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Abstract: Mesh-based simulations play a key role when modeling complex physi-
cal systems that, in many disciplines across Science and Engineering, require the so-
lution of time-dependent partial differential equations (PDEs). In this context, Full
Order Models (FOMs), such as those relying on, e.g., the finite element method,
can reach high levels of accuracy, however often yielding intensive simulations to
run. For this reason, surrogate models are developed in order to replace compu-
tationally expensive solvers with more efficient ones, which can strike favorable
trade-offs between accuracy and efficiency. This work explores the application of
graph neural networks (GNNs) for the simulation of time-dependent PDEs depend-
ing on either physical or geometrical parameters. GNNs have recently shown great
promise in solving complex problems in domains such as computer vision and nat-
ural language processing: this Thesis aims at investigating their potential in view
of the efficient approximation of PDEs. The advantage of using GNNs in these
problems relies on their ability to generalize to different geometries by introducing
a suitable graph representation for the mesh.
The work starts by introducing the theoretical background of time-dependent PDEs
and classical numerical methods for their solution. It then introduces the concept
of GNNs, their architectures, and a possible way to apply them to graph-based
problems. The Thesis proposes a novel method for using GNNs to solve PDEs by
(i) converting the PDE into a graph-based problem and (ii) training a GNN on the
resulting graph.
The effectiveness of the proposed approach is assessed through a series of exper-
iments showing that GNNs are capable of outperforming traditional numerical
methods in terms of computational efficiency and generalization to new scenarios.
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1. Introduction

In many areas of Science and Engineering, models governed by Partial Differential Equations (PDEs) which
may depend on one or more parameters are ubiquitous. These parameters may be related to either the physical
properties or the geometry of the domain which we consider. Modeling this kind of problem typically requires
the introduction of a suitable mesh as first basic ingredient, to discretize the computational domain and to
define the set of approximating functions required to represent the problem solution, ultimately allowing the

1



search for highly accurate approximations. In this framework, Full Order Models (FOMs), which rely on
numerical schemes such as the Finite Element Method (FEM)[4], Isogeometric Analysis [2], or the Spectral
Element Method (SEM) [16] usually offer high levels of accuracy, however featuring very high computational
costs, that become infeasible in many applications where the solver has to be called multiple times. For this
reason, there is a growing literature aimed at replacing these expensive models with suitable cheaper models,
also known as surrogate or Reduced Order Models (ROMs), which usually offer a very good trade-off between
the computational cost and the accuracy of the simulation.

In this respect, recently, deep learning-based reduced order models have been proposed [6, 8, 9] to better
tackle the nonlinearity often entailed by time-dependent parametrized PDEs, thus overcoming the limitations
of classical ROMs built exploiting linear techniques, such as proper orthogonal decomposition (POD) [14].
As of now, DL-ROMs relying on deep neural networks, like Feed Forward Neural Networks (FFNNs) and
Convolutional Neural Networks (CNNs), can be used for building efficient ROMs to solve mesh-based problems
and they have been shown to be able to provide very accurate but cheap approximation bias when modeling
time-dependent parametrized PDEs [5]. On the other hand, these architectures cannot infer anything about
the geometry of the problem because their structure is strictly dependent on the employed mesh. Moreover,
they do not leverage the features that characterize the mesh and its structure. For instance, when dealing with
complex domains such as 3D domains and unstructured meshes, exploiting the mesh connectivity can provide
a better understanding of the geometrical features of the problem.

For this reason, we introduce a class of surrogate models based on Graph Neural Networks (GNNs), which
are particular neural nets that do not require information about the number of nodes or the number of edges
of the mesh, potentially leading to a much more flexible approach that can accommodate different geometries
at the same time. So far, inductive learning on graphs has been mainly used for node-classification problems
[1, 3, 12], with only limited attempts to use GNNs in order to solve graph-based problems in various domains
[23]. In the context of PDE simulation, a method for using GNNs to solve PDEs by representing the PDE as
a graph and training a GNN on the resulting graph has been formerly proposed [10]. However, this approach
requires a careful design of the graph structure, and the scalability of the method to high-dimensional problems
still remains an open challenge. In the last few years, this approach was adopted for learning mesh-based
simulations. In particular, Pfaff et Al. [20] show how Graph Neural Networks can be useful for learning adaptive
mesh representations to handle problems with strongly nonlinear displacement, like the one of a flag waving in
the wind. Moreover, Hernández et Al. [13] have recently used GNNs to build a physics-informed deep learning
model which can also take into account the intrinsic mathematical structure of physical problems. More recently,
Pegolotti et al. [19] employed GNNs to construct a reduced-order model for cardiovascular simulations that
simulates blood flow dynamics on three-dimensional hemodynamic simulation data. In addition, Gladstone et
al. [11] implemented two different GNNs to solve time-independent solid mechanics problems and demonstrated
the effectiveness of this approach for generalization to unseen domains. In particular, the latter work presents
a promising approach for reducing the depth of the network in situations where there is long-range exchange of
information. Our work, on the other hand, highlights how deep GNNs are often necessary to accurately capture
the dynamics of complex time-dependent problems.

On the other hand, in recent years, there has been increasing interest in applying deep learning techniques to
the simulation of PDEs. For example, the work by Raissi et al. [22] proposed a physics-informed neural network
(PINN) for solving PDEs. PINNs are a type of neural network that can enforce the physical constraints of a PDE
while simultaneously approximating its solution. Another approach, proposed by Sirignano and Spiliopoulos
[24], is to use convolutional neural networks (CNNs) to solve PDEs by discretizing the PDE onto a grid and
treating it as an image. However, these methods show some limitations, such as the need for a large amount of
data, difficulty in handling complex geometries, and lack of interpretability. In contrast, GNNs are a promising
approach for solving PDEs due to their ability to handle graph-based problems and their interpretability since
they can naturally incorporate geometric information and structural relationships between mesh nodes, which
can be challenging to represent using traditional methods.

This work explores the advantages of using GNN-like architecture to model physical problems involving
time-dependent PDEs that also depend on physical and geometrical parameters. The model presented exploits
the graph representation of the mesh and the GNN capability of inferring its geometrical structure. We will also
see how this approach requires a significantly small number of parameters compared to models based on FFNNs
and CNNs. The structure of the work is as follows. In Section 2 we introduce the theoretical background of
time-dependent parametrized PDEs; in Section 3 we describe our design choices for the network architecture,
explaining the concepts upon which GNNs are built; in Section 4 we present our actual application to surrogate
modeling and finally, in Section 5 we report some numerical results concerning a benchmark advection-diffusion
problem either with a time-varying advection term or in a Stokes flow, exploring both 2D and 3D applications.
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2. Modeling time-dependent PDEs

For the sake of generality, despite the numerical experiments will only refer to linear time-dependent parametrized
PDEs, we consider a generic nonlinear, time-dependent PDE, since the results can also be extended to more
general problems. In particular, we consider a PDE depending on a set of input parameters µ ∈ P, where the
parameter space P ⊂ Rnµ is given by a bounded and closed set; in our analysis, input parameters represent
physical and geometrical properties of the system, like, e.g., material properties, boundary conditions, or the
shape of the domain.
For the sake of space, We adopt a fully algebraic perspective and assume to start from the high-fidelity (spatial)
approximation of the PDE. Regardless of the spatial discretization adopted – such as, e.g., the finite element
method, Isogeometric Analysis, or the spectral element method – the FOM can be expressed as a nonlinear
parametrized dynamical system. Hence, given µ ∈ P, we aim at solving the initial value problem:{

M(µ)u̇h(t;µ) = f(t,uh(t;µ);µ), t ∈ (0, T ),

uh(0;µ) = u0(µ)
(1)

where:

• uh(·,µ) : [0, T )→ RNh(µ) is the parametric solution of (1);

• u0(µ) ∈ RNh(µ) is the initial condition;

• f(·, ·,µ) : (0, T )×RNh(µ) → RNh(µ) is a (possibly nonlinear) function, encoding the system dynamics;

• M(µ) ∈ RNh(µ)×Nh(µ) is the mass matrix of this parametric high-fidelity model; without any loss of
generality, M(µ) is assumed here to be a symmetric positive definite matrix.

The dimension Nh(µ) is related to the finite dimensional subspaces introduced for the sake of space discretiza-
tion – here h > 0 denotes a discretization parameter, such as the maximum diameter of the elements in a
computational mesh; consequently, Nh(µ) can be extremely large if the PDE problem describes complex phys-
ical behaviors and/or high degrees of accuracy are required for its solution. Furthermore, the number of nodes
Nh is dependent on the geometrical parameters µ, as modifying them can alter the number of nodes present in
the computational mesh. Consequently, we strive to discover solutions that can generalize across meshes with
varying node counts.
We thus aim at approximating the set

Sh = {uh(t;µ)| t ∈ [0, T ), µ ∈ P ⊂ Rnµ} ⊂
⋃
µ∈P

R
Nh(µ) (2)

of the solutions to Problem (1) when (t;µ) varies in [0, T )×P, also referred to as solution manifold. In order to
solve Problem (1), suitable numerical schemes are used, such as the Backward Euler Method. Thus, denoting
by un

h, the solution uh at time tn = n∆t, n ≥ 0, we need to solve:M(µ)

(
un+1
h (µ)− un

h(µ)

∆t

)
= f(tn+1,un+1

h (µ);µ), n = 0, . . . , N − 1,

u0
h(µ) = u0(µ),

(3)

where N = T
∆t is the total number of time steps. Equation (3) implies the solution, at each time step, of a

nonlinear system which may increase the overall computational time. For this reason, we want to approximate
the manifold in (2) in a way that reduces the time complexity of the simulation without losing much accuracy.
In this work, we use a deep learning model based on graph neural networks. These deep neural networks allow
us to find an approximate solution ũ(t,µ) ≈ uh(t,µ). Note that ũ is not strictly dependent on the space
discretization parameter h of the computational mesh so our model is more flexible in accommodating different
geometries at the same time. More precisely, we aim at introducing a suitable deep neural network that can
learn the map Φ :

⋃
µ∈P R

Nh(µ) × P → S̃h such that:{
ũn+1(µ) = Φ(ũn(µ);µ), n = 0, . . . , N − 1,

ũ0(µ) = u0
h(µ).

(4)

In this way, the model can be then cheaply evaluated at testing time, completely avoiding:

1. reassembling the operators any time µ changes;

2. having to solve a nonlinear system at each time step.

Thus far, either ROMs based on reduced basis methods, such as POD-Galerkin, or DL-ROMs, have assumed
that all the data is defined on the same domain, requiring the training data to have the same dimension Nh.
Our approach addresses a more general problem that cannot be tackled by classical Reduced Order Models.
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3. Graph Neural Networks

GNNs were initially conceived as an extension of Convolutional Neural Networks (CNNs) to operate on graph-
structured data and overcome their limitations in this domain. Indeed, the convolution operator window is
usually slid across a two-dimensional image, and some function is computed as it is passed through many layers.
Now, the key property of such operation is that convolution takes a small rectangular section of the image,
applies a function to it, and creates a new portion (a new pixel): the node at the center of that pixel combines
information from its neighbors, as well as from itself, to generate a new value.
Moreover, CNNs suffer from the problem of node ordering. If we originally named the nodes A, B, C, D, and
E, and subsequently labeled them B, D, A, E, and C, the output of a CNN would change. Since graphs are
invariant to node ordering, we expect to receive the same result no matter how we order the nodes.
However, the idea does not easily transfer to graph-like structures, and it was initially unclear how to generalize
convolutions over grids to convolutions over general graphs, where the neighborhood structure differs from node
to node [18, 25].

GNNs aim to extend the idea of convolution to more complex spatial structures, constructing a learnable
transformation that preserves the symmetries of the graph (i.e., permutation invariances) across all of its
attributes, including nodes and edges. GNNs adopt a graph-in, graph-out architecture meaning that these
model types accept a graph as input, with information loaded into its nodes and edges, and progressively
transform these embeddings, without changing the connectivity of the input graph.

The fundamental ingredients of these architectures are the so-called message passing operations, which
enable the aggregation of node information while leveraging the depth of the graph. This message-passing
propagation can be seen as an information retrieval task from different levels of depth of the graph. In Figure
1 a simple visualization of the message propagation is shown. For each node, the information comes from the
neighbors. In this way, adding message-passing steps can be seen as connecting nodes that can be also far from
each other.

Figure 1: Message propagation and aggregation. The information is broadcast from different levels of depth of
the graph. For each node, at each message passing step we collect information from the neighbors. In this way,
adding message-passing steps can be seen as connecting nodes which can also be far from each other.

In order to do this, it is necessary to find a suitable representation of our graph. Graphs have different types
of information that we shall potentially use to make predictions, such as nodes, edges, and connectivity. The
first two features are relatively straightforward: for example, by means of nodes, we can form a node feature
matrix N by assigning each node an index i and storing the feature for node i in N. While these matrices can
show a quite different nature, they can be processed without any special techniques.
However, representing graph connectivity is more complicated. Perhaps the most obvious choice would be to use
an adjacency matrix since this is easily tensorisable. However, this representation would show some drawbacks:
often the high number of nodes leads to very sparse adjacency matrices, which is space inefficient (O(n2

nodes));
moreover, many adjacency matrices can encode the same connectivity, as they are not permutation invariant
with respect to the node labels. One elegant and memory-efficient way of representing sparse matrices is the
edge connectivity matrix. It is a nedges × 2 matrix where each row k contains the indices of the source and
destination nodes of the edge k. Using the edge connectivity matrix the space complexity reduces to O(nedges).

Now that we have all the ingredients to define a GNN, we can introduce a suitable graph representation
of the mesh. We consider an undirected graph G = (V,E), where V = (vi)

N
i=1 is the set of vertices of the

mesh, E = (eij)
N
i,j=1 is the set of edges and E denotes the corresponding graph connectivity matrix. Unlike

other types of graph data, such as social networks or citation graphs, computational meshes have a Euclidean
structure, which means that every node i can be associated to its space coordinates xi. Often, every node is also
associated with some features vi, which are also referred to as state variables. Among these features, we may
include the solution of the system we are modeling together with some relevant information about the problem.
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Since the solutions to PDEs, once an appropriate discretization has been introduced, can be seen as data
defined on graphs (the computational mesh), we believe that these architectures can be useful in constructing
surrogate models, as mentioned in Section 2. However, before delving into details, which will be presented
extensively in Section 4, we take the opportunity to introduce a particular graph network model known in the
literature for its expressive/approximation capabilities. This model is based on an architecture divided into
three main blocks, called the Encoder, Processor, and Decoder, respectively. In the next section, the Encode-
Process-Decode model is introduced and the Message passing step implementation is presented in detail.

3.1. The Encode-Process-Decode model

The architecture we will rely on to define a class of surrogate models for parametrized PDEs is the so-called
Encode-Process-Decode architecture shown in Figure 2. It consists of an input encoding, then it performs M
message passing steps through the Processor and ultimately combines a call to the Decoder, which outputs the
model prediction. Before diving in every part of the network, it is convenient to introduce some notation; in
particular:

• vi ∈ Rdin are the features associated to each node i;

• eij ∈ Rein are the features associated to each edge (i, j);

• Ev : Rdin → Rl, where l > din is the latent dimension of the network, is the nodes features encoder;

• Ee : R
ein → Rl, where l > ein, is the edges features encoder;

• E : R3l → Rl is the edges features processor;

• N : R2l → Rl is the nodes features processor;

• D : Rl → Rdout , where dout is the dimension of the output, is the decoder map.

Figure 2: The Encode-Process-Decode model. The model is composed of 3 architectures: the Encoder embeds
nodes and edges input features to higher dimensional spaces. The processor performs M message passing steps
to allow connections between nodes far from each other, and the Decoder outputs the model prediction.

The functions Ev, Ee, E ,N ,D are modelled with Multi-Layer Perceptron (MLP) architectures [21], see
Figure 3. An MLP architecture is a fully connected neural network in which at every layer a nonlinear function,
called activation function, is applied to a linear transformation of the input vector, that is:

xout = f(Wxin + b) (5)

where W and b are respectively a learnable weights matrix and a learnable bias vector. However, the choice
of the activation function f is relevant for the goodness of training and prediction; this topic is addressed in
Section 5, where a series of numerical experiments is presented. As we can see, the degrees of freedom of the
model only depend on the features’ dimensions, so they are independent of the degrees of freedom of the mesh.

3.1.1. Encoder

The Encoder embeds mesh features into nodes features vi and edge features eij . In general, node features
contain all the relevant dynamical quantities which are useful to understand the problem dynamics together
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Figure 3: An example of a 2-hidden layers MLP

with a one-hot encoded vector indicating the boundary nodes. On the other hand, edge features contain the
relevant geometrical information regarding the mesh such as the length of the edges ||xi−xj ||2 and the L2 norm
of the coordinates ||xi||2, ||xj ||2. These edge features play an important role in capturing the local geometric
characteristics of the mesh, which can provide useful information for solving partial differential equations on
unstructured grids. In addition to the length of the edges, other relevant edge features may include the orienta-
tion of the edges and the angles between them. These features can be used to capture more complex geometric
structures in the mesh, such as sharp corners or curved boundaries, which can significantly impact the behavior
of the PDE solution. Furthermore, the edge features can be combined with the node features to provide a more
comprehensive representation of the mesh, which can improve the accuracy of the PDE solution. The encoding
is determined by the MLPs Ev and Ee, which expand input dimensions din and ein to the latent dimension l,
in order to extract as much information as possible from the input features.

3.1.2. Processor

The processor is the architecture that allows propagating the information along the edges, so it is the most
important component of the learning process. The message propagation is repeated M times, where M rep-
resents the proximity, that is the number of hops, of the neighborhood which we are considering. This is a
hyperparameter that has to be tuned according to the problem we are facing.

As we can see from Figure 2, the encoded node and edge features are first concatenated and passed to the
model E in order to create new edge features which take into account both node input and edge input features.
Note that the number of mesh edges is greater than the number of mesh nodes, so when we concatenate node
and edge features we need to bring them to the same dimension. This is done by taking for each edge the
features corresponding to the source node and to the destination node and concatenating them with the relative
edge features. In this way, for each edge, we will have 3l features, where l is the latent dimension of the network.
The MLP E then maps again them into dimension l. The new edge features are then combined with the input
features to create a new node features tensor, which will be passed to the MLP N . In this way, the new output
node features are provided by a nonlinear function of both geometrical and dynamical information.

In the forward pass, it is necessary to reduce the edge features in order to match the number of mesh nodes.
This reduction is performed with the scatter_add operation, see Figure 4. Given an input and an index tensor,
this operation sums all the values of the input tensor which correspond to the same index value. The resulting
output tensor has size equal to the number of indices in the index tensor. This operation can be also extended
to multidimensional tensors by providing the axis in which the operation must be done. In the model, the oper-
ation is performed in the dimension corresponding to the number of the mesh edges, with the index tensor given
by the destination nodes extracted from the edge connectivity matrix E, which represents the connectivity of
my mesh. Hence, we are summing all the edge features corresponding to edges having the same destination node.
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Figure 4: scatter_add operation. Given an input and an index tensor, it sums all the values of the input
tensor which correspond to the same index value. The resulting output tensor has size equal to the number of
indices in the index tensor. This operation can be also extended to multidimensional tensors by providing the
axis in which the operation must be done.

3.1.3. Decoder

After performing M message passing steps, the node features tensor is passed to the final MLP, which decodes
the relevant quantities we aim to predict based on the specific problem at hand. In particular, the values of
these quantities for a given node i are dependent on the features of its neighbors and the coordinates of the
relative nodes. In other words, these quantities can be expressed as a function of {vj}j∈Ni

, {xj}j∈Ni
, where Ni

is the set of nodes in the neighborhood of node i, and a set of parameters µ, i.e., F ({vj}j∈Ni , {xj}j∈Ni ;µ).
This approach enables us to capture the underlying dynamics of a physical system described by a time-dependent
parametrized PDE. By encoding both the nodal features at a given time step tn and the geometric properties
of the mesh, we can then decode the system solution at time tn+1 as a function F ({vn

j }j∈Ni
, {xj}j∈Ni

;µ). As
we will demonstrate in Section 5, this approach leads to accurate and robust predictions.

4. Application to surrogate modeling of parametrized PDEs

In our case, the goal is to predict an approximate solution ũ of the system at time tn+1 given the state of the
system at time tn for each node i, that is modeling a function Φ such that,{

ũn+1
i (µ) = Φ({vn

j }j∈Ni
, {xj}j∈Ni

;µ) n = 0, . . . , N − 1, i = 1, . . . , Nh

ũ0
i (µ) = u0

h,i(µ), i = 1, . . . , Nh.
(6)

where Ni is the set of the nodes in the neighborhood of node i. Equation (6) is the nodal version of Equation
(4), where the solution of the system at time tn, i.e. ũn

i , is contained in the node features tensor vn
i together

with other relevant node features, and the dependence on the space coordinates is included to take into account
the euclidean structure of the mesh.

Our approach aims to model the function Φ using an Encode-Process-Decode architecture that incorporates
both nodal features at a specific time step tn and the geometrical characteristics of the mesh. The architecture
aggregates information from neighboring nodes, processes it, and decodes the system solution at time tn+1. By
doing so, we can evaluate Equation (6) independently of the number of nodes of the mesh, while simultaneously
accounting for the graph structure of the mesh. This approach enables us to train the model using a variety of
different geometries and subsequently predict solutions for new meshes that were not included in the training
data.
This inductive capability is possible because GNNs first model the passing of the messages between neighboring
nodes, and then the aggregation of the information at each node, in order to allow connections between nodes
that are far from each other. Classical Feed Forward Neural Networks (FFNNs) are often prone to overfitting
because they are fully connected, which means they may try to fit too closely to the training data and fail
to generalize to new examples. GNNs, on the other hand, can help to mitigate overfitting by incorporating
information from neighboring nodes and edges, which can improve the robustness of the model. However, CNNs
can also be used to limit overfitting, but as we previously discussed, the convolution operator may struggle with
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graph-based problems. Furthermore, both FFNNs and CNNs are still dependent on the number of nodes in
the mesh, which may limit their generalization to different domains. Recently, a new class of architectures
called Mesh-Informed Neural Networks (MINNs) has been introduced [7]. These architectures are specifically
designed to handle mesh-based functional data and are capable of handling functional data defined on general
domains of any shape better than classical FFNNs. Moreover, they can achieve reduced training times, lower
computational costs, and better generalization capabilities. However, they require the number of nodes of the
mesh Nh to be fixed, limiting their inductive capability. For this reason, to increase flexibility in generalizing
to different domains, GNNs can be advantageous.

4.1. Training and testing algorithms

From now on when writing the model, for sake of simplicity, we consider only the dependency on the solution
at the previous step ũn, where the dependency on node i is implicit. To train the model, we need to create
a dataset of simulations using a Full Order Model (FOM) such as the finite element method, where we vary
the parameters µ. By doing so, we can obtain a set of accurate solutions, known as ground truth solutions,
represented by uh(t;µ). These ground truth solutions will be also used to evaluate the performance of the
model during the training phase.
Model training is performed by one-step prediction, that is at each time step tn we compute the output F (un

h(µ))
by passing to the network as input the ground truth solution un

h(µ) = uh(t
n;µ). This preserves memory usage

from recursive training and it also allows parallelization through batches, exploiting the power of GPUs with
tensor calculus.
Training consists of the solution of an optimization problem for each batch of training data. Denoting with θ
the vector of parameters of the GNN, collecting all the corresponding weights and biases of each component of
the GNN, the optimization problem consists of the minimization of the following weighted loss with respect to
θ:

Lbatch(µ,θ) = w1
1

Nbatch − 1

Nbatch−1∑
n=1

||u̇n
h(µ)− ˙̃un(µ,θ)||22+

w2
1

Nbatch − 1

Nbatch−1∑
n=1

||un+1
h (µ)− ũn+1(µ,θ)||22

(7)

where un
h(µ) = uh(t

n;µ) with t1, . . . , tNbatch as the time instants relative to the batch, u̇n
h(µ) is the ground

truth derivative estimated via finite differences, that is:

u̇n
h(µ) ≈

un+1
h (µ)− un

h(µ)

∆t
. (8)

Moreover, ˙̃un(µ,θ) = F (un
h), that is the outcome of the network obtained by passing as input un

h(µ) should
approximate the temporal derivative of the solution at time tn. For this reason, ũn+1(µ,θ) is the prediction
calculated with the Forward Euler method

ũn+1(µ,θ) = un
h(µ) + ∆t ˙̃un(µ,θ). (9)

In order to make our model robust to numerous rollout steps and avoid overfitting, we need to ensure that the
training takes count of propagation errors, so the following strategies are performed:

• Random shuffling of the training data after each epoch;

• Gaussian noise added on data at each training step.

During the training phase (see Algorithm 1), the optimal parameters of the GNN are found by optimizing loss 7
through the back-propagation and ADAM algorithms. Moreover, after a specific number of epochs, or iterations,
defined by the milestones hyperparameter, the learning rate is decreased by a factor γ = 0.1. The optimization
algorithm updates the values of the model parameters in an iterative manner until a stopping criterion is met.
In our case, we stop the training when the maximum number of epochs chosen for the algorithm is reached; this
is a hyperparameter that needs to be tuned to achieve the best performance of the model.

After the training, we collect the optimal vector of parameters θ⋆, so that during the testing phase, the
GNN is used to make predictions through a scheme that recalls the Forward Euler method:

ũn+1(µ;θ⋆) = ũn(µ;θ⋆) + ∆tF (ũn;µ,θ⋆) n = 0, . . . , N − 1

ũ0(µ) = u0
h(µ)

(10)
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We remark that, during testing, only the initial ground truth solution is provided to the network, as, thanks to
(10), the surrogate model is then capable of simulating a full rollout. At each time step, the known boundary
conditions are set in order to guarantee a stable prediction of the phenomenon. The prediction error is computed
as the relative MSE (RMSE) error between the network prediction and the ground truth solution:

RMSE(ũ,uh) =
1

N

N∑
n=0

∑Nh−1
i=0 (ũn

i − un
h,i)

2
2∑Nh−1

j=0 (un
h,i)

2
2

(11)

Algorithm 1 Training Algorithm
Input: Network F. Dictionary D containing Ntrain training snapshots list U, edge connectivity
matrices list E, edge features matrices list W and inner nodes list I. Starting learning rate ν. Milestones
m for the learning rate decay. Number of training epochs max_epoch. Batch size Nbatch. Noise
variance σ2. Timestep ∆t.
Output: Optimal model parameters θ

1: epoch = 0.
2: Randomly initialize θ0

3: while epoch < max_epoch do
4: Create the list indices = [1, . . . , Ntrain] and shuffle it randomly
5: for sim in indices do
6: Usim = U[sim], Usim ∈ RNt×Nh×Nf where Nt is the total number of timesteps, Nh = Nh(µ)

is the number of nodes of the mesh and Nf is the number of node features.
7: Esim = E[sim], Esim ∈ RNedges×2.
8: Wsim = W[sim], Wsim ∈ RNedges×Ne where Ne is the number of edge features.
9: Isim = I[sim], Isim ∈ RN

h with Isim[i] = 1 if node i is an inner node, 0 otherwise.
10: b = 0
11: while b < Nt do
12: Ubatch = Usim[b : b+Nbatch]
13: Create noise tensor Σ = σZ where Z ∈ RNbatch×Ni×Nf is a random tensor with Ni inner

nodes.
14: Initialize Unoise = Ubatch

15: Unoise[:, Isim] + = Σ
16: Calculate target derivative Udot = (Ubatch[1 :]−Unoise[: −1])/∆t
17: Make a forward pass through the network Fnet = F(Unoise,Esim,Wsim).
18: Calculate network solution Unet = Unoise[: −1] + ∆tFnet

19: Calculate training loss Lbatch
20: Back-propagation through the net and parameters update: θ1 = ADAM(ν,θ0).
21: θ0 = θ1

22: b← b+Nbatch

23: end while
24: end for
25: if epoch ∈m then
26: Decay the learning rate by a factor γ = 0.1
27: end if
28: epoch← epoch+ 1
29: end while

Pick the last weights updated θ1
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5. Numerical experiments

In this section, the model introduced in the previous sections is applied to an advection-diffusion problem in
3 different cases: (i) in a 2D square with a circular obstacle with a time-varying advection term; (ii) in a 2D
Stokes flow in proximity of bump; (iii) in a 3D Stokes flow around a cylinder.

All the examples are studied in domains in which we have let the obstacle vary its position, then the first
two examples are also studied in domains where the obstacle varies both its position and dimension. In this
way, we have exploited the model capacity to infer the geometrical features of the mesh.

5.1. Advection-Diffusion problem in a square domain with a circular obstacle

In this section, the model is applied to the advection-diffusion problem:
∂u
∂t −D∆u+ b · ∇u = 0 in Ω× (0, T ]

u(x, y) = (x− 1)2 + (y − 1)2 on ∂Ω× (0, T ]

u0(x, y) = (x− 1)2 + (y − 1)2 in Ω

(12)

where Ω = (0, 1)2 \ C, with C = {(x, y) : (x− cx)
2 + (y − cy)

2 ≤ (0.15)2}. In our simulations, we parametrize
the center of the circle as µ = (cx, cy) ⊂ P where P = {(x, y) : 0 < x < 1, y ≥ 0.5}, and we let that vary
for the generation of the training data. We also set T = 2, D = 0.1 and b = [1 − t, 1 − t] for t ∈ [0, 2]. The
time-varying advection parameter b , allows us to observe a more complex phenomenon during the time horizon
considered with respect to the case in which b is a steady vector field.
The ground truth FOM simulations of Problem (12) are obtained by first discretizing in space (following
Equation (1)) using P1 Continuous Galerkin Finite Element Space and imposing Dirichlet boundary conditions.
Then, we discretize in time using the Backward Euler Method following Equation (3). Two examples of FOM
solutions are reported in Figure 5.

Figure 5: Test case 1, Advection-Diffusion problem, FOM solutions. Both rows represent 3 time steps
of simulation. In the first row, the center of the obstacle is at µ = (0.5, 0.5), while in the second row
is at µ = (0.32, 0.68).

5.1.1. Problem data

We collected a dataset composed of 100 simulations, each obtained for a different position of the center of the
obstacle, with a number of mesh nodes varying from 770 to 790. The time step chosen is ∆t = 0.02, resulting
in 101 time snapshots for each simulation.

10



Before training the model, we need to define the input features, that is the information to pass to the network
at time tn, and the output features, that is the quantity we want to predict with the network at time tn. In this
example, the node input is a Nbatch − 1 × Nh × 3 tensor, where Nbatch is a hyperparameter, Nh varies across
the simulations, and for each node i = 1, . . . , Nh we have 3 features: the ground truth solution un

i at node
i; the time instant tn and a binary variable with value 1 if the corresponding node is on the boundary and 0
otherwise. Another input information to provide is the edge attributes tensor: this is a Nbatch − 1×Nedges × 3
tensor containing for each edge, the coordinates of its nodes and its length calculated as the Euclidean norm of
the distance of the coordinates.
The output, instead, is a Nbatch − 1×Nh × 1 tensor which represents the derivative ˙̃u(t) evaluated at time tn.
Here the Nbatch hyperparameter allows calculating in parallel different outputs corresponding to consecutive
time instants, that is for a given batch of time instants b = t1, . . . , tNbatch , we pass simultaneously the network
the input tensors from t1 to time tNbatch−1 and the net gives as output the derivative of the solution at the
same time instants. In this problem, we use Nbatch = 25, which is a good compromise between the speed and
effectiveness of the training.
There are also other hyperparameters to provide, which we summarize below:

• l = 32, where l is the latent dimension of the network;

• noise variance σ2 = 10−6;

• total number of epochs max_epoch = 1500;

• learning rate ν = 10−3 with decay γ = 0.1 every 500 epochs;

• SiLU (silu(x) = x
1+e−x ) is chosen as activation function for each MLP layer because we have to guarantee

high-order differentiability to model derivatives;

• number of MLP layers mlp_layers = 2;

• message Passing steps mp_steps = 12.

The training set is composed of 80 simulations, while the test set has 20 simulations, both chosen randomly
among the 100 FOM simulations run.
For each batch, the loss is computed using only the MSE between the derivative computed by the network and
the ground truth derivative calculated with the finite differences scheme presented in Section 4. In this case, we
set the loss weights as w1 = 1 and w2 = 0, so we do not have the term that involves Forward Euler prediction
in the loss function.

5.1.2. Numerical results

The results of the rollout predictions of the test simulations are summarized in Table 1. As we can see, all the
predictions RMSEs are of order 10−3 or 10−4. Moreover, our model outperforms significantly the ground truth
solver in the simulation time at testing stage. The best prediction, together with its ground truth solution, is
shown in Figure 6.

The dynamic of the problem is well predicted and no propagation errors are spotted. Hence, our model and
the training strategy adopted seem to be in principle good at solving problems concerning evolutionary PDEs
in which multiple rollout time steps need to be predicted.

Test case 1. Advection-Diffusion problem

RMSE (mean) RMSE (max) RMSE (min) tgt(s) tpred(s)

AD 1 1.2× 10−3 6.1× 10−3 4× 10−4 ≈ 159.8 ≈ 9.83

Table 1: Test case 1. Advection-Diffusion problem. Results of the test set predictions.

However, it is worth showing that the model predicts well also simulations in which the position of the
obstacle changes, leading to different dynamics in the trajectories.
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In Figure 7, the predicted solution in the case where the obstacle is closer to the source is reported. Despite
the trajectories being different from the others seen before, the directions of propagations are always accurately
captured. The RMSE plot shows that, although the errors are larger on the boundary in the first rollout phase
(T < 1.00), in the end they are higher around the obstacle, where the change of direction of the advection vector
b makes the prediction of the solution more difficult.

Figure 6: Test case 1, Advection-Diffusion problem, best model prediction (µ = (0.65, 0.63)). First row: rollout
prediction. Second row: ground truth solution .

We highlight that a GNN-based approach follows a local-to-global generalization approach, first processing
information locally through the Encoder, and then aggregating what has been processed from the neighborhood
to connect the mesh nodes. However, this approach may result difficult for some trajectories and yield worse
predictions at critical points of the mesh, such as along the boundary. The lack of smoothness in PDE solutions
is a common challenge faced by deep learning-based surrogate models, as neural networks are known to struggle
with capturing such properties.

Figure 7: Test case 1, Advection-Diffusion problem. Prediction obtained for µ = (0.29, 0.5) with the obstacle
close to the source. First row: rollout prediction. Second row: RMSE related to each time step between the
prediction and the corresponding ground truth solution.

The prediction which leads to the worst RMSE over all the tests that have been carried out according to
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Table 1 is shown in Figure 8. The prediction in any case is good near the obstacle and the source; however,
after 100 rollout time steps, the prediction gets worse along the boundary of the domain as we can see also from
the plots of the RMSE for different time steps.
Hence, even if the overall predicted dynamics is good, the change of the solution after T = 1.00 due to the change
of the direction of the advection vector b causes an error propagation which results in a bad node prediction
near the lower edge of the boundary in the ending trajectories.
The plots of the errors show this trend, even if we can keep the order of magnitude of the RMSE in each
snapshot still near 10−5.

In this situation, the position of the obstacle plays a crucial role in the accuracy of the prediction because
the phenomenon is inherently more challenging to model. Additionally, the problem can be compounded by
an initial error that propagates throughout the entire simulation time, which can make it even harder for the
model to correctly predict the outcome. Although the model is trained to be robust to small perturbations in
the input, unexpected perturbations can still cause it to fail.

To address these challenges, reducing the batch size during training can be a potential solution, as it allows
for a slower learning process and reduces the likelihood of overfitting on noisy data. However, this can also
lead to reduced model performance, and the majority of good predictions may suffer as a result. Therefore,
a balance must be struck between reducing overfitting and maintaining the model’s overall predictive power.
Future research could explore other ways to mitigate the impact of initial errors and unexpected perturbations
on GNN-based simulation

Figure 8: Test case 1, Advection-Diffusion problem. Prediction obtained for µ = (0.25, 0.75) with the obstacle
on the top left corner. First row: rollout prediction. Second row: RMSE related to each time step between the
prediction and the corresponding ground truth solution.

Another key aspect to analyze is the trend of the L2 relative error as the simulation time varies. This error
represents, at each time step, the L2 error between the prediction and the FOM solution divided by the L2

norm of the FOM solution. In Figure 9, on the left, we can see 3 curves that represent the evolution of the
L2 error between our solution and the ground truth over the time interval [0, T ]. The curves show respectively
how the first, second, and third quantiles of the error vary in time. The trend is coherent with the results
previously shown, indeed we can notice a substantial increase in the error as the simulation time increases,
and in particular, the final instants strongly influence the RMSE of the predictions. The first quantile and the
median are similar, while the third shows more oscillations in the error. However, for most of the simulation
time, we have good bounds for the error, which is kept around 10−3.
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Figure 9: Test case 1, Advection-Diffusion problem. Left: L2 relative error vs Time plot. The dashed lines
represent the first and the third quantiles of the L2 errors among all the test predictions, while the orange line
is the median. The shaded area can be considered a confidence region for the simulation error. Right: Test
RMSE vs message passing steps.

Despite the anomaly shown in Figure 8, it is worth noticing that the model is completely mesh-independent,
and for the majority of trajectories provides a good prediction for long rollouts, keeping the number of parameters
to a surprisingly small number. Indeed for this example, the model has 91009 parameters, which is easy to
reach if you try to solve a similar problem with a fully connected network.

5.1.3. The message passing steps hyperparameter

Among all the hyperparameters, the one most influencing the goodness of the model is the number of message-
passing steps. This number represents how much in-depth we look at the neighborhood when we propagate the
message. A small number of message-passing steps may result in underfitted areas of the mesh, while a big one
will slow down the training, increasing too much the number of parameters, possibly yielding overfitting.

This parameter has been tuned by hand after having tried multiple values and the best one resulted to be
12. A plot of the corresponding results found can be seen in Figure 9, on the right. The test RMSE reaches a
local minimum for 8 message-passing steps. This is the best choice if we want to keep control of the number of
total parameters of the network, which are only 61825 in this case.
However, in the experiments made with higher message-passing steps, we have a better approximation of the
trajectories for almost all the simulations and the number of parameters does not grow too much.

5.1.4. Generalization to obstacles with different dimensions

This advection-diffusion example can also be extended to domains in which both the position and the dimension
of the obstacle change. We slightly modify our training dataset by adding new simulations in which the obstacle
has both a smaller and a higher radius than before and this will improve the generalization of the model. Hence,
the geometrical parameter now is µ = (cx, cy, r) ∈ P = {(x, y) : 0 < x < 1, y ≥ 0.5} × {0.1, 0.15, 0.2}.
Again, we test the model on new simulations which have varying obstacle positions and dimensions. In Figures
10 and 11 the predictions for two new test simulations can be seen. The model can generalize well on this
problem also if the geometries differ a lot from each other. Moreover, there is no need to increase the number
of message-passing steps so the number of parameters can be kept under control.
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Figure 10: Test case 1, Advection-Diffusion problem. Prediction obtained for µ = (0.55, 0.53, 0.2) . First row:
rollout prediction. Second row: ground truth solution.

Figure 11: Test case 1, Advection-Diffusion problem. Prediction obtained for µ = (0.6, 0.52, 0.1). First row:
rollout prediction. Second row: RMSE related to each timestep between the prediction and the corresponding
ground truth solution.

An important question that arises is whether our model can predict solutions where the obstacle has a
different shape, without requiring retraining of the network. To investigate this, we present an example in Figure
12 of a prediction obtained with a square obstacle located in the top right of the domain, that is corresponding
to the parameters µ = (rx, ry, L) = (0.7, 0.7, 0.3), where rx and ry are the coordinates of the center of the
square, and L is the length of its edge. Surprisingly, the errors, in this case, are of the same order of magnitude
as those discussed earlier, and the prediction of the overall dynamics is remarkably accurate. This result is
attributed to the ability of the model to understand different geometries by means of its inductive structure.
GNNs, in particular, can automatically incorporate the geometrical structure of the domain by utilizing both
the edge connectivity matrix and the edge features. However, some difficulty is observed in handling the nodes
surrounding the obstacle, especially at the corners, but this does not appear to affect the overall accuracy of
the prediction. These findings suggest that our model has the potential to generalize well to other geometries,
without the need for extensive retraining, thus enhancing its practical applicability in real-world scenarios.

15



Figure 12: Test case 1, Advection-Diffusion problem. Prediction obtained for µ = (0.7, 0.7, 0.3) with a square
obstacle. First row: rollout prediction. Second row: RMSE related to each timestep between the prediction
and the corresponding ground truth solution.

5.2. Advection-Diffusion problem in a 2D Stokes flow in proximity of a bump

We want to solve an advection-diffusion problem like (12), but now the advection coefficient b is obtained by
solving the Stokes problem: {

−ν∆b+∇p = 0 in Ω

∇ · b = 0 in Ω
(13)

where p is a pressure field and the boundary conditions are given by:

b = 0 on ΓD

b = bin on Γin

ν
∂b

∂n
− pn = 0 on ΓN

(14)
(15)

(16)

where

bin = (
40Uy(0.5− y)

0.52
, 0), U = 0.3, ν = 10−3 (17)

bin represents the value of b at the inflow Γin and ΓD and ΓN are respectively the Dirichlet side and Neumann
outflow boundaries.
The domain Ω is the rectangle (0, 1) × (0, 0.5) with a bump in the upper edge. Here Γin = {x = 0},
ΓD = {y = 0} ∪ {y = 0.5} and ΓN = {x = 1}. During our simulations, we shift the position of the bump in a
way that its center cx varies from 0.35 to 0.65. Hence, we have µ ∈ P = [0.35, 0.65]. Regarding the Advection-
Diffusion problem, at the inflow Γin, we impose the Dirichlet boundary condition uin(x, y) =

4y(0.5−y)
0.52 , which

is also the initial condition, on ΓD we impose no-slip boundary condition and on ΓN we set ∂u
∂n = 0. The final

simulation time is T = 0.5 and D = 0.01. Our results focus only on the approximation of the solution u of the
Advection-Diffusion problem and an example of a FOM solution is reported in Figure 13.
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Figure 13: Test case 2, Advection-Diffusion problem in a 2D Stokes flow. 3 timesteps of a FOM simulation.
The center of the bump here is at µ = 0.4696.

5.2.1. Problem data

Our dataset is composed of 125 simulations, each obtained for a different position of the bump so the number of
mesh nodes varies from 937 to 1042. The time step chosen is ∆t = 0.01, resulting in 51 time snapshots for each
simulation. We consider the same node and edge input features of the previous example. For this example, the
loss function is slightly different from the previous test case, indeed now the two terms defined in Section 4 are
equally weighted (w1 = 0.5, w2 = 0.5).
Most of the hyperparameters are the same as the ones chosen before, that is:

• l = 32, where l is the latent dimension of the network;

• noise variance σ2 = 10−6;

• total number of epochs max_epoch = 3000;

• learning rate ν = 10−3 with decay = 0.1 after 500 and 1000 epochs;

• SiLU is chosen as activation function for each MLP layer;

• number of MLP layers mlp_layers = 2;

• message passing steps mp_steps = 15.

The training set is composed of 100 simulations while the test set includes 25 simulations, both chosen randomly
among the 125 FOM simulations.

5.2.2. Numerical results

The results of the rollout predictions of the test simulations are summarized in Table 2. In this more complex
problem, the RMSEs are higher than the ones in the previous example, but we still outperform the ground
truth solver in terms of time efficiency.

Advection-Diffusion problem in a 2D Stokes flow

RMSE (mean) RMSE (max) RMSE (min) tgt(s) tpred(s)

AD 2 1.64× 10−2 7.35× 10−2 1.2× 10−3 ≈ 115.65 ≈ 7.51

Table 2: Test case 2, Advection-Diffusion problem in a 2D Stokes flow. Results of the test set predic-
tions.
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The best prediction, together with its ground truth solution, is shown in Figure 14. The dynamic predicted
is very accurate since we do not spot any propagation error. The prediction seems to get worse in some nodes
which are either close to the bump or to the upper edge, in which we have imposed no-slip boundary conditions.

Figure 14: Test case 2, Advection-Diffusion problem in a 2D Stokes flow. Best model prediction (µ = 0.42).
First row: rollout prediction. Second row: ground truth solution.

The model performs well in predicting simulations in which the bump has different positions, as shown
in Figure 15. However, some numerical errors can be observed in nodes close to the inflow, which are higher
compared to the other nodes, but they are kept under control and remain of the order 10−5 as shown in the
plot. It is worth recalling that these initial errors tend to fade out, and the accuracy improves as the simulation
evolves. This behavior is particularly evident when the bump is not located too close to the inflow, indeed
higher errors are usually caused by particular positions of the bump.

Figure 15: Test case 2, Advection-Diffusion problem in a 2D Stokes flow. Prediction obtained for µ = 0.58
with the bump on the right part of the upper edge. First row: rollout prediction. Second row: RMSE related
to each timestep between the prediction and the corresponding ground truth solution
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If the position of the bump is too close to the inflow, it heavily influences the prediction in the initial time
steps. As a result, fixing the error in some nodes becomes increasingly difficult as time evolves. This can be
seen quite well in Figure 16, which represents a worst-case scenario for our predictions. The behavior of the
nodes around the inflow has a significant impact on the accuracy of the simulation, as any error arising in this
region can propagate throughout the domain. The proximity of the bump to the inflow also plays a crucial
role in the self-adjustment of the simulation. Despite these challenges, the model overall performs very well, as
demonstrated by the accuracy of its predictions.

Figure 16: Test case 2, Advection-Diffusion problem in a 2D Stokes flow. Worst case scenario: bump close to
the inflow (µ = 0.355). First row: rollout prediction. Second row: RMSE related to each timestep between the
prediction and the corresponding ground truth solution

Our qualitative considerations are also supported by the plot in Figure 17, which reports the behavior in
time of the L2 relative error between the prediction and the FOM solution. The prediction is more difficult
in the first time instants when the inflow and the bump position determine the system dynamics. The third
quantiles are influenced by the worst-case scenario. Finally, the model is able to self-adjust, that is the errors
tend to decrease as the time of the simulation evolves. This is an important quality since it means that it is
robust to the presence of noise during the simulation.

Furthermore, the decrease of the L2 relative error in time indicates that the model is able to capture the
system behavior more accurately at later time instants. This is expected since the initial condition and boundary
conditions are better defined and the system behavior becomes more predictable as time evolves. Moreover, the
third quantile in the plot shows that the model worst-case error is still relatively small, hence the model is robust
to unexpected perturbations during the simulation. This is a desirable property since real-world problems often
have some degree of uncertainty or noise, and a model that can handle such situations is more likely to be useful
in practice.
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Figure 17: Test case 2, Advection-Diffusion problem in a 2D Stokes flow. L2 relative error vs Time plot: The
dashed lines represent the first and the third quantiles of the L2 errors among all the test predictions, while the
orange line is the median. The shaded area can be seen as a confidence region for the simulation error.

5.2.3. Generalization to bumps with different positions and dimensions

This example can be generalized by letting the bump also vary also along the lower edge, and its dimension
change. Hence, we consider a new dataset composed of 185 simulations in which the height of the bump might
be in the set h = {0.08, 0.12, 0.175} and its center can vary along both the upper and lower edge in the interval
[0.4, 0.6]. In this way, we keep the bump sufficiently far from both the inflow and the outflow since we have
previously seen that this may imply numerical errors in the GNN prediction. Hence, the geometrical parameter
now becomes µ = (cx, cy, h) ∈ P = [0.4, 0.6]× {0., 0.5} × {0.08, 0.12, 0.175}.

Figure 18: Test case 2, Advection-Diffusion problem in a 2D Stokes flow. Prediction obtained for µ =
(0.528, 0, 0.12) with the bump in the lower edge with center at x = 0.528 and height h = 0.12. First row: rollout
prediction. Second row: ground truth solution.

The results show that the implemented GNN-based can learn correctly the geometry of the problem even
if we let the domain vary a lot in our dataset. This is important since we can overcome overfitting, which is
common when using deep neural networks. In the following lines, some predictions of rollout simulations not
seen during training are presented. In Figure 18, the prediction computed by the GNN when the bump is on
the lower edge with height h = 0.12 and center in x = 0.528, that is µ = (0.528, 0, 0.12), is reported. As in the
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previous example, the network shows some difficulty to predict the nodes close to the inflow but improves as
the simulation time varies leading to a good approximation of the flow in the final steps. As we have previously
seen, GNN-based models are often not good at predicting the regularity of the solution pattern, as we can see
from the prediction at T = 0.1 in Figure 18. Here, we can also notice that the smoothness of the solution gets
better as the simulation time increases.

In Figure 19 the height of the bump influences a lot the dynamic of the system, however, the network
correctly infers the behavior of the flow around the obstacle. Here the bump has height h = 0.175 and is
located in the lower edge with center at x = 0.453, that is µ = (0.453, 0, 0.175). The height of the bump
has a significant impact on the accuracy of model prediction, particularly near the upper edge of the domain.
Errors that arise in this region can propagate throughout the domain, affecting the accuracy of predictions at
other locations as well. However, the self-adjustment mechanism of the model is effective in mitigating these
errors as they propagate toward the outflow, resulting in improved accuracy in this region. Overall, the model
ability to account for the influence of the bump height on the flow dynamics contributes to its strong predictive
performance.

Figure 19: Test case 2, Advection-Diffusion problem in a 2D Stokes flow. Prediction obtained for µ =
(0.453, 0, 0.175) with the bump in the lower edge with center at x = 0.453 and height h = 0.175. First row:
rollout prediction. Second row: RMSE related to each timestep between the prediction and the corresponding
ground truth solution.

In Figure 20 the bump has height h = 0.08 and is in the upper edge with center at x = 0.467, that is
µ = (0.467, 0.5, 0.08). The accuracy of the model’s predictions decreases when the size of the bump is smaller.
This is primarily due to the fact that as the size of the domain increases, so does the number of nodes, making
the inference process more challenging. In this problem, the number of nodes varies from 936 to 1054, which is
a wide range for unstructured meshes and geometries that differ significantly from each other. As a result, error
propagation is more significant in this case compared to the other examples. This is evidenced by the persistence
of high errors at T = 0.25. Nevertheless, despite the irregularity of the prediction, the overall dynamics are
well-predicted by the model. This suggests that the model can effectively capture the underlying physics of the
system, even in cases where the inference is more challenging due to the higher number of nodes.
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Figure 20: Test case 2, Advection-Diffusion problem in a 2D Stokes flow. Prediction with bump in the lower
edge with center at x = 0.453 and height h = 0.08 (µ = (0.467, 0.5, 0.08)). First row: rollout prediction. Second
row: RMSE related to each timestep between the prediction and the corresponding ground truth solution.

Upon observing the L2 relative error plot on the test set in Figure 21, we can draw some quantitative
conclusions regarding the previously discussed results. The plot indicates that the test error has an appropriate
upper bound and that it initially increases significantly during the first few time steps, which is consistent with
the observed prediction behavior. We can see that the L2 error trend is similar to that of Figure 17, but it
decays more rapidly. This suggests that the self-adjustment property of the model is maintained even when the
problem geometry exhibits greater variability.

Figure 21: Test case 2, Advection-Diffusion problem in a 2D Stokes flow. L2 relative error vs Time plot.

We can further test the robustness of our model by evaluating its ability to predict simulations with varying
shapes of the bump, without requiring any retraining. Figure 22 displays the prediction results of a simulation
with a triangular bump located on the upper edge. In addition to the fact that the errors are of the same order
of magnitude as previously discussed, the overall dynamics are accurately predicted. However, the regularity of
the solution poses some difficulty for the model. Nonetheless, this does not appear to significantly impact the
accuracy of the prediction.
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This example highlights the flexibility of graph neural networks in handling different geometries. In scenarios
where there is limited data available for training, the inductive capabilities of our model enable us to extend
simulations by slightly modifying the domain, while still producing reliable results.

Figure 22: Test case 2, Advection-Diffusion problem in a 2D Stokes flow. Prediction with a triangular bump
on the upper edge. First row: rollout prediction. Second row: RMSE related to each timestep between the
prediction and the corresponding ground truth solution.

5.3. Advection-Diffusion problem in a 3D Stokes flow around a cylinder

We consider the same problem discussed in Section 5.2 but in a 3D domain obtained by an extrusion on the
z-axis of rectangle R = (0, 1)× (0, 0.5) with a circular hole C = {(x, y) : (x− cx)

2 + (y − cy)
2 ≤ (0.05)2}. We

have let the position of the obstacle vary randomly in the rectangle Rc = [0.2, 0.4] × [0.2, 0.3] resulting in 150
different simulations, that is µ = (cx, cy) ∈ P = [0.2, 0.4]× [0.2, 0.3]. An example of FOM solution can be seen
in Figure 23.

Figure 23: 3 different ground truth simulations.

5.3.1. Problem data

The mesh nodes of the simulations vary from 1353 to 1542, which increases the complexity of the problem with
respect to the other examples we have discussed. We consider the same node features of the previous examples,
but now the edge features are a Nbatch − 1 × Nedges × 4 tensor, the 3 coordinates and the edge length. The
batch size is still Nbatch = 25 and these are the other hyperparameters chosen:
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• l = 32, where l is the latent dimension of the network;

• noise variance σ2 = 10−5;

• total number of epochs max_epoch = 2000;

• learning rate ν = 10−4 with decay = 0.1 after 500 and 1000 epochs;

• SiLU is chosen as the activation function for each MLP layer;

• number of MLP layers mlp_layers = 2;

• message Passing steps mp_steps = 18;

• The loss weights w1 = 0.5, w2 = 0.5.

The training set is composed of 125 simulations while the test set includes 25 simulations, both chosen randomly
among the 125 FOM simulations. In this third example, we are face the challenge of addressing both dynamical
system complexity and computational complexity. To tackle these challenges, we have employed a specific
training strategy where the model is trained for a relatively shorter period of 2000 epochs, but with an increased
number of message passing steps (18) to better capture the dynamics of the system. Additionally, we have
also increased the noise variance from 10−6 to 10−5 to enable the model to learn to handle higher levels of
error propagation. This is particularly important as error propagation is a common issue when working with
simulation rollouts for this problem. By adopting this training strategy, we aim to strike a balance between
model accuracy and computational efficiency while still being able to capture the complex dynamics of the
system.

5.3.2. Numerical Results

The results of the rollout predictions of the test simulations are summarized in Table 3. It is evident that
the higher error obtained in this example is due to the increased complexity of the problem. However, it
is noteworthy that despite the higher error, there is a significant improvement in time complexity. Once
trained, our model can simulate up to two orders of magnitude faster in this example compared to the finite
element solver. This reduction in time complexity can lead to faster and more efficient simulations, which
is particularly important for time-critical applications or when a large number of simulations are required.
Therefore, despite the slightly higher error, using our model can still provide a significant advantage in terms
of time and computational resources.

Advection-Diffusion problem in a 3D Stokes flow

RMSE (mean) RMSE (max) RMSE (min) tgt(s) tpred(s)

AD 3 4.37× 10−2 6.24× 10−2 1.94× 10−2 ≈ 729.42 ≈ 10.4

Table 3: Test case 3, Advection-Diffusion problem in a 3D Stokes flow. Results of the test set predic-
tions.

Upon examining the predictions in greater detail, as shown in Figure 24, a comparison can be made
between the prediction of a simulation with the obstacle positioned centrally, and its corresponding ground
truth solution. It is evident that the simulation deteriorates as it progresses toward the outflow. Unlike the 2D
case, self-adjustment is not observed in this scenario, as the nodes located to the right of the obstacle are heavily
influenced by its position. This may result in some values being underestimated in the prediction, particularly
in the tail of the flow. Unfortunately, this is a known drawback of using message passing neural networks, like
the one implemented in this study, as they tend to homogenize predictions if the network has too many nodes.
Therefore, even if the dynamics are predicted accurately, node values may be more dispersed. Furthermore,
this problem is exacerbated by an increase in the number of message passing steps, which, in this example, are
necessary for an acceptable prediction.
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Figure 24: Test case 3, Advection-Diffusion problem in a 3D Stokes flow. Prediction obtained for µ =
(0.29, 0.25). 3 time steps of simulation. First row: Rollout prediction. Second row: ground truth solution.

Nevertheless, as illustrated in Figure 25, modifying the position of the obstacle does not significantly affect
the overall accuracy of the solution. Despite the aforementioned issues, the flow pattern is captured correctly,
and no propagation errors are observed. Of remarkable importance is the consistently accurate prediction in
the proximity of the obstacle, which is always a critical aspect to be predicted. This observation underscores
the model ability to learn the geometrical properties of the problem while preserving the graph structure of the
mesh. Therefore, these results suggest that the model is sufficiently robust in predicting flow patterns in various
configurations, and can generalize well to other geometries.

Figure 25: Test case 3, Advection-Diffusion problem in a 3D Stokes flow. Prediction obtained for µ = (0.23, 0.3).
3 time steps of simulation. First row: Rollout prediction. Second row: ground truth solution.

Upon observing the L2 relative error plot on the test set in Figure 26, we can draw quantitative conclusions
regarding the previously discussed results. The plot indicates that the test error has an appropriate upper
bound and that it initially increases significantly during the first few time steps, which is consistent with the
observed prediction behavior. After the initial increase, the error gradually decays, showing that the model
has learned the underlying dynamics of the system. However, towards the end of the simulation, we observe a
slight increase in the error, which is coherent with what we have previously mentioned about the tendency of
these architectures to dispersion. This behavior may be due to the accumulation of errors during the long-term
prediction. Therefore, we can conclude that while the GNN-based model shows promising results, there is still
room for improvement in terms of accuracy and robustness.
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Figure 26: Test case 3, Advection-Diffusion problem in a 3D Stokes flow. L2 relative error vs Time plot: The
dashed lines represent the first and the third quantiles of the L2 errors among all the test predictions, while the
orange line is the median. The shaded area can be seen as a confidence region for the simulation error.

5.4. Comparison with Feed Forward Neural Networks

Feed Forward Neural Networks (FFNNs) are usually employed for building reduced-order models because they
have the capability to capture strong nonlinearity through their fully connected structure [15, 17]. Hence, we
compare the performance of a common FFNN to our GNN on the two examples discussed in Sections 5.1 and
5.2. In particular, to make things simpler for FFNN, we consider for each problem the following datasets:

• for the first Advection-Diffusion problem we let the obstacle vary only in its position, resulting in 100
simulations, among which we choose randomly 80 simulations for the training set and 20 for the test set;

• For the Advection-Diffusion problem in a 2D Stokes flow we let the bump vary in its position along
the upper and lower edges but not in its height, resulting in 125 simulations, among which we choose
randomly 100 simulations for the training set and 25 for the test set.

In order to train an FFNN, we need to bring all the simulations to the same degrees of freedom, so we
interpolate the region of interest onto a modeling 128× 128 vertices grid so that the order of the nodes in the
mesh is preserved. Then we build an Encoder-Decoder fully connected network to approximate the solution of
the system at time tn+1, given the one at time tn, as described in Equation (4). The training is performed by
one-step prediction and minimizing the batch loss in Equation (7), as already presented in Section 4.1. More-
over, we pass as input to the network a Nbatch × 128× 128× 3 tensor containing the same features as the GNN
model. Since FFNNs tend to overfit if trained for a long time, we trained the model for 500 epochs, using the
same learning rate and loss weights as the ones described in Sections 5.1 and 5.2.
The prediction at testing is done by exploiting the rollout of the simulation as shown in Equation (10) in order
to compare the robustness to propagation errors of the two models. In Figure 27 we can clearly see that the
predictions done with GNN have less variance than the ones done with FFNN. Even if the range of the errors
is similar, the GNN errors are overall better despite some anomalies.
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Figure 27: Boxplots of the RMSEs of the two predictions

Two examples of FFNN predictions on test set simulations, together with the respective GNN predictions
are shown in Figures 28 and 29. The predictions are done using the same values of geometrical parameters
in order to highlight the different performances in the generalization on unseen domains. It is indeed, evident
that there is a significant difference between using an FFNN and a GNN for solving problems that require
making inferences on the geometry. While FFNNs may capture the overall dynamic of the system quite well,
they do not consider any geometric properties of the solution. This limitation becomes particularly evident in
simple examples, which implies that the benefits of using a GNN are more pronounced when dealing with more
complex problems.

Figure 28: Test case 1, Advection - Diffusion problem. Comparison between FFNN and GNN prediction for
µ = (cx, cy) = (0.4, 0.5). First row: FFNN prediction. Second row: GNN prediction.
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Figure 29: Test case 2, Advection - Diffusion problem in a 2D Stokes flow. Comparison between FFNN and
GNN prediction for µ = (cx, cy) = (0.6, 0). First row: FFNN prediction. Second row: GNN prediction.

Another key aspect to analyze is the number of parameters of the model. The parameters of an FFNN may
increase fast due to its fully connected structure; this implies a higher tendency to overfit, as we can see from
Figure 29, and moreover, it gets the model less scalable as the complexity of the problem increases.

One solution to address both of these issues is the use of grid-based models, such as Convolutional Neural
Networks (CNNs). These models can reduce the number of parameters by sharing them, which helps to mitigate
the overfitting issue. In Equation 5, the weight matrix W and bias vector b are shared across simulations in the
CNN architecture. However, this may lead to lower prediction accuracy due to excessive generalization. This
is also a drawback of GNN models, which often struggle to propagate information globally across the mesh.

On the other hand, while CNNs can capture the dynamics of the system properly, they do not consider the
geometric structure of the problem, making them unsuitable for complex geometries. Therefore, while CNNs are
a viable alternative to FFNNs, they are not a perfect solution for problems that require the consideration of both
geometry and dynamics, such as the ones we have discussed. In this context, Mesh-Informed Neural Networks
(MINNs) are a good choice since they can incorporate geometric features into their definition. However, they
are still limited in their ability to interpolate the solution in a more general domain, where the number of nodes
in the mesh may vary.

6. Conclusions

Graph Neural Networks have been designed to perform inductive inference on the geometric structure of a
given graph-structured problem, such as a mesh-based simulation of a problem governed by PDEs. In contrast
to Feedforward Neural Networks (FFNNs) and Convolutional Neural Networks (CNNs), GNNs can naturally
handle problems with varying geometrical parameters since they intrinsically incorporate mesh features such as
the edge connectivity matrix. Moreover, since they are independent of the input degrees of freedom (dofs) of
the mesh, they can generalize to different mesh structures.
As demonstrated through the result obtained in this work, this property, referred to as the inductive capability
of GNNs, is a key advantage of this approach, and its potential is clearly illustrated. In principle, a GNN model
can be trained to solve a problem and then generalizes the solution to different domains. This is particularly
useful in time-dependent PDEs where different geometries entail different solution patterns. Therefore, the use
of GNNs can provide a powerful and flexible tool to solve physical problems modeled by PDEs, which depend
in particular on geometrical parameters, efficiently, and in a computationally tractable manner.

GNNs exhibit a lower tendency to overfit than FFNNs because the learned map Φ is the same for each mesh
node by definition. Additionally, the robustness of this model to propagation errors during rollout prediction
is another major advantage. In most of the cases presented in the examples, the GNN model successfully and
accurately simulated long rollouts using only the initial solution as input. This highlights the better ability of
GNNs to handle physical problems in a computationally efficient and robust manner.
These properties make GNNs an attractive tool for solving a wide range of physical problems, especially those
that are difficult to model using conventional approaches.
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However, it is important to note that some specific scenarios need to be considered, especially when dealing
with complex domain topologies. In such cases, the quality of the prediction may be affected by the complexity
of the geometry, which may require a finer mesh resolution and a more significant computational effort.
Additionally, another limitation of using Graph Neural Networks is the computational complexity associated
with simulating over fine meshes. This can lead to a higher number of message-passing steps, resulting in an
increased computational cost and reduced accuracy due to inefficient propagation.
Despite these challenges, the use of GNNs remains an attractive option for modeling physical problems with
complex geometries and dynamics, especially compared to FFNNs, which are limited in their ability to model
complex spatial relationships, and CNNs, which have been shown to be effective in image analysis and pro-
cessing, but they require fixed grid-like data structures, and may not be well-suited for problems with irregular
geometries.

Hence, in future research, it may be advantageous to explore the potential of combining well-established
deep learning-based reduced order models, such as autoencoders and U-Net-like architectures, with graph rep-
resentations. This hybrid approach could potentially lead to improved accuracy in predicting simulations, even
on more refined meshes, while simultaneously reducing computational complexity.
Furthermore, additional investigations could explore the use of attention mechanisms or other forms of neural
network architectures that can selectively weight the contributions of different nodes in the graph, potentially
improving the performance of the model on more complex geometries.
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Abstract in lingua italiana

Le simulazioni numeriche svolgono un ruolo chiave nella modellizzazione di sistemi fisici complessi che, in molte
discipline della Scienza e dell’Ingegneria, richiedono la soluzione di equazioni alle derivate parziali (EDP) dipen-
denti dal tempo. In questo contesto, i Full Order Models (FOM), come quelli che si basano, ad esempio, sul
metodo degli elementi finiti, possono raggiungere alti livelli di precisione, richiedono tuttavia spesso simulazioni
computazionalmente costose da eseguire. Per questo motivo, vengono sviluppati modelli surrogati al fine di sos-
tituire i solutori computazionalmente costosi con altri più efficienti, che possano garantire trade-offs favorevoli
tra accuratezza ed efficienza. Questo lavoro esplora l’applicazione di Graph Neural Networks (GNN) per la
simulazione di EDP parametrizzate dipendenti dal tempo definite su geometrie di forma variabile, che possono
essere ricondotte a grafi. Le GNN hanno recentemente dimostrato grande potenziale nella risoluzione di problemi
complessi in domini come la computer vision e il natural language processing: questa Tesi si propone di inves-
tigarne il potenziale per la simulazione numerica di EDP. Il vantaggio nell’utilizzo di GNN in questi problemi
risiede nella loro capacità di generalizzare a diverse geometrie mediante l’introduzione di una rappresentazione
grafica adatta al dominio del problema. Dopo aver passato brevemente in rassegna la classe di problemi su
cui si concentra il lavoro, viene introdotto il concetto di GNN, la sua architettura e una possibile applicazione
ai problemi basati su grafi. La Tesi propone un nuovo metodo per utilizzare le GNN per risolvere le EDP
attraverso (i) la conversione della EDP in un problema basato su grafo e (ii) il training di una GNN sul grafo
risultante. L’efficacia del metodo proposto viene valutata attraverso una serie di esperimenti che dimostrano
come la strategia investigata in questa Tesi sia superiore ai metodi numerici tradizionali in termini di efficienza
computazionale e generalizzazione a nuovi scenari.

Parole chiave: graph neural networks, equazioni alle derivate parziali, modelli surrogati
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