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Abstract 

A number of different pathologies, ranging from mental disorder to neurodegeneration, 
share the characteristics of having both widespread effect throughout the whole brain and 
in specific sub-networks or regions. The analysis of the connectivity on different levels is a 
powerful tool to investigate impaired regions and global deficits, study cause and effects of 
the pathologies, support diagnoses and tailor the rehabilitative treatments. Nevertheless, 
conducting a multi-level assessment of brain connectivity outside the research settings is 
not a simple process due to three primary concerns: i) many tools are available, but a user-
friendly, interactive and flexible environment allowing automatic qualitative and 
quantitative assessment at all levels is missing; ii) both structural and functional 
connectivity measures for edge-weighting lack gold-standard methodologies, with a 
number of uncertainty sources, resulting in noisy data; iii) the possible biomarkers which 
can be highlighted from huge amount of data, reducing uncertainty and using artificial 
intelligence (AI) methodologies, are not always adherent to domain knowledge and 
difficult to be interpreted. In this PhD work, methods for improving usability of the brain 
connectivity biomarkers were proposed.  
More specifically, the aforementioned general aspects were addressed in three studies. 
First, an interactive and user-friendly tool called SPIDER-NET to allow qualitative and 
quantitative analysis of brain networks and sub-networks was developed. The tool was 
validated on the structural connectivity of 2 hemorrhagic stroke case studies and 17 healthy 
controls (HC). Second, a multi-level bootstrapping approach was applied to enable robust 
abnormalities detection. This approach was experimented on the functional connectivity of 
12 schizophrenic patients and 15 HC. Finally, convolutional neural networks employing 
structural connectivity data and 3D T1-weighted volumes were developed and analyzed by 
Explainable Artificial Intelligence (XAI). The last study addressed the classification of 
Alzheimer’s disease subjects (135 Magnetic Resonance sessions) and HCs (557 sessions).  
First, SPIDER-NET resulted an effective tool to represent the expected (dis)connectivity 
pattern due to a stroke lesion, in testing a-priori hypothesis by extracting a sub-network of 
interest and in investigating graph-based topological indexes. Furthermore, it allowed to 
better interpret complex networks and compare the results from two processing pipelines 
(Diffusion Tensor Imaging - DTI vs Constrained Spherical Deconvolution - CSD), having 
different uncertainty causes. Second, the bootstrapped top-down approach revealed 
different abnormalities of the schizophrenic group on different levels, which resulted to be 
more stable and robust compared to direct testing and having a trend towards results with 
greater number of data and subjects. Third, as evaluated through a statistical test (p < 0.05) 
and ranking of the most relevant parcels (first 15%), XAI analysis of interpretability 



4 
 

revealed the involvement of target brain areas for both models employing 3D T1-weighted 
volumes and structural connectivity. These anatomical targets were the medial temporal 
lobe and the default mode network, respectively. Although the obtained findings had 
limitations, results suggested that combining different imaging modalities may lead to 
increased model performance,  interpretability, and, thus, reliability.  
Although the great potential of measures extracted from brain connectivity, the open issues 
of uncertainty and interpretability limited their trust and, thus, their usability within clinical 
settings. Consistent methods to address these issues have a direct connection to the 
understanding of the relationships between localized affection and widespread 
degeneration. Improved reliability and interpretation are fundamental in the study of the 
brain both in health, to map the nervous system and comprehend the mechanisms 
underlying the brain processes, and in disease, to support clinicians in the early detection 
and during rehabilitation. 
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1 Extended Summary  

 

1.1 Introduction 

The human brain is one of the most complicated systems in nature, with a highly intricate, 

dense, multi-scale, and multi-level network architecture [1]. From a macroscale 

perspective, it can be analyzed from an anatomical or functional point of view. Indeed, the 

brain can be represented as a complex network depicting gray matter (GM) regions as 

nodes and structural (white matter fiber bundles) or functional (Blood Oxygenation Level 

Dependent - BOLD signal activations) characteristics as edges. Once defined the network, 

it can be examined in its segregation and integration properties, thus in its global 

configuration, on sub-networks or communities’ existence, in local regions of interest and 

in the single edges. This is possible through the well-established topological properties 

from graph theory [2]. Different abnormalities for several pathologies were thus found in a 

number of studies using these measures [3]–[10]. More specifically, a number of different 

pathologies, ranging from mental disorders to neurodegeneration, share the characteristics 

of having both widespread effect throughout the whole brain and in specific sub-network 

or regions resulting in diverse (dis)connection patterns. In this sense, the analysis of the 

connectivity on different levels could be of great interest to study cause and effects of the 

pathologies, support diagnoses and tailor the rehabilitative treatments. However, this 

parallel multi-level evaluation is not that easy considering three main issues: i) many tools 

are available, but a unique, accessible, user-friendly, interactive and flexible environment 

allowing the qualitative and quantitative assessment on all the levels in group studies is 

missing; ii) the connectivity measures extracted from both structural (SC) and functional 

(FC) connectivity for edge-weighting lack a gold-standard methodologies, with a number 

of uncertainty sources, resulting in noisy data; iii) the possible biomarkers which can be 
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highlighted are not always adherent to domain knowledge and machine and deep learning 

methodologies used for diverse tasks are difficult to be interpreted.  

These three aspects strongly limited the diffusion of the brain connectivity biomarkers out 

of the research context and the usability within clinical settings. For this reason, we aimed 

with this PhD thesis: 

• to fill the gaps of uncertainty and interpretability of existing approaches for the 

mapping, visualization, extraction and analysis of brain connectivity; 

o developing a novel interactive and flexible software tool called SPIDER-

NET that allows for the user-friendly qualitative and quantitative analysis of 

brain networks and sub-networks and validating it on multimodal structural 

data (i.e., DTI and CSD) (study I); 

o proposing a robust multi-level investigation through bootstrapping of the 

functional brain connectivity topological measures in the context of a group 

study (study II); 

o employing XAI in Alzheimer’s Disease (AD) classification task of the 

structural brain data (3D T1-weighted volumes and structural connectivity) 

to assess and compare the interpretability of known brain biomarkers from 

multiple brain measures (study III); 

• to demonstrate the potential of the proposed methods in the context of pathologies 

characterized by both focused disruptions and widespread degeneration, such as 

stroke, schizophrenia (SZ) and AD, with the purpose of improving the usability of 

the brain connectivity biomarkers and improve the understanding of brain 

functioning in health and disease. 

1.2 Methods 

Data Acquisition, Study Population and Pre-Conditioning 

For each of the three studies a different dataset was used: 

I. the first dataset comprises two patient case studies with stroke (males, 44 and 

37 years old, referred to as Case 1 and Case 2, respectively) who had right 

hemisphere lesions with prominent subcortical expression, as well as 17 HC 
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participants (7 males and 10 females; mean ± σ age: 52.5 ± 8.3 years). Each 

subject provided a written informed permission and was enrolled at the IRCCS 

Fondazione Don Carlo Gnocchi in Milan. Six months after hemorrhagic stroke 

the patients underwent the Magnetic Resonance Imaging (MRI) examination. 

All the participants performed it on a 1.5 T Siemens Magnetom Avanto scanner 

equipped with a 12-channels head coil.  

DTI-based and CSD-based techniques were employed to construct SC matrixes 

for both stroke case studies and HCs. Specifically, the edges of the matrixes 

were established based on the reconstructed fibers count (NF) of white matter 

tracts connecting the 165 parcels of the Destrieux Atlas [11]. Furthermore, to 

account for differences in brain volumes, NF was normalized by the sum of the 

volumes of the respective connected parcels. To obtain a probabilistic group 

matrix that represented the HC group as a whole, proportional thresholding was 

employed retaining only connections shared by at least half of HCs and 

resulting in a matrix with density that is the same of the initial median 

population density. Thus, the HC group mean matrix was obtained. The 

acquisition protocol and other details are reported in article I. 

II. the second dataset was collected as part of the research undertaken by Zalesky 

and colleagues [12]. The dataset comprises of 15 HC with a mean age of 33.3 

years (σ = 9.2 years), 14 of whom were male, and 12 individuals with chronic 

schizophrenia with a mean age of 32.8 years (σ = 9.2 years), 10 of whom were 

male. The patients were diagnosed based on the standard operational criteria 

outlined in the Diagnostic and Statistical Manual of Mental Disorders IV. The 

HC and SZ groups were matched with regards to age, pre-onset IQ, and years of 

education. T2*-weighted echo-planar images depicting blood oxygenation level 

dependent contrast were obtained using a 1.5 Tesla scanner (GE Signa, General 

Electric, Milwaukee, WI). The construction of the matrix involved defining 

nodes based on a specific set of areas within the Automated Anatomical 

Labeling (AAL) atlas [13], while the edges were generated by calculating the 

correlation between preprocessed time series. Due to poor coverage in certain 

subjects, it was not possible to accurately estimate the node-averaged time 

series for certain brain regions defined by the AAL atlas. Therefore, these brain 
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regions were excluded resulting in connectivity matrixes with dimensions of 74 

x 74. According to the aim of this study, implying the assessment of the 

robustness of the bootstrapping-based method regardless the thresholding 

method, original data with no thresholding was employed. However, a 

threshold in 0 was applied as pre-conditioning step to extract positive and 

negative matrixes, allowing their separate analysis. Prior to data collection, all 

participants provided written informed consent. All the other details are 

reported in article II and in [12]. 

III. The third dataset used is the third release of the Open Access Series of Imaging 

Studies (OASIS-3), which is a publicly available longitudinal collection of data 

focused on the effects of normal aging and early-stage AD [14]. The dataset 

consisted of 1098 participants, including 605 HCs and 493 individuals at 

varying stages of cognitive decline who underwent neuroimaging and clinical 

assessments. Matching MRI and clinical data within a 3-month time span 

yielded 1076 sessions, of which 874 had available T1-weighted and BOLD 

scans. This latter selection criteria of having both T1-weighted and BOLD 

scans was chosen in agreement to a previous study that extracted 1326 SC and 

FC matrixes from the OASIS-3 imaging sessions [15]. Matching these 1326 

sessions with the 874 from the former procedure resulted in a subset of 692 

sessions from 543 participants, with an age range of 42-95 years and a mean 

age of 70.06 ± 8.85 years (388 female and 304 male). Each session was 

associated with a T1-weighted scan and a SC and FC matrix. The presented 

study does not involve functional data. The reason is that, in this first approach, 

the primary objective was to compare biomarkers relevant to the 

structural/anatomical brain damage as seen in the T1 anatomical volumes and in 

the SC data derived from DTI. Sessions were classified as either HC or AD 

based on the Clinical Dementia Rating (CDR) Scale, with a CDR score of 0 

representing normal cognitive function and scores of 0.5, 1, or 2 indicating 

varying degrees of impairment. A small percentage of the subjects (2.76%) 

have multiple sessions assigned to different CDR class that were independently 

analyzed. The final ratio of HC to AD sessions was 557:135. Of all the 

available T1-weigthed scans, 135 were acquired with a 3T Siemens 
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Biograph_mMR scanner, while the remaining 557 with a pair of 3T Siemens 

TimTrio scanners (Siemens Medical Solutions USA, Inc). All acquisition 

details are reported in article III. As the processing steps, the T1-weighted 

volumes were divided into 132 brain-covering regions, including 91 cortical 

and 15 subcortical parcels from the FSL Harvard-Oxford maximum likelihood 

cortical atlas (HOA) [16], and 26 cerebellar parcels from the Automated 

Anatomical Labelling atlas (AAL) [13]. The resulting combination of the HOA 

and AAL atlas is referred to as HOA + AAL. On the one hand, these gray 

matter regions were combined with DTI white matter fiber tracking to generate 

692 undirected graphs. Further details on the minimal pre-conditioning are 

reported in article III, in the study by Amodeo and colleagues [15] and in a 

diagram of the SC matrix extraction process (Figure 4, top right). For this 

reason, and the interest in analyzing the result of XAI on single and possible 

spurious edges, no thresholding method was applied. On the other hand, the 

pre-processing of the available T1-weighted scans using the FSL v.6.0 tool [17] 

was carried out to create a suitable dataset, as better detailed in article III. 

Importantly, registration to the Montreal Neurological Institute space was 

carried out for all subjects both for the T1-weighted volumes and for the DTI 

parcellation. The main characteristics of the datasets are summarized in Table 

1. 
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Study Population Data Atlas 

(#nodes) 

Edge-

Weighting 

Pre-Conditioning 

I 2 Stroke 

Cases  vs 

17 HC 

Structural 

Connectivity 

Destrieux 

(165×165) 

DTI and 

CSD 

Normalization by volumes, 

HC mixed proportional-

consistency thresholding to 

create an HC group matrix 

II 12 SZ vs 

15 HC 

Functional 

Connectivity 

AAL 

(74×74) 

Pearson 

Correlatio

n 

Exclusion of poor coverage 

AAL nodes, separate analysis 

of correlations and 

anticorrelations 

III 135 AD vs 

557 HC 

MRI 

sessions 

Structural 

Connectivity, 

3D T1-

Weighted 

Volumes 

HOA+ 

AAL 

(132×132) 

DTI On 3D T1-weighted scans: 

skull-stripping, bias field 

correction, registration to 

standard MNI template, 

cropping of the images FOV, 

normalization of intensity 

values using variance scaling, 

resize to 115x144x118 

Table 1: Characteristics of the datasets employed, and pre-conditioning steps performed. SZ: Chronic 
Schizophrenia; HC: Healthy Control; AD: Alzheimer’s Disease; AAL: Automated Anatomical Labeling; 
HOA+AAL: FSL Harvard-Oxford maximum likelihood cortical Atlas combined AAL; DTI: Diffusion Tensor 
Imaging; CSD: Constrained Spherical Deconvolution; MNI: Montreal Neurological Institute; FOV: Field Of 
View; 

 

SPIDER-NET Tool and Stroke Case Studies Investigation 

SPIDER-NET (Software Package Ideal for Deriving Enhanced Representations of brain 

NETworks) is developed in Matlab and delivered as standalone software. It is a tool that 

enables users to select, visualize, and quantify partial connectograms of brain networks in a 

flexible and user-friendly manner. The SPIDER-NET Graphical User Interface (GUI) 

allows for rapid exploration of networks and interactive real-time sub-network definition. 

The software automatically generates connectivity figures based on user selections and 

offers additional features for matrix thresholding, computation of network indices, and 

interactive visualization preferences. Three input files representing an Atlas file, a Label 
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file and a Connectivity Matrix file are required. After uploading the inputs, the GUI 

(Figure 1, red box) allows the user to choose between selecting individual parcels, entire 

groups of parcels, or attributes specified in the “Atlas” file. This selection feature is 

enabled in the GUI following input upload (Figure 1, blue box). 

 

 

Figure 1: Flowchart for SPIDER-NET usage. First, the Atlas and Label input files are browsed and loaded (blue 
box). Then, the Connectivity Matrix file is loaded and the selection of the sub-network of interest is performed 
(red box). Optionally (dashed lines), it is possible to compute and visualize topological properties of the selected 
brain network (green box). Finally, the connectogram is generated according to the selection made and to the 
chosen visualization settings (yellow box). 

SPIDER-NET provides two complementary logic options for defining a partial network, as 

represented by the input Connectivity matrix (shown in the red box in Figure 1). These 

options are “Explore from current selected subset” (Option 1) and “Extract a subgraph” 

(Option 2). Option 1 allows to define a “seed” and a “target”, which can be a parcel, or a 

group of parcels defined by group-parcellation, or attribute depicted in the atlas file. The 

target can also be all the parcels of the brain. Option 2 involves choosing a single subset of 

nodes, which can be done on individual parcels or by groups. Then, a number of additional 

features are present, such as the exclusion of within-edges (e.g., intra-lobe connections), 

color-coding node properties and thresholding. SPIDER-NET also has an optional feature 



22 
 

(shown in the green box in Figure 1) that allows for the computation of graph-based 

topological properties. These properties are useful for a quantitative evaluation of the 

network's topology and can be interactively explored on a visualization panel. The most 

widespread graph-based indexes automatically computed are reported in Table 5 of Par. 

2.2.4.2. 

On tha available data, DTI-based connectograms of the right hemisphere were generated 

for Case 1 and Case 2 to firstly visualize the effect of the lesion. A subgraph analysis was 

then performed by selecting brain regions overlapping with the lesions as seeds and the 

whole brain as target. The same sub-network analysis was performed for HC as well, 

allowing for a comparison. Local and global graph analysis indexes were extracted from 

both the weighted and binary connectivity matrixes to describe network topology. 

Additionally, the study compared the connectivity results derived from DTI and CSD 

processing techniques. 

 

Bootstrapped Multi-Level Approach in Schizophrenia 

SPIDER-NET was then improved and upgraded to have the possibility of uploading more 

than one matrix at once allowing group studies. Furthermore, a top-down bootstrapping 

approach was proposed to enable a robust multi-level assessment. This approach was used 

to compare the HC and SZ groups involving several levels of analysis. The investigation 

began with the highest level, which involved examining and comparing the overall 

characteristics of the matrixes from the two populations, and proceeded to the lowest level, 

which involved analyzing individual connections. To ensure the accuracy of the 

investigation, bootstrapping was performed on both the global topological indexes and the 

local indexes of the Default Mode Network (DMN). Community analysis was performed 

before obtaining the group mean matrixes which were studied to identify the strongest 

activations and deactivations, with a focus on correlations and anticorrelations. The whole 

pipeline is summarized in Figure 2. 
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Figure 2: Pipeline of the top-down approach proposed. The functional connectivity matrixes of the two 
populations were analyzed at the global level, extracting the DMN as sub-network of interest and investigating the 
distributions of the local indexes to the edge level, assessing correlations and anticorrelations. 

Mann-Whitney testing (MW) was used to determine whether there were statistically 

significant differences in global indexes between two groups. However, due to factors such 

as the sample size (#HC = 15; #SZ = 12), the non-stationarity of the data [25], and the 

possibility of spurious connections caused by limitations in functional Magnetic Resonance 

Imaging (fMRI) processing [29], the reliability of significant group differences was also 

assessed. To address this, the study also used bootstrap hypothesis testing (BOOT). BOOT 

provides a more accurate estimate of the null distribution of network measures, which 

allows for the evaluation of confidence intervals and the uncertainty of statistics, resulting 

in a more robust detection of abnormalities [41]. The procedure to test bootstrap hypothesis 

was the following: 
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1. calculation of the test statistic 𝜃𝜃� =  |𝑥𝑥� −  𝑦𝑦�|, given 𝑥𝑥1, … , 𝑥𝑥𝑁𝑁 a random sample from 

distribution F with median 𝑥𝑥� and  𝑦𝑦1, … , 𝑦𝑦𝑀𝑀 another independent random sample 

from distribution G with median 𝑦𝑦�; 

2. Bootstrapping: extraction of B sets of random samples 𝑥𝑥∗ (size 𝑁𝑁) and 𝑦𝑦∗ (size 𝑀𝑀) 

with replacement from 𝑥𝑥 and 𝑦𝑦, respectively; 

3. Calculation of the test statistic 𝜃𝜃�𝑏𝑏∗ =  |𝑥𝑥�𝑏𝑏∗ −  𝑦𝑦�𝑏𝑏∗| for each resample; 

4. These B resampled test statistics are then made into a null distribution by 𝜃𝜃�𝑏𝑏′ =

 𝜃𝜃�𝑏𝑏∗ −  𝜃𝜃� 

5. Estimate of the p-value as 

𝑝𝑝 =
∑ 𝐶𝐶�𝜃𝜃�𝑏𝑏′ ≥ 𝜃𝜃�� + 1𝐵𝐵
𝑏𝑏=1

𝐵𝐵 + 1 
 

 

Where 𝐶𝐶{𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐} = 1 when the condition is true and 0 otherwise. 

 

F and G represent the distributions of a global index in HC and SZ, thus N and M 

representing the number of HC and SZ, 15 and 12 respectively. The resampling from these 

two sets is carried out 5000 (B - number of resamples) times for all bootstrap hypothesis 

tests and the test statistic is the difference in medians [42].  

To evaluate the robustness of the measures, a leave-n-subject-out approach was employed 

with n equal to 1 and 2. Both methods were used to analyze variations in the statistics 

computed, by changing the population samples according to the two procedures. The first 

procedure, referred to as Robust Statistical Testing with leave 1 subject out - RST1, 

involved evaluating the variation of p-values obtained by removing one at a time all 

subjects from the population for performing MW tests and creating new resamples for 

BOOT. The second procedure, referred to as RST2, involved the random removal of pairs 

of subjects from the population for performing both tests. In total, 350 random extractions 

of pairs of subjects were performed, representing about 50% of the possible pairs 

(27*26=702). RST2 is summarized in Figure 3. Mean and standard deviation were 

evaluated across all tests for both procedures. 

 

  



25 
 

 

Figure 3: Schema representing the robustness statistical test randomly removing two subjects (black squares) at 
each iteration (RST2). In this case, N is equal to 350. 

XAI Approach for Alzheimer’s Disease Classification 

In order to improve the interpretability of connectivity networks in a broader study 

involving normal aging and early-stage AD, XAI methods were applied to the dataset III, 

as described in Section 1.2. These methods aimed to analyze anatomical biomarkers and 

provide a clearer understanding of data and its features. First, Deep Learning (DL) 

methods were employed on both SC data and 3D T1-weighted volumes. After pre-

processing, the dataset was split into training and validation using a 10-fold cross-

validation strategy, with an attentive split to avoid data leakage. Performances were 

evaluated by computing the median and the interquartile range of the true positive (TPR) 

and true negative (TNR) rates, beyond that accuracy, across all 10 folds. Finally, a new 

dataset split maintaining hyperparameters and proportion between HC and AD was carried 

out to assess the explainability of the two DL models. Resnet18, a pre-trained DL model, 

was utilized for the AD recognition with 3D T1-weighted volumes. The model architecture 

is characterized by 18 layers including a 3D convolutional layer and four sets of residual 

blocks, each containing two 3D convolutional layers. More details on the architectures are 

reported in Figure 4 and hyperparameters details in the article III. This model was 

originally trained for multi-class classification of images from the ImageNet database [18], 

which was adapted to 3D input [19]. The selection of Resnet18 was based on previous 

research, which has demonstrated its superior performance compared to other pre-trained 

models for AD recognition [40]. As the DL model using graph-structured data, several 
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graph convolutional networks (GCNs) have been proposed for various applications, but 

these models are typically designed for sparse graph-structured data, resulting in unsuitable 

models for brain connectivity. Brain connectivity data yields dense graphs, and the DTI-

derived metrics result in graphs with a high number of connections, making both direct and 

indirect connections essential for communication. Recently, an edge based GCN was 

proposed and used successfully in FC tasks. Indeed, the BC-GCN model, with the potential 

extension of a Squeeze-and-Excitation block (BC-GCN-SE), performed well in regression 

and classification tasks [20]. We adapted this model to AD classification task with SC data. 

The resulting BC-GCN-SE is mainly composed of five major units: the graph path 

convolution (GPC), which allow the extraction of the feature maps, the edge (EP) and node 

pooling (NP), the Squeeze-and-Excitation (SE), to emphasize or suppress them, and the 

fully connected block for classification. More details on the architectures are reported in 

Figure 4 and hyperparameters details are reported in article III. The explainability analysis 

was based on GRAD-CAM method [21], and the mean heatmap 𝐺𝐺𝑐𝑐 of different 

convolutional layers in both models was used to address both class-discriminative features 

with low spatial extent and fine-grained details. Afterwards, we related these mean 

heatmaps obtained from both ResNet18 and BC-GCN-SE to the HOA + AAL atlas to 

assess which brain regions were most involved in the classification and comprehend the 

decisions made by the models. Thus, we defined a Relevance Value (RV) measure for each 

parcel 𝑝𝑝 in both 3D T1-weighted volumes and SC matrixes: 

RVp,c =
∑ ∑ ∑ Mp(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝐺𝐺𝑐𝑐(𝑥𝑥,𝑦𝑦, 𝑧𝑧)118

z=1
144
y=1  115

x=1

∑ ∑ ∑ Mp(𝑥𝑥,𝑦𝑦, 𝑧𝑧) 118
z=1

144
y=1  115

x=1
(1) 

 

𝑅𝑅𝑅𝑅𝑝𝑝,𝑐𝑐 =
∑ 𝐺𝐺𝑐𝑐(𝑝𝑝, 𝑞𝑞)132
𝑞𝑞=1,𝑞𝑞≠𝑝𝑝

131
(2) 

Where 𝑐𝑐 is the considered class, 𝐺𝐺𝑐𝑐 is the resulting mean heatmap from Grad-CAM, and 

Mp(𝑥𝑥,𝑦𝑦, 𝑧𝑧) is a binary mask obtained from the HOA + AAL atlas to depict each parcel 𝑝𝑝. 

A diagram summarizing the XAI steps for 3D T1-weigthed volumes and SC are reported in 

the bottom parts of Figure 4 (green boxes). XAI assessment was performed in comparison 

to domain-knowledge, addressing anatomical targets of the two models. As for the 

ResNet18 model, the medial temporal lobe (MTL), was selected as 3D T1-weighted 

volume anatomical target, whereas for BC-GCN-SE model, the DMN was selected as SC 
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target. According to previous studies [22], [23], patterns of atrophy in the MTL represent a 

well-established structural MRI biomarker for AD and is often used a diagnostic criterion 

for individuals displaying early symptoms, while DTI and SC abnormalities are found in 

the DMN [24], [25]. These anatomical targets were assessed evaluating statistical 

differences between AD and HC and then ranking the RV for each of the parcels. More 

details on the statistical evaluation are reported in article III. 
 

 

 

Figure 4: Implemented workflow for the AD classification and explainability assessment performed on ResNet18 
and BC-GCN-SE. On the top right, the processing steps used to derive the SC data (displayed as matrixes and 
connectograms in the yellow rectangle) are shown.  The models’ architecture is shown in the middle (blue box) for 
both models comprising convolutional layers, Squeeze-and-Excitation blocks (SE), Global Average or Edge/Node 
Pooling (GAP, EP/NP) layer, Fully Connected layers and sigmoid activation function for the binary classification. 
The outputs derived from the convolutional layers were processed using Grad-CAM (bottom, green box) and then 
averaged. The final heatmap was then multiplied for the binary masks underlying the HOA + AAL atlas parcels 
in the 3D T1-weighted case and averaged across rows/columns (node) in the SC data case. 

1.3 Results 

Stroke Case Studies Testing (Study I)  

The connectograms generated with SPIDER-NET to explore the DTI and CSD-based 

connectivity between gray matter parcels intersecting the lesions of patients with stroke 

injury and the whole brain are shown in Figure 5B. Upon visual inspection, the sub-

network connectivity pattern of both patients with stroke injury looks altered compared to 
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HCs. In addition, it is worth noting that differences can be qualitatively observed both in 

the right hemisphere (where the stroke lesions are present) and in the contralateral one. 

Case 1 displays a less dense right hemisphere connectivity pattern compared to Case 2. At 

visual inspection, the connectograms derived from DTI and CSD processing generally 

preserve the same connectivity patterns, highlighting the difference between Case 1 and 

Case 2, besides denser results from CSD.  

  

Figure 5: Investigation of connectograms and local topological properties of HCs, Case 1, Case 2. On the left, the 
connectograms (B) derived by both DTI (left) and CSD (right) processing, of the sub-network extracted using as 
seeds all parcels which are overlapped with the stroke lesion of either Case 1 or Case 2, are reported for HCs (top 
panel), Case 1 (middle panel) and Case 2 (bottom panel). Specifically, seeds were defined according to lesions and 
all the parcels of the brain were considered as targets for connectivity analysis. On the right, local node degree 
computed for HCs, Case 1 and Case 2. The X-axis represents the 165 brain parcels, even if only lobe labels are 
reported (e.g., Fro). The left hemisphere is represented in the left half of the graph, while the right hemisphere is 
represented in the right half. Vertical colored stripes represent different lobes (e.g., the frontal lobe is represented 
in pink). The same lobe in left and right hemispheres is shown with the same color. Each dot in the graph 
represents the local node degree of a brain parcel. The 17 parcels (10% of 165) exhibiting the highest local node 
degree are represented as red dots. The 17 parcels (10% of 165) with the lowest local node degree are represented 
as yellow dots. All the other parcels are represented as blue dots. The right Putamen is highlighted by an arrow. 
L-left hemisphere, R-right hemisphere, Fro-frontal, Ins-insular, Tem-temporal, Par-parietal, Occ-occipital, Sbc-
subcortical, CeB-cerebellum, Bst-brainstem, PrCG-precentral gyrus, LoInG/CInS-long insular gyrus and central 
insular sulcus, ShoInG-short insular gyri, Pal-pallidum, Pu-putamen, CaN-caudate nucleus, Tha-thalamus. 
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Regarding the local topological properties, patients with stroke injury presented lower node 

degrees when compared with HCs. In HCs, regions with the highest node degrees, 

represented as red dots in Figure 5 (right panel), were mostly located in the dark-green 

vertical stripe, representing subcortical regions. Conversely, in the patients with stroke 

injury, both characterized by a right hemisphere lesion with prevalent subcortical 

expression, the regions showing the highest local node degree are more distributed across 

the cortical lobes. In addition, caudate nucleus, pallidum, putamen, and thalamus, which 

were classified by SPIDER-NET as regions with the highest node degree in HCs (red 

dots), were not classified as nodes with high node degree in both Case 1 and Case 2. In 

Figure 5, putamen node degree values are highlighted for HCs, Case 1 and Case 2. 

Regarding the global topological properties, both Case 1 and Case 2 presented differences 

for all the indexes when compared to HCs. Percentage differences ranged from 10.5 to 

96.9% for Case 1, and from 14.3 to 81.9% for Case 2. 

 

Robust Multi-Level Assessment of Schizophrenia (Study II) 

Results from the comparison between HC and SZ of the overall indexes using 

nonparametric test, bootstrap hypothesis testing and of the robustness statistical tests are 

summarized in Table 2. Differences between MW and BOOT are highlighted. Specifically, 

higher p-values in BOOT are found for the weighted characteristic path length and 

modularity indexes. The latter highlighted a statistically significant (p<0.05) difference 

between HC and SZ modularity that was not confirmed by using BOOT. The robustness 

assessment highlighted more stable results for BOOT. Indeed, it is worth noting that the 

mean of the p-values, considering all indexes and removing both one and two subjects, 

remains closer with BOOT than the MW test in almost all indexes considered. 

Furthermore, the variability was assessed, resulting in lower standard deviation employing 

BOOT with respect to MW in almost all indexes. 
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Graph 
Index 

Whole Comparison RST1 (#Sub = 1)  RST2 (#Sub = 2)  

HC data 
(mean±std) 

SZ data 

(mean±std) 
PMW  PBOOT PMW  

(mean±std) 
PBOOT 

(mean±std) 
PMW  
(mean±std) 

PBOOT 

(mean±std) 

Degree 
(Density) 

71.746 ± 2.178 69.207 ± 5.149 0.130 0.086 0.146 ± 0.05 0.089 ± 0.044 0.162 ± 0.079 0.103 ± 0.063 

Strength 37.053 ± 7.362 31.680 ± 10.246 0.124 0.079 0.143 ± 0.047 0.096 ± 0.029 0.155 ± 0.071 0.108 ± 0.045 

Bin CC 0.986 ± 0.025 0.960 ± 0.057 0.150 0.124 0.150 ± 0.052 0.130 ± 0.038 0.184 ± 0.089 0.138 ± 0.057 

Wei CC 0.489 ± 0.105 0.415 ± 0.144 0.150 0.105 0.155 ± 0.052 0.119 ± 0.027 0.183 ± 0.082 0.128 ± 0.050 

Bin CPL 1.017 ± 0.030 1.052 ± 0.071 0.130 0.084 0.153 ± 0.052 0.089 ± 0.044 0.162 ± 0.079 0.102 ± 0.063 

Wei CPL 2.216 ± 0.610 2.618 ± 0.892 0.124 0.129 0.151 ± 0.061 0.150 ± 0.054 0.155 ± 0.072 0.159 ± 0.072 

Bin Eff 0.991 ± 0.015 0.974 ± 0.035 0.130 0.086 0.150 ± 0.052 0.089 ± 0.044 0.162 ± 0.079 0.102 ± 0.063 

Wei Eff 0.525 ± 0.085 0.466 ± 0.113 0.113 0.078 0.147 ± 0.051 0.099 ± 0.023 0.143 ± 0.065 0.111 ± 0.041 

Modularity 0.004 ± 0.009 0.016 ± 0.026 0.043 0.133 0.053 ± 0.018 0.128 ± 0.019 0.059 ± 0.030 0.144 ± 0.036 

Coreness 0.018 ± 0.022 0.037 ± 0.036 0.164 0.122 0.141 ± 0.060 0.122 ± 0.039 0.199 ± 0.091 0.138 ± 0.061 

Small-
Worldness 

1.003 ± 0.005 1.015 ± 0.019 0.178 0.085 0.146 ± 0.062 0.09 ± 0.013 0.214 ± 0.098 0.096 ± 0.030 

Table 2: Results of the statistical tests performed on global indexes. The global version of the degree represents the 
mean of all edges associated to all nodes, whereas the density is the ratio between the number of present edges and 
the number of possible edges in the network. For this reason, the result coincides, and it is reported only once. 
HC: Healthy Controls; SZ: Schizophrenic Patients; RST: Robust Statistical Test; MW: Mann Whitney Test; 
BOOT: Bootstrap Hypothesis Testing; #Sub: number of subjects removed; CC: Clustering Coefficient; CPL: 
Characteristic Path Length; Eff: Efficiency. 

Afterwards, we analyzed the local values of the indexes in the DMN and across the lobes, 

showing the distributions of the values of the degree across the same group in Figure 6. 

Differences between DMN regions and the other areas in SZ and HC, because of the 

different influence of the negative connections, were highlighted. Specifically, the most 

variable indexes resulted to be located within the DMN for the SZ group. On the other 

hand, they are distributed more across all the brain regions in HC group, even resulting 

more variable in the areas not included in the DMN. More precisely, one of the most 

variable values of the degree in both groups was the one assumed by the amygdala, located 

at the end of the first yellow box in Figure 6, representing the left hemisphere nodes of the 

DMN. Afterwards, the strength was analyzed, and the resulting distributions are shown in 

Figure 6. More specifically, the most variable local indexes among their populations were 

extracted from frontal, parietal lobes and subcortical structures. Furthermore, the 
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distributions of the strengths highlighted statistically significant differences (p<0.05) found 

through both MW and BOOT or by only one of the two. Most of the differences were 

found in regions of the frontal lobe of both hemispheres. Finally, anticorrelatons analysis 

through the creation of probabilistic averaged networks in whole-brain and DMN (shown 

in Figure 6) highlighted more negative connections in SZ than HC and less modular 

structure (3 communities found in SZ, 4 in HC). Main great differences were found in the 

frontal and parietal lobes, resulting to have reduced inter-hemispheric connectivity both in 

number of edges and weights and different configurations of the communities found (more 

details on community analysis are reported in article III).  

 

  

Figure 6: Distributions of the local topological properties and connectograms showing anti-correlations. On the 
left top, distributions of the local degree values in the two populations divided according to nodes of DMN in left 
and right hemisphere (yellow) or not (gray) are shown. On the left bottom, distributions of the local strength 
values in the two populations. Strength of nodes which are statistically significant different (p < 0.05) between the 
two populations are shown in different colors according to the different methods used: pale brown for bootstrap 
hypothesis testing, yellow for Mann-Whitney and red for statistically significantly different nodes found by both. 
On the right, connectograms of negative average group networks. a) and b) are the results on the whole-brain, c) 
and d) on only the DMN of SZ and HC groups respectively. 5% density thresholding is applied on the shown 
connectograms for graphical clarity only. The order and colors of the lobes is the same as the rectangles on the left 
bottom. 
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Interpretability of AD Classification DL Models Using Multiple Brain Measures 

(Study III) 

Table 3 summarizes the outcomes of the 10-fold cross-validation performed on the DL 

models ResNet18, which used 3D T1-weighted volumes, and BC-GCN-SE, which used SC 

data. 

 
Cross-Validation Normalized Confusion 

Matrix 
Predicted 

ResNet18 P N 

Actual 
P 0.8167 [0.7734, 0.8462] 0.1833 [0.1539, 0.2266] 

N 0.1835 [0.1674, 0.2332] 0.8165 [0.7668, 0.8326] 

BC-GCN-SE P N 

Actual 
P 0.7033 [0.6719, 0.7692] 0.2967 [0.2308, 0.3281] 

N 0.2614 [0.24189 0.3023] 0.7386 [0.6977, 0.7581] 

Table 3: Normalized confusion matrix for the ResNet18 and BC-GCN-SE model performance, reported as median 
value and interquartile range. 
 

Both models achieved good performance, with slightly superior performance of ResNet18. 

Regarding XAI, RVs of 70 and 46 parcels of AD in contrast to HC for ResNet18 and BC-

GCN-SE, respectively, were determined to be statistically significant (p < 0.05) among all 

the parcels of the atlas employed. 22 parcels, in particular, were in agreement between the 

two approaches, mainly coming from the cortex. More specifically, in the case of 

ResNet18, 7 out of 8 total target MTL parcels were shown to be significant. In the case of 

BC-GCN-SE, instead, 12 out of 17 target DMN parcels were found to be statistically 

significant (p < 0.05) in at least one hemisphere (70.59%). Considering lateralization, the 

number was 16 out of 31 total DMN parcels (51.61%). Afterwards, the 20 most relevant 

parcels for the AD classification from both models were analyzed. First, it was noted that 

11 out the 20 most relevant parcels for ResNet18 were also found to be statistically 

significant. The anterior division of both right and left parahippocampal gyrus from target 

MTL were among these 11 parcels. Considering the remaining 9, 7 were nonetheless found 

to be among the most relevant for the HC classification.  Second, 14 out of the 20 most 

relevant parcels for BC-GCN-SE showed a significant AD vs. HC contrast. Of these 14, 5 

parcels belong to target DMN. Among the remaining 6 most relevant parcels 4 were found 
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to be among the most relevant ones for the classification of HC. To summarize, the 

diagrams indicating the mean RV of all correctly classified sessions of both classes and 

models per each parcel and divided in lobes are shown in Figure 7. 

 

Figure 7: Mean RV of all parcels, for the ResNet18 (panel A) and BC-GCN-SE (panel B) models. The AD and HC 
classes are reported separately. The lobe belonging is indicated through rectangle colors. The RV of each parcel is 
labeled though dot colors according to the following criterion: red indicates the 15% of parcels characterized by 
highest RV, yellow indicates the 15% of parcels characterized by lowest RV, grey indicates the remaining parcels. 
Plots were created using the SPIDER-NET tool. Fro: Frontal Lobe; Ins: Insular Cortex; Lim: Limbic Lobe; Tem: 
Temporal Lobe; Par: Parietal Lobe; Occ: Occipital Lobe; SbC: Subcortical Structures; Ceb: Cerebellum; BSt: 
Brainstem. 



34 
 

1.4 Discussion 

In the present PhD work, the aims of enhancing the reliability and the interpretability of the 

brain biomarkers were addressed. More specifically, this investigation was carried out on 

three different datasets formed of different number of subjects and patients, affected by 

diverse pathologies sharing the characteristics of both affecting specific regions of the 

brain and leading to diffused degeneration of the whole brain. 

 

Network and Sub-Network Investigation through SPIDER-NET  

First, a flexible and user-friendly tool called SPIDER-NET was proposed to both 

qualitatively and quantitatively investigate brain connectivity in health and disease. More 

precisely, SPIDER-NET was validated resulting an effective tool to represent the expected 

(dis)connectivity pattern due to a stroke lesion, in testing a-priori hypothesis by extracting 

a sub-network of interest and in computing topological indexes. The main findings found 

from the explorations on the two stroke case studies through SPIDER-NET were first that 

the pattern of connectomics of case 1 is significantly different from case 2, mirroring the 

greater clinical severity of the former. Second, the pattern of disconnection involved both 

the right hemisphere, where the stroke lesions were present, and the contralateral one. 

Third, the quantitative results mirrored the differences qualitatively observed with 

connectograms, providing a comprehensive description of brain connectivity highlighting 

the impact of graph-based metrics in line with the literature [8], [26]. Both local and global 

metrics derived from the whole-brain networks of Case 1 and Case 2 differed from HC 

one, as expected [8], [26], [27]. Fourth, the impairment of the cortical areas of interest 

determined a decrease in both short-range and long-range connections within the 

hemisphere ipsilateral to the stroke lesion. Fifth, interhemispheric connectivity was 

severely hampered, probably because subcortical nuclei (such as the putamen), which are 

integration hubs of extrapyramidal systems, were affected by the lesions. Finally, DTI-

based and CSD-based sub-network connectograms presented comparable connectivity 

patterns, highlighting that valuable information is provided by both the processing 

techniques. CSD processing pipeline yielded to reconstruct denser connectograms, in 

agreement to the known CSD ability to better deal with the problem of the crossing fibers 
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when compared to DTI [28]. This is in line with differences between DTI and CSD that 

were observed in terms of interhemispheric connections, that were particularly evident for 

Case 1. Hence, it was shown that the SPIDER-NET tool can be helpful in clinical research 

settings, in tailoring the rehabilitative treatments and can greatly contribute to improve the 

understanding of the brain networks through a better interpretation and reliability of the 

measures. Normally, networks are composed of hundreds of nodes and thousands of links, 

thus the analysis and the interpretation are often tough. Automatic and interactive tools to 

assess brain network would be of great support in research and potentially in clinics. 

Indeed, analyzing sub-networks of interest, from a-priori hypotheses or through other tools, 

is of great importance in the understanding of the mechanisms underlying the cognitive 

processes or the circuit mapping of the brain. In addition,  generating SPIDER-NET 

connectograms could be a good general strategy to test the robustness of the processing 

pipeline, including the connectivity metrics, further conditioning (e.g., thresholding or 

binarization), and global or local graph indices. As one of the main limitations of 

connectomics, so far, is the lack of standardized procedures for network construction and 

edge weighting [29], [30], SPIDER-NET may be applied as a flexible and easy tool for 

calibrating connectomics analyses. Specifically, it could allow to quickly identify the 

expected pattern of disconnection and to easily highlight major errors if present. This 

quality check may offer a benchmark before addressing less trivial connectivity alterations, 

as the ones induced by diffused neurodegeneration. 

 

Improving the Robustness of the Multi-Level Connectivity in Group Studies 

As the uncertainty assessment, a bootstrapped top-down approach to assess reliable 

abnormalities found on different levels was proposed. In particular, the assessment from 

global indexes to single edges (brain activations and deactivations) was carried out on the 

FC of a population characterized by SZ, thought to cause both diffused and focalized 

dysconnectivity patterns. The multi-level analysis resulted to potentially favor more robust 

results in contexts where the focus is not well-known and statistical tests can be easily 

biased by uncertainty. Increased global index values were found in HC for all segregation 

properties and efficiency, whereas path length was longer in SZ, as expected, as well as 

small-worldness and coreness statistics. Discrepant significance of modularity was found 

between MW (p=0.043) and BOOT (p=0.133). The robustness assessment tests (both 
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RST1 and RST2) highlighted more stable results for BOOT than the direct testing. 

Significant results were also found at lower levels. The analysis of the DMN highlighted a 

higher variability, reduced connectivity and strength and increased deactivation in the SZ 

group. At local level, 13 areas were found to be significantly different (p<0.05) in the 

groups, highlighting a greater divergence in the frontal lobe. The community detection 

analysis of the anticorrelations shows as, in SZ, most nodes from frontal, limbic and 

temporal lobes are clustered together in a community. This deactivation organization may 

be relevant in the study of failed activity inhibition of SZ characterized by selective 

disruption of an automatic inhibitory process, and failure to limit the current contents of 

consciousness [31], [32]. In the parietal lobes configuration other differences were noticed, 

especially regarding the clustering with contralateral occipital lobe in SZ. In other studies 

[33], [34], these lobes were investigated in relation to SZ highlighting important functions. 

For example, it was hypothesized that cognitive deficits and delusions may be related to 

malfunctions in the parietal lobe [35] or that the maintenance of visuospatial information is 

associated to a network of occipital cortex regions [33]. These results were confirmed by 

analyzing the mean matrix of single negative edges of the groups in the whole-brain and 

DMN, suggesting an inverted connectivity among prefronto-temporal areas which can 

reflect abnormal inhibition of the regions’ activity involved. In general, the results 

highlighted a higher stability and robustness of the BOOT in RST1 and RST2, providing 

support to its possible use when dealing with a small dataset which is also affected by 

uncertainty of the measures. Furthermore, the results highlighted a trend towards results 

obtained with a greater number of subjects and data, and appeared to be in line with other 

studies where the major finding in SZ is that the connectivity is not systematically 

increased/reduced but generally different, due to the functional reorganization of SZ [36], 

[37]. However, it remains unclear whether SZ abnormalities are the result of a localized 

dysconnection exerting widespread effects throughout the brain, or a whole-brain 

dysfunction that affects certain regions more. The robust approach for assessing the 

differences in the network topology turned out to be of great interest, especially when 

small datasets are available. Furthermore, the possibility of performing automatic top-

down investigations may improve our understanding of both diffuse and localized 

dysconnections typical of some pathologies.  
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Comparing and Combining Explanable AI 

As the interpretability issue, the comparison between two XAI methods trained on 

different types of structural MRI data, namely 3D T1-weighted scans and SC matrixes 

extracted from DTI was performed. Overall, the DL models highlighted good classification 

results. On the one hand, the BC-GCN-SE obtained acceptable performance with respect to 

the existing literature [38]. On the other hand, the ResNet18 model achieved slightly 

superior accuracies with respect to the BC-GCN-SE when classifying both AD and HC 

subjects (TPRmedian = 0.8167; TNRmedian = 0.8165). The obtained results were in line 

with the existing literature [39]. To the best of our knowledge, no other studies compared 

DL models trained using 3D T1-weighted volumes and SC data neither in terms of 

accuracy nor explainability. Moreover, this is the first work testing BC-GCN-SE model on 

SC with the aim of classifying diverse AD subjects of the OASIS-3 dataset. These models 

are relatively recent, especially when compared to more mature Convolutional Neural 

Network (CNN) architectures working on images such as the ResNet18 model. This latter 

is a widely tested pre-trained model with weights obtained from more than a million 

images, probably resulting in a better ability to generalize. In addition, it is worth noting 

that the SC data obtained from DTI have those above-mentioned inherent limitations 

related to the processing pipelines that may result in noisy connections [30]. Given this 

premises, both results can be considered promising, even considering the great variability 

of severities of the AD subjects, sessions parameters, the presence of multiple acquisition 

session without a predefined design setting in the OASIS-3 dataset. Moreover, the division 

into classes according to the CDR results in 15 subjects having sessions with different 

labels and in a majority of sessions from subjects with very mild impairment (n. 97 

sessions with CDR 0.5 out of 135 total AD sessions). Clearly, being the range of dementia 

effects wide and of difficult definition, it results in a more difficult task. The use of DL 

models on brain connectivity graphs and their assessment in comparison to more 

established approaches would be of great importance. The processing effort of extracting 

connectivity data, providing relevant data, would be thus enhanced if casting new light on 

the exploration of brain biomarkers and computational cost in parallel to optimal results of 

AI methods. As the XAI analysis, both models highlighted advantages and drawbacks. The 

statistical tests and the ranking of the most relevant parcels highlighted a good degree of 

agreement with respect to domain knowledge. Thus, ResNet18 model indicated a good 
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portion of the MTL and BC-GCN-SE model showed several parcels composing the DMN. 

On the one hand, 7/8 parcels of the MTL were highlighted by the statistical test (p<0.05) 

with the specific case of the parahippocampal gyri of the two hemispheres also being 

among the 20 most relevant parcels for AD identification with 3D T1-weighted volumes. 

70.59% of the DMN parcels were instead found to be significant (p<0.05), with 5 parcels 

being among the most 14 explainable and significant parcels using SC data. However, 

some limitations need to be considered. One may argue that the number of parcels 

displaying a difference by the solely statistical test in the AD and HC levels of RV is high 

when compared to the total number of parcels we investigated. This may increase the 

possibility to detect the target structures. The investigation of which parcels – among the 

significant ones – were also included in the 20 most relevant (i.e., highest RV values) for 

the AD case allowed to reinforce the interpretation of the results. This served as a strong 

confirmation that the algorithm is leveraging them to identify the presence of AD. In 

addition, it is worth noting that most of the parcels identified were cortical. The population 

was made up of subjects at various AD stages and severities that could simply suggest 

different involvement of the disease in different MRI sessions lead to general extensive 

importance of a considerable portion of the cortex. This is particularly true for the 

ResNet18 model, that points out more significant parcels. In addition, it is a deeper model 

with respect to BC-GCN-SE, possibly focusing on more complex features. As the BC-

GCN-SE model, instead, a limitation can be given by differences found in DMN across the 

hemispheres. However, we acknowledge that there are considerable discussions and 

increasing evidence among researchers as to abnormality of topological asymmetry 

between hemispheric brain White Matter (WM) in AD and Mild Cognitive Impairment 

(MCI) [40], [41]. More specifically, all parcels which were found to exhibit asymmetry in 

the study by Yang and colleagues agreed to the parcels of only one hemisphere used by our 

model [40]. This can be a valuable indication supporting for hemispheric lateralization and 

aberration possibly due to the long-range connection loss that might be further 

investigated. In general, valuable conclusions can be reached from the investigation of the 

two models. First, it was found that some DMN regions have good importance in the 

classification from SC matrixes. Second, it was also shown as the regions characterizing 

the MTL, found as replicated hallmark in structural MRI studies, contain inherent 

important features for the ResNet18 model employing 3D T1-weighted volumes. In this 
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context, it is also of great interest to underline how some important regions of the MTL 

such as amygdala, parahippocampal gyri, and hippocampus that were also found to be 

different in AD connectivity data [42], were not underlined by the XAI analysis of BC-

GCN-SE. Indeed, apart from right amygdala, that was found to be statistically significant, 

all the other regions of the MTL did not result from either statistical test or examining most 

relevant parcels. This finding may highlight a limitation of BC-GCN-SE model 

interpretability or the effect of some noise sources inherently present in the connectivity 

data. At the same time, this complementary relevance of parcels of interest appears 

promising in the perspective of developing superior and more trustworthy models. Indeed, 

the use of well-known hallmarks from multiple measures may offer the opportunity of 

focusing on different information that would be of great interest and significance if used 

concurrently. In this context, only few studies considered the combination of 

morphological features of regions from 3D T1-weigthed volumes and interregional 

properties obtained through structural connectivity data, but that may potentially lead to 

more accurate results and to a better interpretation [43]. Nowadays, there is indeed the 

potential to easily collect multiple data from multiple modalities, and in this sense, efforts 

to assure even greater use of the whole potentiality of DL models, exploiting their 

peculiarities would be of unvaluable interest for diagnosis and rehabilitation of the 

pathology. The development of better and more interpretable models can represent 

accurate and robust solutions to the well-known problem of trust in “black-box models”, 

which limited their diffusion within real settings so far. 
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2 Cover Essay  

 

2.1  Motivation: Localized and Widespread Degeneration 

The human brain is an incredibly complex network which boasts a highly intricate and 

dense neuronal architecture that is considered one of the most sophisticated systems in 

nature [1]. Comprising billions of neurons linked by fibers and synapses, it is organized 

across multiple spatial scales and functionally interacts over multiple temporal scales [2]. 

In this huge scenario of neurosciences, brain imaging is yielding a wealth of information 

relevant to the structure and function of the brain, though limited to the macroscale. At a 

such level, different brain regions, typically referring to patches of GM that are spatially 

adjacent and functionally coherent, can be thought of as connected through fiber bundles 

that reflect the anatomical structure or through simultaneous functional activations during 

rest or while performing a task.  

Moreover, the segregation/integration paradigm plays an important role. It is indeed well-

known that specific brain areas and circuits are specialized for some functions 

(segregation) such as motor, language, somatosensory, speech etc. and their cooperation is 

essential for the joint processing of information from diverse sources allowing complex 

cognitive functions (integration) [44]. Different cognitive processes set different demands 

on locally segregated and globally integrated brain activity. However, it remains an open 

question how the brain configures its functional organization to balance the demands on 

network segregation and integration to best serve cognition, as well as the connection to 

the structural mapping. 

Therefore, the analysis of the brain organization at different levels can be of great interest 

to both improve the understanding of its functioning in health and investigate possible 

changes in disease. In addition, a possible multi-level analysis can be helpful in the 
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investigation of the relations between focused decifit and global abnormalities. Different 

brain and mental disorders such as stroke, AD, SZ and many other pathologies, indeed, 

often present with both localized and widespread degeneration, heavily affecting the 

functioning of specific anatomical areas or functional circuits, but also leading to global 

changes. The stroke is a prime example, since it manifests as significant damage to specific 

areas of the brain tissue, but also results in a strong impact on the entire nervous system. 

However, in many other cases such as SZ, it remains unclear whether specific disruptions 

in frontal lobe or in the DMN, found in different studies [36], [45], [46], exert widespread 

effects throughout the brain, or a whole brain dysfunction affects certain regions more 

[47]. For these reasons, it is of great interest to investigate the correlates between the 

changes at the different levels, which are not fully explained yet, in the perspective for 

example of tailoring rehabilitative treatments. 

The diverse affection of the pathological conditions results in significant changes of the 

brain connectivity, which is known to play a crucial role in various cognitive and 

behavioral functions. In general, brain connectivity or connectomics refers to the complex 

network of connections between units of the brain which determine how it elaborates 

information and functions. As all disciplines commonly referred to as “-omics”, 

connectomics is characterized by the integration of large amounts of data to map a 

complex system, which can be formalized using graph theory. Graph theory is a powerful 

mathematical approach which was effectively applied in many scientific fields for 

understanding and modeling structures characterized by a specific architecture and 

topology. A graph (network) is a mathematical representation of a system composed of 

vertices (nodes) and edges (links), describing any kind of relationship between pairs of 

vertices. In the case of human connectome, the brain can be modeled as a network on the 

different scales with the goal of mapping its structure to function and behavior. 

Connectomics reconfigures the study of brain structure and function by outlining the entire 

nervous system in terms of neural units and their connections, but also in the macro scale 

perspective we are addressing. Indeed, the concepts represented by nodes and edges of a 

brain network can vary depending on the technique or imaging modality used to extract 

connectivity data. In the context of this PhD project, macro-scale SC from diffusion 

Magnetic Resonance Imaging (dMRI) and FC from fMRI were considered.  
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In this representation of the brain at a macroscopic level, the nodes typically represent GM 

parcels defined by well-known atlases [11], [13], [16], [48]. These atlases segment the 

brain into sets of regions based on anatomical or functional criteria. The edges, 

representing the relationship between nodes, can also depict either SC or FC. The former 

refers to the anatomical associations given by WM pathways between brain regions, while 

the latter represents the temporal correlations between the signals produced by pairs of 

brain regions. These measures can be quantified using various indices depending on the 

imaging modality employed. For example, the number of streamlines from deterministic 

WM tractography can be used as weights in an dMRI-derived structural network, while 

correlation between BOLD time series can be used to define edges of fMRI-derived 

functional network. Networks can be represented as n-by-n association matrixes where n is 

the number of nodes of the network, and each element (eij) represents the link connecting 

the nodes i and j.  

The quantitative examination of brain connectivity patterns can provide insight on both 

healthy and pathological states for figuring out how the brain works and processes 

information. Typical graph-based metrics can be extracted from human connectomes 

highlighting segregation and integration dysfunctions and abnormalities. Analyzing the 

changes in the organization and architecture of the networks in health and disease can 

highlight brain connectivity biomarkers providing unvaluable insights on the underlying 

mechanisms of the pathologies. For example, important abnormalities have already been 

found in a number of studies revealing changes of topological properties of different brain 

disorders, such as stroke [8], schizophrenia [9], Alzheimer’s disease [6], mild cognitive 

impairment [5], Parkinson’s disease [4], epilepsy [10] and autism [3]. These findings may 

represent an important asset to support correct diagnoses and helping to develop effective 

treatments. However, studying brain connectivity can be challenging due to the inherent 

uncertainty and complexity of the data. 

Indeed, despite the large evidence produced in the last years, gold-standard methodologies 

to process the data, standardized procedures to extract correct connectivity measures, edge 

weighting and, thus, formalize the brain as a graph, are still lacking. In fact, inherent 

sources of error persist in producing inaccurate or missing connections. For example, the 

deterministic approach of streamline tracking from DTI, which allows to produce SC 

measures and data, have still limitations. dMRI does not account for either systematic or 
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stochastic errors in predicting fiber orientation. Systematic errors arise from complex fiber 

geometries such as crossing, twisting, bending and kissing fibers, which cannot be 

adequately captured using a tensor model and the principal eigenvector orientation. 

Additionally, the technique of dMRI is inherently noisy, and susceptibility gradients, head 

motion, and eddy currents can lead to artifacts. Also, FC analysis represents a powerful 

tool for understanding brain organization, but it is subject to uncertainty due to the 

limitations of fMRI techniques and the dynamic nature of brain activity. The Pearson 

correlation coefficient, a commonly used metric for FC, can change over time [49]–[51], 

and this variability must be taken into account. Furthermore, FC is affected by factors such 

as low signal-to-noise ratio, non-neural noise and hardware instability, and there are still 

controversies related to the definition and interpretation of the results. Hence, both SC and 

FC studies can be often biased by a huge number of factors, leading to the false 

presence/absence of edges and inaccurate weights  thus resulting in connectivity data 

affected by uncertainty. In this context, changes and abnormalities which can be found in 

disease by analyzing the topological measures of the networks must be considered 

cautiously and in relation to their degree of robustness. The term robustness in network 

theory refers to the ability to withstand perturbations and failures. Hereafter, it will be 

referred to the withstanding of the connectivity networks results regardless possible 

absence/presence of edges or issues in edge-weighting due to biasing factors such as those 

ones related to the processing pipelines or the limited amount of data. More robust 

detection of abnormalities leads to more reliable results, which can be more widely usable. 

Furthermore, the resulting data are complex networks composed of hundreds of nodes and 

thousands of edges which are difficult to be interpreted. The general concept of 

interpretability refers to the possibility of determining the salience of network components. 

Hereafter, this term will be used to describe the objective of establishing a relationship 

between a condition (such as a pathology) and its impact on the connectivity data, or vice 

versa, to improve their understanding. In fact, despite the ability of entire brain 

connectivity matrixes to exhaustively and quantitatively depict the human connectome, this 

representation does not always provide a clear and intuitive visualization and investigation 

of the connectivity pattern. The matrixes are often too large to be easily analyzed, which 

can hide important information. The interpretation of brain connectivity is particularly 

important for exploratory analyses, with the goal of identifying distinctive patterns that 
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may differentiate pathological conditions from physiological ones, identify circuit or sub-

network of interest, or to evaluate changes following a pharmacological treatment or 

rehabilitation. As a consequence, together with the difficulty of analyzing data and their 

representation, extracted brain connectivity biomarkers can also be tricky to be interpreted. 

Also, latest methods for classification from DL approaches such as CNN or Graph Neural 

Networks (GNN) [52], [53], and their underlying processes, were only partiallyinterpreted. 

This implies that, although these complex methods allow for correct classification and 

recognition of the pathologies, the understanding of the reasons behind these choices is 

often tough. This interpretability issue strongly limited their trust within clinical settings. 

Recently, novel methods were developed with the objective of enhancing our 

understanding of the representation and significance of model features, as well as their 

contribution to the performance of the model. This concept is the so-called explainability, 

which allows to investigate the “explanations” behind the choice of the DL models and 

therefore to compare them to the domain knowledge with the final aim of having more 

reliable and accepted tools. 

In light of these challenges, there is a need for methods that can accurately assess the 

uncertainty and interpretability of brain connectivity biomarkers. These aspects limited 

their diffusion within real settings and usability in clinical contexts. Such methods can help 

to better understand the underlying mechanisms of the disorders and ultimately lead to the 

development of more effective treatments. In the context of pathologies sharing the 

characteristics of presenting both focalized and widespread degeneration, the thesis 

addresses the open issues of uncertainty and interpretation through: I) the development of a 

novel tool for visualizing and studying brain connectivity that was validated on emorrhagic 

stroke patient cases, II) the investigation of the robustness of connectivity indexes together 

with a multi-level analysis in schizophrenic patients and III) the use of DL and 

explainability techniques in the context of AD classification task.  
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2.2 Background: Brain Networks from dMRI and fMRI 

MRI is a non-invasive, safe and widely used imaging technique that uses a magnetic field 

and radio waves to produce detailed images of the brain. One of the main advantages of 

MRI is its high-resolution and high-contrast capabilities, which allows for a clear and 

detailed view of the brain. This high spatial resolution allows for accurate diagnosis and 

monitoring of a wide range of medical conditions. It has several other advantages such as 

multi-planar capability and ability to provide rich information about both structural and 

functional information of the human brain. 

Structural MRI is used to create images of the brain's anatomy, while fMRI is used to 

create images that show how the brain's tissues and organs are functioning. On one hand, 

MRI is an important diagnostic tool in medical imaging as it can provide detailed images 

of internal organs, bones, and soft tissues without the use of ionizing radiation. On the 

other hand, fMRI provides images of brain activity through the measurement of changes in 

blood flow and oxygenation in response to neural activity, allowing to study the brain in 

action. Both techniques can be employed to extract valuable data in the study of the 

interactions between the different brain regions, which can be structurally connected or 

functionally activated/deactivated.  

Hence, the objective of this chapter is to provide an overview of the most important 

methods and approaches employed to extract, analyze and interpret connectivity data from 

both structural and functional MRI, far from being exhaustive on the research topic of 

MRI. More specifically, the Section 2.2.1 is focused on the imaging-based parcellation of 

the human brain and the most widespread atlases, which were employed. Section 2.2.2 

discusses methods for the extraction of macroscale connectivity, including both SC and FC 

measures for edge-weighting. Section 2.2.3 discusses the limitations of macroscale 

connectivity. Section 2.2.4 covers the methods for the analysis of complex networks, 

including graph theory-based measures for the extraction of topological properties of the 

networks and graph models. Section 2.2.5 discusses the research field of connectomics, 

which put together the MRI methodologies and graph theory to define and study the human 

connectome with the final aim of mapping structure and function of the brain in health and 

disease. 

 



46 
 

2.2.1 Imaging-Based Parcellation of the Human Brain 
 

The development of dMRI and fMRI techniques over the past five decades led to a 

significant advancement in the field of human brain mapping, which is referred as the 

"golden age" of brain mapping. In order to study how different regions of the brain interact 

and work together, it is necessary to subdivide the brain into a set of distinct regions - i.e., 

parcellation of the brain. Therefore, different brain parcellation atlases representing 

reference maps based on an average of multiple individuals' brain scans were established.  

It is worth noting that the first fundamental contributions can be traced back to the early 

20th century, as it played a crucial role in the comprehension of the structural and 

functional subdivisions of the brain, specifically in the cerebral cortex. The foundational 

knowledge and achievements accomplished during this time laid the foundation for current 

advancements in brain mapping [54]. The German physician Korbinian Brodmann, who 

made substantial contribution to the field of neuroscience, was in the vanguard of that 

pioneering effort. In his seminal work [55], Brodmann proposed a system for subdividing 

the cerebral cortex into distinct regions, which were identified and designated by numerical 

labels, based on the characteristics of their cellular structure and laminar organization. To 

this day, Brodmann's system of regional designation continues to be widely utilized in the 

field of neurology.  

Parallel to Broadmann's work, other brain mappers produced a number of early maps of the 

parcellated cerebral cortex based on either cytoarchitectonics or myeloarchitectonics 

utilizing postmortem, hand-drawn images [56]. This process of cortical parcellation 

pioneered by Brodmann and the other early brain mappers a century ago continues until the 

present time. In the pre-tomographic imaging era, progress in brain atlas development was 

made in several key areas. Examples were: the shift from a few maps of the brain to more 

clinically applicable brain atlases, including the whole brain and specific parts such as the 

cerebellum and brainstem, the use of multiple specimens to account for anatomic 

variability, and the integration of structure and function [57].  

The development of computerized electronic brain atlases was a natural progression in 

brain atlasing, as it aims to overcome limitations of static contents and difficulty in 

mapping atlas content to an individual brain scan. These efforts were directed to several 

areas, including the direct digitalization of existing print atlases, their extension into 3D, 



47 
 

the creation of improved atlases through postprocessing, enhancements, and extensions, 

and the development of new electronic atlases.  

Recent advancements in imaging, brain mapping, and computing led to the development of 

new human electronic brain atlases. Criteria such as parcellation, modality, plurality, 

quality, abnormality, lifespan, extendibility, ethnicity, spatial and temporal scales, 

integration, and techniques of creation can be used to identify and classify the various 

directions in the evolution of these atlases. 

Nowadays, among all the brain connectivity parcellation atlases, some of the most widely 

used are the Desikan-Killiany atlas, the Destrieux atlas, the AAL atlas, and the HOA atlas 

[11], [13], [16]. These atlases are commonly used in neuroimaging research, and also 

employed in this PhD thesis, as well as in clinical applications such as diagnostics and 

treatment planning. More in general, based on different criteria and methods, these 

parcellations allow to map and compare brain structure and function across individuals, 

groups, and conditions. The Desikan-Killiany atlas and the Destrieux atlas, for example, 

are both based on the cytoarchitectonic features of the cerebral cortex, which are the 

histological characteristics of the different layers and cell types of the brain. The AAL atlas 

is based on the functional properties of 90 brain regions, as inferred from meta-analyses of 

neuroimaging data on different cognitive and behavioral tasks. The HOA atlas is based on 

the structural connectivity of the brain regions, as inferred from DTI data. It provides a 

high-resolution parcellation of the cerebral cortex and subcortical structures. The HOA 

atlas is shown in the Figure 8. 

 

 

Figure 8: Sagittal, coronal and axial views of the Harvard-Oxford atlas. 
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Independently from the use of specific brain parcellations and the related recent 

innovations in brain parcellation, there remains the potential for different granularities by 

relating brain regions to anatomical or functional circuits. For example, specific parcels of 

the atlas can be grouped by large anatomical systems such as the emispheres or the distinct 

lobes of the brain. Likewise, functional networks, like the Resting-State Networks (RSNs) 

can be identified and linked to specific parcels of the atlas (see the next Section 2.2.2.2). 

This division allows for a more comprehensive understanding of the brain's organization, 

putting together structure and function, and facilitating the identification and study of 

specific circuits within the brain. 

 

2.2.2 Methods for the Extraction of Macroscale Connectivity 
 

Once parcels are obtained, relations between them can be created. Different methods and 

approaches can be used to establish the connections, each with their own advantages and 

limitations, representing macroscale structural or functional characteristics. Given the 

breadth of this area of research and the aim of the work of examining the uncertainty of the 

measurement, attention will be given to the specific approaches related to the scope of this 

thesis.  

 

2.2.2.1 Methods for the Extraction of Structural Connectivity 

 

Primary method for studying macroscale SC of the brain is dMRI. Through this approach, 

the diffusion of water molecules in biological tissues is used to provide information about 

the microstructure of the tissue. The underlying principle is that the diffusion of water 

molecules in biological tissue is restricted by the presence of cell membranes, other 

microstructural features, and the geometry of the tissue. It is thus possible to obtain unique 

information about the microstructure of biological tissue that is not available from other 

imaging modalities.  

In this context, Diffusion Weighted Imaging (DWI) is a technique that measures the 

apparent diffusion coefficient (ADC) of water molecules in tissue, which is a measure of 

the degree of diffusion restriction. By measuring the ADC, DWI can detect changes in the 
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microstructure of tissue, such as changes in cell density, the presence of fibrous structures, 

or the presence of a tumor. DTI is a technique based on DWI that uses multiple diffusion-

weighted images acquired at different gradient directions to estimate the diffusion tensor, 

which characterizes the directionality and anisotropy of the diffusion. The diffusion tensor 

is a 3x3 matrix that describes the diffusion in the three spatial directions and can be 

visualized as an ellipsoid (diffusion ellipsoid), which represents the shape and orientation 

of the diffusion. Processing different parameters of the diffusion ellipsoid in each voxel, 

such as direction of greatest diffusivity, it is then possible to reconstruct streamlines, which 

estimate the trajectories of WM fibers in the brain. This post-processing technique is called 

fiber tractography [58]. 

 

2.2.2.1.1 DTI-Derived Indices for Edge-Weighting 

 

The macroscale structural connections can be thus determined by different DTI-derived 

indices. Connections mirrors the anatomical structure, depicting WM pathways (or fiber 

bundles), or related characteristics. Once the DTI tensor D has been fully characterized, it 

is possible to calculate quantities that provide a description of the diffusion process for 

each individual voxel under consideration. The tensor D can be diagonalized into its three 

eigenvectors, v1, v2, and v3, and corresponding eigenvalues, λ1, λ2, and λ3, where λ1 is the 

largest eigenvalue and λ3 is the smallest. At this point, D can be represented by an ellipsoid 

with axes of length λ1, λ2, and λ3. This ellipsoid can resemble a sphere if all three 

eigenvalues are equal, which indicates isotropic diffusion. Conversely, in WM, the 

presence in most voxels of fibers with a common direction renders causeses anisotropic 

diffusion. This is revealed by an elongated shape of the ellipsoid with one eigenvalue 

significantly larger than the others. Considering all the voxels, a complete fiber 

tractography map can be obtained as a set of lines, also known as streamlines, that 

represent the fibers in the brain. An illustration of this concept can be found in Figure 9. 
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Figure 9: From tensor to tractography [59]. Examples of different levels of anisotropy resulting in a diverse shape 
of the diffusion ellipsoid, resulting DTI ellipsoids from axial slice of the brain, zoomed in one area, and the 
resulting tractography visualization are shown.   

There are several DTI-derived metrics that are commonly used, including and number of 

reconstructed fibers (NF), mean diffusivity (MD), fractional anisotropy (FA), volume ratio 

(VR), radial diffusivity (RD), axial diffusivity (AxD).  

NF is a simple metric that represents the number of reconstructed streamlines connecting 

two parcelled brain areas. This purely quantitative criterion can be combined with several 

qualitative indexes referred to the voxels crossed by the streamlines. MD is a measure of 

the movement of water molecules (i.e., the ADC) averaged in all directions. FA is a 

measure of the degree of anisotropy in the diffusion of water molecules within a voxel, 

ranging between 0 and 1, with higher values indicating greater anisotropy and therefore 

more ordered WM structure. VR is a metric that measures the ratio of the volume of the 

voxel to the volume of the ellipsoid that has the same eigenvalues and eigenvectors as the 

diffusion tensor of the voxel. RD is a measure of the diffusivity of water molecules 

perpendicular to the main eigenvector. AD is a measure of the diffusivity of water 

molecules parallel to the main axis of the diffusion tensor. The Table 4 summarizes these 

metrics and their formalization. Overall, the major qualitative index in SC is the value of 

FA averaged over the NF connecting two areas. 
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DTI-metrics Acronym  Formula 

Mean diffusivity MD 𝜆𝜆1 + 𝜆𝜆2 + 𝜆𝜆3
3

 

Fractional anisotropy FA 
 �

1
2

 
�(𝜆𝜆1 − 𝜆𝜆2)2 + (𝜆𝜆2 − 𝜆𝜆3)2 + (𝜆𝜆3 −  𝜆𝜆1)2

�𝜆𝜆12 +  𝜆𝜆22 + 𝜆𝜆32
 

Volume ratio VR 𝜆𝜆1𝜆𝜆2𝜆𝜆3

�𝜆𝜆1 + 𝜆𝜆2 + 𝜆𝜆3
3 �

3 

Axial diffusivity AxD 𝜆𝜆1 

Radial diffusivity RD 𝜆𝜆2 + 𝜆𝜆3
2

 

Table 4: Most widespread DTI metrics, with acronyms and formulation. 

2.2.2.1.2 Beyond the Tensor Model 

 

The tensor model, while simple in nature, has the limitation of not being able to identify 

multiple fiber populations present within a single voxel. Specifically, DTI models the 

diffusion of water molecules in the brain using a single tensor, which assumes a trivariate 

Gaussian distribution for the spatial displacements of these molecules. However, this 

model may not accurately capture the complex and heterogeneous structures found in the 

brain, such as the presence of multiple fibers crossing, diverging, or converging [28]. In 

these cases, a multicompartmental modeling approach may be more appropriate to 

accurately describe the diffusion of water molecules [60]. 

Various techniques were proposed to address the issue of fiber reconstruction in DTI [60], 

[61]. One of the most commonly used methods is High Angular Resolution Diffusion 

Imaging (HARDI), which utilizes a spherical sampling scheme and samples the diffusivity 

signal along a uniform set of (hundreds) directions on a sphere. This approach provides 

more information on complex diffusion processes than traditional DTI methods [60]. 

Among the different approaches for recovering fiber orientations using HARDI, one of the 

most efficient is based on spherical deconvolution [62]–[64]. This method models the 

HARDI signal as a convolution of the spatial orientation of fibers and a smoothing kernel, 

which describes the signal from a single fiber. The use of a deconvolution approach (such 
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as CSD) was shown to yield interesting results in terms of both high angular resolution and 

efficient computational time [63], [64].  

In the context of this thesis, DTI techniques and measures were used. Furthermore, HARDI 

data were compared to those from DTI to analyze the capabilities of the latter in 

comparison to the former, which provides a more reliable benchmark and better ability in 

fibers reconstruction. 

 

2.2.2.2 Methods for the Extraction of Functional Connectivity 

 

FC at the macroscale can be measured using fMRI. It is thus possible to study the activity 

of the brain regions, their communication and interactions, and it can be used to identify 

networks of brain regions that are functionally connected. fMRI is a widely used non-

invasive technique for investigating brain function by measuring changes in BOLD 

contrast. In general, functional imaging is based on the cerebrovascular response to local 

activation of brain areas. For this reason, it has the advantage of admitting non-invasive 

imaging as BOLD and provides a good spatial resolution. Conversely, severe limitations 

are found in time resolution since the slow hemodynamic response function which shows a 

time to peak of 4-5 seconds and a total duration of 10-12 seconds [65], [66].  

The BOLD contrast is based on two principles: i) the magnetic properties of hemoglobin 

vary depending on its level of oxygenation (oxyhemoglobin is diamagnetic, while 

deoxyhemoglobin is paramagnetic) [67]; ii) blood oxygenation levels in brain regions vary 

in response to neural activity. These principles allow for the indirect measurement of brain 

activity [68]. Specifically, the activation of a cortical area leads to an increase in the inflow 

of oxygenated blood that exceeds the metabolic demand of the area. Hence, the BOLD 

signal provides a T2*-weighted contrast which has quite low changes with functional 

activity, i.e., 4-5% of the total contrast. Also, functional dynamics is mixed with other 

physiological hemodynamics related to the heartbeat, respiration and Mayer waves. For 

this reason, several preprocessing steps are required. Limiting to the main ones: 1. Spatial 

smoothing with kernels of 4-8 millimeters; 2. Time-filtering reducing the physiological 

hemodynamic components [69].  

fMRI studies can be broadly divided into two approaches: task-induced and task-

independent protocols. On the one hand, in standard task-induced fMRI, an experimental 
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task is presented alternately with a control condition, and the BOLD signal during the 

experimental task is compared to the BOLD signal during the control condition. On the 

other hand, the study of ongoing brain activity is expressed by structured BOLD 

fluctuations when subjects are not performing any specific task. This is known as Resting 

State fMRI (RS-fMRI) and task-independent approach. In RS-fMRI studies, subjects are 

asked to rest quietly for several minutes while brain images are acquired. Since no external 

time reference, detection of significant activity relies only on the mutual dependence of 

ongoing activity in different areas. 

FC is a concept that describes the temporal dependency between neurophysiological events 

that occur in spatially distant brain regions, reflecting their level of communication [66]. In 

the context of functional neuroimaging, FC is typically assessed in RS-fMRI. The first 

study to use RS-fMRI for assessing FC was conducted by Biswal and colleagues [70], who 

observed high correlation between the fMRI BOLD time series of the left and right 

hemispheric regions of the primary motor network during rest, suggesting ongoing 

information processing. It was thus observed that, at rest, the brain is organized into 

networks, called RSNs, consistent across subjects and highly similar to networks of task-

induced activations and deactivations [71]. They are believed to belong to distinct 

networks serving different functions such as vision, language, etc, as abovementioned in 

the Section 2.2.1. The most studied RSNs are: the DMN, the sensory motor network, the 

right and the left lateral networks, the salience network, the ventral stream network, the 

task positive network, the primary, the medial and the lateral visual networks and the 

auditory network. 

The absence of a preconceived hypothesis regarding brain activation during the acquisition 

process in RS-fMRI makes the data analysis more difficult in comparison to task-based 

fMRI. Despite this challenge, various techniques have been developed for analyzing RS-

fMRI functional connectivity. Beyond that network analysis methods, also seed-based and 

model-free methods are active lines of research. 

Seed-based or voxel-based technique was the first method employed for FC analyses in 

RS-fMRI. In seed-based approaches, one or more regions of interest (ROIs) are selected a 

priori to evaluate the similarity of their average time course with every other area or single 

voxel in the brain. The outcome is a map of brain voxels significantly correlating with the 

chosen seed ROI.  
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Data-driven methods, such as principal component analysis and independent component 

analysis (ICA), were introduced as FC analysis methods to investigate general connectivity 

patterns across brain regions. These methods aim to discover the underlying structure of 

the data rather than impose a priori knowledge on the model, through a blind separation of 

meaningful sources.  

As regards the network analysis approach, the first step consists of identifying a set of 

functional nodes. They are often defined as spatial regions of interest obtained from brain 

atlases, as mentioned in the Section “Imaging-Based Parcellation of the Human Brain”, 

task-fMRI activation, or through data-driven clustering techniques such as hierarchical 

clustering or ICA. Once the nodes are defined, the connections or "edges" between them 

are estimated based on the correlation of their associated time series. More details about 

this approach, for both structural and functional cases, are reported in the Section 

“Analysis of Complex Networks”. 

 

2.2.2.2.1 fMRI-Derived Indices for Edge-Weighting 

 

Full correlation is a simple measure for estimating connections between nodes that is most 

typically computed as Pearson correlation between the BOLD time series. Being the most 

widespread technique, it was the method addressed in the specific thesis being discussed. 

However, this measure does not take into account possible influence of other regions, 

assumes linearity and does not imply causality or the direction of information flow.  

To address these limitations, other methods such as partial correlation, mutual information 

and Granger causality were proposed. Partial correlation can be used to estimate direct 

connections [72]. Partial correlation is a method that is used to control the effects of other 

regions in the brain, by removing the linear relationship between the seed region and each 

other. This allows for the identification of only those specifically correlated with the seed 

region, cancelling the indirect connections. Mutual information measures the amount of 

information that one brain region provides about another [72]. It is based on the probability 

of observing a certain pattern of activity in one region given a pattern of activity in another 

region and it can be used to identify non-linear relationships between regions. Granger 

causality is a method that is used to identify causal relationships between different regions 

in the brain [72]. This is done by analyzing the temporal dependencies between different 
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regions and determining whether one region's activity can be used to predict the activity of 

another region. If this is true, then it is considered to have a causal influence on that region. 

On the other hand, these methods can be computationally demanding, sensitive to certain 

choices (such as the control regions for partial correlation or the model order for Granger 

causality) and can make the interpretation of results more difficult. Hence, the great use of 

the Pearson correlation can be reconducted to its simplicity, providing information about 

the parallel activations of the regions at low computational cost and easy interpretation. It 

is essential to evaluate the advantages and disadvantages of Pearson correlation as it 

remains a crucial method for extracting valuable functional information, pending 

refinements of more complex methods. 

 

2.2.3 Limitations of Macroscale Connectivity 
 

Despite the utilization of various methodologies, numerous limitations remain in both the 

identification of nodes through brain parcellation atlases and the determination of 

connections through measures of SC and FC. Limitations persist regardless of the 

techniques and processing employed, due to the lack of established gold standard 

methodologies. 

On the one hand, the most widespread brain parcellations, although crucial for generating 

neurobiologically-significant brain atlases, may not fully capture the intrinsic organization 

of the brain or encompass the functional variability that is inherent in individual brains, 

due to factors such as maturation or injury [73]. Furthermore, these parcellations are 

typically generated on a single or small set of individuals, which can lead to bias and 

inaccurate representation of population variability, resulting in ill-defined nodes in the 

constructed network. Several connectivity-driven parcellation methods were proposed to 

overcome the limitations of parcellation approaches. These methods include hierarchical 

clustering, k-means, Gaussian mixture models, spectral graph theory, edge detection, 

region growing, ICA, Bayesian modelling [73]. However, the major challenge is still the 

evaluation of these methods because of the absence of a universally accepted parcellation 

as a reference [74]. 

On the other hand, brain connections are also noisy.  
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First, structural data collected through DTI is inherently noisy and sensitive to motion. 

Even small movements during the scan, such as those caused by respiration, blood flow, 

eye movement, or cardiac pulsation, can greatly corrupt the data. This is the main reason 

why single-shot Echo Planar Imaging sequences, characterized by a high temporal 

resolution are used. However, these sequences are also susceptible to other forms of 

artifacts, such as eddy currents. Eddy currents are distortions of the images caused by 

changes in the magnetic field, which can result in misalignment of structures through 

shears, stretches, and translations. This can negatively impact the orientation of the 

eigenvectors and the accuracy of DTI tractography results. 

Second, DTI fiber tracking algorithms used to trace the pathways of WM fibers in the brain 

have limitations. These algorithms can be divided into two main categories: deterministic 

and probabilistic. Deterministic algorithms are based on the assumption that there is only 

one fiber orientation per voxel and the most likely fiber orientation are chosen based on the 

data. Utilizing a single estimation of fiber orientation at each point in the imaging space, 

primary eigenvector from voxel to voxel is followed. These algorithms typically begin 

with user-defined seed voxels and explore the angular relationships between eigenvectors 

in a given voxel and its neighboring voxels, forming connections based on the smallest 

angles. Deterministic tractography employs stopping criteria to prevent streamline 

propagation through regions of high uncertainty and reduce the number of false positives. 

These criteria, which affects the results, may include an angular threshold between 

eigenvector directions and a threshold for FA, which serves to ensure that streamlines 

continue in regions where the direction of maximal diffusion is well defined [75]. 

Furthermore, deterministic approach does not take into account either systematic or 

stochastic errors in predicting the orientation of fibers. Systematic errors are a result of 

complex fiber geometries with varying orientations, which cannot be adequately captured 

by using the tensor model and the principal eigenvector orientation, as introduced in the 

Section 2.2.2.1.2. Probabilistic algorithms, on the other hand, take into account the 

uncertainty in fiber orientations. They propagate a large number of streamlines, each with 

its own direction of propagation, and are based on a collection of fiber orientations in 

which there is a quantifiable trust. Probabilistic tractography aims to integrate uncertainty 

into the tracking algorithm by generating a set of multiple pathways or streamlines that 

pass through the reached voxel. This allows for mapping of fiber paths in areas where 
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deterministic tractography methods would have to stop. These methods can be more robust 

to noise and motion artifacts, but they also require more computational resources and are 

more complex to implement and interpret. Deterministic and probabilistic approaches have 

distinct advantages and drawbacks and are typically employed for different purposes. By 

following the paths of WM bundles, deterministic algorithms have the advantage of 

providing a sharp evaluation of the streamline number. This is particularly useful when the 

focus is on the shape or properties of individual tracts. Conversely, they are limited by the 

adopted diffusion model, which, in the case of DTI, permits a single direction per voxel.  

Deterministic methods also have the benefit of computational speed. Stochastic methods, 

conversely, explore probabilistically the extension of the streamline based directly on 

HARDI data, e.g., by Monte Carlo simulations. These methods are more versatile and 

allow to incorporate the noise inherent in DTI acquisitions into the modeling of water 

diffusion. However, the tendency of a fuzzy filling of WM volumes from a seed region 

makes more difficult the determination of the weight of connections [76], [77]. Clearly, 

studies about the impact of the two approaches on connection weights and in turn graph 

properties would be of high interest. In addition, it is also worth noting that the estimation 

uncertainty of fiber orientation is influenced by factors such as the signal-to-noise ratio in 

the data and the total number of measurements used in estimation. Finally, the outputs are 

directly dependent on the parameters of the dMRI experiment, and the accuracy can 

decrease with factors such as pathway length, shape and size of the reference region, and 

shape of the tract in question [29]. 

Third, functional measures extracted from fMRI approach also have limitations, arising 

from both the technique itself and the specific methods used for analysis. Increasing the 

spatial and temporal resolution of fMRI data is necessary to improve the localization of 

activations and to conduct a more detailed analysis of the BOLD signal. Indeed, in FC 

analysis, it is often assumed that the FC metrics, such as the Pearson correlation 

coefficient, remain constant over time. However, given the dynamic and condition-

dependent nature of brain activity, it has been shown that the FC metrics can vary over 

time [49]–[51]. This variability necessitates the consideration of dynamic FC analysis, 

which cannot be ignored as it can also vary within the same subject and even within the 

same session. In addition, it was demonstrated in dynamic FC studies [78] that different 

patterns of brain activity, reflecting functional interactions between the brain regions over 
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time, called states, are identified. A representation of dynamic FC extraction and states 

recognition is shown in Figure 10. 

 

 

Figure 10: Static and dynamic functional connectivity, which identify states characterized by communities of 
nodes and edges. The image is taken from a previous study by Patil and colleagues examining static and dynamic 
configuration of FC brain networks associated with creative cognition in young adults [78]. 

As such, the evaluation of static FC is subject to uncertainty, that must always be taken 

into account. Additionally, FC acquisitions are characterized by low signal-to-noise ratio 

and non-neural noise related to cardiac and respiratory processes, movement and hardware 

instability [79]. Furthermore, there are ongoing debates regarding issues such as the 

window length and other confounding factors [80]–[82]. Developing effective methods for 

identifying and removing artifacts while retaining as much neuronally-related signal as 

possible is crucial for accurate analysis. 

 

 

 



59 
 

2.2.4 Analysis of Complex Networks  
 

Nowadays, networks can be found everywhere. Social interactions and personal 

relationships, financial transactions, the spreading of rumors, or physical transport and 

travel, increasingly occur within networks that are evolving over time. All these networks 

are examples of complex systems, with highly structured connectivity patterns, multiscale 

organization, nonlinear dynamics, resilient responses to external challenges, and the 

capacity for self-organization that gives rise to collective or group phenomena. At its core, 

network theory is focused on the examination of complex systems in manifold applications 

that can be represented as networks, where nodes represent individual components of the 

system and edges represent the interactions between those components [1]. Complex 

networks then refer to networks that possess non-trivial characteristics such as high levels 

of interconnectedness, non-random structures, and dynamic behavior. These networks are 

characterized by a large number of nodes and edges, as well as by the presence of patterns 

and regularities that are not easily predictable from the properties of individual 

components. Modern developments in graph theory and complex systems delivered 

important insights into the structure and function of these diverse networks, as well as 

quantitative models that can both explain and predict network phenomena [2]. The 

objective is to comprehend the properties and behavior of these systems through the 

analysis of the properties and patterns that represent them. One of the fundamental 

concepts in network theory is the concept of network structure, which pertains to the 

patterns and organization of the nodes and edges that comprise a network. Another crucial 

concept is network dynamics, which pertains to the way networks evolve over time. 

Overall, network theory offers a robust framework for understanding the properties and 

behavior of complex systems. It enables to analyze the patterns and organization of the 

systems and make predictions about the dynamics of the systems. 
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2.2.4.1 Network Definition 

 

The adjacency matrix is the fundamental mathematical representation of the network. This 

matrix is utilized to create a graph-based representation of a network, in which each row 

and column corresponds to a node. When the number of nodes in a network is equal to n, 

the connectivity matrix is n2 in size. The diagonal elements of the matrix may be used to 

indicate the connectedness of each node with itself or to express a node's inherent feature. 

However, many graph theoretical metrics used to analyze brain networks neglect the 

matrix diagonal by forcing its values to zero. The element at the intersection of the i-th row 

and the j-th column stores information about the link between nodes i and j, otherwise 

known as the edge between the two nodes. Hence, the off-diagonal elements are strongly 

dependent on the method used for connection estimation. Edges can be differentiated based 

on weight and directionality. In the case of undirected edges, information flows in both 

directions, the upper and lower triangles are identical resulting in a symmetric matrix. 

Conversely, directed edges are restricted in their flow of information, leading to an 

asymmetric matrix. Unweighted or binary networks provide a simplification of the 

weighted case, in which edges can take either value of zero or one, depending on the 

presence of the link between two nodes. Whether the edge between two nodes is present, 

the nodes are said to be neighbors. Despite the widespread use of binary analysis in past 

studies and correspondingly developed networks metrics, binary graph models are 

considered far from an optimal strategy. Nonetheless, evaluating the binary topology of a 

connection matrix may frequently provide useful insights into network organization.  

 

2.2.4.2 Topological Properties  

 

Graph-based indexes are a powerful tool for analyzing the structure and organization of 

complex networks. These indexes can take on a variety of forms, including local, global, 

and intermediate. Local indexes, such as path length and clustering coefficient, focus on 

individual nodes within a network. Intermediate indexes, such as modularity and rich-club 

coefficient, analyze intermediate structures such as communities or families within a 

network. Global indexes, on the other hand, focus on the overall organization of the 

network, including integration and segregation properties such as global efficiency or 
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global clustering coefficient, and specific characteristics that can be linked to well-known 

graph models such as small-world and scale-free networks [1], [2]. 

Among all local graph-based metrics, the degree/strength represents the sum of 

edges/weights connected to the node. The clustering coefficient quantifies local edge 

density by counting the triangles average. A triangle occurs if a neighbor of the node is 

also a neighbor of another neighbor of the node. In the weighted case, the number of 

triangles is replaced with the geometric mean of its weights. The average shortest path 

length or characteristic path length expresses the average shortest paths between a node 

and all the others. The shortest path is a path with the minimum number of edges 

connecting the node i to node j. It can be expressed as the number of edges passing 

through, or, in the weighted case, as the sum of these edge weights. The efficiency of a 

node is defined as the inverse of the average shortest paths connecting all neighbors to it 

and it is a measure of the integration of a node in the network.   

Mesoscale analysis reveals how much the network presents a particular structure. 

Specifically, the modularity quantifies to what extent the intra-/inter-community link 

densities are anomalous in comparison to chance. Large values typically reveal significant 

community structures and fundamental sub-networks. Maximized coreness statistics is a 

measure of how much the network follows the core/periphery paradigm, which is a 

partition of the network into two groups, where the number and weight of the edges is 

maximized in the core and minimized within the periphery. 

All the local segregation and integration metrics can also be global, simply by averaging 

the values across all nodes (global degree, clustering coefficient etc.). Global efficiency is 

the average inverse of the characteristic path length (the average shortest path in the whole 

network), and it represents how efficiently the information travel through the network. The 

density is a measure of sparsity of the network. It is the ratio between the number of actual 

connections and the maximum number of possible connections. The global average degree 

is proportional to the density.  

An alternative approach to quantify the networks is to classify them based on their 

underlying structure, which can provide valuable insights into their spatial and topological 

organization. One method of classification is through the similarity to well-known 

simulated network models.  
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One of these models formalizes the concept of small-world phenomenon. It is a 

surprisingly universal macroscopic behavior in complex systems, first described for large 

social networks. Watts and Strogatz in [83] investigated how path length and clustering 

behaved in a basic generative model (henceforth the WS model). The WS model iteratively 

rewires a binary network of n nodes, each connected to the same number of nearest 

neighbors via edges of similar weight (simple lattice network). Next, a rewiring process is 

performed by randomly deleting an existing edge between nodes i and j, and subsequently 

replacing it with a new edge between node i and any node 𝑘𝑘≠𝑗𝑗. They discovered that as the 

probability of random rewiring increased incrementally from zero, the initial lattice is 

progressively organized, despite the random procedure. Sparsely rewired networks show 

both strong clustering (similar to a lattice) and short path length (like a random network). 

These algorithmically created graphs were called small-world networks. The small-world 

organization of the brain demonstrates that it is possible to combine apparently conflicting 

tendencies of functional integration and segregation within a single architecture. Another 

model of complex network is known as scale-free [84]. These networks possess a very 

broad and nonhomogeneous degree distribution, which results in the presence of nodes 

with far higher degrees. Scale-free networks are characterized by a degree distribution that 

follows a power law. The term "scale-free" refers to the fact that a power-law distribution 

does not have a characteristic scale, meaning that "zooming in" on any segment of the 

distribution has no effect on its shape. Power law degree distributions can be generated by 

a process known as preferential attachment, which means that new nodes preferentially 

connect to nodes that already have high degrees, resulting in the "rich nodes getting 

richer." This process results in the existence of a small number of highly connected nodes, 

also known as hubs, and many less connected nodes [1].  

The similarity to these graph models can highlight characteristics of graphs’ topology. For 

example, one way to quantify the small-worldness property is through the ratio of the 

clustering coefficient to the path length, after normalizing these metrics by comparing 

them to the values obtained for a random graph with the same number of nodes and edges. 

This characteristic highlights a structure in which most nodes are not neighbors of one 

another. Conversely, the neighbors of any given node are likely to be neighbors of each 

other, resulting in an easy access by most nodes to every other node with a small number 

of steps. Main graph-based indexes are summarized in the Table 5. 



63 
 

 

 

Table 5: Graph-based topological properties with graphical representation and formulation divided according to 
the level of analysis.  

2.2.5 Connectomics 
 

The term “connectomics” refers to the mapping of the human brain in terms of its neural 

units and connections [85]. The term comes from the definition of the recent “-omics” 

disciplines which share the characteristics of integrating big data for the mapping of 

complex systems. In several scientific fields, large amount of data can be comprehensively 

and flexibly analyzed through network theory and graph-based indexes. In this context, the 

study of the human connectome revolutionized the study of brain structure and function 

[86]. Moreover, beyond the connection between brain anatomy, activity and behavior, the 

brain can be modeled as a network on various scales [87]. Multi-scale and level data is 

possible to be extracted thanks to the significant advancements which have been made in 

the field of neuroimaging. A variety of techniques were developed to extract brain parcels 

and structural and functional connections within the brain, as introduced in the previous 

Section 2.2. From data, as all “-omics” disciplines, it is possible to use graph theory and its 

derived graph-based metrics to identify abnormalities. Several biomarkers for a wide range 

of neurological and psychiatric conditions were already found. These analyses provided 
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new insights into the underlying neural mechanisms of different conditions, opening new 

avenues for diagnosis and treatment. The easy ability to study brain connectivity in a non-

invasive way provided researchers and clinicians with valuable information about the 

brain's structural and functional organization which can potentially lead to the 

identification of new diagnostic biomarkers and targets for therapeutic intervention. 

 

2.2.5.1 Interest in Mapping the Human Connectome  

 

Advancements in imaging networks in the living human brain and improved computational 

power for data processing and storage have fueled unprecedented growth in the field. The 

connectome approach represents the culmination of various research areas coming 

together, which evolved over centuries. The widespread belief is that connectomics and 

network analysis holds the potential to advance our comprehension of the real working of 

the human brain and its associated pathologies [88]. 

This was strongly evidenced by recent initiations of some multicentre research initiatives, 

which reflected the global scientific community's dedication to this field. The Human 

Connectome Project (http://www.humanconnectome.org) for example was funded research 

from the National Institutes of Health with the goal of mapping the connections within the 

human brain in 1200 healthy individuals through advanced functional and structural 

imaging techniques. The Human Brain Project (http://www.humanbrainproject.eu), is 

another major research initiative backed by the European Commission for the purpose of 

simulating the connectivity of the human brain and its computational abilities at a neuronal 

level. The goal was also to establish a research infrastructure for decoding the human brain 

and developing information technology influenced by the brain [89]. The Brain Research 

through Advancing Innovative Neurotechnologies – BRAIN 

(http://www.braininitiative.org) Initiative also drove development in this field aiming to 

advance technology to catalyze neuroscience discovery [90]. 

These brain-related great initiatives propelled an unprecedented support to the whole 

neuroscience, cognitive sciences, neurology and bioengineering communities. Indeed, we 

witnessed in recent years a tremendous explosion of human atlas and connectivity brain 

projects with various goals, scopes, and sizes [91]. The Big Brain project for example 

aimed to achieve ultra-high resolution neuroimaging [92], the CONNECT project to 

http://www.humanconnectome.org/
http://www.humanbrainproject.eu/
http://www.braininitiative.org/
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combine macro- and micro-structural knowledge [93], the Brainnetome project to 

comprehend the brain and its related disorders and create a comprehensive brain network 

atlas [94] and others [95], [96]. Therefore, with the introduction of advanced acquisition 

techniques and the generation of vast amounts of data at ease, the concept, role, and 

understanding of a human brain atlas continue to evolve and expand. 

 

2.2.5.2 Human Brain Networks Definition 

 

In the framework of the human connectome, adjacency matrixes depicted in the previous 

Section 2.2.4 are brain connectivity matrixes. As said, the nodes and edges of a brain 

network may vary based on the method utilized to obtain the connectivity data. When 

constructing brain connectivity matrixes from MRI data, nodes represent GM parcels from 

well-established brain atlases based on either anatomical or functional criteria and the 

edges describe either SC or FC features (as said in the Section 2.2.2). SC and FC generally 

depict a non-causal and symmetric relationship between brain regions, resulting in a 

symmetrical connectivity matrix composed of n(n-1)/2 pairwise connections between n 

nodes. A schema representing the pipeline of brain connectivity network extraction is 

shown in the following Figure 11. 

 

Figure 11: Schema of the phases of processing for the definition of brain structural and functional network. 
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The range of weights observed and the way they should be interpreted is determined by the 

method used for connectivity estimation. It is worth noting that in the specific case of FC 

being obtained from Pearson’s correlation of BOLD signals it is possible to have negative 

edges. These inverse connectivity patterns were not often considered, being thresholded 

from the resulting matrixes [97], [98]. However, these anti-correlations were proposed to 

play a fundamental role in the pathological mechanisms underlying some neuropsychiatric 

disorders [98], [99]. In addition, the anticorrelations could indicate inhibition of one region 

over another, which is a possible physiological mehanism. For this reason, separate 

analysis of correlations and anti-correlations and many other more complex methods were 

proposed to analyze them [100]. 

 

2.2.5.3 Pre-Conditioning Methods and Limitations 

 

In the field of brain research, it has been widely acknowledged that traditional methods for 

both structural and functional edge weighting have limitations in accurately determining 

the strength of connections (as also reported in the Section 2.2.3). As a result, numerous 

studies disregarded connection strengths and instead focus on graph-theoretical analysis of 

binary connectomes. The goal is to capture the topology of connections, but not their 

quantification. However, this approach can result in weak connections being 

indistinguishable from strong connections [101]. On the one hand, using a binary graph 

model is an inappropriate approach for network analysis of tract tracing data [86]. The 

biological diversity of fiber connection strengths, spanning over six orders of magnitude in 

mammalian cortical networks, would be removed. On the other hand, in FC studies, the 

obtained weights of the connections reveal the nature of the brain regions activations, 

mirroring positive and negative correlations. As a result, the application of a threshold to 

maintain all edges above it leads to the loss of the relevant information of anticorrelations 

that, for example, was proved to be especially related to automatic inhibitory mechanisms 

[31], [32]. Only recently the trend to suppress them was reversed with the result of more 

and more studies aiming to separately analyze positive and negative networks or extracting 

ad hoc topological measures mirroring segregation and integration of activations and 

deactivations [100]. Furthermore, different values of connection weights drive different 

fundamental information to the whole topology [102]. 
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Thresholding Procedures 

Advancements in the connectivity definition methodologies facilitated the calculation of 

dense weighted connectomes also for SC, providing a more reliable measurement of 

connection strengths [101], [102]. This progress allowed for the direct use of weight 

information in graph theoretical analysis. However, the probabilistic nature of the tracking 

process and, more in general, the measurement noise in SC, as well as the considered 

errors in fMRI-derived indexes also result in an undetermined number of false edges [79], 

[81], [103]. As a result, network thresholding techniques are frequently used to remove 

suspected spurious connections and emphasize topological features. However, it is yet to 

be precisely determined how different thresholding methods impact basic network features. 

Nevertheless, different thresholding strategies were proposed in various studies for 

different aims. 

Among all, absolute thresholding result to be the one of the most common in connectivity 

studies [104]. It uniformly applies a single threshold across the network to retain only 

connections with weights higher than the predefined threshold. However, this approach can 

result in different numbers of network edges across datasets and varied levels of network 

density. Many graph metrics have been shown to be influenced by network density [105], 

potentially leading to statistical differences in network metrics between patient and control 

populations. These differences should be attributed to the varying number of links in the 

network rather than differences in network topology related to the disease. As a result, 

absolute thresholding is considered less suitable for case-control investigations [97]. 

To address the issue of varying numbers of connections between groups, a density-based 

thresholding approach was proposed [97], [105]. This strategy aims to maintain a constant 

number of connections across all individuals and reduce the impact of network density on 

graph metric computation and comparison between groups. In this thresholding method, a 

specified percentage of the strongest connections in each individual network is selected 

and retained. This strategy is one of the most widespread and, for this reason, it was 

implemented in the software tool developed in article I. It is a procedure especially used in 

FC analysis with the goal of producing more sparse matrixes, which are generally complete 

because of correlation result different from zero. In this case, the potential differences in 

graph metrics between groups are believed to be a result of differences in the topological 
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organization of edges, rather than differences in the number of edges. However, the 

inclusion of lower edges to reach the preset density can also imply the potential inclusion 

of less reliable connections. As such, more random connections result in the creation of 

shortcuts and for example the decrease of the overall shortest path length. This results in an 

improvement in global efficiency, a reduction in clustering, and a topology that is closer to 

a random network configuration.  

To summarize, it is acknowledged that the topological properties of a network are 

contingent on the number of edges, thereby necessitating the use of density-based 

thresholding. Conversely, variations in connection density between individuals or groups 

may provide valuable information, indicating that any effect these differences have on 

network topology should be regarded as real and not eliminated through density 

thresholding [106]. In general, absolute and density-based thresholds can introduce a 

confound on graph-based indexes in the context of a group study. On one hand, different 

levels of sparsity can be obtained by applying the same threshold to all matrixes. On the 

other hand, matrixes can be matched according to sparsity, hence selecting a distinct 

threshold value. However, in many cases, the weight distribution of one of the two groups 

can be reduced, strongly affecting weighted indexes results [107], [108]. Therefore, it is 

crucial to exercise caution when applying these thresholding methods. 

Another technique commonly used is proportional thresholding in which connections are 

retained based on their prevalence across a predefined proportion of subjects [7], [109]. 

The connections that meet or exceed the group threshold in terms of detection count are 

then kept. On the one hand, low group threshold allows for the inclusion of connections 

that are challenging to reconstruct and helps prevent false negatives. On the other hand, a 

high group threshold demands the presence of a connection in a significant number of 

participants, thereby enhancing the accuracy of reported connections and reducing the 

occurrence of false positives. For example, in the study [110], it was demonstrated that the 

threshold value has a significant effect on commonly used network metrics, emphasizing 

the importance of methodological understanding in the selection of this parameter. 

However, the selection of specific group threshold is often based on empirical evidence, 

but it can introduce bias and affect the comparability of results between different studies. 

Another approach known as consistency thresholding was proposed [111], [112]. This 

technique involves retaining connections with consistent weight values across individuals, 
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with the assumption that connections exhibiting excessive inter-subject variability are 

likely to be erroneous. The ultimate goal of this technique is to construct a group-

representative network, which serves as a single representation of the connection data 

obtained from multiple subjects. A mixed proportional and consistency thresholding 

method was used in article I to obtain a HC template matrix to be compared with two case 

studies. The method allowed the thresholding according to the original HC population 

density and the creation of an HC group mean matrix. 

Recently, new more advanced methods such as percolation analysis or spanning tree 

approaches were proposed [47], [101], [113], [114]. The former for example was widely 

employed in a number of studies to find a potential optimal deletion of the spurious edges 

maintaining brain network structure and connectedness [114]–[116]. In [116], the 

percolation analysis was performed with respect to community analysis. The size of the 

giant component of the network upon weakest edges deletion to find the optimal 

sparsification threshold preserving structure and connectedness while removing potentially 

spurious correlations was measured. Many novel thresholding procedures were proposed 

[117], [118], but they must be cautiously chosen according to the specific case and 

application. 

2.3 State of the Art and Open Issues in Brain 

Connectivity 

The proposed research focused on developing methods for improving the interpretability 

and the uncertainty of brain connectivity biomarkers in healthy and pathological 

populations with the final aim of contributing to an improved usability. The lack of 

methods designed for this purpose and the need for more robust and generalizable 

approaches are evaluated.  

In Section 2.3.1, the interpretation of the brain connectivity is assessed considering 

previous tools and methods for the mapping and the investigation of brain networks and 

sub-networks of interest. In Section 2.3.2, possible approaches to the problem of the 

uncertainty assessment and robustness control are analyzed in both brain connectivity 

applications and others, addressing the limitations of the most widespread connectivity 
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measures. AI methodologies applied on brain data are then considered for the classification 

task of AD in Section 2.3.3. XAI approaches are then discussed to assess interpretability of 

the models for a better comprehension of the DL underlying processes and the possible 

biomarkers obtained from peculiar sub-networks or regions. The applicative background 

integrating localized disruptions and widespread degeneration, such as stroke and 

schizophrenia, is examined in Section 2.3.4. The field of connectivity is vast, and as such, 

the "Open Issues" outlined in this paragraph are not an exhaustive list of all possible 

research lines. Nonetheless, they encompass the problems addressed in the present thesis 

work, which will be summarized in Section 2.4. 

 

2.3.1 Mapping, Visualization and Analysis of Brain Networks and 

Sub-Networks 
 

The representation of the human connectome through brain connectivity matrixes is 

extensive and quantifiable, but it does not always provide a clear and intuitive visualization 

of the connectivity pattern. The large size of the brain connectivity matrixes makes it 

difficult to comprehend the information, leading to concealed information. As a result, 

methodologies for mapping and visualization of connectivity data are important to enhance 

the interpretation of connectivity measures. In particular, they are essential for exploratory 

analyses with the aim of identifying characteristic patterns that distinguish pathological 

conditions from physiological ones, to evaluate changes after pharmacological treatment or 

rehabilitation, or also to make a quality check of the processing pipelines. 

The connectogram offers a solution to this issue by providing a graphical representation 

that bridges the gap between quantitative connectivity analyses and intuitive visualization. 

Irimia and colleagues [119] introduced connectograms as circular graphs in which nodes of 

a network are represented along the perimeter of the circle and edges of the network are 

depicted as arcs connecting pairs of nodes. The use of connectograms in brain connectivity 

mapping was inspired by the usage of similar graphical representations used in genomics. 

After this work, several connectivity studies confirmed the possibilities offered by the 

connectogram representation [7], [120], [121]. A notable example was given by the work 

provided by Van Horn and colleagues [122], which tackled one of the most popular and 
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studied clinical neuroanatomy case of Phineas P. Gage. Gage was a foreman in the field of 

railway construction who gained notoriety for surviving a remarkably traumatic accident in 

which a massive iron rod penetrated his skull, resulting in extensive damage to his left 

frontal lobe. Despite his injury, Gage lived for an additional 12 years, during which his 

personality and behavior underwent significant changes. As a consequence, the case was 

widely discussed for the prefrontal area involvement and function and its relation to 

personality and behaviour. In the work by Van Horn and colleagues, authors attempted to 

reconstruct the trajectory of the rod to determine the extent of the injury's impact and 

represent it on the connectogram, as shown in Figure 12. 

 

 

Figure 12: Reconstruction of Phineas Gage's damage from the work made by Van Horn and colleagues [122]. The 
skull on display at the Warren Anatomical Museum at Harvard Medical School, computed tomography image 
volumes, rendering and view of the interior of the skull and the connectogram are shown. 

The production of connectograms can be done using the powerful software package Circos 

[123], which is designed for visualizing data, exploring relationships between objects and 

creating publication-quality illustrations. Circos is highly flexible and can be utilized in 

various fields, but it lacks a user-friendly interface and must be run through command-

lines, which may pose a challenge to researchers without programming experience. A more 

accessible user-friendly interface for researchers with knowledge and interest in brain 
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connectivity, but not computer science, is missing and may broaden the availability of 

connectograms. 

Despite the intuitive visualization provided by connectograms, it is worth noting that the 

huge number of connections typical of healthy subjects can still make the interpretation of 

the networks tough. The human brain is indeed composed of a vast network of 

connections, which are linked to high-level cognitive functions. To gain a deeper 

understanding of the brain's connectivity, it is a common approach to focus on sub-

networks [12], [120], [124], which are characterized by unique patterns of brain activation 

revealing specific domains of behavior and cognition [124]. Focusing on sub-networks can 

also lead to easier data interpretation driven by the addressed physiological and/or 

pathological problem. In this regard, also a tool called Network Based Statistics (NBS) was 

implemented to find one or more sub-networks of interest identifying the differences 

between two groups [12]. Indeed, the brain is composed of several interacting lower-scale 

specialized circuits, as mentioned in the Section 2.2.1, which can be identified as 

unvaluable biomarkers revealing helpful information. The specialized analysis of network 

of interest can be also of great importance for the pathological cases having damage in 

localized areas of the brain with the purpose of investigating its effect, such as the work by 

Van Horn and colleagues or in stroke investigation [8], [122]. In this regard, the Figure 13 

shows the regions affected by a stroke lesion case and its related sub-network of interest, 

composed by the areas overlapping with the lesion. 
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Figure 13: Connectograms of the sub-network composed by the ROIs overlapping the stroke lesions (reported in 
B) of a group of HC and two stroke case studies, together with their five axial slices. 

However, current software for visualizing connectivity patterns, such as Circos [123], 

BrainNet Viewer [125], BRAPH [126] or NBS [12], although assessing modules in the 

networks, do not provide the capability of interactively and flexibly selecting individual 

nodes/sub-networks within a whole-brain network for the qualitative and quantitative 

evaluation. This is because direct upload of the specific sub-network of interest is usually 

necessary, or it is automatically computed. 

Analyzing sub-networks can be done both qualitatively, through connectograms, but also 

quantitatively, through the calculation of various graph-based network properties. Such 

properties, including node degree, small-worldness, modularity, clustering, and central 
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hubs, can provide valuable insights into the network's topology and architecture.  Through 

these organizational indexes, changes of brain networks in various neurological and 

neurodegenerative disorders were revelead [3], [5]–[8], [47]. Despite this and the 

possibility of computing them through different tools, gold-standard methodologies for 

extracting brain connectivity are still missing. The evaluation of these alterations of the 

brain networks in these conditions thus remains an open issue. 

To further advance our knowledge of brain disorders and the effects of treatments, such as 

disease modifying therapies and rehabilitation, accessible tools for assessing the 

architecture of brain networks, considering the uncertainty of the measures, are needed. 

These tools would provide a larger body of evidence and promote a deeper understanding 

of the human brain. 

 

2.3.2 Robustness of the Connectivity Measures 
 

A major challenge in connectomics is related to the limitations of methods for the 

extraction of the connectivity, as detailed in the Section 2.2.3. Indeed, although the 

analysis of changes in topological properties is a powerful tool to analyze brain 

organization, its statistical investigation is often subject to uncertainty. Different statistical 

analyses can be used to allow for a more robust evaluation. 

Among all statistical methodologies, bootstrapping was already used in other imaging 

problems, such as in the work conducted by Lazar and Alexander [127]. This approach 

enables the robust estimation of statistical features of a population from a limited number 

of measurement samples, without making assumptions about the distribution of the initial 

data. In contrast to traditional hypothesis testing, bootstrapping does not require a test 

statistic that satisfies specific assumptions dependent on the experimental design or 

knowledge of the data's properties. Thus, the main advantage of bootstrapping is the ability 

to quantify the uncertainty variability of the estimator, characterizing errors and dispersion 

in the null hypothesis [128], [129]. The number of bootstrap samples used results in a 

statistic representing smaller-sized random sample with replacements from the initial 

distribution. It is important to note that obtaining thousands of bootstrap observations from 

the initial data does not equate to collecting new data. The approach is based on a 

simulation of data (surrogates), and its usefulness lies in the quantification of statistical 
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quantities such as the standard error, potential bias, and confidence interval of a particular 

sample of data.  

In the context of investigating graph-structured data, the quantification of inherent 

uncertainty is crucial for their scientific usefulness. The study by Green and Shalizi [130] 

demonstrated the application of bootstrapping on random graphs, where resampling of data 

was capable of approximating the distributions of motif densities, such as the number of 

times fixed subgraphs appear in the network. This study also utilized bootstrapping to 

quantify the uncertainty of network metrics. Another example is provided by the research 

conducted by Gel and colleagues, where bootstrapping was used to estimate the 

uncertainty in graph degree distributions [129]. As the number of resampled data increases, 

applying bootstrapping to a data distribution results in a more refined definition of 

variability centered around the initial mean of the same distribution [131].  

However, the bootstrapping approach was only partially applied in brain connectivity 

studies. For example, in the study conducted by Wei and colleagues this approach was 

used to perform connectivity matrix feature selection in a regression task cognitive traits 

prediction [132]. Spearman correlation analysis was indeed performed between 

connectivity and cognitive measures in each resample subset to extract a feature vector. 

The generation of surrogate graphs reduced the uncertainty in the feature selection method 

applied to four different models for predicting cognitive abilities. In another study [133], 

the authors suggested using a bootstrapping approach on FC data, similar to a previous 

study on Parkinson's disease patients. Since the subjects’ sample might not be fully 

representative, a way to reliably test the significant group differences in the graph-based 

indexes was this resampling methodology. Bootstrap allowed for a better estimation of the 

null distribution of mean FC. However, a drawback of this approach is the computational 

cost, as bootstrapping requires multiple resampling of the original dataset which can be 

computationally intensive, particularly for large datasets. 

To the best of our knowledge, there is great potential for implementing bootstrap 

approaches on connectivity data effectively and more quantitatively, but underlying 

concerns still need to be resolved. It is evident that diverse kinds of noise may have a 

significant influence on connectivity measures, especially with small cohorts. Moreover, 

the static evaluation of FC has limitations [49], [81]. In order to make brain connectivity 
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biomarkers more understandable and useful, it is critical to assess their stability and 

robustness.  

In addition, as discussed in the Section 2.2.5.3, most widespread thresholding methods are 

arbitrary and can heavily affect the results [104], [105], [110]. Although used for the 

deletion of spurious connections, they can strongly influence the network topology and 

organization. For this reason, different novel approaches appearing to be less arbitrary than 

typical density or absolute thresholding and which may potentially improve even more the 

estimates. such as percolation or spanning tree [47], [101], [109], [113], [134], were 

proposed. However, agreement on standard methodology is still missing. 

 

2.3.3 Explainable Artificial Intelligence in Brain Imaging and 

Connectomics 
 

Recent advancements in neuroimaging and the possibility of collecting large amount of 

data in a much easier way and at minor cost opened up new opportunities of reducing the 

uncertainty of the biomarkers and robustly assess the measures. In addition, through AI 

methods is possible to develop intelligent healthcare systems and clinical decision support. 

In particular, with the growing global incidence of neurodegenerative disorders, such as 

AD, there was a heightened interest among researchers to advance in areas such as 

diagnosis, treatment, prevention, drug discovery, and provision of improved healthcare 

services. Most of the research in the domain of AD and more in general neurodegeneration 

is centered on using brain imaging. Traditional Machine Learning (ML) methods with 

classification methods like Logistic Regression, Decision Tree, Random Forest, Support 

Vector Machines and Multiple Kernel Learning were widely utilized both from MRI 

(mainly T1, but also Fluid Attenuated Inversion Recovery - FLAIR and T2), fMRI images, 

related features and connectivity data [43], [135], [136]. 

In addition, the availability of significant computational resources and the advancements of 

DL algorithms enabled the wide application of these techniques to improve the accuracy of 

computer-assisted diagnoses. Also, deep networks were widely applied for different tasks 

from both brain images (both 2D and 3D volumes) and connectivity data. Regarding 

models using brain images, many approaches have been widely investigated, becoming a 

well-estabilished area of research. In this context, CNNs have particular importance, since 
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it was recently demonstrated to have impressive performance in medical analysis, both 

having as input 2D slices and 3D scans [137]–[140]. In addition, different CNN-based pre-

trained models, such as ResNet18, EfficientNet-B0 and VGG etc., were widely employed 

in neuroimaging research, providing state-of-the-art performance for different tasks [140]–

[142]. ResNet18, for example, is a model characterized by 18 layers including a 2D 

convolutional layer and four sets of residual blocks, each containing two 2D convolutional 

layers, which was proved to be suitable in AD recognition [143]. Furthermore, its 

appropriateness for handling 3D volumes [39] further motivated its selection, use and 

transfer learning within the article III. Subsequently, other approaches, mainly adapted 

CNNs, GNNs and Autoencoders, were started to be used feeding into the models the brain 

connectivity matrixes, as also summarized by the research made in the Scopus Database 

and reported in the Figure 14. 

 

Figure 14: Results obtained from research made on the Scopus Database. The number of documents published per 
year is reported in green, using as keyword “connectivity”, and in blue, using “images”, together with Deep 
Learning and MRI or fMRI. 

Clearly, the use of DL on connectivity is not as mature as using images, probably because 

of the cost of the processing, but there has been an increasing interest in the last years in 

this regard. Meszlényi and colleagues proposed a connectome-based CNN architecture for 

MCI classification, using FC. The convolution was applied in two layers, first row-by-row 

and then by column [144]. Similarly, the “BrainNetCNN” is a deeper convolutional 
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network also adapted for brain networks that was validated on SC matrixes from DTI 

images for regression task [145]. Subsequently, this model was tested and compared to 

different ML models with respect to the AD classification task [38]. Alorf and Khan 

obtained good performance in the AD stages classification by employing BCG-CN (a 

GNN adapted for brain connectivity data) [20] and Stacked Sparse Autoencoders [146]. An 

extended and adapted version of the former was employed in article III. Its ability in 

dealing with dense matrixes, focusing on direct and indirect connections resulted in the 

best performance during AD recognition from SC data. Also, graph variational 

autoencoder employing both SC and FC was employed on AD dataset to find a unified 

embedding via a classification task [15]. 

Despite the effectiveness of DL algorithms in various classification tasks, their widespread 

adoption and trust in clinical settings is limited due to their well-known "black box" nature. 

Their architecture is understood but the internal processes used for classification remain 

inaccessible to humans. The recent development of XAI methods aims to bridge the gap 

between the high performance of DL networks and the need for human comprehension of 

their processes. XAI methods enabling visualization and interpretation of the results of 

these networks were applied across a wide range of applications. Also in the neuroimaging 

field, together with the rise in the usage of DL techniques, the use of XAI methods strongly 

diffused. In this perspective, different methods were applied in different contexts, adapted 

to different types of data, and tailored for diverse purposes. Although the increased interest 

on DL brain connectivity, it is worth noting that many approaches were adapted to graph 

structured data, but validation on human brain networks was not widely performed yet. 

Illustrative neuroimaging studies, with regard to AD classification, using popular 

interpretability methods are reported in Table 6. Among all approaches, the most 

widespread methods in neuroimaging can be roughly classified into three categories. These 

are gradient/feature-based methods, perturbation-based methods, and distillation methods. 
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Interpretability Method 
Category Studies 

Perturbation Distillation Gradient Images Connectivity 

Occlusion’s Sensitivity X   [39], [139], [141], [147] [148] 

LIME  X  [149], [150] [151]* 

SHAP  X  [152], [153] [151], [154]* 

Cam and Grad-Cam   X [152], [155], [156] [157], [158] 

Guided Backpropagation 

Or Layer-wise Relevance 

Propagation 

  X [139], [159], [160] [158] 

Table 6: Intepretability methods in neuroimaging studies. *Applied for Autism Spectrum Disorder classification 
task 

Gradient/feature-based methods use gradients or hidden feature maps to determine the 

importance of different input features in the model's predictions [161]. Perturbation-based 

methods evaluate the effect of changes in input information on the model's predictions. 

The importance of input features is measured by monitoring the variation of the model's 

output for different input perturbations [53]. If important input information is retained, the 

predictions should be similar to the original prediction. Other methods which can be 

considered perturbation-based methods are the so-called distillation methods. They are 

based on local perturbation of the initial input to create separate models and usually 

considered model-agnostic (training surrogate models or computing the marginal 

contribution) [162]. The category of perturbation-based methods, as it is defined, is not 

model independent that is the reason why they fall under a separate category. 

The lack of interpretability of DL models made it imperative to develop ways to gain a 

deeper understanding of the problem at hand. In fact, these methodologies can also be 

helpful for the reinforcement of brain biomarkers. In addition, the cost of processing for 

the extraction of the brain connectivity networks can be evaluated in relation to the 

different interpretation and accuracy provided by this data with respect to more typical 

brain images employment. This assessment can bring to the development of novel 

interpretable models able to exploit both morphological and interregional features from 

multiple data. 
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2.3.4 Multi-Level Degenerations 
 

The analysis of the connectivity networks is complex, concerning different scales, 

charactistics and layers. This is particularly important considering that many pathological 

conditions exert either widespread effects throughout the brain or localized dysruptions, or 

even both, affecting either anatomy or function or both. In this thesis, three different 

conditions sharing the characteristics of affecting the brain at different levels were 

assessed.  

First, stroke is a leading cause of significant disability globally, with over 50 million 

people experiencing a stroke each year [163]. A stroke can result in loss of motor function, 

speech, and cognitive abilities, severely affecting a survivor's quality of life and ability to 

carry out daily activities [164]. This can result in a reduction of healthy life and substantial 

costs for post-stroke care. The onset of stroke occurs when a blood vessel supplying the 

brain is blocked/burst (ischemic/hemorrhagic), causing a cluster of brain cells to become 

damaged, or lesioned. Stroke has extensive impacts on the brain that go beyond the 

lesioned area. Therefore, the changes to the neural structure induced by stroke extend 

throughout the brain, including GM and WM structures that are remote from the injury 

site. Research revealed that WM degeneration and GM atrophy occur beyond the direct 

injury site [165], [166], and that significant abnormalities can be observed in regions which 

are structurally connected to primary lesion location, such as the parietal lobe or superior 

frontal gyrus [167]. In addition, Sommer and colleagues found decreased perfusion in the 

cerebellum, which is caused by reduced excitatory signals from the cortex [168]. In 

addition, these changes could play a crucial role in functional recovery after stroke as it 

was demonstrated that the FC of the brain may be compensated by indirect connections 

[169]. It is thus clear that the extent of the stroke lesion heavily affects the whole 

functioning of the brain thus reporting abnormalities not only in the lesioned area but also 

in the lesioned hemisphere and in the contralateral one.  

Second, SZ is a mental disorder characterized by detached mind's processes which may be 

depicted as a disorder of brain connectivity. This is evident in the hallmark symptoms of 

the pathology, such as diminished cognitive and emotional abilities, which demonstrate the 

disconnection of various mental processes [47]. The specific clinical manifestations of the 



81 
 

disorder include hallucinations, agitation, social isolation, anhedonia, and apathy. Being a 

disorder of brain connectivity and considering the functional dysfunctions, several studies 

explored the relations between the symptoms and functional associations [46], [134]. 

Studies found connectivity deficits in SZ on multiple levels. At the global level, a 

reduction in connectivity was reported in various studies [45], [107], [134]. At the sub-

network level, fronto-temporal and occipito-temporal dysconnections were found through 

NBS [12]. Liu and colleagues observed a significant alteration in the pattern of small-

world topological properties in several brain regions of the prefrontal, parietal, and 

temporal lobes. Skudlarski and colleagues found differences in the connectivity pattern 

originating from the posterior cingulate cortex within the DMN [36]. The DMN is 

considered important in the context of SZ because it is involved in social behavior and 

emotional state control, which were found to be altered in patients with the disorder [170]–

[172]. Although, the observations regarding the DMN remain controversial, with no 

average connectivity changing according to the dynamic  mental state and with individual 

connections subject to reorganization [36]. Amongst all brain regions, the prefrontal cortex 

was identified as one of the most affected regions [45], [46], [107]. 

Third, as populations continue to age, the number of individuals affected by 

neurodegenerative diseases has become a significant public health concern, imposing a 

heavy social and economic burden on many nations. A major form both for severity and 

diffusion is AD, leading to impaired memory and dementia [173]. In recent times, research 

focused extensively on AD and neuroimaging techniques emerged as critical tools in the 

diagnosis and examination of neurodegenerative diseases. AD structural brain changes 

visible through MRI revealed the early involvement of the MTL, particularly in terms of 

hippocampal and parahippocampal atrophy [174], [175]. Numerous studies have also 

connected the entorhinal cortex to modifications in the cognitive function of patients. [23]. 

This condition does have a significant impact on the GM of the brain, causing substantial 

cortical and hippocampal atrophy, but it also has an impact on the WM [176]. WM fiber 

tracts lose axons and myelin degenerates in AD [177]. In this regards, T2-weighted or 

FLAIR imaging techniques are frequently employed to assess the presence of WM 

hyperintensities, which serve as a hallmark of the condition [141]. There is growing 

empirical support for the notion that the disruption of the brain's fiber networks may play a 

role in exacerbating symptoms as the disease progresses [6]. Additionally, the 
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neurodegenerative process that underlies AD involves the cerebral cortex. Both the 

temporal and parietal areas exhibit atrophic alterations that are consistent with the 

condition's early stages [178]. On the other hand, the symptomatic progression is often 

accompanied by a more extensive brain cortical thinning alongside ventricular enlargement 

[174], [179]. Due to the aforementioned dendritic, myelin, and axonal loss that comes 

along with atrophy, dMRI and fiber tracking can be used to support AD assessments [23]. 

It has been well demonstrated that AD causes coherent alterations in the connectivity 

structure across many dMRI measures used for edge-weighting [24]. Beyond changes in 

structure, also differences in function occur across a range of spatial scales and levels 

[180], [181]. At both the FC and SC global level, AD was depicted as a disconnection 

syndrome which can be characterized by the connectome degeneration, affecting network 

topology, that is governed by long-range connections [182]–[184]. At sub-network level, 

studies demonstrated that the DMN, which is involved in memory processes, is vulnerable 

to atrophy, amyloid protein deposition and WM microstructure alterations resulting in a 

disrupted SC configuration [24], [25], [185]. AD abnormalities found in SC and dMRI 

studies also involved the temporal lobe, whose disruptions contribute to memory 

impairment [6], [24], [186], [187], and, consistently to morphological data, some regions 

of the MTL [42], which are also often reported in the DMN. RS-fMRI consistently 

revealed a decreased FC between the posterior and anterior portions of the DMN, including 

the precuneus, posterior cingulate cortex, anterior cingulate, medial prefrontal cortex, and 

MTL structures [188], [189]. DMN was found to be replicable hallmark for AD also in SC 

analysis, highlighting many common regions [190]. 

It is thus worth noting that all the considered conditions are different from each other. 

However, the brain is characterized by a strong affection at different levels, with 

consequences on both segregation and integration. In this sense, the study of connectivity 

can provide many insights for a better understanding of their relations. As such, there is the 

need for a multi-scale approach and assessment of the brain connectivity and derived 

biormarkers to address both global and local structures in different brain disorders.   
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2.4 Objectives and Outline 

Hence, the proposed PhD thesis has the overarching: i) methodological aim to fill the gaps 

of uncertainty and interpretability of existing approaches for the mapping, visualization, 

extraction and analysis of brain connectivity biomarkers; ii) translational aim to 

demonstrate the potential of the proposed methods in the context of pathologies 

characterized by both focused disruptions and widespread degeneration, with the purpose 

of improving usability. 

Specifically, the objectives of this PhD thesis were: 

• To provide a review of the connectomics field, considering the most widespread and 

employed methods for extraction, analysis and interpretation of brain networks and sub-

networks (Chapter 1) 

• To discuss the open issues limitating the use of obtained biomarkers in clinical research 

settings and practice (Chapter 1)   

• To analyze functional and structural brain connectomics multi-level findings 

characterizing the domain knowledge of the different neurological and mental disorders 

considered (stroke, SZ and AD) (Chapter 1) 

• To develop a novel software tool called SPIDER-NET that allows for the user-friendly 

qualitative and quantitative analysis of brain networks (Study 1) 

• To provide an interactive and flexible management of connectogram visualization and 

network extraction achieved through SPIDER-NET according to user-defined and well-

known human brain atlases to allow for an easy investigation (Study 1) 

• To validate SPIDER-NET on multimodal structural data (DTI and CSD) from two stroke 

case studies compared to a group of HCs (Study 1) 

• To investigate robustness of the brain connectivity topological measures and the 

incidence of the uncertainty in the statistical methodologies (Study 2) 

• To compare FC data of schizophrenic patients and HCs with the novel multi-level 

approach for the extraction of the abnormalities proposed within SPIDER-NET (Study 2) 

• To assess the accuracy of DL models (CNNs and GNNs) for AD classification using 3D 

brain volumes versus brain connectivity data. (Study 3) 
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• To employ XAI to study interpretability of the DL models and analyze the brain regions 

whose morphological and interregional features may represent possible brain biomarkers 

of AD (Study 3) 

• To validate the multi-level investigation capability of SPIDER-NET and the utilization of 

the tool with different population size (case and group studies) of three both focused and 

widespread degenerations, such as stroke (2 hemorrhagic stroke case studies vs 17 HC), 

schizophrenia (12 SZ patients vs 15 HC) and Alzheimer’s Disease (135 AD vs 557 HC 

MRI sessions). This PhD work also validated the use of the novel tool SPIDER-NET on 

different connectivity data, SC in the first and third studies, FC in the second study. 

(Studies 1-2-3) 

2.5 Summary of the Publications  

(I) Coluzzi, D.; Pirastru, A.; Pelizzari, L.; Cabinio, M.; Laganà, M.M.; Baselli, G.; 

Baglio, F.; “Development and Testing of SPIDER-NET: An Interactive Tool for Brain 

Connectogram Visualization, Sub-Network Exploration and Graph Metrics 

Quantification”, Frontiers in Neuroscience, https://doi.org/10.3389/fnins.2022.818385, 

Special Issue Advanced Computational Tools for Mapping the Multidimensional 

Architecture of the Brain, 2022. 

 

• In the first work, we developed SPIDER-NET (Software Package Ideal for 

Deriving Enhanced Representations of brain NETworks), a software package 

that provides a flexible and user-friendly tool for the selection of partial 

connectograms, their visualization, and their quantification. The SPIDER-NET 

Graphical User Interface intuitively allows rapid network exploration and 

interactive real-time sub-network definition. Figures for connectivity studies are 

automatically generated, based on the user selections. Furthermore, the toolbox 

provides additional features to apply matrix thresholding, to easily and 

automatically compute topological network indices and to interactively define 

visualization preferences. The potential benefits of using SPIDER-NET in 

clinical research case studies were tested on a SC dataset composed of two 

patients with emorrhagic stroke injury characterized by a right hemisphere 
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lesion with prevalent subcortical expression (males, age 44 and 37 years old, 

referred to as Case 1 and Case 2, respectively) and 17 HCs subjects (7 males 

and 10 females; mean age ± SD: 52.5 ± 8.3 years). Destrieux Atlas was used to 

define the nodes of the network. The connectios were depicted using different 

processing pipelines, such as CSD and DTI, which were tested and compared. 

Specifically, the following aspects were tested: a) providing an effective 

representation of brain connectivity patterns, b) interactively extracting sub-

networks to test a priori hypotheses, specifically evaluating the connectivity 

between the GM regions affected by the stroke lesions and c) deriving whole-

brain quantitative connectivity metrics mirroring local and global topological 

properties of the graphs. 

The main findings found from these qualitative explorations and quantitative 

analyses through SPIDER-NET were:  

• In the case 1 pattern of connectomics is significantly different from the case 

2, mirroring the greater clinical severity of the former. 

• The pattern of disconnection involved both the right hemisphere, where the 

stroke lesions were present, and the contralateral one. 

• The impairment of the cortical areas of interest determined a decrease in 

both short-range and long-range connections within the hemisphere 

ipsilateral to the stroke lesion. 

• Interhemispheric connectivity was particularly compromised, probably 

because subcortical nuclei, which are integration hubs of extrapyramidal 

systems, were affected by the lesions. 

• At a visual inspection, DTI-based and CSD-based sub-network 

connectograms presented comparable connectivity patterns, highlighting 

that valuable information provided by both the processing techniques. 

Furthermore, CSD processing pipeline yielded denser connectograms, as 

expected. Indeed, CSD ability to better deal with the problem of the 

crossing fibers when compared to DTI is well-established [28]. This is in 

line with differences between DTI and CSD that were observed in terms of 

interhemispheric connections, that were particularly evident for Case 1. 
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SPIDER-NET resulted an effective and flexible tool to represent and examine 

the expected (dis)connectivity pattern due to a stroke lesion, in testing a-priori 

hypothesis by extracting a sub-network of interest and in computing topological 

indexes. In addition, because of the absence of defined protocols for network 

creation and edge weighting SPIDER-NET, was demonstrated to be potentially 

employed as a flexible and simple tool for calibrating connectomics 

investigations. In particular, it would make it possible to immediately spot 

anticipated patterns of disconnections and, if any are present, flag significant 

errors. Before addressing more minor connection changes, this quality check 

may provide a benchmark. The quantitative results mirrored the differences 

qualitatively observed with connectograms, regardless the employed modality, 

providing a comprehensive description of brain connectivity in line with the 

literature [8], [26]. The tool may also be a useful tool to investigate and 

interpret individual connectivity patterns during rehabilitation practice.  

SPIDER-NET is available online and freely downloadable at 

https://caditer.dongnocchi.it/spidernet/. 

 
(II) Coluzzi, D.; Baselli, G.; “Diffuse and Localized Functional Dysconnectivity in 

Schizophrenia: a Bootstrapped Top-Down Approach” (Under Submission) 

 

• The second work focuses on the comparison of connectivity in small cohorts 

trying to enhance robustness against uncertainty and noise through the 

bootstrapping procedure. Data used in this study is composed by the FC 

matrixes of 15 HC and 12 SZ subjects [12]. These matrixes were formed by 74 

AAL regions. Starting from top, the global topological indexes were evaluated 

to assess the abnormalities in the network topology. In order to enable a robust 

investigation, these properties were bootstrapped and the stability of the method 

randomly removing one (RST1) or two subjects (RST2) from the entire pool 

was evaluated. Second, a sub-network of interest for SZ (DMN) and local 

indexes were evaluated to visualize significant changes between regions. Third, 

the connection weights of the group mean matrixes were analyzed to enhance 

common strongest activations/deactivations and community structure. The 

https://caditer.dongnocchi.it/spidernet/
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multi-level approach was included in SPIDER-NET, to also perform group 

study and automatically evaluate abnormalities. 

Increased global index values were found in HC for all segregation properties 

and efficiency, whereas path length is longer in SZ, as expected, as well as 

small-worldness and coreness statistics. The significance of modularity 

(p=0.043) was not confirmed by BOOT (p=0.133). The robustness assessment 

tests (both RST1 and RST2) highlighted more stable results for BOOT than the 

direct testing. Furthermore, the use of BOOT highlighted a trend towards 

studies with a greater number of subjects [191], or of dynamic FC [192]. 

Significant results were also found at lower levels. First, the analysis of the 

DMN highlighted a higher variability, reduced connectivity and strength and 

increased deactivation in the SZ group. At local level, 13 areas were found to be 

significantly different (p<0.05) in the groups, highlighting a greater divergence 

in the frontal lobe. These results were confirmed analyzing the mean matrix of 

single negative edges of the groups in the whole-brain, the DMN and the 

communities detected, suggesting an inverted connectivity between prefronto-

temporal areas which can reflect an abnormal inhibition of the activity of these 

regions. The results highlighted a trend towards results obtained with a greater 

number of subjects and data appearing to be in line with other studies where the 

major finding in SZ is that the connectivity is not systematically 

increased/reduced but generally different, due to the functional reorganization 

of SZ [36], [47], [191]. However, it remains unclear whether SZ abnormalities 

are the result of a localized dysconnection exerting widespread effects 

throughout the brain, or a whole-brain dysfunction that affects certain regions 

more than others. New investigations would allow to gain insight into the 

causes and effects related to the onset of the condition. The robust approach for 

assessing the differences in the network topology resulted to be of great 

interest, especially when small datasets and static FC are available, and inherent 

uncertainty can jeopardize the results. Furthermore, the possibility of 

performing automatic top-down investigations may improve our understanding 

of both diffuse and localized dysconnections typical of some pathologies. 
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(III) Coluzzi, D.; Bordin, V.; Rivolta, M.W.; Fortel I.; Leow A.; Baselli, G.; “Biomarker 

Investigation using Multiple Brain Measures from MRI through XAI in Alzheimer’s 

Disease Classification” (Under Submission) 

 

• The third study focused on the 3D T1-weighted scans and extracted SC of 692 

selected subjects among all those contained in OASIS-3 dataset [14]. This 

dataset is a longitudinal collection of data focusing on the effects of normal 

aging and early-stage AD. In this regard, the work proposes two advanced DL 

models, which were considered to be suitable for the task, employing the 

different data: ResNet18 and BC-GCN-SE [20], [39]. The models are evaluated 

in terms of their classification accuracy, through 10-fold cross-validation and 

interpretability using a XAI approach called Grad-CAM [21]. The evaluation is 

conducted across 132 brain parcels extracted from combined HOA and AAL 

brain atlases and compared to well-known pathological regions to measure 

adherence to domain knowledge. Indeed, most replicated hallmarks from T1 

data and SC (anatomical targets) were investigated. For the former, the 

involvement of the MTL and, for the latter, the DMN were assessed [23], [24]. 

More specifically, a statistical test (p<0.05) and a ranking of the most relevant 

parcels (first 15%) were performed to comprehend the model’s decision.  

The results of the evaluation show that both models achieve acceptable 

classification performance, in comparison to literature. ResNet18 shows a 

median true positive rate (TPR) of 0.8167 and a median true negative rate 

(TNR) of 0.8165, whereas BC-GCN-SE a median TPR of 0.7033 and a median 

TNR of 0.7385. The XAI approach also reveals the involvement of the MTL 

(7/8 significant parcels) and the DMN (more than 70% significant parcels) in 

the models, indicating their potential explainable diagnostic relevance. This 

result was also confirmed by analyzing the most relevant parcels for AD and 

HC, which show some anatomical targets. However, the study acknowledges 

that the interpretability of the models has limitations, and further improvements 

are necessary. Nonetheless, the results suggest that combining different imaging 

modalities and data can enhance the classification performance and reliability 

of DL models. Indeed, complementary relevant regions and related features 

were found by the two models. Several studies have shown that utilizing 
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prominent characteristics from various measures can be advantageous as it 

allows for the examination of different information simultaneously, which may 

be valuable and meaningful [43]. However, there has been limited exploration 

of the integration of morphological traits of specific brain regions from 3D T1-

weighted volumes and interregional properties derived from SC data. This can 

potentially increase confidence in DL models and promote their widespread use 

as diagnostic aids. Overall, the study highlights the potential of DL models in 

advancing the field of medical diagnosis and underscores the importance of 

interpretability in ensuring their efficacy and applicability. 
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3 Discussion and Conclusions 

In the present PhD work, the aims of enhancing the reliability and the interpretability of the 

brain connectivity biomarkers were addressed. More specifically, the investigation was 

carried out on three different datasets formed of different number of subjects and patients, 

affected by diverse pathologies sharing the characteristics of both affecting specific regions 

of the brain and leading to diffused degeneration of the whole brain. In the presented work, 

methods aimed at achieving the ultimate objective of enhancing usability are proposed. 

First, a flexible and user-friendly tool called SPIDER-NET was proposed to both 

qualitatively and quantitatively investigate brain connectivity in health and disease. The 

validation of SPIDER-NET has demonstrated its effectiveness as a tool for representing the 

pattern of connectivity changes resulting from a stroke lesion. This was achieved through 

the testing of a-priori hypotheses, extracting a sub-network of interest, computing relevant 

topological indexes and comparing the results of DTI to CSD processing pipelines, which 

were not jeopardized, regardless the different ability in the reconstruction of the crossing 

fibers and thus denser networks [28].  It was shown that the SPIDER-NET tool can be 

helpful in clinical research settings, in tailoring the rehabilitative treatments and can 

greatly contribute to improve the understanding of the brain networks through a better 

interpretation and reliability of the measures. Normally, networks are composed of 

hundreds of nodes and thousands of links, thus their analysis and interpretation are often 

tough. Automatic and interactive tools to assess brain network would be of great support in 

clinical research. Indeed, analyzing sub-networks of interest, from a-priori hypotheses or 

through other tools, is of great importance in the understanding of the mechanisms 

underlying the cognitive processes [193] or the circuit mapping of the brain [194]. 

SPIDER-NET offers a flexible sub-network extraction method which relies on manual 

selection of parcels/group-parcels and attributes based on a priori hypothesis testing. 

However, there are alternative approaches available for automatically identifying relevant 

sub-networks [12], [195], particularly when there are no apparent gross brain 

abnormalities. An intriguing avenue for future research would be to incorporate automatic 
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and data-driven algorithms for sub-network extraction, allowing for comparison with 

hypothesis-driven selection. Furthermore, it is essential to explore SPIDER-NET's 

sensitivity in detecting brain connectivity changes by investigating neurological diseases 

beyond stroke and assessing the impact of treatments such as drugs or rehabilitation. 

Another promising application could involve examining FC using SPIDER-NET and 

integrating structural and functional information, leveraging its flexibility in extracting 

sub-networks. Additionally, there is promising potential for future development in utilizing 

the SPIDER-NET application to analyze brain connectivity matrices obtained from 

alternative modalities like EEG, MEG, and NIRS. Although SPIDER-NET was originally 

presented and tested using MRI datasets, its versatile nature enables its application in 

diverse contexts, including various -omics disciplines. For example, in the field of 

rehabilomics [196], which integrates transdisciplinary biomarker evaluation, SPIDER-NET 

could contribute to defining personalized rehabilitative treatments for patients. In addition, 

the generation of SPIDER-NET connectograms can serve as a useful approach to evaluate 

the strength of the processing pipeline, as well as the connectivity metrics, conditioning 

methods (such as thresholding or binarization), and global or local graph indexes. The 

absence of standardized protocols for network construction and edge weighting remains 

one of the primary challenges in connectomics [29], [30], [194]. Therefore, SPIDER-NET 

can be utilized as a versatile and straightforward method to fine-tune connectomics 

analyses. Specifically, it could allow to quickly identify the expected pattern of 

disconnection and to easily highlight major errors if present. This quality check may offer 

a benchmark before addressing less trivial connectivity alterations, as the ones induced by 

diffused neurodegeneration, which might be another application field of SPIDER-NET. 

In this regard, a bootstrapped top-down approach to reliably assess abnormalities found on 

different levels considering the inherent uncertainty was proposed. In particular, the 

assessment of the connectivity from global indexes to single edges (brain 

activations/deactivations) was carried out on a population characterized by chronic 

schizophrenia, thought to cause both diffused and focalized dysconnectivity patterns. The 

multi-level analysis resulted to potentially favor more robust results in contexts where the 

focus is not well-known and statistical tests can be easily biased by uncertainty. The results 

obtained through BOOT were more stable in comparison to standard nonparametric tests, 

being more robust to noise. At the same time, it is also worth noting that is paramount to 
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focus and apply new and different thresholding methods to assess their influence. 

Alternative methods such as percolation or spanning tree techniques [47], [101], [113], 

[114], [134], [197] seem to be less arbitrary compared to conventional density or absolute 

thresholding approaches. These methods have the potential to further enhance the accuracy 

of the estimates. The former, for example, was employed in several studies to potentially 

obtain an optimal deletion of the spurious edges maintaining brain network structure and 

connectedness [114]–[116], [198]. In this context, it may be worthwhile to explore the 

relationship between percolation analysis and the findings obtained through bootstrap 

analysis. Another approach could involve the use of bootstrapping techniques to identify 

potential errors, generate reliable templates for comparison, and estimate the measure's 

uncertainty at the connection level. Additionally, the outcomes of this study revealed a 

trend towards findings obtained with larger sample size and data volume. It is important to 

acknowledge that a limitation of this study is the small size of the healthy HC and SZ 

groups available for analysis. To address this, it would be desirable to validate the 

bootstrap method on graph-based indexes on a larger FC dataset. This validation would 

provide more robust results and align with findings from larger studies. Additionally, it 

should be noted that the study lacks discrimination among different types and severity 

levels of schizophrenia, which is another limitation identified [170]. Furthermore, the 

statistical analyses conducted using the leave-k-subject-out procedure could be extended to 

dynamical connectivity data. This would enable an assessment of the influence of the 

different states assumed during a resting-state functional MRI, thereby strengthening the 

usability and providing a better understanding of the functional activations and 

deactivations associated with the approach. 

The results were also consistent with prior research indicating that individuals with 

schizophrenia exhibit distinct patterns of connectivity, as opposed to increased or reduced 

connectivity, likely due to functional reorganization within the condition [36], [47], [191]. 

Uncertainty also exists regarding the cause of SZ abnormalities, namely whether they stem 

from a localized dysconnection that has wide-ranging consequences across the brain or a 

whole-brain malfunction that disproportionately affects some regions. New investigations 

would allow to learn more about the factors related to the onset of the disorder and their 

impact. The robust approach for assessing the differences in the network topology resulted 

to be of great interest, especially when small datasets and static FC are available. The 
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possibility of performing automatic top-down investigations in manifold of applications 

and on different data may improve our understanding of both diffuse and localized 

dysconnections typical of some pathologies. 

Finally, an XAI investigation was performed to compare different MRI data: 3D T1-

weighted scans and SC matrixes. Both models showed good classification performance 

compared to existing literature [38]. However, ResNet18 model using 3D T1-weighted 

volumes achieved slightly better accuracies than the BC-GCN-SE employing connectivity 

data when classifying AD and HC sessions. The BC-GCN-SE and, more in general, 

models adapted to graph-structured data are more recent models than CNNs architectures 

using images or volumes, such as the well-known pre-trained ResNet18 model employed. 

Moreover, it should be noted that the SC data obtained from DTI have inherent limitations 

related to the processing pipelines [30], as abovementioned. Despite this, the variability in 

the severity of Alzheimer's disease among subjects, the lack of a predefined design setting 

for multiple acquisition sessions, and the majority of subjects having mild impairments, 

both results can be seen as promising. In addition, it is essential to evaluate DL models on 

brain connectivity networks and compare them with more established approaches to assess 

computational cost of processing. XAI analysis of the models revealed both advantages 

and disadvantages. The statistical tests and the most relevant parcels ranking showed a 

good level of agreement with domain knowledge. Hence, ResNet18 and BC-GCN-SE 

pointed out MTL and several parcels composing the DMN, respectively. These sub-

networks represented the anatomical targets addressed. However, one may argue that the 

number of significances found by the statistical test is high if compared to the number of 

parcels investigated, increasing the possibility to detect the target regions. For this reason, 

we investigated which significant parcels were also among the 20 most relevant for the AD 

case reinforcing the interpretation of the results. Moreover, this high number of parcels 

was found to be composed of most cortical parcels, that could be traced back to the 

different characteristics of the population. The presence of subjects at various AD stages 

and severities could lead to general extensive importance of a considerable portion of the 

cortex. Then, results underlined by BC-GCN-SE model appear to be in agreement to an 

increasing evidence of topological asymmetry between hemispheric brain WM in AD 

found in two studies [40], [41]. This may represent a useful insight into hemispheric 

lateralization and aberration possibly resulting from long-range connection loss. The 
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present study is not without limitations. Firstly, it is important to recognize that different 

approaches for XAI may not always be effective in all scenarios [199]. Therefore, it would 

be valuable to incorporate and compare alternative methods, such as perturbation or 

distillate techniques, to further validate the obtained results. Additionally, this study 

primarily focuses on the mean relevance value extracted from whole parcels, enabling 

direct comparison to 3D T1-weighted volumes. However, in the case of SC data, it would 

be intriguing to investigate the most explainable connections, which could shed light on 

crucial long-range connections and their disruption in AD [183], [184]. Moreover, beyond 

the analysis of the DMN, exploring other RSNs could provide novel insights into the 

employed models. Further investigations into WM could also be conducted using the 3D 

T1-weighted volumes to visualize similarities and differences concerning WM metrics 

associated with SC data. A particular consideration is the presence of WM 

Hyperintensities, which can serve as important biomarkers of the AD condition [200]. In a 

previous preliminary study with a limited number of subjects [141], their relevance was 

confirmed using a DL model employing FLAIR images. It would be worthwhile to explore 

their effects within the connectivity data as well. For instance, employing tools like NeMo 

it would be of great interest to extract the impact of these lesions within the connectivity 

data [201]. In general, the concurrent investigation of the models led to valuable 

indications. While both models showed agreement in identifying anatomical targets, there 

were some key regions in the MTL that were not highlighted in the XAI analysis of BC-

GCN-SE, despite being important in AD connectivity data as well [42]. With the exception 

of the right amygdala, other regions of the MTL were not identified through statistical 

testing or examination of relevant parcels. These findings could mirror a limitation of BC-

GCN-SE interpretability or the effect of noise sources inherently present in these DTI-

derived data. At the same time, this complementary importance of different parcels appears 

promising in the perspective of yielding more accurate and reliable models. In this context, 

previous studies have not extensively explored the idea of combining morphological 

features with interregional properties, although the potential demonstrated in the study by 

Liu and colleagues [43]. This may have significant impacts on the diagnosis of various 

pathologies. Indeed, by incorporating both types of data, a more comprehensive 

understanding of the underlying mechanisms can be gained leading to the development of 
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better and more interpretable models. This is particularly important given the limited trust 

in "black-box models" in real-world settings. 

In general, numerous valuable brain biomarkers with specific reference to those extracted 

from connectivity data were detected, investigated, and employed through different 

methods, DL approaches included. Although some limitations such as the use of different 

brain atlases among the three studies or the population size, they revealed a great potential 

for several purposes and in a manifold of applications ranging from diagnostics to 

rehabilitation. However, they appear to be still lacking reliability and interpretation, which 

are the issues that limited their diffusion within clinical settings. The proposed PhD thesis 

addressed these problems developing and validating novel methods in the context of 

pathologies whose affection is both global and local. However, it will be paramount to 

improve them with the purpose of increasing the level of trust of brain connectivity 

biomarkers for enhanced usability. The robust extraction of the abnormalities has a direct 

importance and connection to the understanding of the relationships between the localized 

affection and widespread degeneration. Novel and reliable methods for a consistent 

analysis of the brain connectivity biomarkers can indeed be of unvaluable importance in 

the study of the brain both in health, to map the nervous system and comprehend the 

mechanisms underlying the mental processes, and in disease, to support clinicians in the 

early detection and during recovery. 
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Brain connectomics consists in the modeling of human brain as networks,
mathematically represented as numerical connectivity matrices. However, this
representation may result in difficult interpretation of the data. To overcome this
limitation, graphical representation by connectograms is currently used via open-source
tools, which, however, lack user-friendly interfaces and options to explore specific sub-
networks. In this context, we developed SPIDER-NET (Software Package Ideal for
Deriving Enhanced Representations of brain NETworks), an easy-to-use, flexible, and
interactive tool for connectograms generation and sub-network exploration. This study
aims to present SPIDER-NET and to test its potential impact on pilot cases. As a working
example, structural connectivity (SC) was investigated with SPIDER-NET in a group
of 17 healthy controls (HCs) and in two subjects with stroke injury (Case 1 and Case
2, both with a focal lesion affecting part of the right frontal lobe, insular cortex and
subcortical structures). 165 parcels were determined from individual structural magnetic
resonance imaging data by using the Destrieux atlas, and defined as nodes. SC matrices
were derived with Diffusion Tensor Imaging tractography. SC matrices of HCs were
averaged to obtain a single group matrix. SC matrices were then used as input for
SPIDER-NET. First, SPIDER-NET was used to derive the connectogram of the right
hemisphere of Case 1 and Case 2. Then, a sub-network of interest (i.e., including
gray matter regions affected by the stroke lesions) was interactively selected and the
associated connectograms were derived for Case 1, Case 2 and HCs. Finally, graph-
based metrics were derived for whole-brain SC matrices of Case 1, Case 2 and HCs.
The software resulted effective in representing the expected (dis) connectivity pattern in
the hemisphere affected by the stroke lesion in Cases 1 and 2. Furthermore, SPIDER-
NET allowed to test an a priori hypothesis by interactively extracting a sub-network
of interest: Case 1 showed a sub-network connectivity pattern different from Case 2,
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reflecting the different clinical severity. Global and local graph-based metrics derived
with SPIDER-NET were different between cases with stroke injury and HCs. The tool
proved to be accessible, intuitive, and interactive in brain connectivity investigation and
provided both qualitative and quantitative evidence.

Keywords: MRI, brain networks, connectograms, brain connectivity, graph analysis, stroke

INTRODUCTION

In the last decades, the emergence of -omics disciplines led
to the development of flexible and comprehensive methods to
effortlessly analyze big data sets. Graph theory is a suitable
means for leveraging big data and for modeling complex
real-world systems, characterized by specific architecture and
topology. This mathematical approach has been effectively
applied in several scientific fields. One of the most impressive
and popular application is the so called “human connectome”
(Bullmore and Sporns, 2009), namely modeling the human
brain as a network on many different scales (Rubinov and
Sporns, 2010), aiming to connect its structure to function
and behavior. Similar to network genomics, which models
the influence of genes in a larger biomolecular system, brain
connectomics reconfigures the study of brain structure and
function by mapping the whole brain in terms of neural units
and their connections (Sporns et al., 2005). Indeed, brain regions
are strongly connected through neuroanatomical white matter
(WM) pathways, intuitively determining a complex system.
In parallel to structural connectivity (SC), synchronous and
asynchronous activity of specific brain regions results in related
complex cognitive functions, which can be investigated in terms
of functional connectivity (FC). Exploring SC and FC patterns
can provide insight of brain function both in physiological and
pathological conditions.

A network is a mathematical representation of a complex
system that is defined by a collection of nodes (vertices) and
links (edges), describing any kind of relationship between pairs
of nodes, at different scales. Networks can be easily represented
as n-by-n association matrices, where n is the number of nodes
composing the network, while each element eij represents the
link connecting the nodes i and j. The elements of the matrix
can be either binary (i.e., describing the presence/absence of
links between pairs of nodes) or weighted (i.e., describing the
strength of the links between pairs of nodes). In the framework
of the human connectome, association matrices are brain
connectivity matrices. According to the technique or imaging
modality employed to extract the connectivity data, nodes and
edges of a brain network can represent different concepts.
When constructing brain connectivity matrices from magnetic
resonance imaging (MRI) dataset, nodes usually represent gray
matter parcels, defined according to well-known atlases (Tzourio-
Mazoyer et al., 2002; Desikan et al., 2006; Smith et al., 2009;
Yeo et al., 2011). Brain atlases segment the brain into sets of
voxels (i.e., parcels), based either on anatomical or functional
criteria. Similarly, the edges of a brain network, describing a
relationship between nodes, can depict either SC or FC features.
SC refers to anatomical associations between neural elements or

brain regions, while FC represents the magnitude of temporal
correlations between the signal produced by pairs of brain
regions. SC and FC can be quantified with various indices,
depending on the imaging modality which is used to investigate
the connectivity pattern. For instance, the number of streamlines
derived with deterministic WM tractography can be used as
weights in an MRI-derived SC matrix, while correlation between
blood oxygenation level-dependent (BOLD) time series can be
used to define edges of MRI-derived FC matrices. SC and
FC generally mirror an undirected relationship between brain
regions (i.e., non-causal), resulting in a symmetric connectivity
matrix [i.e., (Nx(N-1))/2 pairwise connections between N nodes].

Although brain connectivity matrices can exhaustively
and quantitatively outline the human connectome, this
representation does not always provide an intuitive and direct
visualization of the connectivity pattern. Brain connectivity
matrices are generally too large to be visually interpreted, thus
important information might remain concealed. For this reason,
conceiving new methods for the visualization of connectivity
data is needed to aid the interpretation of brain connectivity
measures. This is important especially for explorative analyses,
with the aim of identifying characteristic patterns that may allow
to distinguish the pathological condition from the physiological
one, or to assess changes after a pharmacological treatment
or rehabilitation.

Connectograms are graphical representations that meet these
needs, bridging the gap between quantitative connectivity
analyses and intuitive visualization. Connectograms are circular
graphs in which all the nodes of a networks are represented
along the perimeter of the circle, while the edges of the network
are shown as arcs connecting pairs of nodes. This layout was
previously used in other fields (e.g., genomics) and it was
introduced for brain connectivity mapping by Irimia et al.
(2012b) about 10 years ago. Connectograms can be produced
using Circos (Krzywinski et al., 2009), which is a powerful
software package designed for visualizing data, for exploring
relationships between objects and for creating publication-quality
illustrations. It is extremely flexible, and it can be used in
several diverse fields. However, Circos has no interface, and
it has to be run by command-lines. This approach does not
create any problem to brain connectivity researchers who are
UNIX users, but it may be uncomfortable to researchers who do
not have any programming experience. A user-friendly interface
that could be used by people having knowledge and interest in
brain connectivity but not in computer science may broaden the
accessibility to connectograms.

A complete whole-brain network can be made of thousands
of links, and it is well-known that this large-scale network
is associated with high-level cognitive functions. However,
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the brain is composed of several interacting lower-scale
sub-networks, which are characterized by distinct patterns of
brain activation, identifying specific domains of behavior and
cognition (Bassett and Sporns, 2017). Therefore, extracting sub-
networks is common practice in explorative studies of brain
connectivity, both in physiological and pathological conditions
(Zalesky et al., 2010; Bassett and Sporns, 2017; Berron et al., 2020;
Isernia et al., 2021). Indeed, focusing on sub-networks can lead to
easier data interpretation driven by the addressed physiological
and/or pathological problem. Sub-network should be analyzed
both qualitatively, by a reduced connectogram, and quantitively
by local and global subgraph indexes. Nevertheless, software that
are currently available for connectivity pattern visualization (e.g.,
Circos, BrainNet Viewer, Xia et al., 2013) does not allow for
the interactive selection of some specific nodes within a whole-
brain network, as the direct upload of the sub-network of interest
is generally required. Beside outlining the brain connectome
through an association matrix and finding an intuitive way to
effectively represent it, graph-based network properties can be
calculated to depict a complete picture of the architecture of
the whole network and of each sub-network of interest. Indices
such as node degree, small-worldness, modularity, clustering,
and central hubs, can add meaningful information about the
network topology. These are valuable pieces of information in a
brain connectivity analysis as many studies revealed changes of
organizational and topological properties in a number of brain
disorders, such as Alzheimer’s Disease (Daianu et al., 2013), mild
cognitive impairment (Baggio et al., 2014), Parkinson’s Disease
(Göttlich et al., 2013), epilepsy (Ji et al., 2017), autism (Barttfeld
et al., 2012) and borderline intellectual functioning (Blasi et al.,
2020). Despite the large evidence produced in the last years, gold-
standard methodologies are not established yet, and connectivity
alterations in neurological and neurodegenerative diseases are an
open issue, so far. Therefore, further investigations on human
brain networks are warranted. Accessible tools for easily assessing
the topology and architecture of brain networks would provide
larger amount of evidence that may promote deeper knowledge
of brain disorders and of the effect of treatments (e.g., disease
modifying therapies, rehabilitation) on brain networks.

In this framework, we developed SPIDER-NET (Software
Package Ideal for Deriving Enhanced Representations of brain
NETworks), a software package that provides a very flexible
and user-friendly tool for the selection of partial connectograms,
their visualization, and their quantification. The SPIDER-
NET Graphical User Interface (GUI) intuitively allows rapid
network exploration and interactive real-time sub-network
definition. Figures for connectivity studies are automatically
generated, based on the user selections. Furthermore, the toolbox
provides additional features to apply matrix thresholding, to
easily and automatically compute topological network indices
and to interactively define visualization preferences. The aims
of this study were: (1) presenting SPIDER-NET, and (2)
testing the potential benefits of using SPIDER-NET in clinical
research case studies. Specifically, the following aspects were
tested: (2a) providing an effective representation of brain
connectivity patterns, (2b) interactively extracting sub-networks
to test a priori hypotheses and (2c) deriving whole-brain

quantitative connectivity metrics mirroring local and global
topological properties.

MATERIALS AND METHODS

SPIDER-NET Overview
SPIDER-NET was developed in Matlab but is delivered as a
standalone software (.exe in Windows, .app in macOS, .sh in
UNIX). The tool allows flexible and effective representation
of brain networks through connectograms. It enables the
exploration of network architecture and topology and, optionally,
the extraction of topological properties describing the network
architecture and nodes properties. A schematic flowchart is
shown in Figure 1.

SPIDER-NET Inputs
SPIDER-NET requires 3 input files, which are an Atlas file, a Label
file and a Connectivity Matrix file.

1) The Atlas file is an XSL/XSLX Excel worksheet that
provides information on the atlas the user adopts to define
the network nodes. The list of the Atlas parcels is reported
in a column of the worksheet. All the parcels listed in
the Atlas file are reported as nodes in the connectogram
generated by SPIDER-NET. The sorting of the parcels
in the Atlas file determines the positions of the parcels
in the connectogram obtained with SPIDER-NET (i.e.,
the first parcel is represented on the top of the circle).
A short legend has to be associated to each parcel in
the Atlas file. The legend is shown in the interface to
help interactive node selection. Reporting optional parcel
grouping (i.e., Group Parcellation) is also allowed in the
Atlas file (e.g., brain lobes, resting state networks). In
additional columns (i.e., Attribute), the Atlas file can
enclose additional optional attributes associated with each
parcel (e.g., functional attribute). Both Group Parcellation
and Attributes can be used to rapidly select entire groups
of parcels (i.e., parcels sharing Group Parcellation tag or
Attribute tag) for sub-network extraction. Several Atlas
files, for the most used structural and functional atlases,
are provided as templates together with the software.
Moreover, it is possible to customize or create new Atlas
files according to the user’s preferences and aims, by simply
composing new worksheets.

2) The Label file (ASCII text file, .txt) is a list of the parcel
names. The order of parcels in this file must strictly repeat
the order of rows and columns in the Connectivity Matrix,
which is the third input for SPIDER-NET. Therefore,
the order of the parcels in the Label file is tied to the
Connectivity Matrix generation. The design choice of
repeating the same list of parcels in both the Atlas file and
in the Label file permits great flexibility for connectogram
generation, as the same Atlas file can be used with many
different Label files (and Connectivity matrices). Indeed,
all the parcels being equal, the order of parcels can vary
across Label files (according to the associated Connectivity
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FIGURE 1 | Flowchart for SPIDER-NET usage. First, the Atlas and Label input files are browsed and loaded (blue box). Then, the Connectivity Matrix file is loaded
and the selection of the sub-network of interest is performed (red box). Optionally (dashed lines), it is possible to compute and visualize topological properties of the
selected brain network (green box). Finally, the connectogram is generated according to the selection made and to the chosen visualization settings (yellow box).

matrices), while the sorting of the parcels in the circular
representation remains the same if the same Atlas file is
used for generating the connectograms.

3) The Connectivity matrix file is an ASCII text file,
containing the matrix of association weights with row and
column order matching with the Label file. Any measure
of SC or FC derived with MRI is applicable. The input
connectivity matrix must be square (NxN) and symmetric.
Conventionally, the main diagonal must be set to zero.

Once the inputs have been uploaded (Figure 1, blue box),
the selection of either single parcels, entire group-parcels or
attributes defined in the “Atlas” file, is enabled in the SPIDER-
NET GUI (Figure 1, red box).

Parcel Selection and Connectogram
Generation
Two complementary logics are offered by SPIDER-NET in the
interactive definition of a partial network out of the global one
represented by the input Connectivity matrix (Figure 1, red box):
“Explore from current selected subset” (Option 1) and “Extract a
subgraph” (Option 2).

When the interactive definition of the addressed sub-network
is completed on the GUI, with either Option 1 or Option 2,
SPIDER-NET generates the partial connectogram (Figure 1,
yellow box). The figure of the connectogram was designed
by reengineering and extending the circular graph package

developed for Matlab (GitHub. Retrieved July 28, 2021).1 This
library allows to draw nodes along a circumference, and their
connections, whose shape is defined by the Poincaré hyperbolic
disk (Gao et al., 2020).

The connectogram figure generated by SPIDER-NET is
automatically saved in a folder created at run-time for
each execution. However, interactive changes to the resulting
connectogram are also possible within the software figure-
management GUI. Specifically, changes improving readability
of too crowded diagrams are available: (i) single nodes can
be selected to hide/show the respective labels; (ii) connections
related to specific nodes can be temporarily removed from the
connectogram. The modified figures can be saved in addition to
the original one.

Option 1—Explore From Current Selected Subset
One or more “seed” parcels are defined. Next, the set of target
parcels is defined, which can be either all the parcels of the brain,
just some other parcels or a specific group of parcels (i.e., defined
by Group Parcellation or any additional Attribute defined in the
Atlas file). It is worth noting that in the set of target parcels is
also possible to include the parcels already selected as “seed.”
Only the edges between each seed-target pair are represented
in the resulting connectogram. SPIDER-NET deals with non-
directional graphs, so “seed” and “target” are fully conventional

1https://github.com/paul-kassebaum-mathworks/circularGraph
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names. This option can be useful for the analysis of alterations
due to focal lesions or for qualitative pilot quality control of the
processing pipeline, to check for major errors in the connectivity
matrix generation. For instance, this option can be used in a
preliminary quality check of structural connectivity data verifying
the presence of connections between a chosen seed and all the
other parcels which are linked to it by existing WM tracts, basing
upon anatomical knowledge. This can be particularly valuable
given the complex image acquisition and upstream processing.

Option 2—Extract a Subgraph
This option is based on the selection of a single subset of nodes
(i.e., brain parcels). The user can select either parcels one by
one, or entire groups of parcels, defined according to Group
Parcellation or any additional Attribute reported in the Atlas file.
Therefore, after the selection, a subgraph is defined with respect
to the original Connectivity matrix, and connections between
all the possible pairs of the selected parcels are shown in the
resulting connectogram. This kind of exploration is useful when
specific cerebral circuits are addressed or deeper verification
of single well-known connections in the quality control of the
pipeline are requested.

Additional Features
Although SPIDER-NET has been designed as an easy-to-use
software GUI for simple connectogram generation, additional
optional features were developed and can be set simultaneously
to parcel selection (Figure 1, red box).

First, if the parcels are grouped according to a higher-level
classification (e.g., brain lobes) in the Atlas file, links between
pairs of parcels belonging to the same group (e.g., Group
Parcellation) can be optionally omitted from the connectogram.
Excluding within-group links from the connectogram enables a
clearer visualization of long-range connections, especially when
many connections are displayed.

Second, SPIDER-NET allows to optionally visualize color-
coded properties of the nodes, which can be either local graph-
theory based (e.g., node degree) or representing other properties
of the parcels (e.g., cortical thickness, parcel volume, classification
according to functional circuits). Edge properties (i.e., strength of
connection) may also be color-coded.

Furthermore, density-based thresholding is commonly
applied to matrices in brain connectivity studies, to either
remove spurious connections and/or to binarize a weighted
matrix. Although the user can provide SPIDER-NET with
an already thresholded connectivity matrix, the software is
designed to allow for optional density-based thresholding at
run-time. In particular, once the user has selected the desired
density, the software iteratively searches for the best threshold
to approximate the selected density, starting from zero. The
thresholded matrix is then used to draw the connectogram.

Compute and Visualize Topological
Features
Another feature optionally implemented by SPIDER-NET
(Figure 1, green box) is the computation of graph-based
topological indices for a quantitative assessment. Local, global,

and intermediate structure (i.e., community detection, core-
periphery analysis, rich-clubs) analyses are performed for a total
number of 20 computed indices, computed basing on Brain
Connectivity Toolbox (Rubinov and Sporns, 2010).2 Importantly,
the computed indices refer to both the original Connectivity
Matrix and to the currently selected subset of nodes, thus
providing targeted quantification of cerebral circuits. Besides
the connectogram, the following quantitative information is
graphically represented when graph-based topological indices are
optionally computed:

1. Connectivity weights, shown as a color-coded
connectivity matrix.

2. Local indexes (i.e., node degree, clustering coefficient, local
efficiency for both the binary and weighted case), shown in
plots. The horizontal axis reports the parcel names in the
same order as around the connectogram, while the vertical
axis scales the local index values. The local index value for
each parcel is represented with dots. The index value is
color-coded to highlight the most and the least influential
nodes. Namely, the top 10% parcels and the least 10% ones
are highlighted in red and yellow, respectively. These plots
can be effective in pinpointing network hubs or, conversely,
lesion related drops.

3. Values of the global indices, listed below the plots of local
indices.

These graph-based outputs can be interactively explored,
selecting specific elements of the connectivity matrix or dots
of local indexes to obtain additional information (i.e., weights,
corresponding higher-level classification). It is worth remarking
that results of the interactive subgraph analyses are always shown
on the screen in parallel to results of the analysis of the original
complete connectivity matrix. Once the interactive process is
fulfilled, whole graph and subgraph results are saved.

SPIDER-NET Application on Case
Studies
Participants
The dataset consists of two patients with stroke injury
characterized by a right hemisphere lesion with prevalent
subcortical expression (males, age 44 and 37 years old, referred
to as Case 1 and Case 2, respectively) and 17 healthy control
(HCs) subjects (7 males and 10 females; mean age ± SD:
52.5 ± 8.3 years). All the subjects were enrolled at IRCCS
Fondazione Don Carlo Gnocchi in Milan and signed a written
informed consent.

Magnetic Resonance Imaging Acquisition and Matrix
Construction
All the participants underwent a MRI examination performed on
a 1.5 T Siemens Magnetom Avanto scanner equipped with a 12-
channels head coil. Both patients with stroke injury were scanned
six months after hemorrhagic stroke.

The acquisition protocol included:

2https://sites.google.com/site/bctnet/
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1. a high-resolution 3D T1-weighted Magnetization Prepared
Rapid Gradient-Echo (MPRAGE) image, (repetition time
(TR)/echo time (TE) = 1,900/3.37 ms, Field of View
(FoV) = 192 × 256 mm2, resolution = 1 × 1 × 1 mm3,
176 axial slices);

2. a diffusion-weighted echo planar images (EPI) image
along 64 directions (b- value 1,500 s/mm2, TR/TE
7,800/109 ms, matrix size = 102 × 102 × 46,
resolution = 2.5 × 2.5 × 2.5 mm3) and 3 b0 images
(2 with AP, and 1 with PA encoding direction);

3. a dual-echo turbo spin echo proton density PD/T2-
weighted image (TR = 4,540 ms, TE = 28/112 ms, matrix
size = 320 × 320 × 60, resolution = 0.75 × 0.75 × 2 mm3).

After standard preprocessing, 3D T1-weighted volumes were
parcellated, at subject-level, and automatically labeled into 75
cortical parcels for each hemisphere (150 in total) according
to the Destrieux atlas (Destrieux et al., 2010) using FreeSurfer
(version 6). Seven subcortical regions per hemisphere (thalamus,
caudate, putamen, pallidum, nucleus accumbens, amygdala and
hippocampus) and the brainstem were also segmented using the
FreeSurfer automatic labeling process (Fischl et al., 2002) for a
total of 165 parcels.

Diffusion-weighted images were preprocessed using the
FMRIB’s Software Library (FSL) tools with a standard pipeline
(i.e., correction for susceptibility-induced geometric distortions,
for eddy current distortion and head movements) (Pelizzari
et al., 2019) and diffusion tensor imaging (DTI) was estimated
for each voxel using the FSL DTIFIT toolbox (Andersson
et al., 2003; Behrens et al., 2003; Andersson and Sotiropoulos,
2016). Then, DTI-derived whole brain tract was generated.
In addition, diffusion weighted data were processed also
with Constrained Spherical Deconvolution (CSD) approach.
Specifically, StarTrack3 was used both to estimate the fiber
orientation distribution function and to perform subsequent
deterministic whole brain tractography, according to high
angular resolution diffusion imaging (HARDI) processing
(Dell’Acqua et al., 2010).

Cortical and subcortical parcels, obtained from the 3D T1-
weighted images, were registered to the respective diffusion-
weighted space using the FSL flirt toolbox (Jenkinson et al.,
2002). Then, for each subject, WM tracts connecting each pair
of registered parcels were reconstructed with TrackVis software,4

basing both on DTI-derived whole brain tract and CSD-derived
whole brain tract.

In both patients, the stroke lesions were segmented by an
experienced operator on the PD/T2 volumes with Jim software.5

DTI-based and CSD-based SC matrices were derived for
patients with stroke injury and HCs, by computing the edges as
the number of the reconstructed fiber (NF) of each WM tract
connecting each pair of the 165 parcels. In order to account
for differences in brain volumes, NF was normalized by the
sum of the volumes of the pair of respective connected parcels

3www.natbrainlab.co.uk
4http://trackvis.org/
5http://www.xinapse.com/

(Blasi et al., 2020). A probabilistic group matrix was computed
to represent the HC group as a whole, retaining only the
connections shared by at least 53% of the HCs subjects (Blasi
et al., 2020). Therefore, three matrices where finally obtained for
both DTI and CSD approach: one for each patient with stroke
injury and one HC group matrix. The obtained matrices were
then normalized by the respective maximum edge value, so that
the matrix elements ranged from 0 to 1.

Running SPIDER-NET
SPIDER-NET inputs were defined as follows. The Atlas file was
constructed based on the Destrieux atlas.

The Label file, matching the connectivity matrices, reported
the Destrieux atlas parcel names. The normalized connectivity
matrices for Case 1, Case 2 and HCs (Connectivity matrix files)
were uploaded one at a time, for each separate analysis.

First, for the two patients with stroke injury, DTI-based
connectograms showing the connectivity pattern in the right
hemisphere, where the lesions of both subjects are located, were
generated to test the ability of SPIDER-NET to show altered
connectivity patterns due to a focal lesion.

Second, for each patient with stroke injury, a DTI-based
subgraph focused on expected altered circuit was extracted.
Specifically, all the parcels overlapping with the stroke lesions
were selected as seeds, while all the remaining brain parcels
were set as target for this sub-network analysis. The same
sub-network was investigated for the two stroke cases and
for the HC group to enable a comparison. The following
regions of interest were considered as seeds: right precentral
gyrus, right long insular gyrus and central insular sulcus, right
short insular gyri, right caudate nucleus, right pallidum, right
putamen, and right thalamus. This analysis was performed
to test the ability of SPIDER-NET to visually explore sub-
networks of interest. Furthermore, the same sub-network analysis
was performed for connectivity matrices derived with CSD
processing, to compare the connectivity results based on DTI and
CSD processing techniques.

Third, the main local and global graph-analysis indices
describing network topology were extracted both for the
weighted and for the binary connectivity DTI-based matrices.
The node degree was the main focus relevant to local
graph index analysis.

RESULTS

Connectogram Visualization of the
Connectivity Pattern Altered by Stroke
Lesions
The connectograms showing the DTI-based connectivity pattern
of the right hemisphere of the two patients with stroke injury
are shown in Figure 2. All the 165 parcels (cortical parcels
of Destrieux atlas and subcortical regions) are reported in the
circular representation and divided in 8 anatomical lobes (i.e.,
Group Parcellation defined in the Atlas file) per hemisphere.

Upon visual inspection, the connectivity pattern of the right
hemisphere is different in Case 1 compared to Case 2. Specifically,
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FIGURE 2 | Connectograms showing the connectivity pattern of the right hemisphere for the two stroke patients. The connectogram of Case 1 (A) is reported on
the left, while the connectogram of Case 2 (B) is represented on the right. L-left hemisphere, R-right hemisphere, Fro-frontal, Ins-insular, Tem-temporal, Par-parietal,
Occ-occipital, Sbc-subcortical, CeB-cerebellum, Bst-brainstem. Brain parcels are reported with standard labels provided for the Destrieux atlas.

Case 1 shows a less dense connectivity pattern in the right
hemisphere, especially in terms of connections among the frontal
lobe, insular cortex and subcortical structures.

Connectograms Visualization for
Sub-Network Analysis
The connectograms generated with SPIDER-NET to explore the
DTI-based connectivity between gray matter parcels intersecting
the lesions of patients with stroke injury (Figure 3A) and the rest
of the brain are shown in Figure 3B. The same connectograms
obtained with Circos software6 are reported in Supplementary
Material to allow for comparison.

Upon visual inspection, the sub-network connectivity pattern
of both patients with stroke injury looks altered compared to
HCs. In addition, it is worth noting that differences can be
qualitatively observed both in the right hemisphere (where the
stroke lesions are present) and in the contralateral one. Case
1 displays a less dense right hemisphere connectivity pattern
compared to Case 2. On the other hand, the sub-network
connectogram of Case 2 qualitatively shows less connections in
the left frontal-insular area and in the left parietal-occipital lobes
compared to Case 1.

Diffusion Tensor Imaging-Based and Constrained
Spherical Deconvolution-Based Connectivity: Visual
Comparison
The connectivity between regions overlapping the lesions of
stroke patients and the whole brain was also investigated

6http://circos.ca/

from matrices derived with CSD processing. The resulting
connectograms are shown in Figure 3B.

The sub-network connectograms of both Case 1 and Case
2 looks different when compared to the HC group one,
as for the DTI-based connectograms. At visual inspection,
the connectograms derived from DTI and CSD processing
generally preserve the same connectivity patterns. CSD-based
connectograms highlight the difference between Case 1 and
Case2 connectivity pattern.

Local and Global Topological Properties
Analysis
Node degree explorative figures produced by SPIDER-NET for
Case 1, Case 2 and HCs are shown in Figure 4. In general,
patients with stroke injury presented lower node degrees when
compared with HCs. In HCs, regions with the highest node
degrees, represented as red dots in Figure 4 (upper panel), were
mostly located in the dark-green vertical stripe, representing
subcortical regions. Conversely, in the patients with stroke injury,
both characterized by a right hemisphere lesion with prevalent
subcortical expression, the regions showing the highest local node
degree are more distributed across the cortical lobes. In addition,
caudate nucleus, pallidum, putamen, and thalamus, which were
classified by SPIDER-NET as regions with the highest node
degree in HCs (red dots), were not classified as nodes with high
node degree in both Case 1 and Case 2. In Figure 4, putamen
node degree values are highlighted for HCs, Case 1 and Case
2. Patients with stroke injury presented lower network density
(18.65 and 22.32%, respectively, for Case 1 and Case 2) with
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FIGURE 3 | The connectograms (B) derived by both DTI (left) and CSD (right) processing, of the sub-network extracted using as seeds all parcels which are
overlapped with the stroke lesion of either Case 1 or Case 2, are reported for HCs (top panel), Case 1 (middle panel) and Case 2 (bottom panel). Specifically, seeds
were defined as follows: right LoInG/CInS, right ShoInG, right Pal, right Pu, right CaN, right PrCG, right Tha (A). All the other parcels of the brain were considered as
target for the connectivity analysis. L-left hemisphere, R-right hemisphere, Fro-frontal, Ins-insular, Tem-temporal, Par-parietal, Occ-occipital, Sbc-subcortical,
CeB-cerebellum, Bst-brainstem, PrCG-precentral gyrus, LoInG/CInS-long insular gyrus and central insular sulcus, ShoInG-short insular gyri, Pal-pallidum,
Pu-putamen, CaN-caudate nucleus, Tha-thalamus.

Frontiers in Neuroscience | www.frontiersin.org 8 March 2022 | Volume 16 | Article 818385

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-818385 March 12, 2022 Time: 15:9 # 9

Coluzzi et al. SPIDER-NET

respect to HC (47.51%), resulting in differences of 28.9 and 25.2%.
Global topological binary and weighted indices extracted from
the whole-brain network of HC, Case 1 and Case 2 are shown
in Table 1.

Both Case 1 and Case 2 presented differences for all the
global topological indices when compared to HCs. Percentage
differences ranged from 10.5 to 96.9% for Case 1, and from
14.3 to 81.9% for Case 2. Except for clustering coefficient, Case
1 presented with greater percentage difference with HCs when
compared to Case 2.

DISCUSSION

In this study we presented SPIDER-NET, an innovative tool for
exploring and visualizing brain connectivity through full and
partial connectograms. The tests on two readily interpretable
cases with stroke injury proved that this tool is capable
of producing meaningful connectograms and of interactively
extracting and analyzing focused sub-networks.

As previously mentioned, connectograms were introduced
by Irimia et al. (2012a; 2012b) to provide intuitive and clear
visualization of neuroconnectivity relationships, alternatively to
large numerical matrices which do not allow prompt inference
or hypothesis testing about either network properties or
pathological damage. Although a variety of tools exploiting
connectograms for studying connectomics already exist
(Krzywinski et al., 2009; Whitfield-Gabrieli and Nieto-Castanon,
2012; Nieto-Castanon, 2020), so far, none of them allowed
both interactive network exploration and the selection of sub-
networks, while also providing a user-friendly interface. The
interactivity allows for a faster execution of the tool and its use
at ease, without the need of recompilation and re-uploading
of the files. The user is also guided through the selection of
different parameters providing a description for each feature and
preventing from possible incidental choices. Therefore, SPIDER-
NET could broaden the access to connectivity investigation to any
interested user in the neuroscience field (e.g., neuropsychologists,
physicians), other than computer scientists.

In the presented application examples, SPIDER-NET allowed
to highlight different connectivity patterns between two patients
with stroke injury. Interestingly, although both patients were
characterized by a right hemisphere stroke lesion with prevalent
subcortical expression, the disconnection patterns of the whole
right hemisphere looked different between them. The different
connectivity pattern of the right hemisphere was highlighted
thanks to appropriate subgraph selections, interactively allowed
by the tool. As expected, after considering the lesion patterns,
right hemisphere connectivity differences qualitatively observed
in the connectograms included connections with frontal lobe,
insular cortex, and subcortical structures. Of note, although
the connectograms presented in the figures were very dense,
we chose to maintain the original density of the networks
(19.65 and 22.32%, respectively, for Case 1 and 2) before any
selection. This was carried out to avoid the possible introduction
of thresholding biases, thus reducing the capability to capture
the main differences between the connectivity patterns of the

two patients, especially considering the low original values
of density. Although dense connectograms could result in
poor readability, SPIDER-NET solves this issue allowing both
interactive exploration of the network and stringent selection as
successively performed by analyzing a sub-network of interest.

Indeed, in addition to a first explorative visual investigation
of the right hemisphere, SPIDER-NET was used to perform a
more focused analysis on a sub-network of interest, interactively
testing an a priori hypothesis. The comparison of HCs, Case 1,
and Case 2 sub-network connectograms generated by SPIDER-
NET confirmed the a priori hypothesis and provided additional
information about the disconnectivity pattern of Case 1 and Case
2, which may be used to improve the understanding of clinical
manifestations and to drive personalized treatment. Indeed,
both patients presented facio-brachio-crural hemisyndrome,
with main brachial expression and severe functional limitation
of movements of the left upper limb, especially of the
hand. However, this limitation was more severe in Case 1
than in Case 2. This was mirrored by different residual
connectivity patterns showed by SPIDER-NET connectograms.
The following additional aspects were highlighted thanks to
the circular diagrams. First, the pattern of disconnection
involved both the right hemisphere, where the stroke lesions
were present, and the contralateral one. Second, for both
Case 1 and Case 2, the impairment of the cortical areas of
interest determined a decrease in both short-range (within
lobe) and long-range (between lobes) connections within the
hemisphere ipsilateral to the stroke lesion. Third, in both
patients with stroke injury the pattern of interhemispheric
connectivity was also compromised, probably because subcortical
nuclei, which are integration hubs of extrapyramidal systems,
were extensively affected by the lesions. Therefore, producing
connectograms on focused sub-networks with SPIDER-NET
allowed to overcome the difficulty of visualizing the large
number of edges that would be present in the whole-
brain connectograms.

At a visual inspection, DTI-based and CSD-based
sub-network connectograms presented comparable connectivity
patterns, highlighting that valuable information is provided by
both the processing techniques. Furthermore, CSD processing
pipeline yielded to reconstruct denser connectograms, as
expected. Indeed, CSD ability to better deal with the problem
of the crossing fibers when compared to DTI is well-established
(Dell’Acqua et al., 2007). This is in line with differences between
DTI and CSD that were observed in terms of interhemispheric
connections, that were particularly evident for Case 1.

In this study Case 1 and Case 2 were compared with a HC
template obtained with the same method of Blasi et al. (2020).
Although subjects included in the group allowed a good age-
match with Case 1 and 2, SC is dependent on age. Therefore,
defining an even more homogeneous HC template group is
warranted for future studies using SPIDER-NET.

The connectivity patterns of pathological cases with focal
lesions were here chosen for test purposes of a novel tool.

Nonetheless, generating SPIDER-NET connectograms could
be a good general strategy to test the robustness of the
processing pipeline, including the connectivity metrics, further
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FIGURE 4 | Local node degree computed for HCs, Case 1 and Case 2. The X-axis represent the 165 brain parcels, even if only lobe labels are reported (e.g., Fro).
The left hemisphere is represented in the left half of the graph, while the right hemisphere is represented in the right half. Vertical colored stripes represent different
lobes (e.g., the frontal lobe is represented in pink). The same lobe in left and right hemispheres is shown with the same color. Each dot in the graph represents the
local node degree of a brain parcel. The 17 parcels (10% of 165) exhibiting the highest local node degree are represented as red dots. The 17 parcels (10% of 165)
with the lowest local node degree are represented as yellow dots. All the other parcels are represented as blue dots. The SPIDER-NET interactive interface allows to
visualize information about each dot, navigating on them. The right Putamen is highlighted by an arrow.

conditioning (e.g., thresholding or binarization), and global
or local graph indices. As one of the main limitation of
connectomics, so far, is the lack of standardized procedures for
network construction and edge weighting (Campbell and Pike,
2014; Maier-Hein et al., 2017), SPIDER-NET may be applied as
a flexible and easy tool for calibrating connectomics analyses.
Specifically, it could allow to quickly identify expected patterns
of disconnection and to easily highlight major errors if present.
This quality check may offer a benchmark before addressing

less trivial connectivity alterations, as the ones induced by
diffused neurodegeneration, which might be another application
field of SPIDER-NET.

The last step of graph analysis usually involves the
computation of a set of different indices describing network
topology and architecture, and dedicated software packages
are generally employed. Beyond connectograms generation,
SPIDER-NET allows to derive quantitative connectivity metrics,
representing global and local (i.e., node level) network properties
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TABLE 1 | Global graph-based topological properties of the HC template and the two stroke cases. Reported Delta values were computed as (HC-Case)*100/HC.

Graph-based indexes HCs Case 1 HCs-Case1 Delta (%) Case 2 HCs-Case2
Delta (%)

Average degree 77.915 30.582 60.7% 36.606 53.0%

Average strength (W) 3.048 1.233 59.5% 1.396 54.2%

Clustering coefficient 0.76 0.614 19.2% 0.604 20.5%

Clustering coefficient (W) 0.019 0.017 10.5% 0.015 21.1%

Characteristic path length 1.542 2.092 –35.7% 1.927 –25.0%

Characteristic path length (W) 18.302 35.211 –92.4% 28.544 –56.0%

Global efficiency 0.735 0.549 25.3% 0.587 20.1%

Global efficiency (W) 0.068 0.039 42.6% 0.045 33.8%

Small-worldness 1.591 2.881 –81.1% 2.531 –59.1%

Modularity 0.193 0.38 –96.9% 0.351 –81.9%

Coreness statistic 0.321 0.402 –25.2% 0.367 –14.3%

(Rubinov and Sporns, 2010). For instance, characteristic path
length is a global index mirroring communication efficiency
within the network, while clustering coefficient is a global
measure of network segregation. Among the several graph-
based indices, the node degree is a basic local property of a
network node, representing the number of connections with
other nodes. Characterizing node degree distribution is an
important component to identify putative hubs, namely nodes
with high node degree, which significantly impact on the
network topology. The example of application presented in
this study highlighted the impact of graph-based metrics in
connectivity analysis. Both local and global metrics derived
from the whole-brain networks of Case 1 and Case 2 differed
from HC one, as expected (Crofts et al., 2011; Cheng et al.,
2019; Li et al., 2021). This quantitative result mirrored the
differences qualitatively observed with connectograms. Node
degree graphs produced by SPIDER-NET provided an intuitive
tool to interactively explore network local properties. A first
general visual comparison of Case 1, Case 2, and HCs node
degree distribution highlighted that the patients with stroke
injury were characterized by lower node degree across the whole
brain (Sotelo et al., 2020). Therefore, although the two stroke
lesions were limited to a portion of the right hemisphere,
an alteration of the whole connectivity pattern was induced
(Crofts et al., 2011; Cheng et al., 2019). In addition, it is
noteworthy that SPIDER-NET graph-analysis confirmed that
subcortical gray matter regions (e.g., the putamen) presented
high node degrees in HCs, while these brain areas had lower
node degrees in Case 1 and Case 2. This result reflected the
prevalent subcortical expression of the two stroke lesions. Also,
global graph metrics of segregation and integration were derived
with SPIDER-NET, emphasizing the differences between cases
with stroke injury and HCs (e.g., a drop in density of 28.9
and 25.2%, respectively, vs. HCs). Reduced connectivity in
Case 1 and Case 2 compared to HCs was also numerically
paralleled by large differences in all the parameters describing
network topology and architecture. Specifically, patients with
stroke injury were characterized by lower network integration,
segregation, and efficiency. It is remarkable a greater difference
in the characteristic path length (–92.4%, –56%) rather than in
the clustering coefficient (10.5%, 21.1%) between the HCs and
the two cases. The strong effect of the stroke lesion seems to

lead to a much more reduced integration than segregation in
the contralesional emisphere as shown in Crofts et al. (2011).
Furthermore, Case 1 presented larger differences with HCs than
Case 2, mirroring the greater clinical severity of the former.
Therefore, SPIDER-NET automatically and easily provided useful
metrics to quantitatively describe the impairment of the stroke
patients included in this study.

Currently, the major limitation of SPIDER-NET is that it
allows the analysis of one connectivity matrix at a time. The
upload of more than one matrix to extract sub-matrices based
on the user selection will be implemented in future SPIDER-
NET versions. Furthermore, pre-conditioning operations are
currently limited to density thresholding, as this is the most
widespread thresholding method in connectivity studies (Wang
et al., 2009; van Wijk et al., 2010; Beare et al., 2017). However,
at present, other customed approaches can be used prior to
the employment of SPIDER-NET by directly uploading already
processed matrices. SPIDER-NET offers a flexible sub-network
extraction method which relies on a priori hypothesis testing
by manual selection of parcels/group-parcels and attributes.
However, different approaches exist to automatically identify sub-
graphs of interest (Hopcroft and Tarjan, 1973; Zalesky et al.,
2010), especially in cases in which gross brain abnormalities may
not be present. An interesting perspective may be to include
automatic and data-driven algorithms for sub-network extraction
and comparison with hypothesis-driven selection. In future
works, investigating neurological diseases other than stroke
and assessing changes associated with treatments (e.g., drugs
or rehabilitation) is warranted to test SPIDER-NET sensitivity
in detecting brain connectivity changes. Another interesting
application might be the investigation of FC with SPIDER-NET
and the integration of structural and functional information
thanks to the flexibility in extracting sub-networks. In addition,
SPIDER-NET application to brain connectivity matrices derived
with other modalities (e.g., EEG, MEG, NIRS) could be a further
future development. Although SPIDER-NET was presented and
tested in this study for MRI datasets, its broad flexibility would
actually allow applications even in several other diverse contexts,
including all -omics disciplines. For instance, in the framework
of rehabilomics (Wagner and Sowa, 2014), which integrates
evaluation of transdisciplinary biomarkers, SPIDER-NET may
help in the definition of patient-tailored rehabilitative treatments.
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CONCLUSION

In this work, we proposed a new freely available software
package called SPIDER-NET7 and we tested it for deriving
qualitative and quantitative valuable information of brain
connectivity. First, the tool provided a facilitated, interactive,
and real-time visualization of connectograms, based on flexible
investigation of brain sub-networks. In addition, the automatic
computation of topological properties of the networks completed
the assessment with quantitative metrics. In conclusion, SPIDER-
NET proved to be an accessible and useful tool for human
brain connectome investigation in both physiological and
pathological conditions.
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Abstract. Schizophrenia is a brain disorder leading to detached mind’s normally integrated pro-
cesses. Hence, the exploration of the symptoms in relation to functional connectivity (FC) had great
relevance in the field. Connectivity can be investigated on different levels, going from global features
to single edges between pairs of regions, revealing diffuse and localized dysconnection patterns. In
this context, schizophrenia is characterized by a different global integration with reduced connectiv-
ity in specific areas of the brain, part of the Default Mode Network (DMN). However, the assessment
of FC presents various sources of uncertainty. This study proposes a multi-level approach for more
robust group-comparison.
FC data between 74 AAL brain areas of 15 healthy controls (HC) and 12 subjects with chronic
schizophrenia (SZ) were used. Multi-level analyses were carried out by the previously published
SPIDER-NET tool. Graph topological indexes were evaluated to assess global abnormalities. Ro-
bustness was augmented by bootstrapped (BOOT) data and the stability was evaluated by removing
one (RST1) or two subjects (RST2). The DMN subgraph was extracted and specifically evaluated.
Changes relevant to the overall local indexes were also analyzed. Finally, the connection weights
were explored to enhance common strongest activations/deactivations.
At a global level, expected trends of the indexes were found and the significance of modularity
(p = 0.043) was not confirmed by BOOT (p = 0.133). The robustness assessment tests (both RST1
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and RST2) highlighted more stable results for BOOT compared to the direct data testing. Con-
versely, significant results were found in the analysis at lower levels. The DMN highlighted reduced
connectivity and strength as well as increased deactivation in the SZ group. At local level, 13 areas
were found to be significantly different (p < 0.05) in the groups, highlighting a greater divergence
in the frontal lobe. These results were confirmed analyzing the single negative edges, suggesting
inverted connectivity between prefronto-temporal areas.
In conclusion, multi-level analysis supported by BOOT is highly recommended when analyzing FC,
especially when diffuse and localized dysconnections must be investigated in limited samples.

1. Introduction

The brain is the most tangled network known in nature. Indeed, it comprises billions of neurons
which form trillions of synapses between each other. Conversely, at a macroscale extent, brain
regions can be thought as connected through fiber bundles, mirroring the anatomical structure, or
functional activations of the areas, in resting-state or during a task. All this collective activity makes
behaviour, thought, memory and consciousness possible. In this context, clinical disorders are char-
acterized by alterations of the connections’ paths. For this reason, it is paramount to explore these
abnormalities to enforce our understanding of the brain in health and disease.
Considering the methods used to investigate brain networks, Magnetic Resonance Imaging (MRI)
is the dominant technique for macroscale analysis mainly because of its safety, spatial resolution
and availability. On one hand, Diffusion Tensor Imaging (DTI) or other methods allow to visualize
and examine the organization of structural connectivity by white matter (WM) tracts. On the other
hand, functional MRI (fMRI) inspects the dynamics of activity in each gray matter (GM) area. The
functional activations of the GM areas are based on the Blood Oxygen Level Dependent (BOLD)
response.
Through these methodologies it is possible to obtain connectivity matrices, which can be investi-
gated in their organization and function. Thus, a matrix (graph) can be defined as a collection of
nodes (brain regions) and edges (anatomical or functional connections) between pairs of nodes [1].
The nodes are obtained by mapping the parcels of the network according to well-known brain atlases
defined from the structural or functional point of view [2, 3]. Accordingly, the edges represent the
links detected between the regions describing the weights of the connections. Indeed, the strength
of each connection is weighted according to the addressed connectivity measure such as the number
of fibers in the structural case, or the Pearson’s correlation in the functional case.
The comprehension of these networks is a complex field of research named connectomics, which
can potentially address the brain at all its scales, levels and features [4]. Focusing on the macro-
scale of brain GM areas, it is first possible to analyze and compare different networks through the
investigation of their graph-based global (top level) topological features such as node degree, node
strength, clustering coefficient, efficiency, path length or modularity [1, 5].
Second, the brain is also known to be divided into interacting specialized sub-networks, devoted to
specific domains of behavior and cognition [6]. Extracting sub-networks is an increasingly common
practice in explorative studies to easily interpret the brain connectivity data in physiological and
pathological conditions. [6, 7, 8, 9, 10]. In this regard, we presented in a previous study a novel
software tool allowing the interactive and flexible analysis of anatomical/functional networks and
sub-networks called SPIDER-NET [11].
Third, the above-mentioned graph indexes can also be computed at local level providing information
regarding the configuration of the single nodes. Valuable information is extracted about hubs of the
networks and regions associated to specific disruptions, such as lesions [11, 12].
These three levels of analysis (network, sub-network and node-level) together with the analysis of the



D. Coluzzi, G. Baselli / Diffuse and Localized Functional Dysconnectivity in Schizophrenia 3

single edges resulted helpful in the study of many pathological conditions. Indeed, global changes
of relevant properties, different sub-network configurations, disrupted node connectivity and miss-
ing relevant connections were already found in stroke, Alzheimer’s disease and other pathologies
[13, 14]. However, the integration and the interpretation of the results extracted at all three levels
is still difficult. The parallel multi-level analysis can be particularly helpful in case of pathologies,
such as the schizophrenia which the localized/diffuse origin is unknown yet [15].
Schizophrenia may be characterized as a disorder of brain connectivity since it leads to detached
mind’s processes. The main symptoms of the pathology such as reduced cognitive and emotional
deficits acknowledge this breakdown [15]. More specifically, the clinical manifestations of the disor-
der can be hallucinations, disorganized thinking and agitation, social isolation, emotional flattening,
anhedonia and apathy. Often, these manifestations may be preceded by a series of prodromal symp-
toms, such as inability to perform one’s job or neglect of personal hygiene.
Many studies [16, 17] explored the connections between these symptoms and functional associa-
tions. Specifically, connectivity deficits were found on all abovementioned levels [15]. First, a global
connectivity reduction was discovered in different studies [17, 18, 19]. Second, at interconnected
sub-network level, fronto-temporal and occipito-temporal dysconnections were found through the
use of the network-based statistics [7]. Third, amongst all brain regions, the prefrontal cortex re-
sulted to be one of the most affected nodes [16, 18, 19]. More generally, Liu and colleagues found
a significant alteration of the pattern of small-world topological properties in many brain regions of
the prefrontal, parietal and temporal lobes. Four, Skudlarski and colleagues analyzed single con-
nectivity edges, finding differences in the connectivity pattern originating from posterior cingulate
cortex within the Default Mode Network (DMN) suggesting to have the most affected connections
by the functional reorganization of the schizophrenia [20].
DMN is reasonably important in the context of schizophrenia since it is deeply involved in social
behavior, control of the emotional state of the individual [21, 22], which characterize altered inte-
grated processes by the pathology. From different studies it resulted that connections within this
circuit were different than healthy controls, being related to emotion control and memory [21, 23].
However, the observations for the DMN remained controversial, since the average connectivity of
the patients showed higher or lower values than healthy controls according to the dynamic mental
state and the individual connections were subject to reorganization [20].
Indeed, although the analysis of changes in functional connectivity is a powerful tool to analyze
brain organization, due to the limitations of the fMRI techniques, the statistical investigation of brain
connectivity datasets is often subject to uncertainty. Indeed, stationarity is often assumed in the inter-
pretation of the results coming from this technique. However, considering the known dynamic and
condition-dependent nature of brain activity, it is obvious that the functional connectivity metrics
such as the Pearson correlation coefficient will change over time [24, 25, 26]. This variability allows
to define the paradigm of dynamic functional connectivity analysis, which cannot be ignored, since it
also varies within the same subject and even between time windows within the same session. In this
context, the evaluation of functional static connectivity is subjected to uncertainty. In addition, func-
tional connectivity acquisitions are characterized by low signal-to-noise ratio (SNR) and non-neural
noise related to cardiac and respiratory processes and hardware instability. Finally, other definition
issues such as the window length and other confounds remain controversial [27, 28, 29, 30].
Among all statistical methodologies, bootstrapping was already used in some imaging problems,
such as in the work conducted by Lazar and Alexander [31], since it allows to robustly estimate
the statistical features of a population from a limited number of measurement samples, without any
assumptions about the distribution assumed by the initial data. This approach also represents an
alternative to traditional hypothesis testing, since it does not require to have a test statistic satisfying
certain assumptions largely dependent on the experimental design and to know the properties of the
data. As a result, the main advantage of the method is that the uncertainty variability of the estimator
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can be quantified, characterizing the dispersion and other errors in the null hypothesis [32, 33]. Con-
sidering the number of bootstrap samples used, the resulting statistics represent a random sample
with replacements from the initial distribution characterize by a smaller size. It is worth remarking
that obtaining thousands of bootstrap observations from the initial data is not the same as collecting
new data. Indeed, the approach is based on an ensemble of simulated data (surrogates) and the use-
fulness of bootstrapping is related to the quantification of statistical quantities such as the standard
error, a possible bias and a confidence interval of particular sample of data.
In the context of investigating graph-structured data, the quantification of the uncertainty intrinsic
to the data is essential for their scientific usefulness. In the recent probabilistic study conducted by
Green and Shalizi [34] the bootstrap was applied on simulated random graphs. It was seen that the
resampling of the synthetic data was able to approximate the distributions of motif densities, such
as, the number of times fixed subgraph appear in the random network. In this work, the bootstrap
was also applied to quantify the uncertainty of the network metrics. Another example is given by
the study conducted by Gel and colleagues, where bootstrap was applied for the quantification of
uncertainty in graph degree distributions of collaboration networks, where for example articles are
represented as nodes and cross-references as edges [33]. Indeed, when applying the bootstrap over
a distribution of data, the expected result is a better definition of the variability centered with re-
spect to the initial mean of the same distribution at the increasing of the number of resampled data
[35]. However, a limitation of this approach is related to computational costs since the bootstrap-
ping methods are based on multiple resampling of the original dataset that can be computationally
expensive, especially for large datasets.
However, the bootstrapping approach was only partially applied in brain connectivity studies. For
example, in the study conducted by Wei and colleagues this approach was used to perform connectiv-
ity matrix feature selection in a regression task cognitive traits prediction [36]. Spearman correlation
analysis was indeed performed between connectivity and cognitive measures in each resample sub-
set to extract a feature vector. In a previous study [37], the results from mean functional connectivity
of Parkinson’s disease patients were qualitatively analyzed through bootstrap.
To the best of our knowledge, there is significant potential for effectively and more quantitatively
applying bootstrap techniques on connectivity data, although fundamental issues still need to be ad-
dressed. Indeed, connectivity measurements are well-known to be affected by different sources of
noise, which can have a strong impact especially with limited population size. Also, the static eval-
uation of functional connectivity is limited with respect to dynamic functional connectivity [24, 28].
In this sense, it is crucial to evaluate the robustness and the stability of potential biomarkers of brain
connectivity to improve their usability and understanding. Moreover, there is the need to evaluate
abnormalities on multiple levels, especially in conditions characterized by both localized and diffuse
degeneration, such as schizophrenia.
Hence, the main aim of this study was the robust assessment of connectivity indexes on different lev-
els through the bootstrap procedure to ensure a reliable detection of abnormalities in schizophrenia.
To investigate both diffuse and localized alterations, a top-down analysis of: i) global connectivity
deficits, ii) sub-network disruptions, extracting the DMN, iii) dysconnectivity in individual regions
and its inter-subject variability, and iv) abnormalities in positive/negative connections resulting in
activation/deactivation circuits or communities is proposed. The methodology was developed in the
context of the SPIDER-NET tool [11] to allow automatic multi-level investigations in group studies.
Afterwards, the stability of results is assessed by comparing bootstrapping to direct testing via a
leave-n-subject-out approach to evaluate the impact of sources of uncertainty in functional connec-
tivity. The whole pipeline of multi-level analysis was validated on a dataset acquired from healthy
and schizophrenic subjects highlighting several abnormalities at the examined levels.
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2. Methods

2.1. Data Acquisition and Study Population

Data used in this study were collected in the context of the work conducted by Zalesky and col-
leagues [7]. Regarding the written informed consent and ethical approval, reference is made to the
original work. The anonymized connectivity dataset is publicly available at https://nitrc.org/projects/nbs/.
The dataset is composed by 15 healthy controls - HC (mean age 33.3 years, σ = 9.2 years, 14 males)
and 12 subjects with chronic schizophrenia - SZ (mean age 32.8 years, σ = 9.2 years, 10 males). The
patients were diagnosed according to standard operational criteria in the Diagnostic and Statistical
Manual of Mental Disorders IV (American Psychiatric Association, 2000). The matching of the two
populations was done according to age, pre-onset IQ and years of education. SZ subjects did not
receive medication on the day of acquisition to reduce acute drug effects on the data. T2*-weighted
echo-planar images depicting blood oxygenation level dependent contrast were acquired through a
1.5 Tesla scanner (GE Signa, General Electric, Milwaukee, WI). As regards the matrix construction:
the nodes were defined according to a subset of areas of the AAL atlas, whereas the edges were
obtained computing the correlation between times series which were previously preprocessed. More
specifically, scale 3 of the wavelet transform (0.03 < f < 0.06 Hz) was considered and the filtered
time series were corrected for fluctuations of signals through linear regression against reference time
courses extracted from seed regions. Some AAL nodes were excluded since it was not possible
to correctly estimate the node-averaged time series, due to poor coverage in some subjects. The
resulting connectivity matrices for each subject have dimensions 74 × 74. More details on ethical
approval, imaging parameters and processing are reported in the cited work [7].
Generally, after composing the matrix, a threshold is defined to emphasize its topological features
by removing spurious associations. Among all methods, absolute and density thresholding are the
most common in connectivity studies [5, 38]. In this case, we decided to not threshold the matrices
since it introduces a confound on properties of the graphs in the context of a group study. On one
hand, different levels of sparsity can be obtained by applying the same threshold to all matrices. In
this case, it is thus not possible to rule out systematic density variations as the main reason of group
abnormalities of graph-based metrics. On the other hand, matrices can be matched according to
sparsity using density thresholding, hence selecting a distinct threshold value. In this case, whether
the weight distribution in SZ is reduced, the application of density thresholding can strongly affect
weighted indexes results [19, 39]. Furthermore, no thresholding allowed to work on all raw con-
nectivity measures, avoiding the loss of information of the original data and assessing the results of
the bootstrap methodology in relation to all sources of uncertainty. On one hand, all weakest and
thus possible spurious connections were maintained to account them in the robust evaluation of the
indexes through bootstrapping. On the other hand, the density differences are only given by the
deletion of the negative connections, also allowing the investigation of binary topological indexes.
Hence, two versions of same matrix were obtained to analyze separately positive/negative edges and,
thus, activations and deactivations.

2.2. Top-Down Bootstrapping Approach for Group Comparison

The top-down bootstrapping approach to enable the HC vs SZ group comparison consists of differ-
ent steps of analysis, done on different levels. The analysis pipeline was built starting from the top
level, related to the global characteristics of the matrices coming from the two populations, until the
bottom level, related to the single connections. The procedure is summarized in Figure 1.
First, the global topological indexes were obtained to evaluate the abnormalities in the network topol-
ogy and global deficits. In order to enable a robust investigation, the values of these properties were
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HCSZ

SUB-NETWORK

1° Level

2° Level

3° Level

4° LevelACTIVATION/
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LOCAL
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EDGE
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f-MRI

Figure 1: Pipeline of the top-down approach proposed. The functional connectivity matrices of the two
populations were analyzed from the global level, extracting the DMN as sub-network of interest and
investigating the distributions of the local indexes to the edge level, assessing correlations and anticorre-
lations.
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bootstrapped, as reported in Section 2.2.1. Second, bootstrapping was also applied on the extracted
sub-network of interest (DMN) and local indexes to visualize significant changes between groups
and different subjects of the same groups (see Section 2.2.2). Finally, the negative connections of
the group mean matrixes were analyzed in Section 2.2.3. In this section, the analysis of the commu-
nities was performed to enhance common deactivations. Afterwards, a qualitative investigation of
strongest and most frequent negative connections reflecting anticorrelations was performed.
The group comparison functions required by the present study were implemented as upgrade of our
previously developed SPIDER-NET tool, freely available to researchers [11] The current upgrades
will be included in a new release.

2.2.1. Global Connectivity

The global topological indexes from the graph theory which were considered are reported in the
Figure 2.
The indexes are divided according to integration/segregation indexes (e.g. path length, clustering
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Figure 2: Table of all graph properties considered, divided according to the level of analysis. The
segregation and integration properties can be globally assessed through the average of all local values.
The mathematical expressions reported indicate global case formulation.

coefficient), mesoscale analysis (e.g. modularity, rich-club coefficient) and related to whole network
structure organization (e.g. small-worldness).
The degree/strength represent the sum of edges/weights connected to the node. The clustering coef-
ficient quantifies local edge density by counting the triangles average. A triangle occurs if a neighbor
of the node is also a neighbor of another neighbor of the node. In the weighted case, the number
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of triangles is replaced with the geometric mean of its weights. The characteristic path length is a
measure of integration which expresses the average shortest path between node pairs. The global
efficiency is the average inverse of the characteristic path length, and it represents how efficiently
the information travels through the network. All the segregation and integration metrics can be local
and global, simply by averaging the values across all nodes. Mesoscale analysis reveals how much
the network present a particular structure. Specifically, the modularity computed through Newman’s
approach [40] quantifies to what extent the intra-/inter-community link densities are anomalous in
comparison to chance. Large values typically reveal significant community structures. Maximized
coreness statistic is a measure of how much the network follows the core/periphery paradigm, which
is a partition of the network into two groups, where the number and weight of the edges is maxi-
mized in the core and minimized within the periphery.
The density is a measure of sparsity of the network. It is the ratio between the number of actual con-
nections and the maximum number of possible connections. A small-world network is a structure in
which most nodes are not neighbors of one another. Conversely, the neighbors of any given node are
likely to be neighbors of each other, resulting in an easy access by most nodes to every other node
with a small number of steps. Small-world networks associate short path length and high clustering
coefficient.

Statistical Tests and Robustness Assessment Mann–Whitney tests (MW) were performed
to assess statistically significant differences in the global indexes between the two groups. Because
of the dimensions of the sample (#HC = 15; #SZ = 12), the intrinsic uncertainty given by the non-
stationarity of the data [24] and the possible presence of spurious connections due to the limitations
in the fMRI processing [28], which can significantly affect the results, the reliability of significant
group differences was also tested. First, bootstrap hypothesis testing (BOOT) was performed on
all global indexes and compared to MW testing. BOOT allows for a better estimation of the null
distribution of network measures, providing confidence intervals to evaluate the uncertainty of the
statistics and more robust abnormalities detection [41]. The procedure to test bootstrap hypothesis
was the following: The procedure to test bootstrap hypothesis was the following:

1. Calculation of the test statistic θ̂ = |x̃− ỹ|, given x1, . . . , xN a random sample from distribu-
tion F with median x̃ and y1, . . . , yN another independent random sample from distribution
G with median ỹ.

2. Bootstrapping: extraction of B sets of random samples x∗ (size N ) and y∗ (size M ) with
replacement from x and y, respectively.

3. Calculation of the test statistic θ̂∗b = |x̃∗b − ỹ∗b | for each resample.

4. These B resampled test statistics are then made into a null distribution by θ̂′b = θ̂∗b − θ̂.

5. Estimate of the p-value as

p =

∑B
b=1

[
C
(
θ̂′b ≥ θ̂

)
+ 1
]

B + 1

where C{condition} = 1 when the condition is true and 0 otherwise.

F and G represent the distributions of a global index in HC and SZ, thus N and M representing the
number of HC and SZ, 15 and 12 respectively. The resampling from these two sets is carried out
5000 (B - number of resamples) times for all bootstrap hypothesis tests and the test statistic is the
difference in medians [42].
Second, the robustness of the measures was assessed through a leave-n-subject-out approach, with
n equal to 1 and 2. The variations of the statistics computed through both methods were analyzed
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changing the population samples according to the two procedures.
The first one, hereafter referred as RST1, evaluates the variation of the p-values obtained removing
all subjects one at a time from the populations values to perform MW tests and to create new resam-
ples for BOOT. The second one, hereafter referred as RST2, evaluates the variation of the p-values
obtained randomly removing pairs of subjects from the populations values to perform both tests. In
this case, 350 random extractions of pairs of subjects were performed. The total possible pairs which
can be extracted are 27∗26 = 702, thus we decided to run the test for about 50% of the possibilities.
RST2 is summarized in Figure 3.
Then, mean and standard deviation across all tests were evaluated for both procedures.

HC

SZAll

1

2

3

N

... ... ...

• PMW

• PBOOT

• P1MW

• P1BOOT

• P2MW

• P2BOOT

• P3MW

• P3BOOT

• PNMW

• PNBOOT

• Mean(P1:PN)MW ± Std(P1:PN) MW

• Mean(P1:PN)BOOT ± Std(P1:PN)BOOT

...

Figure 3: Schema representing the robustness statistical test randomly removing two subjects (black
squares) at each iteration (RST2). In this case, N is equal to 350.

2.2.2. Local Topological Properties and Sub-Network Extraction

Afterwards, local topological properties related to the specific nodes of the network across all sub-
jects in the two groups were analyzed. These indexes are the local counterpart of the global ones,
as reported in the Section 2.2.1 and Figure 2. In this regard, we obtained the distributions of these
values assessing differences in the local structure and in the variability across the two groups. Specif-
ically, we focused on degree and strength. The former helps to represent the influence of negative
connections, being the original matrixes complete and divided by using a threshold in 0. The latter
instead identifies node or set of nodes whose weighted values differ in the two populations. In this
case, we performed MW and BOOT, as reported in the previous section 2.2.1, on the local index
values. The resampling was performed with 5000 samples for all BOOT tests. Furthermore, these
differences were investigated across the nodes of the different lobes and the nodes within/outside the
DMN to obtain the most deviating local values between the two groups. The distributions per ar-
eas and the inter-subject variability, which can be related to the different intra-group characteristics,
were highlighted.
In order to perform these analyses, we divided the nodes according to the lobes and we extracted
the DMN from all matrices of both groups. Specifically, we defined the DMN according to previ-
ous studies highlighting the regions characterizing the network [43, 44, 45, 46, 47]. Generally, the
brain regions found to be activated within the DMN comprise the medial frontal cortex, the medial
temporal lobe, the posterior cingulate cortex, the ventral precuneus and the inferior parietal cortical
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regions. Apart from these typical core areas, lateral temporal cortex, hippocampal formation and
amygdala are also often reported as parts of the network [44, 46] Thus, from the typical Broadmann
areas comprising the DMN (BA: 9, 10m, 10r, 10p, 23/31, 24, 29/30, 32a, 32c, 39, 49) and these
additional regions, a list of 13 AAL parcels from the left hemisphere and 12 AAL parcels from the
right hemisphere was obtained. The parcel which is present only in the left hemisphere is the amyg-
dala since the right counterpart was not present in the data, due to the previously described issue
of poor coverage in some subjects (see Section 2.1) [7]. The sub-networks were then composed of
these nodes and the edges existing between pairs of DMN areas (“Extract” mode in SPIDER-NET),
maintaining the intra-lobe connections.

2.2.3. Connection-Level Investigation

The examination of the single connections was performed computing the mean matrix of the groups
which were compared to visualize differences in weights and deactivation. Thus, the average net-
works composed by all negative contributions were obtained. Then, community detection analysis
through the Newman’s method [40] implemented in the Brain Connectivity Toolbox [48] and embed-
ded into SPIDER-NET [11] was performed. The resulting negative sub-networks were obtained and
analyzed. In addition, connectograms were drawn considering the entire network with no threshold-
ing apart the separation of positive and negative edges. The rationale was to analyze graphs formed
by all brain regions and edges, or all the DMN areas and edges. Thresholding was applied only for
graphical purposes in some connectogram figures where density obscured the main connections, as
highlighted in the captions.

3. Results

First, the global topological properties were assessed. Table 1 summarizes the results obtained from
the comparison between HC and SZ of the overall indexes using nonparametric test and bootstrap
hypothesis testing. The results from the robustness tests are also summarized in Table 1.
It is possible to notice that HC presented increased values for all segregation indexes and efficiency.
Conversely, concerning the characteristic path length, mesoscale analysis, and small-worldness SZ
resulted to have higher values. Differences are then enhanced in the comparison between MW and
BOOT. In particular, higher p-values in BOOT are found for the weighted characteristic path length
and modularity indexes. Specifically, the latter highlighted a statistically significant (p < 0.05)
difference between HC and SZ modularity that was not confirmed by using BOOT. The robustness
assessment highlighted more stable results for BOOT. Indeed, it is worth noting that the mean of
the p-values, considering all indexes and removing both one and two subjects, remains closer with
BOOT than the MW test in almost all indexes considered. In few cases (binary and weighted clus-
tering coefficient in RST1) the difference between the mean of the robust assessment tests and initial
tests is slightly minor in MW or comparable. Furthermore, the variability was assessed, resulting in
lower standard deviation employing BOOT with respect to MW in almost all indexes. In few cases
(e.g. weighted characteristic path length and modularity in RST2) this reduction is not enhanced
with comparable values. Second, DMN was extracted from all subjects of the two populations. In
Figure 4 the connectograms of this sub-network obtained averaging all positive connections across
the whole populations are shown. It is worth noting that from a visual inspection a greater number
of weak connections is highlighted in the SZ group, represented by the yellow edges in Figure 4.
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Table 1: Results of the statistical tests performed on global indexes.

Graph
Index

Whole Comparison RST1 (#Sub=1) RST2 (#Sub=2)

HC data
(mean±std)

SZ data
(mean±std)

PMW PBOOT PMW
(mean±std)

PBOOT
(mean±std)

PMW
(mean±std)

PBOOT
(mean±std)

Degree
(Density)

71.746±2.178 69.207±5.149 0.130 0.086 0.146±0.05 0.089±0.044 0.162±0.079 0.103±0.063

Strength 37.053±7.362 31.680±10.246 0.124 0.079 0.143±0.047 0.096±0.029 0.155±0.071 0.108±0.045
Bin CC 0.986±0.025 0.960±0.057 0.150 0.124 0.150±0.052 0.130±0.038 0.184±0.089 0.138±0.057
Wei CC 0.489±0.105 0.415±0.144 0.150 0.105 0.155±0.052 0.119±0.027 0.183±0.082 0.128±0.050
Bin CPL 1.017±0.030 1.052±0.071 0.130 0.084 0.153±0.052 0.089±0.044 0.162±0.079 0.102±0.063
Wei CPL 2.216±0.610 2.618±0.892 0.124 0.129 0.151±0.061 0.150±0.054 0.155±0.072 0.159±0.072
Bin Eff 0.991±0.015 0.974±0.035 0.130 0.086 0.150±0.052 0.089±0.044 0.162±0.079 0.102±0.063
Wei Eff 0.525±0.085 0.466±0.113 0.113 0.078 0.147±0.051 0.099±0.023 0.143±0.065 0.111±0.041
Modularity 0.004±0.009 0.016±0.026 0.043 0.133 0.053±0.018 0.128±0.019 0.059±0.030 0.144±0.036
Coreness 0.018±0.022 0.037±0.036 0.164 0.122 0.141±0.060 0.122±0.039 0.199±0.091 0.138±0.061
Small-
Worldness

1.003±0.005 1.015±0.019 0.178 0.085 0.146±0.062 0.090±0.013 0.214±0.098 0.096±0.030

The global version of the degree represents the mean of all edges associated to all nodes, whereas the density is the ratio between the
number of present edges and the number of possible edges in the network. For this reason, the result coincides, and it is reported only
once. HC: Healthy Controls; SZ: Schizophrenic Patients; RST: Robust Statistical Test; MW: Mann Whitney Test; BOOT: Bootstrap
Hypothesis Test; #Sub: number of subjects removed; CC: Clustering Coefficient; CPL: Characteristic Path Length; Eff: Efficiency.

SZ HC

Figure 4: Connectograms composed by only nodes of the DMN and positive connections between pairs
of these nodes.
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Second, we analyzed the local values of the indexes in the DMN and across the lobes, showing the
distributions of the values of the degree across the same group in Figure 5. Differences between
DMN regions and the other areas in SZ and HC, because of the different influence of the negative
connections, were highlighted. Specifically, the most variable indexes resulted to be located within
the DMN for the SZ group. On the other hand, they are more distributed across all the brain regions
in HC group, even resulting more variable in the areas not included in the DMN. More precisely,
one of the most variable values of the degree in both groups was the one assumed by the amygdala,
located at the end of the first yellow box in Figure 5, representing the left hemisphere nodes of the
DMN.
Afterwards, the strength was analyzed, and the resulting distributions are shown in Figure 6. First,
it was noticed that the distributions of the SZ have a slightly higher variability in the majority of
the nodes with respect to HC. More specifically, the most variable local indexes among their pop-
ulations were extracted from frontal, parietal lobes and subcortical structures. On the other hand,
general slightly higher values of strength are present in the HC group. Furthermore, the distributions
of the strengths are shown in Figure 6 highlighting statistically significant differences (p < 0.05)
found through both MW and BOOT (in red). Most of the differences were found in regions of the
frontal lobe of both hemispheres. Significance of BOOT only (in pale brown) resulted in the left
orbital part of inferior frontal gyrus, postcentral gyrus, Heschl’s gyrus, and right Rolandic opercu-
lum nodes. Significance of MW only (in yellow) was found in the in right calcarine fissure and the
surrounding cortex node. The complete list of the significant different node strengths is reported in
the caption of Figure 6.

Figure 5: Distributions of the local degree values in the two populations divided according to nodes of
DMN in left and right hemisphere (yellow) or not (gray).



D. Coluzzi, G. Baselli / Diffuse and Localized Functional Dysconnectivity in Schizophrenia 13

Figure 6: Distributions of the local strength values in the two populations divided according to the
lobes. The order and colors of the lobes is the same as the connectograms (Figures 4 and 7) from
the left to the right hemisphere. Strength of nodes which are statistically significant different (p <
0.05) between the two populations are shown in different colors according to the different methods
used: pale brown for bootstrap hypothesis testing, yellow for Mann-Whitney and red for statistically
significantly different nodes found by both. More specifically, both methods identify differences in
the left Rolandic operculum, supplementary motor area, medial orbital superior frontal gyrus, insula,
anterior cingulate and paracingulate gyri, hippocampus, Heschl’s gyrus and right supplementary motor
area, bootstrap hypothesis testing in left orbital part of the inferior frontal gyrus, postcentral gyrus, right
Rolandic operculum and right Heschl’s gyrus and Mann-Whitney test in the right calcarine fissure and
surrounding cortex.
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Third, we analyzed the negative connections from the group average matrixes. Results from com-
munity detection analysis are shown in Figure 7. Three communities, a) b) and c) on top of the
Figure, composed of 32, 22, 20 brain regions respectively were identified for the negative SZ group.
Four communities, a) b) c) and d) on bottom, composed of 20, 15, 20 and 19 regions respectively
were identified for the negative HC group. A difference between the formed communities is the
inclusion of most frontal, limbic and temporal regions in the community a) of SZ group, which is
not observable in any HC community. Furthermore, the configuration of parietal regions from both
hemispheres, mostly included in the community a) in HC, is not noticeable in SZ, where these re-
gions are divided according to hemisphere b) and c) of SZ, also appearing to be clustered with the
contralateral occipital lobe.

Figure 7: Connectograms of the communities detected in the negative average group networks. On
top, the three communities found in the SZ group (modularity=0.079), whereas, on bottom, the four
communities of HC group (modularity=0.165). The edges are color-coded in red, orange, and yellow to
represent the strongest, middle, and weakest negative connections within the community, respectively.
No thresholding was applied.

Then we visualize the strongest and frequent negative edges in the whole brain and in the DMN, as
shown in Figure 8. Specifically, the connectograms formed by the average of all matrixes composed
by the negative edges in the whole brain (7a and 7b) and in the DMN (7c and 7d) are shown ap-
plying a threshold to keep 5% strongest negative edges. First, SZ average network resulted to have
more negative connections in the whole brain with respect to HC. Another great difference noticed
both in the number of preserved negative edges and in their weights was in the inter-hemispheric
connectivity of the frontal lobe, as well as the parietal. In addition, it is possible to notice in SZ a
greater number of negative connections in the occipital lobe with respect to HC. The configurations
given by the only strongest connections in DMN highlighted similarities and differences. Among
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all, connections between amygdala and some frontal regions were in common, whereas strong edges
between the parietal lobes of the two hemispheres were found only in HC. In SZ parietal regions are
instead connected to amygdala and superior frontal gyrus. Finally, HC average matrix revealed an
important edge between the latter, but in the right hemisphere, and the middle frontal gyrus, that was
not found in SZ.

Figure 8: Connectograms of negative average group networks. a) and b) are the results on the whole-
brain, c) and d) on only the DMN of SZ and HC groups respectively. 5% density thresholding is applied
on the shown connectograms for graphical clarity only.

4. Discussion

In this work, we proposed a multi-level approach for the case-control analysis of connectivity data
structured on different levels of investigation. In particular, the assessment of the connectivity from
global indexes to single edges (brain activations/deactivations) was carried out on a population char-
acterized by chronic schizophrenia, thought to cause both diffused and focalized dysconnectivity
patterns. The multi-level analysis resulted to potentially favor more robust results in contexts where
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the focus is not well-known and statistical tests can be easily biased by uncertainty.
First, global-level results were analyzed. As previously mentioned, this level was examined ac-
cording to three main investigations. All experiments comprised the evaluation of 11 graph-based
indexes, either binary or weighted, which are amongst the most widespread in connectivity studies
[1, 49, 50, 51]. The first analysis involved the comparison between HC and SZ groups, compared
through two statistical tests (MW vs BOOT). In Table 1 we showed the values of the indexes along
with the p-values obtained from both tests. The increased segregation indexes and efficiency in HC
with respect to SZ is in line to what reported from previous studies [18, 16], as well as reduced
path length, mesoscale analysis and small-worldness. More specifically, MW highlighted one sta-
tistically significant difference between the two population in the modularity (pMW = 0.043). The
modularity resulted to be significantly higher in SZ providing evidence that the deletion of nega-
tive connections, in this case analyzed separately, tend to create families in SZ that in HC are less
visible. However, it is worth noting that similar studies presented different results for this partic-
ular index and also uncertainty for clustering coefficient and characteristic path length, indicating
either increased or reduced values in SZ [15, 16, 17, 52, 53, 54, 55, 56], probably dependent on the
thresholding method. For these reasons, as previously mentioned, the reliability of these results was
assessed through BOOT because of the reduced size of the dataset, the presence of the uncertainty
due to the non-stationarity of the functional connectivity and the possible presence of spurious con-
nections. The results of the bootstrap hypothesis testing highlights differences with respect to the
standard nonparametric approach. On one hand, the modularity did not present significant differ-
ence (pBOOT = 0.133). On the other hand, a trend towards lower p-values can be noticed for all other
indexes, except the weighted path length (pMW = 0.124; pBOOT = 0.129) and the above-mentioned
modularity. One of the most replicated results is the significant difference found in the efficiency
between HC and SZ. According to different studies, functional connectivity fluctuations appear to
be coordinated throughout the brain so as to realize global variations in network efficiency, which
could represent a balance between optimizing information processing and minimizing metabolic ex-
penditure [15, 57, 58]. Furthermore, examining studies with a greater number of subjects [59], or
of dynamic connectivity [57], the results obtained through BOOT seem to be closer than MW. At
this stage of understanding, we may speculate that BOOT seems to provide an alternative method to
test more robustly the differences between functional connectivity of two groups, especially when
composed by low number of data and subjects.
However, we acknowledge that there is considerable debate among researchers as to uncertainty in-
fluence and integration of dynamical functional connectivity data. For this reason, we extended the
analysis comparing MW and BOOT through robustness assessment tests. In particular, the variabil-
ity of the statistical estimate was evaluated at the removal of one or two subjects from the whole
population, just as in leave-n-subject-out cross validation. In Table 1 the results of these experi-
ments are summarized, finding clear support for the hypothesis of more stability and reliability of
the BOOT results. In particular, the index mean values obtained by BOOT across the random ex-
tractions (27 for leave one out and 350 for leave two out) of subjects to be removed remain much
more stable with respect to the values obtained with entire sample (e.g., degree - RST1: pMW=0.130;
mean(pMW) = 0.146; pBOOT = 0.086; mean(pBOOT) = 0.089; RST2: mean(pMW) = 0.162;
mean(pBOOT) = 0.103). Also, the standard deviation across all iterations resulted to be much lower
by using BOOT than MW (e.g., small-worldness - RST1: std(pMW) = 0.062; std(pBOOT) = 0.013;
RST2: std(pMW) = 0.098; std(pBOOT) = 0.030). The observations regarding mean and standard
deviation can be generalized to all indexes considered, resulting in less variable results or, in few
cases remaining similar to MW. More specifically, the cases of the resulting mean of binary and
weighted clustering coefficient for RST1, or the standard deviation of the weighted characteristic
path length and modularity for RST2, which anyway did not result to be less stable with BOOT. In
general, the results highlighted a higher stability and robustness of the BOOT in RST1 and RST2,
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providing support to its possible use when dealing with a small dataset which is also affected by
uncertainty of the measures.
It is worth discussing that the results revealed by the robustness tests may answer the question of
evaluating the results of the functional connectivity in a more reliable way. Although the needs for
dynamic functional acquisition [24, 27, 60] and of more attractive methods for removing spurious
connections are well-known [15, 61, 62, 63], having a reliable method to evaluate functional con-
nectivity of small datasets, which can potentially approximate to results from greater datasets and
avoid the loss of information, can help in the interpretation and understanding.
Second, focusing on the results of the second level, comprising sub-network (DMN) and local in-
dexes, interesting findings were noticed. It is worth noting that a first visual difference between the
mean matrix of the groups was visible. Indeed, in Figure 4, the connectograms highlight weaker
connections in the DMN of SZ with respect to HC, in agreement to previous studies [21, 59]. How-
ever, no significant differences between the indexes of the sub-networks were found. On the other
hand, the evaluation of the local indexes allowed to identify some notable patterns. From Figure 5,
it is indeed possible to notice that the most varying local degrees are those referred to nodes of the
DMN, especially in the SZ group. Analyzing, instead, the results in Figure 6 on the strength index,
the differences are less visible although a slightly greater value is noticed across all nodes of the
HC group, together with a confirmed greater variability distributed across the whole brain in the SZ
group. On one hand, these findings report a greater presence of negative connections in the DMN
of SZ, which can be seen as an inverted connectivity nature between prefronto-temporal areas, in
agreement to diversity found in a previous study [64]. This is particularly indicative considering
the involvement of the DMN in SZ [21] and that many symptoms of the pathology mirrors a failure
in the integration between the generated behaviour and concurrent perceptive phenomena [65]. On
the other hand, this variability can also be influenced by the limitations of the data. It is indeed
well-known as one of the states identified by performing dynamical connectivity experiments can be
traced to the DMN [60].
Furthermore, we analyzed the nodes which had the greatest variability of the degree index and that
mostly differed in the strength value. Amygdala, medial orbital part of the superior and inferior
frontal gyrus and part of the cingulate cortex resulted to be the nodes which were most affected
by the presence of negative connections in the SZ group. Interestingly, amygdala, which is also a
well-known hub of the brain [66], part of the superior frontal gyrus and cingulate cortex are all part
of the DMN, whereas the inferior frontal gyrus not. However, the inferior frontal gyrus was widely
studied because of its divergent characteristics of anatomical/functional connectivity in SZ and its
relation to semantic processing [67]. The enhanced variability may be indeed related to specific
characteristics and deficiencies of the patients, which may be potentially investigated through cor-
relation studies with demographic and severity variables, or, in this case, semantic function tests, as
already widely done in literature [59, 49, 55]. Afterwards, we also computed MW and BOOT tests
on the local values of the strength, highlighting the nodes mostly differing in the value of this index
between the two populations. In general, it is possible to notice that the most different local indexes
are those referred to frontal, parietal lobes and subcortical structures, in agreement to previous study
[7, 46, 68]. In particular, significance of left orbital part of inferior frontal gyrus, postcentral gyrus,
Heschl’s gyrus and right Rolandic operculum nodes were found by BOOT and right calcarine fissure
and surrounding cortex node by MW. The results on these areas appear to be in line with previous
studies, where these nodes were found to be different, although the case of Heschl’s and postcentral
gyri were found in the specific case of SZ patients with auditory hallucinations [55, 69, 70].
The community detection analysis of the anticorrelations highlighted differences between the two
groups. First, in SZ, most nodes from frontal, limbic and temporal lobes are clustered together in
the first community. This deactivation organization may be relevant in the study of failed activity
inhibition of schizophrenia characterized by selective disruption of an automatic inhibitory process,
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and failure to limit the current contents of consciousness [71, 72]. In the parietal lobes configuration
other differences were noticed, especially regarding the clustering with contralateral occipital lobe in
SZ. In other studies [73, 74, 75], these lobes were investigated in relation to SZ highlighting impor-
tant functions. For example, it was hypothesized that cognitive deficits and delusions may be related
to malfunctions in the parietal lobe [75] or that the maintenance of visuospatial information is asso-
ciated to a network of occipital cortex regions [73]. It would be of great interest to study correlations
between symptoms and activity in these communities, as the contralateral negative cooperation may
reinforce the hypothesis of an involvement of parieto-occipital sub-network in auditory hallucina-
tion, such as the positive correlation found in an EEG and MEG study [74], or the relations to other
disorganization symptoms.
Third, the connectogram pattern of negative edges obtained by averaging all the negative contribu-
tions in the whole brain and DMN of the groups highlighted interesting indications. Primarily, SZ
resulted to have more and strongest negative connections in the whole brain with respect to HC.
Second, an increased deactivation in the occipital lobe appear to confirm the results previously ob-
tained through network based statistics, which found dysconnections in the same areas [7]. Then,
the number and the weight of the preserved negative correlations are generally greater in SZ in the
frontal, which includes prefrontal as well, and parietal lobes, in agreement to what previously shown
on sub-network and nodes. This finding appears to be in line with previous studies where different
organization of the connectivity was found in prefrontal and frontal lobes [76, 23]. As said, the anti-
correlations could indicate an abnormal inhibition of some regions or lobes activity. In the context of
DMN, except the connections from amygdala to the frontal regions expected to be common to both
groups being a well-known hub of the brain networks, as abovementioned [66], a different configu-
ration of the edges was noticed. First, in the HC group, the parietal lobes of the two hemispheres are
deactivated with strong interactions that are not present in the SZ group, in agreement to community
detection analysis. In this case, parietal regions of DMN mostly communicate with amygdala and
superior frontal gyrus. Furthermore, HC group is characterized by a very strong negative connection
between middle frontal gyrus and the medial orbital part of the superior frontal gyrus that is not even
present in the SZ group. These findings may be related to significant small-world topology abnor-
malities found in regions of the prefrontal and parietal lobes in a previous study [16]. Indeed, the
difference of negative network involving the DMN regions of the parietal lobe is the most evident,
both for the number of edges and their interactions with the DMN regions of the frontal lobe. From
previous works [21, 77, 78], it is known as intrinsic task-positive and task-negative networks exist
in HC during rest, comprising some areas of these lobes. It can be speculated that this organiza-
tion may be responsible for external environmental and self-referential processing respectively and
serves mental processes. In individuals with SZ or paranoid tendencies, abnormal negative connec-
tivity within and between these two networks could cause them to be oversensitive to both internal
thoughts and external stimuli. In this sense, abnormal presence of anticorrelations, together with
a low integration between the two networks, may reflect abnormal inhibition of the other circuit
and that extrospective and introspective thinking is switched back and forth in an overly excessive
manner [21, 79]. In this work, differences were also found in the temporal lobe that, however, in
deactivation analysis of our dataset remained comparable. Minor differences given by the presence
of some negative weak connections in HC which are not present in SZ were found in the regions
of the DMN of the limbic lobe, confirming the affection of the functional reorganization of the SZ
originating from posterior cingulate cortex [20]. This resulted to be in line with previous findings on
cingulate gyrus in SZ and its importance in functional integration [80].
However, it is worth noting that the small size of the HC and SZ groups available for this study
is a limitation. A subsequent validation of the bootstrap method on graph-based indexes obtained
from a wider functional connectivity dataset would be attractive. Although the greater stability to
changes of the measures and a trend towards results of larger studies is promising, validation with
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more subjects is needed. A related limitation concerns the lack of discrimination among different
types and severity levels of schizophrenia [21]. Also, the leave-k-subject-out procedure to test the
statistical analyses may be performed on dynamical connectivity data. Thus, the assessment of the
influence of the different states which are assumed during a resting-state fMRI would reinforce the
potential of the approach in underpinning usability and give better understanding of the functional
activations and deactivations.
Second, one of the main aims of the study was the validation of the approach through bootstrapping
of the indexes accounting all connections, which include uncertainty as well, but without any loss
of information or arbitrary thresholding of spurious edges and very low correlations. The results
obtained through BOOT were more stable in comparison to standard nonparametric tests, being ro-
bust to noise, but at the same time it is paramount to focus and apply new and different thresholding
methods to assess their influence, as briefly mentioned. Examples are percolation or spanning tree
approaches [15, 17, 61, 62, 63] appearing to be less arbitrary than typical density or absolute thresh-
olding and which may potentially improve even more the estimates. The former, for example, was
widely employed in a number of studies to find a potential optimal deletion of the spurious edges
maintaining brain network structure and connectedness [81, 82, 10, 83]. In this perspective, results
from bootstrap analysis may be investigated in relation to percolation analysis. Another possibility
could be to apply bootstrapping of the groups at connection-level to obtain more robust templates
for comparison, identify errors and quantify the uncertainty of the measure.
Third, the top-down approach was implemented in the SPIDER-NET tool which automatically al-
lows the investigation of topological properties that are the most widespread in brain connectivity
studies [11]. However, some of the indexes analyzed have intrinsic limitations, such as the weak-
ness of Newman’s modularity to detect small modules [84]. In addition, thresholding methods can
strongly affect the results of community analyses and topological indexes. For this reason, further
investigations and comparisons to other methods, such as random walk-based approaches for com-
munity detection, would be of great interest.
Finally, the robust multi-level approach helped to identify differences in the connectivity of SZ pa-
tients. More specifically, it did not result in increased or decreased connectivity with respect to HC
but in a different configuration, highlighted by the bootstrapping. As said, the most replicated graph-
feature is the efficiency, whereas other features appear to be more affected by the pre-processing and
there is no strict agreement. Also, the great intra-group variability, particularly relevant for SZ, plays
an important role that may be investigated in future considering the clinical condition and severity of
the patients or other specific characteristics and deficits. From these considerations, the results con-
firmed that the connectivity in SZ is not systematically increased/decreased but generally different,
as already reported in another study [20]. Nonetheless, it is clear and replicated that some areas are
affected more in SZ [15, 54]. However, it remains unclear whether SZ abnormalities are the result
of a localized dysconnection exerting widespread effects throughout the brain, or a whole-brain dys-
function that affects certain regions more. New investigations would be certainly needed to further
investigate the causes and effects related to the onset of the condition.

5. Conclusion

In this work, we described a multi-level robust approach for the investigation of the brain connec-
tivity. Starting from the measures of global connectivity, which can be robustly and more stably
explored through bootstrapping, general abnormalities in case-control groups can be identified. In
some cases where the connectivity is not evidently increased/reduced, or particularly different in
some areas, going towards lower levels can be helpful. In this case, we analyzed separately the
functional connectivity in the DMN, beyond those indexes related to specific nodes. Finally, the ac-
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tivations and the deactivations were investigated. The whole procedure is developed in the SPIDER-
NET software tool (https://caditer.dongnocchi.it/spidernet/) to automatically help in the different
level investigations of various pathology to better understand their nature and effects.
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Hilgetag, Christian Gerloff, and Götz Thomalla. Altered topology of large-scale structural
brain networks in chronic stroke. Brain Communications, 1(1), 1 2019.

[13] Madelaine Daianu, Emily L. Dennis, Neda Jahanshad, Talia M. Nir, Arthur W. Toga, Clif-
ford R. Jack, Michael W. Weiner, and Paul M. Thompson. Alzheimer’s disease disrupts rich
club organization in brain connectivity networks. Proceedings - International Symposium on
Biomedical Imaging, pages 266–269, 2013.



D. Coluzzi, G. Baselli / Diffuse and Localized Functional Dysconnectivity in Schizophrenia 21

[14] Jonathan J Crofts, Desmond J Higham, Rose Bosnell, Saâd Jbabdi, Paul M Matthews, TEJ
Behrens, and Heidi Johansen-Berg. Network analysis detects changes in the contralesional
hemisphere following stroke. NeuroImage, 54(1):161–169, 1 2011.

[15] Alex Fornito, Andrew Zalesky, Christos Pantelis, and Edward T. Bullmore. Schizophrenia,
neuroimaging and connectomics. NeuroImage, 62(4):2296–2314, 10 2012.

[16] Yong Liu, Meng Liang, Yuan Zhou, Yong He, Yihui Hao, Ming Song, Chunshui Yu, Haihong
Liu, Zhening Liu, and Tianzi Jiang. Disrupted small-world networks in schizophrenia. Brain,
131(4):945–961, 2008.

[17] Aaron F. Alexander-Bloch, Nitin Gogtay, David Meunier, Rasmus Birn, Liv Clasen, Francois
Lalonde, Rhoshel Lenroot, Jay Giedd, and Edward T. Bullmore. Disrupted modularity and
local connectivity of brain functional networks in childhood-onset schizophrenia. Frontiers in
Systems Neuroscience, 4(October):1–16, 2010.

[18] Mary-Ellen Lynall, Danielle S Bassett, Robert Kerwin, Peter J McKenna, Manfred Kitzbichler,
Ulrich Muller, and Ed Bullmore. Functional connectivity and brain networks in schizophrenia.
Journal of Neuroscience, 30(28):9477–9487, 7 2010.

[19] Alex Fornito, Jong Yoon, Andrew Zalesky, Edward T. Bullmore, and Cameron S. Carter. Gen-
eral and specific functional connectivity disturbances in first-episode schizophrenia during cog-
nitive control performance. Biological Psychiatry, 70(1):64–72, 7 2011.

[20] Pawel Skudlarski, Kanchana Jagannathan, Karen Anderson, Michael C. Stevens, Vince D.
Calhoun, Beata A. Skudlarska, and Godfrey Pearlson. Brain connectivity is not only lower
but different in schizophrenia: A combined anatomical and functional approach. Biological
Psychiatry, 68(1):61–69, 7 2010.

[21] Mao Lin Hu, Xiao Fen Zong, J. John Mann, Jun Jie Zheng, Yan Hui Liao, Zong Chang Li,
Ying He, Xiao Gang Chen, and Jin Song Tang. A review of the functional and anatomical
default mode network in schizophrenia. Neuroscience Bulletin, 33(1):73–84, 2017.

[22] Douglass Godwin, Andrew Ji, Sridhar Kandala, and Daniel Mamah. Functional connectivity
of cognitive brain networks in schizophrenia during a working memory task. Frontiers in
Psychiatry, 8, 2017.

[23] Yuan Zhou, Peter Zeidman, Shihao Wu, Adeel Razi, Cheng Chen, Liuqing Yang, Jilin Zou,
Gaohua Wang, Huiling Wang, and Karl J. Friston. Altered intrinsic and extrinsic connectivity
in schizophrenia. NeuroImage: Clinical, 17:704–716, 1 2018.

[24] R. Matthew Hutchison, Thilo Womelsdorf, Elena A. Allen, Peter A. Bandettini, Vince D.
Calhoun, Maurizio Corbetta, Stefania Della Penna, Jeff H. Duyn, Gary H. Glover, Javier
Gonzalez-Castillo, Daniel A. Handwerker, Shella Keilholz, Vesa Kiviniemi, David A. Leopold,
Francesco de Pasquale, Olaf Sporns, Martin Walter, and Catie Chang. Dynamic functional con-
nectivity: Promise, issues, and interpretations. NeuroImage, 80:360–378, 10 2013.

[25] Akhil Kottaram, Leigh A. Johnston, Luca Cocchi, Eleni P. Ganella, Ian Everall, Christos Pan-
telis, Ramamohanarao Kotagiri, and Andrew Zalesky. Brain network dynamics in schizophre-
nia: Reduced dynamism of the default mode network. Human Brain Mapping, 40(7):2212–
2228, 2019.
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ABSTRACT 

Alzheimer’s Disease (AD) is the world leading cause of dementia, a progressively impairing condition leading to 
high hospitalization rates and mortality. To optimize the diagnostic process, numerous efforts have been directed 
towards the development of deep learning approaches (DL) for the automatic AD classification. However, their 
typical black box outline has led to low trust and scarce usage within clinical frameworks. In this work, we propose 
two state-of-the art DL models, trained respectively on structural MRI (ResNet18) and brain connectivity matrixes 
(BC-GCN-SE) derived from diffusion data. The models were initially evaluated in terms of classification accuracy. 
Then, results were analyzed using an Explainable Artificial Intelligence (XAI) approach (Grad-CAM) to measure the 
level of interpretability of both models. The XAI assessment was conducted across 132 brain parcels, extracted 
from a combination of the Harvard-Oxford and AAL brain atlases, and compared to well-known pathological 
regions to measure adherence to domain knowledge. Results highlighted acceptable classification performance as 
compared to the existing literature (ResNet18: TPRmedian = 0.817, TNRmedian = 0.816; BC-GCN-SE: TPRmedian = 0.703, 
TNRmedian = 0.738). As evaluated through a statistical test (p < 0.05) and ranking of the most relevant parcels (first 
15%), Grad-CAM revealed the involvement of target brain areas for both the ResNet18 and BC-GCN-SE models: the 
medial temporal lobe and the default mode network. The obtained interpretabilities were not without limitations. 
Nevertheless, results suggested that combining different imaging modalities may result in increased classification 
performance and model reliability. This could potentially boost the confidence laid in DL models and favor their 
wide applicability as aid diagnostic tools. 

Table of Acronyms 

FP Frontal Pole  pTFusC Temporal Fusiform Cortex, posterior division  CaN Caudate 

SFG Superior Frontal Gyrus  CO Central Opercular Cortex  Pu Putamen 
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MidFG Middle Frontal Gyrus  PP Planum Polare  Pal Pallidum 

IFG_tri Inferior Frontal Gyrus, pars 
triangularis  

HG Heschls Gyrus  Hip Hippocampus 

IFG_oper Inferior Frontal Gyrus, pars 
opercularis  

PT Planum Temporale  Amg Amygdala 

PreCG Precentral Gyrus  PostCG Postcentral Gyrus  NAcc Accumbens 

SMA Juxtapositional Lobule Cortex - 
formerly Supplementary Motor 
Cortex 

SPL Superior Parietal Lobule  Cereb1 Cerebelum 
Crus1  

FOrb Frontal Orbital Cortex  aSMG Supramarginal Gyrus, anterior division  Cereb2 Cerebelum 
Crus2  

FO Frontal Operculum Cortex  pSMG Supramarginal Gyrus, posterior division  Cereb3 Cerebelum 3  

MedFC  Frontal Medial Cortex AG Angular Gyrus  Cereb45 Cerebelum 4 5  

IC Insular Cortex  PO Parietal Operculum Cortex  Cereb6 Cerebelum 6  

AC  Cingulate Gyrus, anterior 
division 

PrCun Precuneous Cortex Cereb7 Cerebelum 7b  

PC  Cingulate Gyrus, posterior 
division 

sLOC Lateral Occipital Cortex, superior division  Cereb8 Cerebelum 8  

SubCalC  Subcallosal Cortex iLOC Lateral Occipital Cortex, inferior division  Cereb9 Cerebelum 9  

PaCiG Paracingulate Gyrus  ICC Intracalcarine Cortex  Cereb10 Cerebelum 10  

TP Temporal Pole  Cuneal Cuneal Cortex  Ver12  Vermis 1 2 

aSTG Superior Temporal Gyrus, 
anterior division  

aPaHC Parahippocampal Gyrus, anterior division  Ver3  Vermis 3 

pSTG Superior Temporal Gyrus, 
posterior division  

pPaHC Parahippocampal Gyrus, posterior division  Ver45  Vermis 4 5 

aMTG Middle Temporal Gyrus, 
anterior division  

LG Lingual Gyrus  Ver6  Vermis 6 

pMTG Middle Temporal Gyrus, 
posterior division  

TOFusC Temporal Occipital Fusiform Cortex  Ver7  Vermis 7 

toMTG Middle Temporal Gyrus, 
temporooccipital part  

OFusG Occipital Fusiform Gyrus  Ver8  Vermis 8 

aITG Inferior Temporal Gyrus, 
anterior division  

SCC Supracalcarine Cortex  Ver9  Vermis 9 

pITG Inferior Temporal Gyrus, 
posterior division  

OP Occipital Pole  Ver10  Vermis 10 

toITG Inferior Temporal Gyrus, 
temporooccipital part  

Tha Thalamus BSt Brain-Stem 

aTFusC Temporal Fusiform Cortex, 
anterior division  

    

Brain parcel acronyms of the Harvard-Oxford combined with AAL atlas. 
 
1. INTRODUCTION  

As populations continue to age, dementia cases are on the rise, which pose a serious public health risk and place a 
huge social and economic burden on many countries. The most prevalent cause of dementia is Alzheimer’s Disease 
(AD), a neurodegenerative pathology occurring when nerve cells die in the brain, which initially manifests with 
impaired memory [1]. Dementia is a common disorder among the elderly population which is associated with 
significant disability, increased hospitalization, and mortality. In recent times, research focused extensively on AD 
and neuroimaging techniques emerged as a critical tool for diagnosing and monitoring the disease progressions. 
Structural brain changes, such as those visible on magnetic resonance imaging (MRI), can reveal the early 
involvement of the medial temporal lobe (MTL) in AD, particularly in terms of hippocampal and parahippocampal 
atrophy [2], [3]. Additionally, numerous studies linked the entorhinal cortex to changes in the cognitive 
performance of diseased individuals [4]. The brain cortex is also involved in the neurodegenerative process 
underlying AD. Both temporal and parietal regions present atrophic changes in correspondence of the early stages 
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of the condition [5]. On the other hand, the symptomatic progression is often accompanied by a more extensive 
brain cortical thinning alongside ventricular enlargement [2], [6]. 
In addition, AD assessment can be supplemented with complementary information through diffusion MRI (dMRI) 
and fiber tracking due to dendritic, myelin and axonal loss which accompanies atrophy [4]. From dMRI measures, it 
is possible to extract structural connectivity data, depicting the brain as a graph, parcels as nodes, and derived 
dMRI metrics (such as the number of reconstructed streamlines) as edges. Coherent changes across different dMRI 
metrics used for edge-weighting in the connectivity structure due to AD were widely documented, occurring across 
a range of spatial scales and levels [7]. At the global level, AD was depicted as a disconnection syndrome which can 
be characterized by the connectome degeneration, affecting graph topology, that is governed by long-range 
connections [8], [9]. At sub-graph level, studies demonstrated that the Default Mode Network (DMN), which is 
involved in memory processes, is vulnerable to atrophy, amyloid protein deposition, and white matter 
microstructure alterations resulting in a disrupted structural connectivity configuration [7], [10], [11]. AD 
abnormalities in structural connectivity and dMRI studies also found the temporal lobe, whose disruptions 
contribute to memory impairment [7], [12], [13], and some regions of the MTL [14], which are also often reported 
in the DMN. These findings were corroborated by functional connectivity studies which consistently revealed a 
decreased functional connectivity between the posterior and anterior portions of the DMN [15], [16]. DMN in 
general was found to be replicable hallmark and an important area for AD in either structural and functional 
connectivity analysis, highlighting many common regions [17].  
With the growing global incidence of neurodegenerative disorders, such as AD, a heightened interest to advance in 
areas such as diagnosis, treatment, prevention, drug discovery, and provision of improved healthcare services was 
noticed. Moreover, clinical decision support systems are possible to be developed through AI methods. Most of 
the research in the domain of AD, and more in general, neurodegeneration focused on using brain imaging. 
Traditional Machine Learning methods with well-known classification methods like Logistic Regression, Random 
Forest and Support Vector Machines were widely utilized both from MRI (mainly T1-weighted, but also Fluid 
Attenuated Inversion Recovery - FLAIR and T2-weighted contrasts), fMRI images, related features and connectivity 
data [18], [19]. 
In addition, the availability of significant computational resources and the advancements of DL algorithms enabled 
the application of these techniques to improve the accuracy of computer-assisted diagnoses. Also, Deep Learning 
(DL) models were widely applied for different tasks from both 3D brain volumes, images and connectivity data. As 
regards models using brain images or volumes, many approaches were investigated, becoming a well-established 
area of research. In this context, Convolutional Neural Networks (CNNs) have particular importance, since they 
were recently demonstrated to have remarkable performance in medical analysis, both employing 2D slices and 3D 
volumes [20]–[22]. In addition, different CNN-based pre-trained models, such as ResNet18, EfficientNet-B0 and 
VGG etc., were largely employed in neuroimaging research, providing state-of-the-art performance for different 
tasks [22]–[24]. Subsequently, other approaches, such as Graph Neural Networks (GNNs), were developed. The 
capabilities of GNNs, which are neural networks that operate on graph data, have recently risen after a decade of 
development and advancements [25]. These models, along with CNNs and Autoencoders, were adapted and 
employed to use the brain connectivity matrixes as input. 
For example, a connectome-based CNN architecture for classifying Mild Cognitive Impairment was proposed. Two 
layers of convolution were used, first row by row and then column by column [26]. Similarly, BrainNetCNN is a 
deeper convolutional network that was also tailored for brain graphs. It uses a CNN-like kernel to compute the 
convolution of the connections and treats each graph edge as a pixel in an image. The model was validated using 
structural connectivity matrixes from DTI images for regression task [27]. Subsequently, this model was tested and 
compared to different ML models with respect to the AD classification task [28]. Alorf and Khan obtained good 
performance in the AD stages classification employing BC-GCN (Brain Connectivity Graph Convolutional Network), 
an adapted GNN for brain connectivity data that was previously tested on a regression task [29], and Stacked 
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Sparse Autoencoders [30]. Also, graph variational autoencoder employing both structural and functional 
connectivity was employed on AD dataset to find a unified embedding via a classification task [31]. 
Despite the effectiveness of DL algorithms in various classification tasks, their widespread adoption and trust in 
clinical settings is limited due to their well-known "black box" nature. The latest advancements in Explainable 
Artificial Intelligence (XAI) techniques aim to bridge the gap between the performance of DL models and the need 
for human comprehension of their processes. However, validation on human brain graphs was not widely 
performed yet, as for T1-weighted, FLAIR, T2-weighted images and volumes. 
Among all approaches, the most widespread XAI methods in neuroimaging can be roughly classified into two 
categories. First, gradient/feature-based methods use gradients or hidden feature maps to determine the 
importance of different input features in the model's predictions. Examples are Class Activation Mapping (CAM), 
Grad-CAM with different variations or guided back propagation [32]. They were used in recent imaging studies 
[21], [33], but also to interpret decision of recent models employing connectivity data [34], [35]. Second, 
perturbation-based methods evaluate the effect of changes in input information. The importance of input features 
is measured by monitoring the variation of the model's output for different input perturbations [32]. These 
methods were widely employed in many studies using images [21], [23], [36] and connectivity data [37].  
The lack of interpretability of DL models necessitated to develop ways for a deeper comprehension of the problem 
at hand. In fact, XAI methodologies may highlight different features of interest for a possible reinforcement of their 
roles as brain biomarkers of AD. Additionally, the cost of processing for the extraction of the brain connectivity 
graphs can be evaluated in relation to the different interpretation and accuracy provided by these data in 
comparison to the use of more conventional brain images and volumes. To the best of our knowledge, no studies 
compared AI approaches using different sMRI (structural MRI) data to evaluate and address these issues.  
In this work, we employed both brain 3D T1-weigthed volumes and structural connectivity data from the OASIS-3 
dataset [38] for AD classification task. Two state-of-the-art DL models, as well as the inherent characteristics of the 
data, were compared in terms of accuracy and explainability. More specifically: i) we evaluated the performance of 
DL models such as ResNet18 and BC-GCN-SE for AD classification using multiple brain data: 3D T1-weigthed 
volumes and structural connectivity data, respectively; ii) we employed an XAI method, Grad-CAM, to assess 
interpretability of the two DL models. The investigation of XAI was made at different levels highlighting 
morphological and interregional features of interest in agreement to domain-knowledge and possibly reinforcing 
their roles as brain biomarkers of AD. Consistent and divergent information employed by the two DL models were 
analyzed highlighting the advantages of the two methods and data and the potential for the development of 
superior and more trustworthy DL models. 
 
2. MATERIALS AND METHODS 

2.1. Study population  

The dataset used in this study is the third release of the Open Access Series of Imaging Studies (OASIS-3), a 
longitudinal collection of data focused on the effects of normal aging and early-stage AD [38]. The dataset, 
released in 2019, includes 1098 participants among which 605 cognitively normal adults (i.e., healthy controls – 
HC) and 493 subjects at various stages of cognitive decline. Each participant underwent both neuroimaging and 
clinical assessments, that were conducted independently throughout the study.  
The final dataset was obtained with the following steps: i) matching the MRI and clinical data by selecting the 
closest records within a 3-month time span; ii) matching with the dataset of Amodeo and colleagues [31], that 
extracted the structural connectivity matrixes from OASIS-3; This resulting dataset was composed of 692 sessions 
relative to 543 participants (age range 42-95 years, mean age 70.06 ± 8.85 years, F:M = 388:304). Each session was 
associated to a T1-weigthed scan and a structural connectivity matrix. 
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Patients at each session were eventually differentiated in HC and AD according to the Clinical Dementia Rating 
(CDR) Scale (available in the dataset), with normal cognitive functions being represented by a CDR equal to 0, and 
diseased conditions by a score of either 0.5 (very mild impairment), 1 (mild impairment), or 2 (moderate 
dementia). The same subject could have been assigned to both classes because different CDRs were quantified 
from different imaging sessions. These data (2.76% of the overall subjects) were retained within the dataset but 
properly handled during the training/validation process of DL models (see Sec. 2.3 for further details). The final 
ratio between HC and AD sessions was 557:135. 
 
2.2. Data acquisition and data processing 

Of all the available T1-weigted scans, 135 were acquired with a 3T Siemens Biograph_mMR scanner, while the 
remaining 557 with a pair of 3T Siemens TimTrio scanners (Siemens Medical Solutions USA, Inc). Three different 
imaging sequences were used, as detailed in Table 1.  
The imaging scans were initially processed by Amodeo and colleagues [31] to derive the structural connectivity 
matrixes used to feed the BC-GCN-SE DL model (see Sec. 2.6 for further details). The original T1-weighted volumes 
were divided in 132 brain-covering regions. Of these, 91 cortical and 15 subcortical parcels were derived from the 
FSL Harvard-Oxford maximum likelihood cortical atlas (HOA) [39], while the remaining 26 cerebellar parcels were 
derived from the Automated Anatomical Labelling atlas (AAL) [40]. Henceforth, the combined HOA and AAL atlas 
will be referred as HOA + AAL. The corresponding DTI volumes were extracted from T1-weigthed scans as detailed 
in [31]. The combination of the outlined gray matter regions with the DTI white matter fiber tracking resulted in 
692 undirected graphs (i.e., positively weighted connectivity matrixes) that underwent a minimal data processing 
step according to procedures described in [31]. A diagram summarizing the extraction process for structural 
connectivity matrixes is reported in the orange box of Fig. 2.  
Then, all the available T1-weighted scans were pre-processed using the FSL v.6.0 tool [41] to create a suitable 
dataset for the ResNet18 DL model (see Sec. 2.5 for further details). First, images were skull-stripped and bias field 
corrected using the fsl_anat script (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/fsl_anat). Then, they were registered to 
the standard Montreal Neurological Institute template (1x1x1 mm2) by applying the non-linear warp 
transformation provided by fsl_anat. The images field of view was cropped to a dimension of 148x180x144 voxels 
to focus on brain tissues while the intensity values were normalised using variance scaling. Eventually, the 
dimensionality was resized to 115x144x118. 

 
Table 1. Acquisition details for the three sequences involved in our study. 

 
3T Siemens 

Biograph_mMR 
3T Siemens Biograph_mMR 3T Siemens TimTrio 

Sequence T1 (MPRAGE_GRAPPA2) T1 (MPRAGE isoWU) T1 (MPRAGE) 

TR (ms) 2300 2400 2400 

TE (ms) 2.95 2.13 3.16 

Flip angle (degrees) 8 8 8 

Voxel size (mm3) 1.20x1.05x1.05 1.00x1.00x1.00 1.00x1.00x1.00 

FOV (mm2) 176x240 176x256 176x256 

Slices per slab 256 256 256 

TI (ms) 900 1000 1000 
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Orientation Sagittal Sagittal Sagittal 

Legend: MPRAGE, Magnetization Prepared Rapid Acquisition Gradient Echo; GRAPPA2, Generalized Autocalibrating Partially 
Parallel Acquisition version 2; isoWU, isotropic Weighted Undersampling; TR, repetition time; TE, echo time; FOV, field of view; 
TI, inversion time. 

 

2.3. Training-validation strategy and evaluation 
After pre-processing, the dataset was split into training and validation using a stratified 10-fold cross-validation 
strategy ensuring that each subject was included in only one of the folds. This approach ensures to preserve the 
ratio between AD and HC sessions. 
Having highly imbalanced classes within the dataset, before training the BC-GCN-SE model (see Sec. 2.6 for further 
details), we applied the synthetic minority over-sampling technique (SMOTE) [42] to the training set. This data 
augmentation method allows to generate synthetic samples through a linear interpolation of the real neighboring 
ones, identified through a k-nearest neighbor approach. This methodology has already been applied to 
connectivity data in previous studies, though with different target tasks [43], [44]. No data augmentation strategy 
was instead carried out before training the ResNet18 model (see Sec. 2.7 for further details). 
For both models, the obtained performances were evaluated by calculating, across all 10 folds, the median and 
interquartile range of the true positive (TPR) and true negative (TNR) rates and the median and interquartile range 
of the classification accuracy.  
Once the performance was confirmed to be satisfactory through the k-fold cross validation, the final model was 
trained by performing a new split of the original dataset while maintaining the same proportion of the cross-
validation step (i.e., 90% and 10% of the entire dataset) and the same hyperparameters. This was performed to 
assess the level of explainability of the DL models under evaluation (see Sec 2.6 and 2.7 for further details). This 
configuration was used to derive the final AD/HC classification for the entire dataset. Results were evaluated in 
terms of TPR, TNR and classification accuracy while considering the union of both training and validation data. 
 
2.4. ResNet18: Deep Learning model for 3D T1-weighted volumes 

The recognition of AD from 3D T1-weighted volumes was conducted using Resnet18, a pre-trained DL model that 
was trained for multi-class classification of images of the ImageNet database [45], which was adapted for 3D inputs 
[46]. ResNet18 was selected based on previous studies which demonstrated its good performance in AD 
recognition compared to other pre-trained models [36]. The model is characterized by 18 layers and its general 
structure includes a 3D convolutional layer and four sets of residual blocks, each containing two 3D convolutional 
layers, with a shortcut connection that bypasses the convolutional layers and adds the input directly to the output 
of the second convolutional layer. Transfer learning was employed on the pre-trained model by adding a set of 
layers consisting of a Global Average Pooling (GAP) layer, two fully connected layers (128 and 32 neurons) with 
Rectified Linear Unit (ReLU) activation, and a sigmoid activation unit, as depicted at the top of the Fig. 1. 
The binary cross-entropy loss function was used for training, with a batch size of 16 and class weighting. The best 
model was chosen by applying the early stopping criterion to the validation loss, with a patience of 8. The model 
with the highest Area Under the Curve (AUC) value across training epochs was retained. 
 
2.5. BC-GCN-SE: Deep Learning model for structural connectivity graphs 

As mentioned in the Introduction, many GCNs were recently proposed with different purposes and in different 
applications. However, GCN is a node-based DL method based on features related to the different nodes. These 
kinds of models focus the pattern extraction on nodes and features, learning the messages passing through the 
connections. This structure was demonstrated to be very suitable for sparse graph-structured data, containing only 
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a few edges connecting nodes. Conversely, the brain connectivity data are known to yield dense graphs. in the 
structural case, the DTI-derived metrics used after fiber tractography, such as the number of reconstructed 
streamlines or the fractional anisotropy, result in graphs with a high number of connections, far from being sparse. 
Also, latest advancements in the fiber tracking and connectivity definition methodologies facilitated the calculation 
of dense weighted connectomes also for structural connectivity [47]. As a result, both direct and indirect 
connections between different brain areas result to be crucial for brain communication. For these reasons, 
common GCNs usually employed with success in other research fields can be unsuitable for the study of structural 
and functional connectivity. At the same time, an edge-based GCN, the so-called BC-GCN, was recently proposed 
and specifically employed in functional connectivity tasks [29], [30]. The BC-GCN model with the possible extension 
of a Squeeze-and-Excitation block (BC-GCN-SE) resulted in performing well in regression and classification tasks. 
For this reason, we modified this model to be adapted to our AD classification task with structural connectivity 
data.  
BC-GCN-SE is mainly composed of five major units: the graph path convolution (GPC), which allow the extraction of 
the feature maps, the edge (EP) and node pooling (NP), the Squeeze-and-Excitation (SE), to emphasize or suppress 
them, and the fully connected block for classification. 
As said, the communication between different brain areas is achieved through a combination of direct and indirect 
connections. To extract significant information from these pathways and represent the multi-order information, 
GPC layers are utilized. This module represents the counterpart of convolutional layers in CNNs leveraging 
meaningful characteristics from high-order paths by stacking multiple layers. EP and NP pooling layers are 
employed to aggregate information from nodes and edges downsampling the feature maps, which are the output 
of the convolutional layers. EP and NP are the counterpart of pooling layers in typical CNNs. The SE block is 
constructed as the typical SE model [29], but the convolution is modified to correspond to the GPC outlined above. 
SE layer is positioned after each of the three GPC layers. Finally, the classification part, composed of fully 
connected layers, was composed of two fully connected blocks after the NP and before the final sigmoid 
activation, adapting the network to a binary classification task. The final employed architecture of the BC-GCN-SE 
model is summarized in the green block of the Fig. 2. 
The binary cross-entropy loss function and batch size of 64 were employed during training. The model selection 
process involved utilizing the early stopping. Whether a minimum validation loss was not achieved within a certain 
number of epochs, thus stop decreasing, the training was halted. The model with greater AUC value was retained. 

2.6. Grad-CAM 

To perform XAI on the model's predictions, the Grad-CAM method was employed, which is a technique that 
generates heatmaps to visualize the important regions of an input image that the model uses for classification [48]. 
Unlike standard CAM, Grad-CAM is a more general approach that does not require any changes to the architecture 
of the CNN. CAM, on the other hand, requires the removal of the fully connected block of the network and the 
addition of a GAP layer followed by a single fully connected layer to obtain a relevance heatmap. Using Grad-CAM, 
it is possible to employ the original CNN architecture, regardless the application. Indeed, the greater flexibility is 
given by the fact that it is not only limited to classification tasks and allows to obtain relevance heatmaps from any 
layer of the network, representing features at different granularities [48]. Grad-CAM, thus, produces a heatmap 
𝑔𝑔 ∈  𝑅𝑅𝑥𝑥 × 𝑦𝑦 to identify the regions of an input image 𝑖𝑖 ∈  𝑅𝑅𝑋𝑋 × 𝑌𝑌  , having the greatest influence on the classifier 
score in support of a given class 𝑐𝑐. In the context of our application, 𝑖𝑖 represents the structural connectivity matrix, 
where X and Y are the same, referring to the number of rows/columns, or the 3D T1-weighted volume extending 
what previously reported to the third dimension, with X, Y and Z equal to the 3D voxel position (3D scan 𝑖𝑖 ∈
 𝑅𝑅𝑋𝑋 × 𝑌𝑌 × 𝑍𝑍 ; 3D heatmap: 𝑔𝑔 ∈  𝑅𝑅𝑥𝑥 × 𝑦𝑦 × 𝑧𝑧 ). 
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The score for class 𝑐𝑐 is denoted by 𝑠𝑠𝑐𝑐 , while 𝑎𝑎𝑘𝑘 ∈  𝑅𝑅𝑥𝑥 × 𝑦𝑦, 𝑘𝑘 =  1, . . . ,𝐾𝐾  represents the activation maps that 
correspond to the k-th filter of the selected convolutional layer. The Grad-CAM for class 𝑐𝑐 is achieved by 
computing a weighted average of 𝑎𝑎𝑘𝑘 , 𝑘𝑘 =  1, . . . ,𝐾𝐾, followed by a Rectified Linear Unit (ReLU) activation function 
to consider only the positive contributions: 
  

𝑔𝑔𝑐𝑐 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�𝑤𝑤𝑐𝑐𝑘𝑘
𝑘𝑘

𝑎𝑎𝑘𝑘 (1) 

 
Where: 

𝑤𝑤𝑐𝑐𝑘𝑘 =
1
𝑥𝑥𝑥𝑥

��
𝜕𝜕𝑠𝑠𝑐𝑐

𝜕𝜕𝑎𝑎𝑘𝑘(𝑥𝑥, 𝑥𝑥)
𝑦𝑦𝑥𝑥

(2) 

 
𝑤𝑤𝑐𝑐𝑘𝑘  are the average derivatives of 𝑠𝑠𝑐𝑐  with respect to each element (𝑥𝑥,𝑥𝑥) of the input matrix in the activation 𝑎𝑎𝑘𝑘  
and are indicated as relevance weigths. The same is achieved for 3D T1-weigthed volumes simply computing the 
average derivatives with respect to elements (𝑥𝑥,𝑥𝑥, 𝑧𝑧) and dividing by 𝑥𝑥𝑥𝑥𝑧𝑧. 
Typically, following the implementation of CAM, the last convolutional layer is chosen. The resulting heatmap 𝑔𝑔𝑐𝑐  

generated by Grad-CAM exhibits low resolution due to the architecture of the model. Consequently, it is necessary 
to up-sample the heatmap to match the input image size, using bicubic interpolation. This procedure facilitates the 
overlay of Grad-CAM onto the input image, which enhances the interpretation of model decisions. An alternative 
method to increase the resolution of Grad-CAM involves selecting activations from previous convolutional layers of 
the network that exhibit higher spatial resolution.  
This trade-off between the identification of class-discriminative features with low spatial extent and fine-grained 
details and thus the resolution of the Grad-CAM was addressed in several works [49]–[51]. Since the goal of this 
work was to analyze the contribution to the final classification of features of diverse scale (see Par 2.7 for further 
details) and especially last layer of ResNet18 produced coarse-grained ones due to inherent architecture, we 
computed the heatmaps at different layers for every session. Such heatmaps were then averaged for each 
structural connectivity matrix or 3D T1-weighted volume - as performed in [50] and implemented in [52] – 
according to the following equations: 
 

 

𝐺𝐺𝑐𝑐(𝑥𝑥,𝑥𝑥) =
∑ ∑ ∑ 𝑔𝑔𝑐𝑐𝑙𝑙(𝑥𝑥,𝑥𝑥)132

𝑦𝑦=1
132
𝑥𝑥=1

𝐿𝐿
𝑙𝑙=1

𝑅𝑅
(3) 

 
 

𝐺𝐺𝑐𝑐(𝑥𝑥,𝑥𝑥, 𝑧𝑧) =
∑ ∑ ∑ ∑ 𝑔𝑔𝑐𝑐𝑙𝑙(𝑥𝑥,𝑥𝑥, 𝑧𝑧) 118

z=1
144
y=1  115

x=1
𝐿𝐿
𝑙𝑙=1

𝑅𝑅
(4) 

 
Where 𝐺𝐺𝑐𝑐  is the resulting mean heatmap and 𝑅𝑅 is the number of layers considered for each model. More 
specifically, the output layers of the four stages dividing ResNet18 and the three GPC-SE blocks in BC-GCN-SE 
model were considered. 
 
2.7. Explainability assessment 

In order to determine the most important information leveraged by the models, we assessed the contributions of 
each parcel. More specifically, we related the mean heatmaps of AD and HC sessions obtained from both ResNet18 
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and BC-GCN-SE to the HOA + AAL atlas to assess which brain regions were mostly involved in the classification. This 
same parcellation allowed for a direct comparison between the level of explainability of the two models. The 
involved atlas consisted of the combination between 106 regions of the HOA and 26 cerebellar parcels of the AAL. 
More precisely, it was used to highlight either nodes from the structural connectivity matrixes or volumetric 
regions from the 3D T1-weighted scans. Thus, from the mean heatmap of one session, the contributions 
highlighted by each connection of each node (i.e., parcel) of connectivity matrixes or in each voxel of each parcel 𝑝𝑝 
of 3D T1-weighted scans were averaged to extract a quantity hereafter called relevance value (𝑅𝑅𝑉𝑉): 

 

RVp,c =
∑ ∑ ∑ Mp(𝑥𝑥,𝑥𝑥, 𝑧𝑧)𝐺𝐺𝑐𝑐(𝑥𝑥,𝑥𝑥, 𝑧𝑧)118

z=1
144
y=1  115

x=1

∑ ∑ ∑ Mp(𝑥𝑥,𝑥𝑥, 𝑧𝑧) 118
z=1

144
y=1  115

x=1
(5) 

 

𝑅𝑅𝑉𝑉𝑝𝑝,𝑐𝑐 =
∑ 𝐺𝐺𝑐𝑐(𝑝𝑝, 𝑞𝑞)132
𝑞𝑞=1,𝑞𝑞≠𝑝𝑝

131
(6) 

 
 

where Mp(𝑥𝑥, 𝑥𝑥, 𝑧𝑧) is a binary mask obtained from the HOA + AAL atlas to define each parcel 𝑝𝑝. A diagram 
summarizing the XAI steps for 3D T1-weigthed volumes is reported in the bottom part of Fig. 1, whereas for 
structural connectivity is reported in the yellow block of the Fig. 2. 
 
 

Figure 1. Implemented workflow for the AD classification and explainability assessment performed on ResNet18. The 
architecture of the implemented model (blue panel) comprised 5 convolutional layers, a Global Average Pooling (GAP) layer, 
three Fully Connected (FC) dense layers with Rectified Linear Unit (ReLU) activation and a sigmoid activation function for the 
binary classification. The outputs derived from the last 4 convolutional layers were processed using Grad-CAM (green panel) 
and then averaged. The final heatmap was then multiplied for the binary masks underlying the HOA + AAL atlas parcels. 
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Figure 2. Implemented workflow for the connectivity data extraction, AD classification and explainability assessment performed 
on BC-GCN-SE. The processing steps used to derive the structural connectivity data are displayed in the orange panel. The 
architecture of the implemented model (blue panel) comprised three Graph Path Convolution layers (GPC), an Edge Pooling 
(EP) layer, a Node Pooling (NP) layers and two fully connected layers. The outputs derived from the 3 convolutional layers of the 
model were processed using Grad-CAM (green panel) and then averaged. From the final heatmap the contributions highlighted 
by each connection of each node of the HOA + AAL atlas were averaged to extract the RV measure of each parcel. A 
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connectogram representing both connectivity edges of the heatmap and color-coded RV values (circle perimeter) is displayed. 
These plots were created using the SPIDER-NET tool [53].  

 

2.7. Statistical Evaluation 

2.7.1 Anatomical targets 

After evaluating the DL models (see Sec. 2.3 for further details) results of the XAI assessment were analyzed in 
comparison to domain knowledge. 
As for the BC-GCN-SE model, we selected as structural connectivity target a hallmark of AD: the DMN [7], [10], 
[11]. The DMN was defined by 31 parcels of the HOA according to the indications provided in the “Cortical & White 
Matter Parcellation Manual” (https://cma.mgh.harvard.edu/) and to different previous studies [54]–[57]. 
Specifically, we defined the DMN according to previous studies highlighting the regions characterizing the network. 
The medial prefrontal cortex, the posterior cingulate cortex, a portion of the temporal lobe, the precuneus, and 
the inferior parietal areas like the angular and supramarginal gyri often make up these brain regions. In addition to 
these usual core regions, the network frequently include the lateral temporal cortex, hippocampus, and amygdala 
[54], [55], [58]. In this regard, no unique definition exists. While prior research offers preliminary indications of a 
more comprehensive characterization of the DMN system, additional studies are required to define the anatomical 
scope of certain parcel contribution [58].  
As for the ResNet18 model, a different cluster of parcels was selected as anatomical target. According to previous 
studies [59], [60], patterns of atrophy in the medial temporal lobe (MTL) represent a well-established sMRI 
biomarker for AD and is often used a diagnostic criterion for individuals displaying early symptoms. Thus, while 
conducting the XAI assessment, 4 structures were considered bilaterally, for a total of 8 regions of interest: 
hippocampus, anterior and posterior parahippocampal gyri and amygdala. 
 
2.7.2 Statistical tests 
The investigation of the processes underlying the decision of the classifiers was initially carried out by performing a 
statistical test to identify the different contributions to AD/HC classification of the parcels taken from the HOA + 
AAL atlas for both models. To predispose the statistical comparison, some operations were carried out. First, we 
obtained two sets from the RV associated to each parcel of each subject. These sets were created by: (i) removing 
the misclassified sessions; (ii) aggregating the RV values across single parcels, for subjects with multiple MRI 
sessions and same class, (iii) Removing the sessions associated to the same subjects but with different classes 
(removing records); (iv) separating the HC and AD sessions; (v) normalizing between 0 and 1 using the minimum 
and the maximum values among all RV values obtained from the corresponding models; for example, all RV values 
obtained with ResNet18 were normalized according to the maximum and minimum obtained from all RV related to 
each parcel and each correctly classified subject. 
The resulting sets were independent and of different size according to the class and the number of sessions 
misclassified by ResNet18 and BC-GCN-SE.  
In order to evaluate the regions and inherent characteristics that were particularly used among all parcels for the 
classification task of AD, two analyses were performed. First, the Kolmogorov-Smirnov test was performed on all 
the parcel samples to evaluate normality. The two sets were compared between each other through the Mann-
Whitney or independent samples t-test using the Benjamini-Yekutieli correction in both cases [61]. The significance 
level was set to 0.05 and the correction was applied on the result to adjust p-values accounting for multiple 
comparisons. In this way, it is possible to obtain the parcels that were used differently by the algorithms to classify 
one or the other class in relation to all parcels. 
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Second, most relevant parcels for the classification of AD and HC were investigated separately. These subsets were 
obtained according to the 15th percentile of the highest RV for both classes (20 parcels out of the 132 total HOA + 
AAL parcels) and both models were analyzed. Indeed, these most relevant parcels are the most employed by the 
models for the classification.  
From these subsets (i.e., most relevant parcels), we analyzed the following subgroups: i) parcels that were also 
statistically significant. These were strongly influencing the model while also providing a greater contribution 
towards one of the two classes; ii) parcels that were not statistically significant. Of these, particular attention was 
paid to the ones in common between the AD and HC groups as they were strongly influencing the classification of 
both classes without leveraging one. 
 

3. RESULTS 

The results of the 10-fold cross-validation from the DL models ResNet18 using 3D T1-weighted volumes and BC-
GCN-SE using structural connectivity data are summarized in Table 1. 

 
Table 1. Normalized confusion matrix for the ResNet18 and BC-GCN-SE model performance, reported as median value and 
interquartile range. 

Cross-Validation Normalized Confusion Matrix Predicted 
ResNet18 P N 

Actual 
P 0.817 [0.773, 0.846] 0.183 [0.154, 0.227] 

N 0.183 [0.167, 0.233] 0.816 [0.767, 0.833] 

BC-GCN-SE P N 

Actual 
P 0.703 [0.672, 0.769] 0.297 [0.231, 0.328] 

N 0.261 [0.242, 0.302] 0.739 [0.698, 0.758] 

 

Both models achieved good performance. Specifically, ResNet18 achieved balanced performance for AD and HC 
during cross-validation (TPRmedian = 0.817; TPRIQR = 0.073; TNRmedian = 0.816; TNRIQR = 0.066). The median accuracy 
was 0.811 and the interquartile range was 0.073. On the new split, the performance of ResNet18, obtained 
merging both the training and validation sets, were TPR = 0.985 and TNR = 0.989, with an accuracy of 0.988. 
BC-GCN-SE provided slightly inferior performance with respect to ResNet18 (TPRmedian = 0.703; TNRmedian = 0.738). 
More precisely, the model showed slightly higher results and also less variability for HC during cross-validation 
(TPRIQR = 0.097; TNRIQR = 0.060). The median accuracy is 0.742 and the interquartile range is 0.058. Finally, the 
results of BC-GCN-SE on training and validation sets on the new split highlighted TPR = 0.956 and TNR = 0.788, with 
a total accuracy of 0.821. 

 
Table 2. Brain parcels displaying a significant difference between the AD and HC level of relevance.  

ResNet18 (3D T1-weigthed volumes) BC-GCN-SE (Structural connectivity) 

N. Parcel* Adjusted p N. Parcel Adjusted p N. Parcel Adjusted 
p 

N. Parcel* Adjusted p N. Parcel Adjusted p 

1 AG_r < 0.001 23 AC < 0.001 47 Pal_l 0.006 1 AG_r 0.025 23 NAcc_r 0.015 
2 aITG_r < 0.001 24 Amg_l < 0.001 48 PostCG_l 0.003 2 aITG_r < 0.001 24 aMTG_l < 0.001 
3 Amg_r < 0.001 25 CaN_l < 0.001 49 PrCun < 0.001 3 Amg_r 0.017 25 aSMG_r 0.031 
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4 aMTG_r 0.002 26 Cereb1_l < 0.001 50 PreCG_r 0.024 4 aMTG_r < 0.001 26 aSTG_l 0.038 
5 aTFusC_r < 0.001 27 Cereb6_l < 0.001 51 SFG_r 0.010 5 aTFusC_

r 0.014 27 Cereb1_r 0.028 
6 BSt 0.024 28 Cereb6_r 0.001 52 SubCalC < 0.001 6 BSt < 0.001 28 HG_r 0.016 
7 Cereb2_r < 0.001 29 Cereb7_l < 0.001 53 TOFusC_l < 0.001 7 Cereb2_

r 0.034 29 ICC_r 0.031 

8 Cuneal_r < 0.001 30 Cereb8_l < 0.001 54 Tha_r < 0.001 8 Cuneal_
r 0.016 30 iLOC_r < 0.001 

9 FO_r < 0.001 31 Cereb8_r < 0.001 55 Ver10 < 0.001 9 FO_r 0.001 31 LG_r 0.044 
10 FP_r < 0.001 32 Cereb9_l < 0.001 56 Ver45 0.005 10 FP_r 0.018 32 OFusG_r 0.018 
11 IFG_tri_l < 0.001 33 Cereb9_r < 0.001 57 Ver8 < 0.001 11 IFG_tri_l 0.018 33 Pal_r 0.028 
12 IFG_tri_r < 0.001 34 Cuneal_l < 0.001 58 aITG_l < 0.001 12 IFG_tri_

r 0.044 34 pMTG_r 0.018 
13 MedFC < 0.001 35 FO_l < 0.001 59 aPaHC_l < 0.001 13 MedFC 0.006 35 PO_l 0.034 
14 PaCiG_l < 0.001 36 FP_l < 0.001 60 aPaHC_r < 0.001 14 PaCiG_l < 0.001 36 PO_r 0.021 
15 PaCiG_r < 0.001 37 Hip_l < 0.001 61 aTFusC_l < 0.001 15 PaCiG_r 0.020 37 PostCG_r 0.010 
16 PreCG_l < 0.001 38 Hip_r < 0.001 62 pITG_l 0.006 16 PreCG_l 0.024 38 pSMG_l 0.032 
17 SFG_l < 0.001 39 IC_r < 0.001 63 pITG_r < 0.001 17 SFG_l < 0.001 39 pSMG_r < 0.001 
18 Tha_l < 0.001 40 IFG_oper_l < 0.001 64 pMTG_l 0.011 18 Tha_l 0.031 40 pSTG_r 0.028 
19 toMTG_r 0.045 41 IFG_oper_r < 0.001 65 pPaHC_r 0.009 19 toMTG_

r 0.044 41 PT_r 0.019 
20 Ver9_r < 0.001 42 MidFG_l < 0.001 66 pSTG_l 0.010 20 Ver9 0.024 42 SMA_l 0.018 
21 NAcc_l < 0.001 43 MidFG_r < 0.001 67 pTFusC_r < 0.001 21 NAcc_l 0.003 43 SPL_r 0.018 
22 CaN_r < 0.001 44 OFusG_l 0.026 68 sLOC_l < 0.001 22 CaN_r 0.007 44 toITG_r < 0.001 

   45 OP_l < 0.001 69 sLOC_r < 0.001    45 Ver12 0.044 

   46 OP_r < 0.001 70 toITG_l < 0.001    46 Ver7 0.018 

Results relative to the Mann-Whitney or independent samples t-tests are reported in terms of p-value, after performing the 
Benjamini-Yekutieli correction. The first column of the ResNet18 and BC-GCN-SE model (from N.1 to N.22) is marked with an 
asterisk (i.e., Parcel*), to highlight the significant parcels common to both. 

 
The results from the statistical tests on the parcel XAI heatmaps are summarized in Table 2. Among all the parcels 
of the atlas used, the relevance values of 70 and 46 parcels of AD in comparison to HC for ResNet18 and BC-GCN-
SE respectively were found to be statistically significant (p < 0.05). In particular, 22 parcels were in agreement 
between the two methods (first column of Table 2, highlighted with asterisk), mainly belonging to cortical parcels 
(except two cerebellar parcels). More specifically, in the case of ResNet18, 7 out of 8 total target MTL and 
hippocampus parcels, with the only exception of the anterior division of the left parahippocampal gyrus were 
found to be significant. In the case of BC-GCN-SE, instead, all the parcels belonging to target DMN except the 
frontal orbital cortex, the posterior part of the cingulate gyrus, the temporal pole, the precuneus and the 
hippocampus (12 out of 17 parcels) were found to be statistically significant (p < 0.05) in at least one hemisphere 
(70.59%). Considering lateralization, the number was 16 out of 31 total DMN parcels (51.61%). The distributions of 
the relevance values from both models of these target parcels are shown in Fig. 3 and Fig. 4. 
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Figure 3. Boxplots of the RV values relative to the target parcels (specified on the x axis) for both the BC-GCN-SE model. Results 
for the AD (in purple) and HC (in green) subjects are resented using different colors.  
 

 

Figure 4. Boxplots of the RV values relative to the target parcels (specified on the x axis) for both the BC-GCN-SE model. Results 
for the AD (in purple) and HC (in green) subjects are resented using different colors.  

 
It is worth noting that most of the regions, with the exceptions of pPaHC_l for the ResNet18 model and FP_r for 
the BC-GCN-SE model, resulted to be significantly different with greater relevance values for the AD case.  
Afterwards, the most relevant parcels for the classification of AD from both models were analyzed. First, it was 
noted that 11 out the 20 most relevant parcels for ResNet18 (Ver10, aTFusC_l, aTFusC_r, aITG_r, SubCalC, aITG_l, 
aPaHC_l, pITG_r, MedFC, pSTG_l, aPaHC_r), were also found to be statistically significant. The anterior division of 
both right and left parahippocampal gyrus from target MTL were among these 11 parcels. The remaining 9 most 
relevant parcels that were not statistically significant were Cereb10_l, Cereb10_r, FOrb_l, FOrb_r, CO_r, pSTG_r, 
PO, Ver12, and Ver3 whose first 7 were also found to be among the most relevant for the HC classification.  
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Second, 14 out of the 20 most relevant parcels for BC-GCN-SE (Cereb1_r, iLOC_r, pMTG_r, pSMG_l, pSMG_r, 
pSTG_r, toITG_r, ICC_r, OFusG_r, PaCiG_l, PaCiG_r, SPL_r, Tha_l, Ver9), were also found to be statistically different. 
Of these 14, 5 parcels belong to target DMN. The remaining 6 most relevant parcels that were not statistically 
significant were Cereb8_r, Cereb9_l, Cereb9_r, PreCG_r, Ver10, Cereb10_l, whose first 4 were also found to be 
among the most relevant for the classification of HC.  
To summarize, a diagram indicating the mean RV of all correctly classified sessions of both classes and models per 
each parcel and divided in lobes are shown in Fig. 5.  
 

Figure 5. Mean RV of all parcels, for the ResNet18 (panel A) and BC-GCN-SE (panel B) models. The AD and HC classes are 
reported separately. The lobe’s belonging is indicated through rectangle colors. The rectangles have different size according to 
the number of parcels contained in the lobes. The RV of each parcel is labeled by dot colors according to the following criterion: 
red indicates the 15% of parcels characterized by highest RV, yellow indicates the 15% of parcels characterized by lowest RV, 
grey indicates the remaining parcels. Plots were created using the SPIDER-NET tool [53]. Fro: Frontal Lobe; Ins: Insular Cortex; 
Lim: Limbic Lobe; Tem: Temporal Lobe; Par: Parietal Lobe; Occ: Occipital Lobe; SbC: Subcortical Structures; Ceb: Cerebellum; 
BSt: Brainstem. 
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4. DISCUSSION 

In this work, we compared two AI methods trained on different types of sMRI data, namely 3D T1-weighted scans 
and structural connectivity matrixes extracted from dMRI data. Both approaches were applied to an AD 
classification task and evaluated first in terms of model accuracy and then in terms of explainability. The 
population considered was a subset of the OASIS-3 dataset. In particular, we focused on 543 subjects comprising 
both healthy controls and individuals at various stages of AD cognitive decline. Since a group of subjects 
underwent multiple imaging sessions that we treated as separate records, the final dataset consisted of 692 MRI 
volumes and structural connectivity matrixes, with an HC:AD ratio of 557:135. 
 
4.1 DL model performance 
Overall, the DL models highlighted good classification results. On the one hand, the BC-GCN-SE obtained 
acceptable performance with respect to the existing literature [28]. Higher accuracy (TNRmedian = 0.738) and slightly 
lower cross-validation variability (TNRIQR = 0.060) was found for the HC classification as compared to the AD case 
(TPRmedian = 0.703; TPRIQR = 0.097). On the other hand, the ResNet18 model achieved slightly superior accuracies 
with respect to the BC-GCN-SE when classifying both AD and HC subjects (TPRmedian = 0.817; TNRmedian = 0.816). The 
obtained results were in line with the existing literature [36]. The AD and HC variabilities seemed comparable 
(TPRIQR = 0.073; TNRIQR = 0.066). To the best of our knowledge, no other studies compared DL models trained using 
3D T1-weighted volumes and structural connectivity data neither in terms of accuracy nor explainability. 
Moreover, this is the first work testing BC-GCN-SE model on structural connectivity with the aim of classifying 
diverse AD subjects of the OASIS-3 dataset. Few other AD classification studies were conducted on alternative 
populations, such as the well-known ADNI dataset [28], [30], highlighting good performance for the DL models 
adapted to graph-structured data - mostly functional connectivity. However, these models are relatively recent, 
especially when compared to more mature CNNs architectures working on images such as the ResNet18 model. 
This latter is a widely tested pre-trained model with weights obtained from more than a million images from the 
ImageNet database, probably resulting in a better ability to generalize.  
In addition, it is worth noting that the structural connectivity data obtained from DTI have inherent limitations 
related to the processing pipelines that may result in noisy connections. The absence of gold-standard methods for 
the creation of connectivity graphs and for edge weighting is indeed one of connectomics' current biggest 
shortcomings [62], [63]. DTI fiber tracking algorithms suffer, for example, from the assumption of a single fiber 
orientation per voxel, resulting in systematic errors for complex fiber geometries (such as crossing, kissing, twisting 
fibers etc.). In addition, other issues can strongly affect the final extracted data since they are directly dependent 
on the parameters of the dMRI experiment, and the accuracy can decrease with factors such as pathway length, 
shape and size of the reference region, and shape of the tract in question [62]. Usually, thresholding methods are 
widely applied on the raw connectivity matrixes to remove spurious edges, although the optimal approach is yet to 
be found. This results in altered brain graph structure and connectedness. Future studies could fruitfully explore 
this issue further by applying some of these most recent methods to assess the performance after connectivity 
data cleaning [64].  
Given this premises, both results can be considered promising, even considering the great variability of severities 
of the AD subjects, sessions parameters, the presence of multiple acquisition sessions without a predefined design 
setting (such as scheduled acquisitions) in the OASIS-3 dataset. Moreover, the division into classes is made 
according to the CDR values, also resulting in 15 subjects having sessions with different labels and in a majority of 
sessions from subjects with very mild impairment (n. 97 sessions with CDR 0.5 out of 135 total AD sessions). 
Clearly, being the range of dementia effects wide and of difficult definition, it results in a more difficult task. 
As said, the use of DL models on brain connectivity graphs is quite recent, thus assessing them in comparison to 
more established approaches would be of great importance. The processing effort of extracting connectivity data, 
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providing new information and relevant data would be thus enhanced if casting new light on the exploration of 
brain biomarkers and computational cost in parallel to optimal results of AI. Future research should further 
develop and confirm these first findings, aiming to improve the performance since demonstrated higher potential. 
This would be of great relevance in context of the definition of prodromal symptoms of the pathologies, diagnosis 
and rehabilitation. 

4.2 ResNet18 explainability results

After using the DL models to classify our data, this work focused on their explainability. The aim was to validate the 
functioning of AI methodologies employing MRI volumes and structural connectivity matrixes and to assess their 
agreement with respect to domain knowledge. As we applied Grad-CAM on both classification models, results 
were evaluated across 132 parcels derived from the HOA + AAL brain atlas. At first, we extracted the levels of 
relevance characterizing each parcel in both the AD and HC subjects and compared results, to determine if the 
regional information was used primarily to identify either one of the two classes. Then, we investigated the most 
relevant parcels for the AD classification task according to a ranking criterion applied on the RV measures.  
As for the imaging classification task, we saw a significant difference between AD and HC in 70 brain areas. Among 
these, particular attention was paid to the regions deemed as more relevant to identify neurodegenerative 
processes from sMRI data, as indicated by the existing literature. Numerous studies highlighted the involvement of 
the MTL in the pathogenesis of AD, and pointed at its volumetric loss as an early sign of the disease progression 
[2], [65], [66] . Additionally, the medial temporal atrophy has been indicated among the diagnostic criteria for AD 
by a revised version of the traditional National Institute of Neurological and Communicative Disorders and Stroke–
Alzheimer’s Disease and related Disorders association criteria [60]. This version removed the original requirement 
for dementia onset to classify subjects as AD, thus making the MTL a reliable biomarker to detect the disease 
presence even before the disability phase occurs (i.e., dementia onset and progression). As mentioned in the 
Methods section (see Sec. 2.7.1 for further details), the brain structures involved in the MTL are the hippocampus, 
amygdala and parahippocampal regions, that are all key for the episodic and spatial memory [59]. However, 
among these, the most validated and established sMRI biomarker for AD is the hippocampus. A number of studies 
have linked its volumetric loss to the memory decline stages [2], [67], [68]. Additionally, Hall and colleagues proved 
that the amount of time required by cognitively normal subjects to develop dementia was shorter in the presence 
of hippocampal atrophy [68]. Based on these considerations we assessed the difference between the amount of 
repeatability characterising AD and HC subjects in the following parcels: Hip_r, Hip_l, Amg_r, Amg_l, aPaHC_r, 
aPaHC_l, pPaHC_r, pPaHC_l. The presence of a significant difference between the AD and HC groups in 7 regions – 
all except the pPaHC – suggests that the algorithm is leveraging them to perform the classification. Additionally, 
the higher levels of relevance of the AD class as compared to HC in all 7 structures (see Fig. 3), indicates that the 
algorithm is mainly utilizing them to identify the presence of AD, rather than a physiological condition. From this 
we may infer a good level of explainability for the implemented ResNet18 model, that seems to be positively 
influenced by almost all the anatomical regions that are usually involved in the AD progression process. However, 
one may argue that the number of parcels displaying a difference in the AD and HC levels of RV is high when 
compared to the total number of parcels we investigated. This may increase the possibility to detect the target 
structures belonging to the MTL. To overcome this limitation, we investigated which parcels – among the 
significant ones were also included in the 20 most relevant (i.e., parcels with the highest RV values) for the AD 
case. We identified a total of 11 parcels, 2 of which belonged to the MTL: aPaHC_r, aPaHC_l. This serves as a 
strong confirmation that the algorithm is leveraging them to identify the presence of AD. Additionally, it is 
noticeable that almost all the remaining regions – the only exception being represented by Vermis10, a parcel of 
the human cerebellum – are part of the brain cerebral cortex, that is known to be involved in the process of 
disease progression [66]. In particular, 6 parcels belonged to the temporal lobe (see Fig. 5), whose atrophy pattern 
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has been linked to neuronal loss, visuospatial, language and behavioral impairment by a number of studies [60], 
[69], [70]. Furthermore, the presence of MedFC and SubCalC – belonging to the frontal and limbic cortex, 
respectively – among the most relevant features could be explained by the fact that, during the latest stages of the 
disease, atrophy spreads to the remaining cortical areas, sparing only the visual and sensory motor cortex, as 
indicated by Eskildsen and colleagues [2]. Overall, the obtained results indicate that the designed classification 
approach is correctly using the structural information provided by the 3D T1-weigthed images to recognize 
diseased individuals. Even though having all of the 8 target regions among the most relevant ones would have 
proven the achievement of higher levels of explainability, the outlined findings seem promising and open the way 
for further investigations on the processes underlying the AD classification. Additionally, it is worth noting that the 
11 parcels discussed so far – besides aiding the classification – seem also able to avoid the introduction of potential 
biases or confounding factors. Indeed, only 2 out of them were among the most explainable features for both AD 
and HC, while the remaining ones were favoring the sole pathological class, thus proving their role as an sMRI 
biomarker for AD. However, in this regard, it is important to mention that 7 among the remaining AD most 
explainable features had very high and comparable RV measures with respect to the HC class. Among these, we 
found 2 cerebellar and 5 cortical regions (either frontal, temporal or parietal). As for the cortical regions we may 
speculate that the DL model is using them to extract opposite information with respect to the ones generally used 
to classify AD. The dichotomy between atrophic and physiological cortical volume could play a significant role in 
the AD/HC distinction. This consideration could still hold for the cerebellar parcels, since the volumetric loss of 
their molecular and granular layers, despite not being among the most established AD biomarkers, have been 
linked to the pathology presence by different studies [71], [72]. However, further investigation is certainly needed 
to confirm the outlined hypothesis or, more generally, to shed light on how these specific regions are used by the 
DL model to discriminate between healthy and pathological individuals. 
 
4.3 BC-GCN-SE explainability results 
Regarding the relevance of structural connectivity data and its use within BC-GCN-SE model to classify AD and HC, 
the DMN was used as target. Indeed, according to different studies [7], [11], [12], changes in the DMN are well-
known markers, since age and Alzheimer's pathology can alter the WM and disrupt the DMN normal functioning. 
In a DTI study was also found that core parcels of the DMN, such as cingulate structure and hippocampus, are even 
increasingly gaining attention in the AD field since they are also recognized as key structure of the memory system, 
confirming sMRI findings [7]. We assessed the relevance of these target regions in the task through BC-GCN-SE 
model (see Sec. 3 for further details), as previously done for the ResNet18 model. 
The GRAD-CAM results assessment highlighted 46 parcels which differently contribute to the classification of the 
two classes with respect to all parcels. Among these, it was found that more than the half of the total parcels 
belonging to the DMN were statistically significant (p < 0.05) with majority of values in favor to AD. It is also worth 
noting that an even higher percentage of the target parcels (more than 70%) were relevantly used by the model if 
not considering lateralization. However, we acknowledge that there are considerable discussions and increasing 
evidence among researchers as to abnormality of topological asymmetry between hemispheric brain WM in AD 
and Mild Cognitive Impairment [73], [74]. More specifically, when comparing our results to those of other studies, 
it must be pointed out that all parcels which were found to exhibit asymmetry in the study by Yang and colleagues 
agreed to the parcels of only one hemisphere used by our model [73]. Examples were angular gyrus and amygdala, 
belonging to DMN, or inferior temporal gyrus, cuneal cortex, supplementary motor area and lingual gyrus. In 
addition, several of these parcels were also found to be among the most relevant for the identification of AD. This 
can be a valuable indication supporting for hemispheric lateralization and aberration possibly due to the long-
range connection loss that would be of great interest to be further investigated. 
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Also, the relevance of the changes within DMN was confirmed by analyzing the statistically significant and at the 
same time most explainable parcels for AD class. Indeed, among these 14 parcels, 5 belonged to DMN. However, 
whether on the one hand the results appear to provide an important involvement of the DMN, on the other hand, 
important parcels such as hippocampus, posterior cingulate cortex or precuneus, were not accounted by the BC-
GCN-SE. Beyond that the case of these missing important DMN parcels, also the MTL and, hippocampus included, 
appeared to exert a small influence on the classification process. Apart from the right amygdala that was found to 
be statistically significant, other regions such as parahippocampal cortex appeared to not be relevantly used (p ≥ 
0.05). This may represent a limitation in terms of explainability of the model, since some of these regions are also 
often included in the DMN [7] and MTL was found to be relevant in dMRI studies [14], although less replicated 
than DMN core areas [75]. At the same time, it is possible to notice from figure Fig. 5 a wide presence of most 
explainable relevant parcels focused on the right temporal and parietal lobes. In this regard, other studies 
highlighted general temporal and parietal lobe disruptions contributing to memory impairment [7], [10], [12]. 
Other particular cases were related to brainstem, the nucleus accumbens and the cerebellum. These regions were 
not considered as targets, but their analysis appears to be of interest. Indeed, the brainstem was the parcel mostly 
differing between the two cases in favour to HC, with the highest RV as shown in figure Fig. 5. At this stage of 
understanding, we believe that this result may highlight an important influence of the corticospinal tract in healthy 
subject [76]. In addition, the brainstem was found to be associated to apolipoprotein status, resulting in an altered 
radial diffusivity [77], [78]. Alteration in AD was also found in a study by Nie and colleagues in the accumbens 
nucleus, that resulted to be statistically different in AD/HC classification made by BC-GCN-SE in both hemispheres 
[79]. Moreover, analyzing the most explainable relevant parcels that were in common between the two classes it 
was found that many cerebellum areas aided the model to recognize both classes. This finding can support the 
hypothesis of a strong involvement of this area in AD that was only recently reported by some studies [80]. 
Alternatively, studies of whole-brain graph organization revealed subregions of the cerebellum connected with the 
cortical regions of the DMN [58]. Although the important role of the cerebellum that could be investigated in 
future works, it is worth noting that the uncertainty of the connectivity data can have a great influence of all these 
results, especially if referring to cerebellar parts that can be massively affected by noise [81]. In general, these 
unexpected parcels and less replicated results need further investigation which may potentially bring to new 
findings regarding the involvement of certain areas in AD or to highlight limitation of the model both in terms of 
interpretability and accuracy of the results. It is indeed paramount to focus on the interpretation of graph-
structured based DL models to provide new evidence of their reliability and trust, and to improve their 
performance through possible less arbitrary data cleaning and thresholding. 

4.4 Limitations and perspectives

The present study is not without limitations. For example, different approaches for XAI exist and they may not 
always be effective in all scenarios [32]. The use and comparison to other methods such as perturbation or 
distillate methods would be of great interest to further validate the results. In addition, this work only focuses on 
the mean relevance value extracted from a whole parcel to allow straightforward comparison to 3D T1-weigthed 
volumes. It would also be appealing, in the case of structural connectivity data, to investigate most explainable 
connections which could highlight most important long-range connections and their loss in AD [8], [9]. In addition, 
beyond that the DMN analysis, the investigation of other Resting State Networks (such as Frontoparietal network 
in relation to fronto-temporal dementia etc.) may highlight new insights on the employed models. Further 
investigations on the WM might also be performed in the 3D T1-weigthed volumes to visualize similarities and 
differences with respect to WM metrics related to structural connectivity data. A particular case is related to the 
presence of White Matter Hyperintensities which can represent important biomarkers of AD condition [82]. In a 
previous preliminary study, we confirmed their relevance within a DL model employing FLAIR images, although 
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with a low number of subjects [23]. A possible perspective would be to further investigate their effects in regard to 
connectivity data as well. For example, it would be of great interest to employ tools such as NeMo to extract the 
effect of these lesions within connectivity data structure [83].  
 
4.5 Comparing and combining explanations 
The agreement, peculiarities and limitations of the two DL models employing sMRI and dMRI data emerge as key 
findings. First, 22 regions were found to be significantly used by both models to distinguish the pathological 
condition. Furthermore, among all the other parcels that did not agree, it was still noticed a large agreement on 
specific regions without considering hemisphere’s belonging. Some other parcels were found to be important, 
both including the target ones and not. Indeed, although adherence to known markers from 3D T1-weigthed 
volumes and structural connectivity data are given, other unexpected parcels, mainly from the cortex, resulted in 
being important, reducing the strength of the explanation. It is worth also noting that the population was 
composed of subjects at various AD stages, severities, and affections that might simply suggest that different 
involvement of the disease in different MRI sessions lead to general extensive importance of a considerable 
portion of the cortex. This is particularly true for the ResNet18 model, that points out more statistically significant 
parcels. In addition, it is a deeper model with respect to BC-GCN-SE, possibly focusing on more complex features.  
Together with the comparison between AD and HC most relevant regions were investigated. Among them, the two 
DL models employing different data highlighted a notable agreement to target. First, it was found that some DMN 
regions have good importance in the classification from structural connectivity matrixes. Second, it was also shown 
as the regions characterizing the MTL, found as replicated hallmark in sMRI studies, contain inherent important 
features for the ResNet18 model employing 3D T1-weighted volumes. In this context, it is also of great interest to 
underline how some important regions of the MTL such as amygdala and parahippocampal gyri, and hippocampus 
that were also found to be different in AD connectivity data [14], were not underlined by the XAI analysis of BC-
GCN-SE. Indeed, apart from right amygdala, that was found to be statistically significant, all the other regions of 
the MTL did not result from either statistical test and examining most relevant parcels. This finding may highlight a 
limitation of BC-GCN-SE model interpretability or the effect of some noise sources inherently present in the 
connectivity data. At the same time, this complementary relevance of parcels of interest appears promising in the 
perspective of developing superior and more trustworthy models. Indeed, the use of well-known hallmarks from 
multiple measures may offer the opportunity of focusing on different information that would be of great interest 
and significance if used concurrently. In this context, only few studies considered the combination of 
morphological features of regions from 3D T1-weigthed volumes and interregional properties obtained through 
structural connectivity data, but that may potentially lead to more accurate results and to a better interpretation 
[84]. Nowadays, there is indeed the potential to easily collect multiple data from multiple modalities, and in this 
sense, efforts to assure even greater use of the whole potentiality of DL models, exploiting their peculiarities 
would be of unvaluable interest for diagnosis and rehabilitation of the pathology. The development of better and 
more interpretable models can represent accurate and robust solutions to the well-known problem of trust in 
“black-box models”, which limited their diffusion within real settings so far. 
 
5. CONCLUSION 

In this work, we assessed two DL models working on data from multiple MRI acquisitions performed on a subset of 
AD and HC subjects from the OASIS-3 dataset. Specifically, we employed 3D T1-weigthed sMRI volumes (ResNet18) 
and structural connectivity matrixes (BC-GCN-SE) defined according to the HOA + AAL atlas and to dMRI metrics. In 
this perspective, we compared the models according to their accuracy and explainability. The method employed 
was GRAD-CAM, which pointed out some target regions, found to highlight markers of the pathology in sMRI and 
dMRI. More precisely, the expected involvement of the MTL was found using ResNet18, whereas the DMN 
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relevance was found to be important in the decision made by the BC-GCN-SE. Even though an important 
involvement of these targets in the classification decision, part of these expected regions was missing in the 
analysis of one of the two models, highlighting complementary explanations. For example, important areas such as 
hippocampus or parahippocampal gyri were identified by the ResNet18, whereas excluded by BC-GCN-SE. This 
work emphasized the potential held by imaging and connectivity data as for the creation of better and more 
reliable models. The opportunity to focus on different information may be provided by well-known hallmarks from 
multiple measures, if employed concurrently. In this context, combining interregional properties found by brain 
connectivity graphs with the morphological characteristics of regions from 3D T1-weigthed scans would result in 
more accurate findings and better interpretation. In summary, the comparison of models using multiple data 
points highlights the strengths of the two modalities that might help in the creation of more understandable 
models and, in the long-term, that may result in a rise of the confidence and trust laid in AI models. 
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