
Politecnico di Milano

School of Industrial and Information Engineering

Master of Science in Computer Science and Engineering

Department of Electronics, Information and Bioengineering

Integration of Genome-Wide Association Studies

into the GeCo Repository

Supervisor: prof. Stefano CERI
Co-supervisor: Anna BERNASCONI, PhD

Arif CANAKOGLU, PhD

Master thesis by: Federico COMOLLI
Student Id n. 920258

Academic Year 2020-2021





Abstract
English version:

The first human genome has been sequenced at the turn of the year 2000.
From this first project the modern biology has made great strides, thank to
the introduction of Next-generation sequencing in the mid-2000s. The growing
availability of genomic data has bring to the birth of the “tertiary analysis”,
the one concerning sense-making of huge amount of data and useful biological
information extraction. Many projects around the world have been brought
forward in the last decade, obtaining a big amount of genomic data. Starting
from the mid of ’10s in the context of the GeCo project, some researchers of
Polimi have introduced many tools to achieve genomic data integration to help
biologists to perform tertiary analysis using multiple sources.

The Genomic Data Model, the Genomic Conceptual Model, the META-
BASE architecture and the GMQL query language are some of the facilities
proposed by the GeCo project to obtain genomic data integration. The META-
BASE architecture is the core tool for the consolidation and it allows to trans-
form raw data and to map them using a common conceptual schema. Integrated
data can be queried or surfed using appropriate tools like GMQL or GenoSurf.
All this works are meant to improve the quality of health care and to facilitate
biologists to make new progresses in treat of diseases.

This thesis presents the efforts spent to integrate two more sources into the
META-BASE architecture: GWAS Catalog, curated by the institutes NHGRI
and EBI and FinnGen, curated by the University of Helsinki. It’s the first time
that are hosted Genome-Wide Association Study sources so the integration has
required some extensions in the data schema of the GCM and the implementa-
tion of the new corresponding modules of the architecture.

The potentiality of the integration between multiple “omic” sources (e.g.
ENCODE, Roadmap Epigenomics and TCGA) and GWA studies is then ex-
ploited running some GMQL queries to give a hint for future works and biolog-
ical discoveries. Multi-omics studies are very important to deeply understand
biological associations between genes, proteins, RNA and other omic data with
the ultimate goal to improve human life.



Italian version:

Il primo genoma umano è stato sequenziato a cavallo degli anni 2000. Da
questo primo progetto la biologia moderna ha fatto grandi passi avanti, gra-
zie all’introduzione della tecnologia Next Generation Sequencing (NGS) a metà
degli anni 2000. La crescente disponibilità di dati genomici prodotti ha por-
tato alla nascita della “analisi terziaria”, che riguarda la reinterpretazione e
l’estrazione di informazioni biologiche utili da enormi quantità di dati. Molti
progetti in tutto il mondo sono stati portati avanti nell’ultimo decennio, otte-
nendo una grande quantità di dati genomici. A partire da metà degli anni ’10 di
questo secolo nel contesto del progetto GeCo, alcuni ricercatori del Politecnico
di Milano hanno introdotto molti strumenti per raggiungere l’integrazione in
modo da aiutare i biologi a portare avanti l’analisi terziaria usando molteplici
sorgenti di dati.

Il Genomic Data Model, il Genomic Conceptual Model, l’architettura META-
BASE e il linguaggio di interrogazione GMQL sono alcuni degli strumenti che
sono stati introdotti all’interno del progetto GeCo per ottenere l’integrazione
di molteplici sorgenti genomiche. L’architettura META-BASE è lo strumento
cardine per la consolidazione dei dati e permette di trasformare i dati grezzi e
mapparli usando uno schema concettuale condiviso (il GCM). I dati integrati
possono essere interrogati o resi accessibili grazie al linguaggio GMQL oppure
tramite il servizio GenoSurf. Tutti questi sforzi hanno come scopo ultimo quello
di migliorare la qualità della assistenza sanitaria e di facilitare la strada ai biologi
per fare nuovi progressi nella cura delle malattie.

Questa tesi presenta gli sforzi compiuti per integrare due ulteriori sorgenti
nell’architettura META-BASE: GWAS Catalog, curata dagli instituti NHGRI e
EBI e FinnGen, curata dall’Università di Helsinki. E’ la prima volta che ven-
gono ospitate sorgenti GWAS, di conseguenza l’integrazione ha richiesto alcuni
interventi al Genomic Conceptual Model e l’implementazione dei nuovi moduli
corrispondenti dell’architettura.

Le potenzialità dell’integrazione tra molteplici sorgenti “omiche” (ad esempio
ENCODE, Roadmap Epigenomics e TCGA) e le sorgenti GWAS sono sfruttate
eseguendo alcune query GMQL per dare un suggerimento su possibili lavori fu-
turi e su nuove scoperte biologiche. Gli studi multi-omici sono molto importanti
per comprendere in profondità le associazioni tra i geni, le proteine, l’RNA e
altri dati omici con lo scopo ultimo di migliorare la vita umana.
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Chapter 1

Introduction

The Deoxyribonucleic acid (DNA) is the most important molecule of the life. It
is composed by two polynucleotide chains arranged in a double helix structure.
The building blocks of the DNA are the five nucleotides cytosine [C], guanine
[G], adenine [A] and thymine [T]. All the genetic information needed for all
human being to develop, growth and reproduce is stored into the sequence of
the four nucleotides C, G, A and T. The whole information is contained into all
the cells of a human being. Cells from every tissue have all the 3,2 billion of base
pairs. All humans share more than 99% of the DNA sequence; what justifies
the diversity of our traits or diseases are small variations in the sequence of
nucleotides.

The first attempt to sequence the base pairs of the human DNA was per-
formed by The Human Genome Project [5], an international collaborative bio-
logical project launched in 1990. The rise of modern technologies has allowed
the discoveries of modern genetics. The project was concluded in 2003 by se-
quencing about the 92% of human DNA and the result is stored into a public
database made available through the World Wide Web.

After this initial project, many other followed it with the aim to understand
how the sequence of nucleotides influence our diseases or phenotypes. In the
mid-2000s, thanks to the introduction of Next-generation sequencing [25], a
whole human DNA sequence can be known in short time and in a cheaper way.

The first ambitious project enabled by these new technologies was the 100,000
Genomes Project [7], followed by many others. It is a project started in the late
2012 conducted by the UK National Health Service. By the end of 2018, it
achieved the goal to sequence the DNA of 100,000 patients of the NHS.

After being sequenced, is the turn of the so called tertiary analysis [24] which
deals with sense-making of the huge amount of data produced by the previous
analysis. The tertiary analysis is encouraged by data integration. Big amount
of data produced by different studies need to be integrated to allow scientists to
extract information useful to understand how life is orchestrated by the DNA
and how the sequence of nucleotides affects diseases or phenotypes.

Data produced in the context of different projects have different formats, an

1



Chapter 1. Introduction

obstacle for data interoperability required by the tertiary analysis.
A big effort to cope with genomic data heterogeneity is done by the GeCo

project of Politecnico di Milano developing a data model (Genomic Data Model
[19]), a query language (GenoMetric Query Language [18]) and a pipeline to
integrate genomic data from multiple sources (META-BASE architecture [1]).

The GeCo project started in the mid of 10’s of this century and its pur-
pose is to create an integrated genomic repository which collects data from the
major consortia around the world (like 1000 Genomes, Cistrome, ENCODE,
GENCODE, RefSeq, Roadmap Epigenomics, TADs and TCGA). The ultimate
goal of the GeCo efforts is to lay the basis to let biologists extract useful infor-
mation from the sequenced genomes and to improve human life. This is also
the objective of the “data science” which encloses the methods, processes and
algorithms to extract knowledge and insights from raw data.

The goal of this thesis is to integrate into the META-BASE architecture a
new class of studies called Genome Wide Association Studies (GWAS). GWA
studies focus on variations of single nucleotides in the sequence of the DNA, in a
case-control setup. By comparing groups of people with a disease or trait (cases)
and without it (controls), the outcome of these studies are the more frequent
nucleotides in the controls group against the cases. The difference of GWAS
from other studies is the focus of the analysis: single nucleotide polymorphisms
(SNPs) for GWAS, whole portion of genome or DNA features for other “omic”
studies. In details, this thesis is focused on two GWAS repositories: GWAS
Catalog and FinnGen.

The purpose of this thesis goes further GWA studies, aiming at integrating
them with other “traditional” genomic data. Integrating into a shared data
schema (the Genomic Conceptual Model [18]) multiple “omic” repositories (like
genomic, proteomic and transcriptomic) serves to improve the knowledge about
the molecular function and disease etiology. Multi-omic studies combines differ-
ent biological entities to find novel associations between them, paving the road
for disease treatments and prevention.

The goal has been achieved by mapping the conceptual schemes of the two
GWAS sources into the Genomic Conceptual Model. The GCM has been ex-
tended in order to fit their schemes, so this thesis paves the road to integrate
other GWAS sources into the GeCo repository.

This modelling step is followed by the implementation of the Scala classes
and methods needed to achieve the integration into the META-BASE reposi-
tory. The newly introduced modules of the META-BASE architecture easy the
integration of other GWAS sources.

In Chapter 7 are presented some applications which leverage the integration
efforts. The GenoMetric Query Language, developed in the context of the GeCo
project, is a publicly available query language for genomic data. The user can
exploit the public datasets, as well as private ones. All the available datasets
are mapped into the GCM so that a single query can be built over multiple
genomic datasets, since they share many metadata. The GMQL is an inter-
operable query language which can be exploit to run queries over multi-omic
datasets. As result of the integration of GWAS Catalog and FinnGen into the

2
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META-BASE repository, the two datasets are made publicly available into the
GMQL web interface.

Genomic data can be considered “big data”, since they are continuously
growing and they come from heterogeneous sources. Between them, the four
properties that characterize “big data” are:

• Volume: genomic data are continuously growing in size. Genomes from
new individuals are sequenced every days, since the process is now cheaper
and quite quickly.

• Velocity: genomic data are produced always faster and they have to be
accessed quickly by experts or in a programmatic manner.

• Variety: the META-BASE architecture encloses genomic data from many
consortia, each one with its own data schema.

• Veracity: data in the GeCo repository need to be consistent with the data
in the original sources and they have to meet the integrity constraints of
the GCM.

The two analyzed GWAS sources reflect all this properties, in fact are available
periodically updated releases of their original repositories. Moreover, the inte-
gration tasks carried on during this thesis contribute to make the META-BASE
architecture interoperable, scalable and modular.

My work is divided into two macro sections, the first describing how the
integration is achieved and then are presented a few GMQL queries that demon-
strate the benefits of genomic data integration.

The thesis is structured into 10 chapters, preceded by the Abstract.
Chapter 1 hosts this introduction and the goals of this thesis.
Chapter 2 illustrates the existing tools to achieve the integration between

GWAS sources and explains their limitations.
Chapter 3 describes the background information upon which the work of

this thesis is based on. It illustrates the main tools created in the context of the
GeCo project to face the integration of multiple genomic sources.

Chapter 5 illustrates the conceptual efforts spent for the integration. It de-
scribes how the GCM has been extended and how the source-specific attributes
are mapped over the ones of the new GCM.

Chapter 6 refers to the implementation of the META-BASE modules to
achieve the integration. It contains the detailed description of how the steps of
the pipeline are implemented, including some flow diagrams and data examples.

Chapter 7 introduces some GMQL queries over multiple genomic sources,
included GWAS Catalog and FinnGen. This is a hint for future exploitation of
integrated sources.

Chapter 8 contains the conclusions of this thesis and some possible future
prospects.

3
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Chapter 9 is made of a list of genomic-specific terms used in this thesis,
accompanied by a short explanation. Finally, Chapter 10 shows a list of publi-
cations upon which this thesis is based on and from which valuable information
are extracted.

4



Chapter 2

State-of-the-art

In this chapter is given an overview of the major current solutions adopted to
handle large and heterogeneous genomic data, including GWA studies. For each
proposed solution are introduced the pros and the cons. For the shortcomings
that they present, it is explained how they are faced for reaching the goal of this
thesis. The presented solutions are not meant to be an exhaustive list of the
major genomic browsers, but they include the repositories and browsers that
contain the data from the two GWAS sources considered in this thesis.

2.1 Ensembl

Ensembl is a long-term project, launched in 1999 by the European Molecular
Biology Laboratory’s European Bioinformatics Institute [13][11]. The goal of
Ensembl was therefore to automatically annotate the genome, integrate this
annotation with other available biological data and make all this publicly avail-
able via the web. In 2009, the Ensembl Genomes project was launched with
specific web portals for plant, fungal, invertebrate metazoan, bacterial and pro-
tist genomes. By 2020, Ensembl supported over 50,0000 genomes.

Sequenced data are fed into the gene annotation system (a collection of soft-
ware ”pipelines” written in Perl) which creates a set of predicted gene locations
and saves them in a MySQL database for subsequent analysis and display. The
graphical visualization is the strength of the Ensembl project, displaying to the
user the alignment of genes and other genomic data against a reference genome,
allowing him to customize the display to suit his research interests.

All the data are public accessible and downloadable by graphical tools, ded-
icated APIs, through a FTP server or by querying them into the BioMart data-
mining tool.

Following are reported the screenshots of three graphical tools (Figures 2.1,
2.2 and 2.3) when studying the gene “ENSG00000139618”, aka “BRCA2” using
the HUGO ontology. The proposed tools are selected from more than forty
diagrams available.

5
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Figure 2.1: In this figure is reported the position of the gene “BRCA2” over
chromosome 13. The diagram is enriched with information about the adjacent
genes and their derivations. For each gene in the diagram are highlighted, using
different colors, the regulatory loci and their functional roles.

Figure 2.2: This graphical tool shows an heatmap of the expression level of
specific tissues for gene “BRCA2”. In particular, is highlighted the colon of
men (corresponding to 2 TPM). The expression level is indicated over a colored
scale between 0 and 11 TPM (transcripts per million). The expression level
indicates, for the tissue under study, the amount of molecules of RNA that are
synthesized using the information encoded in the selected gene.

6
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Figure 2.3: The Ensembl repository encloses also genomic data from many
other species than human. In this tree diagram are shown homologues genes
to “BRCA2” for multiple species. The species are grouped by their levels of
similarity, considering the gene under study.

2.2 UCSC Genome Browser

The UCSC Genome Browser was born at the University of California Santa
Cruz in 2000, a few weeks after the first assembled genome was released on
the web by the Human Genome Project [15]. The browser began as a resource
for the distribution of the initial fruits of the HGP and it offered a graphical
display of the first full-chromosome draft assembly of human genome sequence.
From its born to nowadays, the browser has expanded to accommodate genome
sequences of all vertebrate species and selected invertebrates for which high-
coverage genomic sequences is available, now including 46 species.

The Browser is a graphical viewer optimized to support fast interactive per-
formance and is an open-source, web-based tool suite built on top of a MySQL
database for rapid visualization, examination and querying of the data at many
levels.

Today the browser is used by geneticists, molecular biologists and physicians
as well as students and teachers for access to genomic information.

The UCSC Genome Browser presents a diverse collection of annotation
datasets (known as ”tracks” and presented graphically); the basic paradigm
of display is to show the genome sequence in the horizontal dimension and show
graphical representations of the locations of the mRNAs, gene predictions, gene-
expression data and many other tracks in the vertical dimension.

Following are reported three screenshots taken from graphical tools of the
UCSC Genome Browser (Figures 2.4, 2.5 and 2.6), when looking for gene
“BRCA2” (the same gene of the examples of section 2.1 to make comparisons).

7
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Figure 2.4: The diagram shows the genes which interact with “BRCA2”. Only
the 10 genes with the strongest associations are displayed, for graphical purpose.
By clicking on an arrow, the information about the association and its product is
shown to the user. The color and the line type indicate if the current association
comes from text-mining tools or from database evidences.

Figure 2.5: The box-plot compares the expression levels of gene “BRCA2” across
52 different tissues and 2 cell lines. This release is based on data from 17,382
tissue samples obtained from 948 adult post-mortem individuals. The highest
median is for the cell-line EBV-transformed lymphocytes, corresponding to
11.20 TPM. The expression level of colon is in line with the TPM level expressed
in figure 2.2.

8
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Figure 2.6: This schema represents some of the common (having MAF >=
1 %) SNPs occurring inside gene “BRCA2”. The SNPs are shown according
their position over the chromosome and they are colored depending on their
functional effects. By clicking on a variant more information are displayed to
the user such as its clinical consequences, some information about the studies
and other details about the selected variant.

2.3 PheGenI

This project is more recent with respect to Ensembl and UCSC Genome Browser;
it is born in the mid ’10 of the current century by the National Center for
Biotechnology Information. The PheGenI resource integrates content from sev-
eral NIH resources such as dbGaP, GWAS catalog, dbSNP, NCBI Gene and
eQTL data from the GTEx program [23].

The amount of available GWA studies is becoming bigger and bigger and
each of them contains a list of associations between SNPs and phenotypic traits.
The issue about GWA studies is that rarely are the true functional consequences
of these variants understood. Thus replication, functional and follow-up studies
are the crucial next steps. Integration of GWAS results with existing com-
plementary databases can facilitate prioritization of variants for the follow-up,
study design considerations and generation of biological hypotheses.

The user can surf the PheGenI browser following two main approaches:
phenotype-oriented and genotype-oriented queries. The first approach consists
of specifying the name of a trait while the second allows to specify the name of
a SNP, of a gene or the coordinates of a location over chromosomes.

The browser page is divided into eight different sections. The first two con-
cern the Search Criteria (phenotypic or genotypic search) and the Search

Summary (statistics about the outcome of the search). Section Gene shows the
resulting genes, section Associations Results lists the trait-SNP associations
corresponding to the search criteria, section SNPs returns a table containing the
SNPs matching the search criteria and section Genome View contains a graphical
representation of the search outcome over the chromosomes. This last section is
the only one having graphical support which consists of the schematic represen-
tation of all the chromosomes, with the possibility to interact with the schema.
The last two sections eQTL Data and dbGaP Studies concerns the data coming
from their respective sources.
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Following are reported a couple of graphical outcomes from the PheGenI
browser, one using the genotypic search (Figure 2.8) and the other using the
phenotypic search (Figure 2.7).

Figure 2.7: The picture is the Genome View of the PheGenI browser, showing
results for “schizophrenia” (phenotypic search). In the picture are shown all the
chromosomes, over which are mapped the genes that match the search criteria.
Each gene, represented by a marker, can be clicked to open a more informative
diagram such as the one in figure 2.8.

Figure 2.8: This multi-tracks diagram is obtained with the genotypic search
for gene BRCA2 using the PheGenI browser. Each track is developed along
the horizontal dimension and it is aligned over the reference chromosome. The
tracks are stacked vertically and each of them contains information from its
respective database. Examples of available tracks are intron and exon coverage
as well as the variants in the current gene.
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The genome browsers that are introduced and briefly descried in sections 2.1,
2.2 and 2.3 of this chapter are all valid tools for exploring the genome. They
all have their strengths and weaknesses and they come from different contexts
and periods. Their shared goal is to integrate GWA studies with other genomic
data from multiple available sources in order to enrich the information that can
be extracted using the genomic browsers.

GWAS data contains information about the associations between a pheno-
type and its causal variant. Unfortunately, mainly because of linkage disequilib-
rium, it’s difficult to distinguish the truly causal variants from the ones linked
to them. The prioritization of the variants is the next step to allow biologists to
understand the truly functional role of each of them. The integration of GWA
studies with other genomic sources is the key point to reach this goal.

GWA studies provide a list of associations and each variant is identified with
its coordinates over chromosomes. Each “portion” of chromosome (enhancer,
promoter, gene, ...) has its functional role in the life cycle of organisms, so it is
necessary to enrich GWAS data with functional information about the positions
over which the variations occur. This information improvement help biologists
to understand the truly causal variants for the phenotype under study and to
recognize the linkage between portions of chromosome.

We decided to undertake our own integration path since the META-BASE
repository (presented in Chapter 3), previously developed in the context of
the GeCo project of Politecnico di Milano, contains many genomic data from
multiple sources (1000 Genomes, Cistrome, ENCODE, GENCODE, RefSeq,
Roadmap Epigenomics, TADs and TCGA). Its strength is the shared conceptual
schema (the Genomic Conceptual Model) of all the integrated data, allowing
to create queries over multiple integrated genomic sources using the GenoSurf
browser or the GMQL query tool.

The META-BASE architecture is an integration environment based on meta-
data, the most challenging attributes. Region attributes are made of coordinates
of the regions under consideration and many additional information. Based on
the four coordinates (chr, left, right, strand) it is possible to align all the DNA
regions coming from different sources; the same is not possible also with their
metadata. Mapping the source-specific metadata into the GCM, the META-
BASE architecture overcomes this obstacle allowing the full integration of mul-
tiple genomic sources, both the regions and their metadata.

Including GWAS data into the GeCo repository allows to reproduce the
GMQL queries presented in section 7, used as examples of the potentiality of
the integration.
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GeCo Background

3.1 Genomic Data Model

The Genomic Data Model [19] is a data format which links genomic feature data
to their associated experimental, biological and clinical metadata. The GDM
is able to homogeneously describe semantically heterogeneous data and paves
the way for providing data interoperability. The need for the GDM arouse from
the tertiary-analysis of genomic data. After the primary analysis (production of
sequences of base pairs called ”reads”) and the secondary analysis (alignment
of reads to a reference genome and search for specific features), the tertiary
analysis is the most interesting one. It concerns with knowledge extraction
from heterogeneous genomic data: its goal is to understand how different regions
interact and cooperate with each other.

In the genomic field, a dataset consists of collections of samples. Each sample
contains two parts: the region data and the metadata. The former describes
the features of the DNA while the latter are information about the sample. A
sample s is formally modeled as a triple <id; R; M >where:

• id is the sample identifier

• R is the set of regions of the sample. It is composed by pairs <c; f >of
coordinates c and features f. The coordinates are (chr, left, right, strand)
and they identify a region on a reference genome; the features indicate
properties of the identified region, such as p-value.

• M is the collection of metadata, composed by pairs <a; v >of attributes
a and values v.

According to the GDM, a genomic dataset can be stored using two separate
data structures, one for region data and one for metadata. The GDM allowed to
create an integrated data repository from open sources like ENCODE, Roadmap
Epigenomics and TCGA.

12
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Figure 3.1: The Genomic Conceptual Model proposed by the GeCo project
[2]. It illustrates the three views through which the central experiment item is
analyzed.

3.2 Genomic Conceptual Model

The Genomic Conceptual Model [2] is born out of the need of sharing genomic
data. It was built starting from the most common public data repositories
and then was validated through the repositories TCGA, ENCODE and Gene
Expression Omnibus. The GCM helps the tertiary analysis of genomic data
since it offers a unified conceptual schema for many repositories. It is an ER
model so it is quickly understandable. The central entity of the GCM is the
experiment item and it represents an atomic information. It is analyzed by three
different views:

• Biological View: describes the provenience of the data. It includes
information about the tissue from which data are produced, the disease of
the donor and its personal data.

• Technology View: offers details about how the experiment is carried
on. It is related to technical aspects of the analysis.

• Management View: contains information related to the context in
which data are produced. It shows the project or organization which
has conducted the experiment.

In the Figure 3.1 are shown all the entities with their attributes and the three
views in which the schema is organized.

The Biological View describes the biological process leading to the production
of the Item, the central entity. It is composed by the entities Donor, BioSample
and Replicate. Each Item can be made only of a single Replicate and a
Replicate can contribute to many Items. The Donor represents the individ-
ual of a specific organism from which the biological material is derived. The

13
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biological sample taken from a Donor is represented by the entity BioSample.
Its attributes describe the material sample taken from a biological entity. The
entity Replicate is used when multiple material samples are generated from
the same BioSample. For detailed description of the cardinalities, please refers
to the Figure 3.1.

The Management View describes the organizational process carried on for
the production of each Item. It includes the entities Case and Project. This
last entity describes the project responsible for the production of the Item.
The entity Case gathers different Items which participate to the same research
objective.

The Technology View describes the technology through which an Item

is produced. It is made of the entities Container and ExperimentType. The
former is used to describe common properties of homogeneous items, the latter
refers to the specific methods used for producing each Item.

3.3 GMQL

The GenoMetric Query Language has been proposed in the context of the GeCo
project [18] in 2015. It supports queries over multiple heterogeneous genomic
data sources. The GMQL is based on the Genomic Data Model presented above
and it is similar to the well-known Structured Query Language (SQL). A GMQL
query is expressed as a sequence of operations with the following structure:
< variable >= operator(<parameters >)< variables >;
where each variable stands for a GDM dataset. The operators can be on
metadata (SELECT, EXTEND, ORDER), on regions (PROJECT, COVER,
GROUP), as well as on multiple datasets (UNION, DIFFERENCE, JOIN,
MAP).
A typical GMQL query starts with a SELECT operation, which loads a dataset
with only the data samples that it filters out from an input dataset. Then,
the query proceeds by processing the samples with the specified operations. Fi-
nally it ends with a MATERIALIZE operation, which stores the results as a
GDM dataset. The GMQL has proved to meet all the three main challenges in
data-intensive genomic analysis: declarativeness, portability and scalability.

The queries can be posted manually on the dedicated web interface or pro-
grammatically using the apposite REST Web services. The GenoMetric Query
Language is made of twelve basic operators [22] and it is useful to answer to
many interesting biological questions [21]. Following is reported the full list of
the available operators, enriched with a brief explanation and a few examples.

SELECT
It selects all samples in input dataset and copies them in the output. The
samples can be filtered through some values of metadata or though some region
attribute values. As example, consider the operation:

RES = SELECT(patient age <70; region: chr == chr1) input
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it takes all the samples from the dataset “input”, filters only the ones coming
from patients younger than 70 years old and copies in “RES” dataset only
regions on chromosome 1, which result from the previous filter.

MATERIALIZE
This statement is always necessary in order to compile and execute a query.
Only in this way a result of the computation becomes visible and available for
download. The typical statement is:

MATERIALIZE RES INTO materialize;

it saves the content of the temporary “RES” dataset into a file named [query-
name] [timestamp] materialize.

PROJECT
The basic behaviour of this operation is to remove all the region attributes
which are not coordinates (only chr, start, stop and strand are kept). If other
metadata or region attributes are specified, it keeps as output only the region
coordinates and the specified attributes. This operator allows also to create
new region or metadata attributes, specifying how to compute it from existing
attribute values. As example, let’s consider the operation:

RES = PROJECT(region update: length AS right - left) D;

it creates a new dataset called “RES” by preserving all region attributes and
creating a new region attribute called new right which contains a copy of the
value of the coordinate attribute right.

EXTEND
It allows to add some metadata to the input dataset, extracting their values
from the regions. Let’s consider the operation:

RES = EXTEND(region count AS COUNT(), min pvalue AS MIN(pvalue))
D;

the new metadata attributes region count and min pvalue are introduced, com-
puting them respectively by counting the number of regions in the input dataset
and selecting the minimum pvalue of the input regions.

ORDER
It orders the samples of the input dataset according to the values of a specified
metadata or region attribute. After the sorting it extracts only some of the
samples, if specified in the query. For example, the operation:

RES = ORDER(Region count DESC; meta top: 2) D1;

orders the samples of the input dataset “D1” according to descending order of
the Region count metadata attribute, and it selects only the first two samples.
The graphical outcome of this statement is shown in Figure 3.2.

15



Chapter 3. GeCo Background

Figure 3.2: This figure shows how the operation “ORDER” of the GMQL lan-
guage works. Given the input dataset D1 (blue), the resulting dataset (red)
is made of the two top samples with the highest number of regions, ordered
according to descending number of regions.

GROUP
This operation groups together regions belonging to the same sample, which
have the same coordinates (chr, start, stop and strand). Additional regional
attributes can be specified in addition to the four coordinates, used by default.
If some metadata are specified, they are used to group together different sam-
ples which share the values of the metadata specified. As basic example, let’s
consider the query:

RES = GROUP(cell karyotype; region aggregates: min pvalue AS
MIN(pvalue)) D;

the samples of the input dataset “D” are grouped according to the value of the
metadata cell karyotype. Then, inside each sample, the regions which share the
same coordinates are grouped together and the attribute min pvalue is intro-
duced for each resulting region.

MERGE
This operation collapses all the samples of the input dataset into a single one.
Specifying the parameter groupby, the samples are grouped together according
to the value of the metadata specified. As simple example, consider the query:

RES = MERGE(groupby: sex) D;

this statement creates the dataset “RES”, which contains one sample for each sex
value found within the metadata of the input dataset “D”. Inside each resulting
sample there are the regions of the input dataset with the same specific value
for the sex metadata.
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UNION
This is a very basic operator. It creates a new dataset containing all the samples
from the two specified input datasets. Let’s consider the query:

RES = UNION() D1 D2;

it creates the dataset “RES” containing all the samples from dataset “D1” and
“D2”.

DIFFERENCE
Specifying two input datasets, it performs the intersection of the two sets. Con-
sider the query:

RES = DIFFERENCE(exact: true) D1 D2;

a new dataset “RES” is created and it contains all the regions of the dataset
“D1” that do not coincide (exactly from the start to the end coordinates) with
at least a region in the dataset “D2”. The graphical outcome of this statement
is shown in Figure 3.3.

Figure 3.3: This figure shows how the operation “DIFFERENCE” of the GMQL
language works. Given the two input datasets D1 (blue) and D2 (red), the
resulting dataset (purple) is made of the regions from D1 which do not coincide
with any regions from D2.

MAP
This operation compares each sample of the two input datasets, counting the
number of regions that overlap. Let’s consider the following statement:

RES = MAP(avg score AS AVG(score)) D1 D2;

the dataset “D1” is made of one sample, while “D2” is made of three samples.
The output dataset “RES” contains three samples (multiplication of the cardi-
nalities of the input datasets) counting the number of regions in each sample
from the “D2” dataset which overlap with a region in the “D1” dataset sample.
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This statement also computes the average score value across such regions, saving
the results in the output “RES” dataset as a region attribute called avg score.

JOIN
It is the most computationally intensive of all GMQL operations. It is an
operation between two input datasets and, for each region of the first, it returns
all the regions of the second dataset which fulfill certain conditions. It basis
on the distal condition, which can be of the five types: DL (or DLE), DG
(or DGE), MD, UPSTREAM and DOWNSTREAM. The matching of the two
input datasets can be driven by a metadata value, if specified. Let’s consider
the following statement:

RES = JOIN(MD(1), DGE(150)) D1 D2;

for each region of the dataset “D1” extracts the closest (because of MD(1))
region from the dataset “D2”, and the statement excludes from the output the
regions of “D2” which are at a distance smaller than 150 base pairs from the
corresponding region of “D1”. Let’s consider this other statement:

RES = JOIN(MD(1), DGE(150); output: CAT; joinby: cell karyotype) D1
D2;

the behaviour is the same of the previous one, but are joined only the samples
that share the same value of the metadata cell karyotype. The option “CAT”
indicates that the output is produced as the concatenation of regions resulting
from the statement.

COVER
This statement is an unary operation and it returns the areas of an input dataset,
which fulfill the input condition. Two parameters minAcc and maxAcc need to
be specified. Let’s consider the following GMQL statement:

RES = COVER(2, ANY) D1;

it creates the dataset “RES” containing the areas defined by a minimum of
two overlapping regions up to any amount of overlapping regions in the input
dataset samples. The graphical outcome of this statement is shown in Figure
3.4.

In the documentation of the GMQL language [21] are reported some exam-
ples of queries useful to answer to interesting biological questions. As example,
a biological question is <<Consider all public somatic mutation data samples
of TCGA Kidney Renal Clear Cell Carcinoma patients. For each sample, count
the mutations occurring in each exon and select the exons with at least one
mutation. Return such samples together with the number of such exons and
the maximum number of mutations in a single exon.>>

The GMQL query used to answer is reported below:
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Figure 3.4: This figure shows how the operation “COVER” of the GMQL lan-
guage works. Given the input dataset D1 (blue), the resulting dataset (purple)
is made of the areas from D1 which have at least two overlapping regions.

1 MUT = SELECT(manually_curated__cases__disease_type ==

2 "Kidney Renal Clear Cell Carcinoma")

3 GRCh38_TCGA_somatic_mutation_masked;

4 EXON = SELECT(annotation_type == "exon" AND release_version

5 == "22") GRCh38_ANNOTATION_GENCODE;

6 EXON1 = MAP() EXON MUT;

7 EXON2 = SELECT(region: count_EXON_MUT >= 1) EXON1;

8 EXON_RES = EXTEND(exon_count AS COUNT(), max_mut AS

9 MAX(count_EXON_MUT )) EXON2;

10 MATERIALIZE EXON_RES INTO EXON_RES;

From the dataset “TCGA”, are selected the samples from patients with the
disease “Kidney Renal Clear Cell Carcinoma”. The exon regions are extracted
from the dataset “GENCODE”, release 22. The MAP operation maps the
mutation to the exon regions. Finally, are extracted only the mapped exons
which contain at least one mutation.

3.4 META-BASE repository

The integration of genomic metadata is a very important goal achieved in the
context of the GeCo project [1]. The META-BASE architecture is a pipeline
which aims to generate the GCM content. The task to integrate many genomic
sources is challenging since domain is complex and there is no agreement among
the vocabularies and ontologies used as metadata. The project is written using
the Scala programming language and the integrated repository is managed using
the Apache Spark engine.

The proposed pipeline is composed by six steps, illustrated in Figure 3.5.
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Figure 3.5: The pipeline of the META-BASE architecture [1]. The six sequential
steps are needed to integrate a data repository into the META-BASE one.

They are splitted between the Data Preparation phase and the Data Integration
one. Here are presented the details of each step:

1. Data Download: data are downloaded through available APIs or proto-
cols from different genomic sources. The sources don’t share a standard for
region attributes and metadata, so the challenging part is to map each at-
tribute into one of the two classes. Partitioning is important to selectively
update a single partition, when it is modified on the source database. This
process avoids to re-download the entire database even when a single file
is changed.

2. Data Transformation: referring to the experiment item of the Ge-
nomic Conceptual Model, two files for each item are created. The meta-
data are divided from region data and following, only metadata files are
considered. The metadata could be provided into three different struc-
tures: hierarchical format (JSON, xml), comma/tab-delimited formats
or unstructured metadata. They are transformed into a file containing
<key><value>pairs.

3. Data Cleaning: after being flattened, many <key> have very long
names, not suitable for the next steps. Some rules source-specific are
defined to simplify the attributes name. A rule is composed by the left
and the right parts; the former recognizes complex patterns and the latter
simplifies them into short strings. The rules are organized into an ordered
list called Rule Base.

4. Data Mapping: also this step is based on source-specif rules. The goal is
to populate the tables of the GCM with the pairs obtained by the previous
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steps. A rule is a couple of attribute names; the first one is the source-
specific name, the second is the name of the attribute in the Genomic
Conceptual Model. At the end of this step, most of the metadata are
integrated into the META-BASE database.

5. Data Normalization and Enrichment: it is a source-independent and
supervised procedure. It aims to normalize some attributes values against
a known ontology. This step is supported by the Local Knowledge Base,
a structure that integrates different ontologies available. An examples of
two synonyms are breast carcinoma and breast neoplasm; they are merged
into the disease breast cancer.

6. Integrity Checker: some dependencies between values of the GCM are
manually defined and they must be checked. An example of dependency
is: if DONOR is “Homo sapiens” then the Assembly of the dataset must
be one of “hg19”, “hg38” or “GRCh38”.

The implementation of the META-BASE architecture is executed using the
Apache Spark engine. Its content can be queried through the GenoMetric Query
Language [18] or through a user-friendly interface called GenoSurf [4].

3.5 GenoSurf

The integration of genomic data repositories has highlighted the importance
of a user-friendly interface to query the integrated metadata. The GenoSurf
interface is a web user interface public available through the website http:

//geco.deib.polimi.it/genosurf/ and it allows to query the META-BASE
repository, to analyze metadata and to retrieve the corresponding raw data from
their original source [4]. A query is composed by selecting search values from
the integrated attributes among predefined normalized term values enriched
with the Local Knowledge Base ontologies. Another way to retrieve metadata
is to specify pairs <key ><value >referred to the original metadata. The web
interface allows the user to further analyze the retrieved data using the GMQL
engine. All queries in GenoSurf are translated into a JSON format in order to
support re-use of them. User can download a query structure and upload it
when needed.

3.6 GWAS

Genome-Wide Associations Study is a way to find the associations between a
genetic variant and a trait or disease. It is typically conducted in a case-control
setup. Two groups of people are selected merely according to the phenotype, one
affected by a trait or a disease named cases group and the other is an healthy
controls group. A DNA sample is taken from all individuals (through blood
collection or cheek swab) of the two groups and they are genotyped against a
reference genome. If one nucleotide in a certain position of the chromosomes is
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more frequent in people of the cases group over the controls group, the variant is
said to be associated with the trait or disease. As result, for the most common
single-nucleotide polymorphisms are reported some statistics about the alleles
that appear in the controls and cases groups.

GWAS is a non-candidate-driven approach, in contrast with the previous
studies which focused on small number of pre-specified genetic regions. The
whole DNA of the two groups is scanned to find out the associations between
the trait under study and some SNPs.

These studies aim at improving the knowledge in the health field, so to allow
researchers to develop better strategies to detect, treat and prevent the disease.
The future of healthcare includes personalized medicine, by which a tailored
strategies is developed ad hoc for each patients and its necessities.

GWAS were born in the early 2000s thanks to the availability of new tech-
nologies that give the chance to quickly and accurately analyze whole-genome
samples for genetic variations that contribute to the onset of a disease. The DNA
samples are quickly analyzed by a machine that strategically selects markers of
genetic variation (SNPs). The first GWA studies were conducted in the early
2000 and nowadays there are thousands of studies available. While many stud-
ies were carried on, some public repositories were born to let them access in a
simple way.

Between them, GWAS Catalog (https://www.ebi.ac.uk/gwas/) is one of
the most important collection of different unstructured literature sources [3]. It
was created by the National Human Genome Research Institute (NHGRI) in
2008 and it has become a collaborative project between the NHGRI and the
European Bioinformatics Institute (EBI) since 2010.

Their data are public available into three different files: associations, studies
and ancestries. Those files are updated monthly and their terms are mapped
to the Experimental Factor Ontology(EFO). In the release of May 2021, the
repository counts more than 16 thousands of studies. GWAS data can also be
queried from the GWAS Catalog website specifying the value of one attribute
such as the trait or the SNP and so on. The website offers also many diagrams,
useful to graphically visualize the SNPs over the chromosomes and their p-
values.
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Data sources

This thesis focuses on two GWAS data sources: GWAS Catalog [17] and FinnGen
[9]. In this chapter are described the features of these public repositories, from
the history of the projects to the technical aspects of the data. Then in Chap-
ter 5 are illustrated the challenges faced to integrate the data model of the new
sources with the Genomic Conceptual Model [2]. In Chapter 6 are explained the
technical details of the implementation of the integration into the META-BASE
architecture.

4.1 GWAS Catalog

The development of the Catalog has been a collaborative project between EMBL-
EBI (European Bioinformatics Institute) and NHGRI (National Human Genome
Research Institute) since 2015 [6]. It is an open-access database of GWA studies.
It gathers unstructured studies and, thanks to manual curation, they are stored
into a publicly-accessible structured data repository. New studies are found
through weekly PubMed searches. New data are manually extracted from the
literature by expert scientists and some information about SNPs is added by an
automatic pipeline. The traits are mapped to the Experimental Factor Ontology
(EFO), so to encourage data sharing and interoperability.

The repository can be accessed through the search engine on the website or
can be downloaded by means of three files through the website of the Catalog,
through the dedicated FTP server or though an API. The user can exploit the
search engine specifying the name of a trait (e.g. “breast carcinoma” in Figure
4.1)), the identifier for a SNP (e.g. “rs7329174” in Figure 4.3)), an author or
other values for attributes in the Catalog.

Moreover data can be accessed through an user-friendly diagram showing
the SNPs on chromosomes, filtering them by trait names (see Figure 4.2 for an
example).

The files names are self-explicating: Ancestry.tsv, Studies.tsv and Associa-
tions.tsv. New versions of the repository are released monthly. Release of May
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Figure 4.1: The figure is shown by the GWAS Catalog search engine by spec-
ifying the trait name “breast carcinoma”. The engine shows to the user many
results, such as the studies related to the specified traits or the associations
between SNPs and the trait under consideration. The image is created by a
tool named “LocusZoom” and shows all the SNPs associated with the searched
trait, specifying their position and information about the study in which they
have been discovered.

6th 2021 includes 16,854 studies, corresponding to 257,352 associations between
SNPs and related traits.

The Studies file contains one entry for each trait of a PubMed study, so
multi-traits PubMed studies are splitted according the traits. The Ancestry
file contains information about the cohort of people used for the studies (e.g.
the number of people that participated in a study and their provenience). The
biggest file is the Associations one, containing a row for each association (relation
between a SNP and the study trait). This latter file contains also statistical
properties about the correlations found (e.g. “p-value”). The three files share
some attributes, so they can be merged into a structured data frame as shown
in the next chapters. Following is reported the complete list of the attributes
of the Catalog with a brief explanation of their meaning, each one linked to the
files in which it appears ([AS] stands for Associations file, [S] for studies and
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Figure 4.2: In the figure are reported the SNPs available in the GWAS Catalog
mapped to trait “breast carcinoma”. The diagram shows the SNPs according
to their position on chromosomes. Each SNP can be selected in an interactive
way and information about them are shown to the user.

[AN] for Ancestry).

• DATE ADDED TO CATALOG [AS][S]: the date in which a study is pub-
lished in the Catalog.

• PUBMEDID [AS][S][AN]: PubMed identification number.

• FIRST AUTHOR [AS][S][AN]: last name and initials of first author.

• DATE [AS][S][AN]: publication date of the study online.

• JOURNAL [AS][S]: abbreviated journal name in which the study is pub-
lished.

• LINK [AS][S]: PubMed URL of the study.

• STUDY [AS][S]: title of paper.

• DISEASE/TRAIT [AS][S]: disease or trait examined in study.

• INITIAL SAMPLE DESCRIPTION [AS][S][AN]: sample size and ancestry
description for initial stage of the study.

• REPLICATION SAMPLE DESCRIPTION [AS][S][AN]: sample size and
ancestry description for subsequent replication(s) of the study.

• REGION [AS]: cytogenetic region associated with the SNP.

• CHR ID [AS]: chromosome number associated with the SNP.
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• CHR POS [AS]: position in the chromosome of the SNP.

• REPORTED GENE(S) [AS]: gene(s) reported by author.

• MAPPED GENE(S) [AS]: gene(s) mapped to the strongest SNP. If the
SNP is located within a gene, that gene is reported. If the SNP is located
within multiple genes, these genes are listed separated by commas. If
the SNP is intergenic, the upstream and downstream genes are listed,
separated by a hyphen.

• UPSTREAM GENE ID [AS]: entrez Gene ID for nearest upstream gene
to rs number, if not within gene.

• DOWNSTREAM GENE ID [AS]: entrez Gene ID for nearest downstream
gene to rs number, if not within gene.

• SNP GENE IDS [AS]: entrez Gene ID, if rs number within gene; multiple
genes denote overlapping transcripts.

• UPSTREAM GENE DISTANCE [AS]: distance in kb for nearest upstream
gene to rs number, if not within gene.

• DOWNSTREAM GENE DISTANCE [AS]: distance in kb for nearest down-
stream gene to rs number, if not within gene.

• STRONGEST SNP RISK ALLELE [AS]: SNP(s) most strongly associ-
ated with trait + risk allele (? for unknown risk allele). May also refer to
a haplotype.

• SNPS [AS]: strongest SNP; if a haplotype it may include more than one
rs number.

• MERGED [AS]: denotes whether the SNP has been merged into a subse-
quent rs record (0 = no, 1 = yes).

• SNP ID CURRENT [AS]: current rs number (will differ from strongest
SNP when merged = 1).

• CONTEXT [AS]: SNP functional class.

• INTERGENIC [AS]: denotes whether SNP is in intergenic region (0 = no,
1 = yes).

• RISK ALLELE FREQUENCY [AS]: reported risk allele frequency associ-
ated with strongest SNP in controls.

• P-VALUE [AS]: reported p-value for strongest SNP risk allele.

• PVALUE MLOG [AS]: -log(p-value).

• P-VALUE (TEXT) [AS]: information describing context of p-value.
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• OR or BETA [AS]: reported odds ratio or beta-coefficient associated with
strongest SNP risk allele.

• 95% CI (TEXT) [AS]: reported 95% confidence interval associated with
strongest SNP risk allele, along with unit in the case of beta-coefficients.

• PLATFORM (SNPS PASSING QC) [AS][S]: genotyping platform manu-
facturer used in initial stage.

• CNV [AS]: study of copy number variation (yes/no).

• ASSOCIATION COUNT [S]: number of associations identified for this
study.

• MAPPED TRAIT [AS][S]: trait mapped over the Experimental Factor
Ontology.

• MAPPED TRAIT URI [AS][S]: URI of the EFO trait.

• STUDY ACCESSION [AS][S][AN]: accession ID allocated to a GWAS
Catalog study.

• GENOTYPING TECHNOLOGY [AS][S]: genotyping technology used in
this study, with additional array information in brackets.

• STAGE [A]: stage of the GWAS to which the sample description is referred
(initial, replication).

• NUMBER OF INDIVIDUALS [AN]: number of individuals in this sample.

• BROAD ANCESTRAL CATEGORY [AN]: broad ancestral category to
which the individuals in the sample belong.

• COUNTRY OF ORIGIN [AN]: country of origin of the individuals in the
sample.

• COUNTRY OF RECRUITMENT [AN]: country of recruitment of the
individuals in the sample.

• ADDITIONAL ANCESTRY DESCRIPTION [AN]: any additional ances-
try descriptors relevant to the sample description.
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Figure 4.3: The figure is one of the results showed by the GWAS Catalog
search engine by specifying the variant identifier “rs7329174”. This variant
has been found associated to the Crohn’s disease. The picture shows how this
variant and the variant “rs57141708”, associated with the height, are in Linkage
Disequilibrium. This last is a condition for which the presence of a variant
influence the presence of the other, so to make difficult the comprehension of
what are the truly causal variants for a phenotype.
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The three files can be merged by means of the reported shared attributes,
among which the most relevant is the STUDY ACCESSION. As a basic example,
in Table 4.1 are reported the entries for the study accession “GCST005097”
taken from the Studies file. For greater emphasis on the eyes, in the tables are
reported only few attributes of the three files Ancestry, Studies and Associations.
In Table 4.2 are reported the entries from the Ancestry file, referred to the same
study accession. To conclude, in Table 4.3 are reported the three associations
found in that study.

Table 4.1: In this table are reported some relevant attributes from the Studies
file for the study accession “GCST005097”.

PUBMEDID
FIRST AU-
THOR

JOURNAL STUDY
DISEASE-
TRAIT

ASS.
COUNT

29170203 Alonso N
Ann
Rheum
Dis

Identification
of a novel
locus on
chromo-
some 2q13,
which ...

Fractures
(vertebral)

3

Table 4.2: In this example are reported some relevant attributes from the An-
cestry file for the study accession “GCST005097”.

STUDY AC-
CESSION

INITIAL
SAMPLE
DESCRIP-
TION

REPLICATION
SAMPLE
DESCRIP-
TION

STAGE
NUMBER
OF INDI-
VIDUALS

COUNTRY
OF RE-
CRUIT-
MENT

GCST005097

1,553
cases;
4,340
controls

1,028 cases;
3,762 con-
trols

replication 2799
U.K.,
Italy,
Spain

GCST005097

1,553
cases;
4,340
controls

1,028 cases;
3,762 con-
trols

replication 1991 U.K.

GCST005097

1,553
cases;
4,340
controls

1,028 cases;
3,762 con-
trols

initial 5893

Australia,
Denmark,
U.K.,
Slovenia,
Spain
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Table 4.3: In this last example are reported some of the relevant attributes of
the three associations found in study with study accession “GCST005097”. The
entries reported come from the Associations file.

REGION CHR ID CHR POS
MAPPED
GENE(S)

SNPS P-VALUE

15q26.1 15 92464744 ST8SIA2 rs2290492 3*10 -7

2q13 2 112192944
AC092645.1
- ZC3H8

rs10190845 1*10 -9

11q12.1 11 57980425
OR5BD1P
- CYCSP26

rs7121756 4*10 -7

4.2 FinnGen

The project is a big collaboration between private and public Finnish insti-
tutes, born in Autumn 2017 [9]. It aims to improve human health through
genetic research. Collaboration between universities, hospitals, biobanks and
pharmaceutical companies is the key to achieve disease prevention, diagnosis
and treatment. The project wants to pave the road to personalized medicine
with ad-hoc treatments, besides to produce medical innovation with an ever
seen private-public collaboration.

Every Finnish person can take part in the project by giving the consent to be
part of the study cohort. The project aims to reach a cohort of 500,000 Finnish
people by 2023 and they are already close to the goal (441,000 people in March
2021). All the individuals that take part to this giant study are genotyped
using GWAS. Of course there is a special consideration for data protection and
privacy for people who participate in the cohort.

The FinnGen project is composed by many genome-wide association studies.
The outcome of these studies are the SNPs which are found relevant for the
phenotypes under consideration, called endpoints in FinnGen context. Data
can be accessed through a search engine by specifying an endpoint (the name of
a trait or phenotype) as in Figure 4.4 or can be downloaded through different
channels, both programmatic access or web browser-based access.

The repository is updated twice a year and it is publicly available the year
after it is produced. The most recent available release now (May 2021) is the
fifth (Release 5). It contains the SNPs associated to 2,804 endpoints.

The repository is composed by two mainly modules: summary statistics and
fine-mapping. The summary statistics are composed by a Manifest (containing
the name of the endpoints) and many files as the number of endpoints in the
release. Each endpoint file of the summary statistics contains all the SNPs
associated to that phenotype and some statistical properties of the SNPs like
p-value. Also the fine-mapping module contains one file for each endpoint, each
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Figure 4.4: In the figure is reported a Manhattan plot displaying the SNPs as-
sociated to the phenotype “schizophrenia”, obtained through the search engine
“PheWeb”. The plot shows the SNPs according to their position on chromo-
somes. Each SNP can be selected in an interactive way to zoom on the nearby
of a locus.

one including the outcomes of the fine-mapping process.
FinnGen data are fine-mapped with the softwares “SuSiE” and “FINEMAP”.

The corresponding files contain information about the importance of the associ-
ations found in the studies, taking into consideration the linkage disequilibrium.

Following is reported the complete list of the attributes of the FinnGen
summary statistics with a brief explanation of their meaning, each one linked
to the files in which it appears ([M] if the attribute is in the Manifest file, [E] if
it is contained into the endpoint files).

• phenocode [M]: alphanumeric code given to a phenotype.

• name [M]: complete name of the phenotype.

• n cases [M]: cardinality of the cases group for the associations of the cur-
rent trait.

• n controls [M]: cardinality of the controls group for the associations of the
current trait.

• path bucket [M]: path of the current file for Google cloud-based access.

• path https [M]: path of the current file for command-line access.

• #chrom [E]: chromosome on build GRCh38.

• pos [E]: position in base pairs on build GRCh38.

• ref [E]: reference allele.
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• alt [E]: alternative allele (effect allele).

• rsids [E]: variant identifier.

• nearest genes [E]: nearest gene name from variant.

• pval [E]: p-value from SAIGE.

• beta [E]: effect size estimated with SAIGE for the alternative allele.

• sebeta [E]: standard deviation of effect size estimated with SAIGE.

• maf [E]: alternative (effect) allele frequency.

• maf cases [E]: alternative (effect) allele frequency among cases.

• maf controls [E]: alternative (effect) allele frequency among controls.

For clarity purpose in Table 4.4 are reported a few entries contained in the
Manifest of the fifth release. In Table 4.5 and Table 4.6 are reported some
entries from files “TUBERCULOSIS.gz” and “F5 SCHIZO.gz” respectively.

Table 4.4: In this table are reported a few entries of the Manifest of the Release
5 of FinnGen repository.

phenocode name n cases n controls path bucket path https

F5 SCHIZO

Schizophrenia,
schizoty-
pal and
delusional
disorders

7999 168900
gs:// ...
F5 SCHI-
ZO.gz

https:// ...
F5 SCHI-
ZO.gz

G6 PARKIN-
SON

Parkinson’s
disease

1587 175312
gs:// ...
G6 PAR-
KINSON.gz

https:// ...
G6 PAR-
KINSON.gz

TUBERCU-
LOSIS

Tuberculosis 801 176098

gs:// ...
TUBER-
CULO-
SIS.gz

https:// ...
TUBER-
CULO-
SIS.gz
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Table 4.5: In this table are reported a few entries of the file “TUBERCULO-
SIS.gz”. In the table appear only some relevant columns of the file.

#chrom pos ref alt rsid pval

1 115637 G A rs74337086 0.8316
1 216439193 T C rs571377638 0.7225

Table 4.6: In this table are reported a few entries of the file “F5 SCHIZO.gz”.
In the table appear only some relevant columns of the file.

#chrom pos ref alt rsid pval

1 133855 C T rs528106901 0.5142
1 195798153 A C rs2942912 0.655
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Methods

In this chapter are introduced the challenges to fit the two data sources GWAS
Catalog and FinnGen as instances of the GDM [19]. The GCM [2] has been
extended to accomplish also the attributes meaningful for GWA studies. The
analysis starts with the GWAS Catalog repository followed by the FinnGen one.

5.1 Data Design

5.1.1 GWAS Catalog region data and metadata

In this first part of Chapter 5 are described the modelling steps that we have
performed as support of the implementation phase of the integration, described
in Chapter 6.

The Genomic Data Model [19] described in Chapter 3 is the basis of the
META-BASE architecture [1]. Since the goal of this thesis is to integrate the
new data sources into the already implemented META-BASE architecture, the
very first step is to map the GWAS Catalog as an instance of the GDM.

The entries of the GDM are triples <id; R; M >, where:

• id is the sample identifier

• R is the Region part of a sample

• M is the Metadata part of a sample

It is necessary to split also the GWAS Catalog into this binary partition
“Region” and “Metadata”. The Region part contains attributes strictly referred
to genomic features of the sample. It includes the coordinates of the genomic
region under consideration and the properties of that region. All the region
attributes are taken from the file Associations.tsv.

The Metadata instead are all the attributes needed to describe the study in
which the Region is analyzed. The Genomic Conceptual Model [2] described
in Chapter 3 is made only of metadata. Metadata include information about
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the people that provided biological samples, as well as information about who
conduced the study or the technologies used to analyze the samples. Region
data refer to DNA features, metadata describe how region data are produced.

All the attributes of the Catalog are described in Chapter 4; following is
provided a binary partition of them taking into account the structure of the
GCM for metadata.

Presenting the metadata attributes, they are grouped according to the entity
of the GCM they belong.

Entity CaseStudy

• PUBMEDID

• STUDY

• LINK

Entity Item

• STUDY ACCESSION

• PLATFORM (SNPS PASSING QC)

Entity ExperimentType

• GENOTYPING TECHNOLOGY

The entities of the GCM Donor, Biosample and Replicate do not fit the Meta-
data of GWA studies. A couple of entities need to be added to describe the
cohorts and their provenience. Two main differences between GWA studies and
the “traditional” ones are the basis of this changes in the conceptual model.
Traditional studies are based on single person, not cohorts of people. The sec-
ond relevant difference is the target of the study: single mutations in the whole
chromosome for GWAS, regions of chromosomes for traditional annotation stud-
ies.

Entity Cohort gathers all the attributes related to the composition of the cohort
from which the study is conducted. Between the Catalog attributes, the ones
belonging to this new entity are:

• MAPPED TRAIT

• INITIAL SAMPLE DESCRIPTION

• REPLICATION SAMPLE DESCRIPTION

Entity Ancestry contains the attributes that describe the origin or provenience
of the people that participate in the cohort of the study:

• NUMBER OF INDIVIDUALS
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• BROAD ANCESTRAL CATEGORY

• COUNTRY OF ORIGIN

• COUNTRY OF RECRUITMENT

• ADDITIONAL ANCESTRY DESCRIPTION

The attributes DATE ADDED TO CATALOG, FIRST AUTHOR, DATE, JOUR-
NAL, DISEASE/TRAIT, ASSOCIATION COUNT, MAPPED TRAIT URI and
STAGE are discarded since the GCM does not contain them and they don’t
provide a conceptual contribution to the model to justify the creation of new
entities.

In the previous lists are reported a rough division of the attributes of the
GWAS Catalog according to the entities of the GCM, both already present or
freshly introduced. Many of them will not appear as they are in the GCM, but
they need some manipulation or manually curation. This process is described
in the subsection 5.1.3 and in Chapter 6.

The attributes in the below list are the ones that describe the coordinates of
the SNPs in the chromosomes or features of the identified mutations, therefore
they belong to region data.

• REGION

• CHR ID

• CHR POS

• REPORTED GENE(S)

• MAPPED GENE(S)

• UPSTREAM GENE ID

• DOWNSTREAM GENE ID

• SNP GENE IDS

• UPSTREAM GENE DISTANCE

• DOWNSTREAM GENE DISTANCE

• STRONGEST SNP RISK ALLELE

• SNPS

• MERGED

• SNP ID CURRENT

• CONTEXT
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• INTERGENIC

• RISK ALLELE FREQUENCY

• P-VALUE

• PVALUE MLOG

• P-VALUE (TEXT)

• OR or BETA

• 95% CI (TEXT)

• CNV

5.1.2 FinnGen region data and metadata

In this section are retraced the steps to map the FinnGen repository as an
instance of the GDM. As explained in Chapter 4, the repository is composed
by a Manifest and one file for each endpoint. Compared to GWAS Catalog,
FinnGen has less metadata and they are mainly contained in the Manifest; the
endpoints files contain the region data.

The Genomic Conceptual model is filled only with metadata. As basis for
the implementation phase described in Chapter 6, here is reported a binary
partition of the attributes of FinnGen into region data and metadata. The new
GCM proposed in section 5.1.3 contains only metadata, both rough or manually
curated. The following FinnGen attributes are grouped according the entities
of the GCM and according the freshly introduced entities “Ancestry” and “Co-
hort” in section 5.1.1.

Entity CaseStudy

• phenocode

• path https

Entity Cohort

• name

• n cases

• n controls

The remaining attributes, taken from the endpoints files, belong to region
data since they describe the coordinates of the mutations over chromosomes and
contain some features of the SNPs found in the study.

• #chrom

• pos
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• ref

• alt

• rsids

• nearest genes

• pval

• beta

• sebeta

• maf

• maf cases

• maf controls

5.1.3 New Genomic Conceptual Model

The Genomic Conceptual Model in Figure 3.1 presented in Chapter 3 has been
introduced by A. Bernasconi et al. [2] with the aim to standardize genomic
metadata from different sources. This data modelling work has started with
the integration of multiple sources like TCGA, ENCODE, Gene Expression
Omnibus, 100k Genomes Project, Roadmap Epigenomics Project and other
projects.

During the years the presented GCM has been slightly improved; for example
the entities Container and ExperimentType of the Technology View has been
splitted into the Extraction View and the Technology View.

The Biological View is not able to satisfy the needs of the GWA studies.
They are based on cohorts of people, of which we don’t know the personal ana-
graphical information. About the cohorts we know some aggregate information
about their geographical provenience. Accordingly, the entity Donor looses its
meaning. The entity BioSample also is meaningless in the context of GWA
studies since are not provided information about the tissue or cell line from
which the biological samples come from.

Taking into account these considerations, a new view is introduced: the
GWAS View. It is made of the entities Ancestry and Cohort. They capture
the information about the composition of the cohorts and their ancestral infor-
mation. Each GWA study is based on multiple stages; each one can be “initial”
or “replication”. A single study can have more than one initial stages and zero
or more replication stages. This information is aggregated in the Cohort entity.
The initial proposal of the New GCM included two different entities for the
initial and replication stages; but at the end we have tried to keep the model
as simple as possible, aggregating all the information about the cohort into a
single entity.

38



Chapter 5. Methods

Figure 5.1: This is the new version of the Genomic Conceptual Model, modified
to fit the features of GWA studies. The starting point is shown in Figure 3.1
in Chapter 3. The new view “GWAS view” is introduced, containing the new
entities “Ancestry” and “Cohort”.
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The entity Cohort is made of the following attributes:

• CohortId: the identifier of the current cohort

• TraitName: it indicates the phenotype or disease under consideration for
the current Item

• SourceId: stands for the study accession of the Item to which the Cohort

refers

• CaseNumber initial: the number of people in the case group(s) of the
initial stage(s)

• CaseNumber replicate: the number of people in the case group(s) of the
replicate stage(s)

• ControlNumber initial: the number of people in the control group(s) of
the initial stage(s)

• ControlNumber replicate: the number of people in the control group(s) of
the replicate stage(s)

Some GWA studies are not based on the traditional cases and controls setup,
but the Cohort can be made of individuals or trios. The Cohort is composed
by individuals when the people that participate are not splitted into cases and
controls but they are all grouped together, so they are all cases (they manifest
the phenotype) or all controls (they don’t manifest the phenotype). Moreover,
the Cohort is made of trios when participate people with their parents.

• IndividualNumber initial: the number of people in the individual group(s)
of the initial stage(s)

• IndividualNumber replicate: the number of people in the individual group(s)
of the replicate stage(s)

• TriosNumber initial: the number of people in the trios group(s) of the
initial stage(s)

• TriosNumber replicate: the number of people in the trios group(s) of the
replicate stage(s)

An Item refers to a single Cohort and vice versa, while a Cohort can be linked
to more than one Ancestries. On the contrary, an Ancestry refers to a single
Cohort. For details about the cardinalities of the conceptual model, please refer
to Figure 5.1.

The entity Ancestry includes the following attributes:

• AncestryId: the identifier of the current ancestry

• SourceId: stands for the study accession of the Item to which the Ancestry
refers
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• BroadAncestralCategory: the broad ancestral category to which the indi-
viduals in the sample belong

• CountryOfOrigin: the country from which the individuals in the linked
Cohort come from

• CountryOfRecruitment: the country from which the individuals in the
linked Cohort are picked up to participate in the GWA study

• NumberOfIndividuals: the sum of all the individuals to which the current
Ancestry refers. It is obtained by summing the cases, controls, individuals
or trios of both initial or replicate stages that participate in the current
Ancestry

To clarify the cardinality between the entities Cohort and Ancestry following
(see Table 5.1 and Table 5.2) is reported how the two entities are filled with
data about the study accession “GCST005538”.

Table 5.1: The entry of this table refers to the content of the Cohort linked to
the Item with the study accession “GCST005538”.

CohortId ItemId TraitName
CaseNum-
ber initial

CaseNum-
ber replicate

1309 1308 Sarcoidosis 1726 2693

ControlNum-
ber initial

ControlNum-
ber replicate

Ind.Number
initial

Ind.Number
replicate

TriosNum
initial

TriosNum
replicate

5482 6814 0 0 0 0

The attributes “cohortId” in the Ancestry table and “itemId” in the Cohort
table are the foreign keys to reproduce the relations between the two tables.
From the example tables is clear that each Ancestry entry differs from all the
others for at least one attribute. As double check for the integrity of the tables,
we can see that the sum of the NumberOfIndividuals fields of Ancestry that is
16,715 corresponds to the sum of the fields of the Cohort table. The item with
study accession “GCST005538” refers to the cohort with Id “1309”, which one
refers to three different ancestries “3997”, “3998” and “3999”. From the tables
we can see that 7,208 people have been picked up in Germany to participate to
this GWA study; unfortunately we don’t know how many of them are cases or
controls neither their division into initial and replication stage. On the other
hand we know the division of cases and controls into the two stages, but we
don’t know the ancestral composition of each of the previous partitions.
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Table 5.2: The entries of this table refer to the content of the Ancestries linked
to the Cohort in Table 5.1 with the sourceId attribute “GCST005538”.

AncestryId CohortId
BroadAnc-
estralCate-
gory

CountryOf-
Origin

CountryOf-
Recruitment

NumberOf-
Individuals

3997 1309

African
American
or Afro-
Caribbean

NR U.S. 1657

3998 1309 European NR Germany 7208

3999 1309 European NR

Czech
Republic,
Germany,
Sweden

7850

5.1.4 Mapping metadata

In section 5.1.3 is presented the new Genomic Conceptual Model, with the aim
to fit also the metadata of the GWAS Catalog and FinnGen repositories. In
Chapter 4 are listed all the attributes of the two genomic data sources, while
in sections 5.1.1 and 5.1.2 of this chapter is provided a rough partition of the
attributes taking into account the entities of the New GCM.

Obviously some of the original attributes cannot be used as they are to fill
the GCM, but they need some extraction and elaboration steps. Moreover, some
attributes are manually added since they are not contained in the downloaded
data.

GWAS Catalog

Many Catalog attributes cannot be used without transforming them to fill the
New GCM. Following is provided, one entity at a time, the list of the attributes
that can be filled with the attributes of the Catalog, both using the raw ones
or by transforming or extracting them. In this latter case is illustrated the
transformation. Each item of the list is of type <attribute of GCM >: <source-
specific attribute >

Next to the GCM attributes is annotated if they are filled with raw [R] or
derived or manually added [M] attributes. Next to the source-specific attributes
is annotated from which file(s) they come from: [S] for Studies, [AS] for Asso-
ciations and [AN] for Ancestry.

Entity Ancestry

• broadAncestralCategory [R]: BROAD ANCESTRAL CATEGORY [AN]

• countryOfOrigin [R]: COUNTRY OF ORIGIN [AN]
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• countryOfRecruitment [R]: COUNTRY OF RECRUITMENT [AN]

• numberOfIndividuals [R]: NUMBER OF INDIVIDUALS [AN]

• sourceId [R]: STUDY ACCESSION [AS][S][AN]

Entity Cohort

All the attributes marked with [M] of this entity are obtained by extracting
some information from the reported attributes. For a practical example about
the extraction please refer to Table 5.3.

• traitName [R]: MAPPED TRAIT [AS][S]

• caseNumber initial [M]: INITIAL SAMPLE DESCRIPTION [AS][S][AN]

• controlNumber initial [M]: INITIAL SAMPLE DESCRIPTION [AS][S][AN]

• individualNumber initial [M]: INITIAL SAMPLE DESCRIPTION [AS][S][AN]

• triosNumber initial [M]: INITIAL SAMPLE DESCRIPTION [AS][S][AN]

• caseNumber replicate [M]: REPLICATION SAMPLE DESCRIPTION [AS][S][AN]

• controlNumber replicate [M]: REPLICATION SAMPLE DESCRIPTION
[AS][S][AN]

• individualNumber replicate [M]: REPLICATION SAMPLE DESCRIP-
TION [AS][S][AN]

• triosNumber replicate [M]: REPLICATION SAMPLE DESCRIPTION [AS][S][AN]

• sourceId [R]: STUDY ACCESSION [AS][S][AN]

Table 5.3: Many attributes of the entity Cohort are extracted from source-
specific attributes. Here is reported a simple example about the Item with
study accession “GCST005538”. For more details about the implementation
refer to Chapter 6.
INITIAL SAMPLE DESCRIPTION: 1,726 European ancestry cases, 5,482 Eu-
ropean ancestry controls
REPLICATION SAMPLE DESCRIPTION: 1,912 European ancestry cases,
5,938 European ancestry controls, 781 African American cases, 876 African
American controls

CaseNumber
initial

ControlNumber
initial

CaseNumber
replicate

ControlNumber
replicate

1726 5,482 1,912 + 781 5,938 + 876
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Entity CaseStudy

• sourceId [R]: PUBMEDID [AS][S][AN]

• sourceSite [R]: STUDY [AS][S]

• externalRef [R]: LINK [AS][S]

Entity Project

• programName [M]: “GWAS Catalog”

• projectName [M]: “GWAS Catalog”

Entity ExperimentType

• technique [R]: GENOTYPING TECHNOLOGY [AS][S]

Entity Datasets

• name [M]: “gwas”

• dataType [M]: “gwas”

• format [M]: “gdm”

• assembly [M]: “GRCh38”

• isAnn [M]: “false”

Entity Item

• sourceId [R]: STUDY ACCESSION [AS][S][AN]

• size [M]: <size of the file >

• date [M]: <download date of the file >

• checksum [M]: <checksum of the file (computed) >

• platform [R]: PLATFORM (SNPS PASSING QC) [AS][S]

• fileName[M]: STUDY ACCESSION [AS][S][AN] + “.gdm”
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FinnGen

The FinnGen repository have less metadata than GWAS Catalog and they re-
quire less transformations. FinnGen data has no information about the Ancestry
of people that participate in the studies. The only information available is that
people are picked up from Finland. Following is provided, one entity at a time,
the list of the pairs <GCM attribute >: <FinnGen-specific attribute >. All
attributes source-specific are taken from the Manifest file, while next to the
GCM attributes is marked if they are filled with raw data [R] ore derived and
manually extracted [M].

Entity Ancestry

• countryOfRecruitment [M]: “Finland”

• numberOfIndividuals [M]: n cases + n controls

• sourceId [R]: phenocode

Entity Cohort

The FinnGen repository does not provide information about how the cohorts are
composed for the initial or replication stages. The only information available is
the cardinality of the cases and controls groups. We treat the FinnGen studies
as if they were composed only of the initial stage. For this reason all the GCM
attributes that refer to the replication stage remain empty.

Moreover, the cohorts can be composed only of cases and controls and not
of individuals neither trios.

• traitName [R]: name

• caseNumber initial [R]: n cases

• controlNumber initial [R]: n controls

• sourceId [R]: phenocode

Entity CaseStudy

• sourceId [R]: phenocode

• sourceSite [M]: “https://www.finngen.fi/en”

• externalRef [R]: path https

Entity Project

• programName [M]: “FinnGen”

• projectName [M]: “FinnGen”
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Entity ExperimentType

• technique [M]: “FinnGen technique”

Entity Dataset

• name [M]: “FinnGen”

• dataType [M]: “gwas”

• format [M]: “gdm”

• assembly [M]: “GRCh38”

• isAnn [M]: “false”

Entity Item

• sourceId [R]: phenocode

• size [M]: <size of the file >

• date [M]: <download date of the file >

• checksum [M]: <checksum of the file (computed) >

• fileName[M]: phenocode + “.gdm”

5.1.5 The metadata ”traitName”

GWAS studies follow the phenotypes-first approach. The participants of these
studies are classified according to their clinical manifestations. When looking at
GWAS studies, the phenotype is one of the most interesting attribute candidate.
During this thesis, the two GWAS sources GWAS Catalog and FinnGen have
been integrated both into the META-BASE architecture, allowing to create
queries upon both sources. The feature of GWAS studies is to search for SNPs
given a phenotype. This is the reason why is interesting to understand the set
of phenotypes present in both sources.

All traits in GWAS Catalog are mapped over the EFO ontology [6]. Traits
in the GWAS Catalog are highly diverse and include diseases, e.g. Type II dia-
betes, disease markers, e.g. measurements of blood glucose concentration, and
non-clinical phenotypes, e.g. hair color. The Experimental Factor Ontology was
chosen as the ontology to represent GWAS Catalog traits as it is highly adapt-
able and extensible. It is freely available in OWL format from the EFO website
and can be browsed in the Ontology Lookup Service. At the moment of writing
(March 2021), the GWAS Catalog contains 2413 different traits from the EFO
ontology. Each study is characterized by one or more traits contained into the
source-specific attribute “MAPPED TRAIT”, comma separated.
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FinnGen phenotypes are harmonized over the International Classification of
Diseases (ICD) revisions 8, 9 and 10, cancer-specific ICD-O-3, (NOMESCO)
procedure codes, Finnish-specific Social Insurance Institute (KELA) drug re-
imbursement codes and ATC-codes [9]. The latest release at the moment of
writing (May 2021) is the fifth. In its manifest are listed all the files available,
each with its corresponding phenotype. The fifth release contains 2804 different
phenotypes.

To create integrated queries over the two genomic sources, is useful to under-
stand which ones phenotypes are shared between the sources. It is not immedi-
ate since, unfortunately, the phenotypes are mapped over different ontologies.
Applying exact-matching between the list of phenotypes of the two sources, only
94 traits are found to be shared between both of them. A simple graphical rep-
resentation of the intersection of the sets of phenotypes is provided in Figure
5.2.

For many traits, like “schizophrenia” or “asthma”, both in GWAS Cata-
log and FinnGen are present many complex traits, but with exact matching
only few of them are spotted. In Figure 5.3 are reported all the phenotypes
related to “asthma” that are present in GWAS Catalog and only few of the
ones from FinnGen (10 out of 37 total, for graphical reasons). There are some
correspondences between the traits of the two sources, but using an algorithm
that performs exact matching between strings, only one trait is spotted to be
in common.

In Figure 5.4 is reported another example. In both tables are reported all
the phenotypes resulting by searching for word “schizophrenia”. Also in this
example, only one common phenotype is spotted using exact matching, but
more correspondences can be found manually.

Mapping two sets of phenotypes coming from different ontologies is a very
complex effort and requires expert in the field of biology and medicine. That
effort is out of the goal of this thesis. The study of the common traits is a
preliminary step for the creation of some integrated queries over both GWAS
sources, presented in Chapter 7. To spot inexact common traits is enough to
take one of the 94 shared phenotypes and to look into the two sources the entries
that contain that string (string containment), as reported in Figures 5.3 and 5.4.

5.2 Data Integration

5.2.1 Transforming region data

The main effort of the META-BASE architecture is to provide metadata inte-
gration between multiple genomic sources. Each source has its own conceptual
schema and, thanks to the sequential steps introduced in section 3.4 (DOWNLOAD,
TRANSFORM, CLEAN, MAP, NORMALIZE-ENRICH and INTEGRITY CHECK), they are
all mapped into the Genomic Conceptual Model [2] to achieve the integration.

The data that are processed through this pipeline are ready to be queried
using the GenoMetric Query Language [18], introduced in section 3.3. Using
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Figure 5.2: In this figure is reported the intersection of the sets of phenotypes
of the two sources GWAS Catalog and FinnGen. The intersection is obtained
through exact matching of the two sets and it represents a small portion of both
of them. To spot more traits in common is required a complex integration effort,
driven by biological and medicine experts.

Figure 5.3: In this figure are presented the troubles when trying to spot shared
traits between the two GWAS sources related to “asthma”. In the blue table
are reported all the 8 phenotypes of GWAS Catalog while in the green one are
reported only 10 of them out of 37 total, for graphical reasons. Only one trait
is shared, all the others require domain experts to be mapped.

this query language, multiple genomic sources can be queried by specifying the
values of both metadata and region attributes.

Unlike the metadata which share a common schema, the region attributes of
multiple sources are not guaranteed to have a shared one. The only constraint
about region data comes from the Genomic Data Model [19] presented in section
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Figure 5.4: In this figure are presented the difficulties when trying to spot shared
traits related to “schizophrenia”. In the blue table are reported the phenotypes
of GWAS Catalog while the green table is dedicated to FinnGen. Only one trait
is shared, all the others require domain experts to be mapped.

3.1. According the GDM, each region in the repository is uniquely identified by
the four coordinates chrom, start, end and strand.

Genomic data from GWAS Catalog and FinnGen are all GWAS studies, so
the schemes of their region data share some attributes. In fact the goal of a
GWAS study is, for a given position, to identify the allele which is “causal” for a
given phenotype. The schemes of both sources have of course information about
the reference allele, the causal allele and about the “strength” of the association
found. This information are contained into attributes with different names and
often with different formats.

For this reasons, to prepare the region data of both sources for being mapped
in section 5.2.2, some of the attributes require a transformation. Once the inte-
gration between the region schemes is provided, it is possible to create GMQL
queries obtaining regions from both sources.

GWAS Catalog

In Figure 5.5 are reported some relevant attributes of GWAS Catalog region
data. It includes all the attributes that are modified (identified by the orange
color) and some of the unchanged attributes (identified using the light blue
color).

The first attribute that has been modified is Chr id. It contains the number
of the chromosome in which the current region is located, but the corresponding
attribute chrom of the GDM contains the number of the chromosome preceded
by the prefix “chr”. The modification, consequently, consists of the addition of
the prefix.

The attribute Chr pos contains the position in the specified chromosome,
expressed in base pair, of the identified SNP. Since a SNP is a region made of
a single nucleotide, it has length one. Thus the attribute Chr pos is used to fill
the attributes start and end of the GDM. The attribute start contains the
same value of Chr pos, while the attribute end contains the starting position of
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the region increased by one base pair.
The attribute strand of the GDM is not contained into GWAS Catalog.

It identifies which one of the two strands of the DNA double helix hosts the
current genomic region. Since a SNP regards both the two strands, the value of
the corresponding attribute is filled with the wildcard character “*”.

The last modification concerns the attribute Strongest snp-risk allele,
which contains two informations: the identifier of the current SNP (“rs” ID)
and the risk allele. Since the “rs” identifier of the SNP is contained also in the
attribute Snps and in order to make this attribute matching with the attribute
alt of FinnGen (for details about this association please refer to section 5.2.2),
is kept only the risk allele. Thus the attribute Strongest snp-risk allele,
after the transformation, holds only the allele which is causal for the phenotype
under consideration.

FinnGen

The Figure 5.6 reports some relevant region attributes of FinnGen dataset. The
attributes identified by the color orange are the ones that are changed while the
light blue attributes remain unchanged.

The first attribute that has been modified is #chrom; it contains the number
of the chromosome in which the current SNP is located. The corresponding
attribute chrom of the GDM contains the same information but it’s preceded
by the prefix “chr”. Therefore, the attribute #chrom is transformed into chrom

by adding the prefix “chr” before the chromosome number.
Then is modified the attribute pos, using its value to fill the attributes start

and end of the GDM. The attribute pos holds the position expressed in base
pairs of the current SNP over the identified chromosome. Since a SNP is a
region of length one base pair, the attribute start coincides with pos, while the
attribute end is filled with the value of pos increased by one base pair.

The last modification concerns the attribute strand of the GDM. It is not
present in FinnGen region attributes and it spots which one of the two nucleotide
chains of the double helix contains the current region. Since a SNP concerns
both strands, the corresponding attribute is filled with the wildcard character
“*”.
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Figure 5.5: This diagram represents how the source-specific region attributes
of GWAS Catalog are transformed to achieve data interoperability between the
two genomic sources GWAS Catalog and FinnGen and to fulfil the Genomic
Data Model format. Each attribute is coupled with an example value; the
color orange represents values that are modified, while the light blue represents
unchanged values. Please note that in this diagram are reported only some
relevant region attributes of GWAS Catalog; for the full list refer to section 4.1.
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Figure 5.6: This diagram represents how the FinnGen source-specific region
attributes are transformed to achieve data integration with the genomic source
GWAS Catalog and to fulfil the Genomic Data Model format. Each attribute
is coupled with an example value; the color orange represents values that are
modified, while the light blue represents values that remain unchanged. In this
figure are reported only some relevant region attributes of FinnGen, for the full
list the reader is invited to read section 4.2.
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5.2.2 Region attributes correspondences

Back in this chapter, in section 5.2.1, is shown the process through which the
region attributes of the two genomic sources GWAS Catalog and FinnGen are
obtained from the source-specific attributes; in Figure 5.8 are highlighted some
correspondences between region attributes of the two genomic sources though
arrows. The main goal of the META-BASE architecture is to integrate the
metadata of all the genomic sources that it encloses. The focus is on metadata,
not on region attributes. Actually, all the data included in the architecture need
to fit the Genomic Data Model [19]. This is very important to guarantee the
data interoperability and integrity.

The META-BASE architecture [1] has been developed and expanded in this
thesis with the goal of mapping all the metadata against the Genomic Con-
ceptual Model [2]. Moreover, after all the steps of the architecture have been
executed, the data (region and metadata) are uploaded into the GMQL architec-
ture. This query language, presented in section 3.3 is based both on metadata
and on region attributes. The user can query the genomic data specifying the
values of some metadata, as well as some region coordinates or other region
features. The four coordinates essential in the Genomic Data Model are chrom,
start, end and strand. The other region attributes are source-specific and their
integration is out of the goal of the META-BASE architecture.

The GWAS Catalog and the FinnGen dataset are both Genome-Wide As-
sociation Study repositories, so there is a correspondence between some of their
region attributes. The GWAS studies outcomes are, for a specified phenotype,
all the SNPs (regions of length one base-pair) associated to it. Each entry of a
GWAS regions file corresponds to a SNP. All the attributes are useful to identify
the region over the genome and to express the “importance” of the association
between the current SNP and the phenotype under consideration.

The position over the genome is expressed though the four coordinates
chrom, start, end and strand. Since the regions are SNPs, the end attributes is
the start increased by one. The four coordinates attributes are present in both
genomic sources, so they are connected though arrows 1, 2, 3 and 4 in Figure
5.8.

The human genome, as well as genomes of many living species, have been
sequenced and many genes have been identified. The genes are the basic unit
of heredity, so they are sequences of nucleotides that are inherited together
and they contain the information to synthesize RNA or proteins. The first
big attempt to identify human genes is the Human Genome Project [5], back
in 1990 by the National Institute of Health. Now all the known genes can
be browsed through many repositories, between them the web interface of the
National Center for Biotechnology Information available at NCBI NIH website.
The description of the source-specific attributes of the two genomic sources is
available at [6] and [9].

The main difference between the two schemes is about the gene in which
the mutation is located. In GWAS Catalog is specified whether the SNP is
inside a gene or between genes. In the former case, the single gene is specified
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into the attributes Mapped gene and Snp gene ids. In the latter case, the genes
that enclose the SNP are listed into the attribute Mapped gene. Then are
indicated the identifiers of the genes in the upstream and downstream of the
SNP (respectively attributes Upstream gene id and Downstream gene id), and
the distance between the SNP and the reported genes (respectively attributes
Upstream gene distance and Downstream gene distance). On the other hand,
the FinnGen repository is less precise and does not distinguish these two cases.
The attribute nearest genes encloses both the cases, without specifying if the
SNP is within a gene or between genes. Downstream of this long consideration,
the attributes that can be considered having the same meaning are Mapped gene
of GWAS Catalog with nearest genes of FinnGen (arrow 5).

Another difference from the two sources is the terminology used to identify
the alleles of the mutations associated with the phenotype under consideration.
As shown in Figure 5.7 the studies are conduced comparing two groups of peo-
ple, the cases and the controls groups. If, for a particular position over the
genome, the cases group has an allele significantly different from the controls

group, then the most frequent allele for that position in the cases group is said
to be the “risk allele”. Another way to refer to the risk allele is “alternative
allele” or “effect allele”. The “reference” allele, on the other hand, is the most
frequent one in the controls group. At the light of this consideration, the at-

Figure 5.7: GWAS studies compare the cases and the controls groups to find
the “risk allele” or “effect allele” for the phenotype under consideration. The
“risk allele” is found at a higher frequency in cases rather than in controls

group.

tribute Strongest snp-risk allele of GWAS Catalog corresponds to the attribute
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alt of FinnGen (arrow 6). GWAS Catalog does not specify which is the reference
allele.

Also the attribute Snps of GWAS Catalog and rsids of FinnGen have the
same meaning, that is the identifier of the variant represented by the current
entry of the regions file (arrow 7). The identifiers are expressed using the same
reference, that it the “rsId”. All the known SNPs can be browsed through the
web interface of the National Center for Biotechnology Information available
at NCBI NIH website. After having identified the position of the SNP through
the four coordinates and the allele which is associated to the phenotype un-
der consideration, the remaining attributes provide some statistics about the
“strength” of the association found.

The terminology used in the two genomic sources is a bit different, but with
some analogies. In GWAS Catalog is present the attribute Risk allele frequency,
which of course refers to the frequency of the risk allele. In FinnGen is present
the attribuite maf which stands for “minor allele ferquency”. According to its
definition, the minor allele is “the second most common allele that occurs in
a given population”. In many GWAS studies on complex diseases, the minor
allele can be considered the risk allele [16], despite their definitions differ. So
the attribute Risk allele frequency of GWAS Catalog and the attribute maf of
FinnGen can be considered of equivalent meaning, so they are linked with arrow
8 in Figure 5.8.

The last two correspondences are obvious and regard the attributes p-value
and pvalue (arrow 9) and the attributes Or or beta and beta (arrow 10).
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Figure 5.8: The items in this figure are the region attributes of the ge-
nomic sources GWAS Catalog and FinnGen. They are the outcome of the
transformation phase of the META-BASE architecture. The attributes are
already introduced in section 5.2.1. In this section is presented a possible cor-
respondence between the two sources, represented by the arrows in this figure.
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Implementation

In this chapter is described the implementation of the Metadata-Manager [1]
module for the genomic sources GWAS Catalog [3] and FinnGen [9]. The exist-
ing architecture is described in Chapter 3, where the steps of the pipeline are
shown. The proposed description in that chapter doesn’t go into the implemen-
tation details of the architecture.

The project is written with the Scala programming language [28], a general-
purpose programming language providing support for both object-oriented pro-
gramming and functional programming. It is compiled to Java bytecode, so
that the resulting executable code runs on a Java virtual machine. Moreover,
the Scala language provides interoperability with Java.

The Metadata-Manager implementation code is publicly available in the
GitHub repository https://github.com/DEIB-GECO/Metadata-Manager. The
project is composed by multiple steps: Data Download, Transformation,
Cleaning, Mapping, Normalization, Enrichment and Integrity Checker. The
source-specific steps are only the former four; after the Mapper step the data
are instances of the Genomic Data Model [19] and the metadata are mapped
as instances of the Genomic Conceptual Model [2]. When the Mapper step has
been executed, data from different genomic sources share the same schema and
format, so they can be queried using the GMQL language [18].

In Chapter 4 are described the data structures of the genomic sources GWAS
Catalog and FinnGen. In Chapter 5 are presented the modelling tasks faced to
model the two new sources into the GCM also by introducing the two entities
Ancestry and Cohort.

The work is carried on as follow: in section 6.1 are described the classes
and methods implemented to perform the Download and Transformation steps
for GWAS Catalog; in section 6.2 are described the methods and classes imple-
mented to perform the first two steps for FinnGen; in section 6.3 are presented
the methods and classes required to develop the Mapper step for both the two
sources.

The Mapper step is shared between the two sources, so the classes have to
be implemented only once for both GWAS Catalog and FinnGen.
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6.1 Downloader & Transformer for GWAS Cat-
alog

GWAS Catalog summary statistics are available as three files Ancestry, Studies
and Associations. They are tab-separated values files and they are downloaded
from the dedicated FTP server (ftp.ebi.ac.uk).

Metadata-Manager

Example

schemas

gwas gdm.schema

FinnGen gdm.schema

xml

Consistent Config XMLs LOCAL

ConfigurationGWAS.xml

ConfigurationFinnGen.xml

src/main/scala/it.polimi.genomics.metadata

downloader transformer

default

FtpDownloader.scala

gwas

GwasTransformer.scala

finngen

FinnGenDownloader.scala

FinnGenTransformer.scala

Figure 6.1: These Scala classes and xml files are the ones relevant for the exe-
cution of the download and transformation stages of the Metadata-Manager
program. In this diagram appear only the files implemented during this thesis
or the ones off-the-shelf, like FtpDownloader.scala. Many other used classes are
not reported in this schema but their are important as well (e.g. Program.scala
and FileDatabase.scala).

58

ftp.ebi.ac.uk


Chapter 6. Implementation

In Figure 6.1 are shown the Scala classes and files interested in these two
former stages. In particular, the class FtpDownloader.scala has already been
implemented in the original architecture since it is used to download other
genomic sources as TCGA.

The execution of the program is driven by the file ConfigurationGWAS.xml.
It contains many information, among which:

• the credentials of the database in which the data are traced

• the stage to be executed

• the url of the FTP server through which the summary statistics are down-
loaded

• the local paths to the classes FtpDownloader.scala and GwasTransformer.scala

• the local path to reach the gdm schema of the new source

• the regular expression to locate the three files to be downloaded, in the
server previously specified

The Figure 6.2 briefly shows the flow through which the files of the GWAS
Catalog are downloaded.

Figure 6.2: This is the schematic execution flow of the download phase of the
GWAS Catalog genomic source. For each item of the flow is indicated the class
and the method, omitting the input parameters for graphical reasons. For the
full description of the flow, the reader is invited to read section 6.1.

The main class of the program is called Program.scala. Assuming that in the
configuration file has been selected the download phase, the method execute-
Download() is run. It calls the download() method of the FtpDownloader.scala
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class, which recursively calls methods recursiveDownload() and checkFolderFor-
Downloads() of the same class. This last method uses the regular expression
in the configuration file to list the files to be downloaded from the FTP server.
Than it has a cycle that, for each of the three selected files, launches the method
fileId() of the class FileDatabase.scala and the method downloadFile() of the
class FtpDownloader.scala. The former method adds the file to the database
while the latter downloads the file on a local copy on the machine. The same
method also checks that the download goes smooth, by computing an hash while
downloading and by compare it with the one computed on the local copy.

The database which references the downloaded files is called gmql importer
and is different from the database filled in the Mapping stage, which is called
gmql metadata. The schema of the gmql metadata is the new GCM presented in
section 5.1.3. The gmql importer has a different schema and it keeps information
about the files during the download and transformation stages and some logs
about the execution of these two phases.

When all the files are downloaded locally and are traced on the database, the
execution flow goes back to the class Program.scala that computes some statis-
tics about the execution and prints them on the console. After the download

phase for GWAS Catalog as been executed, in the selected path appear the files
as follow:

gwas/latest

Downloads

gwas-catalog-ancestry.tsv

gwas-catalog-associations ontology-annotated.tsv

gwas-catalog-studies ontology-annotated.tsv

while in the gmql importer database the same files appear coupled with some
information, among which:

file id dataset id name stage status

36287 102 ancestry.tsv DOWNLOAD UPDATED
36288 102 associations.tsv DOWNLOAD UPDATED
36289 102 studies.tsv DOWNLOAD UPDATED

The execution flow of the transformation phase is shown in Figure 6.3.
After setting the transformation label in the configuration file, the method

executeLevel() of the class Program.scala calls the method execute() of the class
TransformerStep.scala. This method generates the candidate names of the files
to be created during the transformation phase, by calling the method getCan-
didateNames() of the class GwasTransformer.scala. Each of the new candidates
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Figure 6.3: This is the execution flow of the transformation phase of the
GWAS Catalog genomic source. For the full description of the flow, the reader
is invited to read section 6.1.

is added to the database gmql importer, tracing its status and some other infor-
mation about the file. This last operation is done by the method fileId() of the
class FileDatabase.scala.

Then the flow turns back to the class TransformerStep.scala which, for each
candidate file, calls the proper method of the class GwasTransformer.scala. If
the candidate name ends with “.gdm.meta” is called the method metaGen()
while if it ends with “.gdm” is called the method regionTransformation().

The method metaGen() takes the information about the current study acces-
sion from the three downloaded files and write them in the file “study accession
.gdm.meta” as a flat list of < key > < value > pairs of metadata.

The method regionTransformation() takes the region data from the file
Associations.tsv and transforms writing them in the file “study accession.gdm”.
After the transformation, the flow goes on to method postProcess() of the class
TransformerStep.scala. If the current file contains metadata, this method adds
some manually curated information like the file size or its download date. Oth-
erwise, if the current file contains region data, it calls the method checkRegion-
Data() of the class GwasTransformer.scala, which checks the integrity of the
region files against the following schema:

<?xml v e r s i on =”1.0” encoding=”UTF−8”?>
<gmqlSchemaCollection name=”gwas”
xmlns=”http :// genomic . e l e t . po l imi . i t / e n t i t i e s ”>

<gmqlSchema type=”TAB”>
< f i e l d type=”STRING”>chrom</ f i e l d >
< f i e l d type=”LONG”>s t a r t </ f i e l d >

61



Chapter 6. Implementation

< f i e l d type=”LONG”>end</ f i e l d >
< f i e l d type=”CHAR”>strand</ f i e l d >
< f i e l d type=”STRING”>REGION</ f i e l d >
< f i e l d type=”STRING”>REPORTED GENE(S)</ f i e l d >
< f i e l d type=”STRING”>MAPPED GENE</ f i e l d >
< f i e l d type=”STRING”>UPSTREAM GENE ID</ f i e l d >
< f i e l d type=”STRING”>DOWNSTREAM GENE ID</ f i e l d >
< f i e l d type=”STRING”>SNP GENE IDS</ f i e l d >
< f i e l d type=”LONG”>UPSTREAM GENE DISTANCE</ f i e l d >
< f i e l d type=”LONG”>DOWNSTREAM GENE DISTANCE</ f i e l d >
< f i e l d type=”STRING”>STRONGEST SNP−RISK ALLELE</ f i e l d >
< f i e l d type=”STRING”>SNPS</ f i e l d >
< f i e l d type=”INTEGER”>MERGED</ f i e l d >
< f i e l d type=”LONG”>SNP ID CURRENT</ f i e l d >
< f i e l d type=”STRING”>CONTEXT</ f i e l d >
< f i e l d type=”INTEGER”>INTERGENIC</ f i e l d >
< f i e l d type=”DOUBLE”>RISK ALLELE FREQUENCY</ f i e l d >
< f i e l d type=”DOUBLE”>P−VALUE</ f i e l d >
< f i e l d type=”DOUBLE”>PVALUE MLOG</ f i e l d >
< f i e l d type=”STRING”>P−VALUE (TEXT)</ f i e l d >
< f i e l d type=”DOUBLE”>OR or BETA</ f i e l d >
< f i e l d type=”STRING”>95% CI (TEXT)</ f i e l d >

</gmqlSchema>
</gmqlSchemaCollection>

The transformation of the region data is simple, and it concerns only the at-
tributes chrom, start, end and strand. The other attributes in the schema
are written in the region file as they are in the file Associations.tsv. The
attribute chrom is taken from the Catalog attribute “CHR ID” when present or
extracted from the attribute “STRONGEST SNP-RISK ALLELE”. The start

is taken from the Catalog attribute “CHR POS”. The end is the start increased
by one, since the SNPs are region of length one base pair. Finally the strand

is setted as “*” since there is no information available from the Catalog.
After the transformation phase for GWAS Catalog has been executed, in

the selected path appear the files as follow:
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gwas/latest

Transformations

GCST007269.gdm

GCST007269.gdm.meta

GCST009379.gdm

GCST009379.gdm.meta

***

gwas.schema

while in the gmql importer database the same files appear coupled with some
information, among which:

file id dataset id name stage status

36295 102 GCST007269.gdm TRANSFORM UPDATED
36296 102 GCST007269.gdm.meta TRANSFORM UPDATED
36293 102 GCST009379.gdm TRANSFORM UPDATED
36294 102 GCST009379.gdm.meta TRANSFORM UPDATED

6.2 Downloader & Transformer for FinnGen

FinnGen summary statistics are available through the URLs that are present in
the manifest of the release to be downloaded. At the moment of writing (June
2021) the latest release available is the fifth. Unlike GWAS Catalog that for
the download stage uses an already implemented Scala class, for FinnGen we
have implemented the class FinnGenDownloader.scala to fulfil the peculiarities
of this genomic source.

In Figure 6.1 are listed the most relevant Scala classes and xml files for
the execution of the download and transformation stages for the FinnGen
source. The execution of both phases is driven by the configuration file Config-
urationFinnGen.xml which includes some information, between them:

• the local path where to save the downloaded files

• the credentials to authenticate into the databases which trace the files and
the metadata mapped against the GCM schema, respectively gmql importer
and gmql metadata

• the label referencing the stage to be executed

• the URL where to retrieve the manifest of the latest release
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• the local paths to the classes FinnGenDownloader.scala and FinnGen-
Transformer.scala

• the local path of the schema for the region data

The rationale is straightforward and it is divided into two subsequent parts.
First of all the manifest of the latest release is downloaded. It contains one
row for each endpoint available in the database, each one having the URL to
download the corresponding summary statistics file. The second phase consists
of downloading one file for each endpoint saving them in the specified local
folder and tracing them on the database gmql importer.

The Figure 6.4 illustrates briefly the execution flow of the download phase
for the FinnGen genomic source. The main class is the Program.scala and,
having properly setted the download label in the configuration file, it runs its
method executeDownload(). This calls the method download() of the source-
specific class for the current stage to be run, that is FinnGenDownloader.scala.
First of all it calls the method getManifest() of the same class. It uses the URL
specified in the configuration file to retrieve the manifest file from the FinnGen
database and saves it in the specified local folder. The class FileDatabase.scala
through the method fileId() traces the downloaded manifest to the database
gmql importer.

Figure 6.4: This is the schematic execution flow of the download phase of the
FinnGen genomic source. For each item of the flow is indicated the class and
the method, omitting the input parameters for graphical reasons. For the full
description of the flow, the reader is invited to read section 6.2.

After getting the manifest, the flow goes on to the method downloadFiles() of
the class FinnGenDownloader.scala. This method reads from the manifest the
available endpoints files and, for each of them, it downloads the file and traces it
on the database gmql importer. After having downloaded all the endpoints files
(or a portion of them if specified properly) the flow goes back to the method

64



Chapter 6. Implementation

executeDownlaod() of the main class that computes some statistics about the
current execution and prints them on the console. After the download phase
has been correctly executed, in the apposite local folder appear the following
files:

FinnGen/R4

Downloads

ManifestR5.tsv

AB1 ARTHROPOD.gz

AB1 BACT BIR OTHER INF AGENTS.gz

AB1 HELMINTIASES.gz

***

while in the gmql importer database the same files appear coupled with some
information, among which:

file id dataset id name stage status

36303 101 ManifestR5.tsv DOWNLOAD UPDATED
36304 101 AB1 ARTHROPOD.gz DOWNLOAD UPDATED

36305 101
AB1 BACT BIR OTH-
ER INF AGENTS.gz

DOWNLOAD UPDATED

36306 101 AB1 HELMINTIASES.gz DOWNLOAD UPDATED

The flow of the execution of the transformation phase is illustrated in Figure
6.5.

The method executeLevel() of the main class launches the execute() method
of the class TransformerStep.scala. This passage works thanks to the configura-
tion of the transformation label and to the specification of the path to reach
the source-specific transformation class.

The flow proceeds to the method getCandidateNames() of the class FinnGen-
Transformer.scala. This method extracts the names of the files that are the out-
put of the transformation phase. For each endpoint in the FinnGen database,
the candidates are the two files containing the metadata and the region data
of the current endpoint. The metadata file is named with the current endpoint
name with the extension “.gdm.meta”, while the region data file has the exten-
sion “.gdm”. Each of the candidate file is traced on the database gmql importer.

The flow goes on with a loop over all the candidates just generated. If the
file has the extensions “.gdm.meta”, the flow goes through the method meta-
Gen() of the class FinnGenTransformer.scala. It obtains the metadata of the
current endpoint from the manifest and writes them in a flat list of pairs <key>
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Figure 6.5: This is the execution flow of the transformation phase of the
FinnGen genomic source. For the full description of the flow, the reader is
invited to read section 6.2.

<value>. Otherwise, if the file has the extension “.gdm”, the endpoint file is
unzipped and then the region data are transformed by the method regionTrans-
formation() of the class FinnGenTransformer.scala.

The transformation of the region data concerns only the attributes chrom,
start, end and strand. The remaining attributes in the schema are copied
into the region file as they are from the current endpoint file. The attribute
chrom is taken from the endpoint column “#chrom”. The start is taken from
the attribute “pos”. The end is the start increased by one, since the SNPs are
regions of length one base pair. Finally the strand is setted as “*” since there
is no information available from the FinnGen source.

The method postProcess() of the class TransformerStep.scala has a different
behaviour if the actual file contains region data or metadata. For region data
files, it checks their integrity against the following schema:

<?xml v e r s i o n =”1.0” encoding=”UTF−8”?>
<gmqlSchemaCollection name=”FinnGen”
xmlns=”http :// genomic . e l e t . po l imi . i t / e n t i t i e s ”>

<gmqlSchema type=”TAB”>
< f i e l d type=”STRING”>chrom</ f i e l d >
< f i e l d type=”LONG”>s t a r t </ f i e l d >
< f i e l d type=”LONG”>end</ f i e l d >
< f i e l d type=”CHAR”>strand</ f i e l d >
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< f i e l d type=”STRING”>r e f </ f i e l d >
< f i e l d type=”STRING”>a l t </ f i e l d >
< f i e l d type=”STRING”> r s i d s </ f i e l d >
< f i e l d type=”STRING”>neare s t gene s </ f i e l d >
< f i e l d type=”DOUBLE”>pval</ f i e l d >
< f i e l d type=”DOUBLE”>beta</ f i e l d >
< f i e l d type=”DOUBLE”>sebeta</ f i e l d >
< f i e l d type=”DOUBLE”>maf</ f i e l d >
< f i e l d type=”DOUBLE”>maf cases </ f i e l d >
< f i e l d type=”DOUBLE”>maf contro l s </ f i e l d >

</gmqlSchema>
</gmqlSchemaCollection>

If the current file has the extension “.gdm.meta”, the method postProcess()
adds some manually curated metadata like the file size or its download date.

The flow ends turning back to the main class, which computes some statistics
about the current execution and prints them on the console.

After the transformation phase has been correctly carried on, in the spec-
ified local path are saved the files as follow:

FinnGen/R5

Transformations

AB1 ARTHROPOD.gdm

AB1 ARTHROPOD.gdm.meta

AB1 BACT BIR OTHER INF AGENTS.gdm

AB1 BACT BIR OTHER INF AGENTS.gdm.meta

***

FinnGen.schema

while in the gmql importer database the same files appear coupled with some
information, among which:

file id
dataset
id

name stage status

36307 101 AB1 ARTHROPOD.gdm TRANSFORM UPDATED
36308 101 AB1 ARTHROPOD.gdm.meta TRANSFORM UPDATED

36309 101
AB1 BACT BIR OTH-
ER INF AGENTS.gdm

TRANSFORM UPDATED

36310 101
AB1 BACT BIR OTH-
ER INF AGENTS.gdm.meta

TRANSFORM UPDATED
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6.3 Mapper

After the download and transformation phases, now it’s the turn of the
mapper. Other genomic sources require a further step before the mapper, that
is the clean phase. For that genomic sources whose metadata are derived from
structured json files, many times is appropriate to add the clean phase to re-
duce the complexity of the metadata attributes names. When passing from a
structured json file to a metadata file composed of pairs <key><value>, the
names of the attributes become very complex, not the ideal input of the mapper

phase. Since both GWAS Catalog and FinnGen metadata are extracted from
flat files of format tab-separated values, this further step is not required.

In Figure 6.6 are reported the main Scala classes and xml files required
to carry on the mapper phase for both GWAS Catalog and FinnGen genomic
sources. Unlike the download and transformation phases that are presented
separated for the two sources in section 6.1 and 6.2, the mapper is presented in
a unique section. In fact this last step is not source-specific, so it boasts the
code re-usability feature.

In particular, the entities freshly introduced in the Genomic Conceptual
Model in section 5.1.3 are implemented as the Scala traits (i.e. interfaces in Java
language) Ancestry.scala and Cohort.scala. Then all the traits are implemented
as the Scala classes AncestryGwas.scala, CohortGwas.scala, ItemGwas.scala,
BioSampleGwas.scala, CaseGwas.scala, CaseItemGwas.scala, DatasetGwas.scala,
DonorGwas.scala, ExperimentTypeGwas.scala, GwasTable.scala, ProjectGwas.scala,
ReplicateGwas.scala and ReplicateItemGwas.scala. Furthermore are implemented
the classes AncestryList.scala, GwasTableId.scala and GwasTables.scala. The
role of this latter list of classes is explained later in this section. The classes that
implement the Biological View of the GCM remain empty after the mapper

phase has been executed for GWAS sources.
The class DbHandler.scala has been extended by adding all the methods

needed to insert or modify the entries for the items Ancestry and Cohort of
the database gmql metadata.

The flow of execution is briefly shown in Figure 6.7.
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Metadata-Manager

Example/schemas

xml

Consistent Config XMLs LOCAL

ConfigurationGWAS.xml

ConfigurationFinnGen.xml

settingsGWAS.xml

settingsFinnGen.xml

src/main/scala/it.polimi.genomics.metadata/mapper

RemoteDatabase

DbHandler.scala

GWAS

Tables

AncestryGwas.scala

CohortGwas.scala

ItemGwas.scala

***

GwasTable.scala

Utils

AncestryList.scala

GwasTableId.scala

GwasTables.scala

Ancestry.scala

Cohort.scala

Tables.scala

Figure 6.6: These are the Scala classes and xml files concerned with the mapper

step. For the full explanation about their roles, please refer to section 6.3.
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Figure 6.7: This is the execution flow of the mapper phase for both the gwas
sources. For the full description of the flow, the reader is invited to read section
6.3.

The method executeLevel() of the main class Program.scala, having properly
setted the mapper label in the configuration file, launches the method execute()
of the class MapperStep.scala. The flow goes on through the method import-
Mode() of the same class, whose behaviour is different respect the current gwas
source in execution. If the program is running with GWAS Catalog, is called the
method analyzeFileGwas() of the class MapperStep.scala, while if it is running
with FinnGen, is called the method analyzeFileFinnGen() of the same class.
The behaviour of these two methods is very similar, but it differs in handling
the xml setting files. All the operations described from now on are repeated
once for each metadata file to be mapped, so the execution flow becomes a big
loop.

The four lines of code reported in Figure 6.7 at this point of the execution
flow are relevant for the correct creation of the tables that are going to fill the
database gmql metadata. They are executed once for each metadata file, and
each file can contain information about more than one ancestry. As example,
lets take the metadata file “GCST007269.gdm.meta”, produced as output of
the transformation phase. The Cohort that refers to the study accession
“GCST007269” is linked to seven different Ancestries. Part of the content of
the file is:

broad ancestral category 1 European
broad ancestral category 2 Asian unspecified
...
country of origin 1 NR
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country of origin 2 NR
...
country of recruitment 1 NR
country of recruitment 2 U.S.
...

The ancestryList contains the information of all the seven different ancestries
related to the item with study accession “GCST007269”. The gwasTableId
keeps trace about the number of ancestries. The tables are then created with
the proper cardinality, so that seven different ancestry tables are created.

The reader can see an illustrative example of the output of the mapper phase
in Figure 6.8. The first two entries of the ancestry table are taken from the
seven different ancestries contained in the file “GCST007269.gdm.meta”. At this
point of the execution flow, each table corresponds to an entry of the database
gmql metadata. In the reported examples, seven different ancestry tables are
created.

The method createMapper() of the class MapperStep.scala transforms the
lines of the input metadata files into a structure useful for the following part of
the flow.

At this point are read the files settingsGWAS.xml and settingsFinnGen.xml.
They are read respectively by the methods xmlReaderGwas() and xmlRead-
erFinnGen(), based on the current xml file to be read. The role of these files is
the one explained in Chapter 5. They contain the information on how to map
the metadata into the gmql metadata database. Each row of the xml setting
file is called “operation”. An example of the file xmlReaderGwas() is:

<t a b l e name=”ANCESTRIES”>
<mapping>

<source key>broad ance s t ra l ca t egory X </source key>
<g loba l key>broadAncestralCategory</g loba l key>

</mapping>
<mapping>

<source key>count ry o f o r i g i n X </source key>
<g loba l key>countryOfOrigin</g loba l key>

</mapping>
<mapping>

<source key>country o f r ec ru i tment X </source key>
<g loba l key>countryOfRecruitment</g loba l key>

</mapping>
<mapping>

<source key>number o f ind iv idua l s X </source key>
<g loba l key>numberOfIndividuals</g loba l key>

</mapping>
<mapping>

<source key>s tudy acce s s i on </source key>
<g loba l key>sourceId </g loba l key>

</mapping>
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Figure 6.8: In this figure is shown the partial content of the database
gmql metadata, filled with the metadata from five GWAS Catalog files (high-
lighted in light blue) and from 3 FinnGen files (highlighted in light green). In
this example, the reader can find the files reported as examples in section 6.1
and 6.2 when the download and transformation phases are described. Note
that each arrow corresponds to a 1:1 relation since the many-to-many relations
are translated by adding proper support tables (see case2item table).

</tab le>

Based on these setting files, in Figure 6.9 are shown how the source-specific
metadata are mapped to the GCM attributes. The database is filled with a loop
over all the “operations”. To refer to the reported xml file, one “operation” is
to fill the attribute “broadAncestralCategory” of one ancestry table, with the
value “European”. Another operation is to fill the same attribute of another
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ancestry table with the value Asian unspecified.
The loop starts with the method populateTable() of the class MapperStep.scala

which, given the current “operation”, selects the proper table to be filled and
the corresponding value to be inserted. The method selectInsertMethod() of the
class InsertMethod.scala provides some tool to properly fill the tables. In fact
there are some metadata values that have to be elaborated or manually added.
The method is specified in the files settingsGWAS.xml and settingsFinnGen.xml.

For clarity purpose, let’s consider the pair <initial sample size><450 Japanese
ancestry cases, 5,774 Japanese ancestry controls>. This metadata are going to
fill the attributes caseNumber initial and controlNumber initial, by specifying
the methods “EXTRACTCASES” and “EXTRACTCONTROLS” respectively.
Another possible method is “MANUAL” and it is used when the metadata value
is added manually. An example of this latter case is the value “Finland” which
is inserted in the attribute “countryOfRecruitment” of all the ancestries of the
FinnGen dataset.

The last step of the loop consists of inserting the row in the current table,
with the method setParameter(). When all the “operations” are performed and
all the tables of the gmql metadata database are properly filled with the actual
values of the current metadata file, the flow goes on with the following metadata
file.

After all the metadata files for the current genomic source have been mapped,
the flow reaches the end by calculating some statistics about the current execu-
tion of the program.
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Figure 6.9: The attributes in the right column are from the Genomic Concep-
tual Model that are about to be filled with metadata values from the FinnGen
and GWAS Catalog. In the left column appear the metadata attributes from
FinnGen after that the transformation phase has been performed. In the cen-
tral column there are the metadata attributes of the GWAS Catalog, they too
are taken from the metadata files that are the output of the transformation

stage. In this table is shown how the source-specific attributes are mapped
to the GCM ones. In square brackets is specified the “method” used to map
the attributes. In particular MANUAL means that the GCM attribute is filled
with the value specified, so the name does not refer to an attribute but it
is treated as a value. MANUAL-CONCAT adds the specified value over an at-
tribute’s value. PREDEFINED uses as value an internal attribute and not a
metadata. The methods EXTRACTCASES, EXTRACTCONTROLS, EXTRACTTRIOS and
EXTRACTINDIVIDUALS are developed to derive the corresponding values from a
verbose metadata, which is the description of the sample of the initial stage or
of the replication one.
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6.4 Time and space requirements

The two datasets are periodically updated into the corresponding source reposi-
tories. A new version of the GWAS Catalog is made publicly available monthly,
while new versions of FinnGen dataset are public released every six months. The
FinnGen project will be concluded by 2023 and its last release will be available
at the beginning of 2025. Each new release increases in size, since new GWAS
studies are added to the repositories. At the moment of writing (June 2021),
the most recent available version of GWAS Catalog has been made available
on May 6th 2021 and it contains 16854 different GWAS studies, while the most
recent version of FinnGen is the 5th release public available from May 2021 and
it contains 2804 different phenotypes.

In Table 6.1 are reported the execution times and the space requirements
of the three steps of the integration pipeline (downloader, transformer and
mapper). The space requirements reported in that table are referred to the disk
space of the downloaded and transformed files; it does not take into account the
space used over the two databases gmql importer and gmql metadata.

Table 6.1: In this table are reported the execution times of the three integration
steps of the pipeline and their corresponding space requirements. The symbol
(*) means that the time or space is estimated and not observed.

step time (hh:mm:ss) space

Catalog - Downloader 00:00:10 169M
Catalog - Transformer 03:32:54 111M
Catalog - Mapper 02:13:08 –

FinnGen Downloader 23:10:00(*) 1542G(*)

FinnGen - Transformer 402:26:00(*) 4065G(*)

FinnGen - Mapper 01:27:00(*) –
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GMQL queries

Thanks to Genome-wide association studies we know the correlations between
many phenotypes and their corresponding mutations of DNA. The exact in-
terpretation of that SNPs is not trivial at all for at least two reasons. First,
the output of GWASs are often large clusters of SNPs in linkage disequilib-
rium, making it difficult to distinguish causal SNPs from neutral variants in
linkage. Second, even assuming the causal variants can be identified, interpre-
tation is limited by incomplete knowledge of non-coding regulatory elements,
their mechanisms of action and the cellular states and processes in which they
function. Indeed, it’s more difficult to understand the relation between a SNP
in a non-coding region and its associated phenotype.

For the aforementioned reasons, it’s important to further investigate GWAS
data by merging different genomic datasets or by performing some analysis.
For this purpose is used the GenoMetric Query Language already introduced in
section 3.3. The GMQL allows to conduce multi-omic studies by creating queries
over different omic sources. It aims at improving the knowledge in the genomic
field of biology and making progress in disease treatments and prevention.

In next sections are presented some GMQL queries useful to extract inter-
esting information from the mapped GWAS sources. The reported queries are
representative of the most biologically interesting cases.

The studies from GWAS Catalog have been pre-processed before being up-
loaded on GMQL server. The process is very simple and allows to execute more
powerful queries. Each GWAS study can have more than one ancestry and after
the transformation phase of the META-BASE pipeline, the different ancestries
are referred with an ordinal number. The pre-process concerns the metadata
attributes:

• broad ancestral category [0 9]

• country of origin [0 9]

• country of recruitment [0 9]
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if all the ancestries (identified with progressive numbers) of a study have all the
same value for one of the three listed attributes, then a new attribute is created
containing the corresponding value. Let’s suppose that the study GCST1234
have the two metadata country of origin 1 and country of origin 2 having the
same value “Italy”, then the new metadata “country of origin” is created con-
taining the value “Italy”. In this way, in some queries could be useful to select
all the studies whose cohorts are recruited in Italy, both if they are cases or
controls.

For the purpose of the proposed examples, in some of them we want to
restrict GWAS samples based on the values of the newly computed metadata.

7.1 Queries upon GWAS Catalog studies

7.1.1 Common SNPs between African and European co-
horts

The following query is built upon genomic data coming from GWAS Catalog. It
exploits the GenoMetric Query Language to compare different cohorts of peo-
ple.

Given the studies from GWAS Catalog based on “European” and “African” co-
horts, map each SNP from the former set to overlapping SNPs of the latter one,
joining only studies mapped to the same trait.

1 /* load the studies from GWAS Catalog whose cohorts are

2 "European" */

3 EU = SELECT(broad_ancestral_category == "European") GWAS;

4

5 /* load the studies from GWAS Catalog whose cohorts are

6 "African American or Afro -Caribbean" */

7 AF = SELECT(broad_ancestral_category == "African American"

8 "or Afro -Caribbean") GWAS;

9

10 /* find the SNPs which are in common for each trait*/

11 RES = MAP(joinby: mapped_trait) EU AF;

12 FIL = SELECT(region: count_EU_AF > 0) RES;

13 MATERIALIZE FIL into COMMON_SNPS ;

This query compares, for each trait, the SNPs found in studies based on “Eu-
ropean” cohorts against “African” cohorts. The first two SELECT operators in
line 3 and 7 load the studies from GWAS Catalog based on the cohorts under
consideration.

The core operation of this query is the MAP operator in line 11. For each
region in EU dataset counts the overlapping SNPs from the AF dataset. Are
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mapped only SNPs from samples mapped to the same trait, as specified by the
joinby condition.

In Table 7.1 is reported a small portion of the output of this query. The three
listed SNPs, each one mapped to a specified trait, are found both on “European”
and “African” cohorts. Since the MAP has the condition joinby: mapped trait,
each entry is taken from a different file of the output (identified by the column
“sample ID” in the proposed table).

statistics:

• Execution time: 00:40:09

• Number of regions: 90

• Number of samples: 64

• Size: 0.24 MB

Table 7.1: It contains a small portion of the output of the proposed GMQL
query in section 7.1.1.

chr left right mapped trait snps
p-
value

count
sample
ID

chr10 112998590 112998591
Type 2 dia-
betes

rs7903146 0 1 S 00000

chr19 44878777 44878778
Alzheimer’s
disease

rs6859 0 1 S 00012

chr2 233759924 233759925
Bilirubin
levels

rs887829 0 1 S 00026

7.1.2 Frequent mutations for each trait

This query exploits the GenoMetric Query Language to compute some statistics
about the content of GWAS Catalog.

Given all the studies from GWAS Catalog, count how many times every SNP
has been found in the whole Catalog, aggregating them over traits.

1 /* load the GWAS dataset */

2 GWAS = SELECT () GWAS;

3
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Figure 7.1: Schematic representation of the query in section 7.1.2. For each
trait are kept only those SNPs which have been identified at least two times in
the whole GWAS Catalog.

4 /* merge all the studies that share the "mapped_trait" into

5 a single sample */

6 MER = MERGE(groupby: mapped_trait) GWAS;

7

8 /* group overlapping SNPs into a single region */

9 GRO = GROUP(region_aggregates: reg_num AS COUNT ()) MER;

10 FIL = SELECT(region: reg_num > 1) GRO;

11 ORD = ORDER(region_order: reg_num ASC) FIL;

12 MATERIALIZE ORD into FREQUENT_SNPS;

This query is performed on a single dataset and starts by loading the whole
GWAS Catalog.

The MERGE operation in line 6 groups all the samples mapped over the same
trait into a single one. This step is the basis for the next operation in line 9.

The GROUP operator, for each sample, considers the SNPs which share the
same coordinates as single regions. For each computed region is introduced the
attribute “reg num” which counts how many overlapping SNPs are grouped into
a single region. The operation in line 10 filters out the regions which are made
of less than two overlapping SNPs. Finally the resulting regions are ordered,
for each single trait, according to their frequency.

In Table 7.2 is reported a small fragment of the output of this query. Are
reported a few SNPs mapped to three different traits, which have been found in
more than 2 studies. Since the MERGE operator has the condition groupby:mapped
trait, the reported entries of the following table are taken from three different
files of the output (identified with the attribute “sample ID”).
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statistics:

• Execution time: 00:06:00

• Number of regions: 30017

• Number of samples: 893

• Size: 5.98 MB

Table 7.2: It contains a small portion of the output of the GMQL query proposed
in section 7.1.2. Each sample of the output refers to a different trait. In the
table are reported a couple of SNPs for three samples taken from the output.

mapped trait chr left right count
sample
ID

chr6 31423624 31423625 2
HIV-1 infection . . . S 00012

chr6 31464003 31464004 3
chr2 221895559 221895560 2

adolescent idiopathic sco-
liosis

. . . S 00091

chr10 101219450 101219451 4
chr14 30678292 30678293 2

amyotrophic lateral scle-
rosis

. . . S 00842

chr19 17641880 17641881 5

7.1.3 Counting distinct DNA mutations in ancestral groups

This query exploits the GenoMetric Query Language to aggregate different
GWAS studies and to compute some statistics about their contents.

Given the whole GWAS Catalog, aggregate the studies based on the attributes
“mapped trait” and “broad ancestral category”; for each region of the defined
samples, count how many SNPs overlap and count how many distinct regions
are contained in each defined sample.

1 /* load the GWAS dataset */

2 MUTATION = SELECT(broad_ancestral_category == '*') GWAS;

3

4 /* consider regions defined by at least one SNP , grouped
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5 by "mapped_trait" and "ancestral_category" */

6 MUTATION_ANCE = COVER(1, ANY; groupby: mapped_trait ,

7 broad_ancestral_category; aggregate:

8 overlap_count AS COUNT ()) MUTATION;

9

10 /* count the number of SNPs and extend it as metadata */

11 MUTATION_COUNT = EXTEND(mutation_count AS COUNT ())

12 MUTATION_ANCE;

13 MATERIALIZE MUTATION_COUNT INTO MUTATION_COUNT;

This query is performed on a single dataset. It starts with a SELECT operation
which selects all the studies from GWAS Catalog which have a non-empty value
for metadata “broad ancestral category”.

Line 6 contains the COVER operation which considers all areas defined by
a minimum of one region to any number of overlapping SNPs. The groupby
option allows this operation to be performed only on studies which share the
values for the specified metadata. For each resulting region is computed the
attribute “overlap count”, which counts how many overlapping SNPs compose
the current region.

Finally, line 11 counts how many regions belong to each defined samples and
store the computed number as the metadata “mutation count”.

In Table 7.3 are reported a couple of entries for three samples from the
output of this query. For each ancestral category and each trait, are counted
how many SNPs have been found.

statistics:

• Execution time: 00:07:19

• Number of regions: 151647

• Number of samples: 3386

• Size: 13.51 MB

81



Chapter 7. GMQL queries

Table 7.3: It contains a small portion of the output of the proposed GMQL query
in section 7.1.3. The attribute “ove count” indicates how many overlapping
SNPs identify the current region; the attribute “mut count” identifies how many
regions are contained into the current sample.

mapped
trait

ancestral
category

chr left right
ove
count

mut
count

sample
ID

chr19 116226419 116226420 1
systolic
blood
pressure

European . . . 1026 S 00235

chr17 46935905 46935906 3
chr8 140982679 140982680 2

mathema-
tical
ability

European . . . 2124 S 00209

chr13 88581860 88581861 4
chr11 7526356 7526357 1

prostate
carci-
noma

East
Asian

. . . 117 S 00237

chr10 46046326 46046327 5

7.2 Queries upon multiple datasets: GWAS Cat-
alog, FinnGen, TCGA, GENCODE, 1000
Genomes Project and Encode

7.2.1 Cancer mutations from TCGA and GWA studies for
”breast carcinoma”

The Cancer Genome Atlas Program includes multiple genomic datasets all re-
lated to 37 different types of cancer [14]. TCGA includes gene expression pro-
filing, copy number variation profiling, SNP genotyping, genome wide DNA
methylation profiling, microRNA profiling and exon sequencing.

GWAS Catalog dataset includes 124 different types of cancer, mapped over
the EFO ontology. The mapping between SNPs from GWA studies and the
TCGA profiles of gene expression for a given type of cancer can result in better
understanding the risk factors for cancer.

The following query maps particularly expressed genes from TCGA dataset
with SNPs from GWAS, both associated to “breast cancer”. The query focuses
on the genes BRCA1 and BRCA2, since germ-line mutations in those genes are
the main part of genetic and hereditary factors for breast cancer [27].

Given the mutational data from the TCGA dataset referred to “breast cancer”
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and restricted to genes BRCA1 and BRCA2, filter only regions with a high level
of expression and find the ones having at least one overlapping SNP taken from
GWAS studies mapped to the same trait.

1 /* load "breast cancer" mutations from GWAS Catalog */

2 GWAS = SELECT(mapped_trait == "breast carcinoma") GWAS;

3

4 /* load genes "BRCA1" and "BRCA2" from TCGA */

5 TCGA = SELECT(biospecimen__admin__disease_code == "BRCA";

6 region: gene_symbol == "BRCA1" or gene_symbol ==

7 "BRCA2") GRCh38_TCGA_gene_expression;

8

9 /* merge all TCGA samples into a single one */

10 MER = MERGE() TCGA;

11

12 /* filter TCGA regions which are particularly expressed */

13 EXT = EXTEND(quart3 AS q3(fpkm)) MER;

14 GENE_EXP = SELECT(region: fpkm > META(quart3 )) EXT;

15

16 /* MAP TCGA regions to overlapping GWAS SNPs */

17 RES = MAP() GENE_EXP GWAS;

18 FIL = SELECT(region: count_GENE_EXP_GWAS > 0) RES;

19 MATERIALIZE FIL into CANCER;

This query starts as usual with a SELECT operator in line 2 which loads the
studies from GWAS Catalog mapped to trait “breast carcinoma”.

Line 5 contains another SELECT operator which loads the data referred to
genes “BRCA1” and “BRCA2” from the dataset TCGA gene expression.

The operator MERGE in line 10 creates a single sample grouping all the re-
gions from the samples selected from the SELECT operation in line 5. This step
prepares the dataset for the next operation in line 13.

The EXTEND operation in line 13 computes the third quartile of all the values
of the region attribute “fpkm”, which indicates the level of expression of the
corresponding region. The computed quartile is written into the new metadata
called “quart3”.

In line 14, by means of a SELECT operator, are filtered only those regions
from the MER dataset which have the value of “fpkm” greater than the value
of the metadata “quart3”, that is its third quartile. This operation keeps only
the regions which have a “high” level of expression.

The core operator of the query is in line 17. The MAP operator counts, for
each region of the dataset EXP, how many SNPs from GWAS dataset overlap.

In Table 7.4 is reported a single entry taken from the output of the query.
All the regions in the output are referred to the gene “BRCA2”; no overlapping
SNPs are found for gene “BRCA1”.
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statistics:

• Execution time: 00:06:56

• Number of regions: 440

• Number of samples: 5

• Size: 17.24 MB

Table 7.4: It contains a small portion of the output of the proposed GMQL
query in section 7.2.1.

chr left right gene fpkm count snps quart3

chr13 32315473 32400266 BRCA2 347792385 1 283041330,3

7.2.2 SNPs occurring in untranslated regions

The GENCODE project was founded in 2003 as part of the pilot phase of
the ENCODE project. Today the GENCODE consortium is a long-running
partnership of manual annotation and it is the reference annotation of choice
adopted by a lot of large international consortia including ENCODE, TCGA and
many others [10]. The consortium annotates protein-coding genes, pseudogenes,
long non-coding RNAs (lncRNAs) and small non-coding RNAs.

Between the available annotations there are the UTRs, which stand for “un-
translated regions”. Mutations occurring in those regions are difficult to inter-
pret and to associate with their consequences. This is the reason why coupling
SNPs from GWAS dataset with annotations from GENCODE consortium is
potentially very powerful.

Genetic variants in the coding sequence of a gene (exons), because of their
easier interpretation, have often been given priority, although it has long been
clear that coding sequence variants per se were insufficient for mapping com-
plex diseases. However, variants in the intervening sequences (introns) or in
the untranslated regions (UTRs), although not changing the predicted protein
sequence, may be pivotal in the regulation of gene expression [26].

The UTRs are the mRNA sequences flanking the beginning and end of the
coding sequences; as their name suggests, UTRs are part of the mRNA but are
not translated into proteins; the role of UTR sequences is briefly described in
Figure 7.2.

Following is proposed a bunch of queries that exploit UTR regions from
GENCODE dataset.

Given all the SNPs mapped to trait “primary biliary cirrhosis” from GWAS
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Figure 7.2: Gene expression is regulated at the RNA level by virtue of the
presence of 5’ and 3’UTR regulatory elements such as upstream open reading
frames (uORFs), internal ribosome entry sites (IRESs), as well as the UTR’s
secondary structure, sequence composition and length. The majority of reg-
ulatory elements are recognized by RBPs or by non-coding RNAs (ncRNAs)
such as miRNAs. Overall, these mechanisms modulate the mRNA stability,
localization and translation.

Catalog, filter out only those occurring in UTR regions:

1 /* load SNPs associated to "primary biliary cirrhosis"

2 from GWAS Catalog */

3 CIR = SELECT(mapped_trait == "primary biliary cirrhosis")

4 GWAS;

5

6 /* load untranslated regions from GENCODE dataset */

7 UTR = SELECT(annotation_type == "UTR" AND release_version

8 == "27") GRCh38_ANNOTATION_GENCODE;

9

10 /* find SNPs which have at least an overlapping

11 untranslated region */

12 MUT = MAP() CIR UTR;

13 MUT_fil = SELECT(region: count_CIR_UTR >= 1) MUT;

14 MATERIALIZE MUT_fil INTO UTR;

This query begins with a SELECT operation at line 3, loading from GWAS Cat-
alog the studies mapped to trait “primary biliary cirrhosis”.

At line 7 another SELECT operation loads UTR regions from the latest release
of the GENCODE dataset.

The MAP and SELECT operations at line 12 and 13 find, for each SNP of CIR
dataset, the overlapping UTR regions. In the output dataset appear only those
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Figure 7.3: Schematic representation of the query in the first part of section
7.2.2. The green regions are the untranslated regions identified from GENCODE
dataset while the red ones are the SNPs taken from GWAS Catalog. For each
SNP are identified the overlapping UTR regions; if at least one UTR region
overlaps the current SNP, it is kept as output of the query.

SNPs which occur in UTR regions.
In Table 7.5 is shown a small fragment of the output of this query. The first

SNP of the table is the rs2189521 occurring in gene IL21R. Qiu and colleagues
[26] reported that the risk allele for primary biliary cirrhosis regulates differential
IL21R expression; this variant is also highly correlated with multiple SNPs in the
IL21R region, suggesting that variation in IL21R expression may explain this
signal. By applying several histochemical experiments, they showed that the
enhanced expression in PBC livers (in the hepatic portal tracks) of IL21R and of
its ligand, IL21, support an involvement of IL21 signalling pathway deregulation
in the disease mechanism.

statistics:

• Execution time: 00:04:21

• Number of regions: 6

• Number of samples: 3

• Size: 0.01 MB
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Table 7.5: It contains a small portion of the output of the proposed GMQL
query in the first part of section 7.2.2. The column “count” indicates how many
UTR regions overlap the current SNP.

chr left right mapped gene snps context count

chr16 27402245 27402246 IL21R rs2189521 5’ UTR 2

chr15 81305928 81305929
IL16,
AC103858.1

rs11556218 missense 3

chr3 119431242 119431243 TMEM39A rs3732421 3’ UTR 3

Map each UTR region from Gencode dataset with overlapping SNPs from GWAS
Catalog; compare the results selecting SNPs mapped to different traits:

Figure 7.4: Schematic representation of the query in the second part of section
7.2.2. The green regions are the untranslated regions from GENCODE dataset
while the red ones are the SNPs mapped to trait “Alzheimer’s disease”. The
query filters only those UTRs that have at least one overlapping SNP.

1 /* load SNPs associated to "primary biliary cirrhosis"

2 from GWAS Catalog */

3 CIR = SELECT(mapped_trait == "primary biliary cirrhosis")

4 GWAS;

5

6 /* load untranslated regions from GENCODE dataset */

7 UTR = SELECT(annotation_type == "UTR" AND release_version
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8 == "27") GRCh38_ANNOTATION_GENCODE;

9

10 /* MAP UTR regions with overlapping SNPs from CIR dataset */

11 MUT = MAP(bag AS BAG(SNPS)) UTR CIR;

12 MUT_fil = SELECT(region: count_CIR_UTR >= 1) MUT;

13

14 /* remove all unnecessary region attributes */

15 PRO = PROJECT(gene_name , bag) MUT_fil;

16 MATERIALIZE PRO INTO UTR;

statistics:

• Execution time: 00:03:10

• Number of regions: 21

• Number of samples: 3

• Size: 0.01 MB

1 /* load SNPs associated to "coronary artery disease"

2 from GWAS Catalog */

3 CAD = SELECT(mapped_trait == "coronary artery disease")

4 GWAS;

5

6 /* load untranslated regions from GENCODE dataset */

7 UTR = SELECT(annotation_type == "UTR" AND release_version

8 == "27") GRCh38_ANNOTATION_GENCODE;

9

10 /* MAP UTR regions with overlapping SNPs from CAD dataset */

11 MUT = MAP(bag AS BAG(SNPS)) UTR CAD;

12 MUT_fil = SELECT(region: count_UTR_CAD >= 1) MUT;

13

14 /* remove all unnecessary region attributes */

15 PRO = PROJECT(gene_name , bag) MUT_fil;

16 MATERIALIZE PRO INTO UTR;

statistics:

• Execution time: 00:07:40

• Number of regions: 135
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• Number of samples: 18

• Size: 0.06 MB

1 /* load SNPs associated to "Alzheimer 's disease"

2 from GWAS Catalog */

3 AZD = SELECT(mapped_trait == "Alzheimer 's disease")
4 GWAS;

5

6 /* load untranslated regions from GENCODE dataset */

7 UTR = SELECT(annotation_type == "UTR" AND release_version

8 == "27") GRCh38_ANNOTATION_GENCODE;

9

10 /* MAP UTR regions with overlapping SNPs from AZD dataset */

11 MUT = MAP(bag AS BAG(SNPS)) UTR AZD;

12 MUT_fil = SELECT(region: count_UTR_AZD >= 1) MUT;

13

14 /* remove all unnecessary region attributes */

15 PRO = PROJECT(gene_name , bag) MUT_fil;

16 MATERIALIZE PRO INTO UTR;

statistics:

• Execution time: 01:20:27

• Number of regions: 36

• Number of samples: 10

• Size: 0.03 MB

1 /* load SNPs associated to "bipolar disorder" from GWAS

2 Catalog */

3 BPD = SELECT(mapped_trait == "bipolar disorder") GWAS;

4

5 /* load untranslated regions from GENCODE dataset */

6 UTR = SELECT(annotation_type == "UTR" AND release_version

7 == "27") GRCh38_ANNOTATION_GENCODE;

8

9 /* MAP UTR regions with overlapping SNPs from BPD dataset */
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10 MUT = MAP(bag AS BAG(SNPS)) UTR BPD;

11 MUT_fil = SELECT(region: count_UTR_BPD >= 1) MUT;

12

13 /* remove all unnecessary region attributes */

14 PRO = PROJECT(gene_name , bag) MUT_fil;

15 MATERIALIZE PRO INTO UTR;

statistics:

• Execution time: 00:38:25

• Number of regions: 30

• Number of samples: 9

• Size: 0.03 MB

In Table 7.6 are reported some regions from the results of the four previous
queries. Each row of the table contains one region extracted from the query
having the corresponding mapped trait. Each row is a UTR region extracted
from the Gencode dataset and it contains the overlapping SNP(s) from GWAS
studies mapped to the corresponding trait. If for a single UTR region are found
more than one SNPs, are added the round brackets with the amount of overlap-
ping SNPs. The last column of the table “# reg” indicates how many different
UTR regions result from the query built upon the same trait of the correspond-
ing rows.
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Table 7.6: It contains a small portion of the output of the proposed GMQL
queries in the second part of section 7.2.2.

trait chr start end gene SNP(s)
#
reg

19 10352433 10352524 TYK2 rs34536443
primary
biliary
cirrhosis

. . . 21

17 39765283 39765792 IKZF3 rs907091
7 130023510 130023723 ZC3HC1 rs11556924(x2)

coronary
artery
disease

. . . 135

3 138402266 138405534 MRAS rs9818870
19 44888376 44889228 NECTIN2 rs6857(x2)

Alzheimer’s
disease

. . . 36

2 127638425 127639283 LIMS2 rs78022502
17 44123503 44123702 HDAC5 rs112114764

bipolar dis-
order

. . . 30

19 19249908 19252233 NCAN rs1064395

7.2.3 Match GWAS mutations with variants from 1000
Genomes Project

The 1000 Genomes Project was born in 2008 as an international research effort
to establish by far the most detailed catalogue of human genetic variations
[12]. Genome-wide association studies can discover new loci that contribute
to common human diseases. For each such locus, it is currently necessary to
sequence the newly discovered region to define all common and rare variants.

The GWA studies carried on so far explained a modest fraction of all the
disease risks; some of this uncaptured risk is due to alleles of lower frequency
but larger effect. If such alleles are in genes already localized by GWAS, then
targeted sequencing may find them. Similarly, some of the uncaptured risk is
due to the effects of structural variants that are not in linkage disequilibrium
with common SNPs. Thus, a more complete understanding of the role of genetic
variation in disease requires a deeper catalog of genetic variation.

The genomes sequenced in the 1000 Genomes Projects are unselected with
regard to phenotype, so to provide a resource of variants to support deeper
understanding of newly discovered loci influencing human disease. The projects
include SNPs with allele frequencies as low as 1% across the genome and 0.1-
0.5% in gene regions, as well as structural variants like CNVs. It includes
genomes from 26 different populations, including Finnish.
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Following is proposed a collection of queries that exploit the FinnGen dataset,
the GWAS Catalog and genome data from 1000 Genomes Project.

For each relevant SNP on chromosome 2 from FinnGen study associated to
Schizophrenia, find the closest deletion from 1000 Genomes dataset referred to
Finnish people:

Figure 7.5: Schematic representation of the query in the first part of section
7.2.3. The green regions are the deletions identified from 1000 Genomes Projects
while the red ones are the SNPs taken from FinnGen dataset. For each deletion,
is considered the closest SNP and it is kept only if it falls within 1000 base pairs
from the considered deletion.

1 /* load deletions from 1000 Genomes */

2 OKG = SELECT(population == "FIN"; region: chr == chr2

3 and mut_type == "DEL") GRCh38_1000GENOMES_2020_01;

4

5 /* load data from FinnGen , filtered by phenotype and pval */

6 FIN = SELECT(name == "Schizophrenia"; region: chr == chr2

7 and pval < 0.0005) FinnGen;

8

9 /* find deletions close to SNPs */

10 RES = JOIN(MD(1), DLE (1000)) FIN OKG;

11 PRO = PROJECT(FIN.ref , FIN.alt , FIN.rsids , OKG.ref ,
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12 OKG.mut_type) RES;

13 MATERIALIZE PRO into DELETIONS;

The first operation at line 2 selects the samples from 1000 Genomes dataset
which are referred to Finnish population. For those files, filters only those
regions on chromosome 2 which are deletions.

Line 6 selects the samples from FinnGen dataset referring to phenotype
“Schizophrenia”. For the resulting sample (only one) it filters the regions based
on chromosome and p-value.

Line 10 uses the JOIN operator to find for each pair of samples, one from FIN
dataset (only one sample) and the other one from OKG dataset (211 samples),
the closest DELETION from each FinnGen SNP only if its distance is less than
1000 bp from the SNP.

Line 11 exploits the operator PROJECT to remove superfluous region at-
tributes, keeping only the relevant ones.

In Table 7.7 is proposed the partial output resulting from this query, for
clarifying purpose.

statistics:

• Execution time: 00:12:14

• Number of regions: 8375

• Number of samples: 105

• Size: 2.20 MB

Table 7.7: It contains a small portion of the output of the GMQL query proposed
in the first part of section 7.2.3. Each row contains the closest deletion to
each SNP only if its distance is less than 1000 bp from it. The attributes
“F.ref”, “F.alt” and “F.rsids” derive from FinnGen dataset while “O.ref” and
“O.m type” are from 1000 Genomes.

chr left right F.ref F.alt F.rsids O.ref O.m type

chr2 150880920 150881373 G A rs149379995 AGT DEL
chr2 61881936 61882711 C A rs542459233 TTT DEL
chr2 193889624 193889867 A G rs182720836 CTC DEL

Join each variation from 1000 Genomes dataset referred to Finnish people with
overlapping relevant SNPs on chromosome 2 from FinnGen study associated to
Schizophrenia:
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1 /* load data from 1000 Genomes and FinnGen */

2 OKG = SELECT(population == "FIN"; region: chr == chr2)

3 GRCh38_1000GENOMES_2020_01;

4 FIN = SELECT(name == "Schizophrenia"; region: chr == chr2

5 AND pval < 0.0005) FinnGen;

6

7 /* join each variations from 1000 Genomes with overlapping

8 SNPs associated to "Schizophrenia" */

9 RES = JOIN(distance <1; output: BOTH) OKG FIN;

10

11 /* filter only the resulting variations which are SNPs */

12 SEL = SELECT(region: OKG.mut_type == "SNP") RES;

13 MATERIALIZE SEL into VARIANTS;

This query starts with two SELECT operations: the first one at line 2 loads
the DNA variations from 1000 Genomes dataset on chromosome 2 about Finns
while the second one at line 4 loads relevant SNPs (pval <0.0005) from FinnGen
study associated to “Schizophrenia”.

Line 9 contains the JOIN operator which finds, for each variation from 1000
Genomes dataset, the overlapping SNPs from FIN dataset.

Line 12 exploits the SELECT operator to filter out the previously found vari-
ations, keeping only the ones which are SNPs.

statistics:

• Execution time: 00:33:53

• Number of regions: 5822

• Number of samples: 105

• Size: 2.94 MB

After the query has been executed, a post-process step is performed to keep
only that variations which correspond exactly to their joined SNPs. This last
job compares the alternative alleles from 1000 Genomes and FinnGen SNPs,
excluding those regions in which they don’t coincide. At the end of this filtering
process, remain 5,589 out of 5,822 identified SNPs.

Join each variation from 1000 Genomes dataset referred to Japanese people with
overlapping SNPs from GWAS Catalog studies associated to Schizophrenia and
referred to the same population:

1 /* load data from 1000 Genomes and GWAS Catalog */

2 JPT = SELECT(population == "JPT"; region: chr == chr2)
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3 GRCh38_1000GENOMES_2020_01;

4 JAP = SELECT(mapped_trait == "schizophrenia" AND

5 country_of_recruitment == "Japan") GWAS;

6

7 /* join each variations from 1000 Genomes with overlapping

8 SNPs associated to "Schizophrenia" */

9 RES = JOIN(distance <1; output: BOTH) JPT JAP;

10

11 /* filter only the resulting variations which are SNPs */

12 SEL = SELECT(region: JPT.mut_type == "SNP") RES;

13 MATERIALIZE SEL into VARIANTS;

This query is very similar to the previous one, so for details the reader is invited
to read the explanation in the previous lines. The main difference is that are
selected the SNPs from Japanese cohorts instead of Finnish ones, and they are
selected from GWAS Catalog instead of FinnGen dataset.

statistics:

• Execution time: 04:51:55

• Number of regions: 1036

• Number of samples: 178

• Size: 3.53 MB

Also for the outcome of this query is performed a filtering step to filter out only
those variations corresponding exactly to the joined SNPs. After this filtering
process, remain 396 out of 1,036 identified SNPs.

Join each variation from 1000 Genomes dataset referred to Chinese people with
overlapping SNPs from GWAS Catalog studies associated to Schizophrenia and
referred to the same population:

1 /* load data from 1000 Genomes and GWAS Catalog */

2 CHB = SELECT(population == "CHB" OR population == "CHS" OR

3 population == "CDX") GRCh38_1000GENOMES_2020_01;

4 CHINA = SELECT(mapped_trait == "schizophrenia" AND

5 country_of_recruitment == "China") GWAS;

6

7 /* join each variations from 1000 Genomes with overlapping

8 SNPs associated to "Schizophrenia" */

9 RES = JOIN(distance <1; output: BOTH) CHB CHINA;

10

11 /* filter only the resulting variations which are SNPs */
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12 SEL = SELECT(region: CHB.mut_type == "SNP") RES;

13 MATERIALIZE SEL into VARIANTS;

This query is very similar to the two previous ones, so for details the reader is
invited to read the explanation in the previous lines. In this query are selected
SNPs from Chinese people to compare them with the ones from Finnish and
Japanese cohorts.

statistics:

• Execution time: 14:00:17

• Number of regions: 1016

• Number of samples: 1450

• Size: 18.77 MB

Also for the outcome of this query is performed a filtering step to filter out only
those variations corresponding exactly to the joined SNPs. Unfortunately, all
the SNPs referred to Chinese people from GWAS Catalog lack of the information
about the alternative allele. For this reason, after this filtering process, remain
0 out of 1,450 identified SNPs.

Join each variation from 1000 Genomes dataset referred to people recruited in
U.K. with overlapping SNPs from GWAS Catalog studies associated to Schizophre-
nia and referred to the same population:

1 /* load data from 1000 Genomes and GWAS Catalog */

2 GBR = SELECT(population == "GBR" OR population == "ITU" OR

3 population == "STU") GRCh38_1000GENOMES_2020_01;

4 UK = SELECT(mapped_trait == "treatment refractory"

5 "schizophrenia , response to clozapine" AND

6 country_of_recruitment == "U.K.") GWAS;

7

8 /* join each variations from 1000 Genomes with overlapping

9 SNPs associated to "Schizophrenia" */

10 RES = JOIN(distance <1; output: BOTH) GBR UK;

11

12 /* filter only the resulting variations which are SNPs */

13 SEL = SELECT(region: GBR.mut_type == "SNP") RES;

14 MATERIALIZE SEL into VARIANTS;

This query is analogous to the preceding ones, so for details the reader is invited
to read the explanation in the previous lines. In this query are selected SNPs
from people recruited in U.K. mapped to schizophrenia (mapped trait = “treat-
ment refractory schizophrenia, response to clozapine” since there are no studies
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from GWAS Catalog with cohorts from U.K. and mapped to “schizophrenia”)
to compare them with the cohorts of the previous queries.

statistics:

• Execution time: 08:26:02

• Number of regions: 685

• Number of samples: 473

• Size: 8.72 MB

Also for the outcome of this query is performed a filtering step to filter out only
those variations corresponding exactly to the joined SNPs. After this filtering
process, remain 423 out of 685 identified SNPs.

In Table 7.8 are compared the results of the four preceding queries. For the
four nations under consideration, is reported how many variations from 1000
Genomes Project are found, how many SNPs from FinnGen or GWAS Catalog
are found and the count of the resulting regions for the corresponding queries
(column “# correspondences”).

Table 7.8: It contains some statistics about the outcomes of the four preceding
queries. The table include the cardinalities of the input variables as well the
cardinality of the output of the proposed queries.

Nation
# variations from
1kG

# snps # correspondences

Finland 33743673 1353351 5589
Japan 409769205 14 396
China 1211308383 9 0
U.K. 1200326717 6 423

7.2.4 Mutations occurring in cell-specific enhancers

In [8] the authors developed a new fine-mapping algorithm to identify candidate
causal variants for 21 autoimmune diseases from genotyping data. They found
out that about 60% of likely causal variants map to enhancer-like elements, with
preferential correspondence to stimulus dependent CD41 T-cell enhancers that
respond to immune activation by increasing histone acetylation and transcribing
non-coding RNAs. Unfortunately, it is not trivial to associate the enhancer with
its corresponding gene, since it is situated within some hundreds of kilobases
from the gene it regulates.
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The Post Doc researcher of Polimi, Pietro Pinoli, in his PhD thesis [20]
has extended that work with the help of Noam Shoresh, one of the author of
the aforementioned study. In particular, they extended the investigation of such
phenomenon to many different human cell lines. They attempt to study whether
mutations which occur in cell specific enhancers are related with any particular
disease or trait.

The computational experiment has been carried on by formulating a com-
plex GMQL query, jointly using two genomic datasets. The mutations data were
taken from a GWAS dataset (which was no public available on GMQL web service)
while enhancer regions were extracted from the Encode dataset. During the ex-
periment, they focused on a particular histone modification, the acetylation
at the 27th lysine residue of the histone protein 3 (H3K27Ac), which can be
captured by a ChIP-seq experiment. The modification H3K27Ac is defined as
“active enhancer mark” since it is known to encourage enhancer activation.

The query allows to find the mutations occurring in cell-specific enhancers
and to understand the resulting disease or phenotypic trait.

The query that is proposed in the following lines has been re-adapted from
the one proposed by Pietro Pinoli in his PhD thesis and it is reported as example
of richness of expression of the GMQL query language, since two new GWAS
datasets have been made available and integrated in the architecture.

The representation in Figure 7.6 and the schema in Figure 7.7 help the reader
to understand the operations performed in the query.

1 /* load studies from GWAS Catalog and FinnGen dataset

2 mapped to trait "schizophrenia" */

3 GWAS = SELECT(mapped_trait == "schizophrenia") GWAS;

4 FINN = SELECT(phenocode == "F5_SCHZPHR") FinnGen;

5

6 /* load data from ENCODE dataset */

7 Ac = SELECT(target__genes__targets == "/targets/H3K27ac"

8 "-human/") HG19_ENCODE_NARROW_2020_01 ;

9

10 /* update ENCODE regions */

11 large = PROJECT (region_update : LEFT AS LEFT + peak -

12 1500 , RIGHT AS LEFT + peak + 1500 ) Ac ;

13

14 /* merge replicas together */

15 REP = COVER(1, ANY; groupby: biosample__ontology__name)

16 large ;

17

18 /* find cell type -specific enhancers */

98

http://gmql.eu/gmql-rest/


Chapter 7. GMQL queries

Figure 7.6: Schematic representation of the query in section 7.2.4. The green
regions are the cell type-specific enhancers while the red ones are the SNPs. The
MAP operator counts, for each enhancer region, how many overlapping SNPs
there are in the GWAS datasets. Those identified SNPs are relevant from a
biological point of view since they occur in non-coding regions (enhancers).

19 S = COVER (1, 2) REP ;

20 RepCount = MAP( ) REP S ;

21 CSE = SELECT (region: count_REP_S > 0) RepCount ;

22

23 /* insert the trait into regions */

24 GWAS_trait = PROJECT(region_update: mapped_trait AS META

25 (mapped_trait , STRING )) GWAS;

26 FINN_trait = PROJECT(region_update: mapped_trait AS META

27 (phenocode , STRING )) FINN;

28

29 /* union the studies from GWAS Catalog and FinnGen into a

30 single dataset */

31 UNI = UNION() GWAS_trait FINN_trait;

32

33 /* find mutations occurring in those enhancers */

34 M = MAP(bag AS BAG(mapped_trait )) CSE UNI ;

35 N = SELECT (region: count_CSE_UNI > 0) M;

36 P = PROJECT (count_CSE_UNI , bag) N;

37 MATERIALIZE P into MUTATION ;
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Figure 7.7: Schematic flow of execution of the proposed GMQL query 7.2.4.
The three datasets are first pre-processed separately. The studies from GWAS
Catalog and FinnGen are united into a single dataset and then enhancer regions
from Encode dataset are mapped into regions from the unified one. In each box
of the flow is indicated the line number of the corresponding operation of the
query. The aim of this schema is to help the reader, who may is not familiar
with the GMQL query language, to understand the underlying reasoning.

For further details about the reported GMQL operators, please refer to [22] and
to section 3.3.

In the first lines are uploaded the GWAS studies mapped to “schizophrenia”
from GWAS Catalog and FinnGen dataset; it is also loaded the most recent
available version of HG19 ENCODE NARROW dataset. This last operation is
done using the GMQL predicate SELECT, specifying for Encode the DNA regions
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which are enriched by H3K27Ac.
Line 11 allows to update the coordinates of the previously selected Encode

regions, enlarging them by 3000 base pairs around the peaks. Region updates
can be performed using the predicate PROJECT. This operation defines the en-
hancer regions.

Line 15 applies the operator COVER over the Encode samples, using the
groupby option. It computes the result grouping the input dataset samples
by the values of their “biosample ontology name” metadata attribute.

Lines 19, 20 and 21 filter the regions which are cell type-specific enhancers.
To distinguish cell type-specific enhancers from shared ones, we considered their
frequency; we are looking for those peaks of H3K27Ac that occur in no more
than two cell lines among all the samples that we considered. The COVER (1, 2)

operation considers all areas defined by a minimum of one overlapping region up
to two of them; output region attributes include only region coordinates. The
operation MAP () allows to retrieve the original regions with all their region
attributes, adding the information of their frequency. Finally, using the SELECT

operator are extracted only the regions identified in line 20.
Lines 24 and 25 exploit the operator PROJECT allowing to insert for each

region, the region attribute “mapped trait”. In GWAS studies the phenotype
attribute is a metadata, therefore it is necessary to copy it also as region at-
tribute, to reproduce the proposed query. These operations simply copy the
metadata “mapped trait” (for studies from GWAS Catalog) or “phenocode”
(for studies from FinnGen) into the region attribute “mapped trait”.

Line 31 creates a dataset called UNI containing all the samples from GWAS trait
and FINN trait datasets.

Line 34 and 35 are the core operations of the whole query. The MAP operator
adds to each region of the Encode dataset (previously pre-processed in the
former lines) a counter corresponding to the number of overlapping regions
(e.g. same coordinates) of UNI dataset. The option “bag” adds a further
region attribute to Encode regions, filling it with the values of the attributes
“mapped trait” of the mapped GWAS regions, comma-separated. The operator
SELECT extracts only the Encode regions which have at least one corresponding
GWAS mutation.

Line 36 uses the operator PROJECT to remove from the output regions all the
attributes apart from the coordinates and the two specified ones.

As last operation, the dataset P is materialized so it can be explored or
downloaded.

The interpretation of the output of this query is at the same time simple
and very important for its biological meaning. The output is made of region
and metadata files; a small examples of resulted regions is proposed in Table
7.9. Metadata files contain a lot of attributes resulting from the operations MAP
and COVER, obtained by the transformation of the metadata of the input files.

The resulting region files are easy to interpret even for people who are not
domain-expert. Observing the first entry of Table 7.9, we can see that in the
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current enhancer region occurred a mutation of a nucleotide (since the attribute
count is equal 1), which is known to be associated with “schizophrenia”. In
the tables appear only the traits “schizophrenia” or “F5 SCHZPHR” since are
the only selected ones. If for an enhancer region are found more than one
overlapping SNPs (attribute “count” >1), in the column “trait” is reported the
same multiplicity.

The GMQL query doesn’t aim to filter out only the truly causal variants
(which can be performed with many FINE-MAPPING algorithms), but its
strength is to identify the variants which occur in non-coding regions, in partic-
ular the enhancer regions in which occurred the modification H3K27Ac.

As described in the introduction of this chapter, the main difficulty of in-
terpreting the SNPs occurring in non-coding regions is due to the limited and
incomplete knowledge of non-coding regulatory elements, their mechanisms of
action and the cellular states and processes in which they function. Thanks to
the expressiveness of this query, the comprehension of the consequences of some
variants occurring in cell type-specific enhancer is made easier.

Table 7.9: It contains a small portion of the output of the proposed GMQL
query in section 7.2.4. Each rows represents a region, uniquely identified by
its coordinates and by the two additional attributes “count” and “trait”. The
attribute “count” stores the number of mutations from the GWAS datasets that
occur in the current region; the attribute “trait” contains the trait(s) mapped
to the SNPs that occur in that region.

chr left right strand count trait

chr6 25163149 25184115 * 1 schizophrenia
chr11 133750847 134155257 * 2 schizophrenia (x2)
chr3 177104856 177107871 * 14 F5 SCHZPHR (x14)

statistics:

• Execution time: 07:58:17

• Number of regions: 39008

• Number of samples: 318

• Size: 4269.22 MB
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Chapter 8

Conclusions and future
perspectives

This thesis describes the entire process performed to achieve the integration
of the two GWAS sources GWASCatalog and FinnGen into the META-BASE
architecture. It has been the first attempt to integrate GWA studies into the
integration framework developed in the context of the GeCo project of Polimi.

The META-BASE architecture is a consolidated framework to integrate
many genomic sources with each other, allowing to create complex queries be-
tween multi-omic sources using the GMQL query language or to surf genomic
data using the GenoSurf web interface. It reaches the integration starting from
mapping the original sources into a shared conceptual schema, the Genomic
Conceptual Model.

Genomic data are made available by many consortia each one using its own
data schema and it is difficult for researchers or biologists to study data that are
mapped over different schemes. The most challenging tasks concerning genomic
data is the tertiary analysis, which goal is to extract meaningful information
from raw genomic data.

In order to help researchers to study the human genome and its functional
role, the GeCo project has mapped the genomic datasets from the major con-
sortia around the world into a common conceptual schema.

The GCM used so far couldn’t gather GWA studies, since they are conducted
in a case-control setup and following the phenotype-first approach. The GCM
has been extended to accept also studies based on cohort of people and not
on single person. GWA studies which have been integrated have not privacy
issues, since they have been already anonymized by the source consortia. Data
are aggregated over cohort of people, so information about single person that
participated in the studies are not reachable.

After a modelling work, this thesis proceeded with the implementation of the
integration pipeline also for these two GWAS sources, writing the Scala classes
and methods required for the integration.
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As results of the efforts spent in this thesis, the two genomic sources GWAS

Catalog and FinnGen are perfectly integrated into the META-BASE architec-
ture and are publicly available to be queried using the GMQL query language.
As example of the potentiality of writing GMQL queries over multiple inte-
grated datasets, included GWAS data, has been reported a few queries which
emphasize the importance of coupling GWAS data with annotation genomic
sources.

This thesis has extended the GCM to fit also GWAS data, laying the foun-
dations to integrate many other GWA sources. All GWA studies are based on
a case-control setup, so integrating new sources is made easier by the newly
proposed GCM.

With the proposed GMQL queries of Chapter 7 we have shown that the
META-BASE integration architecture allows to run multi-omic queries, which
provide very important insights driving biological discoveries.

Future possible works could be related to the improvement of the GenoSurf
browser, to allow users to surf even on GWAS data.

Future tasks could concern the implementation of a new module of the
META-BASE, performing fine-mapping over the integrated GWA studies. The
main issue with GWA studies is that is difficult to identify truly causal SNPs
for a given phenotype, due to linkage disequilibrium. The challenging part of
implementing a fine-mapping algorithm would be to retrieve all the data that
are needed as input since fine-mapping algorithms often require sensitive data
difficult to retrieve for privacy issues.

Finally, the integration modules implemented in this thesis could be op-
timized to reduce the integration time during future runs or allowing multi-
threads executions.
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Dictionary

Readers who are not biologist may face some terms or acronyms difficult to
understand. Following are listed the main biological names used in this thesis
with a short explanation.

• alternative allele (effect allele): synonyms of “risk allele”. It is the allele
which is associated with the phenotype under consideration, since it is
more frequent in cases with respect to controls group.

• ancestry: it encloses a bunch of information about the cohort origin. The
country of recruitment and the category of belonging of people (e.g. Asian)
may are included.

• association: a correlation statistically significant between a SNP and the
trait, phenotype or disease under study. The association are often im-
proved with measures like p-value, which represents its importance.

• cases: a group of people affected by a phenotype, trait or disease that
is compared with controls group to find SNPs in which the two groups
significantly differ.

• cohort: a group of people that shares a characteristic. A GWA study is
based on a cohort of people, made of cases and controls.

• controls: a group of people not affected by the phenotype, trait or disease
that is the subject of the study. They are compared with the cases group
and they build the cohort of the GWA study.

• copy number variants: it is a phenomenon in which sections of the genome
are repeated and the number of repeats in the genome varies between
individuals. They are the most common structural variations.

• DNA: is a molecule composed of two polynucleotide chains that form a
double helix structure. The sequence of the nucleotides encodes all the
information about development, functioning, growth and reproduction of
all living organisms.
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• DNA annotation: is the process of identifying the locations of genes and
all of the coding regions in a genome and determining their functional role.

• endpoint: it indicates the medical measures referring to occurrence of a
disease or a trait. In the context of the FinnGen project, it is used as
synonym of the phenotype under consideration.

• enhancer: it is a short (50–1500 base-pairs) region of DNA that can be
bound by proteins (activators) to increase the likelihood that transcription
of a particular gene will occur.

• fine-mapping: is the process by which a trait-associated region from a
GWA study is analysed to identify the particular genetic variants that
are likely to causally influence the examined trait. The SNPs are filtered
taking into consideration the linkage disequilibrium between the loci to
which the SNPs belong.

• gene: is a basic unit of heredity and a sequence of nucleotides in DNA or
RNA that encodes the synthesis of a gene product, either RNA or protein.

• GWAS: Genome-wide association study. Two cohorts of people (cases
and controls) are compared to detect the SNPs in which they significantly
differ.

• haplotype: it is a group of alleles in an organism that are inherited together
from a single parent.

• histone acetylation: is an epigenetic modification that is unequivocally
associated with increasing the propensity for gene transcription. Acety-
lation removes the positive charge on the histones and, as a consequence,
the condensed chromatin is transformed into a more relaxed structure that
is associated with greater levels of gene transcription.

• initial: the first stage of a GWA study. Often they are repeated to make
stronger the evidences for the found SNPs.

• linkage disequilibrium: it is a phenomenon for which the presence of an
allele in a locus is influenced by the presence of an allele in another locus.
The two loci are said to be in linkage disequilibrium.

• minor allele: it is the second most common allele that occurs in a given
population, for a given phenotype and a position over the genome. The
minor allele, in many GWASs on complex diseases, is the risk allele [16],
that is the allele associated with the phenotype under consideration.

• nucleotide: is the building block for the DNA and RNA molecules. Many
nucleotides arrange together to form the “double helix” structure and
their sequence encode the genetic information to produce proteins and to
orchestrate life.
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• phenotype: it is the observation of a feature of an organism.

• promoter: it is a small portion of DNA located near a gene, upstream
on the DNA. It provides to the enzyme RNA polymerase a secure initial
binding site so to start the transcription of the gene.

• reference allele: it is the most frequent allele in the controls group for a
given position over the genome.

• replication: is the second stage of a GWA study. It should be conducted
in an independent dataset drawn from the same population as the initial
stage, in an attempt to confirm the effects of the found SNPs in the GWAS
target population.

• risk allele: is an allele which is more frequent in the cases respect to
controls group. This is called “risk” since there are evidence that it is
causal for the phenotype under study.

• RNA: is a macro-molecule assembled as a chain of nucleotides. It is, like
DNA, an essential molecule for life. It is implied in various biological roles
like coding, decoding, regulation and expression of genes.

• SNP: Single Nucleotide Polymorphism. It is the substitution of a single
nucleotide at a specific position in the genome in a relevant percentage of
people in the case group respect the control one.

• strand: the DNA is made of two paired sequences of nucleotides that are
wrapped around each other. The strand indicates which one of the two
sequences is considered. The DNA double helix is made of two strands
identified by the notations 5'-3' and 3'–5', spotting the position of the
carbon atoms on the deoxyribose molecule.

• structural variation: it consists of many kinds of variation in the genome
such as deletions, duplications, copy-number variants, insertions, inver-
sions and translocations.

• TPM: is a normalization method for RNA-seq, should be read as ”for
every 1,000,000 RNA molecules in the RNA-seq sample, x came from this
gene/transcript”.

• trait: is a distinct variant of a phenotypic feature of an organism. It may
be inherited (e.g. eye color) or influenced by the environment in which
you live (e.g. ability to play a sport).

• UTR: stands for “untranslated region”, that are that parts of mRNA
which are not translated into proteins.
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untranslated regions. Wiley interdisciplinary reviews RNA, 9(4):e1474,
2018. doi:10.1002/wrna.1474.

[27] X. Yang and M.E. Lippman. Brca1 and brca2 in breast cancer.
Breast Cancer Research and Treatment, 54:1–10, 1999. doi:10.1023/a:

1006189906896.
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