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1. Introduction
Soil moisture plays a crucial role as it quanti-
fies the amount of water present within the soil
matrix. It is a fundamental aspect in Earth’s
hydrological cycle and has wide-ranging applica-
tions, including agriculture, weather forecasting,
and climate modeling.
Historically, the challenge of obtaining precise
soil moisture measurements across various ter-
rains, especially in remote or inaccessible areas,
has been a significant hurdle.
Currently, there are approximately 71 Interna-
tional Soil Moisture Networks (ISMN) world-
wide, with over 2800 operational stations. These
stations offer nearly real-time soil moisture mea-
surements at specific locations. However, the
distribution of these stations globally is uneven,
leading to data gaps, especially in regions with
limited or sparse coverage of these measurement
stations.
To address these challenges, researchers have
suggested the use of satellite imagery to es-
timate soil moisture on regional and global
scales, aiming to overcome distribution limita-
tions. Advanced satellite technologies, includ-
ing integrated microwave radiometers and radar

systems, now make it possible to assess soil mois-
ture non-invasive.
In soil moisture analysis, machine learning al-
gorithms hold promise for addressing significant
challenges. Their capacity to handle non-linear
and multi-dimensional data equips them well for
modeling the complex interactions among vari-
ables that affect soil moisture levels. By train-
ing on historical datasets from the ISMN hub
and high-resolution satellite observations from
the Sentinel Program, machine learning has the
potential to develop a nuanced understanding of
the intricate correlation between remote sensing
data and actual soil moisture conditions.
This study’s primary goal is to explore and har-
ness the potential of artificial intelligence in ad-
vancing soil moisture estimation using satellite-
derived data. Additionally, this investigation
will delve into the efficacy of machine learning in
processing and integrating heterogeneous satel-
lite data sources, with the ultimate aspiration
of refining the comprehension of soil moisture
dynamics.

1



Executive summary Marco Varalla

2. Study Area
The research was conducted in the region cov-
ered by the Texas Soil Observation Network
(TxSON), which encompasses 40 monitoring
stations in a 1500 km2 grid near Fredericks-
burg, TX, between the Pedernales and Colorado
rivers. These stations monitor various site char-
acteristics, including weather and soil condi-
tions.
The study area experiences a semi-arid climate
with an average annual rainfall of approximately
30 inches. Summers are hot, often exceeding
32°C, while winters are relatively mild, aver-
aging around 15°C. The landscape consists of
rolling hills, rocky terrains, and intermittent
river valleys, leading to diverse ecosystems and
vegetation patterns.
The selection of TxSON as the study site was
based on an analysis of various networks within
the International Soil Moisture Network, consid-
ering factors like the number of satellite obser-
vations and station-to-area ratio. After evalua-
tion, TxSON was chosen due to its homogeneous
characterization of the territory. Texas’ sparsely
vegetated and arid lands make it a promising lo-
cation for gaining insights through the integra-
tion of in-situ and satellite data.
Some stations have been organized into groups,
listed in Table 1 and visible in figure 1.

Figure 1: TxSON’s Google Maps View

GROUP STATION
1 6 - 11 - 17 - 20 - 25 - 26 - 35
2 1 - 7 - 12 - 19 - 24 - 27 - 28 - 33
3 5 - 34
4 2 - 13 - 16 - 22 - 23 - 30 - 31
5 3 - 8 - 14 - 15 - 18 - 32

Table 1: Groups

Stations that are not included in these groups
have not been taken into consideration. The
identified sub-regions for the study are approx-
imately 25 square kilometers in size. Within
these sub-regions, significant variations are not
anticipated in terms of soil moisture levels, as
well as in the magnitudes of SAR images in VH
and VV polarizations, and NDVI.
The decision to select the TxSON network as
the study site was also guided by the VH-SM
and VV-SM correlations observed within each
network. Figures 2 and 3 illustrate a compar-
ison between the WegenerNet and TxSON net-
works. Notably, these figures reveal distinct cor-
relations within the TxSON network, indicating
the possibility of positive results. In contrast,
the WegenerNet network presents a more com-
plex situation.
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Figure 2: VH Amplitude vs Soil Moisture
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Figure 3: VV Amplitude vs Soil Moisture

3. Dataset
The study utilized VV and VH dual polariza-
tion GRD (level-1) radar images to gather com-
prehensive surface information and interactions,
extracted from Sentinel-1. VH polarization in-
volves transmitting radar waves vertically and
receiving them horizontally, while VV polariza-
tion involves both transmission and reception in
a vertical orientation.
Due to data availability limitations for the se-
lected region, only data from Sentinel-1A were
accessible, except for a brief time window in
June 2019. Consequently, it is decided to uti-
lize Sentinel-1A data from January 1, 2018, to
December 31, 2021. This approach resulted in
the collection of 115 observations of the region,
with an approximate frequency of one observa-
tion every 12 days, aligning with the specified
revisit time, all of which were associated with
relative orbit 107.
Regarding Sentinel-2, only two specific bands

were utilized: band-4 (Red; 665 nm) and band-8
(NIR; 865 nm). These bands were employed to
calculate the Normalized Difference Vegetation
Index (NDVI) using:

NDV I =
NIR−Red

NIR+Red
(1)

As the name suggests, NDVI is a normalized dif-
ference metric used to determine the presence of
live vegetation in the observed area. Its range
goes from -1 to 1: negative values indicate water,
values near zero suggest arid areas, and values
near 1 represent lush vegetation.
Using the ISMN, time series data for each of the
40 stations within the TxSON network were ob-
tained. To standardize the data, daily averages
were calculated from hourly time series, aggre-
gating 24 data points.
This process was applied to each of the five sta-
tion groups, ensuring consistency and facilitat-
ing comparisons with satellite observations.

4. ML Algorithms
The primary goal of the research is to determine
the optimal category and structure of machine
learning models. The main emphasis is on op-
timizing and minimizing the root mean square
error (RMSE), a crucial metric computed using
a specific formula:

RMSE =

√∑n
i=1(yi − ŷi)

2

n
(2)

Where:
⋄ yi represents the observed value
⋄ ŷi represents the predicted value
⋄ n is the total number of data points

Lower RMSE signifies a dependable and precise
model, enhancing its versatility for various ap-
plications and tasks. To reach a lower value of
RMSE, an optimization of the hyperparameters
of each model is needed.
Below, the examined models are listed. For each
of them, the corresponding MATLAB function
performed hyperparameter optimization to min-
imize the RMSE.

⋄ Linear Regression
⋄ Support Vector Machine
⋄ Random Forest
⋄ Ensemble of Learners
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⋄ Multi-Layer Perceptron
⋄ Gaussian Process Regression
⋄ Gaussian Kernel Regression

5. Methodology
5.1. Pre-processing
Satellite data from both Sentinel-1 and Sentinel-
2 are processed through distinct workflows, uti-
lizing the ESA SNAP (Sentinel Application
Platform) software.
The steps followed for Sentinel-1 are listed be-
low:

⋄ Apply orbit file
⋄ Calibration
⋄ Speckle Filtering
⋄ Terrain Flattening
⋄ Terrain Correction
⋄ Subset
⋄ Conversion

Regarding Sentinel-2 data, the process involved
taking Band 4 (red) and Band 8 (near-infrared)
into account to calculate the NDVI index (1).
Afterward, a "Subset" operation was performed
and then the conversion.
Sentinel-1A revisits the same area every 12
days, while the combined Sentinel-2 constella-
tion (Sentinel-2A and Sentinel-2B) revisits ev-
ery 5 days, although some observations may be
discarded due to cloud cover.
This time offset between the two satellite mis-
sions is noticeable.
To address this challenge, for each of the 115
Sentinel-1 images, the temporally closest avail-
able Sentinel-2 image have been linked.
In this way, 115 images for each feature are
available. Within each defined region, VH and
VV polarization images, along with NDVI data,
are extracted by cropping the primary images
into smaller segments using precise station co-
ordinates. Subsequently, median value calcula-
tions are performed on these three images. This
strategic approach helps mitigate the potential
influence of water bodies or urban areas.
Concluding the process, a database represented
as a 115x4 matrix for each group is assembled.
In this matrix, the first column corresponds to
VH, the second to VV, the third to NDVI, and
the fourth to soil moisture.

5.2. ML Phase
Each of the five databases was divided into sepa-
rate ’training’ and ’inference’ subsets, with a dis-
tribution of 75% for the first phase and 25% for
the second phase. Before this partitioning, the
database rows were shuffled to introduce greater
randomness. The following step entails the uti-
lization of MATLAB functions, enumerated in
Section 4.
After establishing the model hyperparameters,
the training database is divided into four blocks.
Using a cyclic approach, one of these blocks is
systematically excluded while the model is re-
trained (with unchanged hyperparameters) on
the remaining three blocks. This trained model
is then tested against the omitted block. By
comparing the model’s predictions to the actual
values, the Root Mean Square Error (RMSE)
is calculated, serving as a crucial discriminating
metric.
Subsequently, the inference phase occurs, where
the algorithm is tested on the portion of data
it has not encountered before, comprising the
remaining 25%. By comparing the algorithm’s
predictions with actual data, the Root Mean
Square Error (RMSE) value can be computed
for each site and configuration.
Improved performance is indicated by reduced
RMSE values in this phase. Therefore, deter-
mining the optimal architecture is synonymous
with identifying the one that exhibits the least
difference between predictions and actual values.

6. Results
In conclusion, each of the specified categories has
an associated Root Mean Square Error (RMSE)
value for both the training and inference phases.
In Figure 4, RMSE indices for both the train-
ing and inference phases of the models, for each
model, and for each site, treated as if they were
completely different networks, can be observed.

4



Executive summary Marco Varalla

Linear
SVM RF

Ensemble
MLP

GPR
Kernel

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

R
M

S
E

Group 1

Group 2

Group 3

Group 4

Group 5

(a) Training Phase

Linear
SVM RF

Ensemble
MLP

GPR
Kernel

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

R
M

S
E

Group 1

Group 2

Group 3

Group 4

Group 5

(b) Inference Phase

Figure 4: ML Models RMSEs

The superiority of the result obtained from the
GPR architecture, particularly for site 4, is
clearly evident, even when represented graphi-
cally. Table 2 displays the results, highlighting
the group with the most minimal RMSE, rela-
tive at the inference phase, for each configura-
tion.

ML Algorithm Group RMSE
Linear 4 0.043
SVM 4 0.043

Random Forest 4 0.030
Ensemble 1 0.038

Multi-Layers 1 0.038
GPR 4 0.031

Kernel 4 0.035

Table 2: Minimal RMSEs

Table 2 highlights the clear advantage of groups
1 and 4.

Nevertheless, it remains crucial to emphasize
that attaining these values relies on training and
inference architectures with site-specific data.
Employing an architecture trained on one area
and tested on another fails to produce satisfac-
tory outcomes. In order to predict the soil mois-
ture of a given region, it is necessary to have ac-
cess to historical data for that region. However,
it cannot be assumed that every region exhibits
a correlation, as is evident in the cases of groups
3 and 5 of this study.
Therefore, the creation of software that can be
used universally in every part of the globe is not
possible.

7. Conclusions
In conclusion, the fundamental objective of this
research was to analyze the intricate dataset
procured from the Sentinel Program’s satellites
and to create a globally applicable, universally
adaptable tool.
It’s apparent that these values, while moder-
ately satisfactory, display inherent variability
only among individual sites. This underscores
the infeasibility of training a model in one loca-
tion to predict soil moisture in another, different
one.
By observing the graphs in Figure 4, it becomes
evident that the Random Forest and MLP mod-
els are unsuitable for this purpose, most likely
due to the limited amount of available data.
Conversely, the GPR model, which is generally
the most suitable for low data volumes, reaffirms
its superiority.
It is evident that the use of machine learning
algorithms can produce moderately satisfactory
results in the context of soil moisture data train-
ing and prediction. However, these achieve-
ments are notably limited to a ’local’ context,
a factor not documented in any existing litera-
ture.
Currently, the aspiration of training a single
model applicable across diverse global locations
remains unattainable, diverging from the initial
overarching goal of this endeavor.
Improvements could potentially be achieved by
introducing additional variables, such as the
satellite incidence angle, or by utilizing in-situ
data specifically designed for this purpose. Al-
ternatively, exploring more advanced ML algo-
rithms remains an option. However, it is impor-
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tant to emphasize that the focus should always
be on achieving a ’local’ prediction for a region
with existing historical data.
While this may not have been the initial objec-
tive of the work, it is nonetheless satisfying to
know that it is possible to predict soil moisture
in specific areas with precise characteristics for
which historical data are available.
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