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Abstract

Large-scale physical simulations are often composed of multitudinous equations that,
in chunks, share the same structure. Furthermore, if the model is provided as a
system of equations written in a domain specific language, it might be possible to
extract a high-level structure and use it to reduce the complexity of translating the
model into a computable program.

Still, generic solvers are usually unaware of such high-level features and cannot
make proper use of them. All equations are handled independently from each other.
Thus the time required to produce a computable simulation starting from a model is
tied to the number of equations rather than the number of equations with different
structures. When the size of the simulation increases, the amount of time and mem-
ory required quickly becomes unreasonable. Furthermore, if a simulation is finally
obtained, the code that describes it is often low-performing, due to the disregard of
data locality and cache friendliness.

In this document, we inspect Modelica, a domain specific language that offers
language features which can be used to vastly improve the compilation performance.
We provide formal proof of the complexity of each step of the compilation pipeline
with respect to the number of equations of the input model. We describe a subset of
the language and algorithms that, given a particular high-level structure, are able to
produce a simulation in constant time. Finally, we introduce an implementation for
such language subset that, given a fixed high-level structure, compiles in constant
time regardless of the size of the simulation and yields much smaller binaries and
performs faster than the current state-of-the-art tools.
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Sommario

Simulazioni di sistemi fisici su larga scala sono solitamente composti da una mul-
titudine di equazioni le quali, in blocchi, condividono la stessa struttura. Inoltre,
se il modello di tale simulazione è fornito come un sistema di equazioni scritte in
un qualche linguaggio specifico al problema, potrebbe essere possibile estrarre una
struttura di alto livello e usarla per ridurre la complessità di tradurre il modello in
una programma computabile.

Solver generici sono solitamente inconsapevoli dell’esistenza di questa struttura
ad alto livello e non possono farne un buon uso. Tutte le equazioni sono trattate
indipendentemente. Ne consegue che il tempo richiesto per produrre la simulazione
di un certo modello è legato al numero di equazioni, anzichè al numero di equazioni
con struttura diversa. Quando la dimensione della simulazione aumenta, il tempo e la
memoria diventano rapidamente eccessive. Inoltre, se una simulazione è finalmente
ottenuta, il codice che la descrive è spesso poco performante, per via della bassa
importanza che è stata data alla località dei dati.

In questo documento ispezioniamo Modelica, un linguaggio di modellazione di
sistemi fisici che offre caratteristiche adatte ad essere sfruttate per migliorarne la
compilazione. Offriamo prova formale della complessità di ogni step della pipeline
di compilazione rispetto al numero di equazioni del modello in input. Descriviamo un
subset del linguaggio e algoritmi che, per una particolare struttura ad alto livello del
modello in input, produce simulazioni in tempo costante. Infine, introduciamo una
implementazione per tale subset del linguaggio che, data una particolare struttura
ad alto livello, compila simulazioni in tempo costante e produce eseguibili molto più
piccoli e più veloci dello stato dell’arte corrente.
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Chapter 1

Introduction

When the many are reduced to one,
to what is the one reduced?

Koan/Haskell Programmer

1.1 Models and simulations

A world of equations It has been suggested that one of the greatest intuitions
of mankind was to notice that there exists a language able to describe nature: we
call it math, and as it is indeed astonishing that similar mathematics applies so well
to planets and clocks.

The mathematical description of how stars and cogs move is said to be a model.
Once a model of a physical phenomenon has been found, then it becomes possible
to deduce both the past and the future of such a physical system. Given the power
provided by producing such model, it is not surprising that many scientists and
engineers are tasked with their creation and analysis. They are called modelers, and
the mathematical tool mostly used comes in the form of a system of equations.

Unfortunately, equations-based models are not simulations of the phenomena,
but they hold the necessary information to produce such simulations. The task of
obtaining the description of a simulation that a computer can execute is a much
different kind of task than the one of obtaining a model. Automatically obtaining a
simulation from a mathematical model is the concern of this document.

The twin tongues of science and machine The complexity of translating a
model into a simulation lies in the different nature between the language of science,
that is math, and the language of machines. The first is intended to be of purely
declarative - the order of equations is irrelevant. Similarly, it is irrelevant the order
in which the terms appear within the equation. A model is meant to be interpreted
by the reader, and it is up to the reader to be able to manipulate the equations to
produce a meaningful result.

Algorithms, the language one must use to provide a simulation to a computer,
are something completely different. A machine expects a series of instructions that
allows it to understand how its internal state must be updated and, if the instructions

15



16 CHAPTER 1. INTRODUCTION

are correct, then the machine will yield the final state of the simulation we intended
to run. No equation exists, only a huge number of sequential atomic operations.

Thus, if we wish to obtain a simulation from a model, a translation from pure
math to an algorithm is required. Programs that perform such kind of translations
are called compilers.

Compilers are tools born from a long tradition, many of the steps they perform
are well known. We know how to parse a program from text and represent it in
memory, we know how to describe the optimizations that may be applied to them,
and, given a high-level algorithm, we know how to yield machine code that is better
than the one a human would produce by hand.

Yet, open questions still exist: which is the most performing machine code we can
yield when compiling a program that is written in a completely abstract language
such as math? How long does it take to perform such a translation? Is it possible to
perform such translation in sub-linear time? Can we ensure that the code produced
is at least as good as the one a human would yield?

A need for speed The quest for performances brings us to consider questions
that may be unexpected: suppose we were able to formally prove that a particular
language cannot be compiled in a reasonable amount of time, or that the code
generated is, by some metric, worst than the optimal one. What can we do? Should
we optimize the average case hoping that it is enough for the average user? Should we
abandon the language in favor of another one we can prove to be performant? Should
we restrict the language, dropping those features that violate the requirements?

These are the questions we needed to answer in our research, so that it may have
been possible to provide the implementation of a compiler able execute its own job
efficiently.

1.2 Modelica

Our attempt of creating such a compiler is not the first in the domain of modeling.
There already exists other languages that have been designed for such tasks. We
focus on one of these languages, named the Modelica language, since it is among the
most used language in its own domain.

The purpose of Modelica is exactly the one described earlier: it allows to provide
a set of equations and tries to translate it into a simulation.

Unfortunately, Modelica suffers from performance issues, the time needed to
produce a simulation is a function of the number of equations involved into the
system, even if such equations respect some strict pattern that a human may exploit
to produce the simulation in a shorter time. Such limitations prevent any meaningful
usage of the language in the domain of large scale systems.

Re-purposing a language Our interest is, therefore, creating a compiler for the
Modelica language that is able to produce simulations as quickly as possible, while
providing a language as simple as possible, while still usable. We wish to find and
retain all language features that do not affect the compilation time, and to offer an
alternative for those that do.
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Furthermore, we wish to formally prove that some language features are not
compatible with fast compilation, and to provide a framework in which to analyze
and describe the issues tied to the compilation speed.

Finally, we wish to provide a new Modelica compiler, built on the latest com-
piler technology, to become a useful tool and library that can be used to produce
simulations.

1.3 Results

In this document we provide:

Proof of complexity for the pipeline stages needed to produce a simulation based
on the Euler method. We prove that the unbound language cannot be compiled in
constant time, and thus it must be restricted.

A subset of Modelica able to preserve arrays across the compilation
pipeline we discuss a subset of the language that is powerful enough to be useful
and at the same time retains the ability of allow constant time compilation for a
given high-level structure. It involves novel algorithms and a novel representation
of the in-memory data structures.

A novel implementation We provide an implementation of these algorithms,
as well as a lowerer toward LLVM-IR, so that our experimental compiler can be
compared with the current state-of-the-art tools.
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Chapter 2

State Of The Art

Whatever it is, it can’t be that bad.

Londo Molari - Babylon 5

This document focuses on the domain specific languages used for physical model
design, and, among those, the Modelica language in particular. It is likely that
readers of this documents will either have a background in computer science or
physical systems modeling, not both, and thus the challenges that each field has to
handle may be unknown to the other.

For this reason, this chapter will provide the state of the art of Modelica and
its main open source implementation. It includes information regarding compilers,
most common compiler frameworks, and some compilation techniques that are usu-
ally invisible to the user. Furthermore, it presents the differences between domain
specific languages for physical modeling and regular general-purpose programming
languages.

Finally, it must be noticed that both Modelica and LLVM, the language we
implement and the compiler framework we use as a back end, are not core to the
results of this document. We will provide proofs of complexity and algorithms that
can be used for any domain specific language similar to Modelica and we may have
targeted any compiler framework beside LLVM.

2.1 Modeling

The purpose of a model is to describe the representation of a physical phenomena as
a mathematical object. Such object is often a system of equations. If the phenomena
is static then there exists a finite amount of solutions and there is no need for time
to be a variable in the system of equations. Otherwise some or all variables may
be time-varying, that is, they are function of time. If such is the case then in the
system of equation even derivative terms may be present.

Furthermore, an equation of the system may involve variables at different time
instant. This is the case of equations describing the evolution of the system over
time, an example is a(t) = b(t − 1). When solving a time-varying systems at some
instant of time t we may need to have already calculated some variable at previous
time instants.

19
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2.2 System of equations

DAE and ODE A system of equations is a set of equations and we denote it as
E. These equations involve variables x(t) = (x1(t), . . . xn(t)), where each xk(t) is
the value of the variable xk at time t.

Equations may involve derivatives of variable as well. We denote the derivative
respect to time of variable x as ẋ.

Therefore, each equation f may involve a variable x, its derivative, or time t.
Thus, a system of equations can be formulated as

F (x, ẋ, t) = 0

Equations in this form are called differential-algebraic system of equations (DAEs).
It may be possible to write a DAE system as:

ẋ(t) = F (x(t), t)

That is, it is possible to express analytically the ẋ term. If it is then it is called a
system of ordinary differential equations (ODE ).

ODE systems are, in general, easier to solve than DAE and since the derivatives
are explicit, it is possible to make ẋ explicit.

Explicitating x′(t) and Euler Method When it is not possible to obtain ODE
system from a DAE system from exact methods, it may be possible, to obtain it
from approximation. Many such approximations exists, and since they are not the
focus of this work we only present the Euler method. Such method states that a
equation written as

y′(t) = f(t, y(t)) y(t0) = y0

can be rewritten as:

yn+1 = yn + h ∗ f(t, y)

where h is the time delta. This arises trivially from the definition of derivative.

Domain specific modeling languages There exists different programming lan-
guages that allow to provide a declarative descriptions of equations and yield a
simulation of such system. Modelica [8], is one this. Modelica is not a implementa-
tion but rather it is a standard. We will describe more in depth Modelica features
in the next section.

There exists some close-source implementations of Modelica, such as Dymola.
Modia [9] is a open-source alternative to Modelica. While it shares many different
features with Modelica it is not a implementation of the standard and it is tied to
the Julia language.

There exists other more specific languages used to describe system of a particular
engineering field. While they may be more performant, such languages are not have
a purpose general enough to be of hour interest. Since Modelica is the most used
among the described languages, we will focus on it.
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2.3 Modelica Language

Modelica is an object-oriented, declarative, multi-domain modeling language for
component-oriented modeling of complex systems [8]. At an extremely high-level,
components are essentially sets of equations, which can be connected to other com-
ponents by asserting an equality between input and output variables. The task of
a Modelica compiler is to produce an executable that performs a correct simulation
of the system.

Modelica has many language features that operate at different stages of the com-
pilation pipeline. Many of those features consist of additional syntax that simplifies
the process of writing equations, allow to divide components in sub-components or
introduces simulation time semantic orthogonal to the topics of this paper. Either
because they are high-level features that have been already simplified in earlier stages
of the compilation pipeline or because they are used in later stages and are ignored
in the stage considered. Therefore, we first introduce only the subset that contains
variable definitions, the already mentioned equations and the for-loop syntax.

Consider the following snippet of Modelica code, implementing a component
with eight inputs and one output, computed as the average of the sums of each pair
of inputs:

Algorithm 1: Example Modelica component

1 model AverageOfSum
2 Real inputs [ 8 ] ;
3 Real output ;
4 Real s t a t e [ 4 ] ;
5 equation
6 output ∗ 4 = s t a t e [ 1 ] + s t a t e [ 2 ] + s t a t e [ 3 ] + s t a t e [ 4 ] ; // eq1
7 for i in 1 : 4 loop
8 input [ 2∗ i ] + input [ ( 2∗ i ) + 1 ] = s t a t e [ i ] ; // eq2
9 end for ;

10 end AverageOfSum ;

The snippet key language features are equivalent to those described in the earlier
subsections.

• Equations do not describe assignments. Thus, when compiling, simulation
equations must be transformed in accordance with their semantic.

• For loops do not describe control flow. Instead, they are resolved at compile-
time, and represent a form of meta programming in the Modelica language.

• The top-level model can be composed of fundamental types or of other com-
ponents, and the top-level model must be simulatable. That is, it must be
possible to determine the value of each variable by manipulating the equa-
tions.

In the snippet, AverageOfSum only provides 5 equations and declares 13 vari-
ables, therefore the hierarchy that contains AverageOfSum must provide at least 8
more equations. An example of this hierarchy is:

This two pieces of code will be our running example in the introduction.
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Algorithm 2: Example of a Modelica top-level component

1 model OuterComponent
2 AverageOfSum inner ;
3 equation
4 for i in 1 : 8 loop
5 i nne r . input [ i ] = i ∗ i ;
6

7 end OuterComponent ;

2.3.1 Modelica Compilation

parsing flatten. matching sccSearch sccResol. scheduling lowering

Figure 2.1: Pipeline structure of a classical Modelica compiler, comprising of several
different successive stages.

A Modelica compiler is typically structured into a series of stages, as it is shown
in figure 2.1 After the source file has been parsed, all the object-oriented feature are
simplified. After this step no object oriented language feature is preserved and we
only retain a list of scalar variables and a list of scalar equations. We call this step
flattening.

Afterwards, each equation is matched with a single scalar variable. This step
determines which equation will be used to compute the value of which variable. This
analysis is known as matching. Notice that during the matching step all equations
from the whole system contribute to the solution, not only those in a component.

Consider again the running example. As we said AverageOfSum cannot be used
as a stand-alone component, because there would not be enough equations to cal-
culate all the variables. AverageOfSum must be used by another component that
contributes with the required equations. Therefore, our top-level component is Out-
erComponent. One possible matching for the previous example would be the one
that associates output with eq1, and each state with the member of eq2 that uses
it. Therefore the equations might be rewritten as:

Algorithm 3: Unrolled Outer Components

1 // Matched wi th output
2 output /4 = s t a t e [ 1 ] + s t a t e [ 2 ] + s t a t e [ 3 ] + s t a t e [ 4 ] ;
3 s t a t e [ 1 ] = input [ 1 ] + input [ 2 ] ; // Matched wi th s t a t e [ 1 ]
4 s t a t e [ 2 ] = input [ 3 ] + input [ 4 ] ; // Matched wi th s t a t e [ 2 ]
5 s t a t e [ 3 ] = input [ 5 ] + input [ 6 ] ; // Matched wi th s t a t e [ 3 ]
6 s t a t e [ 4 ] = input [ 7 ] + input [ 8 ] ; // Matched wi th s t a t e [ 4 ]

After the matching step, the compiler finds the dependencies among variables.
In the running example, output cannot be computed until all elements of state have
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been computed. If eq1 depended on output as well, then there would have been
a cyclic dependency. Cyclic dependencies prevent the compiler from producing a
simulation.

Therefore, each equation e will be scheduled after all equations matched to the
variables in the right hand of e. This dependencies can be described as a directed
graph. When operating on this graph, the problem of finding cyclic dependencies is
equivalent to the one of searching strongly connected components (SCC), thus we
call this step SCC search. If a cyclic dependency was found then we need to perform
an SCC resolution step. Such step may depend on the resolution technique chosen
and it is common to all executions of the compiler.

The last step performed by the compiler is the scheduling. Once we know that
there are no cyclic dependencies, we can find an execution order such that all the
dependencies are respected. One possible scheduling for our example is:

Algorithm 4: Scheduled Outer Component

1 s t a t e [ 1 ] = input [ 1 ] + input [ 2 ] ;
2 s t a t e [ 2 ] = input [ 3 ] + input [ 4 ] ;
3 s t a t e [ 3 ] = input [ 5 ] + input [ 6 ] ;
4 s t a t e [ 4 ] = input [ 7 ] + input [ 8 ] ;
5

6 output / 4 = ( s t a t e [ 1 ] + s t a t e [ 2 ] + s t a t e [ 3 ] + s t a t e [ 4 ] ) ;

Now the equations set can be lowered to assignments and finally compiled. In
figure 2.1 we show the pipeline of the compiler we described.

2.3.2 Object Oriented Features

The Modelica specifications [3] define the semantics of class extensions, which is a
core feature of programming languages. Notice that classes are very different from
common object oriented class extensions. Classes do not survive the flattening stage,
and are not needed to produce a correct simulation, and do not entail a locality of
the fields in memory. Thus, the semantic of class extension is in - its simplest
form - just code reuse. Furthermore, Modelica class extensions allow for base class
modifications, as an example, consider the snippet of code taken from the Modelica
documentation [5] shown in algorithm 5

Algorithm 5: Object Oriented Example

1 p a r t i a l model BaseCorre la t ion
2 input Real x ;
3 Real y ;
4 end BaseCorre la t ion ;
5

6 model Spe c i a lCo r r e l a t i o n
7 extends BaseCorre la t ion (x=2) ;
8 equation
9 y=2/x ;

10 end Spe c i a lCo r r e l a t i o n ;
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The specialized class is allowed to specify the value of base class members, as
well as to add new equations to the equation set. Furthermore, the class of any
member object of the base class can be replaced as well. x could have been replaced
with a custom float type. This behavior is clear in the case of extension, since
the extended class will contain the replaced type. Beside violating best practices as
Liskov substitution principle [16], it prevents the compiler to detect type correctness
by just comparing types, since they may have been modified. Furthermore, with the
use of the keyword replaceable, this substitutions can be performed on classes that
are being used as members rather than being extended. An example is shown in
algorithm 6:

Algorithm 6: Repleacable Example

1 p a r t i a l model Base
2 r e d e c l a r a b l e input Real x ;
3 Real y ;
4 end BaseCorre la t ion ;
5

6 model Contained
7 BaseCorre la t ion o ( r e d e c l a r e x=2) ;
8 equation
9 o . y=2/o . x ;

10 end Spe c i a lCo r r e l a t i o n ;

This implies that Modelica classes layout can be calculated only at each object
declaration site, and that 2 object with the same type may have very different
layouts. Thus, Modelica classes are not the definitions of a datatype, rather they
are the template used to compute the data layout at each instantiation point.

2.3.3 Flattening and Flat Modelica

As we showed, Modelica object oriented language features must be simplified up
to a point that no high-level features are preserved. The Modelica specifications [3]
describe the exact rules this flattening process must follow. In particular they specify
that each variable and equation of the system must be scalarized and unrolled, until
all that remains is a list of scalar variables and single equations. Therefore, there is a
clear distinction between the front-end and the back-end of a Modelica compiler. The
first handles the syntactic-sugar, code expansion and the production of the flattened
list of equations. The second one is tasked to bring that list in a executable form.

Flat Modelica Due to this strong distinction between front-end and back-end
a specification for a flat Modelica language is being developed. Such language is
intended to establish a layer of compatibility across tools of the Modelica ecosystem.

2.3.4 Limitations of the language

Consider the equations described by the following for-equation:

1 for i in 1 : k loop
2 input [ 2∗ i ] + input [ ( 2∗ i ) + 1 ] = s t a t e [ i ] ;
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As we said such loop must be unrolled in the flattening stage. If such is the case then
the compile-time will depend on the k compile time constant. Thus, the compilation
time will depend not on the length of source file but on the scalar-equations count.
Therefore, if a compiler is compliant with the specifications and it unrolls every
for-equation, then large simulations cannot be elaborated in reasonable time.

For-loop preservation Due to the reasons shown we would wish to be able to
preserve some kind of high level information after the flattening stage. The simplest
choice is to preserve the for-equations syntax across front-end and back-end. Many
high level features can be transformed into for-loops in the front-end and for-loops
are implementable efficiently into machine code, if they can be preserved up to that
point.

The flat-Modelica language will include notations for the for-equations as well.

2.3.5 Modelica compilers implementations

Modelica specifications only require that the output of a compiler pass is a simula-
tion. How such simulations is not defined. The main open-source implementation of
Modelica is open Modelica compiler, OMC [6]. open Modelica compiler translates a
Modelica simulation into C code. The output of OMC must be then compiled by a
third-party C compiler, such as GCC.

OMC is written in Metamodelica [17]. Metamodelica is a Modelica super-set
able to express more general programming language features, such as exceptions.
OMC is therefore a bootstrapping compiler. OMC is the only implementation of a
Metamodelica compiler.

2.4 Programming VS modeling languages

We provide in table 2.2 the characteristics of the C language, as a representative
of imperative languages, compared to the Modelica language, as a representative of
modeling languages.

C Modelica

source code size tied to compilation time yes yes

for-cycles indicies tied execution time yes yes

for-cycles indicies tied compilation time no yes

array sizes tied to execution time yes yes

array sizes tied to compilation time no yes

compile time evaluated code preprocessor only yes

Figure 2.2: Comparison between C, an imperative programming language, and Mod-
elica, a modeling language. For simplicity, the imperative programming capabilities
of Modelica are ignored.
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Here we can notice the issue with modeling domain specific languages. By in-
creasing the size of vector or of induction variables the compilation time increases.
Beside being unexpected for those who come from the field of computer science, this
is a critical issue. If we wish to enable the usage of these domain specific languages
for large scale systems this is unacceptable. Input programs of fixed file length
quickly becomes too large to be compiled.

We will later prove that one obstacle to fast compilation is the requirement of
Modelica to allow arbitrary expressions evaluation at compile time.

2.4.1 In-memory representation

We provide now a insight in how compilers handle the compilation of programming
languages, so that it may be later be easier to state explicitly what is the issue with
the state of the art in the event that a reader may have no deep knowledge in the
field.

Formal languages are usually defined by two components, their semantics and
their syntax. Semantics is used by the compiler to produce the executable described
by that program, while syntax is used to parse the source file and to build a data
structure that will be manipulated across the stages of the compilation pipeline.
The concrete syntax of a language is the syntax actually used by the user to write
a source file and is usually defined by some meta-syntax, such as EBNF [14].

Once the source file has been parsed, the textual nature of the concrete syntax is
usually lost. A representation equivalent to the source code is held in memory as an
abstract syntax tree, where each node of the tree has been generated by a rule of the
grammar. As an example, consider a simple language composed only by additions
and multiplications that follows the normal precedence rules:

ADD := MULT |(MULT + ADD)

MULT := ”term”|(”term” + MULT )

And the input string a + b ∗ c + d.

The abstract syntax tree obtained is shown in Figure 2.3.

d

add

add

a

mult

b c

Figure 2.3: Example of Abstract Syntax Tree obtained from parsing a simple math-
ematical expression

The existence of abstract syntax tree allows us to express the recursion present
in the grammar of all programming languages.
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If there is no loss of data in the parsing process, then it is possible to dump the
abstract syntax tree in textual format. If the target textual format is different from
the source file then it is said to be a translation, if it is the same, it is said to be
a serialization. If the abstract syntax tree was manipulated before being serialized,
either in a reversible or irreversible way, then it is said to be a code transformation.

2.4.2 Code Expansions

Physical equations systems often contain equations that share the structure, that
is, they have the same concrete syntax tree. As an example, finite element volume
problems are often described by few equation repeated for a large set of variables.
Since the quantity of variables is a parameter that may be tuned throughout the
development of the analysis, it is natural to expect that a language designed to
describe such systems will allow to easily modify such parameters.

A possibility is to allow the user to write multiple equations as a for-cycle. We
call for-equation syntax any syntax that is composed of a induction variable i, a
induction range r and a equation e that may or may not include a usage of i in its
expressions:

f(x) = k ∀x ∈ X

Where X is some set of items {x1, . . . , xn}. Such syntax entails that there exists
a equation ek for each element xk ∈ X, obtained by replacing x with xk in the
equation f(x) = k. Thus, we define as for-equation E the list of elements e0, . . . , en,
where each ex ∈ E is a scalar-equation.

We define vector-variables v as a list v1, . . . , vn of variables, for sake of clarity
we refer to variables and equations as vector-variables and vector-equations.

In memory representation The for-equation syntax will be held in memory by
the compiler in a abstract syntax tree. As an example, it may be structured as the
following:

eqNode interval

forNode

leftHand rightHand

Figure 2.4: Structure of a generic for-equation as represented in an Abstract Syntax
Tree

Since a for-equation syntax holds all the information needed to compute the un-
rolled set of scalar-equation, we would like to preserve such compact representation
as long as possible across the compiler stages.
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General purpose programming languages implement control flow structure such
as the for-loop as a machine code jumps. This implies that they do not require to
unroll the for-loop into a list of statements. Not only, it may not even be possible to
unroll those loops, since their starting and ending conditions may not be known. The
syntax we showed for equations systems is very different. The bounds of the for-loop
must be computable at compile time. If they were not computable they would be a
unknown variable themselves, and they would contribute to the equations set, rather
than specify how it is formed. Furthermore, since the compiler task is to transform
a declarative set of equations into a list of instructions, then compiler may need to
manipulate the vector-equations as a mathematical object. If that is the case, then
transformations of the abstract syntax tree are required. Let us assume that X(t)
contained only two variables, then the for-loop would imply only two equations. The
root foorNode shown in the figure 2.4 can be replaced and the eqNode tree can be
duplicated. The resulting tree is the one showed in figure 2.5

eqNode eqNode

listNode

leftHand rightHand leftHand rightHand

Figure 2.5: Structure of a generic list of equations as represented in an Abstract
Syntax Tree. For simplicity, only two equations are shown – in general, any number
of eqNode istances is allowed.

We call scalarized-equations this abstract syntax tree and all equivalent syntax
trees .

Notice that if for-equations must be manipulated to produce a simulation, then
the task of a compiler of a language describing system of equations is different than
simply translating from a high-level description of a program to a low-level one. The
abstract syntax tree must be analyzed at compile time to deduce the semantics of
the simulation.

Consider again the interval node shown in the previous example, a language may
allow to provide an arbitrary expression as bounds of the interval. If such is the case
then those intervals must be computed at compile time to be able to perform the
unrolling. Thus, not only code expansion is required, but also arbitrary expression
computation as well.

2.5 Compilers

There exists multiple projects that can be used as base on which a compiler front-
end can be built. Among the most known is gcc [4]. OpenModelicaCompiler emits
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C code that is later compiled by GCC. While we may adopt the same strategy, since
it is our interest to create the fastest compiler possible we will not do so.

Rather we will focus on the LLVM project.

2.5.1 LLVM

The LLVM compiler infrastructure project is a set of compiler and tool-chain tech-
nologies [1]. LLVM can be used to develop a front end for any programming lan-
guage and a back end for any instruction set architecture. LLVM is designed around
a language-independent intermediate representation that serves as a portable, high-
level assembly language that can be optimized with a variety of transformations over
multiple passes [2].

The main component of the LLVM project is the LLVM intermediate represen-
tation (LLVM-IR). The LLVM-IR is a low-level programming language with many
similarities to assembly languages. It is a RISC instruction set and most of the
platform dependent features are abstracted away. As an example, calling conven-
tions are hidden by the call and ret instructions. There is not a fixed number of
registers, rather they are a infinite amount and register allocation is performed in
the back-end of the compiler.

The snippet of code in algorithm 7 is a hello world implementation in the LLVM-
IR:

Algorithm 7: LLVM example

1 @. s t r = internal constant [ 14 x i 8 ] c” he l l o , world \0A\00”
2

3 declare i 32 @pr int f ( i 8 ∗ , . . . )
4

5 define i 32 @main( i 32 %argc , i 8 ∗∗ %argv) nounwind {
6 entry :
7 %tmp1 = gete l ementptr [ 14 x i 8 ] , [ 14 x i 8 ]∗ @. st r , i 32 0 , i 32 0
8 %tmp2 = c a l l i 32 ( i 8 ∗ , . . . ) @pr int f ( i 8 ∗ %tmp1 ) nounwind
9 r e t i 32 0

10 }

The snippet of code exemplify many important traits of the language:

• the language is typed, and there are no implicit casts.

• Every function declaration has a return type and a type for each parameter.

• Types must be specified at each usage of a variable. This has the advantage
of avoiding the need of lookup onto symbols tables.

• The number of parameters is fixed, except for variadic functions, such as printf.

• Signatures of external functions must be specified, since printf is implemented
by the c standard library.

• Storage type of symbols can be specified, since .str has no reason to be exposed
to other object file at compile time, then it is possible to store it as internal,
so that it will not be populate the table of public symbols.
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While this is a language that allow fine-grained control on the operations that
must be performed at a extremely low-level. It is not optimal describe systems of
equations. We will handle such issue in chapter 5.

A note on LLVM-MLIR It must be noted the compiler field is quickly moving
to adapt the new LLVM-MLIR intermediate representation as core target of various
language front-ends. In the long term we believe that would gain much from adopt-
ing LLVM-MLIR in term of compatibility with other tools and of maintainability.
Unfortunately, at the moment LLVM-MLIR is not yet mature enough to provide
the traits just described.

2.6 Related works

We are aware of only one related work, a method to improve the compilation speed
of Modelica has been proposed by Zimmermann, Fernandez and Kofman [23]. They
proposed set-based graph methods intended to improve the performance of already
existing compilers, and their algorithms are extensions of those currently used in
OpenModelicaCompiler. Their methods suggest to keep the graphs in implicit form
and materialize the nodes and edges of the graphs only when the computation cannot
carry on in any other way.

Our solutions is similarly based on graphs. The main difference between their
solution and ours is that we pose restrictions on the languages we can compile, we
execute one of the step of the pipeline in two stages rather than one, and we do not
require to modifications of the graphs after they have been built.

2.7 Conclusions

In this chapter we have shown the state of the art in the field of domain specific mod-
eling languages and provided a inside in how their compilers operate. In particular
we have shown the minimal pipeline that is not able to be highly performant when
applied to the domain of large scale systems. In particular we isolated the problem
of array-preservation across the pipeline stages. Furthermore, we have shown LLVM
and the issues in using LLVM-IR as a intermediate representation directly.



Chapter 3

Theoretical Background

I wish my wish would not be
granted

Douglas R. Hofstadter

In this chapter we present the fundamental definitions and algorithms that will be
used throughout this document. This includes generic definitions regarding graph
theory, matching and scheduling algorithms, polyhedral analysis. Furthermore, we
will provide simple higher-order function definitions that will be widely used to
describe operations on set of indices.

3.1 Graph Theory

The algorithm we discuss in this document are mostly based on graph theory, and in
particular they are based on the exploitation of homomorphism between graphs to
achieve better performances. Thus, we introduce the definitions of graphs, directed
graphs, bipartite graph, graph homomorphism, path, cycles, rank and strongly con-
nected components.

3.1.1 Graphs

A graph G is defined as a ordered pair (V,E) composed by:

• V a set of vertices.

• E ⊂ {{x, y} | (x, y) ∈ V × V } a set of edges, that is, a set of pairs (x, y).
There is a edge from vertex x to vertex y iff (x, y) ∈ E.

Directed and undirected graphs If a graph G = (V,E) is such that

(x, y) ∈ E ⇐⇒ (y, x) ∈ E

then the graph is said to be undirected. If that is not the case it is said to be
directed.

31
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Bipartite graphs If a graph G = (V,E) is such that V can be divide into two
disjoint subset S1, S2 and S1 ∪ S2 = V and

(v1, v2) ∈ E =⇒ v2 /∈ S1 ∀v1 ∈ S1, v2 ∈ V

(v1, v2) ∈ E =⇒ v2 /∈ S2 ∀v1 ∈ S2, v2 ∈ V

then the graph G is said to be a bipartite graph. Informally, a graph is said to
bipartite if it is possible to divide the verticies into two set such that no vertex in
one set is connected to a vertex in the same set.

Paths and Cycles A list P = [p1, . . . , pn] is said to be a path on a graph G =
(V,E) if for each adjacent pair of elements px, py ∈ p it holds that (px, py) ∈ E.

A list P = [p1, . . . , pn] is said to be a cycle on a graph G = (V,E) if it is a path
on the graph G and p1 = pn.

We call path(p, g) and cycle(c, g) the function that evaluate to true iff p and c
are path and cycle of g respectively.

Graph homomorphism A function f is an homomorphism between the graphs
G and H iff

{u, v} ∈ Edges(G) =⇒ {f(u), f(v)} ∈ Edges(H)

As an example consider graphs 3.1a and 3.1b.

eq1

eq2

a1

a2

b1

b2

(a)

eq a

b

(b)

Figure 3.1: Two graphs demonstrating an example of homomorphism.

The function that maps eq1 and eq2 in eq, a1 and a2 in a, and b1 and b2 in b is
an homomorphism between graph A and graph B.

Rank We define the function rank : V → N that maps a vertex with the number
of edges containing that vertex.

Strongly Connected Components Given a graph G = (V,E) and a vertex
v ∈ V we call Strongly Connected Component of v in G the set S such that:

s ∈ S ⇐⇒ ∃P = [v, . . . , s], N = [s, . . . , v] : path(P,G) ∧ path(N,G) ∀s ∈ V

That is, S is the set of vertices that can both reach and are reachable from v.
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3.1.2 Bipartite Matching

As we said in Section 2.3.1 conventional Modelica compilers perform the matching
and the scheduling steps during compilation. Consider the following snippet of
Modelica code, which will be the running example for this section:

1 model Example
2 parameter Real x ;
3 Real y ;
4 Real z ;
5 equation
6 0 = −x+y ; \\ eq1
7 y = z ; \\ eq2
8 end Example

The objective of the matching stage is to pair each equation with a single variable,
no variable can be paired with two equations. The candidates variables for the
matching of an equation are the variables used by the equation itself.

We can model this problem with a bipartite graph G = (V,E). V is composed
by the elements y, z, eq1, eq2. x does not contribute to the matching because it is
a parameter and its value will be known at compile time. E is composed by the
elements (eq1, y), (eq2, y), (eq3, z). A graphical representation of G is presented in
figure 3.2a.

eq1 y

eq2 z

(a) Unmatched graph

eq1 y

eq2 z

(b) Matched graph

Figure 3.2: Example modeling the relationship between equations (eq1 and eq2) and
variables (x, y) before and after matching

When presented in graphical form, the problem of matching consists of selecting
a set of edges S such that:

∃(x1, x2) ∈ S : x1 = v ∨ x2 = v ∀v ∈ V

distinct(x1, x2, x3, x4) ∀(x1, x2), (x3, x4) ∈ S

Where distinct is true iff no parameter is equal to another one. Informally, a match-
ing is correct iff each vertex belongs to exactly one matched edge. In the current
example there is only one possible matching, that is S = [(eq1, y), (eq2, z)]. Such
matching is presented in figure 3.2b.
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3.1.3 Maximum Flow

A maximum flow problems is a problem of which we have quadruple Q = (G, s, l, f)
where:

• G = (V,E) is a graph

• s ∈ V such that in(s) = ∅ is called source node

• l ∈ V such that out(s) = ∅ is called sink node

• f : E → I

We wish to find the function g : E → I subject to:

g(e) ≤ f(e) ∀e ∈ E∑
∀o∈out(v)

g(o) =
∑
∀i∈in(v)

g(i) ∀v ∈ V \ {s, l} (3.1)

With objective function:

max
∑
∀i∈in(l)

g(l)

Informally, f describes the maximum flow that can travel in a edge, g is the
assignment that maximizes the flow reaching the end node that we wish to find.
The first constraint states that the flow assigned to a edge cannot be larger than the
maximum flow of that edge. The second constraint states that the sum of the flow
of all incoming edges of a node must be equal to the sum of the flow of all outgoing
edges of that nodes. In other words, there is conservation of the flow.

Residual Graph Consider a maximum flow problem defined by Q = (Q, s, l, f)
of which we know a possible solution g that satisfies the constraints. For each Q, g
there exists a residual graph R = (RV,RE) composed as such:

v ∈ V ⇐⇒ v ∈ RV

e ∈ E ∧ g(e) ≤ f(e) ⇐⇒ e ∈ RE

e = (v1, v2) ∈ E ∧ g(e) ≥ 0 ⇐⇒ (v2, v1) ∈ RE

(3.2)

Informally, such graph has a vertex for each vertex in the original graph. It has all
the edge that existed in the original graph iff some flow can still be sent across such
edge; we call them forward edges. Finally it has the opposite edge for each edge
in the original graph iff any amount of flow can be removed from the edge in the
original graph; we call them back edges.

It can be proved that there exists a solution g′ such that the constraints are still
satisfied and the objective function increases in value iff there exists a path p from
s to l in the residual graph. Furthermore, g′ can be obtained starting from g and p
as follow:

g′(e) =


g(e) + 1 ⇐⇒ e ∈ p ∧ e ∈ forwardEdges

g(e)− 1 ⇐⇒ e ∈ p ∧ e ∈ backEdges

g(e) otherwise

(3.3)
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Relationship between Matching and Maximum flow Given a bipartite match-
ing problem, since each vertex of each set must be connected to exactly one node
of the other set it is possible to formulate the maximum bipartite matching as a
maximum flow problem [22] [20]. This is achieved by connecting each element of
one set with a source node, and each element of the second set with a sink node.
The maximum capacity of each set of the graph is set to one. The flow graph of the
running example is shown in figure 3.3.

eq1

y
0/1

sink

0/1

eq2

0/1

z
0/1

0/1

source

0/1

0/1

Figure 3.3: Flow graph constructed from Figure 3.2a for solving the matching prob-
lem of the running example through finding the maximum flow.

3.1.4 Algorithms for bipartite matching

We now present two bipartite matching algorithm, before doing so we introduce the
formal definition of maximum flow problems, since many graph algorithm can be
reduced to a maximum flow problem.

Ford–Fulkerson algorithm Since bipartite matching is a particular case of the
maximum-flow problem, to the maximum matching problem can be solved apply-
ing the Ford–Fulkerson algorithm [7]. The Ford-Fulkerson algorithm operates by
computing residual graph, finding a path from the source to the sink on that graph
and then by updating all edges on the path found, Until no more such paths can
be found. As an example, we show how the Ford-Fulkerson algorithm matched eq2
with y on the previously obtained graph. The first iteration is trivial, the residual
graph is identical to the original graph and a depth-first search starting from source
will yield a path from source to sink, thus we can increase the flow on those edges,
as shown in figure 3.4a.

As the maximum flow of each edge is 1, the residual graph is obtained by inverting
every edge with some flow assigned to it. We show the residual graph in Figure 3.4b.

Again, we can improve the flow by finding another path from source to sink.
If no such path is possible, then the current flow is the maximum possible. In this
example it can still be improved, due to the path source → eq1 → y → eq2 →
z → sink. Note how (source, eq1), (eq1, y), (eq2, z), (z, sink) all belonged to the
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eq1

y
0/1

sink

1/1

eq2

1/1

z
0/1

0/1

source

0/1

1/1

(a) First Iteration

sink

y eq2

eq1

z
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(b) Residual graph after one iteration
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(c) Second Iteration

Figure 3.4: Flow graph of Figure 3.3 after the first and the second example iterations
of the Ford-Fulkerson algorithm respectively.

forwardEdges, (y, eq2) belonged to the backEdges in the residual graph. We can
now compute the new assigned flow, which is defined by 3.3. We can see that the
total flow is increased.

The graph after the second iteration is shown in Figure 3.4c.
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The residual graph now no longer has a path from source to sink, thus the current
flow is the maximum possible, and thus the matching is maximum.

The complexity of the Ford-Fulkerson algorithm is O(fE) where E is the number
of edges in the graph and f is the maximum flow of the graph.

Hopcroft–Karp algorithm The Ford-Fulkerson algorithm is able to find the
maximum flow on any kind of graph, therefore it is useful to devise a specialized
variant of the algorithm specialized for the bipartite matching case. There are
various such algorithms, the most well known one is the Hopcroft-Karp algorithm
[13].

This algorithm operates in a similar way as the Ford-Fulkerson algorithm. It
iteratively builds a matching by executing a depth-first search to build a set of
matched edges and by modifying such set at each iteration. After each modification
the matched set increases in cardinality, until no path can be found.

The difference lies in the fact that, due to the restrictions on graphs considered,
there is no need to build the residual graph, and the only support data structure
needed is the set M that will contain the matched edges.

Algorithm 8 shows the pseudo-code of the Hopcroft-Karp algorithm. findAumentingPath
is the function that returns the maximum path P = [p0, . . . , pn] such that:

e /∈M ∀e ∈ edges(p0)

e /∈M ∀e ∈ edges(pn)

(px, px+1) ∈M ⇐⇒ (px+1, px+2) ∈M ∀x ∈ [0, n− 2]

(3.4)

Informally the augmenting path is the longest path that alternates between matched
and not matched edges. Such path can be found with a depth-first search that does
not visits non alternating edges. Thus the complexity is linear with respect to the
edge count.

After this path has been found the matching set is updated by removing all
edges that were already matched in the path and by inserting those that were not.
In order to formally describe this operation, we introduce the set-xor operator

⊕
,

that is: the set of elements present in exactly one of both operands. More formally:

x ∈ (L
⊕

R) ⇐⇒ (x ∈ L ⇐⇒ x /∈ R)

Algorithm 8: Hopcroft-Karp algorithm

Input: G = (U ∪ V,E);
Output: M ⊂ E ;
M ← ∅;
P ← findAumentingPath(G,M);
while P 6= ∅ : do

P ← findAumentingPath(G,M);
M = M

⊕
P ;

end

The complexity of this algorithm is O(|E|
√
|V |). For random graphs the av-

erage performance is better, in particular for sparse graph the average depth first
search has log |V | complexity [12]. Thus, the average complexity on sparse graphs
is O(|E| log |V |).



38 CHAPTER 3. THEORETICAL BACKGROUND

3.1.5 Scheduling algorithms

As we said in section 2.3.1, the SCC resolution and the scheduling passes require to
detect the dependencies among variables. A variable x depends on a variable y if the
equation e matched with x in the matching stage requires y to be computed. Thus,
it is possible to display the dependencies as a graph G = (V,E). The vertexes V are
variables of the systems, and the edges E are the dependencies between equations
and variables. Notice that dependency graphs are directed graphs, rather than
undirected.

Consider the following already matched snippet of code that will be the running
example for the scheduling section.

1 model Example
2 Real x ;
3 Real y ;
4 Real z ;
5 equation
6 x = 5 ;
7 y = x ; \\ eq1
8 z = y + x ; \\ eq2
9 end Example

The vertex set V of the dependency graph of this module is equal to [x, y, z] and
the edge set E is [(y, z), (z, y), (z, x)] and it is shown in Figure ??. It is trivial for

y

xz

Figure 3.5: Dependency graph corresponding to the example Modelica model.

a human to produce a scheduling that respects the dependencies by looking at the
graph. Schedule first every node with outgoing incoming edges, then remove them
from the graph all scheduled nodes, then repeat until there are no nodes left.

Strongly connected components and scheduling A graph of dependencies
may contain cycles. If it does then it is not possible to find a schedule. Consider
the following slightly modified version of the running example.

1 model Example
2 Real x ;
3 Real y ;
4 Real z ;
5 equation
6 x = 5 ;
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7 y = −x + z ; \\ eq1
8 z = y + x ; \\ eq2
9 end Example

The dependency graph of this model is shown in Figure 3.6. Due to the cyclical

y

x

z

Figure 3.6: Dependency graph corresponding to the second example Modelica model.
Note that there is a cycle between variables y and z.

dependency none of eq1 and eq2 can be scheduled first. From the definition of
SCC 3.1.1 it follows that every cycle belongs to a SCC. Similarly for each SCC
composed of more than one element in the graph there must be one or more cycles
in the graph, and that for any two vertexes in a single SCC there must be a cycle
involving those two vertexes.

It follows that a graph is schedulable iff there are no SCC containing more than
one element. Therefore if a Modelica model is provided with circular dependencies,
then it must be rewritten is such a way that all SCCs are no longer present.

Automatic solvers do exists, unfortunately they are too complex when their input
is not constrained to a few equations only. In Modelica implementations is common
to calculate approximate solutions that involve at most 3 equations [3]. How such
an approximate solver operates is beyond the scope of this work, and will not be
discussed in depth, we will rather focus on how to find SCCs in the dependency
graph.

Khan Algorithm Scheduling is a well-known problem, one of the earliest solu-
tions dates to 1962 and is known as the Khan algorithm [15]. The Khan algorithm
operates as a human would, by scheduling the edges from scheduled nodes. The
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procedure is the following:

Algorithm 9: Khan algorithm

Input: G = (V,E);
Output: L ;
L← ∅;
S ← [x|x ∈ V : incomingEdges(x) = ∅];
while S 6= ∅ : do

s← S.extractOne();
L.append(s);
foreach n ∈ successors(s) do

E.removeEdge((e, n));
if incomingEdges(n) = ∅ then

S.append(n);
end

end

end
return L ;

At each iterations it schedules a node from the schedulable set S and removes
all its outgoing edges from the graph. At the same time, if a downstream vertex
n is now without any incoming edge, then n is added to S. The complexity of
Khan algorithm is O(|E| + |V |). The main advantage of this algorithm over other
scheduling algorithms is that it maintains a global state of all schedulable nodes.
Thus, it is possible to use a modified version of it when we wish to schedule nodes
in a particular pattern that is not related to the graph’s edges. Given a scheduling
selection function f we can rewrite the Khan algorithm as follow:

Algorithm 10: Khan algorithm with selection

Input: G = (V,E), f ;
Output: L ;
L← ∅;
S ← [x|x ∈ V : incomingEdges(x) = ∅];
while S 6= ∅ : do

s← f(S);
L.append(s);
foreach n ∈ successors(s) do

E.removeEdge((e, n));
if incomingEdges(n) = ∅ then

S.append(n);
end

end

end
return L ;

Thus, the khan algorithm is simple algorithm on which to build heuristically a
scheduling algorithms.
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Tarjan Algorithm The Tarjan algorithm is a well known algorithm to find strongly
connected components in a graph [21]. The algorithm operates by executing a depth-
first search starting from a random node. If not every node has been reached, it
starts a new deep-first search from an unreached node and repeat until all nodes
have been visited. Every time a node is visited in one of this searches it is marked
with an increasing index, furthermore the starting nodes are marked as as roots of
the strongly connected components.

Consider as an example the graph in Figure 3.7. Let us assume that x has

y

x

k z

Figure 3.7: Example dependency graph for illustrating the Tarjan algorithm for
finding SCCs.

been selected as the starting point of the exploration. None of the other nodes are
reachable from x, therefore the search ends immediately. In the second pass, suppose
that y has been selected as second root. Starting from y the second search explores
the entire graph.

The graph annotated with the tags is shown in Figure 3.8: If we ignore the

x, 2, root 2

y, 1, root 1

k, 3 z, 4

Figure 3.8: Dependency graph in Figure 3.7, as annotated by the depth-first searches
of the Tarjan algorithm.

back-edges in the deep-first search - that is, the edges that would have brought the
exploration to a already visited node - then we obtain a forest of trees. In our
example the forest shown in Figure 3.9
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k, 3 z, 4x, 2, root 2

y, 1, root 1

Figure 3.9: Dependency graph in Figure 3.7, as transformed to a forest by the depth-
first searches of the Tarjan algorithm. Only the edges that were effectively traversed
by the algorithm remain in the graph.

Now we execute another depth-first search on the original graph starting from
any leaf v of this forest, in our example we start from element z, with index 4. Nodes
that were explored starting from a different root are ignored in this second phase.
This can be safely done because if two nodes belong to different roots in the Trajan
algorithm forest then either there is no path from the first one to the second or there
is no path from the second to the first. If both such paths existed then one would
have been found in the first depth-first search of the algorithm.

If in this exploration we encounter a ancestor n of v in the Tarjan forest, that is,
a node n such that there exists a path from n to v in the original graph, then both
n and v belong to the same SCC since we just found a path from v to n as well.

In our example, starting from z, we would visit y, which would be ignored since
belong to a different tree. The next node visited is x and thus x, k, z belong to the
same SCC.

Thus the graph divide in SCC is shown in figure 3.10, where nodes are marked
with the index of the SCCs they belong to.

Tarjan And Scheduling Notice that a depth-first search of the graph is needed
to perform the Tarjan algorithm. Thus, as a side-effect the algorithm produce a
scheduling of the graph that respect the dependencies. For this reason the Tarjan
algorithm is often used in Modelica compiler implementations since it will complete
the SCC search and scheduling step at the same time. Unfortunately the Tarjan
algorithm does not have the flexibility of Khan algorithm, as it is difficult to integrate
with heuristics.

3.2 Polyhedral Analysis

Since we will operate on a set of equations collapsed in for-equation form we must use
some kind of representation that allows us to describe the set on indexes used in a for-
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x, 1

y, 2

k, 1 z, 1

Figure 3.10: Dependency graph in Figure 3.7, as annotated with the final SCCs
found by the Tarjan algorithm. The nodes with the same tag identifier are part of
the same SCC.

equation. This problem can be easily described as Polyhedral model, that is, a model
which treats each loop iteration accessed as lattice points of a polyhedra. Analyses
and modifications are performed as affine transformations or more general non-
affine transformations generating equivalent polytopes optimized for the particular
application. LLVM implements polyhedral analyses in Polly [18].

As we will show in Chapter 4, one really useful property that will allows us
to reach much lower compilation times is to restrict variable accesses of arrays to
invertible functions. The expressive power of polyhedral analysis is much more
powerful than we necessitate, thus we will only use a subset of it. Here we show the
definitions of integer set to give a intuition of how our solution may be extended
and which related works already exists in the field of compilers.

The deviations are equivalent to those presented in Rajopadhye et al. [19]

Basic Integer Set: A basic integer set maps a tuple of integer parameters to a
set of integer tuples. As an example consider the following nested for cycles:

1 for ( int a = 0 ; a < k ; a++)
2 for ( int b = a ; b <= j ; b++)
3 c [ a ] [ b ] = d [ a ] [ b ] ;

The integer set describing all possibles values of a and b is

S(k, j) = {(a, b) ∈ Z2|a ≥ 0 ∧ a < k ∧ b ≥ a ∧ b ≤ j}

That is, a integer set is described as a function from some parameters to the set
of all integers that satisfy some expression involving those parameter.

Clearly this function may be arbitrarily complicated, Polly operates on basic
integer sets:

A integer basic set is defined as a function S : Zn → 2Z
d

: s→ S(s) where

S(s) = {x ∈ Zd|∃z ∈ Ze : Ax + Bs + Dz + c ≥ 0}

with A ∈ Zm×d, B ∈ Zm×n, D ∈ Zm×e, c ∈ Zm



44 CHAPTER 3. THEORETICAL BACKGROUND

We will not delve on the meaning of all parameters of such definition. We only
wish to show that there exists a know description of transformation of for-loops and
that is based on matrix operations.

Indeed we will show in Chapter 5 that we base our description of for-loops on
matrix operations as well.

It must be noticed that the a problem solved by polyhedral analysis is usually
solved by exploiting integer linear programming, which is a NP-hard problem. This
can be done because integer linear programming is a well optimized field and usu-
ally integer linear programming problems handled by polyhedral analysis are small
enough to be tractable.

3.3 Higher-order functions

We sometimes refer to map(s1, f1) and fold(s2, e, f2) functions where s1 is a set or
list of elements belonging to T , s2 = [x1, . . . , xn] is list of elements belonging to T ,
e a element belonging to E, f1 : T → E, f2 : E × T → E. Their definitions is:

map(s1, f1) = {f1(x) | x ∈ s1}

fold(s2, e, f2) = f2(. . . (f2(f2(e, x1), x2), xn))

Informally, map is the function that given a container and a function it applies
that function to each element of the container. fold is a shorthand to the following
snippet of code

1 temp = e
2 for ( x : s2 )
3 temp = f2 ( temp , s2 )
4 return temp

3.4 Conclusions

In this chapter we described the theoretical foundations that we will use in the next
two chapters, we show that most of the problems can be described as graph theory
problems. This will be useful to prove the complexity of the various stages of the
compilation pipeline. Furthermore, we will show in Chapter 5 that our solutions are
to some degree modifications of the provided well-known algorithms.



Chapter 4

On the hardness of producing a
efficient simulation

The beginning of wisdom is calling
things by their proper name.

Mistranslation of Confucius quote

In this chapter we provide the theoretical formulation of the problems we will handle
in this thesis as well as proofs of their complexity.

The main difference between the problem formulated in this chapter and those
already available in the state-of-the-art is that we do not wish to scalarize all equa-
tions ad variables and handled them as unrelated objects, rather we wish to preserve
as many for-equations across the pipeline. This in necessary because if it was pos-
sible to design all the compilation steps such that they operates in linear time with
respect to the number of for-equations but a step yielded scalar variables as an out-
put, then all step downstream would be forced to operate in linear time with respect
to the number of scalar variables.

In particular, we will prove that the matching step and the scheduling step have
NP-hard complexity. Furthermore we conjecture that the step of SCC search cannot
be solved in less than linear time complexity with respect to the number of scalar
variables.

4.1 Matching

In the matching stage, the compiler associates each scalar-variable with a single
scalar-equation. All variables are associated with a different equation and vice-versa.
In other words, it finds a bijection between variables and equations. This well-known
task is called bipartite matching. Later stages of the pipeline may benefit from
having access to for-equations as well, therefore we introduce additional constraints
to the problem in order to maximize the number of for-equations preserved in the
output of this stage. We prove that adding this requirement makes the problem
NP-hard.

45
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4.1.1 Problem Formulation

The variable access functions are arbitrary, so without loss of generality we will
consider a simplified single variable, single dimension problem, where all the vector
access of all the equations are in the form i+k. More formally given a single vector-
variable V = [v1, . . . , vn] composed of scalar-variables, and a list of vector-equations
E = [e1, . . . , en], each vector-equation is composed of scalar-equations ex1, . . . , exm.

We want to find the bipartite matching that maximizes the number of consec-
utive scalar equations belonging to the same vector-equation that are matched to
consecutive scalar variables equations. We call this problem for-aware matching.

We formalize the for-aware matching on graphs by considering all scalar-variables
as one of the vertex set of a bipartite graph, and all scalar-equations as the member
of the other set. Therefore, the inputs of the problem will be:

• a vector V of vertexes

• a vector E = {e1, . . . , en}, ex = {ex1, . . . , exm}∀ex ∈ E composed by vertexes.

• a set F of pairs (x, y) where x ∈ ek, ek ∈ E, y ∈ V . F contains a pair iff the
first member of the pair can be matched with the second.

Informally, each element of V is the scalar-variable, each element of E is a vector-
equation, F determines if a scalar-variable was used by a scalar-equation. We define
SE as the vector of all scalar equations.

SE =

|E|⊕
i=0

Ei

where
⊕

is the concatenation operator.
We want to find the set S of matched edges. The objective function is the number

of times in which adjacent elements of V are matched with adjacent elements of the
SE. In other words, the number of times consecutive scalar-equations are matched
with consecutive scalar-variables.∑

Eq∈E

∑
e∈Eq

(S(e + 1)− S(e) == 1)

The only constraint is that every e in S is in the possible matches set F .

e ∈ S =⇒ e ∈ F

As an example, consider the following system of equations.

E =

{
A[i] = A[i + 1] ∀i ∈ [1, 2]

A[1] = A[2] ∗ 3

SE is the concatenation of all member of E so it would be a list of 3 elements.

SE =


A[1] = A[2]

A[2] = A[3]

A[1] = A[2] ∗ 3

V is composed by the variables used in the equations, V = {A1, A2, A3}
The set F of acceptable matches can be shown in graphical form as:
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A[1] A[2] A[3]

Eq1 Eq2 Eq3

An acceptable solution to the for-aware matching problem of value 1 is:

A[1] A[2] A[3]

Eq1 Eq2 Eq3

4.1.2 Proof of hardness

In order to prove that the for-aware matching problem is NP-hard, we reduce the
maximum-2-satisfiability problem (max-2-sat) [10] to our problem. max-2-sat cal-
culates the maximum number of clauses that can be simultaneously satisfied in a
boolean logic formula in conjunctive normal form. As an example, consider the
following conjunctive normal form formula

(a ∧ b) ∨ (¬a ∧ ¬c)

Max-2-sat maximizes the number of and-clauses evaluated to true. Since a is present
in a not expression, it is impossible to find an assignment with value 2, either (a∧ b)
will be true or (¬a ∧ ¬c) will be. So the maximum value is one, and the acceptable
solutions are:

a = 1, b = 1, c = 1

a = 1, b = 1, c = 0

a = 0, b = 1, c = 0

a = 0, b = 0, c = 0

(4.1)

Max-2-sat is a NP-hard problem, therefore if we can show that every instance of
max-2-sat can be solved with the use of the for-aware matching, and that encoding
the input data and interpreting the result can be done in polynomial time, then the
for-aware matching must be NP-hard. We perform this reduction by encoding the
max-2-sat input into the graph, where each variable is represented by a cycle. Before
providing the formal algorithm for such construction, we show a simple example of
how cycles can be used to achieve the reduction. Consider a cycle C where no vertex
v ∈ C has more than two edges connected to it.
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A B C

A′ B′ C ′

Consider the edge (A,A′) in the above example. We know that the matching only
matches at most one edge for each variable of the graph. If (A,A′) is matched then
other edges of A can not. Therefore (A,C ′) is not matched. Due to the same reason
(B,B′) must be matched, and so on. By transitivity if the edge (A,A′) is matched,
then the status of every other edge of the cycle is forced. All the vertical edges must
be matched, all the diagonal ones must not.

More formally, given a cycle C = [c1, . . . , cn] where

rank(c) = 2 ∀c ∈ C

Assuming that ci is the element of index i mod |C|, after the matching the following
will hold:

(Ci, Ci+1) ∈ S ⇐⇒ (Ci+1, Ci+2) /∈ S ∀i ∈ [0, |C|]

Furthermore notice that we can represent a conjunction between two variables
by placing two cycles consecutively. As an example, A ∧¬B can be encoded as two
cycles, one (Ea, V

′
a, E

′
a, Va) associated to A and one (Eb, V

′
b , E

′
b, Vb) to B:

Va Va′ Vb Vb′

Ea Ea′ Eb Eb′

Where (Ea, Va) is arbitrarily associated with the variable A and the edge (Eb, Vb)
is arbitrarily associated with ¬B. Under the assumption that Ea′ , Eb ∈ ek, ek ∈ E
and that ek is the only element of E with size greater than one. The matching
algorithm will try to maximize the number of adjacent matches belonging to the
same set. Therefore, it will match the vertical edges of both A and B producing the
correct solution for the 2-max-sat problem. The solution is indeed A = True and
B = False.

Reduction of max-2-sat We provide an algorithm that builds such graphs for
every possible input of the max-2-sat problem. Informally, the algorithm proceeds
as follow: it scans every and-clause left to right, and for each variable seen it will
either start a cycle if that variable has not been seen before, or continue that cycle
if it has. It will place two edges of two variables inside the same clause adjacent
to each other, so that they will be allowed to contribute to the objective function.
After all clauses have been seen, it will close all cycles.

After having built this graph it will invoke the for-aware matching and produce
a set of matched edges. From that set, it will deduce the solution of the original
problem. Therefore, to perform the reduction we must:
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• provide the algorithm

• prove that the encoding and the result interpretation are polynomial

• prove that the result is correct

The algorithm accepts as input a list I of ordered pairs. Each pair is composed
of 2 expressions, the expressions are either a equivalent to X or ¬X. We assume
without loss of generality that the first occurrence of a literal will always be in the
positive form. The algorithm returns the dictionary R that maps each literal to its
value, true or false. edges is the list of ordered pairs (x, y) equal to F . rmn is the
counter used to store the leftmost node reached in the process of building the graph.
vectorEq is the set of vector-equations, encoded as a set of indexes i, where i is
the index of the two nodes, each belonging to either V or SE. litCycleStart and
litCycleEnd are the maps that associate each literal with the index of the vertex
that is either the start or the end of the path that is being built from that literal.
During the execution of the algorithm we always associate the beginning of a path
with indexes from V and the current end of the path with indexes of SE.
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Algorithm 11: Reduction of max-2-sat to the matching algorithm

Data: list(pair(literal, literal)) I
Result: map(literal, bool) R
integer rmn := 0;
map(literal, integer) litCycleStart := {};
map(literal, integer) litCycleEnd := {};
set(pair(integer, integer)) edges := {};
list(list(integer)) vectorEq := {};
R := {};
for clause ∈ I do

for exp ∈ clause do
if exp /∈ litCycleStart then

litCycleStart[exp.lit()]← rmn;
edges← edges ∪ (rmn, rmn);
edges← edges ∪ (rmn, rmn + 1);
edges← edges ∪ (rmn + 1, rmn + 1);
litCycleEnd[exp.lit()]← rmn + 1;
rmn← rmn + 2;

else
if ¬exp.isNotExp()] then

edges← edges ∪ (litCycleEnd[exp.lit()], rmn);
edges← edges ∪ (rmn, rmn);
litCycleEnd[exp.lit()]← rmn;
rmn← rmn + 1;

else
edges← edges ∪ (litCycleEnd[exp.lit()], rmn);
edges← edges ∪ (rmn + 1, rmn);
edges← edges ∪ (rmn + 1, rmn + 1);
edges← edges ∪ (rmn, rmn + 1);
litCycleEnd[exp.lit()]← rmn;
rmn← rmn + 2;

end

end

end
vectorEq ← vectprEq ∪ {{rmn− 1, rmn− 2}};

end
for lit ∈ litCycleStart.keys() do

edges← edges ∪ (litCycleEnd[lit], litCycleStart[lit]);
end
matchSet := matching(edges, vectorEq);
for lit ∈ litCycleStart.keys() do

startingEdge := (litCycleStart[lit], litCycleStart[lit]);
R[lit]← (startingEdge ∈ matchSet);

end
return R;



4.1. MATCHING 51

Running example As an example, we show how the algorithm operates on the
input (A ∧ B) ∨ (¬A ∧ C). The outer cycle will be executed twice, the inner cycle
once. The first iteration of the inner cycle will operate on A. Since A is not present
in litCycleStart, it is the first time it is encountered, therefore the true branch of
the if-statement is executed. Thus, three edges are built, rmn is increased by 2,
litCycledEnd and litCycleStart are updated to contain the begin and end indexes
of the loop that is being built for A.

SA

EA

At the second iteration we operate on B and we repeat the same procedure as before,
since it is the first time B is encountered as well.

SA SB

EA EB

Now we store the information that the two adjacent edges of the edges associated
to A and B can contribute to the value:

SA SB

EA EB

Now the algorithm iterates over a new clause. The first literal is ¬A. We have
already seen A so we enter the second conditional branch. Since the literal is in
negated form, we add 4 edges. rmn as well as litCycleEnd are updated.

SA SB

EB EA

Finally, we place the last literal C exactly as described for the first occurrence of A
and B. Then we add the adjacent edges of A and C to vectorEq.
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SA SB SC

EB EA EC

At this point the first pass of the algorithm is terminated. Now, we iterate over the
collection of seen literals, and we close the cycle in the graph by emplacing the edge
from literal end to the literal start.

SA SB SC

EB EA EC

Now we can invoke the for-aware matching, it can produce value only by matching
the vertical edges touching nodes in the dotted regions.

Complexity of interpretation and graph production Constructing the graph
requires to iterate over all expressions of the input formula. The body of the loop
require constant time. Therefore the graph construction require linear time. The
same can be said when interpreting the results.

Proof of correctness To perform the reduction we need to prove that the for-
aware matching operating on the graph built by the described algorithm provides
the correct solution for each instance of the max-2-sat problem. Or in other words,
that the objective function of the for-aware matching is equivalent to the objective
function of max-2-sat.

The for-aware matching algorithm can improve the value of the objective function
only by matching edges belonging to vector-equations. Since, by construction, every
vectorEq contains lists of exactly 2 equations then it can only gain value from
matching both those equations with the respective scalar-variables with the same
index.

Let us call M the set of edges matched by the algorithm, and O the set of
edges that are allowed to contribute to the objective function. As stated before we
arbitrarily associate the edge of a cycle to the first occurrence of a literal l. Thus,
consider a literal l, and the cycle c associated to l. There is path p ∈ c starting with
the edge e allowed to contribute to the scalar objective function, and ending in first
edge s in the same cycle. We call n(x) the predicate that determines if a edge x was
placed while processing a negated literal.

All the occurrences of the literal in clauses that are not the ones generating the
edges e and s always contribute a even number of edges to the path. The occurrence
that placed s contributed 3 edges. Since the parity of those contributions is constant,
the only contribution that is relevant in order to calculate the parity of the path
is the one of e. The quantity of edges contributed by e only depends only on the
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presence of ¬ in the expression l which generated e. Therefore p has odd length iff
n(e). Thus: {

e ∈M ⇐⇒ s ∈M if n(e) = 1

e ∈M ⇐⇒ s /∈M if n(e) = 0

We define f : E → L the function that maps an edge to the literal associated to the
cycle containg it. We define S as the set of all first edges placed in each cycle in C.
Consider f(s), as we said the literal associated to s ∈ S is evaluated to true iff s is
the set of matched edges.

f(s) ⇐⇒ s ∈M ∀s ∈ S

From the previous two statements we know that:{
f(e) ⇐⇒ e ∈M if n(e) = 1

f(e) ⇐⇒ e /∈M if n(e) = 0
∀e ∈ O

We call g the function that associate e ∈ E to the expression x that was being
processed when e has been placed into edges. The g(e) is mapping e to the expression
that generated it, f(e)is mapping it to the literal inside e and n(e) determines if it
was in negated form it follows that:{

g(e) ⇐⇒ f(e) if n(e) = 1

g(e) ⇐⇒ ¬f(e) if n(e) = 0
∀e ∈ O

By transitivity:
g(e) ⇐⇒ e ∈M ∀e ∈ O

We previously defined the set of vector-equations of the for-aware matching as V .
Since for each vector-equation v ∈ V is composed only by two edges e1, e2 ∈ O we
know that the value of the objective function of the algorithm is:

value =
∑

(e1,e2)∈V

e1 ∈M ∧ e2 ∈M

By substitution with the former statement:

value =
∑

(e1,e2)∈V

g(e1) ∧ g(e2)

We call X the list of ∧ clauses. Since e1 and e2 must come from the same x ∈ X we
can replace g(e1) ∧ g(e2) with x:

value =
∑
x∈X

x == 1

That is: the value that must be maximized is the quantity of boolean clauses that are
evaluated as true. However this is the objective of the max-2-sat function. Therefore
we successfully performed the required reduction. If we assume that the for-aware
matching has polynomial complexity then all steps involved in the algorithm have of
polynomial complexity. This is a contradiction since max-2-sat is NP-hard, therefore
the matching is NP-hard as well.
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4.2 SCC collapsing

After each equation has been matched to a single variable, we shall search all the
dependencies among variables. Suppose that variables vx depends on another vari-
able vy. If that is the case vy must be calculated before vx. If the second variable
also depends on the first, then we cannot schedule them, as none of the two can
be scheduled first. It is well-known that the dependencies in the scalar case can be
found by searching for strongly connected components (SCC) in the graph of de-
pendencies of scalar variables. There are algorithm that can perform this search in
linear time. We show how the knowledge of the vector equations allows us to reach
better performance than the scalar case. We do this by exploiting the information
we can derive from a much smaller vector dependency graph, which is homomorphic
to the scalar graph.

4.2.1 Implications of Homomorphisms in the SCC search

Consider the set of matched vector equations Eq = {e1, . . . , en} where eij is a scalar
equation belonging to ei. Also consider the set of vector variables V ar = {v1, . . . , vn}
where vij is a scalar variable belonging to vi. The function M : V ar → Eq returns
the scalar equation matched with the scalar variable v. The function D : Eq×V ar →
{0, 1} returns true iff the equation has a dependency over the variable.

We define the scalar graph S = (SV, SE) where SV is the set of all scalar
variables, and SE is defined such that:

(vxk, vyj) ∈ SE ⇐⇒ D(M(vxk), vyj)

That is: there is an edge between scalar variables iff there is a dependency between
the scalar equation matched to the scalar variable vxk and the scalar variable vjk.

Additionally, we define the graph G = (V ar,E) as follow:

(vx, vy) ∈ E ⇐⇒ (∃vxj , vyk =⇒ D(M(vxj), vyk))

That is: there is an edge between vector variables vx and vy iff there is an edge
between the scalar equation that matches scalar variable vxj ∈ vx, and scalar variable
vyk ∈ vy.

We call f the function that maps a scalar variable to the vector variable it is
contained in. f is a homomorphism, since:

(vxj , vyk) ∈ SE =⇒ (vx, vy) ∈ E

We wish to prove that if a variable vxy ∈ vx belongs to a cycle C, then f(v)
belongs to a cycle as well. C is defined as a list of directed edges [e1, . . . , en] where
the source of the first edge is the sink of the last edge. From the definition of
homomorphism we know that:

(vxj , vyk) ∈ SE =⇒ (f(vx), f(vy)) ∈ E

By negating this proposition, we find the following:

(f(vx), f(vy)) /∈ E =⇒ (vxj , vyk) /∈ SE ∀j, k ∈ SE
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That is: if in the graph G there is no cycle between vector variable vx and vector
variable vy, then there are no cycles containing scalar variables vxj and vyk.

This implies that we can deduce the absence of dependencies among scalar vari-
ables belonging to different vector variables just by searching for SCC in the vector
graph G. This allows us to perform the dependency search in parallel across different
sections of the SCC graph.

Hardness The search of SCCs returns the set containing all SCCs in the graph.
This means that it does not need to produce the best possible output for the later
stages of the pipeline, since there is only a single correct output possible. Therefore
in the worst case it is linear. This is the only algorithm among the 3 analyzed by
this document that is not NP-hard.

4.2.2 Conjecture of minimum complexity

Consider the following vector equation, where v is an arbitrary vector variable, and
f is a procedure we failed to recognize.

v[i] = v[f(i)] ∀i ∈ [0, size(v)]

There is a cyclical dependency including an element of v iff by applying multiple
times f to the same index i we get the starting i as result. In other words, there is
a cyclic dependency iff the closure of an element of v under f is a subset v:

hasDep(v, f) ⇐⇒ ∃v0 ∈ v : (closure(v0, f) ⊂ v)

Where closure(v, f) is the smallest set closed under f containing v.

We conjecture that, if there is no closed subset of v, then every implementation
of closure must invoke the unrecognized procedure f at least |v| times. This because
we have to at least check that no element is mapped to itself.

If this conjecture is true then we can always provide a input procedure f to
hasDep that requires |v| invocations of f , unless f is recognized. Suppose this was
not true, then we would have a implementation of hasDep that require less than
|v| invocations of a not recognized f to find dependencies. If such implementation
existed then we can use hasDep to implement closure and detect if there is no closed
subset in less than |v| invocations, but this is a contradiction.

4.3 Scheduling

Once all cyclic dependencies have been resolved, we must schedule the graph. In the
scalar case, we schedule all equations without dependencies, then we schedule the
equations that depend only on those already scheduled. We repeat until we have
scheduled all of them. As we said scheduling a dag, where vertex are the elements
to be scheduled and edges precedence that must be respected, can be performed in
linear time. We add the objective of minimizing the number of times that scalar-
equations belonging to the same vector-equations are not scheduled contiguously.
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4.3.1 Problem formulation

This problem can be formalized as follows: given a list of tasks V and dependencies
among the tasks described by the set of ordered pairs E, find the schedule S defined
as:

S(x) : V → [0, |V |], bijective
Subject to:

S(x) > S(y) ∀x, y ∈ E

With objective function:

max
∑
x∈V

(S(x + 1)− S(x) == 1)

That is: maximize the number of adjacent tasks scheduled in such a way that the
distance in scheduling order is exactly one, in other words, that are scheduled one
right after the other.

As an example, the following diagram represents the list of vertexes as a sequence
of numbered nodes, and the dependency graph as arrows connecting the edges.

1 2 3 4

One possible schedule is:

4 1 2 3

The provided schedule is the best possible one, since only task 4 is scheduled out
of order. The score of this schedule is equal to 2: One point derives from scheduling
node 1 and node 2 in order. Another point from to node 2 and node 3 scheduled in
order as well.

We prove that the scheduling problem is NP-hard by reducing the Graph-To-
Dag (GTD) problem to this one. The GTD algorithm creates a acyclic graph by
removing the least number of nodes. This problem is np-hard. [11]

To perform such reduction we describe how to encode an arbitrary directed
graph into an acyclic graph, and how to exploit the value function to calculate the
minimum number of edges to remove.

Creating Isolated Blocks In our reduction we require to build isolated structures
so that their relative position does not influence the objective function. In other
words we need the ability of preventing 2 vertexes from being scheduled one after
the other. We achieve this by adding one new element E in an arbitrary location and
one named S at the beginning. For every previous existing node add the dependency
node → start. This implies that the new starting task cannot be scheduled until
every other task has been completed. Then add the dependency S → E.This implies
that E will never be scheduled before the one to his right or after the one to his left.

Consider the previous example, we can prevent node 2 and node 3 from gener-
ating value by inserting S and E among them, and add connections as indicated.
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S 1 2 E 3 4

Nodes 2 and 3 of the new graph cannot be scheduled at the same time, therefore
the graph would become:

4 1 2 3 S E

Notice that there is a edge case, if the graph is empty we cannot isolate nodes this
way. This is not important because we will not operate on empty graphs. Notice as
well that it is necessary for the the edge S to be inserted as first element and the
be forced to be scheduled last, so that node 1 cannot be scheduled right after S and
thus cannot modify the algorithm score.

Representing nodes Now consider the following list of 4 vertexes in a graph
where the I nodes are implicitly isolated as described in the previous section.

outside I L R I outside

Additionally, we constrain L to only receive arcs from other nodes, R to only emit
arcs to other nodes, ignoring the arcs introduced by the isolation process. We call
ILRI a list of nodes with these properties. We will use this ILRI nodes to encode
arbitrary directed graph, we will illustrate how it can be used to solve the GTD
problem for any possible input graph.

Let us consider a generic graph G composed only of I ILRIes. We call collapsed
graph M of the graph G, the graph M that contains a vertex for each element of I.
For all edges in G going from a R node to a L node there is edge in the collapsed
graph going to the vertex associated with the ILRI of R and the ILRI of L.

If there is a cycle in G then at least one R node cannot be scheduled right after
the L node in the same ILRI. If such schedule was possible it would imply that
S(L) = S(R) + 1. As previously stated, S(R) < S(L′) if L′ is in the dependencies of
R. Therefore, by following the cycle we would obtain S(L) = S(R)+1 < · · · < S(L).
This is a paradox, thus there must be an element scheduled out of order.

For example consider the following graph:

I L1 R1 I L2 R2 I L3 R3 I
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The equivalent collapsed graph is:

In this scenario L1 is scheduled right before R1, and the same holds for L2 and
R2. Therefore L1 = R1 − 1 < L2 = R2 − 1 < R3. However, L3 < R1, therefore
L3 6= R3− 1.

2 3 DC 4 5 DC 6 1

4.3.2 Proving Hardness

Given the input graph of the GTD algorithm, we call that graph G = (V,E), we
build another graph M = (V ′, E′) in which for each v ∈ V there is a set of nodes
that describe an ILRI. We call I = {i1, . . . in} the set of such ILRIes. We call R(i)
the R node of ILRI i, and L(i) the L node of ILRI i. Since there is a bijection f
between V and I that maps a vertex of v to the ILRI associated to it, we abuse the
notation defined before hand and allow the use of R(v) and L(v) to indicate R(f(v))
and L(f(v)) respectively.

We create the set of edges E′ of M as follow:

(x, y) ∈ E ⇐⇒ (R(x), L(y)) ∈ E′ ∀x, y ∈ V

In other words, there is a directed edge connecting two nodes in the input graph
iff there is a directed edge connecting the R node and L node in the destination
graph.. Now let us consider the output of the scheduling algorithm when applied on
a graph built in such a way. As previously discussed, the algorithm will produce a
function S : V ′ → N that maps a node of V ′ to the point in time in which it can be
scheduled.

Let us define O as the set of ILRI that had R and L nodes that could not be
scheduled one after the other. T is the set of ILRI nodes that could be scheduled
one after the other.

O = {i ∈ I : S(R(i)) 6= S(L(i)) + 1}

T = I \O

By nature of a graph solely composed by ILRI, the objective function can be gain
value only by scheduling the L and R consecutively in the graph. This is consequence
of the fact every other node is isolated by construction. As a result we have that
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V alue = |T | and that |T | is maximized when |O| is minimized. Since every element
I correspond to a element of V , then there a bijection f from I to V . We define

TV = {f−1(x) | ∀x ∈ T}

as the set of all elements that generated ILRIES which L and R elements were
scheduled one after the other.

Proving output is a DAG Now we wish to prove that GT = (TV,E) is a
directed acyclic graph. Let us suppose that GT was not acyclic, then there would
be a cycle C = {p0, . . . , pn, p0} such that C ⊂ TV Since pn ∈ TV , this means that
the L node of the ILRI associated to pn has been scheduled right before R. Therefore

S(R(pn)) = S(L(pn)) + 1

By construction every edge of the input graph generated an edge between to ILRI
structures:

(px, px+1) ∈ E ⇐⇒ (R(px), L(px+1)) ∈ E′

Since the scheduling algorithm is forced to respect the dependencies described by
such edge, we have that:

(px, px+1) ∈ E =⇒ S(R(px)) < S(L(px+1))

By combining these results for each element of the cycle C, we obtain:

S(L(p1)) + 1 = S(R(p1)) < S(L(p2)) + 1 = ... = S(R(pn)) < S(L(p1))

However this is a contradiction. Therefore (TV,E′) is acyclic.

Proving the amount of removed edges is minimal We wish to prove that
every other selection of T with larger cardinality would have generated a cyclic
graph.

Let us suppose that given T ′ ∈ I with |T ′| > |T |, and TV ′ = {f(x)|∀x ∈ T ′}
the graph GT ′ = (TV ′, E′) is acyclic. Remember that we can find a schedule over a
DAG in linear time. Let us call the schedule of the GT ′ graph as d(TV ′)→ I.

Since GT ′ is acyclic, such schedule is guaranteed to exists. From that schedule
we can derive an acceptable solution for our scheduling problem over G′. More
formally, consider the schedule S′(V ′)→ I respecting:

s′(v) =

{
2d(f(v)) if f(v) ∈ TV ′ ∧ v ∈ L

2d(f(v)) + 1 if f(v) ∈ TV ′ ∧ v ∈ R

This schedule assigns consecutive values to L and R nodes of ILRIes that are in
T’. As d() respects the optimal schedule on the input graph, then, by construction,
L and R nodes of the ILRIes are never scheduled before than L and R nodes of other
ILRIes they depend on.

This schedule would have a value of at least |T ′|, since we created |T ′| ILRIes
scheduled at the same times. |T ′| is greater than |T | and it would respect all con-
straints. But our scheduling algorithm ensured that |T | was maximum, thus we
reached a contradiction.
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Therefore we proved that O is the minimum set of nodes that must be removed
from V ′ to create a directed acyclic graph from the graph (V ′, E′)

We call (T,E) the DAG obtained removing the smallest set O from our input
graph (V,E). Producing the graph (V ′, E′) and interpreting the output can be both
performed in polynomial time. As a result we have reduced the GTD problem to
our original problem, which implies it is NP-hard.

4.3.3 Exploiting the graph homomorphisms

Similarly to the previously discussed SCC search, if there is no cycle involving vector-
variable A and the vector-variable B then there cannot be a dependency from a
scalar variable in B and a scalar variable in A. Therefore, all variables in B can be
scheduled after the variables in A.

4.4 Conclusions

In this chapter we proved that two of the three step of the pipeline we considered
are NP-hard problems, and we conjectured that the third step cannot be performed
faster than linear time. This will deeply effect the design of our solution, since we
will be forced to restrict the possible inputs of the pipeline. In other words, we will
pose restrictions on the input language so that we can compile it efficiently.



Chapter 5

Design and implementation of
MARCO

Cheatham’s amendment of
Conway’s Law: If a group of N
persons implements a [COBOL]
compiler, there will be N-1 passes.
Someone in the group has to be the
manager.

Tom Cheatham

As we have shown in chapter 4 compiling the Modelica unrestricted language
becomes a NP-hard problem when we add the objective of preserving for-equations
and variables arrays across the pipeline. Thus we must select a subset of the language
that is expressive enough to be useful.

Furthermore, Openmodelica, the only open-source compiler for the Modelica
language, is too complex to be easily changed to match our needs, since it includes
many features that are orthogonal to the objective of our work. Thus, we created
a new compiler based on the LLVM framework that does not share source code
with OpenModelicaCompiler. We have given this compiler the name of M.A.R.C.O.
(MARCO), as it is the case for other LLVM-basedprojects, MARCO is a acronym
without a meaning.

5.1 High-Level design of MARCO

Since Marco is based on LLVM we have tried to maintain it’s design, thus the high
level features of Marco are:

• A intermediate representation meant to describe system of equations called
MARCO-IR. MARCO-IR is strongly typed, where all types for each expression
must be always provided by the user.

• A in memory and a human readable representations of such MARCO-IR.

• Analyses and transformations that transform a system of equations into a
executable series of statements.

61
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• A lowerer that translates a valid MARCO-IR module into LLVM-IR.

• A Modelica front-end for a subset of the language. Such front-end is com-
pletely untied from MARCO-IR. It is composed of a parser and a in memory
representation.

• A lowerer from the front-end to MARCO-IR.

More generally we envision MARCO to be a set of reusable libraries that allow
fast transformations of system of equations, can target LLVM as a back-end and
provide are more general purpose than just being a Modelica compiler.

llvm

MARCO IR

Other Frontends

Other MARCO IR users

MARCO Modelica Frontend

Modelica users

LLVM

x86 arm ...

libLowerer

libModel

libPassess

...clanggchi

...customDSLthird party libraries

libFrontedToIr

libFrontend

...IDEmodelica language extensions.mo files

Figure 5.1: The design of the MARCO compiler, represented as sets of intercon-
nected high-level components implemented by reusable libraries.

By dividing MARCO into multiple libraries and tools we allow the users of the
system to depend on the minimal set of features that they require to achieve their
task.
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Furthermore, by decoupling the Modelica language from MARCO-IR and MARCO-
IR from the LLVM-IR we greatly reduce the amount of domain specific knowledge
required to use and modify MARCO. As is the case that many compiler engineers
are not well versed in physical models so is the case that physical modelers are not
well versed in compilers, thus by hiding LLVM in libLowerer, equations transforma-
tions inside MARCO-IR, Modelica specific feature in libFrontend we can help users
to get acclimatized to the code base.

Finally we wish to allow the user to inspect the standard pipeline, as well as
insert its own custom passes and modifications.

A note on MARCO and OpenModelicaCompiler At the current stage Marco
does not handle multi-class input Modelica programs, thus we are using open Mod-
elica compiler to translate a generic input .mo file into a flattened model that we
can parse.

5.2 The Standard Pipeline

Currently, the standard pipeline by MARCO is shown in figure 5.2 .

The first three steps are specific to Modelica and thus are the least customizable,
Modelica abstract syntax tree can be dumped, modified in memory, constructed in
memory and parsed from a buffer in memory. However, we do not allow to modify
the grammar or the type-checking rules.

Once Modelica AST is lowered to the MARCO-IR we executes the stages of
matching, sccResolution, scheduling and EuleroForward. We will describe those
steps more in depth later, what we care to present at this stage of the design is that
each of those stages accepts as input MARCO-IR and yields as an output MARCO-
IR, and such MARCO-IR can be serialized to file. This entails that a user could
insert its own modification to the pipeline by simply dumping the IR after a stage,
apply its own modification in any way of its choosing and then resume the pipeline
at the stage it was left without ever having to touch the MARCO code base.

Similarly, once the model has been lowered into LLVM-IR form then the users
are not forced to produce a executable right away. The model can be turned into
a library, instead of an executable. It can be instrumented and can be changed for
any purposes, again without the need of examining MARCO code base.

5.3 Language Subset

As we proved in chapter 4, the task of preserving arrays across the Modelica pipeline
is NP-hard, thus we must select a subset of the language and show that for that
subset we can execute compilation pipeline in constant time for a given high-level
structure.

We consider true the conjecture of minimum complexity shown in the previous
chapter. Thus, Marco can have constant time compilation for a fixed high-level
structure only if we can always recognize a vector access pattern. In other words
we can have constant time compilation for for all models with a particular high-
level structure only if, given i a the set of induction variables of a for-equation, any
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Parser

TypeChecker

CostantFolder

ToMarcoIR

Matching

SCCResolution

Scheduling

EuleroForward

ToLLVMIR

Figure 5.2: Design of the MARCO compiler’s pipeline. Note how only the compo-
nents directly involved in the processing of the Modelica language are represented.
The translation from LLVM-IR to machine code is performed by LLVM.

Modelica expression of the kind:

vector[f(i)]

must be such that f must have been considered when implementing MARCO. We
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say that a function f that appears as argument of a vector access operation is a
vector access function; Thus f cannot be user defined function. Furthermore, since
we operates on set of indices s rather than one at the time, we wish that the following
operations can be executed in constant time with respect to the size of vectors:

• map(s, f)
We impose this requirement because it often happens that given a vector-
equations E iterating on some inductions indices i and involving a vector
variable V , we wish compute the set of the indices of the scalar variables
belonging to V that are used by any scalar equation belonging to E. If we
can extract from E the function g that given a index of a scalar equation e
belonging to E returns the index of the scalar variable belonging V that is used
by e, then map(i, g) returns the set of indices of scalar variables belonging to
V used by any member of E. Thus, if the language poses restriction on both s
and f we can compute a really common operation in constant time regardless
of the size of V and E.

• function composition ◦ defined over the set of vector access functions.
As we conjectured in chapter 4, the scc-fusion step cannot be performed in
less than linear time unless the vector-access functions are recognized. Since
we must impose a constraint on those, we may as well use this opportunity
to enable other optimizations. Given a vector equation E with a usage of a
vector-variables V1, V2 accessed with each a vector-access function f1, f2 and
inductions ranges I. Given the index i1 ∈ map(I, f1), that is the index of a
scalar variable v ∈ V1, we sometime wish to calculate which is is the index
i2 ∈ map(I, f2) such that f−11 (i1) = f−12 (i2).

In other words, given a scalar variable used by a scalar equation, we wish to
calculate which is the index of some other vector-variable used in the same
equation. Thus, if f1 is invertible it holds that: i2 = f2(f

−1
1 (i1)), that is

f−11 ◦ f2.
If we combine this with the previous constraint we obtain that we can calculate
this indexes in bulk. Given I1 a index set containing indices of scalar variables
inside V1, map(f−11 ◦ f2, I1) is the index set containing indices that appear at
least in a scalar equation belonging E that have at least one usage of a scalar
variable indexed by I1.

Being able to perform this computation in constant time with respect to the
vector-variables sizes is helpful when performing the transitive dependencies
calculation present in the scc-fusion step.

• intersection ∩ defined over sets of indices.

• union ∪ defined over sets of indices.

As we will see in the next section we will able to only accept axis-aligned roto-
translation as vector-access function of vector-variables to be able to meet this re-
quirements. This may look like too strong of a requirement. While this would be
true for a general purpose programming language it is not the case for languages
such as Modelica. Physical models are usually obtained by a quantization of space,
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phenomena are usually local, and thus it is reasonable that equations would be
constrained to only operate with translations and rotations.

Furthermore, it must be noticed that this requirement can be enforced at compile
times and the user can receive error messages that can help him write a suitable
model.

5.3.1 Vector Access Functions

Given those constraints we selected a subset of linear transformations since linear
transformations can be expressed as matrices and thus they, for a given size, require
constant time to be applied at a single element and to be combined.

Thus, we only allow vector access function f such that:

f(i) = M ∗ i + k

Where M is a matrix composed of only zeros and one and has at most one 1 in each
row and column. We call S the set of matrices that have this property. That is, we
only allow f to be an axis aligned linear roto-translation. We call F the set of such
functions.

Consider:
f1(i) = M1 × i + k1

f2(i) = M2 × i + k2

We wish to prove that the operation of composition ◦ is internal to F , that is
we must prove that given

f1 ◦ f2 = M2 × (M1 × i + k1) + k2 = M3 × i + K3

it is true that M3 = M2 ×M1 ∈ S
This it trivially true since M1 and M2 have at most one 1 on each row and thus

the matrix multiplication cannot yield values of M3 /∈ {0, 1}, and cannot yield more
than 1 element different from zero on each row.

Notice that a function f ∈ F , f(i) = M × i + K can be expressed with a single
linear effine matrix:

f(i) =

(
M K

~0 1

)
×

[
i

1

]
Since it can be expressed as a single matrix and then the composition is a matrix

multiplication and the execution time is constant.

5.3.2 List representation of vector access function

Consider a vector access function f with the following structure:

f(i) =


M11 . . . M1n K1

. . . . . . . . . . . .

Mm1 . . . Mmn Km

0 0 0 1

× i
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Since, as we said, there is at most one element equal to one in each row and column
in the sub-matrix M , this representation can be compressed into list form.

Consider the list l = [i1, . . . , im] where:

ij =

{
0 if Mji = 0 ∀i ∈ (1, n)

d if Mjd = 1

That is, the list where for each row of the matrix there is a element i equal to
the index of the element different from 0 in the matrix M , or 0 if there is not such
element.

This representation is as informative as the matrix M . from the length of the
list we can deduce the height of the matrix, from the max element contained in the
list we can deduce the width, and each element of the list will tell us the location of
the only element of a row that may be different from zero.

This entails that the pair (l,K) is the only value required to describe a vector
access function.

Composition of the list representation Given f1 = (i = [i1, . . . , in],K1), f2 =
(j = [ji, . . . , jm],K2) vector access functions in list form we wish to be able to
compute the composition of the two f3 = f1 ◦ f2 = (l = [l1, . . . , lo],K3) without
being forced to transform f1, f2, f3 into matrices M1,M2,M3.

We notice that o = n since in matrix form M3 = M1×M2 will have the height as
M1, and as we said the height of matrix is tied to the list length in list representation.

We can calculate the values of K3 as follow:

K3[y] =

{
K1[y] if i[y] = 0

K2[i[y]] + K1[y] otherwise

We can calculate the values of l as follow:

l[y] =

{
0 if i[y] = 0

j[i[y]] otherwise

Instead of proving this formally we will provide an example, since the formal
proof is long and not of much interest. It can be obtained by performing the matrix
multiplications and checking which elements are different from zero at the end of
the process. Consider the following values for the matrices M1 and M2 of f1 and f2.

M1 =


0 1 2

1 0 0

0 0 1



M2 =


1 0 0

0 0 3

0 0 1


That is, M1 is describing an access as:

v0[i][j] = v1[j + 2][i] ∀i ∈ (0, p1), j ∈ (0, p2)
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While M2 describes an access as:

v1[i][j] = v2[i][3] ∀i ∈ (0, p1), j ∈ (0, p2)

In list form they are:

i = [2, 1]

j = [1, 0]

Vector variables v0 and v1 can be thought as views, real data is held in v2 while v1
and v2 simply modify the layout of those values. Let us say that we are interested
into removing v1 and we wish to express v0 as function of v2 directly. This is a
function composition and the matrix multiplication yields:

M3 = M1 ×M2 =


0 0 5

1 0 0

0 0 1


M3 describe the vector access is:

v3[5][i] ∀i ∈ (0, p1), j ∈ (0, p2)

In list form is:

l = [0, 1]

Our definition yielded the same result. Informally this works because the two func-
tions f1, f2 are roto-translations, f2 is applied first, rotating the axis and adding a
translation. After this is done the f1 is applied, which applied its own rotation and
then the translation. Thus, for each row of the matrix f1 either:

• ignores the contribution of f2 when the row of the second rotation sub-matrix
is composed of only zeros.

• select a dimension from the matrix M2 that will become the current row, thus
providing the j[iy] + K2[iy] component.

Then, the second translation is added, thus providing the K1y component.

A geometric intuition The previous mathematical description is much more
convoluted than the problem actually is, let us say that the content of of v2 is:

1,1 1,2 1,3 1,4 . . .

2,1 2,2 2,3 2,4 . . .

3,1 3,2 3,3 3,4 . . .

4,1 4,2 4,3 4,4 . . .

. . . . . . . . . . . . . . .
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As we said the roto-translation M2 is:

M2 =


1 0 0

0 0 3

0 0 1


Which can be thought as:

• Do not apply any transformation horizontally, since the first row of M2 is
1, 0, 0.

• Replace the second value of the pair with 3, since M2 is 0, 0, 3.

Thus, V1 content is:

1,3 1,3 1,3 1,3 . . .

2,3 2,3 2,3 2,3 . . .

3,3 3,3 3,3 3,3 . . .

4,3 4,3 4,3 4,3 . . .

. . . . . . . . . . . . . . .

Then we must apply transformation M2 that was:

M1 =


0 1 2

1 0 0

0 0 1


Thus:

• The columns of the input arrays become the row of the output matrix, since
there is a 1 in the second element of the first row. They are furthermore
translated by 2 to the left.

• The row of the input array become the column of the output matrix. since
there is a 1 in the second element of the first row.

Thus the content of V0 is:

5,1 5,2 5,3 5,4 . . .

5,1 5,2 5,3 5,4 . . .

5,1 5,2 5,3 5,4 . . .

5,1 5,2 5,3 5,4 . . .

. . . . . . . . . . . . . . .

The relationship between V0 and V1 is that each row of the output matrix is
equal to the column of the source matrix starting from the location 5, 1 and moving
vertically.
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This is indeed the matrix:

M3 = M1 ×M2 =


0 0 5

1 0 0

0 0 1


Which does exactly the same:

• due to the first row equal to 0, 0, 5 replace the first member with 5

• due to the second row equal to 1, 0, 0 each second member is equal to the input
first member.

5.3.3 Indexes Sets

If we restrict the possible vector access functions to the set F of axis aligned roto-
translations, then the set of indexes arise naturally from what we can express with
those functions. Consider an interval i = (b, e]:

i = {x | x ∈ N ∧ b ≤ x ≤ e− 1}

We call the set I of all possible values of i as the set of mono-dimensional intervals.
A list l = [i1, . . . , in] of n mono-dimensional intervals is a multidimensional interval.
We abuse the notation and we define ~i ∈ l as follow:

~v =


x1

. . .

xn

 ∈ l ⇐⇒ xk ∈ ik ∀k ∈ (1, n)

Furthermore we say that l has n dimensions, or that the dimensionality of l is n.
We call L the set of all possible multidimensional interval.

Example Consider the following for-equation:

ẋ[i] = f(x[i]) ∀i ∈ (0, 5]

This for-equation describes 5 scalar-equations, each of them operating over a
distinct element of the vector x. The mono-dimensional interval equivalent to the
induction range of this vector-equation is i = (0, 5], the multidimensional interval
equivalent to this vector-equation is the list l = [i].

Consider now what would change if x was instead a multidimensional vector
x : int[][], and the previous vector-equation was instead:

ẋ[i][j] = f(x[i][j]) ∀i ∈ (0, 5], j ∈ (1, 10]

Then there would not be a mono-dimensional interval that describe the induction
range of such for-equation, since a mono-dimensional interval cannot describe both
ranges i and j at the same time.

It is still possible to find a equivalent multidimensional interval that describe the
induction set, such set is l = [(0, 5], (1, 10]]. Such set l has dimensionality equal to
2.
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Min-max representation We presented the multidimensional interval as a list
of pairs. Such set may be described as a pair of lists as well. The first list con-
taining the minimal point(min) of the range on each dimension, and the second
point(max) containing the first point not inside the set on each dimension. As an
example, the multidimensional interval l = [(0, 5], (1, 10]] can be written in min-max
representation as

l = ([0, 1], [5, 10]]

Thus, a n dimensional interval is equivalent to a pair of n dimensional vectors:

~b =

(
0

1

)
~e =

(
5

10

)
l = (~b,~e]

Sum in min-max representation Given two multidimensional interval in min-
max form s1, s2 we say that they are both contiguous and summable iff

s1 ∩ s2 = ∅

∃m ∈ l m = s1 ∪ s2

That is, two vector are summable iff they are disjoint and their union can be repre-
sented as multidimensional interval.

Informally, this is true iff s1 and s2 are different from each other on a single
dimension, and on that dimension their intervals are contiguous.

Example Consider the following multidimensional intervals:

m1 =

((
0

0

)
,

(
10

10

))

m2 =

((
0

10

)
,

(
10

20

))
Informally m1 is a square 10x10 starting from (0, 0) while m2 is as well a square

10x10, but it is located in (0, 10). Since they differ just by the values of one dimension
and on that dimension they are contiguous then m2 can be seen as an expansion of
m1, indeed their sum can be represented as:

m1 + m2 =

((
0

0

)
,

(
10

20

))

Interaction with Vector Access Function Consider now a multidimensional
interval in min-max representation l = (~b,~e], and a axis aligned roto-translation
f(~i) = M ×~i + ~k where the height of matrix M and vector ~k is the same as the
dimensionality of l. We claim that computing map(l, f) is a constant time operation.
This is true because

map(l, f) = (f(~b), f(~e)]
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that is, to calculate map(l, f) we only need to apply the function f to the min vector
~b and the max vector ~e.

This is true because f is the sum of an axis aligned rotation and translation, thus
the translation will simply translate the boundaries of the set and the axis-aligned
rotation will only only reorder the elements of ~b and ~e.

Intersection of multidimensional intervals Given two multidimensional inter-
vals in list form i1 = [x1, . . . , xn], i2 = [y1, . . . , yn] we can can calculate i1 ∩ i2 by
simply performing the intersection on each dimension. That is:

i1 ∩ i1 = [x1 ∩ y1, . . . , xn ∩ yn]

Example Consider the following for-equation:

˙x[i][j] = g(x[j][i + 3]) ∀i ∈ (0, 2], j ∈ (8, 10]

The multidimensional set equivalent to the induction ranges of such equations is

l = (~b,~e] ~b =

(
0

8

)
~e =

(
2

10

)

The vector access function f used in the right hand member of the equation

to access variable x is the function that given the induction variables

(
i

j

)
returns(

j

i + 3

)
.

Thus

f(~i) =

(
0 1

1 0

)
×~i +

(
0

3

)

Let us assume now that we are interested in calculating which elements of vector-
variable x are accessed by the right hand of the presented equation. This is equivalent
to computing map(l, f).

As we said

map(l, f) = (f(~b), f(~e)]

. By performing the calculations

f(~b) =

(
8

3

)
f(~e) =

(
10

5

)

Indeed, this is the same result we would have achieved by manually applying f
on each element of the multidimensional interval.
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5.3.4 Non-contiguous index sets

We shown how we can perform function composition and mapping of index sets in
constant time by utilizing multidimensional interval and axis aligned roto-translations.
Unfortunately this is not enough to build a useful compiler on top of them. Set op-
erations ∪ and ∩ are not internal to the set of multidimensional interval.

To be able to express those operations, given the set S of all possible multi-
dimensional index set, we call generalized multidimensional index sets(GMIS) all
G ⊂ S where all elements of G have the same dimensionality. As before we abuse
the notation and we define that ~v ∈ G as follow:

~v =


x1

. . .

xn

 ∈ G ⇐⇒ ~v ∈ e ∃e ∈ G

That is, a vector belongs to G if it belongs to any of its contained elements.

Informally, a GMIS is just a list of multidimensional interval . This is helpful,
because given two multidimensional interval s1, s2 then s1 ∪ s2 is simply equal to
{s1, s2}. Similarly, given two GMIS g1 = {s11, . . . , s1n}, g2 = {s21, . . . , s2n} then
g1 ∪ g2 = {s11, . . . , s1n, s21, . . . s2n}

This allows to compute ∪ in constant time with respect to vector sizes.

GMIS min-size representation: Clearly, given a set of n dimensional vectors
there are infinite GMIS describing such set. Still, there exists some representations
that have minimal length, or in other words where the number of multidimensional
intervals inside a GMIS is minimized.

We say that the minimal GMIS c = {e1, . . . , en} equivalent to a given GMIS n
is the GMIS such that n is minimum.

~v ∈ c ⇐⇒ ~v ∈ n

ex ∩ ey 6= ∅ =⇒ x 6= y ∀x, y ∈ (1, n)

That is, c contains exactly the same elements as n, the multidimensional interval
that compose c are disjoint, and the number of multidimensional interval required
to described it is minimum.

Reaching minimal size Given a GMIS g1 = {e1, . . . , en} it is not trivial to
find the minimal GMIS when all elements ex are not not disjoint but is possible to
perform such operation when they are.

If they are disjoint we only require to find an equivalent g2 = {r1, . . . , rm} such
that the m is minimal.

From the definitions of canonical GMIS and from the assumption of all elements
ex ∈ g1 being disjoint it follow that we can partition the elements of g1 into a set of
sets P = {{e11, . . . , e1i}, . . . , {eo1, . . . , eok}} such that

∀r ∈ g2 ∃p ∈ P
⋃
pj∈p

pj = r
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Informally, this statement means that the multidimensional intervals composing a
GMIS can be cut into smaller intervals and then recomposed to obtain the minimal
GMIS.

Since the multidimensional intervals are described by a pair of min and max
vectors then the only possible way to compose two multidimensional index set is if
they can be summed as shown earlier.

Thus, to reach the minimal GMIS only require us to iterativelly sum all multidi-
mensional index set that can be summed until no two remaining set can be summed.

This implies that set operation ∪ can be performed into constant time with
respect to vector sizes when implemented to be internal to the set of minimal GMIS.

When we need to calculate the union of two GMIS we simply concatenate the
sets and then we merge all multidimensional elements that are summable.

This does not always yields the minimal GMIS since it depends on the order
in which they are summed, but it is effective enough for our purposes and has the
advantage that even if a sub-optimal merge is operated, it can be later reverted when
the missing pieces are inserted and they are merged into a larger multidimensional
interval.

Implementing intersection Now we are interested in how implement set opera-
tion ∩ on canonical GMIS. The operation does not require to modify the underlying
data structure.

We simply intersect each element of one GMIS with each element of the other.

Set minus of multidimensional intervals Given two multidimensional intervals
in min-max form i1 = (b1, e2), i2 = (b2, e2) it is more complex to calculate the set-
minus operation defined as:

i3 = i1 − i2 = {x | x /∈ i2 ∀x ∈ i1}

If the dimensionality of i1 and i2 is one then we would need to only calculate the
mono-dimensional interval set-minus operation. Such operation can be performed
by splitting the the interval i1 at the start and end points of i2, where the operation
splitting s a mono-dimensional interval i at into point x is defined as

sic(i, x) = [{j | j < x j ∈ i}, {j | j ≥ x j ∈ i}]

That is, the result of a splitting operation is a list of two elements where the first
element is the interval that contains the range less than x and the second element
is the range greater or equal to x.

We define a overload of s that operates on two mono-dimensional intervals x =
(bx, ex), y = (by, ey) :

sii(x, y) = [{j | j < by j ∈ x}, {j | j ≥ by ∧ j < ey j ∈ i}, {j | j ≥ ey j ∈ x}]

That is, the list of sets where the first element is the interval of which all points
are less than any point in y, the second element is the internal where all points are
inside y, and the third element composed of all remaining points.

Given this definition then set minus for mono-dimensional internals x, y is just
s(x, y) where the second element has been removed.
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We can generalize the definition for multidimensional intervals, given a multidi-
mensional interval i, a cut point x and a dimension n we overload s to be defined
as:

smc(i, x, n) = [{j | j[n] < x j ∈ i}, {j | j[n] ≥ x j ∈ i}]

That is: the output of the split operation is a list where the first element contains
all points where their nth coordinate is less than x and the second element contains
all other points.

As before, it is trivial to generalize this definition to operate on mono-dimensional
interval instead of a scalar cutting point. Given x multidimensional interval, y mono-
dimensional internal, n integer:

smi(x, y, n) = [{j | j[n] < by j ∈ x}, {j | j[n] ≥ by∧j[n] < ey j ∈ i}, {j | j[n] ≥ ey j ∈ x}]

Since the output of this operation is a list of multidimensional interval it is
equivalent to a GMIS, thus it can be operate on GMIS as well, and in that case both
input and output will be GMIS.

If the x = [x1, . . . , xn] parameter is a GMIS, that is a list of multidimensional
intervals then s operates by being applied to all its elements.

sli([x1, . . . , xn], y, n) = concat(smi(x1, y, n), . . . , smi(xn, y, n))

Furthermore, if we wish to operate on two dimensions at the same time we can
generalize s to operate on an arbitrary number of parameters:

sli∗(x, y1, n1, . . . , yk, nk) = sli∗(sli(x, y1, n1), y2, n2, . . . , yk, nk)

That is, splitting can be operated iterativelly, and at each iteration we split all
multidimensional intervals obtained at the previous iteration at the new cutting
point.

Then, we can generalize this operation to operate on a GMIS x and a multidi-
mensional interval in list form i = [i1, . . . , in]:

sgl(x, i) = s(x, i1, 1, . . . , in, n)

That is, for each dimension, we iterativelly split the input GMIS on the mono-
dimensional range ik ∈ i associated to that dimension.

Finally, we generalize so that split can operate on two GMIS g1, g2 = [m1, . . . ,mn]:

sgg(g1, g2) = sgl(g1, [m1, . . . ,mn])

That is, we iterativelly split g1 for each multidimensional interval m ∈ g2.

Informally s accepts two index set and returns the list of multidimensional inter-
vals l = [i1, . . . , in] such that each element ik is either fully contained into a element
of g2 or is fully not contained. Thus we can say that:

g1 − g2 = {i | i /∈ g2 ∀i ∈ s(g1, g2)}

Thus, we have a definition of operation set minus that is not dependent on the
size of sets, and thus is able to operate in constant time with respect to array sizes.



76 CHAPTER 5. DESIGN AND IMPLEMENTATION OF MARCO

An set minus example Let us consider the multidimensional intervals in min
max form:

~b1 =

(
1

1

)
~e1 =

(
5

5

)
i1 = (~b1, ~e1]

~b2 =

(
2

2

)
~e2 =

(
4

4

)
i2 = (~b2, ~e2]

~i1 can be graphically represented as:

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4

Where elements with color different from red are elements that do belong to the
multidimensional interval. ~i2 can be represented as:

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4

The result~i1−~i2 =~i3 obtained by with the splitting operation is obtained as follow.

• For each dimension split ~i1 at the begin and end point of ~i2

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4

• Remove the spitted element that are fully contained in ~i2

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4

• Merge all elements that can be merged:

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4

Indeed this is a valid representation of ~i3
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5.4 Vector-Matching

The first stage of the pipeline requires us to match a scalar-equation with a single
scalar-variable. As we said in chapter 3 this a well-known problem, called bipartite
matching. As we said in chapter 4, if we add the objective of minimizing the number
of adjacent variables that are not matched with adjacent equations the problem
becomes NP-hard. Thus, we require an heuristic to be able to perform such matching
quickly and to yield a reasonable amount of preserved vector-equations.

Instead of basing our solution on the bipartite matching we rather describe it as
a max-flow problem. As an example, consider the following model:

1 model Example
2 Real x [ 2 ] ;
3 Real y [ 2 ] ;
4 equation
5 for i in 1 : 2 loop
6 x [ i ] = 2∗y [ i ] ; //EQ1
7 end for ;
8 for i in 3 : 4 loop
9 x [ i −2] = 5 ; //EQ2

10 end for ;
11 end Example

We call scalarized matching graph the graph normally used to perform the bi-
partite matching on the flattened model. It this case the scalarized matching graph
is shown in figure 5.3: Where arrows represent nodes that can be matched together.

EQ11

X1 Y1

EQ12

X2 Y2

EQ21 EQ22

Figure 5.3: Scalarized matching graph of the aforementioned example Modelica code.
Note how each equation is represented by multiple nodes to reflect the semantics of
the for construct: EQ11 and EQ12 for EQ1, EQ21 and EQ22 for EQ2. The vectors
x and y are also transformed to scalar variables: X1 and X2 for the two elements in
x, and Y1, Y2 for the two elements in y.

We call vector matching graph the graph defined by the homomorphism h that
maps all the nodes belonging to the same vector-equation or vector-variable in the
scalar matching graph to the same node in the vector matching graph. Informally,
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the vector matching graph is obtained by merging together all the nodes that were
in the same vector in a given Modelica source file.

In this example the vector matching graph is shown in figure 5.4. That is, the

EQ1

X Y

EQ2

Figure 5.4: Vectorial matching graph of the aforementioned example Modelica code.
Note how each equation and vector is represented only once, without expanding the
for loops.

vector matching graph of a source model is a graph were there is a vertex for each
vector-variable and vector-equation of the source model, and there is an edge between
two nodes if any scalar variable mapped to one of those nodes can be matched with
any scalar equation mapped with the other node.

We wish to augment such graph by annotating it with the vector-access functions
that each equation uses to access each variable, as well as the dimensions of each
vector-variable and vector-equation, and the induction ranges.

Such representation is as expressive as the scalar representation and the source
file representation, and it is possible to move from any of the three to the other two.

We will provide a heuristic algorithm that uses the information provided by the
vector matching graph to perform the matching in linear time with respect to the
vector matching graph.

5.4.1 An example of solution

The algorithm we provide is an heuristic one, to explain it we will start with an
example and then we will specify the details.

Consider again the model and the graph in the previous example. We look for a
matching iterativelly. At first we set all the indexes as not matched. Such state is
shown in fig 5.6

Then we select the largest unmatched vector-equation, in this case they are
equal thus we pick one in alphabetical order, thus we select EQ1. Then we select
the variable such that the highest number of scalar equations can be matched with
the already selected vector-equation. In this case both X and Y can be selected,
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EQ1 [1,2]

X [1,2]

i

Y [1,2]

i

EQ2 [3,4]

i-2

Figure 5.5: Vectorial matching graph from Figure 5.4, annotated with the induction
ranges on the equation nodes, the dimensions of each vector variable on the equation
nodes, and the vector access functions on the edges.

EQ1 [1,2]

X [1,2]

i []

Y [1,2]

i []

EQ2 [3,4]

i-2 []

Figure 5.6: Initial state of the vectorial matching algorithm. The vector access
functions are annotated with the set of array indices matched to the corresponding
equation.

since they can be both matched with EQ1 with both their indexes. We prefer X due
to alphabetical sorting. We match all the scalar equations of EQ1 with all scalar
variables of X that can be matched. The resulting matching graph is shown in figure
5.7

Now we iterate again, the next vector-equation with the most unmatched scalar-
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EQ1 [1,2]

X [1,2]

i [1, 2]

Y [1,2]

i []

EQ2 [3,4]

i-2 []

(a) 1 iteration

EQ1 [1,2]

X [1,2]

i []

Y [1,2]

i [1, 2]

EQ2 [3,4]

i-2 [1, 2]

(b) 2 iteration

Figure 5.7: First two iterations of the vectorial matching algorithm starting from
Figure 5.6.

equations is EQ2. EQ2 can only be matched with X, thus we must undo the
matching we previously assigned. We operate as follow. We keep track of the list l
of currently visited nodes, that is l = [EQ2, X]. Then we select the vector-equation
that was has the maximum number of elements matched with X that intersect the
maximum number of nodes that EQ2 may match with X. EQ2 can match at most
2 elements with X. EQ1 has two elements matched with X and those two elements
are the same. Thus we select EQ1 for unmatching. We push EQ1 at the end of
the list l. Now we repeat the matching step process starting from EQ1, except that
we consider the elements in the list l as unreachable. Thus, EQ1 must match two
elements. X is unreachable because it’s in the list, thus they can only be matched
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with Y . Now there is no conflict, since the element can be matched directly, thus
we add Y to the list.

Now we unravel the list, we consider two elements at the time, starting from the
back, that is EQ1 and Y . The matching between X and EQ1 is undone, and EQ1
is matched with Y . Then we remove the last two element of the list. Now we iterate,
the next two elements are EQ2 and X. They are the last elements so there is no
need to perform an unmatching, thus we only need to perform the last matching of
the two elements of EQ2 and X. The resulting matching is shown in figure 5.7b.

5.4.2 Vector Matching Algorithm

Formally, the algorithm takes as input a graph G where vertices are separated into
two sets U and V , and are connected by edges E. U is the set of vector equations,
and V is the set of vector variables. Furthermore, we accept g : U ∪ V → GMIS
that is the functions that given a vector equation or a vector variable returns the
GMIS containing all the possible values that the induction variables can assume in
that equation, or the index set that contains all valid indices that can be used to
access that variable.

The algorithm accepts as well f : E → vectorAccessFunction, that is, it accepts
the function that given a edge between a vector equation and a vector variables
returns the vector access function that such equation uses to access such variable.
Thus, we accept the whole Vector matching graph as described in the previous
section.
The algorithm returns a matching, that is a set l = (u1, v1, s1), . . . , (un, vn, sn) of
three elements tuples, called matching tuples, such that:

ux ∈ U ∀x ∈ (1, n)

vx ∈ V ∀x ∈ (1, n)

sx ∈ GMIS ∀x ∈ (1, n)

ux = uy =⇒ sx ∩ sy = ∅ ∀x, y ∈ (1, n)

vx = vy =⇒ map(sx, f((ux, vx))) ∩map(sy, f((uy, vy))) = ∅ ∀x, y ∈ (1, n)⋃
x|ux=uy

sx = g(ux) ∀y ∈ (1, n)⋃
x|vx=vy

sx = g(vx) ∀y ∈ (1, n)

∃e ∈ E | (ux, vx) = e ∀x ∈ (1, n)

Informally, the first three lines state that a tuple (u, v, s) is composed of a vector
equation u, a vector variable v and a GMISs, that is, a tuple element specifies
which element of a vector equation are matched with a vector variable. Which
particular scalar equations inside the vector equations are involved in the matching
it is specified by s, while the scalar variable elements matched can be calculated by
applying the vector access function f((u, v)) to each element of s, that is, they are
map(s, f((u, v))).

The fourth and fifth statement impose that no two matching tuples that share
the same equation or the same variable contain the same indices in their GMIS,
because if they did then a scalar variable or a scalar equation would be matched
twice. The fifth statement must operates on the mapped indices instead of directly
on the sx because the vector access function modifies the accessed variable elements.
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The six and seventh statements ensure that the union of GMIS of all matched
tuples that contain the same vector variable or vector equation are equal to the
total indexes viable for such vector variable or vector equation. In other words,
there must not be scalar variable or scalar equations that are unused, if there are,
then the input graph was ill-formed.

Finally, the eight statement asserts that no matching tuples involves a vector
variable and a vector equation that are not connected by a edge.

Thus, algorithm is the following:

Algorithm 12: Vector Matching Algorithm

Input: G = (U ∪ V,E), g, f ;
Output: l ;
l← ∅;
R← calculateResidual(G, g, f, l);
P, s← findAumentingPath(R);
while len(P ) 6= 0 do

l = merge(l, s);
R← calculateResidual(G, g, f, l);
P, s← findAumentingPath(R);

end

The vector matching algorithm operates iterativelly, at each iteration we search
for a path in the vector graph that allows us to increase the number of matched
equations. The iterations require to compute the residual graph and from it we can
calculate an augmenting path. An augmenting path can be used to undo and redo
in a different way matchings already applied, so that we can much at least one more
variable.

This procedure is akin to max-flow algorithms, the only difference is that in this
problem the flow is described by the index set, and a index set of size one is not
equal to other index sets of size, while all units of flow are the same in the max flow
problems.

We will now define how is the residual path and a function that given a residual
graph and a path on it, it will help us determinate if it is an augmenting path.

Residual Graph The residual graph RG = (RV,RE) is built starting from the
current vector-matching graph and the current status of the matching. For each
edge e = (ux, vy) in the original graph define a function i : l→ GMIS that is:

i((ux, vy)) =
⋃

(uk,vk,sk)∈l|uk=ux∧vk=vy

sk

In other words, ixy is the union of all GMIS of matching tuples involving the same
starting and ending nodes.

Furthermore, we define a : V → GMIS

a(v) =
⋃

(uk,vk,sk)∈l|vk=v

map(sk, f((uk, vk)))

That is, a is the function that maps a vector variable in the original graph to the
GMIS that is the union of all matching tuple that ends in that vector variable, or
in other words the set of all indexes already matched of that variable.
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Similarly, we define b : U → GMIS as the function that maps a vector equation
to the GMIS that contains the indexes of scalar equations belonging to that scalar
vector that have been matched until this point.

b(u) =
⋃

(uk,vk,sk)∈l|uk=u

sk

Then, for each each e = (ux, vy) in the original vector marching graph we build
two edges in the residual graph, one as e1 = (ux, vy) and e2 = (vy, ux), that is, we
build one edge equal to the one in the original graph and one with starting and
ending vertex inverted. We say that e1 is a forward edge, and that e2 is backward.

We define the function r : RE → GMIS as

r((RV1, RV2)) =

{
a(RV2) RV1 ∈ V

i(RV2, RV1) RV1 ∈ U

That is, the function r maps a generated forward-edge to set of already matched
indexes of that variable, and it maps a back-edge to the set of indexes that are
currently matched with that equations. These are the sets that we can unmatch in
the current iterations of the algorithm.

We overload function f to accept as arguments edges of the residual graph, since
the forward edge were already present in the original graph we let the definition
of f unchanged for those edge, and we add the definition for the back-edges as
f(RV1, RV2) = f(RV2, RV1)

−1. That is, f maps a forward edge to the vector access
function that the vector equation uses to access the vector variable, and maps back-
edges to the inverse of such function.

5.4.3 Evaluating An Augmenting Path

We will now provide a function that given a path on the residual graph, will return
the set of indices that an be matched in the last variable of the path by unmatch-
ing and rematching with some other variable the already matched indices that are
preventing this matching.

Consider a path P on the residual graph just described. This is a bipartite graph,
any path is alternating between equations and end in a equation. Let us assume
that the path starts in a equation and ends in a equation. As we said each forward
edge is mapped by r with a GMIS that contains the matchings that can be undone.

The starting equations will have some set not yet matched scalar equations q.
Remember that f is the function that given a edge returns the vector access function
of that edge. In other words map(q, f(e)) returns the set of scalar variables that
may be matched with the scalar variables indexed by q.

If we intersect this set with the set of not yet matched scalar equations of the
destination vector variable and the result is not empty we are done. We have found
at least a scalar equation that can be matched with a unmatched scalar variable.

If the result was the empty set, then we cannot stop. Consider now q2 =
map(q, f(e)) ∩ r(e). Remember r returns the already matched scalar variables of
the vector variable of a forward edge. Thus q2 is the set of variables that must be
unmatched if we wish that some elements of q can be matched with the current
vector variable.
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Definition of edge transfer function tr More formally, given a forward-edge
e in the residual graph we define tr : E × GMIS → GMIS as the function that
given such edge and a GMIS it returns the subset GMIS of scalar variables that
currently cannot, due to the current status of the matching, be matched with the
input GMIS.

tr(e, g) = map(g, f(e)) ∩ r(e)

If, instead, it was a back-edge, f(e) would have returned the set inverted vector
access function. In other word map(g, f(e)) accepts the indices of a vector-variable
and returns the indices of the vector-equation that can be mapped with those starting
indices if the we had not made any matching yet. Note now that r(e) returns the
indices of the scalar equation currently matched with scalar variable in the edge e.
Thus, when tr(e, g) is operating on a back edge it returns the indices of the scalar
equations that are currently mapped with input set g.

Definition of path transfer function t Now consider again path p. As we said,
given a starting index set GMIS q, q2 = tr(p[1], q) is the index set of the scalar
variables that must be unmatched if we wish to match at least a subset of q on this
edge. By extension q3 = tr(p[2], tr(p[1], q)) = tr(p[2], q2) returns the scalar equation
belonging to the second equation visited in the path that must be unmatched if
we wish to match at least a subset of q. We can carry on, tr(p[3], q3) is the GMIS
that contains the indexes of the second vector variable found on the path that are
already matched with some other equation, and thus cannot be matched with the
scalar-equations of the second vector-equations found on the path and thus cannot
be unmatched with the scalar-variables of the first vector-variable found on the path
and thus prevents us from matching the scalar equations of the first vector-equation.

Therefore we reach this definition of t:

t(p) = fold(p,}, tr)

Where, } is the universe GMIS set, that is, a GMIS that contains all possible
indexes.

t(p) returns the indices in the last vertex u of the path that must be undone if
we wish to match at least one more scalar equation with a scalar variable on the
first edge of the path. Or the empty set if it is impossible to do so.

Let us assume now that r = map(t(p), f((u, v))) ∩ (g(v) − a(v)) is not empty
for some vector variable v. map(t(p), f((u, v))) returns the indices of the variable v
that must be matched with u if we wish to be able undo and redo all the necessary
matchings to be able to match at least one scalar equation in the first edge of the
path.(g(v)−a(v)) is the index set of the destination variable minus the set of already
matched indices, thus it is the set of still to be matched indices. Thus if r is not
empty it entails that there exists a path p2 = [p1, . . . , pn, v] such that if we undo and
redo some matching we can match some indices more, and those indices are r.

We can finally define:

newMatchableIndicies(p) = map(t(p), f((u, v))) ∩ (g(v)− a(v))
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Thus we are able to provide the algorithm to calculate the augmenting path:

Algorithm 13: Calculate Augmenting Path

Input: R;
Output: p, s ;
s← ∅ ;
p← [];
while len(s) = 0 do

p← nextPath(R) ;
s← newMatchableIndicies(p);

end

Where nextPath is some function that enumerates all possible paths on the graph.
Clearly, the algorithm is not implemented as it is presented, the important feature
of the function t is that since it is a fold, the partial results can be stored for future
use. In MARCO we produce all possible path with the usage of a breadth-first
search that is tuned to prefer the vector variables and vector equations that can be
matched with only one candidate, as well as preferring paths that offer to match
larger variables sets in one iteration.

Merging After we have found a path p such that r = newMatchableIndicies(p) 6=
∅ we only need apply it to the current status of the matching. Formally, the merging
operates as shown in 14

Algorithm 14: Merging

Input: l, P, s;
Output: l ;
forall e ∈ reverse(P ) do

if isForwardEdge(e) then
l← match(l, source(e), sink(e), s) ;

else
l← unmatch(l, sink(e), source(e), s) ;

end
s← f(e)−1(s) ;

end

Informally, we revisit the path backward and at each edge we add the new
matchings if it is a forward edge, or undo the old matchings if it is a back edge. To
know exactly which index set we should remove, at each edge e we apply f(e)−1.

After we applied the merging, for all scalar equations already matched, either
they are left unchanged, or they are matched with some other scalar variable.
Furthermore, the scalar variables contained in r which were unmatched, are now
matched. Thus, at each iteration of the matching algorithm we increase quantity of
matched variables, until all of them are matched.

5.5 Scc Fusion

After each scalar-equation has been matched to a scalar-variable we must consider
the mutual dependencies of variables. A scalar variable v1 depends on a scalar
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variable v2 if the equation matched with v1 include a usage of scalar variable v2. A
scalar variable v1 never depends on itself.

Thus, considering the following snipped of code as the running example:

1 model Example
2 Real x [ 2 ] ;
3 Real y [ 2 ] ;
4 equation
5 for i in 1 : 2 loop
6 x [ i ] = 2∗y [ i ] ; //EQ1 matched wi th y
7 end for ;
8 for i in 3 : 4 loop
9 x [ i −2] = 5 ; //EQ2 matched wi th X

10 end for ;
11 end Example

Thus, the scalar dependency graph SDG = (SV, SE) is shown in figure 5.8

Y1

X1

Y2

X2

Figure 5.8: Scalar dependency graph corresponding to the aforementioned Modelica
model.

We define vector dependency graph V DG = (V V, V E) the graph obtained by
collapsing together all nodes associated to the same vector-variable matched with
the same equation. We define f : SV → V V the function that maps a node in the
scalar dependency graph to the collapsed node in the vector dependency graph. f
is a homomorphism.

In this case the vector-dependency graph is shown in figure 5.9
Consider now the the implication of a cycle in the scalar dependency graph, a

cycle is a path p = [v1, . . . , vn, v1] where all elements of p belongs to SV , and such
that for any two adjacent elements vk, vk+1 of p it is true that (vk, vk+1) ∈ SE. By
the definition of homomorphism it follow that:

∃(f(s), f(e)) ∈ V E ∀(s, e) ∈ SE

Thus it implies that map(p, f) is itself a cycle over V DG, that is, if there exists a
cycle in the vector scalar graph there exists a cycle in the vector graph, and therefore
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Y

X

Figure 5.9: Vectorial dependency graph corresponding to the example Modelica
model.

by negation, if there is not cycle in the dependency graph then there is no cycle in
the scalar graph.

Clearly, it is not true the opposite, the presence of a cycle in the vector depen-
dency graph does not imply that exists a cycle in the scalar vector graph. Thus, our
interest is detect cycles into the scalar vector graph, and merging those that imply
a graph in the scalar graph and ignore the rest.

5.5.1 Evaluating a cycle

Let assume we have found a cycle in the vector dependency graph, we wish to find
a algorithm to evaluate whatever or not it implies a cycle in the scalar dependency
graph. Clearly we may detect such cycle by inspecting the scalar dependency graph
but this has linear time complexity with respect to the dimensions of vectors, thus
we are not interested in it.

Remember that we are operating under the assumption that vector access func-
tion are rotor-translations as described earlier. Thus, we can invert them and map
GMIS with them in constant time.

Consider the following model:

1 model Example
2 Real x [ 3 ] ;
3 Real y [ 2 ] ;
4 equation
5 for i in 1 : 2 loop
6 x [ i ] = 2∗y [ i ] ; //EQ1 matched wi th X[ 1 ] , X[ 2 ]
7 end for ;
8 for i in 3 : 3 loop
9 x [ i ] = 2 ; //EQ4 matched wi th X[ 1 ] , X[ 2 ]

10 end for ;
11 for i in 1 : 1 loop
12 x [ i +1] = 3∗y [ i ] ; //EQ2 matched wi th Y[ 1 ]
13 end for ;
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14 for i in 2 : 2 loop
15 4 = 3∗y [ i ] ; //EQ3 matched wi th Y[ 2 ]
16 end for ;
17 end Example

The vector dependency graph annotated with access function is:

YEQ2

XEQ1

+1

XEQ4

+1+0

YEQ3

+0

In this graph there are 4 edges, two arising from the usage of variable x in equation
2 with a f(x) = x + 1 vector access function. Two from the usage of y in equation
1 with f(x) = x as factor access function.

Clearly equations 3 and 4 can be calculated first, since they do not require any
other equation to be calculated first. Trickier it is to decided if any of eq1 or eq2
can be scheduled first.

Consider the first scalar-variable of vector-variable y, that is y[1]. Such variable
depends only on variable x[2], this can be calculated due to the f(x) = x+ 1 vector
access function. Similarly, x[2] depends on y[2] since the usage of variable y appears
with vector access function equal to f(x) = x.

y[2] is matched with equation EQ3, thus there is no cycle in the scalar graph,
since this variable does not require any other variable to be calculated.

More formally, given a vector dependency graph G, a cycle defined by edges p =
[e1, . . . , en] where the vector access function associated to each edge are [f1, . . . , fn],
there is a cycle in the scalar graph iff for some GMIS g it holds

fn(. . . (f1(g))) = g

That is, f1 ◦ · · · ◦ fn defined over the sub set g is equal to the identity function
defined over the sub set g.
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The problem of aliases Consider now a vector equation such as:

1 for i in 1 :10 loop
2 for j in 1 :10 loop
3 y [ j ] = y [ i ] ;
4 end for ;
5 end for ;

This vector-equation entails two ”kinds” of equations, the regular y[i] = y[j]
and one the tautology y[i] = y[i] when j = i. These two equations are profoundly
different. If they belonged to a system of equations, then to solve system of equations
it would be necessary to detect aliases and to handle them differently.

The problem of solving system of equations with unknown aliases is a open
problem, we will only consider a subset of the language that does not present this
problem. In particular we constrain the language so that only translation vector
access function are part of cycles in the vector graph.

If they are only translation then the previously exposed requirement

fn(. . . (f1(g))) = g

holds iff
f1 ◦ · · · ◦ fn = I

That is, the only way a vector access function can map a element to itself is if it
is the identity translation.

Thus, the scc fusion algorithm is operates as follow, for each cycle in the vector
graph, if the composition of all the functions annotated on the edges of the cycle is
the identity then we can solve those equation using a off-the-shelf system of equations
solver. Repeat this step until there are no cycle with this property.

5.6 Scheduling

After the scc fusion step has been completed it holds true that the scalar dependency
graph has no cycles. Thus, a post order visit would yield a execution list of the
graph so that all equations are commutable. Thus, we have two main interests when
performing the schedule:

• Perform this operation in constant time

• Minimize the number of time consecutive equations are scheduled not in order.

We provide an heuristic algorithm that tries to ensure the second point, and
then we show how to generalize it to make sure that it operates in constant time in
a large subset of cases.

Such algorithm is based on the khan algorithm.

Modified Khan algorithm We presented khan algorithm in algorithm9, the
khan algorithm operates by calculating the out-degree of each node(the number of
outgoing edges from a node), then scheduling each node that has out-degree of zero,
removing it from the graph and iterating this procedure, until none are left.

We add the heuristic is that if possible we try to schedule a node such that its
index was consecutive to the one just scheduled.

As an example consider the following model.
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1 model Example
2 Real x [ 2 ] ;
3 Real y [ 2 ] ;
4 equation
5

6 for i in 1 : 2 loop
7 2 = y [ i ] ; //EQ2 matched wi th y
8 end for ;
9

10 for i in 1 : 2 loop
11 x [ i ] = 2∗y [ i ] ; //EQ1 matched wi th X
12 end for ;
13

14 end Example

The scalar dependency graph is shown in figure 5.10

X1

Y1

X2

Y2

Figure 5.10: Scalar dependency graph corresponding to the aforementioned Modelica
model.

Only X1 and X2 can be scheduled at first, arbitrarily we schedule X1 due to
alphabetical order. Once it has been done then X1 is removed from the graph,
and thus X2 and Y 1 become viable for scheduling. The heuristic imposes that we
select X2 rather than Y 1, so that we can emit only two for cycles. The resulting
scheduling is:

1 for i in 1 : 2 loop
2 x [ i ] = 2∗y [ i ] ; //EQ1 matched wi th X
3 end for ;
4

5 for i in 1 : 2 loop
6 2 = y [ i ] ; //EQ2 matched wi th y
7 end for ;

If we did not respected the heuristic and picked Y 1 to be scheduled first then
the result would have been:

1 for i in 1 : 1 loop
2 x [ i ] = 2∗y [ i ] ;
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3 end for ;
4

5 for i in 1 : 1 loop
6 2 = y [ i ] ;
7 end for ;
8

9 for i in 2 : 2 loop
10 x [ i ] = 2∗y [ i ] ;
11 end for ;
12

13 for i in 2 : 2 loop
14 2 = y [ i ] ;
15 end for ;

Which presents twice the count of for cycles.

This scheduling is not the optimal scheduling that minimizes the number of
produced for cycles. Still it is executed in linear time and has the useful property
that if a sub-optimal choice has been made, such poor choice is restricted to the
current scc.

Parallel scheduling We wish now to show what kind of heuristics can be obtained
from the usage of the vector dependency graph. The intuition we consider is the
following, if two nodes a and b of the vector dependency graph belong to different
scc then either all scalar equations belonging to the vector equation associated to a
can be scheduled before or can be scheduled after all those belonging to the vector
equation associated to b. This derived from the definition of strongly connected
component, since either there is path from a to b or a path from b to a and not both.

This implies that we can schedule each scc in parallel of all the others, collapse
all nodes inside a scc to one node only, and then schedule such graph.

Consider the previous example, the vector dependency graph is shown in figure
5.11

Y

X

Figure 5.11: Vevctorial dependency graph corresponding to the example Modelica
model.
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Due to the lack of a path from X to Y it follows that all X variables can be
scheduled after Y variables, and thus the scheduling can be parallelized, a core can
schedule the equations belonging to X and one those belonging to Y .

Trivial schedules There exists a subset vector dependency graphs of a given size
that can be scheduled in constant time with respect to the size of their scalar graph,
and in linear time with respect to the size of the vector dependency graph.

Such graphs are those in which each scc in the vector dependency graph is
composed of a single element. If a scc s of a vector dependency graph is composed
of a single element e it follows that if a schedule exists, then all elements of e can
be scheduled contiguously. If there are exactly zero edges starting and ending in e
it follows that there are no dependency between elements of e, thus any schedule
is a proper schedule of those elements and thus this schedule can be performed in
constant time, by simply returning the input node of the vector scheduling graph.

Consider now if there is exactly one edge starting and ending in e, if that is the
case and that edge is associated to a translation then it follows that either all scalar
variables belonging to e with index i depends at most on one scalar variable with
index j > i, or the opposite, that is all scalar variables belonging to e with index i
depends at most one one scalar variable with index i < j.

Thus, by pattern matching on the single edge we can produce a constant time
schedule for the entire scc.



Chapter 6

Experimental Results

The roman empire collapsed due to
the inability to represent the
number zero. Without it, it was
impossible for their UNIX programs
to terminate successfully.

In Chapter 4 we have shown why it was necessary to impose restrictions over the
features of the Modelica language. In chapter 5 we described in detail such language
restrictions, and we propose a pipeline that allows the compilation of models in
constant time with respect to the iteration count of for statements. This compilation
pipeline results in simulations with better locality-of-data properties as well.

In this chapter we show the experimental results obtained from our implemen-
tation of MARCO, in order to demonstrate the benefits of our approach.

6.1 Validation Process

Conceptually, evaluating the performance of a compiler is rather simple. Given a
set of input program we wish to assert the following:

• The behavior yielded by the simulation is correct, that is: the output of the
simulation is the same as the output of a simulation produced via established
compilers, or of hand-written simulations.

• The compilation speed is constant with respect to the sizes of array variables.

• Finally, while this is not a correctness result, we wish to show that the execu-
tion time and the binary sizes are small by some metric.

Given an input program, it is trivial to inspect these three points. Thus, we are
interested in describing what would be an interesting program to test. We propose a
thermal simulation akin to finite element analysis. In particular, we simulate a cube
heated on one side, of which we wish to measure the temperature in the corners
and in the center points of the edges. To model the temperature gradient across
the cube, it is divided into a number of sub-cubes. Two implementations of this

93
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model have been made. The first one is named ThermalChipODE, and it expresses
the derivative of the temperature of each sub-cube as a function of the current
temperature of every surrounding cube. The second one is named ThermalChipOO.
The difference between the two is that the second model is written in Object Oriented
Modelica style. Instead of providing the definition of the derivative of a cube in the
system, we define the relationship between the temperature and the heat flowing
between the boundaries of each cube. This connection generates a implicit system
of each pair of adjacent cubes that must be solved. The number of sub-cubes is
a configurable parameter and we will show that MARCO will compile in constant
time with respect to it.

The source code of the models used as input can be found in Appendix A.

Experimental setup We executed our tests on a machine with the following
characteristics:

• Operating System: Linux Ubuntu 18.04

• RAM: 74 GB

• CPU: 20 core Intel(R) Xeon(R) CPU E5-2650 v3, 2.30GHz.

The MARCO compiler is based on the LLVM compiler framework, version 9.0.0.
The OpenModelica Compiler (OMC) version employed was 1.17.0 dev-69-gdf59bea.
Additionally, we also used the clang C++ compiler, version 9.0.0.

The experiment for a particular number of sub-cubes is performed as follows.
The Modelica input file is configured with the dimension of cubes required. The
program is compiled with OMC, and the compilation time reported by OMC itself
is recorded. At this point, the compiled simulation is executed. The simulation time
is extracted from the simulation output itself.

As an exception to the above, it must be noted that when simulating or compiling
ThermalChipODE and ThermalChipOO with OMC, it occurred that OMC required
more memory than what was available on the machine. Thus, the experiments with
46 elements or more are shown only for the ThermalChipODE benchmark.

At this point, the Modelica source code file is flattened with the usage of OMC, in
order to remove the object oriented features. Some simple substitutions are applied
to the file with the sed utility to make the output of the flattening process comply
with the Modelica syntax. From the flattened source code we obtain the LLVM-IR
code with the usage of MARCO, and then it is compiled with clang.

The compilation time of MARCO is the sum of the flattening time, the clang
execution time, and the time required to produce the LLVM-IR. These times are
measured with the usage of the GNU time utility.

A user-implemented main function is linked against the MARCO produced bi-
nary. This main function utilizes a timer in order to measure the actual execution
time of the simulation, rather than the time required to print the simulation results
to a file.

Both MARCO and OpenModelicaCompiler use their own implementation of the
Euler method to solve derivatives.
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6.2 Experimental Results

In the following section we will show and discuss the results of the experiments we
conducted in order to prove the effectiveness of the MARCO compiler with respect
to the current state-of-the-art OpenModelica Compiler.

6.2.1 Compilation Time

Figure 6.1: Compilation time of the ThermalChip model, both for the MARCO and
OMC compilers, as a function of the number of variables.

Figure 6.1 shows the compilation time of both OpenModelicaCompiler and MARCO.
From the graph it is immediately evident that the compilation time required by
OpenModelicaCompiler grows linearly with the size of the model, while Marco op-
erates in constant time. This property naturally extends to any input size and to
every model with a similar structure to the one employed by our examples, as it is
an important consequence of the overall design of MARCO.
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6.2.2 Correctness

We prove the correctness of the simulation by reporting the behavior through time
of the temperature of significant objects in the simulation. When we write T [x, y, z]
we refer to the temperature of the volume at location x, y, z. The results shown
in figure 6.2 and figure 6.3 display the thermal behavior of the sub-cubes, sampled
every 50 simulation iterations for the largest input file OpenModelicaCompiler was
able to produce.

It must be noticed that the version of OMC we are using presented a bug when
compiling ThermalChipOO. We replicated the bug in our implementation to make
a fair comparison.

(a) OMC simulation (b) MARCO simulation

Figure 6.2: Simulation output of the ThermalChip ODE model (edge width = 46),
as compiled both with MARCO and OMC.

In Table 6.1 we show the values at the end of the simulation for the center and
extreme points of an edge of the cube after 5000 iterations of ThermalChipODE
with 46 subdivision per edge. The results at different time instants, the results of
the other sub-cubes and the result for different cubes count are similar to the one
reported. We also show the results for the second benchmark with an edge size of
21 in Table 6.2.

From the graphs we can see that the simulation compiled by MARCO is correct,
as it produces the same behavior of the OMC simulation.

However, in the results of ThermalChipOO there are small differences due to
how the systems of equations in the model have been solved. This happens because
we do not yet rely on an external solver, and our simplified implementation does not
yield exact solutions. We opted for using a custom-made solver due to the problem
of aliases present in the SCCfusion step described in Chapter 5. Since there is more
theoretical work required to solve this problem, we did not want our implementation
to be prematurely constrained to a particular solver.
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(a) OMC simulation (b) MARCO simulation

Figure 6.3: Simulation output of the ThermalChip OO model (edge width = 21), as
compiled both with MARCO and OMC.

Table 6.1: Final simulation result samples for one side of the cube (edge size = 46),
as compiled by OMC and MARCO.

ThermalChipODE T[46, 46, 1] T[46, 46, 23] T[46, 46, 46]

OpenModelicaCompiler 313.150000 313.150002 319.236637

Marco 313.150000 313.150002 319.236637

Table 6.2: Simulation result samples for one side of the cube (edge size = 21), as
compiled by OMC and MARCO.

ThermalChipOO T[21, 21, 1] T[21, 21, 10] T[21, 21, 21]

after 1 iteration

OpenModelicaCompiler 312.999871 313.15 313.15

Marco 312.999871 313.15 313.15

after 5000 iterations

OpenModelicaCompiler 298.997994 310.4721709 313.054775

Marco 298.998079 310.472823 313.054864
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Figure 6.4: Sizes of the executable binaries produced by OMC and MARCO, as a
function of the number of variables. Only the executable code section of the binaries
is taken into account.

6.2.3 Binary size

Binary sizes, and in particular the size of the .text segment, is important because
modern CPU performance is highly tied to cache dimensions. In Figure 6.4 we
show the size of the .text segment, which contains the machine executable code
proper. We only show such segment because MARCO and OMC differ in how they
instantiate variables. OpenModelicaCompiler generates local variables allocated on
the heap at run time, while Marco generates global variables instead. Including
other segments such as .data and .bss would put MARCO at an unfair disadvan-
tage because these segments increase in size with the number of global variables.
This discrepancy between MARCO and OMC does not impact the actual memory
requirements at runtime.

We can see that the .text segment of the simulator generated by OpenModelica-
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Compiler quickly reaches sizes that are too large, and end up causing a deterioration
of the run time performance. MARCO instead produces approximately constant-size
.text segments. The fluctuation in size is related to the optimizations performed
by LLVM. When for-cycles become too large, LLVM stops unrolling them, therefore
reducing the code size.

6.2.4 Simulation Time

Beside proving the correctness of the simulation we wish to discuss the simulation
time. We will show the simulation time required for MARCO and OpenModelica-
Compiler, as well as the simulation time of an handwritten C++ implementation.

Figure 6.5: Graph of the simulation time of the ThermalChip model — as compiled
with MARCO, with OMC, and as implemented directly in C++ — as a function of
the number of variables.

The results in Figure 6.5 show that MARCO is already able to produce simulators
with better execution times than the OpenModelica Compiler, up to 8 times as fast
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when the input model is provided in ODE form, and hundreds of time faster when
the input program is provided in Object Oriented form.

Additionally, we observe that the handwritten solution is 50% faster with large
numbers of sub-cubes, suggesting that it is possible to produce code that is even
more performing than the one produced by MARCO.

Finally, we can notice a 10x performance degradation between the performance
of the MARCO simulations produced with the ODE implementation and the OO
implementation. This is partially due to the fact that the Object-Oriented source
code contains a much greater number of equations and variables that are not strictly
needed to calculate the printed variables, but at the moment MARCO is not capable
of exploiting this property and produces code for computing all of them.

6.3 Conclusions

We have shown that the simulation produced by MARCO are equivalent to those
of the reference implementation, OMC. Furthermore we have shown that the com-
pilation time is constant with respect to the size of the arrays, and the number of
equations derived from for-cycles. This enables the use of Modelica on large scale
simulations. Finally, even on small scale simulations the performance of MARCO
proves to be better, and much closer to the performance of hand-written simulations.



Chapter 7

Conclusions

7.1 Results

The future is trivia

In this document we have shown the necessity of producing a Modelica compiler
that is able, given a particular high-level structure, to compile large simulations in
constant time, since this was the requirement needed to be able to use Modelica in
the domain of large scale system. Starting from first principles, we categorized the
complexity of the stages of the pipeline with respect to the size of for-equations. We
have proved that

• the matching stage is a NP-hard problem when we add the constraint of pre-
serving as many for-loops as possible.

• the scc-collapsing stage can be aided by the usage of homomorphic graphs.

• the scheduling stage is a np-hard problem when we add the constraint of
preserving as many for-loops as possible. Furthermore it can be aided by the
usage of homomorphic graphs.

Finally, we proposed a conjecture of minimal complexity of the scheduling stage
for unrecognized vector-access pattern.

These are surprising results, since in the scalar formulation of the problem much
of these issues can be solved in linear time, and the SCC collapsing and the scheduling
stages are solved in a single step, rather than with two distinct algorithms. If
the conjecture was to be proven true, it would furthermore imply that the only
possible way to be able to compile a generic model with a given high-level structure
in constant time requires using an heuristic, or reducing the expressivity of the
language.

MARCO design Given these new findings we designed a new Modelica compiler,
called MARCO, operating on a subset of the Modelica language. MARCO imple-
ments vector-aware algorithms for each pipeline stage. Each stage operates in linear
time on the average input, and for complex inputs it can be extended with heuristics
that can improve its performance.
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Furthermore, MARCO has been designed as a composable and reusable tool, in
contrast with the largely monolithic structure of OMC.

Experimental Results Finally, we have tested MARCO with programs that be-
long to the realm of finite volume analysis, and its usage yielded improvements of
up to 100× faster simulations, without considering that MARCO compiles in con-
stant time regardless of the granularity of the simulation, instead of in linear time.
Furthermore MARCO produces much smaller binaries.

7.2 Future Works

Our work resulted a framework that can be extended in many ways.

Generalizing the SccResolution step We provided an algorithm that is able
to solve the SccResolution step under strong requirements on the input. We have
conjectured that the general case cannot be solved in less than linear time. We
believe that a subset of the general case — larger than the one we handled —
can in fact be compiled in constant time with respect to the vector dependency
graph. Finding such a subset and producing an algorithm that is well suited for our
purposes is both a theoretical and practical task. Furthermore, the SCC resolution
step requires an explicit solver of systems of equations. Additionally, it is not yet
demonstrated that general-purpose equation solvers can execute in constant time
when solving varying sizes of vector equations. If that was not the case, then we
would need to develop a domain-specific equation solver for our purposes.

Implementing a larger subset of polyhedral analysis tools One of the con-
structs available in Modelica are if equations, a way to describe that only some
scalar equations in a vector equation must be considered, depending on the value of
a logical predicate. Beside being a construct offered by the language, this capability
could be used by the compiler to have finer control on vector-equations. It is not
trivial how to implement such a construct in MARCO, since some predicates will
force the compiler to scalarize the vector-equations. Finding the largest subset of
predicates that can be used in if-equations while preserving the property of constant
time compilation is both a theoretical and practical problem.

Promoting non-state variables to llvm registers If the value of a variable
is not printed in the output, and does not need to be preserved across simulations
steps then it could be promoted to local variable. This would then enable LLVM to
perform dead code elimination of useless variables and increase performance.

Implementing a larger set of the Modelica language Modelica offers support
for many features that are beyond the scope of this document. Some are orthogonal
to the improvements that we have suggested, others require theoretical and practical
work to be implemented in MARCO. This is development mainly requires additional
work in the front-end side of the compiler.
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Benchmark Sources

A.1 ThermalChipODE.mo

1 package ThermalChipODE
2 package Types
3 type Temperature = Real ( un i t = ”K” , nominal = 500) ;
4 type Power = Real ( un i t = ”W” ) ;
5 type ThermalConductivity = Real ( un i t = ”W/(m.K) ” ) ;
6 type ThermalConductance = Real ( un i t = ”W/K” ) ;
7 type Spec i f i cHeatCapac i ty = Real ( un i t = ”J/( kg .K) ” ) ;
8 type ThermalCapacitance = Real ( un i t = ”J/K” ) ;
9 type Density = Real ( un i t = ”kg/m3” ) ;

10 type Length = Real ( un i t = ”m” ) ;
11 type Time = Real ( un i t = ” s ” ) ;
12 end Types ;
13

14 package I n t e r f a c e s
15 end I n t e r f a c e s ;
16

17 package Models
18 p a r t i a l model BaseThermalChip
19 parameter In t eg e r N = 46 ”Number o f volumes in the x d i r e c t i o n ” ;
20 parameter In t eg e r M = 46 ”Number o f volumes in the y d i r e c t i o n ” ;
21 parameter In t eg e r P = 46 ”Number o f volumes in the z d i r e c t i o n ” ;
22 parameter Types . Length L = 12e−3 ”Chip l ength in the x d i r e c t i o n ”

annotat ion (
23 Evaluate = true ) ;
24 parameter Types . Length W = 12e−3 ”Chip width in the y d i r e c t i o n ”

annotat ion (
25 Evaluate = true ) ;
26 parameter Types . Length H = 4e−3 ”Chip he ight in the z d i r e c t i o n ”

annotat ion (
27 Evaluate = true ) ;
28 parameter Types . ThermalConductivity lambda = 148 ”Thermal

conduc t i v i ty o f s i l i c o n ” annotat ion (
29 Evaluate = true ) ;
30 parameter Types . Density rho = 2329 ”Density o f s i l i c o n ”

annotat ion (
31 Evaluate = true ) ;
32 parameter Types . Spec i f i cHeatCapac i ty c = 700 ” S p e c i f i c heat

capac i ty o f s i l i c o n ” annotat ion (
33 Evaluate = true ) ;
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34 parameter Types . Temperature Tstart = 273.15 + 40 ;
35 f i n a l parameter Types . Length l = L / N ”Chip length in the x

d i r e c t i o n ” ;
36 f i n a l parameter Types . Length w = W / M ”Chip width in the y

d i r e c t i o n ” ;
37 f i n a l parameter Types . Length h = H / P ”Chip he ight in the z

d i r e c t i o n ” ;
38 parameter Types . Temperature Tt = 273.15 + 40 ”Presc r ibed

temperature o f the top su r f a c e ” annotat ion (
39 Evaluate = true ) ;
40 f i n a l parameter Types . ThermalCapacitance C = rho∗c∗ l ∗w∗h ”Thermal

capac i tance o f a volume” ;
41 f i n a l parameter Types . ThermalConductance Gx = lambda∗w∗h / l ”

Thermal conductance o f a volume , x d i r e c t i o n ” ;
42 f i n a l parameter Types . ThermalConductance Gy = lambda∗ l ∗h / w ”

Thermal conductance o f a volume , y d i r e c t i o n ” ;
43 f i n a l parameter Types . ThermalConductance Gz = lambda∗ l ∗w / h ”

Thermal conductance o f a volume , z d i r e c t i o n ” ;
44 Types . Temperature T[N,M,P ] ( each s t a r t = Tstart , each f i x ed = true )

”Temperatures o f the volumes” ;
45 Types . Power Qb[N,M] ”Power i n j e c t e d in the bottom volumes” ;
46 equation
47 der (T[ 1 , 1 , 1 ] ) = 1/C∗(Gx∗((−T[ 1 , 1 , 1 ] ) + T[ 2 , 1 , 1 ] ) +
48 Gy∗((−T[ 1 , 1 , 1 ] ) + T[ 1 , 2 , 1 ] ) +
49 Gz∗(2∗Tt−3∗T[ 1 , 1 , 1 ] + T[ 1 , 1 , 2 ] ) ) ”Upper l e f t

top corner ” ;
50

51 der (T[N, 1 , 1 ] ) = 1/C∗(Gx∗(T[N−1 ,1 ,1]−T[N, 1 , 1 ] ) +
52 Gy∗((−T[N, 1 , 1 ] ) + T[N, 2 , 1 ] ) +
53 Gz∗(2∗Tt−3∗T[N, 1 , 1 ] + T[N, 1 , 2 ] ) ) ”Lower l e f t

top corner ” ;
54

55 der (T[ 1 ,M, 1 ] ) = 1/C∗(Gx∗((−T[1 ,M, 1 ] ) + T[ 2 ,M, 1 ] ) +
56 Gy∗(T[ 1 ,M−1,1]−T[1 ,M, 1 ] ) +
57 Gz∗(2∗Tt−3∗T[1 ,M, 1 ] + T[ 1 ,M, 2 ] ) ) ”Upper

r i g h t top corner ” ;
58

59 der (T[N,M, 1 ] ) = 1/C∗(Gx∗(T[N−1,M,1]−T[N,M, 1 ] ) +
60 Gy∗(T[N,M−1,1]−T[N,M, 1 ] ) +
61 Gz∗(2∗Tt−3∗T[N,M, 1 ] + T[N,M, 2 ] ) ) ”Lower

r i g h t top corner ” ;
62

63 der (T[ 1 , 1 ,P ] ) = 1/C∗(Gx∗((−T[1 , 1 ,P ] ) + T[ 2 , 1 ,P ] ) +
64 Gy∗((−T[1 , 1 ,P ] ) + T[ 1 , 2 ,P ] ) +
65 Gz∗(T[ 1 , 1 ,P−1]−T[1 , 1 ,P ] ) + Qb[ 1 , 1 ] ) ”Upper

l e f t bottom corner ” ;
66

67 der (T[N, 1 ,P ] ) = 1/C∗(Gx∗(T[N−1 ,1 ,P]−T[N, 1 ,P ] ) +
68 Gy∗((−T[N, 1 ,P ] ) + T[N, 2 ,P ] ) +
69 Gz∗(T[N, 1 ,P−1]−T[N, 1 ,P ] ) + Qb[N, 1 ] ) ”Lower

l e f t bottom corner ” ;
70

71 der (T[ 1 ,M,P ] ) = 1/C∗(Gx∗((−T[1 ,M,P ] ) + T[ 2 ,M,P ] ) +
72 Gy∗(T[ 1 ,M−1,P]−T[1 ,M,P ] ) +
73 Gz∗(T[ 1 ,M,P−1]−T[1 ,M,P ] ) + Qb[ 1 ,M] ) ”Upper

r i g h t bottom corner ” ;
74

75 der (T[N,M,P ] ) = 1/C∗(Gx∗(T[N−1,M,P]−T[N,M,P ] ) +
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76 Gy∗(T[N,M−1,P]−T[N,M,P ] ) +
77 Gz∗(T[N,M,P−1]−T[N,M,P ] ) + Qb[N,M] ) ”Lower

r i g h t bottom corner ” ;
78

79 for i in 2 :N−1 loop
80 der (T[ i , 1 , 1 ] ) = 1/C∗(Gx∗(T[ i −1 ,1 ,1]−2∗T[ i , 1 , 1 ] + T[ i +1 ,1 ,1 ] ) +
81 Gy∗((−T[ i , 1 , 1 ] ) + T[ i , 2 , 1 ] ) +
82 Gz∗(2∗Tt−3∗T[ i , 1 , 1 ] + T[ i , 1 , 2 ] ) ) ” Le f t top

edge” ;
83

84 der (T[ i ,M, 1 ] ) = 1/C∗(Gx∗(T[ i −1,M,1]−2∗T[ i ,M, 1 ] + T[ i +1,M, 1 ] ) +
85 Gy∗(T[ i ,M−1,1]−T[ i ,M, 1 ] ) +
86 Gz∗(2∗Tt−3∗T[ i ,M, 1 ] + T[ i ,M, 2 ] ) ) ”Right

top edge” ;
87

88 der (T[ i , 1 ,P ] ) = 1/C∗(Gx∗(T[ i −1 ,1 ,P]−2∗T[ i , 1 ,P ] + T[ i +1 ,1 ,P ] ) +
89 Gy∗((−T[ i , 1 ,P ] ) + T[ i , 2 ,P ] ) +
90 Gz∗(T[ i , 1 ,P−1]−T[ i , 1 ,P ] ) + Qb[ i , 1 ] ) ” Le f t

bottom edge” ;
91

92 der (T[ i ,M,P ] ) = 1/C∗(Gx∗(T[ i −1,M,P]−2∗T[ i ,M,P] + T[ i +1,M,P ] ) +
93 Gy∗(T[ i ,M−1,P]−T[ i ,M,P ] ) +
94 Gz∗(T[ i ,M,P−1]−T[ i ,M,P ] ) + Qb[ i ,M] ) ”Right

bottom edge” ;
95 end for ;
96

97 for j in 2 :M−1 loop
98 der (T[ 1 , j , 1 ] ) = 1/C∗(Gx∗(T[ 1 , j −1 ,1]−2∗T[1 , j , 1 ] + T[ 1 , j +1 ,1]) +
99 Gy∗((−T[1 , j , 1 ] ) + T[ 2 , j , 1 ] ) +

100 Gz∗(2∗Tt−3∗T[1 , j , 1 ] + T[ 1 , j , 2 ] ) ) ”Upper
top edge” ;

101

102 der (T[N, j , 1 ] ) = 1/C∗(Gx∗(T[N, j −1 ,1]−2∗T[N, j , 1 ] + T[N, j +1 ,1 ]) +
103 Gy∗(T[N−1, j ,1]−T[N, j , 1 ] ) +
104 Gz∗(2∗Tt−3∗T[N, j , 1 ] + T[N, j , 2 ] ) ) ”Lower

top edge” ;
105

106 der (T[ 1 , j ,P ] ) = 1/C∗(Gx∗(T[ 1 , j −1,P]−2∗T[1 , j ,P ] + T[ 1 , j +1,P ] ) +
107 Gy∗((−T[1 , j ,P ] ) + T[ 2 , j ,P ] ) +
108 Gz∗(T[ 1 , j ,P−1]−T[1 , j ,P ] ) + Qb[ 1 , j ] ) ”Upper

bottom edge” ;
109

110 der (T[N, j ,P ] ) = 1/C∗(Gx∗(T[N, j −1,P]−2∗T[N, j ,P ] + T[N, j +1,P ] ) +
111 Gy∗(T[N−1, j ,P]−T[N, j ,P ] ) +
112 Gz∗(T[N, j ,P−1]−T[N, j ,P ] ) + Qb[N, j ] ) ”Lower

bottom edge” ;
113 end for ;
114

115 for k in 2 :P−1 loop
116 der (T[ 1 , 1 , k ] ) = 1/C∗(Gx∗((−T[1 , 1 , k ] ) + T[ 2 , 1 , k ] ) +
117 Gy∗((−T[1 , 1 , k ] ) + T[ 1 , 2 , k ] ) +
118 Gz∗(T[ 1 , 1 , k−1]−2∗T[1 , 1 , k ] + T[ 1 , 1 , k + 1 ] ) )

”Upper l e f t edge” ;
119

120 der (T[N, 1 , k ] ) = 1/C∗(Gx∗(T[N−1 ,1 ,k]−T[N, 1 , k ] ) +
121 Gy∗((−T[N, 1 , k ] ) + T[N, 2 , k ] ) +
122 Gz∗(T[N, 1 , k−1]−2∗T[N, 1 , k ] + T[N, 1 , k + 1 ] ) )

”Lower l e f t edge” ;
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123

124 der (T[ 1 ,M, k ] ) = 1/C∗(Gx∗(T[ 1 ,M−1,k]−T[1 ,M, k ] ) +
125 Gy∗(T[ 2 ,M, k]−T[1 ,M, k ] ) +
126 Gz∗(T[ 1 ,M, k−1]−2∗T[1 ,M, k ] + T[ 1 ,M, k + 1 ] ) )

”Upper r i g h t edge” ;
127

128 der (T[N,M, k ] ) = 1/C∗(Gx∗(T[N−1,M, k]−T[N,M, k ] ) +
129 Gy∗(T[N,M−1,k]−T[N,M, k ] ) +
130 Gz∗(T[N,M, k−1]−2∗T[N,M, k ] + T[N,M, k + 1 ] ) )

”Lower r i g h t edge” ;
131 end for ;
132

133 for i in 2 :N−1 loop
134 for j in 2 :M−1 loop
135 der (T[ i , j , 1 ] ) = 1/C∗(Gx∗(T[ i −1, j ,1]−2∗T[ i , j , 1 ] + T[ i +1, j , 1 ] )

+
136 Gy∗(T[ i , j −1 ,1]−2∗T[ i , j , 1 ] + T[ i , j +1 ,1 ])

+
137 Gz∗(2∗Tt−3∗T[ i , j , 1 ] + T[ i , j , 2 ] ) ) ”Top

f a c e ” ;
138

139 der (T[ i , j ,P ] ) = 1/C∗(Gx∗(T[ i −1, j ,P]−2∗T[ i , j ,P ] + T[ i +1, j ,P ] )
+

140 Gy∗(T[ i , j −1,P]−2∗T[ i , j ,P ] + T[ i , j +1,P ] )
+

141 Gz∗(T[ i , j ,P−1]−T[ i , j ,P ] ) + Qb[ i , j ] ) ”
Bottom fa c e ” ;

142 end for ;
143 end for ;
144

145 for i in 2 :N−1 loop
146 for k in 2 :P−1 loop
147 der (T[ i , 1 , k ] ) = 1/C∗(Gx∗(T[ i −1 ,1 ,k]−2∗T[ i , 1 , k ] + T[ i +1 ,1 ,k ] )

+
148 Gy∗((−T[ i , 1 , k ] ) + T[ i , 2 , k ] ) +
149 Gz∗(T[ i , 1 , k−1]−2∗T[ i , 1 , k ] + T[ i , 1 , k +

1 ] ) ) ” Le f t f a c e ” ;
150

151 der (T[ i ,M, k ] ) = 1/C∗(Gx∗(T[ i −1,M, k]−2∗T[ i ,M, k ] + T[ i +1,M, k ] )
+

152 Gy∗(T[ i ,M−1,k]−T[ i ,M, k ] ) +
153 Gz∗(T[ i ,M, k−1]−2∗T[ i ,M, k ] + T[ i ,M, k +

1 ] ) ) ”Right f a c e ” ;
154 end for ;
155 end for ;
156

157 for j in 2 :M−1 loop
158 for k in 2 :P−1 loop
159 der (T[ 1 , j , k ] ) = 1/C∗(Gx∗((−T[1 , j , k ] ) + T[ 2 , j , k ] ) +
160 Gy∗(T[ 1 , j −1,k]−2∗T[1 , j , k ] + T[ 1 , j +1,k ] )

+
161 Gz∗(T[ 1 , j , k−1]−2∗T[1 , j , k ] + T[ 1 , j , k +

1 ] ) ) ”Upper f a c e ” ;
162 der (T[N, j , k ] ) = 1/C∗(Gx∗(T[N−1, j , k]−T[N, j , k ] ) +
163 Gy∗(T[N, j −1,k]−2∗T[N, j , k ] + T[N, j +1,k ] )

+
164 Gz∗(T[N, j , k−1]−2∗T[N, j , k ] + T[N, j , k +

1 ] ) ) ”Lower f a c e ” ;
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165 end for ;
166 end for ;
167

168 for i in 2 :N−1 loop
169 for j in 2 :M−1 loop
170 for k in 2 :P−1 loop
171 der (T[ i , j , k ] ) = 1/C∗(Gx∗(T[ i −1, j , k]−2∗T[ i , j , k ] + T[ i +1, j , k

] ) +
172 Gy∗(T[ i , j −1,k]−2∗T[ i , j , k ] + T[ i , j +1,k

] ) +
173 Gz∗(T[ i , j , k−1]−2∗T[ i , j , k ] + T[ i , j , k +

1 ] ) ) ” I n t e r na l volume” ;
174 end for ;
175 end for ;
176 end for ;
177 end BaseThermalChip ;
178

179 model ThermalChip4Cores ”Thermal chip model wr i t t en as ODE with 4
s imulated co r e s ”

180 extends BaseThermalChip (
181 f i n a l N = 12∗Nr , f i n a l M = 12∗Nr , f i n a l P = 4∗Pr ) ;
182 parameter Types . Time Ts = 10e−3 ” Switching base per iod ” ;
183 parameter Types . Power Ptot = 100 ”Total average power consumption

” ;
184 f i n a l parameter Types . Power Pc = Ptot /4 ”Average power d i s s i p a t e d

by each core ” ;
185 f i n a l parameter Types . Power Pa = Pc/4 ”Average power d i s s i p a t e d

by each area in a core ” ;
186 f i n a l parameter Types . Power Pv=Pa/(4∗Nrˆ2) ”Average power

d i s s i p a t e d in a s i n g l e volume” ;
187 f i n a l parameter Types . Power Pvmax = Pv/(sum(AS) /32∗sum(CS) /32) ”

Max power d i s s i p a t e d in a s i n g l e volume” ;
188 parameter In t eg e r Nr=1 ”Grid r e f i n i n g f a c t o r on x−y plane ” ;
189 parameter In t eg e r Pr=1 ”Grid r e f i n i n g f a c t o r on z d i r e c t i o n ” ;
190 parameter In t eg e r TLC[ 4 , 2 ] =
191 {{1 ,1} ,
192 {1 ,7} ,
193 {7 ,1} ,
194 {7 ,7}
195 } ”Upper− l e f t coo rd inate o f each core on base g r id ” ;
196 parameter In t eg e r TLA[ 4 , 2 ] =
197 {{0 ,0} ,
198 {2 ,0} ,
199 {0 ,2} ,
200 {2 ,2}
201 }
202 ”Upper l e f t coo rd ina te o f each area on base gr id , r e l a t i v e to

core ” ;
203 parameter In t eg e r AS [ 3 2 ] =
204 {1 , 0 , 0 , 1 , 1 , 0 , 1 , 0 , 0 , 0 , 1 , 1 , 1 , 1 , 0 , 0 , 1 , 1 , 0 , 1 , 1 ,

1 , 1 , 0 , 0 , 0 , 1 , 0 , 1 , 1 , 0 , 1}
205 ” S ing l e area sw i t ch ing sequence ”
206 annotat ion ( Evaluate=true ) ;
207 parameter In t eg e r CS [ 3 2 ] =
208 {1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 1 , 1 , 1 , 1 , 1 , 1 , 0 , 0 , 1 ,

0 , 1 , 0 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0}
209 ”Core sw i t ch ing sequence ”
210 annotat ion ( Evaluate = true ) ;
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211 I n t eg e r a idx [ 4 ] ( s t a r t = {1 , 9 , 17 , 25} , each f i x ed = true ) ”
Sequence index o f each area ” ;

212 I n t eg e r c i dx [ 4 ] ( s t a r t = {1 , 9 , 17 , 25} , each f i x ed = true ) ”
Sequence index o f each core ” ;

213 I n t eg e r c s c t r ( s t a r t = 1 , f i x ed = true ) ”Core sw i t ch ing counter ” ;
214 Types . Power Qv [ 4 , 4 ] ”Power d i s s i p a t e d in each area o f each core ,

per s i n g l e volume” ;
215 Types . Power Qvb [N,M, 4 , 4 ] ”Power d i s s i p a t e d in each area o f each

core mapped on the bottom su r f a c e volumes” ;
216 Types . Power Qtot ”Total d i s s i p a t e d power” ;
217 a lgor i thm
218 // Swi tch ing sequence
219 when sample (0 , Ts ) then
220 for i in 1 : 4 loop // core loop
221 for j in 1 :4 loop // area loop
222 a idx [ j ] := mod( ( a idx [ j ] ) ,32) + 1 ;
223 Qv[ i , j ] := Pvmax∗AS[ a idx [ j ] ] ∗CS[ c i dx [ i ] ] ;
224 end for ;
225 end for ;
226 i f mod( pre ( c s c t r ) ,32) == 0 then
227 for i in 1 : 4 loop
228 c i dx [ i ] := mod( ( c i dx [ i ] ) ,32) + 1 ;
229 end for ;
230 end i f ;
231 c s c t r := c s c t r +1;
232 end when ;
233 equation
234 for i in 1 : 4 loop // core loop
235 for j in 1 :4 loop // area loop
236 Qvb [ : ,
237 1 : (TLC[ i ,2 ]+TLA[ j , 2 ] ) ∗Nr ,
238 i , j ] =
239 z e ro s (12∗Nr , (TLC[ i ,2 ]+TLA[ j , 2 ] ) ∗Nr) ;
240 Qvb [ 1 : (TLC[ i ,1 ]+TLA[ j , 1 ] ) ∗Nr ,
241 (TLC[ i ,2 ]+TLA[ j , 2 ] ) ∗Nr+1:(TLC[ i ,2 ]+TLA[ j , 2 ]+2) ∗Nr ,
242 i , j ] = ze ro s ( (TLC[ i ,1 ]+TLA[ j , 1 ] ) ∗Nr ,2∗Nr) ;
243 Qvb [ (TLC[ i ,1 ]+TLA[ j , 1 ] ) ∗Nr+1:(TLC[ i ,1 ]+TLA[ j , 1 ]+2) ∗Nr ,
244 (TLC[ i ,2 ]+TLA[ j , 2 ] ) ∗Nr+1:(TLC[ i ,2 ]+TLA[ j , 2 ]+2) ∗Nr ,
245 i , j ] = f i l l (Qv [ i , j ] , 2∗Nr ,2∗Nr) ;
246 Qvb [ (TLC[ i ,1 ]+TLA[ j , 1 ]+2) ∗Nr+1:12∗Nr ,
247 (TLC[ i ,2 ]+TLA[ j , 2 ] ) ∗Nr+1:(TLC[ i ,2 ]+TLA[ j , 2 ]+2) ∗Nr ,
248 i , j ] = ze ro s (10−(TLC[ i ,1 ]+TLA[ j , 1 ] ) ∗Nr ,2∗Nr) ;
249 Qvb [ : ,
250 (TLC[ i ,2 ]+TLA[ j , 2 ]+2) ∗Nr+1:end ,
251 i , j ] = ze ro s (12∗Nr,10−(TLC[ i ,2 ]+TLA[ j , 2 ] ) ∗Nr) ;
252 end for ;
253 end for ;
254 for i in 1 :N loop
255 for j in 1 :M loop
256 Qb[ i , j ] = sum(sum(Qvb [ i , j , k , l ] for k in 1 : 4 ) for l in 1 : 4 ) ;
257 end for ;
258 end for ;
259 Qtot = sum(sum(Qb) ) ;
260 annotat ion (
261 experiment ( StartTime = 0 , StopTime = 4 , Tolerance = 1e−6,

I n t e r v a l = 0 .000002) ,
262 OpenMode l i ca s imulat ionFlags ( l v = ”LOG STATS” , s = ” eu l e r ” ) ) ;
263 end ThermalChip4Cores ;
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264

265 model ThermalChipSimpleBoundary ”Thermal chip model wr i t t en by
e x p l i c i t ODEs, constant power on ha l f o f the bottom su r f a c e ”

266 extends BaseThermalChip ;
267 parameter Types . Power Ptot = 100 ”Total power consumption” ;
268 f i n a l parameter Types . Power Pv = Ptot / (N ∗ M / 2) ”Power

d i s s i p a t e d in a s i n g l e volume” ;
269 equation
270 for j in 1 :N loop
271 for i in 1 : div (M, 2) loop
272 Qb[ j , i ] = Pv ;
273 end for ;
274 end for ;
275 for j in 1 :N loop
276 for i in div (M, 2 ) +1:M loop
277 Qb[ j , i ] = 0 . 0 ;
278 end for ;
279 end for ;
280 annotat ion (
281 experiment ( StartTime = 0 , StopTime = 0 .01 , Tolerance = 1e−6,

I n t e r v a l = 0 .000002) ,
282 OpenMode l i ca s imulat ionFlags ( l v = ”LOG STATS” , s = ” eu l e r ” ) ) ;
283 end ThermalChipSimpleBoundary ;
284 end Models ;
285

286 package Benchmarks
287 end Benchmarks ;
288 end ThermalChipODE ;

A.2 ThermalChipOO.mo

1 package ThermalChipOO
2 package Types
3 type Temperature = Real ( un i t = ”K” , nominal = 500) ;
4 type Power = Real ( un i t = ”W” ) ;
5 type ThermalConductivity = Real ( un i t = ”W/(m.K) ” ) ;
6 type ThermalConductance = Real ( un i t = ”W/K” ) ;
7 type Spec i f i cHeatCapac i ty = Real ( un i t = ”J/( kg .K) ” ) ;
8 type ThermalCapacitance = Real ( un i t = ”J/K” ) ;
9 type Density = Real ( un i t = ”kg/m3” ) ;

10 type Length = Real ( un i t = ”m” ) ;
11 type Time = Real ( un i t = ” s ” ) ;
12 end Types ;
13

14 package I n t e r f a c e s
15 connector HeatPort
16 Types . Temperature T;
17 f low Types . Power Q;
18 end HeatPort ;
19 end I n t e r f a c e s ;
20

21 package Models
22

23 model Volume
24 parameter Types . ThermalConductivity lambda = 148 ”Thermal

conduc t i v i ty o f s i l i c o n ” annotat ion (
25 Evaluate = true ) ;
26 parameter Types . Density rho = 2329 ”Density o f s i l i c o n ”
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annotat ion (
27 Evaluate = true ) ;
28 parameter Types . Spec i f i cHeatCapac i ty c = 700 ” S p e c i f i c heat

capac i ty o f s i l i c o n ” annotat ion (
29 Evaluate = true ) ;
30 parameter Types . Temperature Tstart = 273.15 + 40 ;
31 parameter Types . ThermalCapacitance C ”Thermal capac i tance o f a

volume” ;
32 parameter Types . ThermalConductance Gx ”Thermal conductance o f

h a l f a volume , x d i r e c t i o n ” ;
33 parameter Types . ThermalConductance Gy ”Thermal conductance o f

h a l f a volume , y d i r e c t i o n ” ;
34 parameter Types . ThermalConductance Gz ”Thermal conductance o f

h a l f a volume , z d i r e c t i o n ” ;
35

36 I n t e r f a c e s . HeatPort upper ”Upper su r f a c e thermal port ” ;
37 I n t e r f a c e s . HeatPort lower ”Lower su r f a c e thermal port ” ;
38 I n t e r f a c e s . HeatPort l e f t ” Le f t s u r f a c e thermal port ” ;
39 I n t e r f a c e s . HeatPort r i g h t ”Right su r f a c e thermal port ” ;
40 I n t e r f a c e s . HeatPort top ”Top su r f a c e thermal port ” ;
41 I n t e r f a c e s . HeatPort bottom ”Bottom su r f a c e thermal port ” ;
42 I n t e r f a c e s . HeatPort c ent e r ”Volume cente r thermal port ” ;
43

44 Types . Temperature T ”Volume temperature ” ;
45 equation
46 C∗der (T) = upper .Q + lower .Q + l e f t .Q + r i gh t .Q + top .Q + bottom .

Q + cente r .Q;
47

48 upper .Q = Gx∗( upper .T − T) ;
49 lower .Q = Gx∗( lower .T − T) ;
50 l e f t .Q = Gy∗( l e f t .T − T) ;
51 r i g h t .Q = Gy∗( r i g h t .T − T) ;
52 top .Q = Gz∗( top .T − T) ;
53 bottom .Q = Gz∗( bottom .T − T) ;
54 cente r .T = T;
55 end Volume ;
56

57 model TemperatureSource
58 I n t e r f a c e s . HeatPort port ;
59 parameter Types . Temperature T = 298.15 ”Source temperature ” ;
60 equation
61 port .T = T;
62 end TemperatureSource ;
63

64 model PowerSource
65 I n t e r f a c e s . HeatPort port ;
66 parameter Types . Power Q = 0 ”Source thermal power l e av ing the

port ” ;
67 equation
68 port .Q = −Q;
69 end PowerSource ;
70 p a r t i a l model BaseThermalChip
71 parameter In t eg e r N = 21 ”Number o f volumesin the x d i r e c t i o n ” ;
72 parameter In t eg e r M = 21 ”Number o f volumesin the y d i r e c t i o n ” ;
73 parameter In t eg e r P = 21 ”Number o f volumesin the z d i r e c t i o n ” ;
74 parameter Types . Length L = 12e−3 ”Chip l eng th in the x d i r e c t i o n ”

annotat ion (
75 Evaluate = true ) ;
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76 parameter Types . Length W = 12e−3 ”Chip widthin the y d i r e c t i o n ”
annotat ion (

77 Evaluate = true ) ;
78 parameter Types . Length H = 4e−3 ”Chip he i gh t i n the z d i r e c t i o n ”

annotat ion (
79 Evaluate = true ) ;
80 parameter Types . ThermalConductivity lambda = 148 ”Thermal

conduc t i v i ty o f s i l i c o n ” annotat ion (
81 Evaluate = true ) ;
82 parameter Types . Density rho = 2329 ”Density o f s i l i c o n ”

annotat ion (
83 Evaluate = true ) ;
84 parameter Types . Spec i f i cHeatCapac i ty c = 700 ” S p e c i f i c heat

capac i ty o f s i l i c o n ” annotat ion (
85 Evaluate = true ) ;
86 parameter Types . Temperature Tstart = 273.15 + 40 ;
87 f i n a l parameter Types . Length l = L / N ”Chip l eng th in the x

d i r e c t i o n ” ;
88 f i n a l parameter Types . Length w = W / M ”Chip widthin the y

d i r e c t i o n ” ;
89 f i n a l parameter Types . Length h = H / P ”Chip he i gh t i n the z

d i r e c t i o n ” ;
90 parameter Types . Temperature Tt = 273.15 + 40 ”Presc r ibed

temperature o f the top su r f a c e ” annotat ion (
91 Evaluate = true ) ;
92 f i n a l parameter Types . ThermalCapacitance C = rho∗c∗ l ∗w∗h ”Thermal

capac i tance o f a volume” ;
93 f i n a l parameter Types . ThermalConductance Gx = lambda∗w∗h/ l ”

Thermal conductance o f a volume , x d i r e c t i o n ” ;
94 f i n a l parameter Types . ThermalConductance Gy = lambda∗ l ∗h/w ”

Thermal conductance o f a volume , y d i r e c t i o n ” ;
95 f i n a l parameter Types . ThermalConductance Gz = lambda∗ l ∗w/h ”

Thermal conductance o f a volume , z d i r e c t i o n ” ;
96

97 Volume vo l [N,M,P ] ( each T( s t a r t = Tstart , f i x e d = true ) ,
98 each C = C,
99 each Gx = 2∗Gx, each Gy = 2∗Gy, each Gz = 2∗Gz)

;
100 TemperatureSource [N,M] Tsource ( each T( s t a r t = Tt) ) ;
101 equation
102

103 // Connections in the z d i r e c t i o n
104 for i in 1 :N loop
105 for j in 1 :M loop
106 connect ( vo l [ i , j , 1 ] . top , Tsource [ i , j ] . port ) ;
107 for k in 1 :P−1 loop
108 connect ( vo l [ i , j , k ] . bottom , vo l [ i , j , k+1] . top ) ;
109 end for ;
110 end for ;
111 end for ;
112

113 // Connections in the y d i r e c t i o n
114 for i in 1 :N loop
115 for k in 1 :P loop
116 for j in 1 :M−1 loop
117 connect ( vo l [ i , j , k ] . r i ght , vo l [ i , j +1,k ] . l e f t ) ;
118 end for ;
119 end for ;
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120 end for ;
121

122 // Connections in the x d i r e c t i o n
123 for j in 1 :M loop
124 for k in 1 :P loop
125 for i in 1 :N−1 loop
126 connect ( vo l [ i , j , k ] . lower , vo l [ i +1, j , k ] . upper ) ;
127 end for ;
128 end for ;
129 end for ;
130 end BaseThermalChip ;
131

132 model ThermalChip4Cores ”Thermal chip model wr i t t en as ODE with 4
s imulated co r e s ”

133 extends BaseThermalChip (
134 f i n a l N = 12∗Nr , f i n a l M = 12∗Nr , f i n a l P = 4∗Pr ) ;
135 parameter Types . Time Ts = 10e−3 ” Switching base per iod ” ;
136 parameter Types . Power Ptot = 100 ”Total average power consumption

” ;
137 f i n a l parameter Types . Power Pc = Ptot /4 ”Average power d i s s i p a t e d

by each core ” ;
138 f i n a l parameter Types . Power Pa = Pc/4 ”Average power d i s s i p a t e d

by each area in a core ” ;
139 f i n a l parameter Types . Power Pv=Pa/(4∗Nrˆ2) ”Average power

d i s s i p a t e d in a s i n g l e volume” ;
140 f i n a l parameter Types . Power Pvmax = Pv/(sum(AS) /32∗sum(CS) /32) ”

Max power d i s s i p a t e d in a s i n g l e volume” ;
141 parameter In t eg e r Nr=1 ”Grid r e f i n i n g f a c t o r on x−y plane ” ;
142 parameter In t eg e r Pr=1 ”Grid r e f i n i n g f a c t o r on z d i r e c t i o n ” ;
143 parameter In t eg e r TLC[ 4 , 2 ] =
144 {{1 ,1} ,
145 {1 ,7} ,
146 {7 ,1} ,
147 {7 ,7}
148 } ”Upper− l e f t coo rd inate o f each core on base g r id ” ;
149 parameter In t eg e r TLA[ 4 , 2 ] =
150 {{0 ,0} ,
151 {2 ,0} ,
152 {0 ,2} ,
153 {2 ,2}
154 }
155 ”Upper l e f t coo rd ina te o f each area on base gr id , r e l a t i v e to

core ” ;
156 parameter In t eg e r AS [ 3 2 ] =
157 {1 , 0 , 0 , 1 , 1 , 0 , 1 , 0 , 0 , 0 , 1 , 1 , 1 , 1 , 0 , 0 , 1 , 1 , 0 , 1 , 1 ,

1 , 1 , 0 , 0 , 0 , 1 , 0 , 1 , 1 , 0 , 1}
158 ” S ing l e area sw i t ch ing sequence ”
159 annotat ion ( Evaluate=true ) ;
160 parameter In t eg e r CS [ 3 2 ] =
161 {1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 1 , 1 , 1 , 1 , 1 , 1 , 0 , 0 , 1 ,

0 , 1 , 0 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0}
162 ”Core sw i t ch ing sequence ”
163 annotat ion ( Evaluate = true ) ;
164 I n t eg e r a idx [ 4 ] ( s t a r t = {1 , 9 , 17 , 25} , each f i x ed = true ) ”

Sequence index o f each area ” ;
165 I n t eg e r c i dx [ 4 ] ( s t a r t = {1 , 9 , 17 , 25} , each f i x ed = true ) ”

Sequence index o f each core ” ;
166 I n t eg e r c s c t r ( s t a r t = 1 , f i x ed = true ) ”Core sw i t ch ing counter ” ;
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167 Types . Power Qv [ 4 , 4 ] ”Power d i s s i p a t e d in each area o f each core ,
per s i n g l e volume” ;

168 PowerSource Qsource [ 4 , 4 , 2 , 2 ] ”Array o f power sources , f i r s t two
indece s are core and area ” ;

169 a lgor i thm
170 // Swi tch ing sequence
171 when sample (0 , Ts ) then
172 for i in 1 : 4 loop // core loop
173 for j in 1 :4 loop // area loop
174 a idx [ j ] := mod( ( a idx [ j ] ) ,32) + 1 ;
175 Qv[ i , j ] := Pvmax∗AS[ a idx [ j ] ] ∗CS[ c i dx [ i ] ] ;
176 end for ;
177 end for ;
178 i f mod( pre ( c s c t r ) ,32) == 0 then
179 for i in 1 : 4 loop
180 c i dx [ i ] := mod( ( c i dx [ i ] ) ,32) + 1 ;
181 end for ;
182 end i f ;
183 c s c t r := c s c t r +1;
184 end when ;
185 equation
186 for i in 1 : 4 loop // core loop
187 for j in 1 :4 loop // area loop
188 Qsource [ i , j , : , : ] .Q = f i l l (Qv [ i , j ] , 2∗Nr , 2∗Nr) ;
189 connect ( Qsource [ i , j , : , : ] . port ,
190 vo l [ (TLC[ i ,1 ]+TLA[ j , 1 ] ) ∗Nr+1:(TLC[ i ,1 ]+TLA[ j , 1 ]+2) ∗Nr

,
191 (TLC[ i ,2 ]+TLA[ j , 2 ] ) ∗Nr+1:(TLC[ i ,2 ]+TLA[ j , 2 ]+2) ∗Nr

, P ] . c en t e r ) ;
192 end for ;
193 end for ;
194 annotat ion (
195 experiment ( StartTime = 0 , StopTime = 4 , Tolerance = 1e−6,

I n t e r v a l = 0 .001 ) ,
196 OpenMode l i ca s imulat ionFlags ( l v = ”LOG STATS” , s = ” eu l e r ” ) ) ;
197 end ThermalChip4Cores ;
198

199 model ThermalChipSimpleBoundary ”Thermal chip model wr i t t en by
e x p l i c i t ODEs, constant power on ha l f o f the bottom su r f a c e ”

200 extends BaseThermalChip ;
201 parameter Types . Power Ptot = 100 ”Total power consumption” ;
202 f i n a l parameter Types . Power Pv = Ptot / (N ∗ M / 2) ”Power

d i s s i p a t e d in a s i n g l e volume” ;
203 PowerSource Qsource [N, div (M, 2 ) ] ( each Q = Pv) ;
204 equation
205 connect ( Qsource . port , vo l [ : , 1 : d iv (M, 2 ) , P ] . c en te r ) ;
206 annotat ion (
207 experiment ( StartTime = 0 , StopTime = 0 .01 , Tolerance = 1e−6,

I n t e r v a l = 0 .000002) ,
208 OpenMode l i ca s imulat ionFlags ( l v = ”LOG STATS” , s = ” eu l e r ” ) ) ;
209 end ThermalChipSimpleBoundary ;
210 end Models ;
211

212 package Benchmarks
213 end Benchmarks ;
214 end ThermalChipOO ;
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