
Executive Summary of the Thesis

Formal Verification of Infrastructure as Code

Laurea Magistrale in Computer Science and Engineering

Author: Michele De Pascalis

Advisor: Prof. Matteo Pradella

Co-advisor: Dr. Michele Chiari

Academic year: 2020-2021

1. Introduction
Infrastructure-as-Code (IaC) is an infrastructure
management and software deployment method-
ology that has become prevalent in the indus-
try, shortly after the spread of cloud comput-
ing. Describing computing infrastructure in a
formal language with determined semantics, this
approach renders an array of techniques avail-
able for infrastructural code, techniques that
were originally developed targeting source code
of software programs, in the scope of software
development.
Among such techniques are those inspecting the
code to perform automatic formal verification,
including model checking. Works such as K. Ja-
yaraman et al. [8], A. Brogi et al. [3], W. Chare-
onsuk and W. Vatanawood [4], R. Shambaugh
et al. [12], J. Lepiller et al. [10], H. Yoshida et
al. [13], adopted model checking technologies to
target IaC, focusing on operational and security
properties such as idempotency, provisioning
schedule validity and exposure to vulnerabilities
during operation. M. Law and A. Russo [9] pro-
vided an example of checking logical properties
concerning the described infrastructure, through
a purposefully-developed Constraint Definition
Language (CDL).
In this work, we explore the methodologies

for performing model checking of declarative
and structural properties of infrastructure de-
scribed through IaC. We target the DevOps
Modelling Language (DOML) [6], an IaC lan-
guage developed within the scope of the PI-
ACERE project. Programming trustworthy In-
frastructure As Code in a sEcuRE framework
(PIACERE) [7] is a research project in software
engineering, funded as part of the European
Union Horizon 2020 programme, aiming to de-
velop new methodologies for IaC. This involves
the development of an IaC language (DOML),
as well as tools supporting its usage, such as,
among others, an IDE, a tool to translate it into
existing executable IaC languages, and a set of
tool to verify the validity and safety of the de-
scribed infrastructure.
Firstly, we develop two prototypes targeting
TOSCA (Topology and Orchestration Specifica-
tion for Cloud Applications, an open standard
IaC language), evaluating the fitness of logical
back-ends such as Prolog, a logic programming
language, and Z3, an SMT solver. We then
develop DOML-MC, a model checker back-end
parsing IaC written in a JSON internal format of
the DOML, and encoding it into an SMT prob-
lem.

1



Executive summary Michele De Pascalis

2. Approach
Model checking is traditionally aimed at soft-
ware verification, or more generally at the ver-
ification of dynamic systems whose behaviour
can be expressed in terms of states and transi-
tions among them (see [5]). Considering that our
work targets declarative and structural proper-
ties rather than operational ones, we did not at-
tempt to model IaC as a system with states and
transitions among them. Instead, we concen-
trated on a set of techniques known as constraint
programming.

2.1. The TOSCA Prolog prototype
Prolog is a logic programming language. In logic
programming [1], a program is specified by pro-
viding a set of implications between predicates
applied to terms, thus composing a knowledge
base. The knowledge base is then queried to
verify that a fact holds, or to find satisfying as-
signments for a set of variables in a fact.
The Prolog-based prototype parses a given
TOSCA topology template and generates facts
derived from the various TOSCA entities it in-
volves, i.e. node types, capability types, node
templates, etc. Each fact encodes details about
the involved TOSCA entities, such as prop-
erty and requirement definitions for node types,
properties and satisfied requirements for node
templates.
Some auxiliary predicates are then added to the
knowledge base, entered through a Prolog file.
These are useful to specify complex relationships
between entities, such as the type-supertype re-
lationship between node types, which is specified
as a recursive predicate.
The knowledge base constructed by the tool
can then be queried through a YAML-based
language, featuring variables, base terms corre-
sponding to the existence of TOSCA entities, a
special base term for unification, and compound
terms in which base terms are composed by a
logical connective, such as ‘and’, ‘or’ and ‘not’.
The tool was found to be efficient on a small
TOSCA topology template. However, the Pro-
log approach was discarded due to the fact that
negation in Prolog is regulated by a semantic
rule named “negation as failure”. This behaviour
is counterintuitive with respect to the semantics
of negation in Boolean and classical first-order
logic, with which an end user without experience

in logic programming is expected to be more fa-
miliar.

2.2. The TOSCA Z3 prototype
With the intention to provide a specification in-
terface that could be readily understood by a
user familiar with classical logic, Satisfiability
Modulo Theories (SMT) [2] was selected as a
candidate logical back-end representation. SMT
problems are a generalization of propositional
satisfiability (SAT) problems, extending them to
the language of first-order logic, or sub-logics of
it, and searching model with respect to (mod-
ulo) first-order theories for which model-finding
procedures exist. For some combinations of sub-
logic and theory, such as the quantifier-free frag-
ment of the logic with the theory of real arith-
metic, there are decision procedures that are
guaranteed to terminate: this is not true for
first-order logic in general.
Z3 [11] is a state-of-the-art SMT solver devel-
oped by Microsoft. It supports the most recent
capabilities in the scope of SMT solving, and
provides a convenient Python API that allows
developers to construct the target SMT problem
procedurally.
In the TOSCA Z3 prototype, the TOSCA topol-
ogy template to be analysed is parsed, and its
TOSCA entities (node types, node templates,
etc.) are encoded as finite-valued sorts. A sort is
an SMT construct that can be interpreted to be
a set in ordinary first-order logic. The relation-
ships between various entities, such as the node
type for a given node template, or the value of
a given property for a given node template, are
encoded with functions between sorts, another
construct that is made available by Z3.
Again, a small Domain-Specific Language (DSL)
was developed as an interface for the user to
query the model, completing the constructed
SMT problem. Z3 is then used to find a sat-
isfying instance by providing compatible inter-
pretations for functions and unbound constants.
The prototype was only tested on the same small
topology template, showing core solving times in
the order of magnitude of ×10−2 seconds. How-
ever, these results must be taken with care, since
the prototype cannot be considered complete:
its development was interrupted when the PI-
ACERE team working on infrastructural code
generation proposed an operable format for the

2



Executive summary Michele De Pascalis

DOML, prompting us to begin working on a tool
that would target it directly.

3. DOML-MC: a model checker
back-end for DOML

DOML-MC is a tool encoding DOML docu-
ments in an SMT problem: by adding a set of
assertions, this makes it possible to use an SMT
solver such as Z3 to verify properties of the mod-
elled infrastructure, or to complete the model to
obtain a model that satisfies such properties.
The format of the DOML used as a target for the
tool is a provisional JSON format, that was pro-
posed by the PIACERE team responsible for in-
frastructural code generation. This format was
later abandoned, but the results accomplished
in the development of the tool apply to all ver-
sions of the DOML that are designed following
the specification in [6] more or less closely.

3.1. SMT representation
The specification in [6] was used to derive a
metamodel for the DOML, which describes an
infrastructure in terms of elements belonging
to classes. Classes are related through class-
subclass relationships. Elements have attributes
and are related among themselves through asso-
ciations. An element is allowed to have a certain
attribute, or to be the source for a certain associ-
ation, if these appear in the definition of its class,
or a superclass of its class. For attributes and
associations, multiplicity bounds can be speci-
fied, e.g., if an association has an upper bound
of 1 on its multiplicity, each element can have at
most an element associated to it through such
association. The metamodel was encoded in a
machine-readable YAML format.
Tracing this metamodel, in order to represent in-
frastructural information in the SMT problem,
finite sorts are created for elements, classes, at-
tributes and associations. An additional sort en-
codes the string values found in the DOML doc-
ument as string symbols; this sort is embedded,
together with the sorts for integers and booleans,
in a tagged union sort to represent attribute val-
ues. A function is declared to relate elements
to their classes, one to relate elements and at-
tributes, and one to relate elements to elements
through associations. Then, a set of assertions,
ensuring that the interpretations for these func-
tions are coherent with the metamodel, is added

to the SMT problem.
The target DOML document is parsed and
translated to an intermediate model based on
the metamodel. This is used to provide the val-
ues for the sort of elements, and to derive a set of
assertions constraining the values of the declared
functions to match the described infrastructure.

3.2. Usage
Z3 can be used to solve the generated SMT prob-
lem as-is to ensure its coherency with the meta-
model. The added assertions are tracked with
unique labels, so that, in case of a negative an-
swer, Z3 can provide a set of reasons that is suf-
ficient to observe incoherency. In order to verify
additional properties, special assertions can be
added to the SMT problem after the base con-
struction above.
Moreover, by inserting additional values in the
sort of elements, which are not constrained by
the assertions generated from the intermediate
model, Z3 can find interpretations for the de-
clared functions that are compatible with the
metamodel assertions, or with any additional as-
sertion. This capability can be exploited to per-
form model synthesis.

3.3. Performance evaluation
DOML-MC was evaluated with four DOML doc-
uments, testing its capability to verify the ba-
sic coherency with the metamodel, and its abil-
ity to enrich a model in order to satisfy addi-
tional properties. This was performed both in
two distinct solving procedure executions, and
as a cumulative execution, to test the hypothe-
sis that the incremental solving of the enriched
problem performs better than solving the cumu-
lative problem ex novo.
The largest DOML document that was used pre-
sented 49 elements, 66 attributes and 54 associ-
ations. Over 20 iterations, the solving proce-
dure took 14 seconds to verify metamodel co-
herency, 42.43 seconds to perform model synthe-
sis with additional assertions incrementally, and
50.85 seconds to perform it non-incrementally.

4. Conclusions and future de-
velopments

The chosen approach to model checking of IaC
proved to be useful for the verification of struc-
tural properties of the targeted infrastructural

3



Executive summary Michele De Pascalis

descriptions. Moreover, due to the model-
finding capabilities of SMT solving, encoding a
metamodel describing the acceptable IaC mod-
els, and the IaC model itself as an SMT problem
has a dual advantage. By fully specifying the
target model, one can check its coherency with
the metamodel assumptions, or with any addi-
tionally specified property; by underspecifying
the target model, the SMT solver can be used
to complete the unspecified parts of the model,
and this result can be used to resynthesize an
IaC description that satisfies the provided as-
sumptions, or to derive instructions for the user
to produce the desired IaC document.
The execution times resulting from the bench-
mark show that model checking of medium-large
models is not instantaneous, but model checking
is traditionally known to present long execution
times. For a comparison with a tool undertak-
ing similar tasks, in [9] the developed verification
tool is reported to take “seconds” for most of the
models in the example repository.
The structure of the metamodel is flexible
enough to allow for the metamodels of different
infrastructural representations to be adapted to
be compatible with DOML-MC. It could thus
be worthwhile to attempt to reuse its interme-
diate model to encode and analyse different IaC
languages.
As it stands, DOML-MC is only a back-end. In
order to render it operable by the end-user, some
sort of user interface needs to be developed. This
could be in the form of an IDE integration, being
that PIACERE also focuses on the development
of an IDE, and of a specification language, as
was done in the prototypes described above.
Lastly, the metamodel extracted from [6] is too
abstract to ensure that synthesized models cor-
respond to realistic infrastructure. Additional
assertions ought to be added to the generated
SMT problem to address this problem. An ini-
tial source for assertions can be found in the con-
straints specified in [6] itself, but these will likely
not be sufficient.

References
[1] C. Baral and M. Gelfond. “Logic Program-

ming and Knowledge Representation”. In:
J. Log. Program. 19/20 (1994), pp. 73–148.
doi: 10.1016/0743-1066(94)90025-6.

[2] C. W. Barrett et al. “Satisfiability Mod-
ulo Theories”. In: Handbook of Satisfiabil-
ity. Ed. by A. Biere et al. Vol. 185. Fron-
tiers in Artificial Intelligence and Applica-
tions. IOS Press, 2009, pp. 825–885. doi:
10.3233/978-1-58603-929-5-825.

[3] A. Brogi, A. Canciani, and J. Soldani.
“Modelling and Analysing Cloud Appli-
cation Management”. In: Proc. 4th Eur.
Conf. Service Oriented Cloud Comput.
ESOCC’15. Vol. 9306. LNCS. Springer,
2015, pp. 19–33. doi: 10.1007/978- 3-
319-24072-5_2.

[4] W. Chareonsuk and W. Vatanawood.
“Formal verification of cloud orchestra-
tion design with TOSCA and BPEL”.
In: 2016 13th International Conference on
Electrical Engineering/Electronics, Com-
puter, Telecommunications and Informa-
tion Technology, ECTI-CON 2016 (Sept.
2016). ISBN: 9781467397490 Publisher:
Institute of Electrical and Electronics En-
gineers Inc. doi: 10.1109/ECTICON.2016.
7561358.

[5] E. M. Clarke et al., eds. Handbook of Model
Checking. Springer, 2018. isbn: 978-3-319-
10574-1. doi: 10 . 1007 / 978 - 3 - 319 -
10575-8.

[6] P. Consortium. Deliverable D3.1: PI-
ACERE Abstractions, DOML and DOML-
E - v1. https://www.piacere-project.
eu/public-deliverables. 2021.

[7] P. Consortium. PIACERE. Programming
trustworthy Infrastructure As Code in a
sEcuRE framework. Horizon 2020 project
proposal, ID: 101000162. 2020.

[8] K. Jayaraman et al. Automated Anal-
ysis and Debugging of Network Con-
nectivity Policies. Tech. rep. MSR-TR-
2014-102. Microsoft, 2014. url: https :
/ / www . microsoft . com / en - us /
research / publication / automated -
analysis-and-debugging-of-network-
connectivity-policies/.

[9] M. Law and A. Russo. Deliverable D4.1:
Constraint Definition Language. https://
radon- h2020.eu/2020/03/06/radon-
constraint - definition - language -
and-its-associated-vt/. 2019.

4

https://doi.org/10.1016/0743-1066(94)90025-6
https://doi.org/10.3233/978-1-58603-929-5-825
https://doi.org/10.1007/978-3-319-24072-5_2
https://doi.org/10.1007/978-3-319-24072-5_2
https://doi.org/10.1109/ECTICON.2016.7561358
https://doi.org/10.1109/ECTICON.2016.7561358
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/978-3-319-10575-8
https://www.piacere-project.eu/public-deliverables
https://www.piacere-project.eu/public-deliverables
https://www.microsoft.com/en-us/research/publication/automated-analysis-and-debugging-of-network-connectivity-policies/
https://www.microsoft.com/en-us/research/publication/automated-analysis-and-debugging-of-network-connectivity-policies/
https://www.microsoft.com/en-us/research/publication/automated-analysis-and-debugging-of-network-connectivity-policies/
https://www.microsoft.com/en-us/research/publication/automated-analysis-and-debugging-of-network-connectivity-policies/
https://www.microsoft.com/en-us/research/publication/automated-analysis-and-debugging-of-network-connectivity-policies/
https://radon-h2020.eu/2020/03/06/radon-constraint-definition-language-and-its-associated-vt/
https://radon-h2020.eu/2020/03/06/radon-constraint-definition-language-and-its-associated-vt/
https://radon-h2020.eu/2020/03/06/radon-constraint-definition-language-and-its-associated-vt/
https://radon-h2020.eu/2020/03/06/radon-constraint-definition-language-and-its-associated-vt/


Executive summary Michele De Pascalis

[10] J. Lepiller et al. “Analyzing Infrastructure
as Code to Prevent Intra-update Snip-
ing Vulnerabilities”. In: Proc. 27th Int.
Conf. Tools Alg. for the Constr. and Anal.
of Syst., TACAS’21, Part II. Vol. 12652.
LNCS. Springer, 2021, pp. 105–123. doi:
10.1007/978-3-030-72013-1_6.

[11] L. M. de Moura and N. Bjørner. “Z3: An
Efficient SMT Solver”. In: Tools and Al-
gorithms for the Construction and Anal-
ysis of Systems, 14th International Con-
ference, TACAS 2008, Held as Part of
the Joint European Conferences on The-
ory and Practice of Software, ETAPS
2008, Budapest, Hungary, March 29-April
6, 2008. Proceedings. Ed. by C. R. Ra-
makrishnan and J. Rehof. Vol. 4963. Lec-
ture Notes in Computer Science. Springer,
2008, pp. 337–340. doi: 10.1007/978-3-
540-78800-3_24.

[12] R. Shambaugh, A. Weiss, and A. Guha.
“Rehearsal: a configuration verification
tool for puppet”. In: Proc. 37th ACM SIG-
PLAN Conf. Program. Lang. Des. Impl.,
PLDI’16. ACM, 2016, pp. 416–430. doi:
10.1145/2908080.2908083.

[13] H. Yoshida, K. Ogata, and K. Futatsugi.
“Formalization and Verification of Declar-
ative Cloud Orchestration”. In: Proc. 17th
Int. Conf. Formal Methods Softw. Eng.,
ICFEM’15. Vol. 9407. LNCS. Springer,
2015, pp. 33–49. doi: 10.1007/978- 3-
319-25423-4_3.

5

https://doi.org/10.1007/978-3-030-72013-1_6
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/2908080.2908083
https://doi.org/10.1007/978-3-319-25423-4_3
https://doi.org/10.1007/978-3-319-25423-4_3

	Introduction
	Approach
	The TOSCA Prolog prototype
	The TOSCA Z3 prototype

	DOML-MC: a model checker back-end for DOML
	SMT representation
	Usage
	Performance evaluation

	Conclusions and future developments

