
Executive Summary of the Thesis

The Duality of Wind: A Comprehensive Study on Lombardy’s Re-
newable Wind Energy Potential and Grid Infrastructure Hazards

Laurea Magistrale in Mathematical Engineering - Ingegneria Matematica

Authors: Mattia Gentile - Alessandro Sala

Advisor: Prof. Piercesare Secchi

Co-advisor: Ing. Chiara Barbi

Academic year: 2021-2022

1. Introduction
As the world faces the urgent need of reduc-
ing pollution and mitigating the effects of cli-
mate change, renewable energy sources are be-
coming a more and more critical component
of our energy systems. Among these sources,
wind energy has emerged as a promising solu-
tion to help reduce our reliance on fossil fuels
and curb greenhouse gas emissions. However,
while wind power presents many benefits, it also
brings many threats for both human and infras-
tructure safety; this thesis aims to investigate
this double nature of wind power, focusing the
attention on the region of Lombardy, Italy. In
particular, our study analyses wind data mea-
sured over 30 years in order to achieve a high
level of awareness about both the dangers for
the electrical grid and the opportunities to pro-
duce clean and renewable energy in Lombardy.
Moreover, we aim to compare, in each phase, dif-
ferent techniques and evaluate their benefits and
criticalities. In this kind of practical application,
indeed, it is of paramount importance to choose
the most appropriate mathematical procedures:
employing outdated models or excessive simpli-
fications may lead to serious errors and wrong
results.

The data we used are contained in the MEteoro-
logical Reanalysis Italian DAtaset (MERIDA),
which is open and provided by the "Ricerca
Sistema Energetico" (RSE) S.p.A. group. The
dataset subdivide the whole territory of Italy in
4× 4 km cells , forming a grid over which many
climatological features are measured. The mea-
surements are taken hourly and span the time
period that goes from 1990 to 2020. For our pur-
poses, we analysed data relative to Lombardy
and the series of wind speeds measured at 10
meters from the ground.

2. Wind Speed Modeling
Our first step was the assessment of the main
features of wind speed by finding the distribu-
tion that better approximates measured data.
The importance of this section lies in the fact
that it is the starting point of many procedures
concerning wind speed analysis, be it extreme
values or wind energy production studies, and
lack of accuracy here translates into estimation
errors in subsequent steps, even with possible
economic repercussions.
In this study, we considered four of the most
commonly used and promising distributions (Shi
et al. (2021) [6]): the Weibull distribution, the
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Figure 1: Each cell reports the best approxi-
mating distribution obtained with the Method
of Moments and according to the Wasserstain
distance to the empirical distribution.

Gamma, the Lognormal and the Generalized Ex-
treme Value Distribution (or GEV, which will
be described later). The goal here is to find
the parameters of these models that produce the
best fit and then choose the most appropriate
model; to do so we compared two parameter
estimation methods, the Maximum Likelihood
Estimator (MLE) and the Method Of Moments
(MOM), and evaluated their performances with
four different Goodness Of Fit criteria, namely
the Root Mean Square Error (RMSE), the co-
efficient of determination R2, the Mean Abso-
lute Error (MAE) and the Wasserstein Distance.
Moreover, for a more proper analysis, we also
employed a cross validation procedure in order
to avoid overfitting.
Notably, our results confirmed what is the gen-
eral consensus in the field, i.e. there is no uni-
fied model that it is always able to produce the
best result independently on the location and
wind speed characteristics but each case must
be considered individually. What we noticed is
that the GEV distribution is the most flexible
one and produce the best fit in the largest share
of sites, especially the ones with lower speeds.
Weibull distribution, instead, finds application
in areas with slightly higher average winds, on
the hills and mountains, while Gamma and Log-
normal represent a better alternative to Weibull
in areas with much higher average wind speeds
(Figure 1).
While observing wind speed distributions we

also noticed that simple geographical distance
provides too little information when it comes
to satisfactorily describe winds behaviour cor-
relations: more often than not, in the Alps we
found very different wind regimes even in adja-
cent cells, while pretty far away sites in the Po
Valley often showed quite similar trends. This
insight led us to further investigate this fact later
on, when we tried to divide the region in areas
with the same wind behaviours.

3. Hazard Analysis
Once we modeled the wind speed distribution,
we moved to the analysis of extreme events or,
in other words, the annual maximum distribu-
tion. The common issue when studying max-
ima of a given distribution is the scarcity of
data at disposal: in our case, having 31 years
of measurements translates into 31 annual max-
ima. Since this may represent an issue, we tested
some techniques that exploit the parent distri-
bution of data, i.e. the pdf computed in Section
2, to model maxima. For example, if we have a
pool of n independent measurements distributed
according to a cumulative distribution function
F , following basic probability notions, the an-
nual maxima will be distributed as Fn. While
very simple, this method can give good results
if the parent distribution is accurate.
Another possibility can be found in a data aug-
mentation approach which relies on the simula-
tion of new annual wind series and, thus, of new
annual maxima. The idea behind this method
relies on sampling new measurements of wind
speed from the parent distribution F in order
to obtain an annual simulated series; in our spe-
cific application, being the measurements hourly
taken, we need 24 × 365 new samples. Then,
from these new values we keep only the maxi-
mum and, iterating the procedure, we use it to
increase the pool of data at our disposal and
solve the issue of data scarcity.
Both the methods, however, suffer the same
flaw: while the parent distributions obtained fol-
lowing the pipeline described in Section 2 look
accurate, the lack of extreme data determines a
poor modeling of the right tail and, thus, an in-
accurate characterization of the maxima. This
error cascades in these two methods, producing
estimates that are very far from representing the
real measured maxima.
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Despite the lack of data, a direct modeling ap-
proach of the maxima looks the most promising.
Indeed, thanks to extreme value theorem and,
subsequently, to the Generalized Extreme Value
distribution (GEV) we have a powerful tool to
model maxima of a given variable. The extreme
value theorem demonstrates, indeed, that the
distribution of the maximum of a variable tends
(in distribution) to one of three possible asymp-
totes: Gumbel, Fréchet or Reverse Weibull dis-
tributions; the GEV, which is the combination in
a unique formula of these three possible asymp-
totes, is a three parameters distribution. Results
obtained by tuning the parameters directly on
the maxima are much more consistent and, thus,
we eventually decided to use this last approach.
At this point, we were ready to quantify the ac-
tual hazard that each area of Lombardy is sub-
ject to because of extreme wind events. After
having modeled with a GEV the distribution of
wind speeds in each cell of the grid, we could
compute the so called "Exceedance probability
curve" and the "Mean return time". The first
one is a function defined as 1 − F , where F
now denotes the cumulative distribution func-
tion of maxima, that assigns to each threshold
of the wind speed the probability of exceeding
that value at least once in a year. The mean re-
turn time, instead, is computed as 1

1−F (x) , where
F is again the cdf of maxima, and represent the
number of years that one has to wait, on aver-
age, before the considered threshold x will be
exceeded again. Both of them tell us the same
story: on one side the Po Valley is an extremely
safe area (with the exception of the peculiar and
isolated case of Milan, which shows a high level
of hazard), while the Alps area is characterized
by much higher winds and, thus, a higher hazard
level.
In particular, we focused our attention on two
main thresholds: 60 km/h and 140 km/h which
are denoted, in the literature, as the thresholds
of failures caused by, respectively, indirect and
direct effects. The first case comprehends all
those infrastructure breakdowns due to the ac-
tion of the wind on other objects, trees in partic-
ular, while the second case includes all the fail-
ures caused by the action of the wind directly on
the electrical power grid components. With this
in mind we observed these two thresholds on the
area of Lombardy to immediately spot those ar-

Figure 2: Each cell reports the probability of
exceeding the threshold of 60 km/h in a year.

eas more subject to extreme wind events (Figure
2).
The strenght of the exceedance probability
curves as a tool to identify areas of hazard, in
particular, is that it is easy to extend the time
window considered: instead of computing the
probability of exceeding a threshold in a year,
we can do it for whichever time window we are
interested in, obtaining more forward-looking re-
sults.
In this setting, we were also interested in group-
ing different areas by means of their hazard level:
to do so we divided areas based on the 99% quan-
tile of the distribution of maxima. After having
defined few intervals of wind speed (for example,
less than 60 km/h, between 60 and 140 km/h,
and more than 140 km/h), we grouped together
those cells of the grid whose 99-quantile falls into
the same bin. The results showed that the ma-
jority of the territory is characterized by no to
low hazard, with very few areas subject to the
risk of direct failures (Figure 3).
At this point of the work we managed to pro-
duce a useful result in the setting of hazard as-
sessment. Thanks to this grouping, we have a
clear visual tool to immediately identify which
are the most hazardous areas.
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Figure 3: Each cell is colored according to the
corresponding cluster in a 3 cluster subdivision
based on the 99% quantile.

4. Meteorological Correlations
Before leaving hazard analysis to focus on wind
energy production, we conducted a more gen-
eral study regarding wind speed characteriza-
tion. In particular, the goal here is to determine
whether two sites can be considered to be "sub-
ject to the same wind regime", meaning that
the same wind blows over them, and, ultimately,
to divide the region in geographical areas inter-
ested by distinctive winds. This can surely be
interesting from a climatological point of view in
general, but it can also offer helpful insights on
wind characteristics in the area and help with in-
frastructure design and wind energy production
planning.
For this analysis we decided, instead of taking
measurements separately as done before, to con-
sider the wind speed series as a whole, in order
to grasp the trends of the regime. To do so, we
moved to a Functional Data Analysis (FDA) en-
vironment, which allowed us to efficiently model
the temporal series and recover the most impor-
tant information. With FDA we were able to
produce a smoother representation without los-
ing too much information on the variability and,
in particular, we opted to use a number of basis
functions that allowed to follow the daily varia-
tions in wind speeds, which represented the most
influential cycle of the phenomenon.
Moreover, of particular interest is the observa-
tion of functional principal components (FPCs),

a tool that allows to synthesize the main charac-
teristics of the series in just a few numbers, i.e.
the scores relative to the FPCs, which give an
indication on some of the features of wind speed
trends and can be used to discriminate different
behaviours. Following on this, we produced a
metric that, measuring distances between scores,
is able to measure the difference between wind
regimes and, thus, tell how similar or different
two locations can be from the point of view of
wind regimes.
This newly defined distance can be exploited
to cluster together areas with similar wind be-
haviours and, in particular, we used it as the core
for two different clustering algorithms, namely
the "Geostatistical Hierarchical Clustering" and
the "Bagging Voronoi Classifier". Once again,
in this section, we want to compare the results
obtained with two different paths, in order to
select the better suited method for the job.
The Geostatistical Hierarchical Clustering algo-
rithm (Romary et al. (2015) [3]) revolves around
the simple idea of combining a classical hierar-
chical clustering routine with the concept of "ad-
jacency": basically, at each step, we are allowed
to group together only clusters that are adjacent.
In our case, the concept of adjacency comes nat-
urally from the grid structure, considering adja-
cent two sites only if they share at least a vertex
in the grid. We report here the general structure
of the algorithm to give an idea on how it works:

Algorithm 1 Geostatistical Hierarchical Cluster-
ing
1: Initialize the matrix of distances D between

each site using the chosen distance d(x, y).
2: Initialize the binary matrix of adjacency A:

A(i, j) = 1 if sites with indices i and j are
adjacent following the chosen definition of
adjacency, 0 otherwise.

3: repeat
4: Identify which adjacent sites (or clusters)

are the closest by means of matrix D and
group them together

5: Update both matrices A and D to take
into account which sites or clusters have
been grouped together.

6: until There is only one cluster with all the
sites in it

While the code is quite straightforward, the re-
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sults produced are robust and appealing: this
method manages to discriminate the big area of
the Po Valley from the rest of the region, high-
lighting also smaller and more collected zones
such as the Garda Lake and the Valtellina with
part of the Como Lake. The good quality of the
results produced can be found also in the trends
that characterize each of the aforementioned ar-
eas. Every cluster shows an average trend very
different from the others, even with a small num-
ber of clusters (Figure 4).

Algorithm 2 Bagging Voronoi Classifier
1: Initialize the hyperparameters of the algo-

rithm: B, n, p, K and choose the distance
d(·, ·) used in the Voronoi Tessellation.

2: for b := 1 to B do
3: Choose a set of n sites Φb

n = {Zb
1, ..., Z

b
n}

of the starting grid S0 to play the role of
centres and compute the Voronoi Tessel-
lation with these nuclei.

4: Compute the representative gbi for each el-
ement i of the tessellation.

5: Perform dimensional reduction of the rep-
resentatives by projecting them on the
space spanned by a proper p-dimensional
orthogonal basis and, thus, obtaining the
p-dimensional scores.

6: Cluster the scores in K groups according
to a chosen unsupervised method.

7: end for
8: Perform cluster matching, i.e. match the la-

bels across the B bootstrap replicates of the
clusters, to ensure identifiability.

9: for all x ∈ S0 do
10: Calculate the frequencies of assignment of

the site x to each one of the K clusters
and assign the site under consideration to
the most frequent group.

11: Compute spatial entropy for the site x
12: end for

The Bagging Voronoi Classifier (Secchi et al.
(2012) [5]), instead, is composed of two parts:
a Bootstrap phase, in which the grid is first
divided according to geographical proximity
(Voronoi Tessellation) and then clusters are pro-
duced, and an aggregation phase, in which all
the information brought by the many clustering
is resumed in a single, final result. This algo-
rithm is much more convoluted than the previ-

ous one and consists of many more technicalities.
The structure of the Bagging Voronoi Classifier
is reported in Algorithm 2.

Figure 4: Grouping produced by the Geostatis-
tical Hierarchical Clustering Algorithm with 7
clusters.

Figure 5: Grouping produced by the Bagging
Voronoi Classifier Algorithm with n = 100 ele-
ments in the Voronoi Tessellation and 12 clus-
ters.
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While the code is much more complex, the
results are underwhelming if compared with
its counterpart. The main issues revolves
around the fact that here we don’t have a no-
tion of adjacency and, thus, the clusters pro-
duced are more scattered; moreover, the step of
cluster matching may lead to assign small ar-
eas or single sites to the wrong group (Figure
5).
In conclusion, for the purpose of defining wind
correlations, we determined that the Geosta-
tistical Hierarchical Clustering would be better
suited for the job, as the Bagging Voronoi seems
to struggle on very heterogeneous areas.

5. Wind Energy
Lombardy is notoriously a region inadequate for
wind energy production and many studies have
proven, beyond any reasonable doubt, the in-
applicability of traditional wind farms. How-
ever, the growing need of energy production
from renewable sources and energetic indepen-
dence brought us to consider a possible alter-
native in the form of the so called small wind
turbines.
The major flaws of Lombardy when it comes
to wind energy are two: generally low wind
speeds and a lack of feasible locations where to
install turbines; indeed traditional turbines re-
quire large uninhabited plain areas with no ob-
structions, which are difficult to find in the Po
Valley due to dense urbanization. Small wind
turbines potentially overcome both these prob-
lems since they require lower wind speeds to
work and can be installed even in an urban con-
text and, thus, are the perfect candidate for a
possible source of clean energy.
To study the potential applicability of this tech-
nology, we conducted a case study using the
Ecolibrì 10kW Generator as a model of reference
and computing its theoretical annual energy pro-
ducible. Results show that the situation in Lom-
bardy is not as bad as one could expect since
around 30% of the region could potentially pro-
duce enough energy to cover the consumption of
the average 3 people family. In addition, while
most of the plain area has almost negligible pro-
ductivity, mountain areas, with higher winds,
are more indicated for possible applications and
installation of small wind turbines could repre-
sent a way to autonomously produce energy in

sites where could be difficult to bring it.
Moreover, some interesting observations can be
done here. Regarding the computation of the
annual energy producible, we compared results
obtained approximating the wind speed distri-
bution using a Weibull model, as usually done
in the literature, with the ones obtained with the
best approximating distribution as retrieved in
Section 2. The comparison shows that, in most
cases, the Weibull model produces a greater
approximation error than the other procedure
and highlights the importance of using the most
appropriate mathematical modeling, to avoid
repercussions on the following steps.
Then, the clustering algorithms of Section 4 have
been proposed again here to produce a division
of the territory in areas with similar production
capability but independently on the regime it-
self. In this case the most appropriate one was
the Bagging Voronoi Classifier which was able
to produce a subdivision in four clusters with
different capabilities.

1 2 3 4

Sites 165 2596 317 622

Hours 175 464 1750 2566

kWh 440 1505 7409 12624

Table 1: Results for energy clustering. Hours
refers to the number of hours of activity in a year
and kWh to the total energy produced. Their
values are computed as the average over all the
sites of the same cluster.

6. Conclusions
Throughout this work we analyzed many aspects
of wind. In the first place, we highlighted the
importance of choosing case by case the better
suited distribution: both from the point of view
of hazard analysis and energy production, hav-
ing even a slight error in modeling can be dis-
rupting for the procedure. In second place, un-
der the light of the trade-off risks/benefits, Lom-
bardy confirms to be a safe area without a great
wind energy potential. However, emerging tech-
nologies, less demanding in terms of space and
wind speeds, can find profitable application in
some areas of the region.
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We remark that, this work suffers from some lim-
itations due to the characteristics of data at our
disposal and to preliminary assumptions neces-
sary to perform the analysis. Indeed, the dataset
covers the whole Italy but we decided to focus
only on Lombardy; however, the methods ap-
plied can be exploited in studying the nature of
wind in any location and can be used in broader
applications. Moreover, we remember that the
grid of the data is composed of 4 by 4 kilo-
meters cells; possible extensions of this study
can focus on higher resolution datasets obtained
through downscaling or local measurements and
obtain results with increased spatial resolution.
Finally, throughout the study, we always worked
under the assumption of stationarity, meaning
that we considered that the phenomenon does
not change with time. This was done in order
to be able to apply most of the procedures de-
scribed but we are aware that climate changes
may influence wind regimes and it can be ap-
propriate to keep in mind this fact for future
researches building up on this one.
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