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Abstract

The Shortest Path Electric Vehicle Problem (SPEVP) aims at finding the shortest path
for an electric vehicle (EV) departing from a given origin and arriving at a given des-
tination. The limited autonomy of the EV is considered, and recharging its battery at
charging stations (CS) is permitted. Due to the scarcity of CSs, compared to gas stations,
finding an EV shortest path is difficult. The EV is allowed to partially recharge its battery
at CSs, which may have different charging technologies. Furthermore, the charging time
follows a nonlinear charging function. In particular, we consider long EV trips, e.g., when
the unrestricted travel time between the origin and the destination is at least six hours.
During such long trips. several charging stops may be necessary. The driver may have
certain preferences to stop at CSs that match her interest, e.g., visiting cultural sites.
Moreover, the user may also want to perform some particular activity during specific time
windows, like having lunch or sleeping.
Therefore, the overall goal of the thesis is to model and solve a version of the SPEVP
in which the charging decisions along the path are harmonized with user preferences and
requirements. To achieve this goal, we attribute a score for each CS, which represents
how much it suits the preferences of the user. We then address the problem of finding
a route that maximizes the total gained score, respects all the time windows and never
violates the EV autonomy constraints. In particular, we impose a temporal tolerance on
the deviation of such a path from the shortest EV path in time. We propose a MILP
formulation for this setting which we denote with Maximum Discounted Profit Model,
and we develop a heuristic for it. The latter is based on a A* search algorithm, which
works with modified arc weights of the graph in order to account for the CS scores. We
evaluate our models on several realistic instances, with CSs located in Central Europe.
In particular, we demonstrate the effectiveness of the proposed heuristic, when compared
to the exact solutions obtained by the MILP.

Keywords: electric vehicle, shortest path, hard time windows, prize collection, A star
algorithm
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Abstract in lingua italiana

Il Problema dei Cammini Minimi per Veicoli Elettrici (SPEVP) cerca di trovare il cam-
mino più veloce per un veicolo elettrico che percorre la strada da una data origine ad
una data destinazione. Viene considerata l’autonomia limitata dei veicoli elettrici, ed è
ammessa la ricarica, anche parziale, della batteria nelle stazioni di ricarica, le quali pos-
sono avere tecnologie di ricarica differenti. A causa della scarsità di stazioni di ricarica,
rispetto alle stazioni di benzina, trovare il cammino più veloce per un veicolo elettrico
è complesso. In particolare, si considerano lunghi viaggi, ad esempio quando il tempo
minimo tra origine e destinazione senza tappe di ricarica è superiore alle sei ore. Du-
rante questi lunghi viaggi, potrebbero essere necessarie diverse tappe per la ricarica. Il
guidatore potrebbe preferire di fermarsi in stazioni di ricarica che ben rappresenta i suoi
interessi, ad esempio, visitando siti culturali. Inoltre, l’utente potrebbe anche voler svol-
gere determinate attività durante specifiche finestre temporali, come pranzare o dormire.
L’obbiettivo di questa tesi è quello di modellare e risolvere una versione del SPEVP in cui
le decisioni sulle fermate di ricarica lungo il percorso sono allineate con le preferenze e i
vincoli imposti dall’utente. Per raggiungere questo scopo, si è attribuito ad ogni stazione
di ricarica un punteggio che rappresenta quanto quella stazione è interessante per l’utente.
Si è poi considerato il problema di trovare un percorso che massimizza il punteggio totale
ottenuto, che rispetti tutte le finestre temporali e che non violi mai i vincoli di autonomia
del veicolo elettrico. Inoltre, si è imposto una tolleranza temporale sulla deviazione del
percorso ottenuto rispetto alla percorso più veloce. Si è poi proposta una formulazione
MILP per questo tipo di problema denotata con il nome di Modello del Massimo Profitto
Scontato, e si è sviluppata una euristica per risolverlo. Quest’ultima si basa sull’algortimo
di ricerca A*, che lavora con dei pesi modificati per ogni arco del grafo, in modo da tener
conto dei punteggi per ogni stazione di ricarica. Si sono poi valutati i nostri modelli su
diverse tratte realistiche, con stazioni di ricarica posizionati in Europa Centrale. Infine si
è dimostrata l’efficacia dell’euristica proposta, rispetto alla soluzione esatta ottenuta dal
MILP.

Parole chiave: veicolo elettrico, cammino minimo, finestre temporali, massimizzazione
premi, algoritmo A*
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1

Introduction
In the last years, many governments around the world started encouraging the adoption of
electric vehicles (EVs) in order to reduce greenhouse gas emissions. Many of the most im-
portant multinational companies and corporations around the globe are EV100 members,
a global initiative proposed by The Climate Group under which each member undertakes
to switch its fleet to EVs and installing charging infrastructure by 2030 (Coplon-Newfield
and Park [2017]). The number of companies that each year adhere to this initiative is
constantly increasing, with a total of over 5.5 million vehicles committed to electric by
2030 (The Climate Group [2022]). The average market share for EVs in Europe increased
from 3.0% in 2019 to 10.5% in 2020 (Transport & Environment [2021]). With respect to
internal combustion engine vehicle (ICEVs), EVs have obvious advantages such as lower
maintenance costs (Harto [2020]) and lower operational costs thanks to the reduced price
of electricity with respect of fossil fuels. On the other side they have higher purchasing
costs with respect to ICEVs and also their autonomy is limited due to the battery capac-
ity. This last problem leads to the creation of a well-planned network of charging stations
(CSs) in order to satisfy the EVs energy demand.
The increasing number in EVs is reflected in an increasing number of public CSs along
the existing road network. Currently in Europe there is an average ratio of 7.5 EVs per
public charger point (PCP) (Transport & Environment [2020]), which is lower than the
recommended ratio of 10.0 EVs per PCP, as indicated by the European Union directive
in 2014 (European Union [2014]). In general, CSs are still too scarce compared to con-
ventional gas stations. Moreover, the charging time can take from few minutes to several
hours, thus CSs should be installed near some point of interest (POI) in order to entertain
the user while EV is charging. Choosing a right CS during a long trip is crucial and it
can avoid annoying waiting and so sometimes is better to take a small detour from the
shortest route just to charge at CSs that have POIs which better match the preferences of
the user. Also, counting all the charging stops, some trips can take very long and a pause
for resting and eating is necessary. Therefore, long EV trip planning may be enhanced by
accounting for user preferences in terms of restaurants or hotels. In addition, the user can
impose custom stops along the path, maybe for visiting places of interest. For instance, a
user going from Milan to München may want to visit Bolzano, while the EV is charging.
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The aim of this thesis is to explore the concept of planning long multi-day EV trips,
with hard time windows and charging constraints. In particular, we attribute a score to
each CS with respect to the preferences of the user. Using those scores we consider the
problem of optimizing the shortest path for a single EV between a given origin and a
given destination respecting all energy feasibility constraints, while maximizing the total
score that the user can achieve with route duration limits. The model that solves this
problem is the Maximum Discounted Profit Model (MDPM), while the duration limits
are established by solving the Shortest Path Model (SPM), which is the shortest EV
path in time. Then we compare the profit obtained with MDPM with the maximum
possible score obtainable using the Maximum Profit Model (MPM). Furthermore, we
develop a heuristic algorithm based on the A* Search Algorithm which handles larger
instances with respect to MDPM. We formulate the A* Shortest Path Model (AsM)
that is a heuristic approach to solve the SPM. Then we formulate the A* Maximum
Discounted Profit Model (AsDM) which aim to heuristically solve the MDPM. We for-
mulate MDPM, SPM and MPM as mixed integer linear problems (MILPs). We first
solve the shortest path model SPM and the objective is then used as an upper bound
to compute the MDPM. After that, we compare the profit gained with the maximum
profit model MPM. To solve the MDPM we create a new weight for each arc that takes
into account the driving time, the charging time in the starting node and the score in
the arriving node. The same weight is then used to solve the AsDM, while the AsM
is instead used as a comparison for the performance of the A* approach with respect to
SPM. All models are then compared with the same set of 20 instances.
The contribution of this thesis is threefold: first we develop an EV shortest path model
that accounts for user preferences; secondly we develop a heuristic based on A* algorithm
that solve those types of problems; third we verify the performance of both the MILP
models and the heuristic models on realistic test instances.

The structure of the thesis is as follow: Chapter 1 describes the state of the art of the
scientific literature related to the electric vehicle shortest path problems. In Chapter 2 we
formally define MDPM description, the definition of the hard time windows constraints
and the mathematical model with MILP formulation for SPM and MPM. Then, the
heuristic approach, with the A* search algorithm is proposed in Chapter 3, and it is used
to formulate the AsM and AsDM. In Chapter 4 we describe the dataset that we use
for the computational experiments. We propose several pruning techniques to scale the
graph dimensions. In Chapter 5 we evaluate our models and algorithms with a set of 20
instances representing three main long trips, each one with different setting parameters.
Finally, in Chapter 6 we state our conclusions and research perspectives.
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1| State of the art

The Shortest Path Problem (SPP) consist in finding a shortest path in a network, from
a given origin to a given destination. A simple approach to solve this type of problem
is to apply the Dijkstra’s algorithm to a graph representation of the road network, us-
ing a fixed scalar weight for each arc, that represent the driving time. This approach,
however, does not take in account for charging stops, so while it is useful for ICEVs, it
is not necessarily feasible for EVs. It is possible to speed up the search by using other
techniques like the A* Search Algorithm (Hart et al. [1968]) which uses potential func-
tions to estimates the minimal cost to reach the target and guides the search towards it.
For shortest path problems, this potentials can be computed using the ALT algorithm
(A*, Landmarks, Triangle Inequality) proposed by Goldberg and Harrelson [2005]. This
algorithm precomputes the distances between a set of landmarks and all the other points.
Then it uses these landmarks and the triangle inequality to compute a lower bound for
the distance to the target. Another approach uses the Contraction Hierarchies (CH)
method, introduced by Geisberger et al. [2012], it removes unimportant vertices without
changing the minimal distances between all the other vertices, inserting a new edge if the
distance between to other vertices would otherwise increase. Combining both approaches
it is possible to obtain better results, like for the Core-ALT algorithm (Bauer et al. [2008]).

The Electric Vehicle Shortest Path Problem (EVSPP) is instead a SPP where we take
into account EVs, that are subject to battery limitation and charging constraints. Due
to their limited autonomy, EVs may need to detour to CSs in order to recharge their
battery (Adler et al. [2016]). This is particularly true in medium and long range routes,
like in Schiffer et al. [2018]. A key decision in this context is where and how much charge
the EVs. The problem of minimizing the overall trip time for EVs in road networks was
studied by Baum et al. [2015]. Most recent works take in account also speed planning
among the arcs, balancing driving times and energy consumption (Hartmann and Funke
[2014], Baum et al. [2020]). These works achieve good results in both exact and heuristic
approaches, but they do not include charging stops in route optimization. Bauer et al.
[2016] and Schoenberg and Dressler [2022] applied the CH method to the EVSPP, while
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Zündorf [2014] instead used the Core-ALT algorithm in developing a heuristic algorithm
that solves the EVSPP in continental graph in few minutes. Rajan et al. [2021] propose
instead two generalizations of the EVSPP in which they compute the shortest path for
any initial state of charge and for every possible minimum energy threshold. Baum et al.
[2020] introduced a functional representation of the optimal energy consumption between
two locations, that led to the development of a heuristic algorithm based on the Core-
ALT, which computes energy optimal paths within milliseconds after preprocessing the
whole graph.
One of the main modeling decision is how the EV recharges its batteries. For instance,
some works assume that the EV must recharge completely its battery before leaving a
CS. Problems of this type were introduced by Erdoğan and Miller-Hooks [2012], and later
studied by Montoya et al. [2016] and Bruglieri et al. [2019]. Other works use the state
of charge (SoC) of the EV as a decision variable, letting the model to decides how much
energy to recharge in each CS. This was studied in Montoya et al. [2017], in Froger et al.
[2019] and in Kullman et al. [2021]. Another approach is to use battery swapping sta-
tions, like in Li et al. [2020] and Adler et al. [2016], or to take a combination of all those
approach, like in Zündorf [2014]. In general, most studies assume that the energy con-
sumption is directly and exclusively related to the traveled distance, however in reality it
depends also on other factors (Goeke and Schneider [2015], Lin et al. [2016]) like the EV
parameters, its speed and loads.
Another important model decision is to consider only public CSs, only private or both
of them. Only a few number of public charging network owners allows for charging time
reservations (Bruglieri et al. [2019]). A general assumption in the EV routing is that CSs
are uncapacitated (Erdoğan and Miller-Hooks [2012], Montoya et al. [2016] or Montoya
et al. [2017]), meaning that in every node there is at least a CS always available. The long
charging times and the small number of CSs may generate congestion, leading to consider
also the possibility of waiting in a queue or detouring to another CS nearby. This setting
was studied by Kullman et al. [2021] who introduced dynamic optimization policies based
on the state of the current CS.
The charging function is in general non linear with respect to time because voltage and
current change during the charge process. Bruglieri et al. [2014] use a linear approxima-
tion that goes from 0 to 0.8Q, where Q is the battery capacity of the EV, and so working
with only the linear part of the charging process. Montoya et al. [2017] and Froger et al.
[2019] introduced the non linear charging function modeled as a piecewise linear concave
function. Uhrig et al. [2015], confirm that the piecewise non-linear approximation fits
well the real charging process, for multiple combinations of charging speed and battery
capacity.
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Time windows constraints is another aspect well studied. They are used to force the EV
to arrive in predetermined CSs before or during a particular time interval. Time windows
can be classified using two main categories, hard time windows and soft time windows.
Soft time windows mean that the EV can arrive before or after respectively of the initial
and the ending time of the time window, but is penalized for doing so (Calvete et al.
[2004], Calvete et al. [2007]). Hard time windows entails that the EV cannot arrive after
the end of the time window, but it could arrive before it and wait (Schneider et al. [2014],
Bruglieri et al. [2015]).
In this thesis we want to maximize the total gained score by selecting a path using CSs
that better match the preferences of the user. The Prize Collection Traveling Salesman
Problem was introduced by Balas [1989]. It consists of searching for a path in a graph,
visiting a subset of customer. A profit is associated to each customer, and the aim of the
model is to find the path that maximize the total gained profit.
In our work we consider a single EV, with partial recharge approach and non linear
charging process. We consider only public CSs that are located near POIs, like hotels or
restaurants, without taking in account the reservation or the possibility that a charger is
not available. We also consider hard time windows, with an additional constraint that
there is a limit of the leading arrival time. Each CS has a score associated to it that
represent how much that particular CS is important for the user.
We first solve SPM and then use its objective as an upper bound to compute the MDPM.
Then, we compare the results of profit gained between MPM and MDPM. In the latter
we create a new weight for each arc that takes into account the driving time, the charging
time in the starting node and the score in the arriving node. This weight is then used to
solve the MILP formulation of MDPM and AsDM, a heuristic implementation of the
A* search algorithm.
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2| Problem definition

In this chapter we define all the variables, sets and parameters which will then be used
to construct the shortest path model SPM and the profit model MPM. Using a MILP
formulation we are ready to solve the SPM model. Its objective value, appropriately
resized, is then used as an upper bound for the duration of the trip in the MPM model.
Finally we formulate another MILP model, MDPM, that accounts for discounted weights
on the arcs.

2.1. Problem description

We consider an EVSPP with hard time windows constraints. There is only a single EV
that can be partially recharged during stops in the CSs. The EV must stops during all
the time windows in their given order. Each time window represents a moment of the
day in which the user must do some particular activity, like lunching, visiting new places
or sleeping. Each CS has a different charging speed and a different score associated. The
scores are user-dependent. We formulate a MILP decision problem that tries to find the
fastest path from an origin point O to a destination point D that satisfies all the charging
and time windows constraints, while maximizing the total score of the optimal path.
Let G := ⟨SO,D,A⟩ be a directed graph, where SO,D is the set of CSs including also O and
D as nodes. A is the set of arcs that connects each pair of nodes in SO,D. With each arc
(i, j) ∈ A is associated a driving time tij and an energy consumption eij, both satisfying
the triangular inequality.
Let tstart be the starting time of the trip, and tend be the ending time. They are both
parameters of the model and are defined as relative time with respect to the first day
of the trip. Time 0 is associated to the midnight before tstart. So, for instance, if the
trip starts at 10:00 of day 0 and it must ends before 18:30 of day 1, then tstart = 10.0

and tend = 42.5. In this way it is easy to construct time windows for lunch breaks and
rests. The EV starts in O fully charged, with the SoC of the battery equal to Q, and
it must arrive in each CS with an amount of energy which is greater or equal to qmin.
This last value force all the models to have always a minimum amount of energy stored
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in the battery, so that the EV can never be without energy. The EV has also a maximum
average consumption of η and a maximum power charge P . The EV must respect all the
ordered time windows and each of them can be satisfied only in a subset of the CSs SO,D.
We considered only lunch, tourism and nights time windows. For lunch, the associated
POI that is searched by the model is “Restaurant” while the associated POI for nights is
“Hotels”. For tourism stops, the associated POI are computed dynamically as described
in section 4.5.

2.2. Charging function

Let S be the set of charging stations at which the EV can fully or partially recharge
its battery. The CSs network consists only for public station, each one with a different
charging speed.
Each CSs i ∈ S has a charging speed associated with a piecewise linear concave charging
function Φi(∆), where ∆ is the time spent waiting while the EV is charging. The non-
linear charging function was introduced by Montoya et al. [2017] and was shown to be a
good approximation of actual behavior of the EV. They also demonstrate, in the same
article, that using a simple linear approximation maybe can lead to expensive or infeasible
solutions. This approach was lately used in many other works, like Zündorf [2014], Froger
et al. [2019] and Kullman et al. [2021].
Let q be the SoC of the EV when arrives at the charging station i, then the SoC when
it leaves is Φi(∆ + Φ−1

i (q)). Let Bi = {0, b1, . . . , bmi
} be the ordered set of breakpoints

of the piecewise linear approximation of the charging curve of CS i. Let cik and aik be
the charging time and SoC of breakpoint k ∈ Bi. Each breakpoint connects (ci,k−1, ai,k−1)

and (cik, aik) with a line with coefficient ρik, with k ∈ Bi\ { 0 }.
In each CS i ∈ S a minimum charging time can be imposed due to the minimum stopping
time of each time windows (see section 2.3). To do that a fictitious breakpoint is added to
Bi right before the last breakpoint bimi

, taking its place while mi is increased by 1. This
is done in order to simulate a constant value of SoC, that represent the case in which the
EV is fully charged but it cannot yet leave the CS (see Figure 2.1). This fictitious point
has a SoC value ai,mi

= 0.999 so that is possible to express also every point of the last
piece of Φi as a convex combination of (ci,mi−1, ai,mi−1) and (ci,mi

, ai,mi
).

If the charging speed is greater than the maximum power P for the EV, the charging
profile that is used is the one with P as the charging speed. The charging profile of a CS
depends also on the EV that will use it (Montoya et al. [2017]), on battery degradation
(Pelletier et al. [2017]) or external data like temperature, day of the year, timestamp
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Charging time (hours)

SoC %

ci0 = 0
ai0 = 0

ci1

ai1 = 0.850

ρi1

ci2

ai2 = 0.950

ρi2

ci3

ai3 = 0.999
ρi3

ci4

ai4 = 1.000
ρi4

Figure 2.1: Example of a piecewise linear approximation for a CS i ∈ S with a power of 22 kWh adapted
from Montoya et al. [2017]. The fictitious point is added to this charging function with the point (ci,3, ai,3),
creating a new slope between (ci,2, ai,2) and (ci,4, ai,4).

(Mies et al. [2018]). We decided to simplify the model considering only the charging
speed, the capacity Q and the maximum power P , using adapted charging function from
Montoya et al. [2017] and ChargePrice.com. Moreover, we will assume that the EV can
also partially recharge its battery, as in Froger et al. [2019].

2.3. Time Windows

The user may personalize her trip. She can decide how many days it will last and which
stops perform during the trip. To model this aspect, we implemented in the model time
windows that represents moments in which the EV is forced to stop at a CS. This object
allows us to create multi-day routes from an origin to a destination. Time windows are
largely studied in EVRP, mostly to represent customer constraints, which are important
constraints in real world application (Schneider et al. [2014] and Hiermann et al. [2016]).
Let W be the set of possible time windows. A time window k ∈ W is defined as follow:

k := (γL
k , γ

U
k , t

min
k , ok, νk) (2.1)

where:

• the interval [γL
k , γ

U
k ], with γL

k < γU
k , depict its initial and ending time. Like tstart and

tend they are represented as a relative value of time with respect the first day of the
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trip. So, for instance, the interval [γL = 36.0, γU = 38.0] goes from 12:00 of day 1
to 14:00 of the same day. Note that the value γU

k is intended as the maximum time
that the EV must arrive in time window k. So, if the EV perform time windows k

in node i, then it is not obliged to leave i before γU
k but, on the contrary it must

arrive before γU
k .

• tmin
k is the minimum time that the EV needs to stop during k

• ok binary value: 1 if k is an optional time windows, 0 otherwise (see below)

• νk is a label that identifies which type of POI is needed during k (see below).

W is an ordered set, that means that all the time slots need to be visited following this
order, so ∀k, h ∈ W

k ≺ h ⇒ γL
k < γL

h .

The EV must stop during each time window k for a minimum amount of time given by
tmin
k . It is allowed to arrive in a node with a maximum anticipation time φ̃, but the

minimum stopping time will starts however at γL
k . So, if the EV arrives in node i in the

interval
[
γL
k − φ̃, γU

k

]
, then it may decide to stop in i for tmin

k or instead perform k in the
next node. The time windows that we use are hard time windows: this means that is not
possible to perform time window k before γL

k − φ̃ or after γU
k .

Time windows can overlap each others, but they can’t be one inside the other (see fig. 2.2),
formally:

[
γL
k , γ

U
k

]
∩
[
γL
h , γ

U
h

]
:=

{
∅ if γU

k < γL
h[

γL
h , γ

U
k

]
if γU

k ≥ γL
h

∀k, h ∈ W ,with k ≺ h.

Let WR ⊆ W be set of required time windows, and WO ⊆ W be the set of optional time
windows. They form a partition of W , indeed if ok = 1 then k ∈ WO, else k ∈ WR. The
EV is forced to stop in each kR ∈ WR, but it must stop in kO ∈ WO only if there exists
at least one kR such that kO ≺ kR, otherwise kO can be skipped. For this reason, and for
convenience, let WNA be the ordered set of not avoidable time windows as

WNA :=
{
k ∈ W : ∃h ∈ WR with k ̸= h s.t. k ≺ h

}
⊆ W (2.2)

and let WA := (WNA)c, the complement of WNA, be the ordered set of avoidable time
windows.
In WR, for instance, are placed nocturnal time windows and tourism stops. Lunch breaks
are instead inserted in WO since it is possible that the model finds an optimal path that
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(a) Overlapped time windows: ✓
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(b) Disjoint time windows: ✓

γL
k − φ̃ γL

k γU
kγL

h − φ̃ γL
h γU

h

(c) One inside the other: ✗

Figure 2.2: Possible relative positions of time windows

arrives in destination node after the last night in hotel but before lunch. As mentioned
before, the number of nights is a decision of the user, they can’t be totally removed. If
instead, also lunch breaks were considered as required, the model can decide to enlarge
the charging time in previous CS just to ensure that the user must stop at some CS even
in the lunch of the last day of the trip. It make sense to ensure that this behavior is
forbidden, since the last lunch is not a proper part of the journey but it can be added
only if it strictly necessary. Indeed, the aim of this thesis is to find a shortest path to
arrive at destination: every unnecessary stops must be avoided (fig. 2.3).
Each CSs has multiple POIs associated to it, and each time window requires a specific POI,
so the model must select CSs that have that specific POI associated. This information
is written in the label ν and is different for each time window. For instance, let k ∈ W
refers to the first night, then νk = “Hotels” and the EV is forced to stops at a CSs near a
hotel. So, given a time slot k, it is possible to construct the set of chargers Sk ⊆ S that
have in their neighborhood the POI stated in νk. Finally, let S̃ = ∪k∈WSk and Wi ⊆ W
be the set of time windows for which the EV can stop in CS i ∈ S. For instance, if a
charger i has in the neighborhood a hotel and a restaurant, then Wi contains all the time
windows k ∈ W that have νk = “Hotels” or νk = “Restaurants”.
Due to the minimum stopping time tmin

k for each k ∈ W , it can happen that the EV is
forced to stay and charging in the same place for more time than it actually needs to
completely recharge its battery. This is why we introduced the fictitious point in the
charging function in section 2.2. In this way we can simply model a MILP formulation
without the necessity to include also a variable that indicate whether or not the EV is
stationary without charging.



12 2| Problem definition

O

A

B

C

H

L

E

D2h 00’

1h 15’
1h 45’

1h 15’1h 15’

1h 45’
1h 30’2h 30’

1h 30’
2h 15’

2h 00’
3h 00’

3h 00’

1h 45’15:30
�̂10

18:15
�O10

8:30+1
ª̂10

10:45+1
µm10

13:30+1
�̂10

12:00+1
�@10 Arrive:

15:00+1
�@10 Arrive:

H Hotel

L Lunch

Figure 2.3: Example of a path from O to D with a night in hotel and lunch breaks. The red path is the
optimal one, stopping in the hotel as required and reaching node E. If also the lunch break is required,
then the EV is forced to arrive to D with stopping at L (blue path). Instead, with the optional flag,
from E the EV can go directly to D with three hours in advance (green path). The timestamps near the
nodes represents the departure time from that node, including also the recharging time (not reported in
this figure). The “+1” over the timestamps indicates that it refers to the next day. For D, instead, the
timestamps represent the arrival time. The number on each arc symbolize the travel time.

2.4. Score

When the EV needs to be charged, the user will spend some time in the neighborhood of
the selected CS. Moreover, if it is almost time for lunch, dinner or is late night, our user
would like to select a CS that has restaurants or hotels. Most of the time CSs are placed
strategically near those type of POIs. Sometimes in those places there are also special
offers for EV users, like discounts or, in some hotels, even free usage of their swimming
pool. To avoid annoying waiting periods, it is important that the user selects a CS that
best suits her preferences.
To account for this aspect, we create a model that tries to maximize those preferences
which are implemented as a score given to each CS. Different users may have different
scores for the same CS. For instance, suppose that user A prefers to stops near city centers,
while user B likes staying in a shopping mall. Then a CS placed near Castello Sforzesco,
in Milan, will have a higher score for A with respect to B.
Given a CS, to compute the score other aspects may be accounted for like the charging
speed, the cost per kWh charged or how many other chargers are in the neighborhood.
Each score is given as an input and it is not the purpose of this research to find ways of
how computing it. For this reason we decided to give to each CS a random generated
score, from 0 to 5, as given in most websites.
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2.5. Model

We define as follows the MPM problem. In the model there is only one vehicle that has
a maximum capacity Q that leaves the origin point O fully charged. The full route starts
at time tstart in position O and it must arrive in destination point D before tend.
Let SO = S∪{O}, SD = S∪{D}, SO,D = S∪{O,D}. Let A be the set of arcs (i, j), with
i ∈ SO and j ∈ SD. The time and energy from i to j is tij ≥ 0 and eij ≥ 0 respectively. We
assume that the triangle inequality holds for both driving times and energy consumption.
Given a CS i ∈ S, let ∆i be the time spent waiting while the EV is charging. Let q

i
and

qi be the SoC when the EV arrives and depart from CS i. The variables ci and ci are
respectively the start and end time for charging an EV. The variables λik and λik represents
the coefficients associated with the breakpoint (cik, aik) in the linear approximation, when
the EV enters and leaves CS i. Let wik and wik be binary variables equal to 1 when the
SoC is in the interval [ai,k−1, aik], when respectively the EV enters and leaves the CS i, 0
otherwise.
Variables τ i and τ i tracks respectively the time when the EV arrives and leaves the CS
i ∈ S. There is also a tolerance φi, for each i ∈ SD, that represents how much time in
advance, with respect to γL

k , the EV can arrive in i. The maximum anticipation time is
set to φ̃, but even if the EV arrives in advance, the minimum stopping time tmin

k starts at
γL
k and not before. For instance, suppose that the EV arrives in a node at 11:50, the lunch

break start at 12:00 and last for minimum 1 hour. However, in this case, the EV may
charge for at least one hour and ten minutes. The maximum lead time φ̃ is not strictly
necessary for the MILP problem, indeed since it is a minimization problem the solver will
tend to reduce the variable ϕi because otherwise it can lead to great values of the variable
∆i. Instead, an upper bound for the lead time is useful to have a fair comparison with
the heuristic presented in Chapter 3.
Let WR ⊆ W , WO ⊆ W , Wi ⊆ W , Sk ⊆ S and S̃ be defined as mentioned in section 2.3.
The binary variable xij is equals to 1 if the EV arrives in node j, starting from i, 0
otherwise. The variable yjk is also binary and it is 1 if the EV stops in j in time window
k, 0 otherwise. Parameter σj represent the score for CS j ∈ S. The maximum amount of
time that the journey must last is Tmax (we will see in section 2.6 a way to compute an
upper bound for this value).
The variable zk for all k ∈ WA is a binary variable that is equal to 1 if the EV arrives
in D after time window k, 0 otherwise. It is used to link arrival time in destination node
and avoidable time windows.
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The profit model MPM is defined as follows:

[MPM] max
∑

(i,j)∈A
σjxij

s.t.
∑

(i,j)∈A
xij ≤ 1 ∀i ∈ SO

∑

(i,j)∈A
xij −

∑

(j,i)∈A
xji =





1 if i = O
−1 if i = D
0 otherwise

∀i ∈ SO,D

eijxij − (1− xij)Q ≤ qi − q
j

≤ eijxij + (1− xij)Q
∀(i, j) ∈ A

qO = Q

qD ≥ qmin

qmin

∑

(i,j)∈A
xij ≤ q

i
≤ qi ≤ Q

∑

(i,j)∈A
xij ∀i ∈ S

q
i
=
∑

k∈Bi

λikaik ∀i ∈ S

ci =
∑

k∈Bi

λikcik ∀i ∈ S
∑

k∈Bi

λik =
∑

k∈Bi\{0}
wik ∀i ∈ S

∑

k∈Bi\{0}
wik =

∑

(i,j)∈A
xij ∀i ∈ S

λi0 ≤ wi1 ∀i ∈ S
λik ≤ wik + wi,k+1 ∀i ∈ S, ∀k ∈ Bi\{0, bmi}
λi,bi ≤ wi,bi ∀i ∈ S
qi =

∑

k∈Bi

λikaik ∀i ∈ S

ci =
∑

k∈Bi

λikcik ∀i ∈ S
∑

k∈Bi

λik =
∑

k∈Bi\{0}
wik ∀i ∈ S

∑

k∈Bi\{0}
wik =

∑

(i,j)∈A
xij ∀i ∈ S

λi0 ≤ wi1 ∀i ∈ S
λik ≤ wik + wi,k+1 ∀i ∈ S, ∀k ∈ Bi\{0, bmi}
λi,bi ≤ wi,bi ∀i ∈ S
∆i = ci − ci ∀i ∈ S

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)
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s.t. τO = tstart

τD ≤ tend

τD − τO ≤ Tmax

tstart
∑

(i,j)∈A
xij ≤ τ i ≤ τ i ≤ tend

∑

(i,j)∈A
xij ∀i ∈ S

tijxij − (1− xij) tend ≤ τ j − τ i

≤ tijxij + (1− xij) tend
∀(i, j) ∈ A

τ i +∆i = τ i ∀i ∈ S
∑

k∈Wj

yjk ≤ 1 ∀j ∈ S̃

yjk ≤
∑

(i,j)∈A
xij ∀k ∈ W, ∀j ∈ Sk

τ j ≥ γLk yjk − φj ∀k ∈ W, ∀j ∈ Sk

τ j ≤ γUk yjk + (1− yjk)tend ∀k ∈ W, ∀j ∈ Sk

φj ≤ φ̃
∑

k∈Wj

yjk ∀j ∈ S̃

∑

j∈Sk

yjk = 1 ∀k ∈ WNA

∑

j∈Sk

yjk ≤ 1 ∀k ∈ WA

∆i ≥ φi +
∑

k∈Wj

tmin
k yik ∀i ∈ S̃

∑

j∈Sk+1

yj,k+1 ≤
∑

j∈Sk

yjk ∀k ∈ W\{ klast }

τD − γUk ≤ zkT
max ∀k ∈ WA

γUk − τD ≤ (1− zk)T
max ∀k ∈ WA

∑

h∈Sk

yhk ≥ zk ∀k ∈ WA

xij ∈ {0, 1} ∀(i, j) ∈ A
yjk ∈ {0, 1} ∀j ∈ Sk,∀k ∈ W
zk ∈ {0, 1} ∀k ∈ WA

q
i
≥ 0, τ i ≥ 0, φi ≥ 0 ∀i ∈ SD

qi ≥ 0, τ i ≥ 0 ∀i ∈ SO

λik ≥ 0, λik ≥ 0 ∀i ∈ S,∀k ∈ Bi

wik, wik ∈ {0, 1} ∀i ∈ S, ∀k ∈ Bi\{0}
ci ≥ 0, ci ≥ 0, ∆i ≥ 0 ∀i ∈ S

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

(2.42)

(2.43)

(2.44)

(2.45)

(2.46)

(2.47)

(2.48)

(2.49)

(2.50)
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The objective function (2.3) minimizes the total time. With constraints (2.4) every CS
can be visited at most once. Constraints (2.5) impose the flow conservation conditions.
Constraints (2.6) track the SoC of the EV for each pair of nodes. Constraint (2.7) impose
that, at beginning, the EV is fully charged, while (2.8) impose a minimum charge at
destination. Constraints (2.9) impose that the SoC of a leaving EV is greater than SoC
when the EV is arrived at that CS. Also the EV can’t arrive at CS i with no residual
energy, and the maximum value of SoC must be Q. Constraints (2.10) to (2.16) define the
SoC and the charging time, based on linear approximation of the charging function, upon
arrival at CS, while constraints (2.17) to (2.23) define the same thing upon departure
from CS. Constraints (2.24) define the time spent waiting on CS i. Constraint (2.25)
impose the starting time, while (2.26) impose that the arrival at the destination cannot
exceed tend. Constraint (2.27) ensure that the journey last less then Tmax. Constraints
(2.28) impose that the arrival time has to be lower than the departure, and both must be
greater than tmin and less than tend. Constraints (2.29) impose that the difference between
arrival time in j and departure time from i is equal to tij. Constraints (2.30) link arrival,
departure and waiting times. Constraints (2.31) assure that every CS j ∈ S̃ must be
used for at most one time slot k ∈ Wj, while (2.32) link x and y variables. Constraints
(2.33) and (2.34) impose that, for every k ∈ W , the arrival time is forced to be between
γL
k and γU

k , considering also the tolerance φi. Constraints (2.35) links φ and y variables,
imposing a maximum lead time of φ̃. Constraints (2.36) assure that every required time
slot is served, while (2.37) impose that optional time slot can also be unused. Constraints
(2.38) impose a minimum waiting time if the EV is obliged to stop there. Constraints
(2.39) describe the order in which the time slots must be used. Constraints (2.40) to (2.42)
links the arrival time in D with the y variables and the avoidable time windows. Finally,
(2.43) to (2.50) create the domains of the variables used in the formulation.

2.6. Shortest Path Model

The maximum amount of time of the journey can be computed as Tmax = tend − tstart.
However, using a large Tmax may potentially lead to a trip that last too long just because
is the solution that will maximize the profit. To handle this issue, we need to tune this
parameter and tightening as much as possible.
What we did in this thesis is to solve initially an EV Shortest Path Problem SPM,
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defined as follows

[SPM] min
∑

(i,j)∈A
tijxij +

∑

i∈S
∆i

s.t. constraints (2.4) to (2.26)

constraints (2.28) to (2.50).

(2.51)

The optimal solution T opt is then a lower bound for Tmax, so T opt ≤ Tmax. Then let T add

be the total additional time that the user defines for detouring from the fastest path just
to stops in node with higher scores. It is used to relax T opt in order to find a feasible
solution for the profit model MPM. Taking in account this change, we can now compute
the maximum duration of the journey of the profit score model MPM with

Tmax = T opt + T add. (2.52)

2.7. Discounted weights

With the model SPM it is possible to find a path that minimize the total travel time.
Instead with the model MPM is possible to find a path that maximize the total score
obtained by visiting each CS of the path, that is not necessarily the shortest one, since the
objective in this model is to maximize the profit. For this reason, we create a model that
searches for a shortest path while maximizing the total score, denoting it with MDPM.
In the evaluation part, in Chapter 5, we compare the scores obtained with MPM with
the ones computed with MDPM.
Let Tmax be the maximum duration of the journey computed in (2.52). For each arc
(i, j) ∈ A with j ∈ S, we create a new weight s̃ij defined as

s̃ij := tij +∆j − µσj (2.53)

where µ is a coefficient that indicates how much importance we want to give to the score
with respect to the needed time from i to j, charging time included.
The objective function of the MDPM model is then

min
∑

(i,j)∈A
j∈S

s̃ijxij. (2.54)
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Note that this quantity is non linear, since s̃ij includes the variable ∆j in is definition,
and so it becomes the product of two decision variables. To solve this issue, we introduce
a new decision variable sij and we add some constraints that remove the non-linearity.
The MDPM is then defined as

[MDPM] min
∑

(i,j)∈A
j∈S

[(tij − µσj)xij + sij]

s.t. constraints (2.4) to (2.50)

sij ≤ ∆j ∀(i, j) ∈ A s.t. j ∈ S
sij ≤ Tmaxxij ∀(i, j) ∈ A s.t. j ∈ S
sij ≥ ∆j − Tmax(1− xij) ∀(i, j) ∈ A s.t. j ∈ S
sij ≥ 0 ∀(i, j) ∈ A s.t. j ∈ S

(2.55)

(2.56)

(2.57)

(2.58)

(2.59)

We define this model to compare its performance with the heuristic algorithm developed
in section 3.4.

2.8. Reduce the number of legs

All the MILP models presented are exponentially large in the number of CSs, due to
the huge number of arcs that are created for each pair of CSs. So the solver may have
difficulties to find the optimal solution in a reasonable amount of time. To solve this issue,
some action can be performed to drastically reduce the number of arcs and to speed up
the computation.
The aim of the research is to find an optimal path for a single EV for a user that wants
to perform a long trip, with some stops along the road for eating, sleeping and visit new
places. With this in mind, and considering the fact that stopping too many times could
be stressful, we want the number of charging stops as low as possible.
A new parameter so is introduced, rmin, defined as

rmin :=

⌊
0.4

Q− qmin

η

⌋
(2.60)

where η is the average energy consumption per kilometer (expressed in kWh/km), and is
different for each EV that is taken in consideration. The quantity Q−qmin

η
represent the

maximum autonomy of the vehicle, excluding in the computation the minimal amount of
energy that is always required. Then, rmin represent the 40% of the vehicle autonomy.
With this arrangement is possible to prune all the arcs associated with a distance less
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than rmin. It also make sense since in this way the EV can’t stops for charging after a
short distance from the previous one, reducing in this way the total number of charging
stops.
Let now be ξ the lower bound distance for the trip from O to D. The description of how
it is computed is in equation (4.2) in section 4.6. We can define the maximum number of
legs N in a path as

N :=

⌈
3

2

⌈
ξ

rmin

⌉⌉

Therefore, the following constraint is then added to the model MPM:

∑

(i,j)∈A
xij ≤ N (2.61)

and, as a consequence, also to SPM and MDPM.





21

3| Heuristic algorithm

In this chapter we propose an heuristic algorithm for the SPM. The heuristic is based
on the A* Search, that find a path from an origin O to a destination D with the smallest
cost. To do that, it maintains the tree of all the originated path from O and extends each
path one arc at the time until D is reached. It uses a best-first search, meaning that it
needs some sort of weight to decide from which node to continue the search. A* selects
the node that minimizes the quantity

f(n) := g(n) + h(n) (3.1)

where n is the current node, g(n) is the cost of the path from O to n, h(n) is a heuristic
function that estimates the cheapest cost from n to D. If the h(n) function never overes-
timates the real cost h∗(n) to reach D from n, for all n, then the solution founded by the
A* algorithm is the optimal.
First we compute the potentials for each node that will be used to estimate the heuristic
function h; then we incorporate the time windows in the heuristic; later we try to add
also the score in h; finally we solve the problem using the A* search algorithm. In all this
chapter we use the same notation for sets and parameters that is presented in Chapter 2.

3.1. Potentials

We need to find an initial estimate of the total time from any CS i to D. To do that,
we on some techniques used in Zündorf [2014]. Dropping some constraints we obtain a
simple problem that can be solved using the Dijkstra’s algorithm. Let G := ⟨SO,D,A⟩ be
the directed graph from O to D, where SO,D is the set of nodes and A := SO × SD the
set of arcs. The backward Dijkstra’s algorithm applied to G is the Dijkstra applied to the
reverted graph G ′ := ⟨SO,D,A′⟩ where

A′ := SD × SO s.t. (i, j) ∈ A ⇒ (j, i) ∈ A′ (3.2)

and so in G ′ we have that O became the target and D is considered as the starting point.
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O

A

B

C

H

G

E

F

D

(b) Subtree of node C

Figure 3.1: In red is depicted TH in the first figure, while TC in the second one.

We start by dropping all the charging constraints and all time windows. The result
is a simple problem that represents the minimization of the driving time from O to D.
Applying the backward Dijkstra algorithm is possible to find the unconstrained minimal
driving time from every CS i to D, and since adding battery constraints reduces the num-
ber of feasible paths, it will only increase the driving time. Also, time windows constraints
reduce the number of feasible paths, so we obtain the lower bound of the minimal driving
time πdr(i) for each i ∈ SO,D.
Now we want to add some information about the energy consumption. So we apply again
the backward Dijkstra but this time with the energy consumption as a weight for the arcs.
The result is that for each CS i we are now able to know the minimum amount of energy
required from i to D. We call this lower bound πcons(i). In each node the EV arrives par-
tially charged, with an amount of energy equal to SoC(i). Moreover the minimal amount
qmin needs to be respected in every i, so we need to slightly modify πcons(i) to take in
account those aspects. In each node the available energy is computed as SoC(i) − qmin.
To compute then the minimal amount of energy from i to D we need to subtract the
available energy in i from πcons(i), so let define

π̃cons(i) := πcons(i)− (SoC(i)− qmin). (3.3)

We now need to convert the minimal required energy π̃cons(i) in amount of time in order to
compute a lower bound for the charging time. We first define the subtree Ti of the graph
G for a node i as the set of nodes in the directed graph Gi := ⟨Ti,Ai⟩, where Ai ⊆ A.
The set of nodes Ti contains all the nodes j ∈ SO,D such that there exists a sequence
{ (i, h1), (h1, h2), . . . , (hn, j) } of arcs all contained in Ai (see fig. 3.1 and algorithm 3.1).
We now define smax(i) as the maximum charging rate of all the CSs j ∈ Ti, defined as

smax(i) := max
{
ρjk : ∀j ∈ Ti,∀k ∈ Bj = {0, b1, . . . , bmj

}
}

(3.4)
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Algorithm 3.1 SubTree function. This function returns the list of the nodes that belongs
to the subtree of the graph G generated from node i. The subtree is the directed subgraph
of the directed graph G, so it contains all the nodes that are reachable from i.

1: function SubTree(G, i)
2: N := { i } // Set of selected nodes
3: Q := { i } // Queue
4: P := { i } // Processed
5: while Q do
6: c := Pop(Q) // Current node
7: if c ∈ P then
8: go to 5
9: end if

10: P := P ∪ { c } // Update processed
11: H := Star(G, c) // See A

12: N := N ∪H // Update selected nodes
13: Q := Q∪H // Update queue
14: end while
15: return N
16: end function

A Star(G, c) returns all the nodes j ∈ SD s.t. (c, j) ∈ A, in descending order with respect to tcj .

where ρjk is the slope of the charging function of node j for piecewise k (as defined in
section 2.2). So smax(i) is the maximal slope between the charging functions of all the
CSs in Ti, and it represents un upper bound for the charging speed for all the nodes from
i to D. This can be seen as a small improvement of the computation of the charging
potential with respect to Zündorf [2014], where smax is constant and it does not depend
on the possible nodes that are actually reachable from i. Note that π̃cons can be negative
if the available energy is greater then the remaining energy needed to reach D. So in the
computation of a lower bound for charging time we need to consider two separate cases:

πch(i) :=





π̃cons(i)

smax(i)
SoC(i)− qmin ≤ πcons(i)

0 otherwise
. (3.5)

We now have a potential that returns the minimal charging time from any node i to D.
A lower bound for the total trip time can be computed simply as the sum of the minimal
driving time and the minimal charging time

π̃tt(i) := πdr(i) + πch(i) ∀i ∈ SO,D. (3.6)
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Again, note that also π̃tt always underestimates the total trip time, since from the shortest
path problem with charging constraints if we add the time windows constraints we only
reduce the number of feasible paths, increasing the total trip time.
Using only π̃tt as a potential for the total trip time can lead to a considerably large
search space for the A* algorithm. This problem arise from the minimum stopping time
of each time windows, especially if some of them are related to nights. Indeed, π̃tt is an
unconstrained lower bound for the total trip time and it does not take in account all the
minimum stopping times. Lets now construct a better approximation by incorporating
also the time windows, considering the obliged stopping time for each of them and let
πtw(i) be the minimal stopping time that the EV must perform from i to D. Recall
that WNA is the ordered set of non avoidable time windows (see section 2.3), thus the
minimum amount of time that the trip has to last must consider also the sum of all
the minimum stopping times. Let k̃ be the last time window in the ordered set WNA.
Suppose that the EV when it is in node i has not performed all time windows in WNA,
then g(i) ≤ γL

k̃
+ tmin

k̃
, where g(i) is the arrival time in node i and γL

k̃
is the starting time

of time windows k̃. In this case, we can compute a lower bound for the time windows
potential as the sum of all the stopping times that are not yet performed by the EV at
the time of g(i). If instead, in node i, the EV has already done all the time windows in
WNA, then we have g(i) > γL

k̃
+ tmin

k̃
and so the potential for the time windows must be

zero. Therefore, let πtw(i) be the time windows potential for node i, we have

πtw(i) :=





∑

k∈WNA:
g(i)<γL

k

tmin
k g(i) ≤ γL

k̃
+ tmin

k̃

0 otherwise.

. (3.7)

For instance, suppose that WNA contains a stop for lunch for 1 hour, one tourism stop for 2
hours and one for sleeping for 11 hours. Then before lunch we have πtw(i) = 1+2+11 = 14,
after lunch we have πtw(i) = 2 + 11 = 13, and the next day πtw(i) = 0.
We now need to incorporate πtw in π̃tt. When the EV stops for lunch, it is also charging.
Thus we can’t simply sum πtw and πch, since they do not have completely distinct mean-
ings. Instead, we can obtain a better lower bound considering the maximum between πch

and πtw, and then add the driving potential πdr: so

π1
tt(i) := πdr(i) + max {πch(i),πtw(i) } (3.8)

defines the lower bound for the total stopping time from i to D. We could also take the
minimum of them, but using the maximum we obtain a much more precise heuristic, and
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this will lead the A* algorithm to explore less labels. Note that we are not overestimating
the real cost, since taking the maximum we are considering for each node the best possible
charging scenario that at least the EV has to perform.

3.2. Labels

To apply the A* search algorithm we need to keep track of the g(i) and h(i) values for
each node i ∈ SO,D. Considering only the value of f(i), however, is not enough, indeed, is
possible that the EV arrives in the same node from different paths and so with different
SoC or at different arrival times. So we need to keep track of those values when arriving
at node i. We call these states labels. A label Ljm represent the state of the EV when
arrives in the m-th copy of node j. Each node j has Mj dynamically allocated copies,
so j1, j2, . . . , jm, . . . , jMj

, indexed with m = 1, . . . ,Mj. Since it is possible to arrive in j

from different nodes i, with different arrival times or with various SoC, we keep track of
which state the EV is with this label. To reduce the notation, instead of writing all the
functions with the parenthesis, we will write the node to which the function is applied as
a subscript, so for instance we have gmj := g(jm). Each label is structured in a way that it
includes the total time needed to reach jm, so it includes both driving and charging time.
For instance, suppose that the EV goes from the n-th copy of i to the m-th copy of j,
namely from in to jm. Then Ljm is the label that considers the driving from i to j and
the charge in i that is needed to reach j for the m-th time. Note that in Ljm we include
the charging time in i to reach j and not how much time the EV spent charging in j. To
define the label L of node jm, with in as its direct predecessor. Then, we have

Ljm := (i, gmj , hm
j , fm

j , pmj , βm
j , qmj , qm

j
, λm

j , ∆m
j , ωm

j ) (3.9)

where

• i is the node from which the EV arrives to jm;

• gmj is the actual total time traveled from O to jm;

• hm
j is the estimated remaining time from jm to D;

• fm
j is the estimated arrival time from O to D if the path from O to jm is performed.

It is computed as fm
j := gmj + hm

j ;

• pmj is the label from which the EV arrives, so it is equal to Lin , that is the label of
the n-th copy of node i, with n ∈ { 1, . . . ,Mi };
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• βm
j is a positive real value that represents an additional time used to increase the

amount of time spent charging, instead of relying only on the charging time needed
to reach node j from i. Since it will be difficult to manipulate the real value of β,
it is chosen each time from an ordered set β := { β1, β2, . . . βs }, with s finite, of
discrete values.

• qmj is the amount of energy that is charged in the predecessor node in. It is computed
to at least respect the consumption eij. It is defined as qmj := qmj − qm

j
, where

qmj :=

{
qn
i
+ eij if eij < Q

Q otherwise
= max

{
qn
i
+ eij, Q

}
(3.10)

so, it is the difference between the energy at departure and the energy of the EV
when it arrives.

• qm
j

is the amount of energy that the EV has when it arrives at jm. It is computed
as qm

j
:= qn

i
+ qmj − eij, where eij is the energy weight in the arc (i, j);

• λm
j is the minimum amount of time that the EV must stay for charging in jm. This

amount of time is considered in the next label and not in Ljm . This is coherent with
the definition that is given for the labels, that is composed by the charging time in
node i plus the driving time to reach node j. It is defined as

λm
j :=

{
max

{
0, γL

k − gmj
}
+ tmin

k if time window k is performed in in

0 otherwise.
(3.11)

where γL
k is the starting time of time window k while tmin

k is its minimum stopping
time. The time window k is retrieved using ωm

j (see below).

• ∆m
j is the charging time in in. It is computed as the maximum between λn

i and the
difference cmj − cmj where cmj := Φ−1

j (qmj ) and cmj := Φ−1
j (qn

i
), with Φ−1

j the inverse
of the charging function in node j. In addition, to consider also the cases in which
the EV charges more than it really needs, we add also the term βm

j so

∆m
j := max

{
λn
i , cmj − cmj

}
+ βm

j . (3.12)

• ωm
j represents the index of the last time window k that has been performed until

node jm.

In this way we fully keep track of the EV data during the entire path from O to D.
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Note that some parameters like ∆, q and q are strictly related to β. As a consequences,
also g, h and f depends on β. The value of λ instead depends strictly on ω. This means
that in reality the tags that properly characterize labels are p, β and ω, while all the
others are computed using those three values. To avoid complex description, index and
functions in pseudocode, we directly point out all the elements of L even if they are not
strictly necessary.

3.3. A* Search Algorithm

Using the labeling system described in section 3.2 we are now able to implement the A*
search algorithm. We start implementing a heuristic approach to find the fastest path
from O to D, referring to this as AsM.
The origin node O is initialized as follows:

L1
O := (i = O, g1O = tstart, h1

O = h1(O), f 1
O = g1O + h1

O,

p1O = None, β1
O = 0, q1O = 0, q1O = Q, λ1

O = 0, ∆1
O = 0, ω1

O = 0)
(3.13)

where with None we intend the absence of value. Note that g1O is initialized with the
starting time of the trip. This means that the whole search is shifted, and so fm

D represent
the arrival time in D and not the how much time it will take to arrive to it.
Let L be the set of all labels, and Mj for all j ∈ SO,D a counter that keeps track in every
iteration of the maximum index reached for the copies of each node j.
The algorithm keeps track of the open labels using a priority queue Q. Every time a new
label is created, it is added to Q in a way that the first element of Q is always the one
which have the lowest fm

j
, between all labels Lm

j , so

jm := argmin
jm:j∈SO,D, m=1,...,Mj

{
fm
j

}
.

We now introduce functions that are used but not written here in pseudocode. The func-
tion Pop(Q) returns the label with the lowest f , while function Push(Q, Ljm) add the
label Ljm to the queue. Function Star(G, j) returns the set of nodes h ∈ SD such that
(j, h) ∈ A, in descending order with respect to tjh. The function NextTW(WNA, ωm

j )

returns, from WNA, the next not visited time window when the EV arrives at node
jm. The maximum advance for time windows is set to φ for each node. The function
NodeHasPoi(i, ν) returns a boolean value that represents if node i has or not in the
neighborhood at least one POI of the given category ν. Function MaxSlope(Ṡ) applied
to a generic subset Ṡ of CS S, returns the maximum slope between all the charging func-
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tions of nodes in Ṡ. The array Forest[i] returns Ti, the subtree of node i: to speed
up the algorithm, all the subtrees are previously computed and stored in the Forest

variable. The function Routing(i, j) returns the pair (tij, eij), that are respectively the
time and the energy required to go from i to j, for all i ∈ SO and j ∈ SD. The function
MinStop(gi) returns πtw(i). Some variables are defined globally, like G, Q, qmin, WNA,
the last time window k̃ in WNA and Forest.

The A* algorithm is described in algorithm 3.2. It begins initializing the counters for
all the copies and storing the subtree of each node in the graph G. Then the label as-
sociated with the origin point is created and is added to the queue and to the set of all
the labels. The search starts: the current label Ln

i with the lowest value of f is selected
and then the algorithm finds the next time window k that must be performed. A check
is performed to verify if the current label entails the arrival to the destination point: if
it so, another control verifies that the index ωn

i of the last visited time windows is at
least equal to the cardinality of the set WNA. If it is not the case, it means that the EV
hasn’t visited yet all the non avoidable time windows, and so the current label must be
discarded. If instead it pass also this control, then the current label and the set of all the
generated labels are returned and the search is finished.
At this point, the algorithm check if k is not None , and in the affermative case it checks
if in the subtree Ti of the current node i there exists at least one node in which the POI
constraint of time window k is satisfied. Then it perform the same check for all the time
windows in WNA that must be performed after k. For instance, suppose that the next
time window requires a lunch stop and after a tourism stop in Rome, Then the algorithm,
using the subtree Ti, checks if there exists at least one node associated with restaurants,
and if it is true checks also if Rome is reachable from i. If this check fails, the current
label will not satisfy all the constraints, so it is discarded and a new label is popped from
the queue Q.
We are now in the core of the algorithm. For each node j such that (i, j) ∈ A, a sequence
of operations is performed to assure that the trip from in to jm is feasible, where m is
the index of the m-th copy of j that will be created if all the checks are passed. First
the energy constraints. If the energy required on arc (i, j) is grater than the maximum
amount the EV can have, we discard this label, and the algorithm passes to the next
node in Star(G, i). Suppose now that eij < Q − qmin. To add the possibility that a
greater amount of energy with respect to eij is charged, all the instructions from now on
are included in a for loop with increasing values of β.
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Algorithm 3.2 AStarSearch Algorithm. It returns the last label visited and the set of all the
generated labels. In input it requires a graph G, the maximum and the minimum EV energy Q
and qmin, the starting and ending times tstart and tend, the set of non avoidable time windows
WNA and the set of additional charging times β
1: function AStarSearch(G, Q, qmin, tstart, tend, WNA, β)
2: for each node h ∈ SO,D do // G := ⟨SO,D,A⟩
3: Forest[h] := SubTree(G, h), Mh := 0

4: end for
5: MO := 1, Initialize L1

O, L :=
{
L1
O
}
, Q := {O } // Initialize L1

O as in (3.13)
6: while Q do
7: Ln

i := Pop(Q) = (i, gni , h
n
i , f

n
i , pni , β

n
i , q

n
i , q

n
i
, λn

i ,∆
n
i , ω

n
i ) // Select current label

8: k := NextTW(WNA, ωn
i ) // See A

9: if i == D then // D node reached
10: if ωn

i < |WNA| then go to 6 // See B

11: return Ln
i , L

12: end if
13: if k is not None then // See C

14: idx := ωn
i , C := k

15: while C is not None do
16: if Forest[i] ∩ SC == ∅ then go to 6
17: idx := idx + 1, C := NextTW(WNA, idx)
18: end while
19: end if
20: Neighbors := Star(G, i)
21: for each j ∈ Neighbors do
22: tij , eij := Routing(i, j)
23: if eij > Q− qmin then go to 21 // See D

24: for each β ∈ β do
25: ∆, q := ChargingEnergy(i, eij , qni )

26: ∆ := max
{
λn
i , ∆

}
+ β, q := ChargingForTime(i, qn

i
,∆)

27: gtemp := gni +∆+ tij // Temporary g value
28: if gtemp > tend then go to 21 // See E

29: if k is not None then
30: if gtemp > γU

k then go to 21 // See F

31: if γL
k − φ ≤ gtemp ≤ γU

k then // See G

32: if j == D or not NodeHasPoi(j, νk) then go to 38
33: Mj := Mj + 1, m := Mj , λ := max

{
0, γU

k − gtemp
}
+ tmin

k

34: Lm
j := CreateLabel(i, j, gni , q

n
i
,∆, q, tij , eij , λ, ω

n
i + 1, β, Ln

i )

35: L := L ∪
{
Lm
j

}
, Push(Q, Lm

j )

36: end if
37: end if
38: Mj := Mj + 1, m := Mj

39: Lm
j := CreateLabel(i, j, gni , q

n
i
,∆, q, tij , eij , 0, ω

n
i , β, L

n
i )

40: L := L ∪
{
Lm
j

}
, Push(Q, Lm

j )

41: end for
42: end for
43: end while
44: return None , None // Node not found
45: end function

A Select next time window for in.
B Not visited all time windows in WNA.
C Check if the subtree of current node contains the category of POI that is needed for the next time window k and for

the subsequents ones; otherwise goes to the next element of the queue.
D Energy required is greater than the maximum available.
E Out of maximum time for the model.
F Out of maximum time for the current time window.
G Arriving in node jm during time window k.
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Algorithm 3.3 ChargingEnergy function. It returns a pair of values that represents
respectively the charging time and the charged energy. In input it requires the node i in
which the EV needs to charge, the energy e that is necessary to reach the next node from
i, the current SoC q.

1: function ChargingEnergy(i, e, q)
2: if q == Q then // See A

3: return 0, 0

4: end if
5: if q − e ≥ qmin then // See B

6: return 0, 0

7: end if
8: s2 = max

{
q + e, Q

}
// Final SoC

9: c1 = Φ−1
i (q), c2 = Φ−1

i (s2)

10: return c2 − c1, s2 − q

11: end function

A Current state of charge is equal to Q, the maximum possible.
B If not necessary, return the minimal amount of energy needed to arrive in next node.

Algorithm 3.4 ChargingForTime function. It returns the amount of energy that will
be charged if the EV arrive in node i with a SoC q and it will stop there for an amount
of time ∆.

1: function ChargingForTime(i, q, ∆)
2: if q ≥ Q then // See A

3: return 0

4: end if
5: c1 = Φ−1

i (q), c2 = c1 +∆

6: s2 = Φi(c1)

7: return s2 − s1
8: end function

A Current state of charge is equal to Q, the maximum possible.

First, the function ChargingEnergy returns the charging time and the charged energy
given the current SoC qn

i
and the amount of energy required eij. This function requires

the current node i, eij and qn
i
, and is used (see algorithm 3.3) to retrieve the charging

time and the charged energy at i. The charging time ∆ is then updated: it becomes the
sum of the current additional time β and the maximum between the current value of ∆
and the minimum stopping time λn

i . The charging energy q is then recomputed using
ChargingForTime function (see algorithm 3.4).
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Algorithm 3.5 Heuristic function. It returns the estimated remaining time from current
node i and destination D in the graph G, considering the current SoC q and the current
arrival time g.

1: function Heuristic(i, q, g)
2: πtw(i) := MinStop(g) // Time windows stops
3: if q − qmin ≥ πcons(i) then // See A

4: πch(i) := 0

5: else
6: tree := SubTree(G, i)
7: smax := MaxSlope(tree)
8: πch(i) := [πcons(i)− (q − qmin)]/smax

9: end if
10: return πdr(i) + max {πtw(i), πch(i) }
11: end function

A Available energy is potentially sufficient to reach D.

The algorithm now computes a temporary value gtemp of the arrival time in j. In the
case that gtemp > tend, the current label is discarded since the arrival time will be greater
than the limit imposed by the problem. We now need to verify if the time window k

selected before is in WNA or not. If this control passes, then the algorithm must satisfy
the constraints associated with k. First, if gtemp > γU

k it means that the arrival time at
j will be after the ending time of k, so its not feasible. If instead, gtemp is included in
the range

[
γL
k − φ, γU

k

]
then the EV arrives at j exactly during the time window k. In

this situation, a user can decides to stop in j, and respect time window k’s constraints,
or drive again to the next node h and see if it is possible to respect k in node h. This
scenario models the case in which, for instance, instead of respecting in node j the lunch
constraints, the user wants to drive more and eats in an another place. In the case that
we stay in j to respect time window k, lets then see if node j has the POI that is required
for k. If it is the case, a label Lm

j is created, imposing that ωm
j := ωn

i +1 (from jm on, time
window k is respected) and λm

j = max
{
0, γL

k − gtemp
}
+ tmin

k . The max function is used
to compute how much time in advance the EV arrived in j, so the minimum stopping
time that will be imposed from any arc from jm will be λm

j . If instead node j does not
have any POI of the given category νk, we can step over and create a label that goes
from in to jm without imposing a minimum stopping time λm

j . In this case λm
j := 0 and

ωm
j := ωn

i . In both cases, the newly created label Ljm is added to the set of labels L and
pushed to the queue Q. Finally, the loop on β restarts with the next value of β.
The end of the main while loop is met: if the queue Q has others elements, all the iteration
is repeated, otherwise the destination node D it was not possible to reach D respecting
all the imposed constraints and the function returns None .
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Algorithm 3.6 CreateLabel function. It creates the label from node a to node b, giving
the current arrival time g in a, the current SoC q, the charging time ∆, the charged
energy q, the driving time t and the driving energy e, the minimum amount of time that
is needed to charge in node b in the next label, the last time windows index that has been
performed ω, the charger additional time β and the previous label L.

1: function CreateLabel(a, b, g, q, ∆, q, t, e, λ, ω, β, L)
2: g := g +∆+ t // Arrival time
3: q := q + q − e // Energy at arrival
4: h := Heuristic(b, q, g) // Heuristic value
5: f := g + f // Estimated arrival time
6: L̃ := (a, g, h, f, L, β, q, q, λ,∆, ω) // See A

7: return L̃

8: end function

A New label is created. Compare the order with (3.9).

3.3.1. An example

We will now analyze an example of the A* Search Algorithm described in section 3.3. Con-
sider the Figure 3.2: it depicts the final path founded from O to D. To better understand
the example, all the times are not converted in absolute value with respect the midnight
before the departure time, as described in chapter 2. So, only in this subsection, time
variables are expressed as a timestamp: for instance tstart = 10:00 and tend = 16:30 and
not, respectively, tstart = 10.0 and tend = 16.5, as in the rest of the thesis. For the same
reason, also duration variables are expressed as timestamps, so for instance φ̃ = 0h 45’
and not φ̃ = 0.75.

Suppose that the EV starts in O at tstart = 10:00 o’clock fully charged, with Q = 60 kWh

and qmin = 15 kWh. We want to find a path from O arriving at D before tend = 16:30
considering only one time windows related to lunch, with γL = 12:00, γU = 14:00 and a
minimum stopping time φ̃ = 1h 00’. The maximum lead time is set to φ̃ = 0h 45’.
Let assume that the current label is L1

A, the first copy of A. The current time is g1A = 11:50
and the next time window k that is possible to perform is the one related to lunch. Since
k it is not None , the algorithm verifies in the SubTree(A) if there is at least one node
that contains a restaurant. Then loops for all the nodes that are linked to A: node B,
node C and node E. Since g1A = 11:50, the user can decides to stops in A to have lunch
or to continue and have lunch in the next node. We first explain node B. From L1

A, if
the EV decides to continue then the labels L1

B and L2
B are generated and added to the

queue. They differ in terms of the charging time in A before reaching B: ∆1
B = 0h 25’ and
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∆2
B = 0h 40’. If instead the EV decides to stop in A for lunch, then the labels L3

B and L4
B,

that differ again in terms of the charging time, are also generated and added to the queue.
Those labels have respectively λ3

B = 1h 10’ and λ4
B = 1h 10’ (since the EV would arrive

10 minutes in advance in A with respect to γL), and for both the lunch time windows is
denoted as ω3

B = ω4
B = 1. We now continue to C, the next node which is linked from A.

If the EV does not stop in A for lunch, then it will arrive in C at g1C = 14:15 that is after
the maximal arrival time for lunch γU . So label L1

C will not be created. Instead, if the
EV stops in A for lunch, then the label L2

C is generated, with ω2
C = 1 and λ2

C = 1h 10’.
Finally, we check the node E. If the algorithm decides to go over instead to have lunch
in A, then it will find out that the subtree of node E does not contain any restaurant. If
instead it will stops in A for lunch, then L2

E is created, with ω2
E = 1 and λ2

E = 1h 10’.
All nodes linked to A are visited, so the algorithm passes to the next element of the queue.
Suppose it is L2

E. Among all the arcs outgoing from E there is one linked to D. The
arrival time in E is g2E = 14:05 and it includes the lunch time in A and the driving time
to E. From L2

E it is possible to reach D, but the arrival time will be g3D = 17:05 which is
greater than tend so L3

D must be discarded.
We now move to L2

B. The arrival time is g2B = 13:40. Among the outgoing arcs of B there
are F and D. If the EV decides that lunch will be performed on the next node, suppose
D, the label L1

D will be generated, but it is then discarded since D is reached without
having all the time windows required. The next node now is F , and suppose that lunch
will be performed on L2

B. The arrival time in L1
F is then g1F = 15:25 and ω1

F = 1.
Finally, suppose that the next element in the queue is L1

F . From here it is possible to
reach D at g2D = 16:15. This arrival time is coherent with the requirements of the problem,
so it can be a possible candidate for terminating the algorithm. If there are labels with
an f value less than 16:15, then the algorithm will continue with the next label in the
queue, otherwise L2

D is returned and the algorithm stops, returning the last current label
L2
D and the set L of all the generated labels. The final path is then computed by taking

the predecessor of L2
D, then its predecessor and so on, until None is retrieved, meaning

that we reach the label associated with the origin.
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Figure 3.2: Schematic example of the A* search algorithm presented in algorithm 3.2.
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3.4. Score

We now want to use the A* search algorithm to find a fastest path from O to D while
maximize the total profit gained by visiting each node, as this is the objective of MDPM.
We refer to this algorithm with AsDM. Let µ be a coefficient that describes how im-
portant a score must be with respect to the actual needed route time, as in section 2.7.
Parameter µ is defined globally.
It uses a slightly modified version of algorithm 3.2. The first difference is in the definition
of the labels. In particular, two new parameters are added to each label L:

Ljm := (i, gmj , hm
j , fm

j , pmj , βm
j , qmj , qm

j
, λm

j , ∆m
j , ωm

j ,Σ
m
j , τ

m
j ) (3.14)

The first one is Σm
j and it represents the total score gained from O to the current label,

formally for copy jm

Σm
j := Σn

i + σj (3.15)

and Σ1
O := 0. The second parameter is τmj and, as in chapter 2, it represents the arrival

time in copy jm. All the time windows constraints are now satisfied using this parameter
instead of g. This means, for instance, that τtemp = τmj + ∆ − tij, and every gtemp is re-
placed with τtemp. The minimum waiting time becomes λm

j := max
{
0, γL

k − τmj
}
+ tmin

k .
For the origin node we have τ 1O := tstart and g1O := 0.
Another difference with algorithm 3.2 is given by the CreateLabel function that be-
cames CreateLabelDiscounted (see algorithm 3.8). It is an obvious change due to
the different definition of the labels.
The next big difference is in the heuristic function: Heuristic becomes HeuristicDis-

counted and is described in algorithm 3.7. With respect to algorithm 3.5 it takes in
input the additional parameter Σ and it returns the following discounted estimated time
to reach D:

π2
tt(i) := π1

tt(i)− µΣ. (3.16)

In this way, the final value of f computed for node D will be comparable with the one
computed with MDPM.
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Algorithm 3.7 HeuristicDiscounted function. It returns the estimated remaining time
from current node i and destination D in the graph G, considering the current SoC q, the
current arrival time g and the current score gained Σ

1: function HeuristicDiscounted(i, q, g, Σ)

2: πtw(i) := max
{
0, γL

k̃
− g + tmin

k̃

}
// Time windows stops

3: if q − qmin ≥ πcons(i) then // See A

4: π̃cons(i) := 0

5: else
6: tree := SubTree(G, i)
7: smax := MaxSlope(tree)

8: πch(i) :=
πcons(i)− (q − qmin)

smax

9: end if
10: return πdr(i) + max {πtw(i), πch } (i)− µΣ

11: end function

A Available energy is potentially sufficient to reach D.

Algorithm 3.8 CreateLabelDiscounted function. It creates the label from node a to
node b, giving the current discounted cost g to a, the current SoC q, the charging time ∆,
the charged energy q, the driving time t and the driving energy e, the minimum amount
of time that is needed to charge in node b in the next label, the last time windows index
that has been performed ω, the charger additional time β, the previous label L, the arrival
time τ and the current gained profit Σ.

1: function CreateLabelDiscounted(a, b, g, q, ∆, q, t, e, λ, ω, β, L, τ , Σ)
2: τ := τ +∆+ t // Arrival time
3: q := q + q − e // Energy at arrival
4: σ := Score(b) // See A

5: g := g +∆+ t− µσ // Discounted time
6: h := HeuristicDiscounted(B, q, τ ,Σ) // Heuristic value
7: f := g + f // Estimated arrival time
8: L̃ := (A, g, h, f, L, β, q, q, λ,∆, ω,Σ, τ) // See B

9: return L̃

10: end function

A Score(b) returns the score of node b, namely σb.
B New label is created. Compare the order with (3.14).
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In this chapter we describe the dataset and the preprocessing approach that is used to
clean and reduce the number of CS that are then used to perform our analysis. Moreover,
we describe a simple process that leads to considering only CSs that are effectively useful
to the trip that the user wants to fulfill. Some preprocess is executed also on the set of
arcs A in order to discard useless arcs as much as possible.

4.1. Data

Data about charging station were given by a company in a SQL file. Each row contains
information about every single station such as: single and group identifiers (external_id
and station_id), charge data (cp_type, connector_speed and status), GPS position
(latitude, longitude), address (street, street_number, zip, city, district, state,
country), with a total amount of 83 526 entries. All this data were extracted from a
bounding box that goes from 43.55 to 49.05 latitude and from 8.68 to 13.11 longitude
(see Figure 4.1), and covers parts of Italy, Germany, Austria, Switzerland and the totality
of Liechtenstein and San Marino (Table 4.1). The density of CSs changes according to
the proximity with big cities. For instance, they are less distributed along the Alps and
Apennines, and more near big cities like Stuttgart, München and Milan with respectively
450, 438 and 230 stations. The great number of CSs in cities can lead to problems due to
the huge number of possible arcs that are created to connect each pair of them. For this
reason, a first step is to reduce the size of S, without loosing information for retrieving
an optimal path.

4.2. Data cleaning

The first step is to clean up the database of the CSs that was given in input. Each row
describes a single charger, but in some cases there were multiple CSs all in the same
location (i.e., same parking lot or shopping mall), and so with the same identifier. We
decide to group all the CSs that have the same station_id, and from each group taking
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Figure 4.1: Distribution of the given CSs. Map created with mapcustomizer.com (Kaeding)

the one with the highest speed. So for the purpose of this thesis, we suppose that the
station with the maximum speed is always available. This procedure reduced the number
of CSs to 14 789. It can happen that a user arrives at a CS and finds it already occupied.
Techniques that manage also this aspect are described in Keskin et al. [2019] and Kullman
et al. [2021]. To take in consideration also this possibility, we suggest instead, without
exploring it in this thesis, to include this information into the score, maybe increasing or
decreasing it with respect to the probability that each charger is occupied or not.
Each CS has a different charging speed, that is used to categorize charging technologies in
slow chargers, medium chargers and fast chargers. Let pi be the charging speed of CS i.
We categorize all the CSs as follows

• slow: pi ≤ 11.0 kWh

• medium: 11.0 kWh < pi ≤ 30.0 kWh

• fast: pi > 30.0 kWh.

Sometimes, stations near to each others are not correctly inserted in this database, so it
may happen that even if they are in the same area they have different station_id. To
solve this problem, all CS which have other CSs within a merging radius of rM = 100m

will form a cluster and if one CS belongs to two or more clusters, then all of this cluster
will be merged.
To perform this preprocess we needed to compute the distance between each pair of nodes.

https://www.mapcustomizer.com
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# CSs before # CSs after # CSs after
pre process grouping same station id grouping same area

Germany 59 339 5 955 4 135
Italy 15 009 5 713 4 911
Switzerland 5 400 1 583 1 334
Austria 3 679 1 488 1 219
Liechtenstein 65 33 27
San Marino 34 17 15

Total 83 526 14 789 11 641

Country

Table 4.1: Distribution of chargers for each country.

Since the merging distance is quite small, we can compute an approximation supposing
that distances were symmetric and using only the straight line distance with the Haversine
formula. The Haversine distance is used as an initial filter since it is computationally faster
than retrieving the real route distance from online map services. Moreover, it can also
capture the curvature of the Earth. Suppose to have two points A and B with GPS
coordinates (ϕ′

1, ϕ
′
2) and (λ′

1, λ
′
2). Those value are initially converted in radians, (ϕ1, ϕ2)

and (λ1, λ2), then let ∆ϕ = ϕ2 − ϕ1 and ∆λ = λ2 − λ1. The Haversine distance between
A and B is computed as

hav(A,B) := 2R arcsin

(√
sin2

(
∆ϕ

2

)
+ cosλ1 cosλ2 cos2

(
∆λ

2

))
(4.1)

where R = 6371.009 km is the Earth’s average radius. Since the Earth is not a perfect
sphere, this distance is not perfectly accurate, but for the scope of this thesis is sufficient.
The distance matrix computation is quite fast indeed, thanks to symmetry.
Merging all the CSs in a cluster produces a new CS that is added to the database, while
the CSs of the cluster were deleted. The cluster position is computed as an average of the
GPS coordinates of the original CSs, while the charging speed is the maximum among
the original CSs. Using this procedure, 3 148 CSs were deleted, while 1 226 new ones were
created, bringing the total number of CSs to 11 641. We denote this final dataset with Γ.
The final number of CSs that are taking into consideration for each country is described
in Table 4.1.
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4.3. Weights Matrix

Using the post processed database, we then computed the distance and timing matrix for
each pair of CSs. To do that we performed multiple requests to the Open Source Routing
Machine API (OSRM, Luxen and Vetter [2011]) server and stored the result in a JSON
file. In this way all the weights were ready to use, without affecting the computation of
the models presented in this thesis. The energy required for each arc is instead computed
as the product of the arc length and the average consumption per kilometer, as done also
in Montoya et al. [2017].

4.4. Machine Performance

The entire model has been implemented in Python and solved using IBM ILOG CPLEX
Optimization Studio 20.1.0 (IBM ILOG CPLEX [2009]). The computation was performed
on a single core of an Apple MacBook Pro with 8 core Apple M1 processor clocked up to
3.20 GHz, with 8 GB of LPDDR4 RAM.

4.5. Time windows

Time windows are given as input in the form described in section 2.3 for both required
WR and optional WO time windows sets. Let WT be the set of time windows related
to a tourism stop. For each k ∈ WT the additional parameter Pk is given, that is the
pair of GPS coordinates of that place. To construct the set Sk, the haversine distance
is computed by searching for CSs in a radius rT centered in Pk. The CSs that have a
distance less then rT are included in Sk. If no eligible nodes are presents, the radius is
iteratively increased by a quantity δT and the search is repeated. The maximum radius
imposed for this search is r̃T : if Sk is still empty, the entire computation is blocked and an
error is raised informing that is not possible to reach Pk unless the EV is left more than
r̃T away. This process simulates the approach that a user needs to do to search for a CS
near the location she wants to visit. If no CSs are available in a reasonable distance from
Pk, than the user can decide to remove or change that tourism stop. For our experiments,
we imposed rT = 2.0 km, δT = 200m and r̃T = 4.0 km.
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(a) (b)

Figure 4.2: On the left, polyline representing part of the Brennero’s highway (fig. 4.2a). On the right,
instead, the optimal path from Innsbruck to Bolzano (blue line) computed via OSRM. The pinpoints in
red are the position of the CS selected from Γ (fig. 4.2b).

4.6. Construction of S and A
Given the origin point O, the destination point D and the set of tourism stops WT , we
now analyze how to construct the set of chargers S and the set of arcs A.
Using OSRM, the optimal path without charging stops is computed and it will be used
as a lower bound for SPM. This makes sense since the fastest path from O to D can’t
be along slower routes for ICEVs. The server returns up to three alternatives in a JSON
file that contains the entire routes from O to D, with all the navigation details. The
interesting elements that will be used are:

• distance: is the total length in meters of the optimal path computed by OSRM

• steps: it contains a list of the single steps that the vehicle must perform (turns,
roundabout, etc.)

• geometry: each step contains a string composed by ASCII characters.

The lower bound on the optimal solution is defined as

ξ := min { di| where di is the distance of alternative i } . (4.2)

Each step is composed by its starting point and its ending point which are connected by
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Figure 4.3: Example of the range preprocessing that is performed to reduce the size of A.

a polyline. The GPS coordination of the points that form the polyline are encoded in the
geometry string (fig. 4.2a). Taking the union of all these points, is possible to reconstruct
on the map the optimal path that OSRM has computed. Now, all the points for all the
alternatives are placed in a unique set of points. For each point, all the CSs that have
a haversine distance within a radius of 5 km are collected. This is due to the fact that
sometimes to reach a CS a small detour is needed. Since those points are very dense, to
speed up the process, and without loosing too much data, the search has been performed
only in one point every six. At the end, all the CSs that are in a bandwidth of 5 km
centered on the OSRM optimal route will form the set S. Finally we construct A as the
set of all possible arcs (i, j) with i ∈ SO and j ∈ SD, with i ̸= j.

4.7. Preprocessing

Before starting to solve the MDPM we preprocess the set of chargers S and the set of
arcs A. We start by removing from S all the nodes that have a distance from O less then
rmin. This is due to the fact that we want the solution to have a small number of stops,
since the objective is to perform a long trip on the road. We suppose that deleting them
does not change the optimal solution since selecting one of those will cause the EV to
stop for charging, increasing the total travel time just after few kilometers from the origin
point. The same reason can be applied, using again rmin, for D node, indeed is better to
arrive at a destination instead stopping again for charging near D. Consequently, all arcs
in A related to those points can be deleted.
Is possible also remove all arcs that are going to the opposite side with respect D. More
precisely, let d[i] be the distance from CS i to D. For each arc (i, j) ∈ A, if by going from
i to j the distance to D is reduced, that means d[i] > d[j], then (i, j) is kept, otherwise it
is deleted. This process substantially halves the amount of edges included in A.
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Another type of preprocessing is given again by using rmin. Let rmax be

rmax :=

⌊
Q− qmin

η

⌋
. (4.3)

Since the EV needs to respect the battery capacity Q and we want the total travel time
to be low, we have decided to forbid the EV to go through arcs that are too small or too
long. In particular, we remove from A all arcs (i, j) that have a distance dij < rmin or
dij > rmax (Figure 4.3).
Finally, after all preprocessing, we found some nodes that are not reachable from any
other CS, and some recurrent nodes (CSs that don’t have any outgoing arc). Those nodes
and their relative arcs are safely deleted.
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In this chapter we create some instances that are used to test the performance of the
MILP formulations (SPM, MPM and MDPM) and the A* search heuristics (AsM
and AsDM).

5.1. Vehicle

The EV that we choose for our analysis is a Škoda Enyaq iV 60, with a net battery
capacity of Q := 58 kWh and a maximum average consumption of η := 0.187 kWh/km

(ChargePrice.com). It has a maximum power charge P := 40 kW, and we set a minimum
required energy qmin := 15 kWh. The breakpoints used for the charging functions related
to the selected vehicle are reported, for each CS technology, in fig. 5.1.

5.2. Datasets and instances

We initially created two subsets of the CSs instead of using all the 11 641 CSs. The first
one, denoted with Γ1, is very small with only 650 CSs (∼5.5%) and it is used in order to
obtain an exact solution with the MILP models and to properly compare then with the
heuristic approach. The second one, Γ2, instead contains 5 813 CSs (∼50.0%) used to test
the A* search with larger datasets. Since the two datasets are extracted with uniform
probability from Γ, we need to guarantee that in each tourism stop there is at least one
CS. We created a square of 5 km×5 km centered in the coordinates of each tourism stop
and uniformly extracted 4 CSs. Then we selected uniformly from Γ a certain amount of
CSs and we take the union with the ones selected before for the tourism stops, obtaining
Γ1 and Γ2.

For both sets of CSs we use the same set of instances defined as trips. Since our CSs
lay in a rectangular area that covers part of Central Europe, those instance are chosen so
that they completely lay in the same geographical area. We generate three main trips,
each one with some variations like starting time, presence of tourism stops and its mini-
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Figure 5.1: Piecewise linear approximation, including the fictitious breakpoint, for different CSs tech-
nologies for the selcted EV.

mum stopping time, presence or not of lunch and nights time windows. Those trips are
from Genoa to Zürich, from Livorno to Regensburg and from Stuttgart to Ancona. The
details of each instance are summarized in table 5.1.

We tested Γ1 with the MILP models SPM, MPM and MDPM, and both the A*
heuristics, AsM and AsDM, while Γ2 with only AsM and AsDM. Then for all AsDM
models we solve the SPM imposing that the EV must use the arcs selected by the heuris-
tic. We note that CPLEX was unable to solve any instance in Γ2 within one hour. We
denote with TSx and TTx respectively the total score and the trip time of the model x.
Those values are retrieved a posteriori on the path returned by the models.
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Description of the instances

Min stop Min stop Min stop
[h] [h] [h]

10:00 18:30 14:00-17:30
Day 0 Day 1 Day 0
10:00 18:30 14:00-17:30 12:00-13:30
Day 0 Day 1 Day 0 Every day
10:00 18:30 12:00-13:30
Day 0 Day 1 Every day
10:00 18:30 19:00-22:30
Day 0 Day 1 Every day
10:00 18:30 14:00-17:30 12:00-13:30
Day 0 Day 1 Day 0 Every day
10:00 18:30 14:00-17:30 19:00-22:30
Day 0 Day 1 Day 0 Every day
04:00 18:30 14:00-17:30 12:00-13:30 19:00-22:30
Day 0 Day 1 Day 0 Every day Every day
06:00 18:30 14:00-17:30 12:00-13:30 19:00-22:30
Day 0 Day 1 Day 0 Every day Every day
08:00 18:30 14:00-17:30 12:00-13:30 19:00-22:30
Day 0 Day 1 Day 0 Every day Every day
10:00 18:30 14:00-17:30 12:00-13:30 19:00-22:30
Day 0 Day 1 Day 0 Every day Every day
10:00 18:30 14:00-17:30 12:00-13:30 19:00-22:30
Day 0 Day 1 Day 0 Every day Every day
10:00 18:30 14:00-17:30 12:00-13:30 19:00-22:30
Day 0 Day 1 Day 0 Every day Every day
10:00 18:30 12:00-13:30
Day 0 Day 1 Every day
10:00 18:30 14:00-17:30 12:00-13:30
Day 0 Day 1 Day 0 Every day
20:00 18:30 7:00-10:30 12:00-13:30
Day 0 Day 1 Day 1 Every day
10:00 18:30 14:00-17:30 12:00-13:30 19:00-22:30
Day 0 Day 1 Day 0 Every day Every day
10:00 18:30 7:00-10:30 12:00-13:30 19:00-22:30
Day 0 Day 1 Day 1 Every day Every day

09:30-13:00
Day 0

18:30-22:00
Day 0

14:00-17:30
Day 0

9:30-12:30
Day 1

14:00-17:30
Day 0

14:00-17:30
Day 1

ID

Origin Destination Stop at Lunch Break Nights

From When To By Stop at When When Nights When

Ge_Zu_1 Genoa Zürich Lugano 2 - - 0 - -

Ge_Zu_2 Genoa Zürich Lugano 2 1 0 - -

Li_Re_1 Livorno Regensburg - - - 1 0 - -

Li_Re_2 Livorno Regensburg - - - - - 1 11

Li_Re_3 Livorno Regensburg Verona 2.5 1 0 - -

Li_Re_4 Livorno Regensburg Verona 2.5 - - 1 11

Li_Re_5 Livorno Regensburg Verona 2.5 1 1 11

Li_Re_6 Livorno Regensburg Verona 2.5 1 1 11

Li_Re_7 Livorno Regensburg Verona 2.5 1 1 11

Li_Re_8 Livorno Regensburg Verona 2.5 1 1 11

Li_Re_9 Livorno Regensburg Verona 2 1 1 11

Li_Re_10 Livorno Regensburg Verona 3 1 1 11

St_An_1 Stuttgart Ancona - - - 1 0 - -

St_An_2 Stuttgart Ancona Vaduz 2 1 0 - -

St_An_3 Stuttgart Ancona Bologna 2 1 0 - -

St_An_4 Stuttgart Ancona Vaduz 2 1 1 11

St_An_5 Stuttgart Ancona Bologna 2 1 1 11

St_An_6 Stuttgart
06:00
Day 0

Ancona
02:00
Day 1

Vaduz 2
- - 0 - -

Bologna 2

St_An_7 Stuttgart
10:00
Day 0

Ancona
22:00
Day 1

Vaduz 2
- - 1

19:00-22:30
Every day

11
Bologna 2

St_An_8 Stuttgart
13:00
Day 0

Ancona
22:00
Day 1

Vaduz 2
12:00-13:30
Every day

1 1
19:00-22:30
Every day

11
Bologna 2

Table 5.1: Description of the instances
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5.2.1. Instances details

As we can see in table 5.1, some instances describe the same trip, just with different
timings, and for this reason they lead to the same set of unconstrained shortest optimal
path (see section 4.6), and so to the same set of CSs. In particular, we can subdivide the
instances in the following manner:

• Ge_Zu_1 and Ge_Zu_2

• Li_Re_1 and Li_Re_2

• from Li_Re_3 to Li_Re_10

• St_An_1

• St_An_2 and St_An_4

• St_An_3 and St_An_5

• St_An_6, St_An_7 and St_An_8.

For this reason, we extract, for both Γ1 and Γ2, the set of CSs related to each subdivision
and store those sets in memory. In this way, each instance that belongs to the same sub-
division uses the same graph for all the models. Then the sets SO,D and A are computed
and preprocessed, as described in section 4.6. In table table 5.2 we report the number
of nodes and arcs for each subdivision, for both dataset Γ1 and Γ2, before and after the
preprocessing phase.

Nodes Arcs Nodes Arcs Nodes Arcs Nodes Arcs

Ge_Zu_1, Ge_Zu_2 36 1 260 22 52 296 87 320 212 3 236

Li_Re_1, Li_Re_2 43 1 806 36 157 480 229 920 391 22 230

Li_Re_3 to Li_Re_10 49 2 352 42 244 492 241 572 403 23 889

St_An_1 84 6 972 54 276 667 444 222 415 19 762

St_An_2, St_An_4 104 10 712 73 629 820 671 580 555 34 622

St_An_3, St_An_5 83 6 806 54 276 666 442 890 414 19 698

St_An_6 to St_An_8 103 10 506 73 629 819 669 942 554 34 542

Instances

Dataset Γ1 Dataset Γ2

Before After Before After

Table 5.2: Number of nodes and arcs for each instance.
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Trip Total Comp. Trip Total Comp.
Time Score Time Time Score Time
[h] [s] [h] [s] ×100 [%]

Ge_Zu_1 8.629 3.735 0.092 8.629 3.735 0.002 0.000

Ge_Zu_2 8.966 4.060 0.057 8.966 4.060 0.005 0.000

Li_Re_1 14.130 6.942 6.994 14.545 6.942 0.017 2.937

Li_Re_2 23.594 8.301 4.267 24.627 5.365 0.138 4.378

Li_Re_3 15.749 18.322 9.827 16.047 15.375 0.125 1.892

Li_Re_4 24.574 11.740 3.413 25.530 11.740 0.141 3.890

Li_Re_5 30.558 14.250 7.139 31.412 13.820 0.283 2.795

Li_Re_6 28.558 13.199 8.899 30.246 16.904 0.158 5.911

Li_Re_7 26.558 11.320 7.917 27.412 11.320 0.387 3.216

Li_Re_8 25.313 13.924 5.423 26.271 12.339 0.329 3.785

Li_Re_9 25.088 18.077 10.057 25.943 13.976 0.369 3.408

Li_Re_10 25.709 7.797 6.559 26.749 11.664 0.308 4.045

St_An_1 15.767 13.395 24.409 16.306 6.884 0.056 3.419

St_An_2 18.182 15.952 7.870 18.778 15.952 0.057 3.278

St_An_3 16.861 9.593 6.661 17.360 12.616 0.225 2.959

St_An_4 28.674 10.134 6.572 28.813 10.134 0.095 0.485

St_An_5 26.341 13.450 3.182 26.387 13.450 0.082 0.175

St_An_6 18.971 9.396 0.917 19.689 13.055 0.124 3.785

St_An_7 29.037 11.955 1.029 29.258 13.055 0.199 0.761

St_An_8 29.813 11.955 0.488 30.258 13.055 0.044 1.493

Average 6.089 0.157 2.631

ID

SPM AsM
TTAsM − TTSPM

TTSPM

Table 5.3: Comparison between SPM and AsM using Γ1

5.3. Comparison Phase

We analyze the performance of the A* search with respect to the exact solution achieved by
the MILPs, so we use the small dataset Γ1. Initially we find the shortest path objective
value T opt of SPM and AsM. Then we compute the maximum relaxed time Tmax =

T opt + T add, and we solve the MPM model. For the evaluation, we fix the value of T add

to 1h 30’, for all the models, so T add := 1.5. The result is then compared to the profit
gained with MDPM and AsDM for different values of the score multiplier µ. We set µ
to 0.75, 1.0 and 2.0. For the heuristic models we set β := { 0.0, 1.0, 4.0 }.

5.3.1. Shortest Path

We start solving the shortest path problem for the MPM and AsM models. The results
for each instance are presented respectively in table N.1 and table N.6. As a summary,
we can see the comparison of this two models in table 5.3. Using Γ1, for each instance we
have a small post processed graph, therefore CPLEX solves SPM relatively quickly, with
the majority of the instances solved in less than 10 seconds. The solution computed with
AsM is instead retrieved in less than 0.5 seconds, with a percentage change in average
less than 2.631 % with respect to the exact solution.
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Comp. Total Comp. Total Comp. Total
Time Score Time Score Time Score
[s] [s] [s] ×100 [%] ×100 [%] ×100 [%]

Ge_Zu_1 0.036 7.679 0.062 7.679 0.003 7.679 0.000 0.000 0.000

Ge_Zu_2 0.039 4.576 0.106 4.576 0.006 4.576 0.000 0.000 0.000

Li_Re_1 0.488 19.201 0.711 19.201 0.017 12.776 0.000 33.462 33.462

Li_Re_2 1.332 16.576 2.105 16.576 0.005 13.780 0.000 16.868 16.868

Li_Re_3 1.165 23.183 1.604 23.183 0.054 22.558 0.000 2.696 2.696

Li_Re_4 1.300 22.624 2.913 22.624 0.081 18.647 0.000 17.579 17.579

Li_Re_5 0.793 22.807 2.700 22.807 0.046 22.807 0.000 0.000 0.000

Li_Re_6 0.598 20.929 3.609 20.929 0.044 15.081 0.000 27.942 27.942

Li_Re_7 0.667 21.598 2.473 21.598 0.006 21.307 0.000 1.347 1.347

Li_Re_8 1.414 22.784 3.510 22.502 0.008 17.712 1.238 22.261 21.287

Li_Re_9 1.537 23.876 3.086 23.854 0.007 21.416 0.092 10.303 10.221

Li_Re_10 0.652 17.373 3.202 17.373 0.013 14.720 0.000 15.271 15.271

St_An_1 1.361 17.116 1.788 17.047 0.007 15.201 0.403 11.188 10.829

St_An_2 3.070 18.515 2.774 18.515 0.017 16.077 0.000 13.168 13.168

St_An_3 1.377 15.195 2.925 15.195 0.081 11.379 0.000 25.114 25.114

St_An_4 2.636 13.690 3.350 13.690 0.013 13.331 0.000 2.622 2.622

St_An_5 2.014 17.452 3.448 17.452 0.157 14.553 0.000 16.611 16.611

St_An_6 0.501 18.156 0.830 18.030 0.019 18.030 0.694 0.694 0.000

St_An_7 0.325 19.340 0.514 19.215 0.009 19.215 0.646 0.646 0.000

St_An_8 0.279 19.340 0.459 19.215 0.009 15.631 0.646 19.178 18.652

Average 1.079 2.108 0.030 0.186 11.847 11.683

ID

MPM MDPM AsDM
TSMPM − TS2.0

MDPM

TSMPM

TSMPM − TS2.0
AsDM

TSMPM

TS2.0
MDPM − TS2.0

AsDM

TS2.0
MDPM

Table 5.4: Comparison of total score and computational time between MPM, MDPM and AsDM with
µ = 2.0 in Γ1

5.3.2. Maximum Profit

To measure the difference MDPM and MPM, we solve the same instances with the
MPM. Since Γ1 is pretty small, the computational time for the CPLEX is quite fast.
The results are reported in table N.2. In table 5.4 we report the computational time and
the maximum total score that is possible to gain.

5.3.3. Discounted Models

For each value of µ we solve the MDPM and AsDM models. The detailed results for
the MILP formulations are reported in table N.3, table N.4 and table N.5, and as we
can see they are almost identical, with the sole exceptions of Li_Re_3 and Li_Re_7, in
which higher values of µ find solutions with slightly better total scores. For the A* search
approach, instead, the results are in table N.7, table N.8 and table N.9. Even in this case
the total score increase with higher values of µ. As we expected, increasing the weight
that the score must have in the decision process, both models return solutions with better
scores, with respect to the models with lower µ.
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SPM MDPM AsDM Ref. SPM

Trip Trip Trip Trip
Time Time Time Time
[h] [h] [h] [h] ×100 [%] ×100 [%] ×100 [%] ×100 [%]

Ge_Zu_1 8.629 9.005 9.939 9.005 4.357 15.181 4.357 −9.397

Ge_Zu_2 8.966 8.987 8.987 8.987 0.234 0.234 0.234 0.000

Li_Re_1 14.130 15.524 15.943 15.655 9.866 12.831 10.793 −1.806

Li_Re_2 23.594 24.659 25.634 24.392 4.514 8.646 3.382 −4.845

Li_Re_3 15.749 16.629 16.783 16.061 5.588 6.565 1.981 −4.302

Li_Re_4 24.574 25.522 26.631 25.503 3.858 8.371 3.780 −4.236

Li_Re_5 30.558 30.943 32.274 30.943 1.260 5.616 1.260 −4.124

Li_Re_6 28.558 29.715 31.116 28.578 4.051 8.957 0.070 −8.157

Li_Re_7 26.558 27.183 27.575 26.666 2.353 3.829 0.407 −3.296

Li_Re_8 25.313 26.288 26.593 25.445 3.852 5.057 0.521 −4.317

Li_Re_9 25.088 26.045 27.045 26.180 3.815 7.801 4.353 −3.198

Li_Re_10 25.709 26.653 26.874 26.617 3.672 4.531 3.532 −0.956

St_An_1 15.767 16.865 17.451 17.389 6.964 10.681 10.287 −0.355

St_An_2 18.182 18.628 19.932 19.457 2.453 9.625 7.012 −2.383

St_An_3 16.861 17.460 17.441 17.266 3.553 3.440 2.402 −1.003

St_An_4 28.674 29.667 30.017 29.787 3.463 4.684 3.882 −0.766

St_An_5 26.341 27.242 27.403 27.349 3.421 4.032 3.827 −0.197

St_An_6 18.971 19.333 19.974 19.334 1.908 5.287 1.913 −3.204

St_An_7 29.037 29.153 29.596 29.153 0.399 1.925 0.399 −1.497

St_An_8 29.813 29.870 30.376 29.870 0.191 1.888 0.191 −1.666

Average 3.489 6.459 3.229 −2.985

ID
TT 2.0

MDPM − TTSPM

TTSPM

TT 2.0
AsDM − TTSPM

TTSPM

TT 2.0
Ref. SPM − TTSPM

TTSPM

TT 2.0
Ref. SPM − TT 2.0

AsDM

TT 2.0
AsDM

Table 5.5: Comparison of total trip time between SPM, MDPM, AsDM and the refined SPM with
µ = 2.0 in Γ1

In table table 5.4 we report a comparison between the total score gained and the compu-
tational time of MPM, MDPM and AsDM when µ = 2.0. In average, the percentage
change between the maximum possible score computed with MPM and the one computed
with MDPM is 0.186%, while for AsDM there is an average of 11.847% worse scores
with respect to the optimal solution computed by MPM. This last value is quite large,
with some instances having a percentage change of over 25%. A possible approach to ob-
tain better results maybe rely on different values of the parameter µ. The computational
times is quite low for all the models, but we are considering the small graph created with
the CSs in Γ1.
Finally, the solutions obtained with the A* search are refined using a MILP formulation.
In particular, we create another SPM in which we set xij = 1 for each arc (i, j) selected
in the final solution of AsDM. The total trip time obtained by both the approaches are
quite similar. For µ = 2.0 the results are summarized in table 5.5 and compared with
the shortest path model SPM. The total trip time computed via AsDM is in average
6.459% worse than the shortest path, but this average decrease to 3.229% when compared
with the refined SPM. We can also see that from AsDM and the refined SPM there is
an average total trip time reduction of -2.985%.
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Comp. Total Comp. Total Comp. Total Comp. Total
Time Score Time Score Time Score Time Score
[s] [s] [s] [s] ×100 [%] ×100 [%] ×100 [%]

Ge_Zu_1 0.064 8.478 0.008 9.747 0.012 9.747 0.011 9.747 14.968 14.968 14.968

Ge_Zu_2 0.064 7.099 0.030 8.546 0.031 8.546 0.032 9.078 20.383 20.383 27.877

Li_Re_1 0.742 6.155 0.380 22.784 0.077 22.784 71.918 22.784 270.171 270.171 270.171

Li_Re_2 175.537 11.685 8.964 20.985 14.044 20.985 25.716 20.985 79.589 79.589 79.589

Li_Re_3 36.531 4.707 0.504 23.165 0.547 23.165 0.715 23.267 392.139 392.139 394.306

Li_Re_4 77.321 8.562 0.231 27.341 0.267 27.341 0.437 19.348 219.330 219.330 125.975

Li_Re_5 196.607 10.986 36.612 26.214 6.758 26.214 4.423 26.214 138.613 138.613 138.613

Li_Re_6 463.745 14.870 24.277 20.022 22.675 20.022 25.821 20.022 34.647 34.647 34.647

Li_Re_7 213.243 16.491 0.495 27.048 0.405 27.394 0.330 27.394 64.017 66.115 66.115

Li_Re_8 132.141 8.785 0.132 18.701 0.283 23.862 0.076 24.508 112.874 171.622 178.976

Li_Re_9 78.603 12.870 0.914 19.443 0.485 19.443 0.328 23.638 51.072 51.072 83.667

Li_Re_10 128.441 7.644 0.074 23.671 0.072 23.671 0.374 17.543 209.668 209.668 129.500

St_An_1 0.689 8.054 99.609 19.167 134.355 19.167 540.437 19.167 137.981 137.981 137.981

St_An_2 2.837 5.556 0.200 21.176 0.503 21.176 0.212 16.992 281.138 281.138 205.832

St_An_3 99.768 9.723 12.145 18.964 15.034 18.964 40.176 18.964 95.043 95.043 95.043

St_An_4 90.617 18.624 0.311 22.079 62.193 26.095 95.962 26.095 18.551 40.115 40.115

St_An_5 92.701 12.800 2.726 18.772 2.738 15.562 4.666 15.562 46.656 21.578 21.578

St_An_6 30.212 4.098 28.898 14.297 34.371 14.297 36.549 10.530 248.878 248.878 156.955

St_An_7 148.879 6.880 32.558 12.919 37.872 12.939 38.373 19.030 87.776 88.067 176.599

St_An_8 185.645 11.381 0.273 18.563 0.218 18.563 0.088 18.847 63.105 63.105 65.601

Average 107.719 12.467 16.647 44.332 129.330 132.211 122.205

ID

AsM AsDM, µ = 0.75 AsDM, µ = 1.0 AsDM, µ = 2.0
TS0.75

AsDM − TSAsM

TSAsM

TS1.0
AsDM − TSAsM

TSAsM

TS2.0
AsDM − TSAsM

TSAsM

Table 5.6: Comparison of total score and computational time between AsM and AsDM with µ = 0.75,
µ = 1.0 and µ = 2.0 in Γ2

5.4. Medium Dataset

We want to test our A* search algorithm with the medium dataset Γ2. We tested all the
instances using only the heuristic approach, so with AsM and AsDM. The results are
reported in table N.10, table N.11, table N.12 and table N.13.
Comparing the results in table 5.6, we can see that we obtain an average increase of the
total score with µ = 1.0 with respect to µ = 2.0. The difference is due to the fact that
with µ = 2.0 the shortest arcs became more important, even with a lower score in the
arrival node. It might be possible that tuning µ, also dynamically for each arc, the final
solution might improve. The computational time for the AsM model are quite high,
with an average of 118.77 sec for the trip from Livorno to Regensburg and of 81.42 sec
for the trip from Stuttgart to Ancona. If instead we analyze the AsDM models, we see
a meaningful drop in the computational time, with some exceptions. In particular, the
instances that continue to have higher computational times are the ones that have large
time intervals without any time windows constraints. For instance, St_An_1, after the
lunch break, has no other time window that constraints the problem, so the research for
a best bound solutions takes more time.
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AsM AsDM, µ = 0.75 AsDM, µ = 1.0 AsDM, µ = 2.0

Trip Trip Trip Trip
Time Time Time Time
[h] [h] [h] [h] ×100 [%] ×100 [%] ×100 [%]

Ge_Zu_1 8.603 8.623 8.623 8.623 0.232 0.232 0.232

Ge_Zu_2 8.818 8.910 8.910 9.530 1.043 1.043 8.074

Li_Re_1 13.477 14.920 14.920 14.920 10.707 10.707 10.707

Li_Re_2 23.131 24.510 24.510 24.510 5.962 5.962 5.962

Li_Re_3 15.373 16.792 16.792 16.652 9.230 9.230 8.320

Li_Re_4 24.808 26.291 26.291 26.259 5.978 5.978 5.849

Li_Re_5 30.988 31.955 31.955 31.955 3.121 3.121 3.121

Li_Re_6 28.599 30.050 30.050 30.050 5.074 5.074 5.074

Li_Re_7 26.599 27.972 27.641 27.641 5.162 3.917 3.917

Li_Re_8 25.009 26.387 26.386 26.420 5.510 5.506 5.642

Li_Re_9 24.558 25.460 25.460 26.019 3.673 3.673 5.949

Li_Re_10 25.520 26.802 26.802 26.919 5.024 5.024 5.482

St_An_1 15.099 16.569 16.569 16.569 9.736 9.736 9.736

St_An_2 17.527 18.950 18.950 18.989 8.119 8.119 8.341

St_An_3 15.806 16.978 16.978 16.978 7.415 7.415 7.415

St_An_4 27.322 28.726 28.667 28.667 5.139 4.923 4.923

St_An_5 26.156 27.492 27.406 27.406 5.108 4.779 4.779

St_An_6 17.771 18.980 18.980 19.245 6.803 6.803 8.294

St_An_7 27.995 29.467 29.485 29.080 5.258 5.322 3.876

St_An_8 29.683 30.183 30.183 30.953 1.684 1.684 4.279

Average 5.499 5.412 5.999

ID
TT 0.75

AsDM − TTAsM

TTAsM

TT 1.0
AsDM − TTAsM

TTAsM

TT 2.0
AsDM − TTAsM

TTAsM

Table 5.7: Comparison of total trip time between AsM and AsDM with µ = 0.75, µ = 1.0 and µ = 2.0
in Γ2

The same applies for Li_Re_1, Li_Re_2 and St_An_6. Instead St_An_8, that is the
instance with the most number of time windows, is solved in less than 1 second in each
discounted model. When the time windows are balanced along the trip, with not too
many uncovered time intervals, the computation with the A* search is very fast, even in
medium sized graphs.
In table 5.7 we can see an average total trip time variation of less than 6.0% in the AsDM
models with respect to the AsM.
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The aim of this thesis is to develop an algorithm that finds an approximate solution to the
realistic situation in which a user wants to organize a long road trip with an EV. Selecting
the CSs that better matches the preferences of the user can be difficult especially if the
user wants to respect also time windows constraints.
As reported in the Chapter 5, the A* algorithm AsM performs very well with respect
to the exact solution SPM for computing the shortest path with charging and time
windows constraints. The heuristic approach implemented in this thesis is quite fast for
small instances, but the computational time tends to increase as the graph increase in
size. If instead, the trip chosen has many time windows, then the computation is very
fast even in medium sized graph. The same applies also for the AsDM, that is quite fast
in finding a shortest path solution with high total score.
The computational time of the MILP formulations increase exponentially in the number
of nodes in the graph, so it can be computationally infeasible to solve even in medium
sized graphs. The A* search algorithm solves this problem, keeping only the states of the
EV that are promising. On the contrary, however, the heuristic search can’t manage real
values of the additional charging time, so we need to discretize those values using the set
β. Solving again the SPM model with the arcs selected by the heuristic helps to optimize
the charging times on the final solution. However, very large graphs tend to reduce also
the performances of the heuristic.

6.1. Future work

While we developed a heuristic approach that works for small and medium instances,
there is still potential for further improvements. For instance, it is possible to integrate
more information inside the score value, and not only the POIs preferences, in order
to better capture user’s predilections or CSs characteristics. Further research can also
incorporate more efficient heuristic potentials, so that particular instances can benefit
more from the A* search algorithm speedup techniques. In particular, a better lower
bound for estimating the arrival time in D can takes in account the starting time of the
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last non avoidable time window with its minimum stopping time. Indeed, since the EV
is obliged to stop in the last non avoidable time window, then at least it will arrive in D
after completing this time window. Finally, to account also for larger instances, it might
be possible to better preprocess the initial graph, removing useless nodes or arcs, maybe
taking in account the natural time dependency of the problem with respect to the time
windows or with the presence of the POIs.
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Numerical Results

Table N.1: SPM Model Results: Shortest Time using Γ1

Trip Total Best Relative Comp.
Time Score Bound Gap Time
[h] [h] [h] [%] [s]

Ge_Zu_1 8.629 3.735 8.629 8.629 0.000 0.092 945 1 193

Ge_Zu_2 8.966 4.060 8.966 8.966 0.000 0.057 1 002 1 440

Li_Re_1 14.130 6.942 14.130 14.130 0.004 6.994 1 298 2 099

Li_Re_2 23.594 8.301 23.594 23.593 0.007 4.267 1 246 1 893

Li_Re_3 15.749 18.322 15.749 15.747 0.009 9.827 1 554 2 674

Li_Re_4 24.574 11.740 24.574 24.572 0.007 3.413 1 496 2 447

Li_Re_5 30.558 14.250 30.558 30.556 0.009 7.139 1 575 2 745

Li_Re_6 28.558 13.199 28.558 28.556 0.008 8.899 1 575 2 745

Li_Re_7 26.558 11.320 26.558 26.557 0.004 7.917 1 575 2 745

Li_Re_8 25.313 13.924 25.313 25.312 0.002 5.423 1 575 2 745

Li_Re_9 25.088 18.077 25.088 25.085 0.010 10.057 1 575 2 745

Li_Re_10 25.709 7.797 25.709 25.708 0.003 6.559 1 575 2 745

St_An_1 15.767 13.395 15.767 15.765 0.009 24.409 2 545 4 002

St_An_2 18.182 15.952 18.182 18.180 0.008 7.870 3 440 6 075

St_An_3 16.861 9.593 16.861 16.860 0.009 6.661 2 458 3 794

St_An_4 28.674 10.134 28.674 28.674 0.000 6.572 3 496 6 284

St_An_5 26.341 13.450 26.341 26.339 0.010 3.182 2 570 4 164

St_An_6 18.971 9.396 18.971 18.971 0.004 0.917 3 266 5 391

St_An_7 29.037 11.955 29.037 29.035 0.006 1.029 3 322 5 717

St_An_8 29.813 11.955 29.813 29.813 0.000 0.488 3 398 6 043
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Table N.2: MPM Model Results: Maximum Profit using Γ1

Trip Total Best Relative Comp.
Time Score Bound Gap Time
[h] [h] [h] [%] [s]

Ge_Zu_1 9.488 7.679 7.679 7.679 0.000 0.036 945 1 194

Ge_Zu_2 9.195 4.576 4.576 4.576 0.000 0.039 1 002 1 441

Li_Re_1 15.630 19.201 19.201 19.201 0.000 0.488 1 298 2 100

Li_Re_2 25.094 16.576 16.576 16.576 0.000 1.332 1 246 1 894

Li_Re_3 17.249 23.183 23.183 23.183 0.000 1.165 1 554 2 675

Li_Re_4 26.074 22.624 22.624 22.624 0.000 1.300 1 496 2 448

Li_Re_5 32.058 22.807 22.807 22.807 0.000 0.793 1 575 2 746

Li_Re_6 30.058 20.929 20.929 20.929 0.000 0.598 1 575 2 746

Li_Re_7 28.058 21.598 21.598 21.598 0.000 0.667 1 575 2 746

Li_Re_8 26.813 22.784 22.784 22.784 0.000 1.414 1 575 2 746

Li_Re_9 26.588 23.876 23.876 23.876 0.000 1.537 1 575 2 746

Li_Re_10 27.209 17.373 17.373 17.373 0.000 0.652 1 575 2 746

St_An_1 17.267 17.116 17.116 17.116 0.000 1.361 2 545 4 003

St_An_2 19.682 18.515 18.515 18.515 0.000 3.070 3 440 6 076

St_An_3 17.500 15.195 15.195 15.195 0.000 1.377 2 458 3 795

St_An_4 30.174 13.690 13.690 13.690 0.001 2.636 3 496 6 285

St_An_5 27.500 17.452 17.452 17.452 0.000 2.014 2 570 4 165

St_An_6 20.000 18.156 18.156 18.156 0.000 0.501 3 266 5 392

St_An_7 30.537 19.340 19.340 19.340 0.000 0.325 3 322 5 718

St_An_8 31.313 19.340 19.340 19.340 0.000 0.279 3 398 6 044
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Table N.3: MDPM Model Results with µ = 0.75: Discounted Shortest Path using Γ1

Trip Total Best Relative Comp.
Time Score Bound Gap Time
[h] [h] [h] [%] [s]

Ge_Zu_1 9.005 7.679 0.604 0.604 0.000 0.063 985 1 314

Ge_Zu_2 8.987 4.576 2.887 2.887 0.000 0.080 1 042 1 561

Li_Re_1 15.524 19.201 −0.074 −0.074 0.000 2.446 1 449 2 553

Li_Re_2 24.659 16.576 10.596 10.596 0.000 2.407 1 397 2 347

Li_Re_3 16.061 22.558 −2.113 −2.113 0.002 4.030 1 792 3 389

Li_Re_4 25.522 22.624 7.299 7.299 0.000 6.356 1 734 3 162

Li_Re_5 30.943 22.807 12.237 12.237 0.004 4.456 1 813 3 460

Li_Re_6 29.519 20.185 12.780 12.780 0.000 4.134 1 813 3 460

Li_Re_7 26.666 21.307 9.431 9.431 0.000 5.664 1 813 3 460

Li_Re_8 26.288 22.502 8.157 8.156 0.006 9.322 1 813 3 460

Li_Re_9 26.045 23.854 6.900 6.900 0.000 4.422 1 813 3 460

Li_Re_10 26.653 17.373 12.022 12.021 0.005 7.265 1 813 3 460

St_An_1 16.865 17.047 1.639 1.639 0.000 6.585 2 810 4 798

St_An_2 18.628 18.515 2.240 2.240 0.000 3.260 4 058 7 930

St_An_3 17.460 15.195 3.533 3.533 0.000 2.995 2 723 4 590

St_An_4 29.667 13.690 16.869 16.867 0.008 5.603 4 114 8 139

St_An_5 27.242 17.452 11.672 11.671 0.009 3.275 2 835 4 960

St_An_6 19.333 18.030 3.330 3.330 0.000 1.031 3 884 7 246

St_An_7 29.153 19.215 12.261 12.261 0.000 0.664 3 940 7 572

St_An_8 29.870 19.215 12.978 12.978 0.000 0.566 4 016 7 898
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Table N.4: MDPM Model Results with µ = 1.00: Discounted Shortest Time using Γ1

Trip Total Best Relative Comp.
Time Score Bound Gap Time
[h] [h] [h] [%] [s]

Ge_Zu_1 9.005 7.679 −1.315 −1.315 0.000 0.066 985 1 314

Ge_Zu_2 8.987 4.576 1.743 1.743 0.000 0.090 1 042 1 561

Li_Re_1 15.524 19.201 −4.875 −4.875 0.000 1.378 1 449 2 553

Li_Re_2 24.659 16.576 6.452 6.452 0.007 2.576 1 397 2 347

Li_Re_3 16.629 23.183 −7.809 −7.810 0.007 2.923 1 792 3 389

Li_Re_4 25.522 22.624 1.643 1.643 0.002 5.210 1 734 3 162

Li_Re_5 30.943 22.807 6.535 6.535 0.000 3.702 1 813 3 460

Li_Re_6 29.715 20.929 7.588 7.588 0.000 4.717 1 813 3 460

Li_Re_7 26.666 21.307 4.104 4.104 0.009 3.114 1 813 3 460

Li_Re_8 26.288 22.502 2.531 2.531 0.000 4.239 1 813 3 460

Li_Re_9 26.045 23.854 0.936 0.936 0.000 3.107 1 813 3 460

Li_Re_10 26.653 17.373 7.679 7.679 0.000 3.820 1 813 3 460

St_An_1 16.865 17.047 −2.622 −2.622 0.007 3.861 2 810 4 798

St_An_2 18.628 18.515 −2.389 −2.389 0.006 2.975 4 058 7 930

St_An_3 17.460 15.195 −0.266 −0.266 0.000 3.061 2 723 4 590

St_An_4 29.667 13.690 13.445 13.444 0.007 5.996 4 114 8 139

St_An_5 27.242 17.452 7.309 7.309 0.008 4.317 2 835 4 960

St_An_6 19.333 18.030 −1.178 −1.178 0.000 0.987 3 884 7 246

St_An_7 29.153 19.215 7.457 7.457 0.000 0.609 3 940 7 572

St_An_8 29.870 19.215 8.174 8.174 0.000 0.462 4 016 7 898
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Table N.5: MDPM Model Results with µ = 2.00: Discounted Shortest Time using Γ1

Trip Total Best Relative Comp.
Time Score Bound Gap Time
[h] [h] [h] [%] [s]

Ge_Zu_1 9.005 7.679 −8.994 −8.994 0.000 0.062 985 1 314

Ge_Zu_2 8.987 4.576 −2.834 −2.834 0.000 0.106 1 042 1 561

Li_Re_1 15.524 19.201 −24.076 −24.076 0.003 0.711 1 449 2 553

Li_Re_2 24.659 16.576 −10.123 −10.123 0.000 2.105 1 397 2 347

Li_Re_3 16.629 23.183 −30.993 −30.993 0.002 1.604 1 792 3 389

Li_Re_4 25.522 22.624 −20.981 −20.981 0.000 2.913 1 734 3 162

Li_Re_5 30.943 22.807 −16.271 −16.271 0.000 2.700 1 813 3 460

Li_Re_6 29.715 20.929 −13.340 −13.340 0.000 3.609 1 813 3 460

Li_Re_7 27.183 21.598 −17.210 −17.211 0.004 2.473 1 813 3 460

Li_Re_8 26.288 22.502 −19.971 −19.971 0.000 3.510 1 813 3 460

Li_Re_9 26.045 23.854 −22.918 −22.919 0.004 3.086 1 813 3 460

Li_Re_10 26.653 17.373 −9.694 −9.695 0.006 3.202 1 813 3 460

St_An_1 16.865 17.047 −19.669 −19.670 0.005 1.788 2 810 4 798

St_An_2 18.628 18.515 −20.905 −20.907 0.009 2.774 4 058 7 930

St_An_3 17.460 15.195 −15.460 −15.460 0.000 2.925 2 723 4 590

St_An_4 29.667 13.690 −0.245 −0.245 0.000 3.350 4 114 8 139

St_An_5 27.242 17.452 −10.143 −10.143 0.006 3.448 2 835 4 960

St_An_6 19.333 18.030 −19.208 −19.209 0.004 0.830 3 884 7 246

St_An_7 29.153 19.215 −11.757 −11.757 0.000 0.514 3 940 7 572

St_An_8 29.870 19.215 −11.040 −11.040 0.000 0.459 4 016 7 898
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Table N.6: AsM Model Results: Shortest Time using Γ1

Trip Total Opened Created Comp.
Time Score Labels Labels Time
[h] [h] [s]

Ge_Zu_1 8.629 3.735 8.629 21 50 0.002

Ge_Zu_2 8.966 4.060 8.966 33 66 0.005

Li_Re_1 14.545 6.942 14.545 33 341 0.017

Li_Re_2 24.627 5.365 24.627 583 4 721 0.138

Li_Re_3 16.047 15.375 16.047 426 3 934 0.125

Li_Re_4 25.530 11.740 25.530 599 4 350 0.141

Li_Re_5 31.412 13.820 31.412 2 934 7 861 0.283

Li_Re_6 30.246 16.904 30.246 1 677 3 599 0.158

Li_Re_7 27.412 11.320 27.412 1 707 10 073 0.387

Li_Re_8 26.271 12.339 26.271 1 453 8 362 0.329

Li_Re_9 25.943 13.976 25.943 1 577 10 753 0.369

Li_Re_10 26.749 11.664 26.749 1 373 7 389 0.308

St_An_1 16.306 6.884 16.306 93 1 669 0.056

St_An_2 18.778 15.952 18.778 130 1 816 0.057

St_An_3 17.360 12.616 17.360 663 8 073 0.225

St_An_4 28.813 10.134 28.813 309 1 725 0.095

St_An_5 26.387 13.450 26.387 158 2 085 0.082

St_An_6 19.689 13.055 19.689 757 1 175 0.124

St_An_7 29.258 13.055 29.258 822 5 705 0.199

St_An_8 30.258 13.055 30.258 156 692 0.044

ID
Objective

Table N.7: AsDM Model Results with µ = 0.75: Discounted Shortest Path using Γ1

Trip Refined Total Opened Created Comp.
Time Time Score Labels Labels Time
[h] [h] [h] [s]

Ge_Zu_1 9.939 9.005 7.679 −5.820 11 48 0.001

Ge_Zu_2 8.987 8.987 4.576 −4.445 37 65 0.003

Li_Re_1 15.943 15.655 12.776 −3.639 61 138 0.008

Li_Re_2 25.325 24.824 15.877 3.417 12 90 0.002

Li_Re_3 16.783 16.061 22.558 −10.136 182 342 0.011

Li_Re_4 26.631 25.503 18.647 2.646 179 304 0.013

Li_Re_5 32.274 30.943 22.807 11.169 1 447 1 698 0.059

Li_Re_6 31.156 29.138 18.112 11.572 993 1 134 0.051

Li_Re_7 27.575 26.666 21.307 3.594 35 156 0.005

Li_Re_8 26.593 25.445 17.712 3.309 12 85 0.003

Li_Re_9 26.167 25.145 21.108 0.336 10 93 0.003

Li_Re_10 26.874 26.617 14.720 5.834 25 142 0.004

St_An_1 17.492 17.232 15.161 −3.879 13 106 0.003

St_An_2 19.846 19.317 17.783 −3.492 58 221 0.006

St_An_3 17.441 17.266 11.379 −11.093 823 1 083 0.040

St_An_4 29.967 29.667 13.690 9.699 56 161 0.006

St_An_5 27.403 27.349 14.553 6.488 1 519 1 867 0.095

St_An_6 19.974 19.334 18.030 0.451 36 173 0.007

St_An_7 29.596 29.153 19.215 5.185 16 140 0.004

St_An_8 30.376 29.870 15.631 5.653 34 106 0.005
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Table N.8: AsDM Model Results with µ = 1.00: Discounted Shortest Time using Γ1

Trip Refined Total Opened Created Comp.
Time Time Score Labels Labels Time
[h] [h] [h] [s]

Ge_Zu_1 9.939 9.005 7.679 −7.740 11 48 0.002

Ge_Zu_2 8.987 8.987 4.576 −5.589 39 65 0.006

Li_Re_1 15.943 15.655 12.776 −6.833 73 142 0.012

Li_Re_2 25.634 24.392 13.780 1.854 11 77 0.005

Li_Re_3 16.783 16.061 22.558 −15.775 254 396 0.034

Li_Re_4 26.631 25.503 18.647 −2.016 454 576 0.058

Li_Re_5 32.274 30.943 22.807 5.467 1 339 1 539 0.080

Li_Re_6 31.156 29.138 18.112 7.044 885 998 0.065

Li_Re_7 27.575 26.666 21.307 −1.732 44 166 0.013

Li_Re_8 26.593 25.445 17.712 −1.119 14 85 0.008

Li_Re_9 26.167 25.145 21.108 −4.941 11 94 0.007

Li_Re_10 26.874 26.617 14.720 2.155 39 154 0.011

St_An_1 17.492 17.232 15.161 −7.669 13 106 0.007

St_An_2 19.818 19.388 17.067 −7.249 75 196 0.012

St_An_3 17.441 17.266 11.379 −13.938 962 1 095 0.072

St_An_4 29.967 29.667 13.690 6.277 66 163 0.013

St_An_5 27.403 27.349 14.553 2.850 1 873 2 127 0.138

St_An_6 19.974 19.334 18.030 −4.056 48 172 0.017

St_An_7 29.596 29.153 19.215 0.382 19 140 0.009

St_An_8 30.376 29.870 15.631 1.745 32 106 0.006
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Table N.9: AsDM Model Results with µ = 2.00: Discounted Shortest Time using Γ1

Trip Refined Total Opened Created Comp.
Time Time Score Labels Labels Time
[h] [h] [h] [s]

Ge_Zu_1 9.939 9.005 7.679 −15.418 11 48 0.003

Ge_Zu_2 8.987 8.987 4.576 −10.166 39 65 0.006

Li_Re_1 15.943 15.655 12.776 −19.610 117 176 0.017

Li_Re_2 25.634 24.392 13.780 −11.926 10 75 0.005

Li_Re_3 16.783 16.061 22.558 −38.333 465 571 0.054

Li_Re_4 26.631 25.503 18.647 −20.663 811 877 0.081

Li_Re_5 32.274 30.943 22.807 −17.340 567 684 0.046

Li_Re_6 31.116 28.578 15.081 −5.046 505 607 0.044

Li_Re_7 27.575 26.666 21.307 −23.039 47 166 0.006

Li_Re_8 26.593 25.445 17.712 −18.830 14 85 0.008

Li_Re_9 27.045 26.180 21.416 −25.787 12 85 0.007

Li_Re_10 26.874 26.617 14.720 −12.565 71 166 0.013

St_An_1 17.451 17.389 15.201 −22.950 22 118 0.007

St_An_2 19.932 19.457 16.077 −22.222 95 210 0.017

St_An_3 17.441 17.266 11.379 −25.317 1 130 1 199 0.081

St_An_4 30.017 29.787 13.331 −6.644 83 144 0.013

St_An_5 27.403 27.349 14.553 −11.703 2 299 2 404 0.157

St_An_6 19.974 19.334 18.030 −22.086 64 172 0.019

St_An_7 29.596 29.153 19.215 −18.833 21 140 0.009

St_An_8 30.376 29.870 15.631 −13.886 33 106 0.009
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Table N.10: AsM Model Results: Shortest Time using Γ2

Trip Total Opened Created Comp.
Time Score Labels Labels Time
[h] [h] [s]

Ge_Zu_1 8.603 8.478 8.603 1 096 3 820 0.064

Ge_Zu_2 8.818 7.099 8.818 1 109 2 213 0.064

Li_Re_1 13.477 6.155 13.477 111 23 241 0.742

Li_Re_2 23.131 11.685 23.131 12 891 2 682 796 175.537

Li_Re_3 15.373 4.707 15.373 15 283 683 354 36.531

Li_Re_4 24.808 8.562 24.808 16 654 1 636 135 77.321

Li_Re_5 30.988 10.986 30.988 589 411 2 844 617 196.607

Li_Re_6 28.599 14.870 28.599 294 053 5 482 346 463.745

Li_Re_7 26.599 16.491 26.599 39 320 3 323 800 213.243

Li_Re_8 25.009 8.785 25.009 20 025 2 277 509 132.141

Li_Re_9 24.558 12.870 24.558 15 113 1 460 876 78.603

Li_Re_10 25.520 7.644 25.520 22 954 2 244 378 128.441

St_An_1 15.099 8.054 15.099 68 11 389 0.689

St_An_2 17.527 5.556 17.527 1 750 46 400 2.837

St_An_3 15.806 9.723 15.806 16 528 2 557 258 99.768

St_An_4 27.322 18.624 27.322 20 791 1 561 876 90.617

St_An_5 26.156 12.800 26.156 11 508 1 432 008 92.701

St_An_6 17.771 4.098 17.771 10 134 880 119 30.212

St_An_7 27.995 6.880 27.995 28 039 2 871 256 148.879

St_An_8 29.683 11.381 29.683 599 612 2 999 655 185.645
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Table N.11: AsDM Model Results with µ = 0.75: Discounted Shortest Path using Γ2

Trip Refined Total Opened Created Comp.
Time Time Score Labels Labels Time
[h] [h] [h] [s]

Ge_Zu_1 8.623 8.623 9.747 −8.687 15 408 0.008

Ge_Zu_2 8.910 8.910 8.546 −7.499 442 893 0.030

Li_Re_1 14.920 14.809 22.784 −12.167 5 445 7 840 0.380

Li_Re_2 24.510 27.462 20.985 −1.229 69 611 81 060 8.964

Li_Re_3 16.792 16.217 23.165 −10.582 7 139 9 795 0.504

Li_Re_4 26.291 25.806 27.341 −4.214 2 325 3 807 0.231

Li_Re_5 31.955 31.408 26.214 8.294 229 519 264 465 36.612

Li_Re_6 30.050 30.201 20.022 9.033 112 552 129 444 24.277

Li_Re_7 27.972 27.003 27.048 −0.314 2 762 3 954 0.495

Li_Re_8 26.387 25.876 18.701 2.362 1 100 2 619 0.132

Li_Re_9 25.460 25.373 19.443 0.878 14 470 19 629 0.914

Li_Re_10 26.802 26.645 23.671 −0.951 8 840 0.074

St_An_1 16.569 16.425 19.167 −7.807 1 012 641 1 099 271 99.609

St_An_2 18.950 18.479 21.176 −6.932 1 489 3 519 0.200

St_An_3 16.978 16.726 18.964 −17.245 14 443 16 652 12.145

St_An_4 28.726 28.486 22.079 2.167 2 861 5 086 0.311

St_An_5 27.492 26.887 18.772 3.413 23 821 26 485 2.726

St_An_6 18.980 17.862 14.297 2.257 50 440 56 875 28.898

St_An_7 29.467 36.000 12.919 9.778 189 154 194 746 32.558

St_An_8 30.183 29.975 18.563 3.260 2 661 4 290 0.273
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Table N.12: AsDM Model Results with µ = 1.00: Discounted Shortest Time using Γ2

Trip Refined Total Opened Created Comp.
Time Time Score Labels Labels Time
[h] [h] [h] [s]

Ge_Zu_1 8.623 8.623 9.747 −11.124 13 408 0.012

Ge_Zu_2 8.910 8.910 8.546 −9.636 429 893 0.031

Li_Re_1 14.920 14.809 22.784 −17.863 25 878 0.077

Li_Re_2 24.510 27.462 20.985 −6.475 98 888 106 735 14.044

Li_Re_3 16.792 16.217 23.165 −16.374 8 435 10 624 0.547

Li_Re_4 26.291 25.806 27.341 −11.049 3 464 4 843 0.267

Li_Re_5 31.955 31.408 26.214 1.740 61 726 68 391 6.758

Li_Re_6 30.050 30.201 20.022 4.027 91 256 99 314 22.675

Li_Re_7 27.641 27.506 27.394 −7.753 2 302 3 491 0.405

Li_Re_8 26.386 26.377 23.862 −7.476 3 904 5 656 0.283

Li_Re_9 25.460 25.373 19.443 −3.983 7 229 9 700 0.485

Li_Re_10 26.802 26.645 23.671 −6.869 8 840 0.072

St_An_1 16.569 16.425 19.167 −12.599 1 204 009 1 245 442 134.355

St_An_2 18.950 18.479 21.176 −12.226 1 800 3 577 0.503

St_An_3 16.978 16.726 18.964 −21.985 21 480 23 423 15.034

St_An_4 28.667 28.486 26.095 −7.428 555 259 594 772 62.193

St_An_5 27.406 27.052 15.562 1.844 17 519 18 690 2.738

St_An_6 18.980 17.862 14.297 −1.317 57 544 61 121 34.371

St_An_7 29.485 36.000 12.939 6.546 198 199 199 751 37.872

St_An_8 30.183 29.975 18.563 −1.380 2 186 3 501 0.218
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Table N.13: AsDM Model Results with µ = 2.00: Discounted Shortest Time using Γ2

Trip Refined Total Opened Created Comp.
Time Time Score Labels Labels Time
[h] [h] [h] [s]

Ge_Zu_1 8.623 8.623 9.747 −20.872 11 408 0.011

Ge_Zu_2 9.530 9.530 9.078 −18.625 362 974 0.032

Li_Re_1 14.920 14.809 22.784 −40.647 556 267 562 594 71.918

Li_Re_2 24.510 27.462 20.985 −27.461 186 604 189 761 25.716

Li_Re_3 16.652 16.360 23.267 −39.882 12 180 13 591 0.715

Li_Re_4 26.259 27.694 19.348 −22.437 6 808 7 726 0.437

Li_Re_5 31.955 31.408 26.214 −24.474 43 105 45 422 4.423

Li_Re_6 30.050 30.201 20.022 −15.995 119 386 121 901 25.821

Li_Re_7 27.641 27.506 27.394 −35.146 1 846 2 915 0.330

Li_Re_8 26.420 26.072 24.508 −32.596 14 1 029 0.076

Li_Re_9 26.019 25.940 23.638 −31.257 4 854 6 136 0.328

Li_Re_10 26.919 26.693 17.543 −18.166 6 781 7 825 0.374

St_An_1 16.569 16.425 19.167 −31.766 1 872 349 1 882 024 540.437

St_An_2 18.989 18.759 16.992 −24.995 2 100 3 262 0.212

St_An_3 16.978 16.726 18.964 −40.949 45 383 46 559 40.176

St_An_4 28.667 28.486 26.095 −33.522 855 678 862 122 95.962

St_An_5 27.406 27.052 15.562 −13.719 20 552 21 313 4.666

St_An_6 19.245 17.707 10.530 −7.816 55 613 56 454 36.549

St_An_7 29.080 28.809 19.030 −18.980 195 287 196 346 38.373

St_An_8 30.953 30.861 18.847 −19.742 103 717 0.088

ID
Objective
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Description of the Sets

Set Description

S set of charging stations

SO S ∪ {O }
SD S ∪ {D }
SO,D S ∪ {O,D }
Sk set of chargers that can be used during time window k ∈ W; is a subset of S
S̃ ∪k∈W Sk

A set of arcs (i, j), with i ∈ SO and j ∈ SD

Bi set of breakpoints of the charging function of CS i

W set of time slots

WR , WO set of required and optional time slots; form a partition of W
WNA , WA set of non avoidable and avoidable time windows; form a partition of W
Wi set of time windows that can be used for CS i; is a subset of W

Sets

Table S.1: Description of the Sets
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Description of the Routing Parameters

Parameter Description

O origin point

D destination point

Q maximum battery capacity of the EV (in kWh)

qmin minimum amount of energy always required for the EV (in kWh)

η average consumption rate (in kWh/km)

P maximum power charge of the EV (in kW)

tstart relative starting time with respect to the midnight of day 0

tend relative ending time with respect to the midnight of day 0

Tmax maximum total duration of the trip

tij driving time from CS i to CS j

eij energy consumption to go from CS i to CS j

(cik, aik) breakpoint k ∈ Bi of the charging function related to the CS i

γLk , γUk starting and ending time of time window k

tmin
k minimum stopping time that the EV must respect during time window k ∈ W
ok binary value: 1 if kW is an optional time windows, 0 otherwise

νk label that identifies which type of POI is needed during k ∈ W
σi score of CS i

φ̃ maximum anticipation time for time windows. It is set to 45min

rmin , rmax

ξ worse optimal distance retrieved by OSRM’s server

N maximum number of legs

µ coefficient that indicates how much importance is given to the score

Routing Parameters

minimum and maximum distance reachable for the EV;
used to prune the graph

Table S.2: Description of the Routing Parameters
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Description of the Variables

Variable Description

xij binary value: 1 if arc (i, j) is used, 0 otherwise

yjk binary value: 1 if the EV is obliged to stops in j in time slot k, 0 otherwise

zk binary value: 1 if the EV arrives in D after time window k ∈ WA, 0 otherwise

q
i
, qi SoC of the EV when respectively arrive and leaves CS i

ci , ci

wi , wi

λi , λi

∆i charging time at CS i

τ i , τ i relative time when the EV respectively arrive and leaves CS i

φi

sij real variable used to linearize the objective function of MDPM

Variables

in the charging function, corresponding time of a particular SoC of the EV
when respectively arrive and leaves CS i

binary value: 1 if the SoC is in the interval [ai,k−1, aik] when the EV
respectively arrive and leaves CS i during time frame k, 0 otherwise
coefficients associated with the breakpoint (cik, aik) in the linear
approximation of the charging function when the EV respectively
arrive and leaves CS i during time frame k

amount of time for which the EV can stop in advance with respect
to a given time slot

Table S.3: Description of the Variables

Description of the Model Design Parameters

Parameter Description

rM merging radius for CSs. It is set to 100m

rT

δT step increasing value for rT . It is set to 200m

r̃T maximum value of rT . It is set to 4.0 km

Model Design Parameters

initial radius for searching tourism CSs. It is set to 2.0 km

Table S.4: Description of the Model Design Parameters
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