapolate on future data. The second presents high fluctuations in
the test error. The problem with CV and ensemble approaches is caused by a lack of data
in the training set. Indeed, the models start to converge for the last iterations that are
the one in which more data are used for the training of the model.

Under this perspective, the final results will be extrapolated with the GPRnCV and
PRnCV methods only.

6.2. Application of best learning approach

In the previous section, the time series of the methane feed to furnace FI-4091 was used
to choose the best approach for the learning phase of the model. After simulating a daily
refitting on the second cycle, the GPRnCV and PRnCV were chosen as best approaches.
In this section, the two approaches are explored more in details for the methane feed to
furnace FI-4091 and are generalized to the time series of the pressure drop PI-4301 and
tube skin temperature of the middle section SK-4067. The results were obtained for a
refitting period ∆tr = 1day, time step between data points ∆t = 8h and prediction range
of h = 10days for FI-4091 and SK-4067 and h = 5days for PI-4301.

6.2.1. Methane feed: FI-4091

In Figure 6.3, the predictions obtained by the models GPRnCV and PRnCV on FI-4091
are compared. Figure 6.3a, shows the prediction obtained 35 days after the startup, while
Figure 6.3b has been obtained 52 days after the startup. Until day 42, the time series
follows a quadratic trend that is correctly identified by both the polynomial and the GPR,
as it is possible to see in Figure 6.3a. Indeed, in this period the best kernel selected form
the decision tree is always composed by a combination of LIN and RBF kernels. As seen
in Section 3.3, the multiplication of n LIN kernels results in a structure equivalent to that
of a polynomial of degree n. Thus, the quadratic trend is learned by the LIN kernel, while
the RBF models the small wiggles in the data

The power of the GPR can be grasped form the results obtained in Figure 6.3b. Being
non-parametric, the GPR is able to better follow the structure of the data, while the
polynomial adjust itself in order to reduce the error of the fit without truly learning the
structure of the time series. The spikes in the trained model of the PRnCV are due to
the use of dummy variables as regressors, indicating the effects of blowing in that point.
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Table 6.1 reports the metrics obtained by the two predictions for both the GPRnCV and
PRnCV models. The R2 of GPRnCV is always higher than the one of PRnCV since the
former is able to overfit the data thus explaining the majority of variability.
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(a) Prediction obtained 35 days after the startup of the furnace.
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(b) Prediction obtained 52 days after the startup of the furnace.

Figure 6.3: Comparison of predictions by GPRnCV and PRnCV on methane feed to
furnace FI-4091. Form Figure 6.3a, the GPR model chooses a combination of LIN and
RBF kernels. Form Figure 6.3b, being non-parametric the GPR is able to fit the structure
of the time series. The shaded areas indicate 75% and 95% confidence intervals. ∆t = 8h,
h = 10days.
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Days after startup Model MAE test MAE train R2 train

35
GPRnCV 20.476 0.022 96.53 %
PRnCV 19.787 8.867 84.61%

52
GPRnCV 14.398 1.223 99.93%
PRnCV 59.726 15.314 86.97%

Table 6.1: Metrics from prediction on methane feed FI-4091. The value of R2 shows that
the GPRnCV is able to explain almost all the variability of the train set thanks to its
flexibility but still being able to generalize well on the test set.

6.2.2. Pressure drop: PI-4301

Since the pressure drop exhibits a structure with a shorter characteristic length scale as
described in Section 5.2, in order to predict the peaks in pressure, a prediction range of
h = 5days was adopted.

In this case, the limitations of the parametric model resulting form PR are clearly visible
in Figure 6.4, that compares the predictions obtained 33 and 39 days after the startup
of the furnace. Day 39 was chosen in order to compare the models on their prediction
abilities after the sudden change in pressure caused by blowing. As shown in Figure 6.4b,
the PR is trying to minimize the sum of squares by tracking a line that goes across the
data. On the other hand, the flexibility of the GPR is able to fit the the sudden decrease
caused by blowing on day 36 and its subsequent increase. This is done thanks to the RQ
and RBF kernels that are able to model the wiggles in the structure of the time series
as discussed in Section 3.3. On the other hand, the first part of the time series is well
modelled by both PRnCV and GPRnCV as shown in Figure 6.4a. The former returns a
polynomial of fourth order that is reproduced by a combination of LIN and RBF kernels
as in the case of FI-4091.

In Table 6.2 the metrics resulting form the predictions returned by the models for the
two cases are reported. The results show that both the models are able to describe
the majority of the variability on the train set for both the the cases. Nevertheless, by
comparing the values of MAE on the test set, the GPRnCV shows a better performance
on prediction.
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(a) Prediction obtained 33 days after the startup of the furnace.
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(b) Prediction obtained 39 days after the startup of the furnace.

Figure 6.4: Comparison of predictions by GPRnCV and PRnCV on pressure drops PI-
4301. Form Figure 6.4a, the GPR model chooses a combination of linear kernels, thus
actually performing a linear regression. Form Figure 6.4b, being non-parametric the GPR
is able to fit the structure of the time series thus giving a better prediction. The shaded
areas indicate 75% and 95% confidence intervals. ∆t = 8h, h = 4days.
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Days after startup Model MAE test MAE train R2 train

33
GPRnCV 0.770 0.108 98.34 %
PRnCV 2.677 0.490 87.18%

39
GPRnCV 1.445 0.128 96.53%
PRnCV 2.473 0.144 96.52%

Table 6.2: Metrics from prediction on pressure drop PI-4301. Both the models are able
to capture the majority of the variability on the train set for both cases. However, from
the MAE on test the GPRnCV is able to better predict the trend of the curve.

6.2.3. Tube skin temperature: SK-4067

Figure 6.5, shows the comparison obtained obtained by means of GPRnCV and PRnCV
models on SK-4067 for a prediction range h = 10days. Figure 6.5a and 6.5b show the
predictions obtained 22 and 53 days after the startup respectively.

Figure 6.5a shows the predictions obtained 22 days after the startup of the furnace. In
this case, bot the GPRnCV and PRnCV are able to properly predict the trend of the
time series; however, only the GPRnCV fits the unexpected decrease in temperature for
which no assignable cause is available, thus resulting in a wider confidence interval. On
the other hand, Figure 6.5b shows the ability f the GPRnCV in being more responsive to
the smooth changes in the curve thanks to the RQ kernel as discussed in Section 3.3.

In Table 6.3, the metrics of the predictions obtained for the tube skin temperature are
reported. The value of the R2 for the PRnCv model is strongly affected by the sudden
decrease in temperature on day 17 due to an unknown cause. Also in this case by looking
at the values of MAE on the test set, it is possible to conclude that the prediction ability
of the GPRnCV is higher than the one of the PRnCV model.

Days after startup Model MAE test MAE train R2 train

22
GPRnCV 4.975 1.692 96.35%
PRnCV 6.289 4.252 57.58%

53
GPRnCV 1.210 1.309 99.65%
PRnCV 5.329 30.875 97.07%

Table 6.3: Metrics from prediction on tube skin temperature SK-4067. The value of the
R2 for the PRnCv model is strongly affected by the sudden decrease in temperature on
day 17 due to an unknown cause. The values of MAE on the test set show that the
prediction ability of the GPRnCV is higher than the one of the PRnCV model.
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(a) Prediction obtained 22 days after the startup of the furnace.

400

450

500

550

600

PRnCV - SK4067
Trained model
Extrapolation
Confidence interval

0 5 10 15 20 25 30 35 40 45 50 55 60 65

400

450

500

550

600
GPRnCV - SK4067[°

C]

(b) Prediction obtained 53 days after the startup of the furnace.

Figure 6.5: Comparison of predictions by GPRnCV and PRnCV on pressure drops PI-
4301. Form Figure 6.5a, the GPR model chooses a combination of linear kernels, thus
actually performing a linear regression. Form Figure 6.5b, being non-parametric the GPR
is able to fit the structure of the time series thus giving a better prediction. The shaded
areas indicate 75% and 95% confidence intervals. ∆t = 8h, h = 10days.
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6.3. Limit of the model

In the previous section, it was seen that the model is able to adequately extrapolate the
trend of the time series in a prediction range h = 10days for the methane feed FI-4091 and
tube skin temperature SK-4067, while for the pressure drop it can adequately extrapolate
on a prediction range of h = 5days. Nevertheless, the model shows its limitations when
the prediction range becomes too long.

In order to test the limits of the model, an experiment involving a long term prediction
was carried out. For this purpose, both GPRnCV and PRnCV model are trained daily on
the available data, while the prediction is carried out up to the day at which the furnace is
turned off. Therefore day by day, the available data increase while the forecasting horizon
decreases therefore, it is expected that the more data arrive, the higher the convergence
of the model. The performance of the long term predictions are once again compared by
means of the MAE.

Figure 6.6 shows the MAE obtained daily from the long term prediction on the variable
of interest: FI-4091, PI-4301 and SK-4067. On the x-axis, the days after the startup
of the plant are reported. The target indicates the value of the MAE to which the
models converge, while the shaded region indicates the period for which the models do
not converge to the target.

From the first plot, it is possible to see that both the GPRnCV and PRnCV model
stabilize around a value of MAE = 30Sm3/h after 52 days following the startup of the
furnace, that is 15 days before the shutdown. Therefore, both the models are able to
predict the finale state of the methane feed 15 days in advance with a mean average error
of about 30bar. The high instability of the models before day 52 is given by the strong
irregularities in the time series tat does not seem to follow a regular path.

For what concerns the pressure drop PI-4301, both GPRnCV and PRnCV converge to a
low value of the MAE that is around MAE = 1bar. GPRnCV is able to return a good
prediction 38 days in advance while PRnCV 45 days in advance. Also, the linear model
seems to return a slightly better prediction.

At last, the tube skin temperature before shutdown is adequately predicted 17 days before
by the GPRnCV and 10 days before by the PRnCV with a value of the MAE lower than
10◦C.
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Figure 6.6: MAE resulting from daily long term predictions. The models are trained
on the available data every day and extrapolate up to day 67 at which the furnace is
shut down. On the x-axis, the days after the startup of the plant are reported. The
target indicates the value of the MAE to which the models converge, while the shaded
region indicates the period for which the models do not converge to the target. GPRnCV
converges faster than PRnCV for PI-4301 and SK-4067. The value of the MAE oscillates
and the convergence is not close to zero due to the fluctuations present in the time series
of interest.

6.4. Final result

In this chapter, the evaluation of Gaussian Process Regression and Polynomial Regression
was discussed along with the best learning approach to train the model: Cross Validation,
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ensemble and simple train-test split. All the evaluations were carried out by comparing
the value of the MAE on the prediction.

The first part of the experiment found out that the best learning approach is the simple
train-test split. This is because the CV and ensemble methods use less points to train
the models given the way in which the data are split. Therefore, the Gaussian Process
Regression and Polynomial Regression trained with no CV nor ensemble method were
chosen as candidate models. The performance of the two models were than studied on
the three time series of interest simulating a daily refitting and a prediction range of ten
days for the methane feed to furnace FI-4091 and tube skin temperature SK-4067 and 4
days for the pressure drop PI-4091. It was seen that the ability of the GPR in modelling
the wiggles in the time series was very useful especially for the prediction of the pressure
drop that exhibits sudden mean shifts that are not modelled by the PR. This is useful since
the GPR does not necessarily need dummy variables to account for sudden shifts in the
data. In the end, the performance of the model on predictions of more than one months
were tested. This revealed the inability of the GPRnCV and PRnCV in forecasting on
such ranges mainly because of the strong irregularities present in the time series.

In conclusion, the GPR is the best candidate for the prediction of such kind of time series
data. Indeed thanks to its non-parametric nature, it is able to better learn the structure
of time series data coming from such a chemical process; that are characterized by sudden
mean shifts and peaks for which no assignable cause is available and therefore difficult
to model with a parametric model such as the PR. Also, the GPR is perfectly able to
simulate a PR by choosing complex covariance functions composed of LIN kernels only.
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7| Conclusion and future

developments

In conclusion, this work provides a starting point to gain benefit from the massive amount
of data generated over the years by the Itelyum Regeneration plant located in Pieve
Fissiraga (LO). Thanks to the Exaquantum PIMS by Yokogawa, it is possible to access
the historian of data collected from the DCS of the plant in order to carry out BDA
analysis for the optimal control and management of the process units.

The study aimed at developing a data driven approach to predictive maintenance of the
process furnace located in the thermal de-asphalting section of the plant. This was done
thanks to time series modelling of methane feed, pressure drop and tube skin temperatures
in order to extrapolate the future state of the variables. By comparing PR and GPR, it
was found out that the latter is most suitable for modelling the time series coming from
the process furnace since they show high irregularities and no well defined structure that
is well captured by a non-parametric and flexible model as the GPR. Also, the approach
used to train the GPR model, that is a greedy search tree, is able to generalize well on
different time series structure.

For future studies, the ability of the model to forecast on longer horizons should be
improved in order to obtain a monthly prediction already 10-20 days after the startup of
the furnace. This could be done by better tuning the hyperparameters of the kernels or
by training the model on a larger amount of data. That is, also consider the data of past
life cycle of the furnace when training the model. Here, the challenge is to extrapolate
only relevant information for the prediction of the trend among the noisy observations
and sudden mean shifts. Furthermore, it would be useful to generalize the approach to
other process units. Also of grate interest, would be to find correlations between variables
located in different parts of the plant to understand how the changes in the process
conditions affect the plant.
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