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1. Introduction
The new-age space exploration demands higher
autonomy in the relative orbital control of small
satellites. Applications range from low-Earth
orbit formations, orbital inspections, tandem
satellites for deep space missions, etc. The fun-
damental challenges in increasing the autonomy
of the control systems are communication la-
tency and dynamics modelling inaccuracy. The
controller must adapt to spatio-temporal depen-
dent dynamics, deviations from idealised models
and perform impromptu manoeuvres.
The thesis employs a novel method of onboard
sensor measurement based local dynamics iden-
tification. The identified model is utilised in the
model predictive controller (MPC) subject to
certain physical and configuration constraints.
The combined model discovery and predictive
controller (MDPC) performance is simulated at
various orbital environments and control system
parameters to quantise a baseline.

2. Problem Description
The specific case utilised for investigation is a
tandem spacecraft formation, consisting of tar-
get and chaser spacecraft. The control system
must keep the chaser within a bounded relative
range of the target.
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Figure 1: Range bounds and chaser pointing.

Other mission constraints are the persistent
pointing of the chaser towards the target and the
presence of a pair of opposite-facing thrusters on
the chaser, aligned with its pointing. The vari-
ous possible chaser positions and its pointing is
represented in Fig. 1, as an example.

3. Proposed Solution
The MDPC framework is capable of discover-
ing the local dynamics using SINDy algorithm,
based on onboard radar ranging (PRISMA) [8]
sensor measurement, and use it for the MPC.
The SINDy algorithm is faster and more ef-
ficient than alternatives based on neural net-
works [5]. SINDy algorithm offers process trans-
parency and intuition, reflecting the actual dy-

1



Executive summary Hariharan Venkatesh Vitaladevuni

namics, compared to a "black-box" neural net-
work [5].

3.1. Mathematical Models
The relative motion reference frame is oriented
along radial-out (̂ix), along-track (̂iy) and orbit-
normal (̂iz) directions of the target spacecraft.
The set of coupled differential equations can be
represented as a matrix as follows:
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where ad is the external acceleration vector, for-
mulated as: ad = af+ap. The af and ap repre-
sent the acceleration vectors due to chaser actu-
ation and orbital perturbation respectively. The
validity of these equations hold under the as-
sumption that the separation between the space-
crafts is much smaller than the orbital radius,
ρ ≪ r. The complete derivation of these equa-
tions can be found in Ref. [7] however, the refer-
ence frame basis vectors have been modified for
convenience.
A state-space representation can be formulated
for eq. 1 by assuming a state-vector and an con-
trol input vector as:

x =
[
x y z ẋ ẏ ż

]T
; u = af (2)

The system equation can be written as:
ẋ = Ax + BIu +Υ (3)

where Υ denotes the vector of corresponding
contributions due to ap. The system matrix A,
input matrix BI and Υ can be expanded as:
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The eq. 3 can be rearranged for convenience:

ẋT =
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f

] [AT

BT
I

]
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The eq. 7 is referred to as the augmented state
equation and it forms the basis of the formula-
tion of the model discovery framework.

3.2. Model Discovery: SINDy
The SINDy framework utilises numerical regres-
sion problem formulations to obtain the dis-
covered dynamics models. This is performed
by utilising the regression equation formulation,
borrowed from Ref. [1], shown below:

Ẋ = Θ (X)Ξ (8)

where Ẋ is the targets matrix, Θ is the features
matrix and Ξ is the coefficients matrix.
The matrices Ẋ and Θ are populated by sensor
measurements in time. To adopt our mathemat-
ical models of relative motion into a SINDy re-
gression problem, we can compare eq. 7 and eq.
8, by assuming Υ = 0, to obtain:

X ≡
[
xT aT

f

]
(9)

Θ (X) ≡
[
xT aT

f

]
⇒ Θ (X) = X (10)

Ξ ≡
[
AT

BT
I

]
(11)

To discover the system model, the coefficient
matrix Ξ must be found through regression of
the known or estimated matrices Ẋ and Θ.

3.2.1 Regression Algorithm

The chosen regression optimiser is called the
Sparse Relaxed Regularised Regression (SR3)
optimiser [1]. The SR3 optimiser offers addi-
tional flexibility to impose constraints and em-
ploy coefficient specific thresholding during re-
gression. These tools can be exploited to "in-
form" the regression optimiser about the feasi-
bility and the preexisting knowledge about the
dynamics. The SR3 optimiser can be mathemat-
ically formulated as:

min
Ξ

∥ Ẋ −Θ (X)Ξ ∥
2

+ λ||Ξ||1 +
∥ Ξ− W ∥

2ν

where λ is the a hyper-parameter associated
with tuning the thresholding during each regres-
sion iteration. W represents a coefficient matrix
generated through relaxation of Ξ. Relaxation is
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the elimination of coefficients which correspond
to a weak correlation, resulting in a sparse model
[1]. The regression objective function employs
the L1 norm for promoting sparse coefficients
during every iteration [3].

3.2.2 Constraints and Thresholding

Several constraints can be imposed on the Ξ ma-
trix, from pre-existing knowledge. By substitut-
ing eq. 5 and eq. 4 into eq. 11, we can formulate
the analytical expression of Ξ as:
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This formulation can be exploited to impose cer-
tain constraints on the elements ξi,j in Ξ as:

ξ1,4 − ξ2,5 + 3ξ3,6 = 0

ξ1,5 + ξ2,4 = 0

ξ4,5 + ξ5,4 = 0

ξ4,1 = ξ5,2 = ξ6,3 = ξ7,4 = ξ8,5 = ξ9,6 = 1

(13)

The constraints "inform" the regression opti-
miser about the mandatory mutual relation-
ships. The feasibility of the discovered model
can be determined by the values ξ. To elimi-
nate impractical values of ξ, coefficient specific
thresholding can be formulated as follows:
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where T = 10−2. The matrix η provides thresh-
olds for its corresponding elements mapped to
matrix Ξ. During the regression iterations, any
coefficients in Ξ which are smaller in absolute
value compared to their mapped threshold in η
will be eliminated due to SR3 relaxation.

3.2.3 Initial Guess

To obtain accurate and fast regression conver-
gence, an initial guess value of Ξ is provided.
The equations used to estimate the variables in
Ξ namely, kω

3
2 , ω and ω̇, is are follows:

k̂ω
3
2 ≈ âfz − ˆ̈z

ẑ
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) 2
3
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ẑ
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where each term is the estimated or measured
value from the sensor data or numerical differ-
entiation of the sensor measurements. The ac-
cented variables represent the measured or esti-
mated versions of the analytical variables. An
accurate estimate of ω̇ is not required because
this is just an initial value for the regression. A
final constraint is imposed to ensure that the re-
gression problem has no free DoFs, by imposing,
|ξ5,4−2ω̂| = ϵ, where ϵ is the machine precision.

3.2.4 Model Discovery Robustness

The discovered model is linearised in time and
spatial coordinates due to performing the model
discovery based on a limited time-interval Tlin of
sensor measurements. Regression has problems
with repeatability of results, resulting in diver-
gence from the "ground-truth" when propagated
in time beyond Tlin. A Monte-Carlo Multiple
Shooting based method is implemented to rem-
edy this [4]. The measurements within Tlin are
divided into n sub-sets by sub-sampling with a
lower sampling frequency. These sub-sets simul-
taneously undergo SINDy regression to discover
n simultaneous models Ξn of the same underly-
ing dynamics, as in eq. 17.

Ẋn = Θn (Xn)Ξn (17)
Then each model is propagated within the lin-
earisation interval Tlin to compute the predicted
relative trajectory, as shown in Fig. 2. Ev-
ery model propagation is compared with the
"ground-truth" measurements from the origi-
nal data-set to compute the Root Normalised
Mean Squared Error ERNMSE, n. An effective
discovered model is obtained by computing the
weighted average of all the Ξn, see eq. 18. This
process is called model assembly or bagging.

Ξeff =

∑n
i=1

(
1

ERNMSE, i

)
Ξi

∑n
i=1

(
1

ERNMSE, i

) (18)
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Figure 2: Simultaneous models propagation.
This results in a more robust and stable model,
as evidenced in Fig. 2. To test the model pre-
diction performance, various simulations in dif-
ferent orbital environments were performed for
Tsim = 300s. The resulting prediction errors are
within acceptable margins even for highly eccen-
tric orbit with e = 0.6, as shown in Fig. 3.

0 100 200 300
0

0.5
1

−4

−3

−2

−1

0

1

Tlin. [s]
Ts, eff [s]

lo
g 1

0

( E
M

S
E

p
r
e
d
.

)
[m

2
]

0 0.79 1.57 2.36 3.14

f0 [Rad]

Figure 3: Model prediction test, e = 0.6.
where Ts, eff is the effective sampling interval
of the measurement sub-sets. The initial condi-
tions (Keplerian elements) for the test are:

Kt =
[
7106.14 km, 0.6, 98.3◦, 0◦, 270◦, f0

]

Kc =
[
7106.14 km, 0.601, 98.31◦, 0◦, 270◦, f0

]

3.3. MPC Design
The MPC is designed to implement an opti-
mised control sequence which minimises a cost
function, subjected to constraints, within a lim-
ited time-horizon. The prediction horizon of the
MPC is limited by the model discovery model
accuracy, hence it is set as TPH = Tlin. A para-
metric thrust profile is used to speed-up the op-
timisation and introduce a bias in the MPC. An

exponential decay function is used as the thrust
profile, see eq. 19, which ensures that maximal
control effort is prioritised at the earliest, im-
proving the MPC "response time".

u(t) = ae−bt; {0 ≤ t ≤ TCH} (19)
where TCH is the control horizon, a is the initial
thrust and b is the thrust decay factor. The
limits of the chaser thruster dictate the value of
a ∈ [−1, 1]N . Negative thrust indicates a thrust
opposite to the chaser pointing. To satisfy the
objectives of a global minima,the cost function
is modelled as a convex function, shown below:

Cnet(a, b) = CR +GrelCU (20)

where Cnet is the net cost as a function of thrust
profile parameters (a, b). CR and CU denote
the range bounds violation cost and the con-
trol effort cost, respectively. A relative scaling
gain Grel is introduced to tune the MPC perfor-
mance. The control effort cost is:

CU (t) = u(t)2 (21)
The net control effort cost is found by using eq.
19 and integrating then normalising eq. 21:

CU =

∫ TCH

t=0 u(t)2dt

TCH
=

a2
(
1− e−2bTCH

)

2bTCH
(22)

The range bounds violation cost function must
be continuous and have a positive second deriva-
tive. This is necessary for convexity of the func-
tion. The cost of range bounds violation must
be null within the bounds and linearly increase
beyond the bounds. The range bounds violation
cost function is inspired from ELU function [2]:

CR(ρ) =
ρmin − ρ

1
dmin

+ e(ρ−ρmin)
+

ρ− ρmax
1

dmax
+ e(ρmax−ρ)

where ρ is the relative range and ρmax, ρmin

represent the maximum and minimum range
bounds. The dmax and dmin are the slope scaling
variables for controlling the slope of the function
beyond the bounds ρmax, ρmin. An example of
this function is shown in Fig. 4:
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Figure 4: Range violation cost function.
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The net range violation cost is the sum of all
range violation costs normalised in TPH :

CR =

∑NPH
k=0 CR(ρk)

TPH
(23)

where k is the sampling instance of the pre-
dicted trajectory propagated from the discov-
ered model using RK4 method. ρk is the kth

predicted range. NPH is the total sampling in-
stances in the prediction horizon TPH . To guar-
antee the cost function convexity, b > 0 for a
continuous positive second derivative of the con-
trol cost function CU . Thrust profile resembles
an impulse for high values of b. Hence, the range
of b is b ∈ (0, 5]. An example of the cost func-
tion optimisation domain is shown in Fig. 5:
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Figure 5: MPC cost function example.
The MPC objective function now becomes:

min
a,b

Cnet(a, b); a ∈ [−1, 1]; b ∈ (0, 5] (24)

The MPC objective function is optimised using
the SQP algorithm [6], which guarantees con-
straint non-violation at every iteration . Even if
the optimisation is interrupted due to time-out
of the controller, it will provide a sub-optimal
control sequence respecting the constraints.

3.3.1 Control System: MDPC

Until the current discovered model expires after
Tlin interval since its discovery, the same model
is used by the MPC. At model expiry, a new
model discovery cycle updates the model, using
previous Tlin measurements, see Fig. 6.

Time

∆Tlin Model Discovery

Measurements:

MPC Control:

Figure 6: MDPC cycle schematic.

4. Control System Performance
The MDPC is simulated for various orbital en-
vironments ranging from beyond GEO to LEO
orbits. The actual motion is simulated using the
two-body problem and J2 perturbations. The
MPC is disengaged in first Tlin of the simulation
for first model discovery (blue line, Fig. 8). The
worst case for the MDPC is simulated i.e. the
highly nonlinear orbital environments with max-
imum perturbation e.g. highly eccentric LEO.
The simulation notations are: NH : NPH/NCH

is the total sampling instances within TPH and
TCH , and ρlim : ρmin/ρmax. The orbit under
investigation is physically impossible due to the
perigee inside the Earth. It is still simulated to
test the MDPC performance limits.
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Figure 7: Simulation: MPC disengaged.

In Fig. 7, an uncontrolled trajectory baseline is
established for comparison. The simulation cor-
responds to a complete orbital period and starts
at perigee, which is the most challenging orbital
environment for MDPC. The drift in the relative
range in Fig. 7 is due to the J2 perturbations.
The MDPC must compensate for this drift and
the periodic relative motion. The MPC is very
effective at keeping the chaser within bounds,
see Fig. 8. However, due to the challenging en-
vironment, the thruster is saturated at the end.
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Figure 8: Simulation: MPC engaged.

The effect of changing the MPC horizons, which
are doubled compared to Fig. 8, are visible in
Fig. 9. There are more range bound violations,
however, the control input and the trajectory
are smoother. The bounds violation is due to
the "dampening" effect caused by normalisation
of the cost functions, as per eq. 22 and eq. 23.
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Figure 9: Simulation: MPC horizons change.

In Fig. 9, when the MDPC predicts the future
trajectory at t = 300s with a longer horizon, it
predicts the chaser moving out of bounds and
also returning back into the bounds due to the
corrective control effort. This reduces the nor-
malised cost, hence behaving as control effort
"dampener". To make the MPC more respon-
sive, an alternative cost function can be formu-
lated without normalisation. Thruster satura-
tion can be evidenced even in Fig. 9, because
the orbital environment under investigation is
a worst-case scenario and physically impossible.
Real-life applications will encounter easier or-
bital environments for the MDPC.

5. Limitations
The main limitations of the MDPC are:

1. Constant system matrix A within Tlin, in-
stead of time-variant system matrix.

2. For manoeuvres altering the orbit substan-
tially, MDPC needs the data of specific or-
bital momentum more than once per orbit.

3. The controller prediction horizon is im-
plicitly linked to the measurement interval
(Tlin) utilised in model discovery, in the
context of the implemented solution.

4. Cannot account for substantial deviation
from two-body problem e.g. asteroids.

5. Cannot account and compensate for actua-
tor saturation in the control optimisation.

6. Conclusions
The important conclusions from the thesis are:

1. MDPC is effective in highly eccentric orbits.
2. Valid for initial separations around 100km.
3. Relative range prediction is accurate and

stable even under large perturbations and
time-varying nonlinear dynamics.

4. MDPC is computationally efficient, robust
and simple.

5. Utilises a single actuator for range control.

6. More autonomy, without ground support.
7. Faster than neural networks based methods.
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