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Abstract

With the growing need for enterprises to expose data, services and functionalities and the
rise of microservices architectures in modern software development, APIs adoption has
increased, becoming a frequent attack vector in security breaches. In this context the role
of API gateways has gained importance in the process of securing APIs. API gateways
are an API management tool that act as an entry point to manage all traffic and decouple
clients from the target services they expose, offering different kind of functionalities that
go from simply routing requests to providing foundational security features like authen-
tication and authorization, rate limiting, encryption, request validation and logging, as
well as other capabilities that go beyond security aspects. KrakenD is an open-source,
stateless API gateway designed to be performant, easily extensible and pluggable with
external services. The presented work aims to explore the role of API gateways in the
field of API security and the advantages and limitations that characterize KrakenD with
its stateless architecture, analyzing the steps that are needed to employ it in common
scenarios: routing traffic to an existing API, integrating with an Identity Provider, con-
figuring rate limiting mechanisms, achieving high availability with multiple independent
instances and analyzing aspects related to its deployment.

Keywords: API, API Gateway, API security, API management, KrakenD, open-source





Abstract in lingua italiana

Con la sempre maggiore necessità di esporre dati, servizi e funzionalità da parte delle
aziende e l’aumento delle architetture a microservizi nello sviluppo software moderno,
l’utilizzo delle API è aumentato, diventando un frequente vettore di attacco nelle vio-
lazioni di sicurezza. In questo contesto il ruolo degli API gateway ha acquisito impor-
tanza nel proteggere le API. Gli API gateway sono uno strumento di gestione delle API
che funge da punto di ingresso per gestirne tutto il traffico e disaccoppiare i client dai
servizi di destinazione che espongono, offrendo diversi tipi di funzionalità che vanno dal
semplice instradamento delle richieste alla fornitura di funzionalità di sicurezza fondamen-
tali come autenticazione e autorizzazione, limitazione del traffico, cifratura, validazione
delle richieste e logging, nonché altre funzionalità che vanno oltre gli aspetti legati alla
sicurezza. KrakenD è un API gateway stateless open source progettato per essere perfor-
mante, facilmente estendibile e collegabile a servizi esterni. Il lavoro presentato mira ad
esplorare il ruolo degli API gateway nel campo della sicurezza delle API e i vantaggi e i
limiti che caratterizzano KrakenD con la sua architettura stateless, analizzando i passaggi
necessari per impiegarlo in scenari comuni: instradare il traffico verso un’API esistente,
integrarsi con un Identity Provider, configurare meccanismi di limitazione del traffico,
ottenere un’elevata disponibilità con più istanze indipendenti e analizzare aspetti relativi
al suo deployment.

Parole chiave: API, API Gateway, API management, API security, KrakenD, open-
source
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1| Introduction

Enterprises today rely on APIs to expose their data and functionalities to business part-
ners, customers, or between different teams inside the company. APIs are a set of defini-
tions and protocols which provide an abstraction to access data and functionalities across
different software: [11] in our context we refer to web APIs, a subset of those that are
used over a network to access remote resources [51]. Web APIs are typically consumed by
IoT devices, web and mobile applications to get access to valuable information; exposing
access to this data poses security risks. According to The State of API Security in Q1
2023 by Salt Security "95% of companies had an API security incident in the last 12
months, API attack traffic grew by 681% while overall API traffic grew 321%." [48] Since
the majority of data breaches are financially motivated [50] and APIs provide a direct
access to data that are usually sensitive, common attacks aim at gaining unauthorized ac-
cess to those data or at disrupting their availability by purposely overloading the exposed
services to make them unavailable to legitimate users. The field of API security provides
techniques to protect APIs against these attacks. [4] [7]

API gateways are an API management tool that can be employed to enhance the security
of APIs, since they act as a single entry point for all traffic, routing requests from the
clients to the target services they consume and offering a variety of different functionalities
that, from a system design point of view, makes sense to take place at this stage. Security
controls are one of these: API gateways usually provide foundational security features
like authentication, authorization, encryption, request validation, rate limiting, logging
and monitoring. These features are not their sole purpose, as they also provide other
functionalities that go beyond security aspects: protocol translation, request aggregation
and manipulation, caching, load balancing, and billing. [10] [16] The actual features
depend on the specific implementation.

The first generation of API gateways appeared as an abstraction layer to route requests
when monolith applications evolved into independent services. API gateways implemented
the routing functionality that was originally in the monolith. From a system design point
of view, it was useful to implement other centralized features like authentication and
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traffic control at this stage, to avoid duplicate functionalities in each service. These
advantages have been amplified by microservices architecture and API gateways have
evolved, becoming a standard architectural pattern among developers. [34]

In this context, different gateways have emerged. KrakenD is an open-source API gate-
way written in Go characterized by a stateless architecture and an extensible design. A
stateless architecture means that there is no centralized database used to store configu-
ration and everything is managed through a file that is loaded in memory at startup [31]:
if we want to make changes in the configuration we have to restart the gateway, but this
design comes with performance advantages that can allow to easily scale horizontally with
multiple independent instances and leverage the adoption of an immutable infrastructure
that makes deployments simpler and safer. [9] [46]

KrakenD community is still relatively small with respect to other open-source API gate-
ways and it’s not easy to find valuable information about scenarios in which its archi-
tectural patterns are best suited, apart from its official documentation. The aim of this
work was to analyze the role of API gateways in enhancing API security, exploring how
we can do this with KrakenD: we analyzed the steps that are needed in order to configure
it for common scenarios and the advantages and limitations that comes with its stateless
architecture, realizing a PoC implementation that could be used as starting point for its
employment.

In this chapter we described the context by introducing the field of API security and the
concept of API gateways, presenting the motivations behind our work. The rest of the
thesis is organized as follows:

• Chapter 2. In this chapter we present the main functionalities that API gateways
provide and then we focus on introducing the main characteristics of KrakenD.

• Chapter 3. In this chapter we introduce the most critical security risks related
to APIs from OWASP API security Top 10, analyzing the role of API gateways in
mitigating those risks, using KrakenD as example.

• Chapter 4. In this chapter we present our approach: starting from the scenario
in which we want to place an API gateway in front of an existing sample API,
we analyzed how to configure the gateway to route the traffic to the target API
and provide foundational security features like integrating with an external IdP for
authentication, configuring the gateway to validate the access tokens generated by
the IdP, configuring rate limiting mechanisms and achieving high availability with a
cluster of multiple instances. Then, we analyzed aspects regarding the deployment
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phase: how to automate it with a CI/CD pipeline, how to inject credentials into
the configuration file and how to execute load test on the gateway to dimension it
correctly according to the traffic we expect to receive.

• Chapter 5. In this chapter we present details on how we implemented the approach
presented in chapter 4.

• Chapter 6. In this chapter we conclude by synthesizing the advantages and limi-
tations that we found about KrakenD and future works that can be done.
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2| Background

In this chapter we analyze the features that API gateways provide and we introduce the
main characteristics of KrakenD.

2.1. API Gateways

API gateways are an API management tool that sits between the clients and a collection
of backend services, acting as a reverse proxy to route requests and providing different
features. Their main ones are [10] [12]:

• Routing

The base functionality of an API gateway is to act as a reverse proxy to forward
requests from clients to the target backend services, decoupling them and providing
a uniform interface to the consumers.

• Authentication and Authorization

API gateways can handle authentication and authorization to ensure that only the
right requests reach the target services. Authorization can be enforced by the API
gateway but should be further handled inside the application. [36] [44]

• Encryption

API gateways encrypt traffic with TLS.

• Traffic management

Being the entry point for API traffic, one common feature of API gateways is to
put limits in the maximum amount of calls that each user can do in a defined time
frame to avoid overloading the system and reduce the probability of Denial of Service
attacks in succeding. We can also use the gateway to filter requests in some ways
for example filtering by their IP addresses or the user agent.

• Request and response validation
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API gateways can validate request before they reach the target services and re-
sponses before they are sent back to the clients.

• Data manipulation

API gateways can modify requests and responses before they reach their destination:
they can filter or mask data and also translate requests and responses between
different protocols or aggregate multiple responses from the target services into a
single response to be sent to the client requesting it.

• Caching and load balancing

API Gateways can reduce the load on the target services by caching responses and
load balancing requests across different backends.

• Logging and monitoring

Since all API traffic goes through the API gateway, it can be used to log its activ-
ities and the requests it process, possibly enabling advanced monitoring alerts or
integrating with advanced security monitoring tools.

• Billing

If the API are monetized then the gateway can be used to track each user usage
and to connect to a billing system to charge them.

2.2. KrakenD

2.2.1. KrakenD overview

KrakenD is an open-source API gateway written in Go that is focused on extensibility
and high performance. It is characterized by a stateless architecture that makes it fast
and easily scalable, as we can deploy multiple independent instances that don’t need
synchronization: each of them will have its own configuration file under which we can set
everything it needs to work. [16] The gateway is composed by multiple components that
are built on top of its core engine: Lura1, an open framework to assemble API gateways
that was developed by KrakenD and later donated to the Linux foundation. Other than
the open-source version KrakenD also offers an enterprise paid version that has additional
proprietary functionalities. [16]

1https://github.com/luraproject/lura

https://github.com/luraproject/lura
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1 {
2 "$schema ": "https ://www.krakend.io/schema/v3.json",
3 "version ": 3,
4 "endpoints ": [],
5 "extra_config ": {}
6 }

Listing 2.1: KrakenD’s configuration file main structure, extracted from [14]

2.2.2. The configuration file

Since everything in KrakenD is managed through the configuration file, in this section
we provide an overview of its main structure. The configuration file is parsed when the
gateway is started and is then loaded in memory. KrakenD supports different file formats,
the default one is JSON. The main structure of the configuration file is composed by: [14]:

• $schema. Defines the JSON schema2 to validate the configuration automatically.
This part is optional. [14]

• version. Defines the version of the configuration file. [14]

• endpoints. Defines an array of objects where each object represents an endpoint
that the gateway exposes to the clients. [14]

• extra_config. Defines additional configurations that are not managed by the core
KrakenD engine. [14]

The JSON structure of the configuration file is shown in Listing 2.1. The first advantage
in this approach is that the configuration file (and so our API definition) can be versioned.
With the Go templating system3 we can separate the configuration file into different sub-
files, and we can inject environment variables or files inside the configuration to load
secrets or environment specific settings sharing the same base configuration file. [19] In
chapter 5 we provide one possible approach to inject credentials into the configuration file
from secrets management tools.

The endpoint structure

The "endpoints" part in the configuration file specifies a list of endpoints the gateway
exposes. Each object of the list represents a single endpoint and for each of them we need
to specify one or more backends, since the gateway can act as an aggregator to merge

2https://github.com/krakendio/krakend-schema
3https://pkg.go.dev/text/template

https://github.com/krakendio/krakend-schema
https://pkg.go.dev/text/template


8 2| Background

1 "endpoints ": [
2 {
3 "endpoint ": "/users/{user}",
4 "method ": "GET",
5 "backend ": [
6 {
7 "url_pattern ": "/users/{user}",
8 "method ": "GET",
9 "host": [

10 "https :// jsonplaceholder.typicode.com/"
11 ]
12 }
13 ]
14 }
15 ]

Listing 2.2: KrakenD’s endpoints configuration sample

responses from multiple backends. Inside each backend we then need to specify one or
multiple host, if we want the gateway to load balance the requests across those. [14]

The sample configuration shown in Listing 2.2 is a basic example that makes the gate-
way expose an endpoint /users/{user}, where {user} is a parameter used to retrieve
information about the user specified in the path, returning the response from the GET
request to the target backend from the "host" array. [14]

The extra_config structure

The extra_config is used to load the configuration of components that are not part of
the core engine, and can be placed at different levels depending on their scope; each com-
ponent can support different scopes or can be built specifically for a single scope. Under
its namespace, which identifies the component uniquely, we can set specific additional
configurations, as shown in Listing 2.3. The possible levels are: [14]

• service. This level is used to set configuration for components that can either
influence the gateway globally or on every request. For instance, we can configure
the gateway to export metrics to an external database or set a global rate limit for
every request. [14]

• endpoint. This level is used to set configuration for components that target a spe-
cific endpoints that KrakenD exposes. In this scope we can configure, for instance,
a rate limit set for a specific endpoint. [14]
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1 {
2 "extra_config ": {
3 "component -1-namespace ": {
4 "some": "config"
5 },
6 "component -2-namespace ": {
7 }
8 }
9 }

Listing 2.3: KrakenD’s extra_config structure, extracted from [14]

• backend. This level is used to set configurations for components that target a
single backend that the gateway contacts. In this scope we can set configurations
for how the API gateway interacts with the target backend: for instance, we can
rate limit the number of calls that KrakenD can make to a specific service. [14]

2.2.3. Extending KrakenD

There are multiple ways to extend KrakenD with additional features. The first naive
approach would be to make sure that what we are trying to achieve is not already possible
using an already existing component or a combination of the available ones. If our use
case scenario is not covered, then we can implement our additional logic in two ways: [30]:

1. By creating our own custom component or editing an existing one, forking the
original repository4

2. By injecting a custom plugin5 or a LUA script6 that allows to integrate functional-
ities into different parts of the processing

Since KrakenD is a collection of multiple components merged together with the core
engine7, where each component is shipped in a separated repository, one possible approach
is to fork the original main repository8, create our own custom component and add it to
our fork. However, the recommended approach is to use plugins because in this way we
don’t need to fork the original repository, as they are side loaded along with the official
binaries. Plugins are soft linked Go libraries that can be injected into different parts of
the request and response processing. [30] According to the official documentation, there

4https://github.com/krakendio/krakend-ce
5https://pkg.go.dev/plugin
6https://www.lua.org/about.html
7https://github.com/luraproject/lura
8https://github.com/krakend/krakend-ce

https://github.com/krakendio/krakend-ce
https://pkg.go.dev/plugin
https://www.lua.org/about.html
https://github.com/luraproject/lura
https://github.com/krakend/krakend-ce
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Figure 2.1: KrakenD’s plugins types, Extracted from [30]

are 3 types of them:

1. HTTP server (or HTTP handlers).9 These plugins inject functionalities as
soon as the request hits the gateway or just before the response is sent back to the
client. With these we can add functionalities that influence the gateway globally.
From the perspective of KrakenD, they are black boxes that expose the request
and response through an interface. We can chain multiple HTTP server plugins
together. [30]

2. HTTP client.10 These plugins inject functionalities between KrakenD and the
target backend. We can modify the request just before it reaches the service or as
soon as the response is received back by the gateway. Differently from the HTTP
server plugins, we cannot chain together multiple plugins of this type. [30]

3. Request/Response modifier.11 These plugins allow to intercept and modify the
request or the response at endpoint or backend level. [30] These two levels are
different because KrakenD does not necessarily create a 1:1 correlation between an
endpoint exposed by the gateway and a target backend, for instance because in a
microservice based application the request could be composed by aggregating the
response from multiple backends, returning a single response to the client.

The different types of plugins and their scopes are schematized in Figure 2.1.
9https://www.krakend.io/docs/extending/http-server-plugins/

10https://www.krakend.io/docs/extending/http-client-plugins/
11https://www.krakend.io/docs/extending/plugin-modifiers/

https://www.krakend.io/docs/extending/http-server-plugins/
https://www.krakend.io/docs/extending/http-client-plugins/
https://www.krakend.io/docs/extending/plugin-modifiers/
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Another possible way to extend the gateway with additional logic is to use LUA scripts12

that, like plugins, can be placed in different parts of the request and response processing.
[16] However, LUA scripts are much slower with respect to compiling custom plugins and
side loading them along with KrakenD: according to the developers a Go plugin is at least
10 times faster than a LUA script [30], therefore in our work we did not use those since
we can overcome the limitations of having to recompile plugins manually at each change
with a CI/CD pipeline.

12https://github.com/krakend/krakend-lua

https://github.com/krakend/krakend-lua
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3| Threat Model

In the current chapter we analyze the role of API gateways in the field of API security by
identifying the most critical security risks related to APIs and the role that API gateways
can pose in mitigating those. Risk is the statistical evaluation of the economic damage
posed by the presence of vulnerabilities, which could be leveraged to perform an exploit.
[45]

3.1. Analysis overview

In our analysis we assume to place an API gateway in front of a vulnerable API, with au-
thentication managed by the gateway together with an Identity Provider that conforms
to the OIDC standard and communication from clients to the API gateway that hap-
pens through a secure channel. We assume the user has authenticated with the Identity
Provider and then its client, on behalf of the user, authorized with specific scopes that
defines which resources it has been provided access to, receiving a JWT access token that
the client subsequently presents to the API gateway. The target API can only be accessed
through the gateway. The requests and responses are in JSON format.

The analysis is schematized in Figure 3.1 and synthesized in the list below:

1. The client authenticates to the IdP and requests authorization for specific scopes
on the resources of the target API.

2. The client receive a JWT access token that is signed by the IdP and contains the
scopes which it has been provided access to.

3. The client present the token to the API Gateway attaching it in the request for a
resource.

4. The API gateway verify the token and, if valid, forwards the request to the API.

5. The API reply to the API gateway with the response.

6. The API gateway forwards the response to the client.
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Figure 3.1: Scenario of our analysis

OWASP is a community driven non-profit organization dedicated to software security;
one of their projects is OWASP API security Top 10, which is a report that lists the
most critical security risks related to APIs along with the strategies that can be used to
mitigate them. [41] Even though the presented vulnerabilities are more related to the
design of APIs themselves and an API gateway alone is not the sole strategy to protect
against them, since our analysis is focused specifically on the role of API gateways in the
field of API security we assume that we can only act on the gateway, analyzing how its
role is relevant in mitigating those risks, using KrakenD as an example.

At the end of the chapter we provide a qualitative scale to define the relevance of API
gateways in the mitigation of each presented risk.

3.2. OWASP API Security Top 10 2023

API1:2023 Broken Object Level Authorization

APIs tend to expose endpoints that handle object identifiers, creating a wide
attack surface of Object Level Access Control issues. Object level authorization
checks should be considered in every function that accesses a data source using
an ID from the user. [43]

These vulnerabilities refers to the lack of or misimplementation of proper authorization
checks at object level. An example scenario could be an API that exposes information
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about users, in which each user can access their own personal data requesting the endpoint
GET /user/{user} where {user} is a parameter that represents its unique identifier. If
the API only validates that the user is authenticated without further authorization checks,
an attacker could guess other IDs and get information of users which he should not have
access to.

The API gateway can enforce some authorization checks as a first line of defense; the
authorization should be then validated into the application itself. Delegating all autho-
rization logic to the gateway would not be ideal from a system design point of view. [36]
Also, having the authorization server in the identity provider handle all authorization
logic using the gateway to validate it would still not be ideal. [3] In our scenario the
authorization server would give authorization to read users information, but the specific
object level authorization of which users information the token owner can access should
be handled in the application logic and possibly enforced by the gateway: we could use
the API gateway to check that the endpoint can only be accessed by the user who has
the same ID of the endpoint he is requesting, by inspecting the JWT token to get his ID
and confronting it with the ID included in the request. However, according to the latest
update by OWASP, this approach only covers a small subset of cases in which a BOLA
vulnerability can be leveraged. [43]

In KrakenD, using the validation/cel1 component we can access the JWT payload to
implement the logic needed to check that the user requesting access corresponds to the
user specified in the path, allowing us to discard the request if not valid. Assuming that
the sub claim of the JWT inside the payload contains the ID of the user, we can write a
CEL2 expression to validate that this ID correspond to the user parameter in the request.
Since the CEL validator component can’t evaluate the JWT and the request parameters
at the same time3, as shown in Figure 3.2, one possible approach is to attach the user
ID extracted from the JWT payload as an HTTP header using the "propagate_claims"

option, and then check that that header correspond to the {user} parameter that is
received in the request. A configuration sample of this approach is shown in listing 3.1.
Note that:

• In this approach we also have to forward the X-User input header, as KrakenD do
not forward any headers explicitly4.

• We can also use a custom claim inside the JWT token payload to validate the {user}
1https://github.com/krakendio/krakend-cel
2https://github.com/google/cel-spec
3https://github.com/krakendio/krakend-ce/issues/335
4https://www.krakend.io/docs/endpoints/parameter-forwarding/

https://github.com/krakendio/krakend-cel
https://github.com/google/cel-spec
https://github.com/krakendio/krakend-ce/issues/335
https://www.krakend.io/docs/endpoints/parameter-forwarding/
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1 {
2 "endpoint ": "/users/{user}",
3 "method ": "GET",
4 "input_headers ": [
5 "X-User"
6 ],
7 "extra_config ": {
8 "auth/validator ": {
9 "alg": "RS256",

10 "jwk_url ": "https ://auth -server /.well -known/jwks.json
",

11 "propagate_claims ": [
12 ["sub", "X-User"],
13 ]
14 },
15 "validation/cel": [
16 {
17 "check_expr ": "req_params.User == req_headers[’X-

User ’][0]"
18 }
19 ]
20 },
21 "backend ": [
22 ...
23 ]
24 }

Listing 3.1: KrakenD’s CEL validation rule example to check that the "sub" claim inside
the payload correspond to the {user} parameter of the request

id parameter if the "sub" claim does not correspond to the id of the user in our
endpoint.

• req_headers returns an array [17] because there could be multiple HTTP headers
with the same name.

Figure 3.2: Where CEL evaluation can take place, Extracted from [17]
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API2:2023 Broken Authentication

Authentication mechanisms are often implemented incorrectly, allowing attack-
ers to compromise authentication tokens or to exploit implementation flaws to
assume other user’s identities temporarily or permanently. Compromising a
system’s ability to identify the client/user, compromises API security overall.
[43]

These types of vulnerabilities are related to the lack of or misimplementation of the au-
thentication mechanisms and could allow an attacker to authenticate as any user, stealing
their data or performing sensitive actions on their behalf. [43]

In our analysis the authentication is managed by the Identity Provider together with the
API gateway. The role of the gateway in this scenario is to validate that the access token
received is authentic and has not been tampered, validating its signature, and checking
that it is not expired. The access token provides proof that the user has authenticated
with the IdP and specifies inside the payload which authorization has been granted by the
authorization server. Failing to validate the token could result in broken authentication:
for instance, if the JWT token signature is not verified by the gateway, an attacker could
change the “sub” claim inside the JWT payload that represents the user ID, authenticat-
ing as another user. [1] If the API gateway manages the endpoints to authenticate, then
it should also handle appropriate rate limits for those endpoints.

Since KrakenD is stateless it cannot generate the tokens itself but has to rely on an external
self hosted or SaaS Identity Provider that conforms to the OIDC standard. KrakenD can
then be configured to validate the tokens. [22] In chapter 5 we present how we integrated
KrakenD with Auth0, a SaaS identity provider, to generate access tokens and how to
configure the gateway to validate those.

API3:2023 Broken Object Property Level Authorization

This category combines API3:2019 Excessive Data Exposure5 and API6:2019
- Mass Assignment6, focusing on the root cause: the lack of or improper au-
thorization validation at the object property level. This leads to information
exposure or manipulation by unauthorized parties. [43]

This risk refers to two different scenarios: the first is when the API returns more data
than it should, for instance relying on the client to filter that data. In this case, an

5https://owasp.org/API-Security/editions/2019/en/0xa3-excessive-data-exposure/
6https://owasp.org/API-Security/editions/2019/en/0xa6-mass-assignment/

https://owasp.org/API-Security/editions/2019/en/0xa3-excessive-data-exposure/
https://owasp.org/API-Security/editions/2019/en/0xa6-mass-assignment/
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attacker could simply call the API directly to see the excessive data. The second scenario
is when the API parameters are tied directly to the underlying object implementation; in
this case, an attacker could reach functionalities which he should not have access to. [43]

API gateways can impact the mitigation of these vulnerabilities. For the first scenario
we could filter unwanted parameters: if the API is developed in a generic way returning
all data and we want to differentiate the amount of data returned based on the audience,
we can use the API gateway to expose different endpoints that return different data
checking the audience claim inside the JWT access token of the client who is requesting
the endpoint. For the second scenario, we can validate the requests to prevent unintended
parameters to reach the target API. [36]

In KrakenD, for the first scenario we can expose separated endpoints based on the client
requesting it, using the auth/validator7 component to differentiate by the “audience”

claim inside the JWT payload, and then use the allow list8 or deny list9 to filter the
response received from the target service with a whitelist or blacklist approach, filtering
the data that we should not expose to the clients. A configuration sample of this approach
is shown in listing 3.2. For the second scenario we can use the validation/json-schema10

component to provide validation rules for the requests body, allowing only the ones that
conform the schema to reach the target backend(s).

API4:2023 Unrestricted Resource Consumption

Satisfying API requests requires resources such as network bandwidth, CPU,
memory, and storage. Other resources such as emails/SMS/phone calls or
biometrics validation are made available by service providers via API integra-
tions, and paid for per request. Successful attacks can lead to Denial of Service
or an increase of operational costs. [43]

This risk refers to the lack of or misimplementation of mechanisms to limit the amount
of resources that the API exposes access to. These kinds of vulnerabilities can happen in
different ways, from a simple lack of rate limiting, to more tricky scenarios more related
to the API logic itself, like the number of allowed operations in a single API call or the
maximum upload file size. [43]

With an API gateway we can implement appropriate rate limiting and throttling mech-
anisms to reduce the number of API calls that each user can make. For long term rate

7https://github.com/krakendio/krakend-jose
8https://www.krakend.io/docs/backends/data-manipulation/#allow
9https://www.krakend.io/docs/backends/data-manipulation/#deny

10https://github.com/krakendio/krakend-jsonschema

https://github.com/krakendio/krakend-jose
https://www.krakend.io/docs/backends/data-manipulation/#allow
https://www.krakend.io/docs/backends/data-manipulation/#deny
https://github.com/krakendio/krakend-jsonschema
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1 {
2 "endpoint ": "/users /{user}",
3 "method ": "GET",
4 "extra_config ": {
5 "auth/validator ": {
6 "alg": "RS256",
7 "audience ": [" AUDIENCE"],
8 "jwk_url ": "https ://auth0 -server /.well -known/jwks.json

"
9 },

10 },
11 "backend ": [
12 {
13 "url_pattern ": "/users/{user}",
14 "host": [
15 "https :// jsonplaceholder.typicode.com"
16 ],
17 "allow": [
18 "name"
19 ]
20 }
21 ]
22 }

Listing 3.2: KrakenD’s sample endpoint configuration to filter response using the allow
list feature, filtering the response to return only the "name" field
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limiting we can enable user quotas to restrict the amount of requests that can be done
over a longer span (e.g. a daily/weekly/monthly quota). [36] We can set a maximum size
for payloads and set timeouts and restrict resource consumption by using containers or
other solutions that allow us to easily limit resource consumption. [43] [6]

In KrakenD, we can configure rate limiting mechanisms for each exposed endpoint using
the qos/ratelimit/router component11, either a general rate limit or a rate limit per
client which is identified by its IP address or by a configurable HTTP header. Since the
gateway is stateless, the counters used to handle rate limits are stored in memory. [24]
This has two main consequences: first, we cannot synchronize counters across multiple
independent instances of the gateway, second, if the gateway crashes and restarts, its
counters will be reset. For user quotas we need to integrate the gateway with some
external service because its stateless architecture does not allow it natively. To do that,
we can implement a custom plugin. Since KrakenD is stateless, we can easily containerize
it with an immutable docker image with the configuration file embedded in it. Using
containers we can set maximum resource limits consumption to avoid the system reaching
failure. [6] In chapter 5 we present possible approaches that we tested to enable rate
limiting mechanisms and containerize KrakenD using an immutable Docker image with
the configuration file embedded in it.

API5:2023 Broken Function Level Authorization

Complex access control policies with different hierarchies, groups, and roles,
and an unclear separation between administrative and regular functions, tend
to lead to authorization flaws. By exploiting these issues, attackers can gain
access to other users’ resources and/or administrative functions. [43]

This risk refers to the lack of or misimplementation of role based access control mecha-
nisms.

API gateways can be employed to implement role based access control mechanisms; as
already stated in 3.2, the gateway should be used to enforce authorization checks that are
then further handled in the application.

In KrakenD, we can validate roles inside the JWT tokens, issued by the Identity Provider:
with the auth/validator12 component we can automatically check the roles claim in the
JWT payload to ensure that the user requesting access to the specified resource has
the necessary authorizations. In this sample configuration, we specify the roles_key to

11https://github.com/krakend/krakend-ratelimit
12https://github.com/krakendio/krakend-jose

https://github.com/krakend/krakend-ratelimit
https://github.com/krakendio/krakend-jose
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1 {
2 "endpoint ": "/admin",
3 "method ": "POST",
4 "extra_config ": {
5 "auth/validator ": {
6 "alg": "RS256",
7 "roles_key ": "roles",
8 "roles": ["admin"],
9 "jwk_url ": "https :// AUTH0_DOMAIN /.well -known/jwks.json

"
10 }
11 },
12 ...
13 }

Listing 3.3: KrakenD’s JWT role validation endpoint example

define the name of the object to look for "roles" claim inside the JWT payload, and
only accept those which contain the "admin" role. The endpoint configured this way will
check if the JWT contains at least one of the roles specified in the "roles" key. [22] With
the cel/validator component, presented in API1:2023, we can also implement a more
advanced role based authorization logic, if needed.

API6:2023 Unrestricted Access to Sensitive Business Flows

APIs vulnerable to this risk expose a business flow - such as buying a ticket,
or posting a comment - without compensating for how the functionality could
harm the business if used excessively in an automated manner. This doesn’t
necessarily come from implementation bugs. [43]

This risk refers to business flows that can be used excessively with automated methods
like scripts. [43]

In this scenarios we can leverage API gateways as a first line of defense by implementing
rate limiting mechanisms and providing a base protection against automated bots.

In KrakenD, as presented previously in API4:2023, we can implement rate limiting mech-
anisms. With the security/bot-detector13 component we can provide a first basic level
of defense by analyzing the user-agent in the request. However, this mechanism provides
just a basic level of protection as it can be easily circumvented by an attacker that could
simply spoof the user agent.

13https://github.com/krakendio/krakend-botdetector

https://github.com/krakendio/krakend-botdetector
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API7:2023 Server Side Request Forgery

Server-Side Request Forgery (SSRF) flaws can occur when an API is fetching
a remote resource without validating the user-supplied URI. This enables an
attacker to coerce the application to send a crafted request to an unexpected
destination, even when protected by a firewall or a VPN. [43]

This risk is related to the absence of validation mechanisms for the user supplied input,
that could be used to let the server perform an action on behalf of the user. [43]

To mitigate these flaws we could leverage an API gateway to validate user input. The
application code itself should validate every input, regardless of the fact that this is
validated or sanitized by other components of the stack.

KrakenD does not provide advanced input validation and sanitization features, but, using
the krakend-jsonschema14 validator component we can leverage regex to provide input
validation on the request body. To validate query and path parameters, or even headers
we can use the validation/cel15 component. In both cases we can also use a plugin to
implement a customized validation and sanitization mechanisms.

API8:2023 Security Misconfiguration

APIs and the systems supporting them typically contain complex configura-
tions, meant to make the APIs more customizable. Software and DevOps
engineers can miss these configurations, or don’t follow security best practices
when it comes to configuration, opening the door for different types of attacks.
[43]

This risk can be present in many parts of the stack and refers to a different variety of
misconfiguration scenarios that can happen either with or without an API gateway.

Since all APIs are exposed through the API gateway, we can reduce the possibilities of
security misconfigurations by having a single entity to expose and reducing their chances
by running automated tests.

In KrakenD, we can use the check16 and audit17 tools to respectively look for syntax
errors or security misconfigurations in the configuration file. These tools can be integrated
in a CI/CD pipeline to reduce the chances of human error.

14https://github.com/krakendio/krakend-jsonschema
15https://github.com/krakendio/krakend-cel
16https://www.krakend.io/docs/configuration/check/
17https://www.krakend.io/docs/configuration/audit/

https://github.com/krakendio/krakend-jsonschema
https://github.com/krakendio/krakend-cel
https://www.krakend.io/docs/configuration/check/
https://www.krakend.io/docs/configuration/audit/
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API9:2023 Improper Inventory Management

APIs tend to expose more endpoints than traditional web applications, making
proper and updated documentation highly important. A proper inventory of
hosts and deployed API versions also are important to mitigate issues such as
deprecated API versions and exposed debug endpoints.[43]

This risk is common when for backward compatibility old versions of APIs are left acces-
sible. In this scenario they provide an easy path for attackers. [43]

API Gateways are responsible for exposing the endpoints to the clients, and can help in
mitigating this risk by providing ways to ease the management of APIs. However, the
mitigations are related to how APIs are managed, and API gateways play part in this
process as a tool but ultimately this risk is related to how these tools are used.

In KrakenD, since all the exposed endpoints are specified in the configuration file, we
can version it to allow for a more structured API management. We can also implement
a CI/CD pipeline to update automatically the changes in the configuration file by rede-
ploying the gateway. In chapter 5 we provide a possible approach to implement a CI/CD
pipeline to leverage these advantages.

API10:2023 Unsafe Consumption of APIs

Developers tend to trust data received from third-party APIs more than user
input, and so tend to adopt weaker security standards. In order to compromise
APIs, attackers go after integrated third-party services instead of trying to
compromise the target API directly. [43]

This risk refers to the lack of input validation mechanisms when relying on data from
third-party services. [43]

The role of API gateways is limited in mitigating this risk, since these vulnerabilities rely
on a compromised third-party service integrated with our API, and this path may be
outside the API gateway scope. If the third-party API traffic pass through the gateway,
then we can implement input validation mechanism in the API gateway, as presented in
API7:2023.

3.3. OWASP API Security Top 10 2019

These risks were present in the previous version of OWASP API Top 10 and are still worth
mentioning, as not being part of the new OWASP version does not imply that these risks
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are less critical but rather less common because organizations adopted mitigations that
led those to slip out of the top 10 in the newer version.

API8:2019 Injection

Injection flaws, such as SQL, NoSQL, Command Injection, etc., occur when
untrusted data is sent to an interpreter as part of a command or query. The
attacker’s malicious data can trick the interpreter into executing unintended
commands or accessing data without proper authorization. [42]

This risk refers to a variety of scenario in which the user supplied input is not validated
or sanitized and causes the execution of unallowed commands. [42]

The way API gateways can mitigate this risk are the same as SSRF. Generally speaking,
the user input that can reach the target API can be inside query strings, path parameters,
request body or HTTP headers. We can use the API gateway to validate and sanitize all
this input.

In KrakenD, we have multiple ways to implement our own logic to validate user input, as
presented in API7:2023. To access query strings, parameters and HTTP request headers
and validate those we can use the cel/validator18 component. To access the request
body we can use the validation/json-schema19 component to validate the json schema
of the request. In both of these cases, we can also implement a custom plugin and access
the request directly and implement our own custom solution.

API10:2019 Insufficient logging and monitoring

Insufficient logging and monitoring, coupled with missing or ineffective in-
tegration with incident response, allows attackers to further attack systems,
maintain persistence, pivot to more systems to tamper with, extract, or de-
stroy data. ... [42]

This risk refers to the lack of or not effective implementation of logging and monitoring
features that could allow attacks to go unnoticed. [42]

API gateways are crucial in mitigating this risk since they route all incoming API traffic
therefore logging and monitoring is one of their most important features.

Since KrakenD is stateless, it must integrate with external services to export logs20, met-
18https://github.com/krakendio/krakend-cel
19https://github.com/krakendio/krakend-jsonschema
20https://github.com/krakendio/krakend-gelf

https://github.com/krakendio/krakend-cel
https://github.com/krakendio/krakend-jsonschema
https://github.com/krakendio/krakend-gelf
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Value Title Description
0/3 None. This risk can not be mitigated at all with an API gateway.
1/3 Minimal. The role of API gateways in mitigating this risk is minimal.
2/3 Partial. The API gateway can provide a partial contribution to mitigate this risk.
3/3 Extensive. An API gateway pose a significant role in mitigating this risk.

Table 3.1: Qualitative scale definition

rics21 and traces22. In chapter 5, we provide a possible approach to integrate KrakenD
with external services to achieve this goal.

3.4. Evaluation analysis

In this section we provide an evaluation on the role of API gateways in mitigating the
presented risks, using a qualitative scale. The scale that we used is shown in Table 3.1.

In Table 3.2 we provide a rating on the effectiveness of API gateways in mitigating each
risk. Our finding is that an API gateway can mitigate some of the most critical risks, pro-
viding a first line of defense and managing important security features like authentication,
rate limiting, input validation and monitoring. However, the majority of the presented
risks are related to the design and implementation of APIs and an API gateway alone is
not enough to mitigate these risks, even though it can provide an effective extra layer of
security, contributing to the overall API security posture.

21https://github.com/krakendio/krakend-metrics
22https://github.com/krakendio/krakend-opencensus

https://github.com/krakendio/krakend-metrics
https://github.com/krakendio/krakend-opencensus
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Risk Value Motivation
API1:2023 2/3 The role of API gateways in mitigating this risk is useful but limited, as the object

level authorization checks should be handled inside the application logic. However the
gateway is still responsible to validate the access token to ensure that it’s authentic and
not been tampered and possibly enforce the authorization checks, contributing to the
overall mitigation of this risk.

API2:2023 3/3 In our scenario, the API gateway and the Identity Provider are the main responsible for
authentication. Specifically, the role of the API gateway is to validate that the access
tokens are authentic and have not been tampered, ensuring the client accessing the API
has been successfully authenticated. Even though the API gateway may not handle the
authentication process directly, its contribution is crucial to ensuring that only authenti-
cated requests can reach the target API.

API3:2023 2/3 The decoupling that API gateways provide can mitigate this risk, either by acting on the
output or on the input received from the client. However, to fully mitigate this risk the
vulnerabilities should be handled in the application itself.

API4:2023 3/3 API gateways are the element in the system architecture that is directly exposed to the
client and handle all incoming API traffic therefore their role in mitigating this risk is
crucial.

API5:2023 2/3 API gateways can enforce RBAC checks. However, the validation should be further
handled in the application itself.

API6:2023 1/3 API gateways can be used to mitigate some of these vulnerabilities by enforcing access
control policies and reducing the possibilities of automation with basic protection features
provided by rate limiting, IP filtering and bot detection. However, they provide only basic
capabilities to handle this risk.

API7:2023 2/3 The API gateway can be used to enforce input and output validation mechanisms to
reduce the chances of abuses and reduce the attack surface by providing a unified interface
instead of exposing each service directly to the client. However, the mitigation that they
provide is still limited.

API8:2023 1/3 API gateways can reduce this risk by providing a single entity to expose and therefore
reducing the chances of security misconfigurations. However security misconfigurations
can still happen independently of using or not an API gateway and the mitigation could
be to use automated tools to check for misconfigurations.

API9:2023 3/3 API gateways are a crucial tool in mitigating this risk since they handle all the exposed
endpoints, even though they are just a tool and therefore this risk still depends on how
the API gateways are used to mitigate this risk, meaning how the organization handles
the overall API management lifecycle.

API10:2023 1/3 The consumption of third-party APIs can create a path outside the scope of the gateway
therefore this risk should be handled in the application itself. If the path goes through
the API gateway then we can use input validation mechanisms to help mitigate this risk.

API8:2019 2/3 API gateways provide input and output validation features as a first line of defense against
injections. However these vulnerabilities should be also handled in the application.

API10:2019 3/3 API gateways manage all API traffic, therefore they are the best place to handle central-
ized logging and monitoring features.

Table 3.2: Evaluation analysis of the role of API gateways in mitigating most critical API
security risks
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In this chapter we present the approach that we used to test the main capabilities of
KrakenD, with the different scenarios that we analyzed. We started from a sample API
and then analyzed how to protect it testing the most important features that KrakenD
provide, eventually extending it with additional functionalities if needed. We tested the
functionalities locally, deploying KrakenD on a local Kubernetes cluster using Docker and
Minikube, because in a real scenario we would deploy a Docker image on Kubernetes. For
the external services to integrate we used Docker Compose, because in a real scenario the
external services may or may not be under our control, meaning outside the Kubernetes
cluster.

4.1. Approach overview

We started from a sample API protected with a basic auth authentication scheme. The
initial step is schematized in figure 4.1. The sample API is used for mocking a real API:
we chose the basic auth authentication because a frequent use case in enterprises is to use
the API gateway to connect to legacy APIs that use this authentication scheme.

Routing

We placed the API gateway in front of the API, configuring it to expose the same endpoints
that the API provides and configuring the gateway to authenticate with the target API
automatically. This scenario is schematized in figure 4.2. From now on we call the API
through the API gateway and the target API does not have to be exposed directly as it
can live behind KrakenD.

Figure 4.1: Initial step
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Figure 4.2: Step 1

Figure 4.3: Step 2

Authentication and authorization

We examined how to enable authentication and authorization mechanisms using an ex-
ternal IdP to generate JWT access tokens, and configured the API gateway to protect
the endpoints by verifying the tokens. The step is schematized in Figure 4.3.

High availability

We tested how to deploy multiple independent instances of KrakenD where ingress traffic is
distributed by a load balancer, to achieve high availability. The load balancer availability
is out of our scope. In this scenario the API gateways can only be called through the load
balancer. This step is shown in Figure 4.4.

Rate limiting

We analyzed how to configure the API gateway with different rate limiting mechanisms
in three scenarios, as shown in Figure 4.5.

In the first scenario we tested the rate limiting features for a single instance with the
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Figure 4.4: Step 3

qos/ratelimit/router1 component through which we can set an absolute limit for an
endpoint or a limit for each client on the same endpoint. [24] The clients can be identified
by their IP address or by a configurable HTTP header that identifies a user uniquely and
the limiting strategy is based on the token bucket algorithm [26].

In the other scenarios we analyzed how to handle rate limiting in case of a cluster of
independent instances where ingress traffic is distributed by a load balancer: the problem
that arise in this case is that the counters used by the rate limiter are not synchronized.
One possible approach, used in the second scenario, is to split the total desired rate limit
into different sub-limits for each instance, based on the cluster size and the algorithm
used by the load balancer. [32]

In the third scenario we implemented a custom plugin to synchronize counters using a
shared redis database to handle rate limiting. KrakenD developers use Redis to offer a
global cluster rate limit feature in the enterprise version [28]. Redis is suited for rate
limiting because it has builtin commands that allows to handle counter access thread
safe and set a time limit after which key will automatically expire [47]. As an in-memory
database it is faster than a traditional on-disk database, allowing us to limit the additional
overhead requested by this approach. The updated architecture is shown in Figure 4.6.

Observability

We tested how to configure the API gateway to export logs, metrics and traces to external
services. These are known as the pillars of observability and help us in having a clear view
of the system to continously monitoring it when it’s operating. [40] The final architecture

1https://github.com/krakendio/krakend-ratelimit

https://github.com/krakendio/krakend-ratelimit
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Figure 4.5: Step 4 - Rate limiting scenarios

Figure 4.6: Step 4
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Figure 4.7: Step 5

is shown in Figure 4.7.

4.2. KrakenD deployment analysis

We analyzed aspects regarding the deployment of KrakenD:

We tested how to configure a CI/CD pipeline to deploy the gateway instances automat-
ically. Since KrakenD is stateless, we need to restart it when making changes to the
configuration file. In our scenario, we tested to generate an immutable docker image with
the configuration file embedded in it, therefore we must redeploy the gateway to apply
changes to the configuration. In this scenario, having a CI/CD pipeline to handle the
deployment is beneficial, as we can version the configuration file and possibly configure
the pipeline to automatically redeploy the gateway when a change is made, executing
tests to reduce the risks of human error and security misconfigurations. In our case both
Jenkins and the gateway were deployed locally therefore we did not enable automatic
redeployments.

We saw a possible approach to inject credentials into the configuration as files that are
injected into the pod by Kubernetes secrets. Since the credentials should not be put
in the version control systems, we analyzed a possible way to inject secrets using secret
management tools and then configure KrakenD to dynamically load them from files.

We analyzed approaches on how to load test the API gateway. First, we tested the
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additional overhead of the different functionalities by load testing only the API gateway
health endpoint directly, adding one functionality at a time. Then, we tested an approach
to add more structured load tests that would allow us to simulate users authenticating to
the IdP and calling different endpoints on the API gateway. Since in a realistic scenario
the API gateway has to handle traffic for different microservices or even multiple APIs,
this phase is an important aspect of the deployment, as introducing an API gateway
should not mean introducing a new bottleneck in the architecture.
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In this chapter we present how we implemented the solution using the approach that we
presented in chapter 4.

5.1. Starting from a sample API

First, we developed a sample REST API1 that would act as our base case. The API
expose basic CRUD operations on a list of users, each user contain an "ID", a "name"

and an "information" field and is protected by a basic auth authentication scheme. This
API was just for testing purposes to generate mock responses since the focus of our work
was on testing the features of the API gateway and not the API itself. We configured
Postman to contact the API to test direct interaction for each of the endpoints. The API
definition is shown in Table 5.1.

5.2. Adding the API gateway

We configured KrakenD to expose the same interface as the API and to authenticate
with it by adding the expected Authorization header before the request is sent by the
gateway. The username password of the API was test:test that, encoded in base64,
would generate the header "Authorization: Basic dGVzdDp0ZXN0". We configured
KrakenD using the modifier/martian2 component to add the expected Authorization

1https://go.dev/doc/tutorial/web-service-gin
2https://github.com/krakendio/krakend-martian

Method Endpoint Description Parameters Response
GET /users Get all users None List of all users
GET /users/{id} Get user by ID {id} - User ID User information
POST /users Add a new user User object New user information
PATCH /users/{id} Update an existing user {id} - User ID Updated user information
DELETE /users/{id} Delete an existing user {id} - User ID Success message

Table 5.1: Sample API definition

https://go.dev/doc/tutorial/web-service-gin
https://github.com/krakendio/krakend-martian
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1 {
2 "endpoint ": "/users",
3 "method ": "GET",
4 "output_encoding ": "json",
5 "backend ": [
6 {
7 "method ": "GET",
8 "host": [
9 "http :// host.docker.internal :5000"

10 ],
11 "is_collection ": true ,
12 "url_pattern ": "/users",
13 "extra_config ": {
14 "modifier/martian ": {
15 "header.Modifier ": {
16 "scope": [" request"],
17 "name": "Authorization",
18 "value": "Basic dGVzdDp0ZXN0"
19 }
20 }
21 }
22 }
23 ]
24 }

Listing 5.1: KrakenD /users endpoint configuration to let the API gateway act as a
proxy

header automatically before contacting the backend.

We then tested the API was still working as intended by contacting it through the API
gateway. The KrakenD configuration of a sample endpoint is shown in Listing 5.1.

To test the capabilities of KrakenD plugins, we also implemented a plugin for enabling
basic auth validation at gateway level, since this feature was not available in the open-
source version. The plugin validates that the Authorization header is the same as the
expected, which is derived from the username and password field specified in its configu-
ration. However, basic auth authentication is not completely secure as, even when using
TLS which protect the credentials in transit, it always expose the username and password
used to authenticate and this increase the attack surface. [2] A better approach would be
to use access tokens, as presented in the following section.
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5.3. Integrating with an IdP

Now that our API Gateway provides access to the target API, we can start adding security
features to protect the API. In this section we show how we integrated KrakenD with an
external IdP.

Since KrakenD is stateless the most viable approach to implement authentication and
authorization features is to use JWT tokens because they are self-contained and therefore
compatible with its architecture. In fact KrakenD cannot generate the tokens itself but
has to rely on an external self-hosted or SaaS IdP that conforms to the OIDC standard and
then be configured to validate those tokens [22]. In our work we tested how to integrate
Auth03 as external SaaS IdP with KrakenD.

The focus of our work was not on the end users but on the API gateway, therefore
we used the OAuth2.0 client credentials flow. This flow is used in machine-to-machine
communication when the client is acting on his behalf, with no users involved. [8] We chose
this flow because with this we could focus only on the role of API gateway in validating
the token and we could automate the testing of the token generation and subsequent
validation using command line tools. Also, the access token is the same independently of
the flow, therefore even in scenarios when there are more complex flows with end users
involved, the validation that the API gateway would do is the same.

Once the client application has received the access token, it can contact the API gateway
providing the token inside the HTTP Authorization header of each request. The token is
signed by Auth0 using RS256. The signing algorithm is asymmetric, therefore whoever
has access to the public key can verify the token signature to prove authenticity, integrity
and non-repudation [39], while only the signer have access to the private key that is used
to sign the token. With this approach KrakenD only needs access to the public key from
Auth0 to validate the tokens’ signatures.

KrakenD does not do token introspection and only validates the tokens locally. The public
key used to validate tokens signature can be cached to avoid contacting the IdP at every
request: by default, KrakenD will check if the keys have changed every 15 minute, but it
can be configured to change this setting if we want to rotate the keys periodically. [22].

3https://auth0.com

https://auth0.com
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1 curl --location ’https ://dev -5 bkfe0he8u5v6zq3.uk.auth0.com/oauth/
token ’ \

2 --header ’content -type: application/x-www -form -urlencoded ’ \
3 --data -urlencode ’grant_type=client_credentials ’ \
4 --data -urlencode ’audience=AUDIENCE ’ \
5 --data -urlencode ’scope=read:users write:users ’ \
6 --data -urlencode ’client_id=CLIENT_ID ’ \
7 --data -urlencode ’client_secret=CLIENT_SECRET ’

Listing 5.2: Curl request to get an access token from Auth0 using the client credentials
flow

5.3.1. Generating JWT access tokens

For the first part, we configured Auth0 to grant access tokens for our API. Using postman,
we crafted an HTTP request to require an access token , as shown in Listing 5.2, providing
client_id and client_secret to authenticate, specifying the grant_type to indicate
that we are using the OAuth2.0 client credentials flow [8], and the requested audience and
scope.

Auth0 replies with a JWT token that contains the requested scopes, if the client applica-
tion has been authorized with the requested ones. In our case we configured the requesting
application to have permissions to read and write, using the custom scopes read:users

and write:users.

5.3.2. Configuring KrakenD to protect endpoints

Listing 5.3 shows how to configure an endpoint in KrakenD to be protected with JWT. We
need to specify at least the signing algorithm used to verify the tokens and the "jwk_url"
parameter that is used to specify where KrakenD can get the public keys to verify the
tokens’ signatures. The "audicence" parameter is optional and rejects all tokens that
do not include the audience specified inside the payload. The "scopes" parameter also
validates that the JWT token has at least one of the scopes specified in the list. [22] We
used the scope to distinguish between read and write authorization. In the former, the
owner of the token can only read users, in the latter, the owner of the token can also
perform write operations to create, update or delete users.

Since KrakenD force us to specify in the configuration the signing algorithm used, we
avoid attacks that aim at removing the signature from the JWT changing the signing
algorithm specified in the header alg to None, because KrakenD will only accept tokens
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1 {
2 "endpoint ": "/users",
3 "method ": "GET",
4 "output_encoding ": "json",
5 "extra_config ": {
6 "auth/validator ": {
7 "alg": "RS256",
8 "jwk_url ": "https ://dev -5 bkfe0he8u5v6zq3.uk.auth0.com/.

well -known/jwks.json",
9 "audience" : ["api:// audience"],

10 "scopes_key ": "scope",
11 "scopes_matcher ": "any",
12 "scopes ": [
13 "read:users"
14 ],
15 "cache": true
16 }
17 },
18 ...
19 }

Listing 5.3: KrakenD configuration to enable JWT validation on an endpoint

signed with RS256.

5.3.3. Testing protected endpoints with Postman

Once we configured Auth0 to generate access tokens and KrakenD to validate them, we
tested if the endpoints we wanted to protect were working as intended. We configured
Postman to save the access token received from the first request as variable and add it as
authorization header for subsequent requests. Then we verified that the endpoints were
accessible with the token received, and not accessible without the token, or with an invalid
token.

With Postman, we can automate these tests running scripts. We used this functionality
to include tests that verified that a protected endpoint rejects tokens that are expired,
or not present at all. We also tested that a correct token is actually accepted by the
API gateway and forwarded for further processing. These tests can then be exported as
a JSON file that could be later integrated inside a CI/CD pipeline using Newman, a tool
that enable to run Postman collections from the command line.
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Figure 5.1: High availability cluster

5.4. Achieving high availability

Once we enabled authentication on our API, we tested how to achieve high availability.

5.4.1. Distributing ingress traffic with a load balancer

Since KrakenD is stateless, we can deploy multiple independent instances and distribute
ingress traffic between them with a load balancer. With this approach, even if one instance
fail, this does not imply that the entire system fails. [23]

We tested how to deploy a load balancer locally using Nginx and configure it to split the
traffic among multiple KrakenD instances, using a round robin or weighted round robin
algorithm. [37] In this case the only configuration that we need is to set up the load
balancer, as KrakenD instances are independent and therefore does not need additional
set up to operate in this scenario. [23] The architecture is schematized in Figure 5.1.

KrakenD developers recommend to have a couple of instances running even in low traffic
environments for redundancy. [15]

5.4.2. Configuring mutual TLS between load balancer and Krak-
enD

In this section we show how we tested to configure TLS between the client and the
load balancer, and mutual TLS between the load balancer and KrakenD instances, as
schematized in Figure 5.2.
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1 http {
2

3 upstream upstream -server {
4

5 server krakend1:port1;
6 server krakend2:port2;
7

8 }
9

10 server {
11

12 listen 80;
13

14 location / {
15 proxy_pass http :// upstream -server;
16 }
17 }
18 }

Listing 5.4: Load balancer basic configuration to split traffic amongst KrakenD instances
using a round robin balancing algorithm

First, we generated self-signed certificates since we were working locally. We generated a
public/private key pair for the KrakenD instances, specified inside /etc/krakend/tls/cert.pem
and /etc/krakend/tls/key.pem, as shown in Listing 5.6. We generated a public/private
key pair for the load balancer and configured KrakenD to accept those in the mutual
TLS configuration through the "ca_certs" array. Then, we enabled TLS authentication
for the load balancer and mutual TLS for KrakenD instances. Finally, we configured the
load balancer to enable mutual TLS authentication with KrakenD instances. The Nginx
configuration sample in shown in Listing 5.5, while the KrakenD configuration snippet is
shown in Listing 5.6.

5.4.3. Analyzing token revocation in a cluster

KrakenD does not do token introspection, it validates the JWT tokens locally. [22] In
this way, it can not know whether a token has been revoked or not by asking the Identity
Provider. Instead, each instance of the API gateway has its own bloomfilter which can be
managed through RPC calls to revoke JWT tokens. A bloomfilter is a probabilistic data
structure based on hashing that can tells us rapidly if an element is either definitely not
in the set or may be in the set. [35]

The gateway read its local bloomfilter to check if a JWT token has been revoked. Based
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1

2 http {
3

4 upstream upstream -server {
5

6 server krakend1:port1;
7 server krakend2:port2;
8 }
9

10

11 server {
12

13 listen 443 ssl;
14

15 ssl_certificate /etc/nginx/ssl/client.crt;
16 ssl_certificate_key /etc/nginx/ssl/client.key;
17 ssl_protocols TLSv1 .3;
18 ssl_ciphers HIGH:!aNULL:!MD5;
19

20 location / {
21 proxy_pass https :// upstream -server;
22 proxy_ssl_certificate /etc/nginx/ssl/client.

crt;
23 proxy_ssl_certificate_key /etc/nginx/ssl/client.

key;
24 proxy_ssl_protocols TLSv1 .3;
25 proxy_ssl_ciphers HIGH:!aNULL :!MD5;
26 proxy_set_header X-Real -IP $remote_addr;
27 }
28 }
29 }

Listing 5.5: Nginx configuration to split traffic amongst KrakenD instances using a round
robin balancing algorithm, with TLS from client to load balancer and mTLS between load
balancer and KrakenD instances
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Figure 5.2: Load balancer architecture with TLS from client and mutual TLS with Krak-
enD instances

1 {
2 "version ": 3,
3 "tls": {
4 "public_key ": "/etc/krakend/tls/cert.pem",
5 "private_key ": "/etc/krakend/tls/key.pem",
6 "enable_mtls ": true ,
7 "ca_certs ": [
8 "/etc/krakend/tls/mTLS/rootCA.pem"
9 ]

10 },
11 ...
12 }

Listing 5.6: KrakenD sample config to enable mutualTLS
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on the false positive rates a valid token could be rejected, but when configuring the
bloomfilter, we can set a target false positive rate inside its configuration and it will be
sized accordingly. The false positive rate can be reduced to an acceptable amount of one
false positive every 10 million different tokens or even more [25].

This blacklist approach is implemented as a set of three sliding bloomfilters: previous,
current and next.4 An add operation, used to revoke a token or a group of tokens, is
performed on the current and next bloomfilters, while a check operation, used to verify if
a token or a group of token is revoked, is performed on previous and current. Periodically,
the bloomfilters in the set are shifted: previous is deleted, the old current becomes previous
and the old next becomes current, while next is created. This mechanism is leveraged to
let a revoked token live inside the blacklist for a minimum of 2 x TTL, where TTL is the
period, because with this approach we have a way to remove revoked tokens after they
have expired, which is not trivial since the bloomfilter is based on hashing and being a
one-way function we can’t remove already revoked tokens once they are inserted inside
the data structure. According to the documentation, the TTL parameter must be set
the same as the expiry time of the tokens issued by the IdP: [25] this ensures that a
token which is inserted into the bloomfilter is not removed before its actual expiration.
Unfortunately the presented approach is not explained inside the documentation: the only
thing we know from it is that the TTL must be set the same as the expire time of the
tokens issued by the IdP. We decided to look at the code to understand this mechanisms
because we thought it could be useful to have a more detailed overview on how this
blacklist approach was actually implemented.

When we use a cluster of KrakenD instances, each instance need to receive revocation
updates on its local bloomfilter. This can be achieved through a centralized revoker that
propagate revocation updates and synchronize new instances that are added to the cluster
or instances that crash and restart (that will lose all revocation updates since they are
stored only in-memory). [25] To propagate an update we can use the add operation, while
to synchronize the instances we can execute a union operation, which is performed on both
previous, current and next. The advantage of the bloomfilter is that these operations are
idempotent [29], so we don’t need to ensure that the commands are executed exactly
once but we just need at least once delivery, making the architectural requirements less
complex.

We implemented a draft solution to test the feasibility of having a centralized revoke
server, following a similar approach to the one used by KrakenD’s developers in the

4https://github.com/krakendio/bloomfilter/tree/master/rotate

https://github.com/krakendio/bloomfilter/tree/master/rotate
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enterprise version[29], whose architecture is shown in Figure 5.6: the revoke server receives
commands through a REST API and interact with each KrakenD instance with RPC, the
instances self register to the centralized revoke server communicating an UUID used to
distinguish them and the revoke server has its own bloomfilter to handle new or crashed
instances with an union operation between the RPC client and server bloomfilters.

First, we implemented a simple REST API to receive commands to propagate to the
instances. The API definition is synthetized in Table 5.4. We used the bloomfilter5 com-
ponent used by KrakenD developers in the gateway instances to have a local set of sliding
bloomfilters inside the revoke server. This choice was made following the architecture of
the centralized revoker in the enterprise version, because the centralized revoker not only
has to propagate updates to the client, but also re-synchronize them in case of failure, as
the bloomfilter of each KrakenD client is stored in memory. The revoke server mantain
a list of active instances, and an RPC client6 for each instance. When it receive an up-
date operation, it propagates it through RPC using the functions provided by KrakenD’s
developers. Each instance bloomfilter is exposed through an RPC server.7

Then, we implemented a plugin to handle instances self-registration using a random UUID
that is generated at startup. With this approach, the revoke server can know when an
instance has crashed and restarted, since it will generate a new UUID. This approach
cover cases in which KrakenD instantly crashes and restarts losing the status of its local
bloomfilter: in this scenario using a simple ping from the revoker to the instance would
not be able to determine if the instance has lost all the revocation updates, because
based on the ping frequency the instance could still result as healthy. At startup, the
instance will generate an UUID and keep sending it to the revoke server. This acts as a
registration, if the instance is new or restarted from crash, or as a ping, if the instance is
already registered. The ping from the plugin to the revoke server is used to stop accepting
requests if the instance notices it lost connection to the centralized revoke server, since in
this case it would possibly accept rejected tokens because its local bloom filter could not
be updated with the last operations that were propagated by the revoke server.

Finally, we tested manually using Postman that the instances were correctly synchronized
simulating crash restarts and new instances registration, ensuring that a revoked token
was still revoked in the restarted instance or in the new instance. The strategy we used
is synthetized in table 5.2.

The revoke server should be further improved to be used in a real scenario, starting by
5https://github.com/krakendio/bloomfilter/
6https://github.com/krakendio/bloomfilter/blob/master/rpc/client/client.go
7https://github.com/krakendio/bloomfilter/blob/master/rpc/server/server.go

https://github.com/krakendio/bloomfilter/
https://github.com/krakendio/bloomfilter/blob/master/rpc/client/client.go
https://github.com/krakendio/bloomfilter/blob/master/rpc/server/server.go
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Revoker helper (plugin) Revoke server

• handles instance self registration to the re-
voke server

• ping the revoke server
• stop accepting requests if it loses connection

to the revoke server

• handles token revocation propagation to the
registered instances

• ping the registered instances to keep an up-
dated list of active ones

• synchronize new/crashed instances with its
bloom filter

Table 5.2: Centralized revoker strategy recap

serializing the server bloomfilter on disk and securing the communication between the
instances and the revoker, both the communication of the instances to self-register and
the RPC communication to interact with the bloomfilters. Since our goal was to test
the feasibility of this solution, we only focused on the core aspects of centralizing token
revocation realizing a draft solution that would give us an idea of the problems that arise
in this approach, to see if it is worth it to handle it in this way.

We concluded that this limitation is tied to the stateless architecture of KrakenD and
stateless JWT tokens: revocation in a cluster of instances increase the architectural com-
plexity and we should reduce or avoid the need for it using short lived tokens and let them
expire, possibly relying on the client to refresh them. If token revocation is necessary then
an alternative solution could be to use a centralized bloomfilter instead of a decentral-
ized one to check if the token has been revoked. This would reduce performances since
at each JWT validation the instance would have to connect to the centralized bloom-
filter to see if the token has been revoked, but it would eliminate the need for instance
synchronization. Another possible approach would be to disable the caching features of
the auth/validator component used to cache the public key needed to verify the token
signature and rotate the public/private key pair. [13] With this approach we can inval-
idate all tokens instantaneously without the need to keep a centralized or decentralized
blacklist since all the old signatures would instantly become invalid. However in this sce-
nario we would put an increased burden on the identity provider as it would need to be
contacted for validating the JWT signature on every request, and we could only invali-
date all issued tokens altogether. Deciding which approach is better depends on the size
of the cluster, the frequency of token revocation and the performance needs. Table 5.3
shows the differences between the approach of letting token expire versus using a blacklist
versus changing the secret used to sign tokens. As we can see, the blacklist approach is
immediate but increase the architectural complexity and scalability of our solution, as we
saw by analyzing the cluster token revocation in KrakenD, in which this problem is even
worsened by its stateless architecture.



5| Implementation 45

Solution Short lived Black list Secret
change

Architectural
complexity

Low High Low

Invalidation
latency

Medium Instant Instant

Acquisition
frequency

High N/A High

Scalability Linear Bad Very bad

Table 5.3: Comparison of different JWT revocation methods, extracted from [13] and
modified

REQ PATH PARAM DESC
GET /status Used for health checks, returns

HTTP status 200 if the revoke
server is up and running.

GET /instances Return the list of active instances.
POST /instances "uuid" and "port"

(RPC) in JSON re-
quest body

Add a new instance to the list.

POST /tokens/{claim}/{key-to-revoke} Revoke a token or a group of to-
kens.

GET /tokens/{claim}/{key-to-revoke} Check that a token or a group of
tokens has been revoked in all ac-
tive instances.

Table 5.4: Revoke server endpoints

Figure 5.3: Centralized revoke server architecture, Extracted from [29]
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((a)) Stateless rate limiting on clusters ((b)) Stateful global rate limiting on clusters

Figure 5.4: Rate limiting on clusters

5.5. Configuring rate limiting

As presented in chapter 4, we have two possible approaches to rate limiting in a cluster.
The former is to split the total rate limits among the size of the cluster, the latter is
to implement a custom plugin that relies on Redis to handle the rate limiting counters
synchronization. We tested how to enable both of them in our solution, as shown in
Figure 5.4.

5.5.1. Stateless rate limiting on clusters

To split the rate limit in a stateless cluster, we have to know the algorithm used by the
load balancer. If we have a cluster of 2 KrakenD instances and a round robin balancing
algorithm that split the traffic evenly across those and we want to achieve a total maximum
rate of 10 reqs/minute for all user, we can set a max_rate of 5 reqs/minute for each
instance. [32]

This approach is simple but the limit itself cannot be assured exactly since we don’t have
any guarantee that the traffic is going to be split evenly across the instances, even when
using a round robin algorithm. In the case that one instance fails and all the traffic is
temporarily redirected to the other one, our rate limit will be halved. This problem is
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1 {
2 "endpoint ": "/ limited",
3 "extra_config ": {
4 "qos/ratelimit/router ": {
5 "max_rate ": 60,
6 "client_max_rate ": 20,
7 "every": "1m",
8 "strategy ": "header",
9 "key": "X-Real -IP"

10 }
11 },
12 ...
13 }

Listing 5.7: KrakenD example configuration to enable both absolute rate limiting and
client rate limiting on an endpoint, identified by different X-Real-IP header

even worse when we want to set a rate limit by client, identified either by IP address
or HTTP header, since the round robin balancing algorithm does not take into account
single clients but just forwards traffic in turns between the instances, therefore a single
client, in the worst case, may be always redirected to only one node of the cluster and his
actual rate limit will be halved.

We configured both a maximum rate limit on the endpoint and a rate limit differentiated
by header X-Real-IP, which is the original IP of the caller forwarded by the load balancer
as HTTP header. In this sample, shown in Listing 5.8 the endpoint is set with a maximum
rate limit of 30 requests per minute and a rate limit by client of 10 requests per minute,
identified by the X-Real-IP header forwarded by the load balancer.

5.5.2. Stateful global rate limiting on clusters

To address the limitation of the counters not synchronized in a cluster, we implemented
a custom plugin that relies on Redis as in-memory database to introduce a shared state
across multiple independent instances. Redis is suited for rate limiting because it has
builtin commands that allows to handle counter access thread safe and set a time limit
after which the key will automatically expire [47]. As an in-memory database it is faster
than a traditional on-disk database, allowing us to limit the additional overhead requested
by this approach.

We followed the same approach used by KrakenD developers, as they also offer their global
cluster rate limit feature in the enterprise version [28].
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1 {
2 "endpoint ": "/ limited",
3 "extra_config ": {
4 "qos/ratelimit/router ": {
5 "max_rate ": 30,
6 "client_max_rate ": 10,
7 "every": "1m",
8 "strategy ": "header",
9 "key": "X-Real -IP"

10 }
11 },
12 ...
13 }

Listing 5.8: KrakenD example configuration for stateless rate limiting on clusters,
splitting the traffic of the precedent configuration across two instances

The plugin is an HTTP handler (2.2.3) and therefore allows to intercept the request
as soon as it hits the gateway, inspect the IP address of the request or a configurable
HTTP header, check if the limit is reached and increment a shared counter. We chose
to implement this plugin to set a global rate limiting at gateway level that address all
requests on the gateway instances in our cluster, independently on the endpoints.

The rate limiting system we used is the leaky bucket, relying on an already existing Go
library to handle the algorithm implementation8. When the request limit is reached, a
429 Too many requests HTTP error is sent to the client, as shown in Listing 5.9. The full
plugin code is shown in Appendix A.

We chose to have a non-blocking rate limiter, meaning that if the connection with Redis
is lost the limiting will be disabled and the plugin will try to reconnect to the database,
while the gateway will continue accepting requests, even though it is also possible to have
a blocking plugin that will turn down the gateway until the connection to the database is
back. This choice was made to ensure that the employment of Redis does not introduce
a new single point of failure in our architecture, since we can still use this rate limiting
strategy in conjunction with the stateless mechanisms that we presented in the previous
section.

We implemented a plugin that puts a global rate limit shared between all clients and a
global rate limit for each client, identified by their IP address or by a configurable HTTP
header which is extracted from the request.

8https://github.com/go-redis/redis_rate/

https://github.com/go-redis/redis_rate/
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1 if res.Allowed == 0 {
2 seconds := int(res.RetryAfter / time.Second)
3 errorMessage := "Too Many Requests: retry after " + strconv.Itoa(

seconds) + " seconds"
4 http.Error(w, errorMessage , http.StatusTooManyRequests)
5 return
6 } else {
7 h.ServeHTTP(w, req)
8 return
9 }

Listing 5.9: Global rate limit plugin logic

In our scenario we used the HTTP header, since when ingress traffic is distributed by a
load balancer the original source IP address of the client will be replaced by the source
IP address of the load balancer, but we can configure it to forward the original client IP
inside an HTTP header.

We configured the plugin to allow to specify:

• host. The host where redis server resides.

• port. The port that redis server expose.

• password. The password used to authenticate the instance with the redis server.

• header. The HTTP header name we want to use as key in the redis database to
differentiate clients.

• rate. The desired rate.

• period. The period in which the rate is considered. Can be "minute" or "second".

Note that the rate and period config must be the same across different instances to
avoid inconsistencies.

The configuration of our plugin is sown in Listing 5.10.

5.5.3. Analyzing stateful and stateless rate limits

We can use both the presented rate limiting features in conjunction. The redis rate
limiter provide a global rate limiting for each client, identified by their IP address which
is forwarded by the load balancer as an HTTP header. We could also use the access token
instead of the IP address to handle rate limiting. In that case we should ensure that
the rate limiting windows is smaller than the token lifetime otherwise its accuracy would
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1 "extra_config ": {
2 "plugin/http -server ": {
3 "name": ["global -rate -limit -header"],
4 "global -rate -limit -header ": {
5 "host": "redis_host",
6 "port": "redis_port",
7 "password ": "redis_password",
8 "header ": "X-Real -IP",
9 "rate": "30",

10 "period ": "minute"
11 }
12 }
13 }

Listing 5.10: KrakenD example configuration to set up stateful global rate limit plugin,
identifying client by the X-Real-IP HTTP header, with a rate limit of 30 requests per
minute, to be placed as extra_config at root level

Solution Stateless rate limit Stateful rate limit
Architectural
complexity

Lower Higher

Accuracy Lower Higher
Performances Faster Slower
Scalability Better Worse

Table 5.5: Comparison of stateless and stateful rate limiting approaches

be decreased since the client would change the token and circumvent the limits. The
endpoint limiter provide a limit for both each endpoint and each client on the endpoint,
identified in the same way as the redis plugin.

Table 5.5 shows the comparison of the two approaches. The stateless rate limiting is faster
but is not as accurate, as the instance would lose the counter state if restarted or crashed.
The accuracy is further reduced when using a cluster because we don’t have guarantees
that the traffic is going to be split evenly by the load balancer, especially if we are rate
limiting based on the IP address or by an HTTP header. The stateful rate limiting using
an external database is slower but provides more accuracy as the instances counters are
shared.

Overall, the advantage of using both the two approaches combined is that the requirements
on the plugin that relies on redis can be lax since we can lose the connection to the
database while still leveraging the local rate limits, and, at the same time, the plugin can
act as a fallback for the case in which the instances are restarted and the standard rate
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limiting counters lose their state, since they are stored only in memory. However, from
a performance and scalability perspective relying on the default rate limiting counters
would be better, when possible. [28]

5.6. Enabling monitoring tools

In this section we show how we tested the configurations to enable KrakenD to export
logs, metrics and traces to external services.

First, we tested how to export logs to logstash [18]. KrakenD developers provide a precon-
figured ELK stack9 dashboard that contains all the necessary tools to process the logs and
visualize them once exported. To configure KrakenD to export access and application logs
we first need to enable logging and then export logs by enabling telemetry/logging10

and telemetry/gelf11 components in the configuration file [18], as shown in listing 5.11.
The logs are sent over UDP to logstash and can be also sent over TCP, but for perfor-
mance reasons UDP is recommended [18]. The library used by KrakenD developers to
export logs does not support TLS12 or DTLS. In this case the usual solution is to have
a collector in the local machine that runs the instance, which is responsible to send logs
over a secure channel. Securing the communication between KrakenD and monitoring
tool was out of our scope, so we did not analyze these scenarios.

Then, we tested how to export metrics to an InfluxDB time series database and visualize
them in a dashboard. Also in this case KrakenD developers provide a sample Grafana
dashboard that is configured to visualize live information about the API gateway usage,
reading the data from the InfluxDB database. The configuration 5.12 shows how to [20] :

1. enable the extended metrics to collect the information

2. push the data collected to influxdb

Finally, we tested how to export traces to Jaeger13, to reconstruct the end-to-end traffic
flow of requests. The configuration 5.13 shows how to export traces to a Jaeger collector.

We deployed all the monitoring tools using docker compose to test that KrakenD was
correctly exporting data to the external services.

9https://www.elastic.co/what-is/elk-stack
10https://github.com/krakendio/krakend-gologging
11https://github.com/krakendio/krakend-gelf
12https://github.com/Graylog2/go-gelf/issues/39
13https://github.com/jaegertracing/jaeger

https://www.elastic.co/what-is/elk-stack
https://github.com/krakendio/krakend-gologging
https://github.com/krakendio/krakend-gelf
https://github.com/Graylog2/go-gelf/issues/39
https://github.com/jaegertracing/jaeger
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1 "extra_config ": {
2 "telemetry/logging ": {
3 "level": "WARNING",
4 "@comment ": "Prefix should always be inside [] to keep the

grok expression working",
5 "prefix ": "[ KRAKEND]",
6 "syslog ": false ,
7 "stdout ": true
8 },
9 "telemetry/gelf": {

10 "address ": "logstash :12201" ,
11 "enable_tcp ": false
12 }
13 }

Listing 5.11: KrakenD config to export logs to logstash as extra_config to be placed at
root level, extracted from [18]

1 "extra_config ": {
2 "telemetry/influx ":{
3 "address ": influxdb:port",
4 "ttl ":"25s",
5 "buffer_size ":0,
6 "db": "bucket_name",
7 "username ": "influx_user",
8 "password ": "influx_password"
9 },

10 "telemetry/metrics ": {
11 "collection_time ": "30s",
12 "listen_address ": "127.0.0.1:8090"
13 }
14 }

Listing 5.12: KrakenD example configuration to export metrics to influxdb, as
extra_config to be placed at root level, extracted from [20]
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1 "extra_config ": {
2 "telemetry/opencensus ": {
3 "sample_rate ": 100,
4 "reporting_period ": 0,
5 "exporters ": {
6 "jaeger ": {
7 "endpoint ": "jaeger :14268/ api/traces",
8 "service_name ":" krakend",
9 "buffer_max_count ": 1000

10 }
11 }
12 },
13 }

Listing 5.13: KrakenD example configuration to export traces to Jaeger as extra_config
to be placed at root level, extracted from [21]

5.7. Analyzing the deployment phase

In this section we analyze aspects related to the deployment phase of KrakenD.

5.7.1. Injecting secrets into the configuration file

Since the configuration file should be versioned, it is recommended not to put credentials
inside the version control systems, even if they are private, as it pose the risk of exposing
them. Instead we should manage secrets externally: in this way we can securely store
credentials using secrets management tools that provide encryption at rest and access
control policies. [5]

In our case we tested the KrakenD flexible config14 that uses Go template package15

allowing to specify variables for the secrets that needs to be inside the configuration
file, and dynamically loads them from files or environment variables. The secrets in our
scenario are injected into the pod by Kubernetes secrets.

We chose to inject files instead of environment variables as the latter are more easily
exposed [38] [49]. Also, secrets mounted inside pods with Kubernetes Secrets are injected
in tmpfs mounts that are only persisted in memory on the host machine [33]. Listing 5.14
shows how to inject the redis password used by the plugin to authenticate with the redis
server loading it from a file that is stored in the path /etc/krakend/secrets/redis/password.

14https://www.krakend.io/docs/configuration/flexible-config/
15https://pkg.go.dev/text/template

https://www.krakend.io/docs/configuration/flexible-config/
https://pkg.go.dev/text/template
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1 "extra_config ": {
2 "plugin/http -server ": {
3 "name": ["global -rate -limit"],
4 "global -rate -limit ": {
5 "host": "redis_host",
6 "port": "redis_port",
7 "password ": "{{ include "/etc/krakend/secrets/redis/

password" }}",
8 "rate": "1",
9 "period ": "minute"

10 }
11 }
12 }

Listing 5.14: KrakenD example configuration using Go templates to dinamically inject
redis password into the configuration from a file

We could improve this mechanism by obliterating the secrets once they are consumed,
as KrakenD only needs to read the configuration file at startup. However, this approach
requires more work as we need a way to check that KrakenD has loaded before deleting
the secrets, and reinject it in case of crashes and restart.

The full configuration with the features analyzed in the previous section with secrets
loaded from files using this approach is shown in appendix A.

5.7.2. Implementing a CI/CD pipeline

In this section we present how we containerized KrakenD along with the custom plugins
and how we implemented a Jenkins CI/CD pipeline to automatically build, test and deploy
the gateway on Kubernetes. If we use containers, KrakenD’s developers recommend to
use an immutable infrastructure which consists of immutable Docker images with the
configuration file embedded in them, managed by a CI/CD pipeline and orchestrated by
Kubernetes [15].

First, we containerized KrakenD along with our custom plugins. Starting from the Dock-
erfile16 of the official KrakenD repository, we modified it to add our plugins and specify
the configuration file as build argument. The full Dockerfile is shown in appendix A.

Then, we implemented the CI/CD pipeline that does the following: pulls our repository
from git that contains the plugins, krakend and the configuration file, builds the Dockerfile
while doing build tests, push the image to a private registry, deploy it on Kubernetes and

16https://github.com/krakendio/krakend-ce/blob/master/Dockerfile

https://github.com/krakendio/krakend-ce/blob/master/Dockerfile
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Figure 5.5: Jenkins CI/CD pipeline structure

lastly execute post deploy tests. The pipeline structure is shown in Figure 5.5. During the
build phase we included the test of the configuration file syntax using the check tool17 and
the check of the configuration file for security misconfigurations using the audit tool18.
Both tools are bundled in KrakenD.

After the deployment, we configured Jenkins to execute Postman collections tests from
command-line using Newman19. In this way we can execute Postman tests authenticating
with the external IdP and testing the protected endpoints automatically.

5.7.3. Configuring a secure network architecture

Even though in our environment we did not test this part directly, we analyzed the
high level approach to configure a secure network architecture when using a cluster or
KrakenD instances. In this scenario we should expose only the load balancer in the DMZ
and then put all the other services inside the private network, setting up two firewalls.
If KrakenD instances are deployed in different physical networks, we can setup a virtual
private network. A possible approach to configure our network architecture, assuming
we are using stateful packet filters, is listed in Table 5.6 and shown in Figure 5.6. If we
want to enable token revocation using the centralized revoke server that we presented
in Chapter 5, we should take into account that the revoke server communicate to the
KrakenD instances over an RPC port which is not secured. If the external services used
are outside the private network, then we should also add rules to ensure that each gateway

17https://www.krakend.io/docs/configuration/check/
18https://www.krakend.io/docs/configuration/audit/
19https://learning.postman.com/docs/collections/using-newman-cli/

command-line-integration-with-newman/

https://www.krakend.io/docs/configuration/check/
https://www.krakend.io/docs/configuration/audit/
https://learning.postman.com/docs/collections/using-newman-cli/command-line-integration-with-newman/
https://learning.postman.com/docs/collections/using-newman-cli/command-line-integration-with-newman/
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Figure 5.6: Cluster recommended network architecture

FW src IP src PORT direction of 1st packet dst IP dst PORT Policy
FW1 * * www->DMZ * * Deny
FW1 * * www->DMZ LB_IP 443 Allow
FW1 KrakenD_1_IP * DMZ->www * 443 Allow
FW1 KrakenD_2_IP * DMZ->www * 443 Allow
FW2 * * DMZ->private net * * Deny
FW2 LB_IP * DMZ->private net KrakenD_1_IP KrakenD_1_Port Allow
FW2 LB_IP * DMZ->private net KrakenD_2_IP KrakenD_2_Port Allow
FW2 KrakenD_1_IP * private net->DMZ * 443 Allow
FW2 KrakenD_2_IP * private net->DMZ * 443 Allow

Table 5.6: Sample firewall rules for stateful packet filter

instance can contact those.

5.7.4. Benchmarking the gateway overhead

We used Hey20, a simple command-line tool written in Go, to generate HTTP load to
a single gateway endpoint testing it on our local environment, to have an idea of the
overhead generated by adding each functionality starting from the base case, in order
to understand which functionalities were heavier. The base case is calling the gateway
health endpoint with no authentication and no additional functionality. In this scenario
there is no target API involved. From this we added functionalities like authentication,
observability tools integration and rate limiting configurations with an high limit to see
how much the request processing capabilities of the gateway are reduced by adding these
additional functionalities. Listing 5.15 shows the command that we used for the two
local tests. The -c and -n flag controls the number of workers to run concurrently and
the number of requests to run. We tested each different configuration with the same
parameters to test the time that the gateway takes to process 100000 requests.

20https://github.com/rakyll/hey

https://github.com/rakyll/hey
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1 hey -c 100 -n 100000 gateway:port/endpoint

Listing 5.15: Hey local tests commands

Auth Rate Limit Observability total (s) max (s) min (s) avg (s) rps 200
- - - 1.1132 0.0112 0.0001 0.0011 89832.3451 100000
Basic Auth - - 11.4525 0.0938 0.0002 0.0113 8731.7093 100000
JWT - - 4.4865 0.0697 0.0003 0.0044 22288.9862 100000
- - Yes 6.8764 0.0786 0.0003 0.0067 14542.4659 100000
Basic Auth - Yes 60.7048 0.3333 0.0004 0.0598 1647.3163 100000
JWT - Yes 17.3414 0.1361 0.0007 0.0171 5766.5409 100000
- Redis Limit - 52.5816 0.1102 0.0102 0.0526 1901.8077 100000
Basic Auth Redis Limit - 112.1676 0.1790 0.0244 0.1121 891.5229 100000
JWT Redis Limit - 54.1057 0.3843 0.0053 0.0541 1848.2328 100000
- Redis Limit Yes 87.2537 0.5548 0.0025 0.0872 1146.0833 100000
Basic Auth Redis Limit Yes 166.4514 0.7228 0.0067 0.1664 600.776 100000
JWT Redis Limit Yes 175.9932 1.1433 0.0047 0.1759 568.2036 100000
- Endpoint Limit - 2.2675 0.1896 0.0001 0.0022 44102.1431 100000
Basic Auth Endpoint Limit - 3.8363 0.0247 0.0002 0.0038 26066.9802 100000
JWT Endpoint Limit - 4.7137 0.0531 0.0003 0.0046 21214.5395 100000
- Endpoint Limit Yes 16.0792 0.1137 0.0006 0.0158 6219.1996 100000
Basic Auth Endpoint Limit Yes 16.1453 0.1077 0.0006 0.0159 6193.7484 100000
JWT Endpoint Limit Yes 18.2499 0.1125 0.0008 0.0180 5479.4757 100000

Table 5.7: Local tests with Hey

The results of these tests are listed in Table 5.7. We saw that the additional functionalities
decrease the processing capabilities of the gateway, especially the observability tools since
every single request is logged by the access logs, reducing the ability of the gateway to
handle requests concurrently. We also confirmed that, unsurprisingly, the stateless rate
limiting approach is faster with respect to using redis for rate limiting with a plugin.

We also tested the time difference between calling the sample API directly from the load
balancer and putting the API gateway in between, as shown in Table 5.8, to have an idea
of the overhead without the network to validate a JWT token, handle rate limit, logging
and request routing. In this case we used the sample API which we introduced in chapter
5. The overhead in our local machine was around 250 ms to process 200 requests. In this
test we used less requests because we wanted to test the overhead under normal usage.

Scenario Req total (s) max (s) min (s) avg (s) rps 200
LB - API GET /users 0.1789 0.1765 0.1076 0.1626 1117.9569 200
LB - API GW - API GET /users 0.4375 0.3234 0.0071 0.0842 457.1428 200
LB - API GET /users/1 0.2287 0.2261 0.1834 0.2111 874.4975 200
LB - API GW - API GET /users/1 0.4822 0.3471 0.0057 0.0918 414.7656 200

Table 5.8: Local tests with Hey with load balancer
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5.7.5. Load testing the API gateway

With Gatling21, a more structured load testing tool developed in Scala, we tested how
to simulate users on different endpoints of the API GW to reproduce realistic scenarios
under normal and heavy traffic, analyzing how many requests the cluster can handle
before it reaches its breaking point and starts failing to serve some requests. In our case
we considered the breaking point when the gateway started to fail a small percentage of
requests, even if the majority of requests could still be processed. We configured Gatling to
generate access tokens from Auth0 and subsequently use them for the protected endpoints.

Similarly to the previous approach, we used the gatway health endpoint to test the pro-
cessing capabilities of the API gateway without the target API. In this way, we could
focus on testing only the capabilities of the API gateway directly before placing it in front
of the services it needs to expose. In this case, we tested the cluster with the load balancer
and one instance locally and 2 more instances on different cloud providers.

For the purpose of load testing the cluster to find the breaking point, we used plain HTTP
connections. Depending on the scenario, we may want to enable TLS between the client
and the load balancer and between the load balancer and the instances of the cluster.
We executed load tests that simulate a peak of traffic on the span of 30 seconds on the
endpoints listed in Table 5.9.

As shown in Figure 5.7 and 5.8, we found the breaking point of our cluster, between 2200
and 2300 users, for a total of 11000 and 11500 requests, meaning that in the simulations
that generate 11500 requests or more the KrakenD instances composing the cluster starts
cannot process all requests and start to reject some of them returning HTTP 500 status
codes. The results were less than what we expected, mainly for three motives: the first
is that having the load balancer locally may have introduced a new bottleneck in the
architecture, since in the local load tests with hey we called the gateway directly without
the load balancer, the second is that with respect to the local tests now we also have
the network that could act as a bottleneck, the third is that the cloud instances had less
resources than my local machine and could have introduced a new bottleneck with respect
to the instance deployed locally.

The focus of our work was not on the results of the tests that vary on different environ-
ments but rather on the process of load testing the API gateway to dimension it correctly
according to the traffic we expect to receive. Once we set up a cluster we can execute
load tests and possibly scale our solution:

21https://github.com/gatling/gatling

https://github.com/gatling/gatling
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REQ ENDPOINT AUTH RATE LIMIT
GET /limited - Endpoint Rate Limit
GET /protected/bauth Basic Auth -
GET /limited/protected/bauth Basic Auth Endpoint Rate Limit
GET /protected/jwt JWT -
GET /limited/protected/jwt JWT Endpoint Rate Limit

Table 5.9: Gatling simulation endpoints requests for each simulated user

Figure 5.7: Gatling simulation before breaking point

• horizontally. by adding more instances to the cluster.

• vertically. by increasing the resources of each instance composing the cluster.

In both cases we should also take care that the load balancer and the other external
services employed are scaled correctly to handle the increased traffic.

Figure 5.8: Gatling simulation after breaking point
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6| Conclusions

In this chapter we provide a recap of the advantages and limitations that we found about
KrakenD through all our work and we conclude by analyzing possible future works that
can be done starting from what we did.

In our work we analyzed the role of API gateways in the field of API security. We
demonstrated that their employment is beneficial for the overall API security posture
and that they are suited for protecting and exposing APIs, even though they provide
foundational security features and should be used in conjunction with other advanced
security tools.

We showed the steps that are needed to configure KrakenD for common scenarios, includ-
ing: route requests to an existing API, integrate with an Identity Provider and validate
its access tokens, configure rate limiting mechanisms, use multiple instances to achieve
high availability, export information to monitoring tools and analyze aspects related to
the deployment.

We found both advantages and limitations that comes with its stateless architecture.

For the advantages, we can easily scale horizontally, we can achieve high availability
with a cluster of multiple independent instances where the failure of one instance does
not compromise the overall system availability, we can version the configuration file to
manage all the configurations smoothly and we can leverage immutable docker images
that allows deployments to be safer and simpler. [9]

For the limitations, we analyzed the difficulties of handling token revocation in a cluster
and concluded that using short lived tokens to avoid the need for token revocation is a
better approach, when possible. We studied the inconsistencies generated by having rate
limiting counters stored in memory and not synchronized across instances. We showed
how relying on external services can be beneficial but can also introduce a new single
point of failure in the architecture. However, some functionalities like generating tokens
are needed somewhere in the system. The immutable infrastructure approach has its
advantages but requires redeployment to apply changes to the configuration, whereas in a
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stateful gateway this changes could be less tedious to achieve. However, we showed that
this limitation can be mitigated by using a DevOps approach.

We can use this work as a starting point to evaluate if KrakenD is suited for a specific
business scenario. In the following section we present some future works that can be done.

For authentication and authorization, we could implement a plugin to allow API keys.
The API Key inbound validation is not present in the open-source version of KrakenD.
Its stateless architecture require additional work to implement this mechanism, since for
every API key we want to allow we must re-deploy the gateway. One possible approach
to address this limitation, used by KrakenD developers in the enterprise version, is to
ship the gateway with some pre-loaded API keys in the configuration file and manage the
grant of those keys using an external backend service that keeps track of the correlation
between API key and user which the key it has been assigned to [27].

We could improve the architecture by using tools to automatically scale up or down the
size of the cluster based on the current load. The load balancer should be deployed
on a dedicated high performance machine as it can easily become the bottleneck in the
architecture.

The cluster token revocation is tedious and depending on the scenario we would consider
using a different approach other than the one we presented if token revocation is critical
for that scenario, or improve the centralized revocation system. By using short-lived token
we can reduce the need for token revocation making this less of a problem.

The open source version of KrakenD does not have a global rate limiter. Implementing
it and splitting the limits amongst the cluster size instead of relying on an external redis
database would be a viable solution to keep the performance advantages of the state-
less architecture, paying with less accuracy. If possible, using the stateless rate limiting
approach is better since the performance advantages of using local counters without in-
stance synchronization outweighs the accuracy disadvantages. However, if we constantly
scale the cluster size having shared rate limiting counters in a database would be a better
solution.

Another possible future work is to analyze in depth the input validation mechanisms as
in our work we did not focus on this part.
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1 {

2 "$schema ": "https ://www.krakend.io/schema/v2.4/ krakend.json",

3 "version ": 3,

4 "plugin ": {

5 "pattern ": ".so",

6 "folder ": "/usr/bin/plugins"

7 },

8 "tls": {

9 "public_key ": "/etc/krakend/tls/cert.pem",

10 "private_key ": "/etc/krakend/tls/key.pem",

11 "enable_mtls ": true ,

12 "ca_certs ": [

13 "/etc/krakend/tls/mTLS/rootCA.pem"

14 ],

15 "disable_system_ca_pool ": false

16 },

17 "name": "krakend -config -sample -final",

18 "output_encoding ": "json",

19 "port": "{{ env "KRAKEND_PORT" }}",

20 "endpoints ": [

21 {

22 "endpoint ": "/users",

23 "input_headers ": ["X-Real -IP"],

24 "method ": "GET",

25 "output_encoding ": "json",

26 "extra_config ": {

27 "auth/validator ": {

28 "alg": "RS256",

29 "audience ": ["api:// audience"],

30 "jwk_url ": "https ://dev -5 bkfe0he8u5v6zq3.uk.auth0.

com/.well -known/jwks.json",
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31 "scopes_key ": "scope",

32 "scopes_matcher ": "any",

33 "scopes ": [

34 "read:users"

35 ],

36 "cache": true

37 },

38 "qos/ratelimit/router ": {

39 "max_rate ": 5,

40 "client_max_rate ": 5,

41 "every": "1m",

42 "strategy ": "header",

43 "key": "X-Real -IP"

44 }

45 },

46 "backend ": [

47 {

48 "method ": "GET",

49 "host": [

50 "http :// host.docker.internal :5000"

51 ],

52 "is_collection ": true ,

53 "url_pattern ": "/users",

54 "extra_config ": {

55 "modifier/martian ": {

56 "header.Modifier ": {

57 "scope": [" request"],

58 "name": "Authorization",

59 "value": "{{ include "/etc/krakend/secrets/basic -

auth" }}"

60 }

61 }

62 }

63 }

64 ]

65 },

66 {

67 "endpoint ": "/users/{user}",

68 "input_headers ": ["X-Real -IP"],
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69 "method ": "GET",

70 "output_encoding ": "json",

71 "extra_config ": {

72 "auth/validator ": {

73 "alg": "RS256",

74 "audience ": ["api:// audience"],

75 "jwk_url ": "https ://dev -5 bkfe0he8u5v6zq3.uk.auth0.

com/.well -known/jwks.json",

76 "scopes_key ": "scope",

77 "scopes_matcher ": "any",

78 "scopes ": [

79 "read:users"

80 ],

81 "cache": true

82 },

83 "qos/ratelimit/router ": {

84 "max_rate ": 5,

85 "client_max_rate ": 5,

86 "every": "1m",

87 "strategy ": "header",

88 "key": "X-Real -IP"

89 }

90 },

91 "backend ": [

92 {

93 "method ": "GET",

94 "host": [

95 "http :// host.docker.internal :5000"

96 ],

97 "url_pattern ": "/users/{user}",

98 "extra_config ": {

99 "modifier/martian ": {

100 "header.Modifier ": {

101 "scope": [" request"],

102 "name": "Authorization",

103 "value": "{{ include "/etc/krakend/secrets/basic -

auth" }}"

104 }

105 }
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106 }

107 }

108 ]

109 },

110 {

111 "endpoint ": "/users",

112 "input_headers ": ["X-Real -IP"],

113 "method ": "POST",

114 "output_encoding ": "json",

115 "extra_config ": {

116 "auth/validator ": {

117 "alg": "RS256",

118 "audience ": ["api:// audience"],

119 "jwk_url ": "https ://dev -5 bkfe0he8u5v6zq3.uk.auth0.

com/.well -known/jwks.json",

120 "scopes_key ": "scope",

121 "scopes_matcher ": "any",

122 "scopes ": [

123 "write:users"

124 ],

125 "cache": true

126 },

127 "qos/ratelimit/router ": {

128 "max_rate ": 5,

129 "client_max_rate ": 5,

130 "every": "1m",

131 "strategy ": "header",

132 "key": "X-Real -IP"

133 }

134 },

135 "backend ": [

136 {

137 "method ": "POST",

138 "host": [

139 "http :// host.docker.internal :5000"

140 ],

141 "url_pattern ": "/users",

142 "extra_config ": {

143 "modifier/martian ": {



A| Appendix 71

144 "header.Modifier ": {

145 "scope": [" request"],

146 "name": "Authorization",

147 "value": "{{ include "/etc/krakend/secrets/basic -

auth" }}"

148 }

149 }

150 }

151 }

152 ]

153 },

154 {

155 "endpoint ": "/users /{user}",

156 "input_headers ": ["X-Real -IP"],

157 "method ": "PATCH",

158 "output_encoding ": "json",

159 "extra_config ": {

160 "auth/validator ": {

161 "alg": "RS256",

162 "audience ": ["api:// audience"],

163 "jwk_url ": "https ://dev -5 bkfe0he8u5v6zq3.uk.auth0.

com/.well -known/jwks.json",

164 "scopes_key ": "scope",

165 "scopes_matcher ": "any",

166 "scopes ": [

167 "write:users"

168 ],

169 "cache": true

170 },

171 "qos/ratelimit/router ": {

172 "max_rate ": 5,

173 "client_max_rate ": 5,

174 "every": "1m",

175 "strategy ": "header",

176 "key": "X-Real -IP"

177 }

178 },

179 "backend ": [

180 {
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181 "method ": "PATCH",

182 "host": [

183 "http :// host.docker.internal :5000"

184 ],

185 "url_pattern ": "/users/{user}",

186 "extra_config ": {

187 "modifier/martian ": {

188 "header.Modifier ": {

189 "scope": [" request"],

190 "name": "Authorization",

191 "value": "{{ include "/etc/krakend/secrets/basic -

auth" }}"

192 }

193 }

194 }

195 }

196 ]

197 },

198 {

199 "endpoint ": "/users/{user}",

200 "input_headers ": ["X-Real -IP"],

201 "method ": "DELETE",

202 "output_encoding ": "json",

203 "extra_config ": {

204 "auth/validator ": {

205 "alg": "RS256",

206 "audience ": ["api:// audience"],

207 "jwk_url ": "https ://dev -5 bkfe0he8u5v6zq3.uk.auth0.

com/.well -known/jwks.json",

208 "scopes_key ": "scope",

209 "scopes_matcher ": "any",

210 "scopes ": [

211 "write:users"

212 ],

213 "cache": true

214 },

215 "qos/ratelimit/router ": {

216 "max_rate ": 5,

217 "client_max_rate ": 5,
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218 "every": "1m",

219 "strategy ": "header",

220 "key": "X-Real -IP"

221 }

222 },

223 "backend ": [

224 {

225 "method ": "DELETE",

226 "host": [

227 "http :// host.docker.internal :5000"

228 ],

229 "url_pattern ": "/users/{user}",

230 "extra_config ": {

231 "modifier/martian ": {

232 "header.Modifier ": {

233 "scope": [" request"],

234 "name": "Authorization",

235 "value": "{{ include "/etc/krakend/secrets/basic -

auth" }}"

236 }

237 }

238 }

239 }

240 ]

241 }

242 ],

243 "extra_config ": {

244 "plugin/http -server ": {

245 "name": ["global -rate -limit -header"],

246 "global -rate -limit -header ": {

247 "host": "host.docker.internal",

248 "port": "6379" ,

249 "password ": "{{ include "/etc/krakend/secrets/redis/

password" }}",

250 "header ": "X-Real -IP",

251 "rate": "10",

252 "period ": "minute"

253 }

254 },
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255 "telemetry/influx ": {

256 "address ": "http :// host.docker.internal :8086" ,

257 "ttl": "25s",

258 "buffer_size ": 0,

259 "db": "krakend_local",

260 "username ": "{{ include "/etc/krakend/secrets/influxdb/

INFLUXDB_USER" }}",

261 "password ": "{{ include "/etc/krakend/secrets/influxdb/

INFLUXDB_PASSWORD" }}"

262 },

263 "telemetry/metrics ": {

264 "collection_time ": "30s",

265 "listen_address ": "127.0.0.1:{{ env "KRAKEND_PORT_METRICS"

}}"

266 },

267 "telemetry/logging ": {

268 "level": "WARNING",

269 "@comment ": "Prefix should always be inside [] to keep the

grok expression working",

270 "prefix ": "[ KRAKEND]",

271 "syslog ": false ,

272 "stdout ": true

273 },

274 "telemetry/gelf": {

275 "address ": "host.docker.internal :12201" ,

276 "enable_tcp ": false

277 },

278 "telemetry/opencensus ": {

279 "sample_rate ": 100,

280 "reporting_period ": 0,

281 "exporters ": {

282 "jaeger ": {

283 "endpoint ": "http :// host.docker.internal :14268/ api/

traces",

284 "service_name ":" krakend",

285 "buffer_max_count ": 1000

286 }

287 }

288 },
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289 "security/http": {

290 "ssl_proxy_headers ": {

291 "X-Forwarded -Proto ": "https"

292 },

293 "host_proxy_headers ": [

294 "X-Forwarded -Hosts",

295 "X-Forwarded -For",

296 "X-Real -IP"

297 ],

298 "ssl_redirect ": true ,

299 "ssl_host ": "host.docker.internal :{{ env "KRAKEND_PORT" }}",

300 "sts_seconds ": 31536000 ,

301 "sts_include_subdomains ": true ,

302 "frame_deny ": true ,

303 "custom_frame_options_value ": "DENY",

304 "referrer_policy ": "no -referrer",

305 "content_type_nosniff ": true ,

306 "browser_xss_filter ": false ,

307 "content_security_policy ": "default -src ’none ’;",

308 "ssl_port ": "{{ env "KRAKEND_PORT" }}"

309 }

310 }

311 }

Listing A.1: KrakenD config to protect sample API

1 // SPDX -License -Identifier: Apache -2.0
2

3 package main
4

5 import (
6 "context"
7 "crypto/tls"
8 "errors"
9 "fmt"

10 "net/http"
11 "strconv"
12 "strings"
13 "sync"
14 "time"
15

16 redis "github.com/redis/go -redis/v9"
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17 redis_rate "github.com/go -redis/redis_rate/v10"
18 )
19

20 const (
21 loggerPrefix = "[PLUGIN: global -rate -limit -header] "
22 retryConnectionSeconds = 10
23 )
24

25 // pluginName is the plugin name
26 var pluginName = "global -rate -limit -header"
27

28 // HandlerRegisterer is the symbol the plugin loader will try to load.
It must implement the Registerer interface

29 var HandlerRegisterer = registerer(pluginName)
30

31 type registerer string
32

33 func (r registerer) RegisterHandlers(f func(
34 name string ,
35 handler func(context.Context , map[string]interface {}, http.Handler)

(http.Handler , error),
36 )) {
37 f(string(r), r.registerHandlers)
38 }
39

40 func loopUntilRedisConnectionFound(rdb *redis.Client , ctx context.
Context , isTryingToReconnectMu *sync.Mutex , isTryingToReconnect *bool
) {

41

42 logger.Debug(fmt.Sprintf(loggerPrefix + " testing redis connection
..."))

43

44 ticker := time.NewTicker(retryConnectionSeconds * time.Second)
45 defer ticker.Stop()
46

47 for {
48 select {
49 case <-ticker.C:
50 if _, err := rdb.Ping(ctx).Result (); err != nil {
51 logger.Debug(fmt.Sprintf(loggerPrefix + " redis

connection not working , retrying in 10s..."))
52 } else {
53 isTryingToReconnectMu.Lock()
54 *isTryingToReconnect = false
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55 isTryingToReconnectMu.Unlock ()
56 logger.Debug(fmt.Sprintf(loggerPrefix + " redis

connection OK!"))
57 return
58 }
59 }
60 }
61 }
62

63 func (r registerer) registerHandlers(_ context.Context , extra map[string
]interface{}, h http.Handler) (http.Handler , error) {

64 // If the plugin requires some configuration , it should be under the
name of the plugin. E.g.:

65 /*
66 "extra_config ":{
67 "plugin/http -server ":{
68 "name ":[" global -rate -limit -header"],
69 "global -rate -limit -header ":{
70 "host": "<REDIS_HOST_NAME >",
71 "port": "<REDIS_HOST_PORT",
72 "password ": "<REDIS_PASSWORD >",
73 "header ": "<HEADER_NAME >",
74 "rate": <MAX_RATE >",
75 "period ": "<minute > || <second >""
76 }
77 }
78 }
79 */
80 // The config variable contains all the keys you have defined in the

configuration
81 // if the key doesn ’t exists or is not a map the plugin returns an

error and the default handler
82 config , ok := extra[pluginName ].(map[string]interface {})
83 if !ok {
84 return h, errors.New("configuration not found")
85 }
86

87 // read here configs from config file
88

89 host , _ := config["host"].( string)
90 logger.Debug(fmt.Sprintf(loggerPrefix+"redis host: %s", host))
91

92 port , _ := config["port"].( string)
93 logger.Debug(fmt.Sprintf(loggerPrefix+"redis port: %s", port))
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94

95 password , _ := config["password"].( string)
96

97 headerName , _ := config["header"].( string)
98 logger.Debug(fmt.Sprintf(loggerPrefix+"header: %s", headerName))
99

100 rate , _ := config["rate"].( string)
101 logger.Debug(fmt.Sprintf(loggerPrefix+"rate: %s", rate))
102

103 rateNum , err := strconv.Atoi(rate)
104 if err == nil {
105 logger.Debug(fmt.Sprintf(loggerPrefix+"rate: %d", rateNum))
106 } else {
107 logger.Error(fmt.Sprintf(loggerPrefix + "error while decoding

rate from configs"))
108 }
109

110 period , _ := config["period"].( string)
111 logger.Debug(fmt.Sprintf(loggerPrefix+"period: %s", period))
112

113 isPerMinute := true
114 if strings.ToLower(period) == "second" {
115 isPerMinute = false
116 }
117

118 // initialize connection to the redis db here
119

120 rdb := redis.NewClient (&redis.Options{
121 Addr: host + ":" + port ,
122 Password: password ,
123 DB: 0, // use default DB
124 TLSConfig: &tls.Config{
125 MinVersion: tls.VersionTLS12 ,
126 InsecureSkipVerify: true , //used for self -signed

certificates
127 },
128 })
129

130 ctx := context.Background ()
131

132 // global boolean value
133 var isTryingToReconnectMu sync.Mutex
134 isTryingToReconnect := false
135
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136 // CHECK CONNECTION TO REDIS
137 loopUntilRedisConnectionFound(rdb , ctx , &isTryingToReconnectMu , &

isTryingToReconnect)
138

139 // return the actual handler wrapping or your custom logic so it can
be used as a replacement for the default http handler

140 return http.HandlerFunc(func(w http.ResponseWriter , req *http.
Request) {

141

142 // GLOBAL RATE LIMIT LOGIC
143

144 if isTryingToReconnect {
145 logger.Debug(loggerPrefix + "global rate limit DISABLED ,

forward request")
146 h.ServeHTTP(w, req)
147 return
148 }
149

150 // get specified header from the request
151 header := req.Header.Get(headerName)
152 logger.Debug(loggerPrefix + "Read " + headerName + " : " +

header)
153

154 var (
155 res *redis_rate.Result
156 limiter *redis_rate.Limiter
157 err error
158 )
159

160 limiter = redis_rate.NewLimiter(rdb)
161

162 // rate limite per minute or per second
163 if isPerMinute {
164 res , err = limiter.Allow(ctx , header , redis_rate.PerMinute(

rateNum))
165 } else {
166 res , err = limiter.Allow(ctx , header , redis_rate.PerSecond(

rateNum))
167 }
168

169 // recover from lost redis connection
170 defer func() {
171 if r := recover (); r != nil {
172 logger.Debug(fmt.Sprintf(loggerPrefix + " lost redis
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connection. trying to recover ..."))
173

174 isTryingToReconnectMu.Lock()
175 start := !isTryingToReconnect
176 isTryingToReconnect = true
177 isTryingToReconnectMu.Unlock ()
178 if start {
179 go loopUntilRedisConnectionFound(rdb , ctx , &

isTryingToReconnectMu , &isTryingToReconnect)
180 }
181

182 logger.Debug(loggerPrefix + "global rate limit DISABLED ,
forward request")

183 h.ServeHTTP(w, req)
184 return
185 }
186 }()
187

188 if err != nil {
189 // recover from this panic to handle lost connection
190 panic(err)
191 }
192

193 logger.Debug(fmt.Sprintf(loggerPrefix+"header: %s +1", header))
194 logger.Debug(fmt.Sprintf(loggerPrefix + "allowed " + strconv.

Itoa(res.Allowed) + " remaining %s " + strconv.Itoa(res.
Remaining)))

195

196 if res.Allowed == 0 {
197

198 seconds := int(res.RetryAfter / time.Second)
199

200 // generate too many requests response
201 logger.Debug(loggerPrefix + "global rate limit reached , stop

request")
202 errorMessage := "Too Many Requests: retry after " + strconv.

Itoa(seconds) + " seconds"
203 http.Error(w, errorMessage , http.StatusTooManyRequests)
204 return
205

206 } else {
207

208 logger.Debug(loggerPrefix + "global rate limit ok , forward
request")
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209 h.ServeHTTP(w, req)
210 return
211 }
212

213 }), nil
214 }
215

216 func main() {}
217

218 // This logger is replaced by the RegisterLogger method to load the one
from KrakenD

219 var logger Logger = noopLogger {}
220

221 func (registerer) RegisterLogger(v interface {}) {
222 l, ok := v.( Logger)
223 if !ok {
224 return
225 }
226 logger = l
227 logger.Debug(fmt.Sprintf("[PLUGIN: %s] Logger loaded",

HandlerRegisterer))
228 }
229

230 type Logger interface {
231 Debug(v ... interface {})
232 Info(v ... interface {})
233 Warning(v ... interface {})
234 Error(v ... interface {})
235 Critical(v ... interface {})
236 Fatal(v ... interface {})
237 }
238

239 // Empty logger implementation
240 type noopLogger struct {}
241

242 func (n noopLogger) Debug(_ ... interface {}) {}
243 func (n noopLogger) Info(_ ... interface {}) {}
244 func (n noopLogger) Warning(_ ... interface {}) {}
245 func (n noopLogger) Error(_ ... interface {}) {}
246 func (n noopLogger) Critical(_ ... interface {}) {}
247 func (n noopLogger) Fatal(_ ... interface {}) {}

Listing A.2: KrakenD HTTP server plugin to enable global rate limit with external
redis database based on HTTP header, starting from the HTTP server plugin example in
the official documentation
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1 # BUILDER
2 FROM golang :1.21rc2 -alpine3 .18 as builder
3

4 ARG KRAKEND_CONFIG_PATH=configs/backend/krakend.tmpl
5 ENV ENV_KRAKEND_CONFIG_PATH=$KRAKEND_CONFIG_PATH
6

7 RUN apk --no-cache --virtual .build -deps add make gcc musl -dev binutils -
gold

8

9 # COPY KRAKEND CODE
10 COPY ./krakend -ce /app
11

12 # COPY PLUGINS CODE
13 COPY ./ plugins /app/plugins
14

15 # COPY CONFIGS
16 COPY ./ configs /app/configs
17

18 # COPY INTEGRATION TEST
19 COPY ./tests/krakend -integration /app/tests/krakend -integration
20

21 # BUILD PLUGINS
22

23 ENV PLUGINS_LIST="\
24 /app/plugins/basic -auth/basic -auth -global \
25 /app/plugins/basic -auth/basic -auth -partial \
26 /app/plugins/rate -limit/global -rate -limit -header \
27 /app/plugins/rate -limit/global -rate -limit -ip \
28 /app/plugins/rate -limit/global -rate -limit \
29 /app/plugins/revoker -helper \
30 "
31

32 RUN mkdir -p /app/plugins/compiled/
33

34 RUN for plugin in $PLUGINS_LIST; do \
35 cd $plugin && \
36 go mod tidy -compat =1.17 && \
37 go build -buildmode=plugin -o plugin.so . && \
38 plugin_name=$(basename $plugin) && \
39 mv plugin.so /app/plugins/compiled/$plugin_name.so; \
40 done
41

42

43 WORKDIR /app
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44

45 # BUILD KRAKEND
46 RUN make build
47

48 # CHECK SYNTAX
49 ENV FC_ENABLE 1
50 RUN ./ krakend check -t -d -c ./${ENV_KRAKEND_CONFIG_PATH}
51

52 # AUDIT
53 RUN ./ krakend audit -s CRITICAL -c ./${ENV_KRAKEND_CONFIG_PATH}
54

55 # INTEGRATION TEST TOOL
56 WORKDIR /app/cmd/krakend -integration
57 RUN go mod tidy -compat =1.17
58 RUN go run main.go -krakend_bin_path ./../../ krakend \
59 -krakend_config_path /app/${ENV_KRAKEND_CONFIG_PATH} \
60 -krakend_specs_path /app/tests/krakend -integration
61

62 # RUNNER
63

64 FROM alpine :3.18
65

66 LABEL maintainer="community@krakend.io"
67

68 RUN apk add --no -cache --repository http://dl-cdn.alpinelinux.org/alpine
/v3.18/ main ca-certificates curl

69

70 RUN apk add --no -cache ca-certificates && \
71 adduser -u 1000 -S -D -H krakend && \
72 mkdir /etc/krakend
73

74 COPY --from=builder /app/krakend /usr/bin/krakend
75

76 ARG KRAKEND_CONFIG_PATH=configs/backend/krakend.tmpl
77 ENV ENV_KRAKEND_CONFIG_PATH=$KRAKEND_CONFIG_PATH
78

79 # COPY CONFIGURATIONS
80 COPY --from=builder /app/${ENV_KRAKEND_CONFIG_PATH} /etc/krakend/krakend

.tmpl
81

82 # copy compiled plugin into RUNNER
83 COPY --from=builder /app/plugins/compiled/ /usr/bin/plugins/
84

85 # copy public/private tls cert into RUNNER
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86 COPY --from=builder /app/configs/backend/tls /etc/krakend/tls
87

88 USER 1000
89

90 # enable krakend template config file loading
91 ENV FC_ENABLE 1
92

93 ENTRYPOINT [ "/usr/bin/krakend" ]
94

95 WORKDIR /etc/krakend
96

97 CMD [ "run", "-c", "/etc/krakend/krakend.tmpl" ]
98

99 EXPOSE 8080 8090

Listing A.3: Dockerfile that generates an immutable docker image containing KrakenD
along with the specified plugins, the TLS certificates and the configuration file embedded
in it, specified as build argument, while doing build tests. Modified from the original
Dockerfile contained in KrakenD.
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