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Abstract

Multiple Sclerosis, MS, is a chronic neurological disease, that entails cognitive impairment in 40%
to 70% of cases, and one of the most affected cognitive domains is information processing speed,
IPS. Mainly due to demyelination, a characteristic phenomenon of multiple sclerosis, a delay in the
conduction velocity characterizing the communication between brain regions is introduced. This
thesis implements a neurocomputational model, the time-delayed coupled oscillators, to assess the
impairment of the conduction velocity, and hence IPS. Given a MEG dataset including 50 healthy
and 100 MS subjects, the resting-state brain activity is evaluated by computing the Functional
Connectivity, FC, matrix; in parallel, the simulated FC is inferred from brain resting-state activity
simulated by the model when it is given in input the structural connectivity of the subject or group
in analysis. Empirical and Simulated FC are correlated to elicit the optimal model parameter, τ ,
time delay, that permits the model to emulate the brain resting-state dynamics at the best. This
parameter represents a delay between brain regions network interactions, due to finite conduction
velocity, and it is expected to vary in agreement with IPS impairment. The model’s performances
are consistent with literature results when healthy subjects are investigated. Moreover, the optimal
conduction delay τ shows some variations between the simulations of the healthy and the MS
population, depicting the model ability to simulate the impairment in the conduction velocity.
However, the variations detected at group level are not elicited in the subject specific simulations,
where τ variations do not seem to correlate with CI features. The limitation can be related to
the static perspective of the investigation, and future analyses might consider optimizing model
parameters by matching the simulated and empirical dynamic properties of the brain activity.
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Sommario

La sclerosi multipla è una malattia neurodegenerativa che colpisce il sistema nervoso, e comporta
un deterioramento cognitivo nel 40-70% dei pazienti, colpendo particolarmente il dominio della ve-
locità di elaborazione delle informazioni. A causa del fenomeno di demielinizzazione caratteristico
della sclerosi multipla, è introdotto un ritardo nella velocità di comunicazione tra distinte regioni
cerebrali. Questa tesi ha lo scopo di investigare il deterioramento della velocità di elaborazione
attraverso l’implementazione di un modello computazionale di oscillatori accoppiati con ritardo
temporale. Da un dataset di 150 soggetti, 50 sani e 100 pazienti con sclerosi multipla, l’attività
cerebrale a risposo acquisita attraverso magnetoencefalografia è analizzata attraverso l’estrazione
della matrice di connettività funzionale statica. Attraverso la correlazione della connettività fun-
zionale sperimentale con quella simulata, estratta dalla attività cerebrale simulata dal modello, si
identifica il parametro ottimale τ che permette al modello di emulare l’attività magnetoencega-
lografica. Questo parametro identifica il ritardo temporale nella comunicazione tra distinte aree
cerebrali, e si ipotizza l’identificazione di un incremento di questo ritardo, e dunque del parametro
τ , nella popolazione di pazienti con sclerosi multipla, data la compromissione della velocità di
elaborazione delle informazioni. Le prestazioni del modello sono coerenti con i risultati della let-
teratura quando vengono studiati soggetti sani. Nel confronto delle prestazioni del modello quando
sono considerate la popolazione sana e quella dei pazienti con sclerosi multipla, si rileva una vari-
azione del parametro ottimale τ , e dunque il modello sembra simulare il ritardo di conduzione
caratteristico della patologia. Invece, i parametri τ delle simulazioni sui singoli soggetti non sem-
brano riprodurre i risultati ottenuti nelle analisi a livello di popolazione. La principale limitazione
riguarda la prospettiva statica dell’indagine e analisi future potrebbero prendere in considerazione
l’ottimizzazione dei parametri del modello facendo corrispondere le proprietà dinamiche simulate
ed empiriche dell’attività cerebrale.

Parole Chiave: Sclerosi Multipla, MEG, Modello computazionale, Modello di Kuramoto.
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Chapter 1

Introduction

In order to properly understand the work conducted throughout this thesis, this introduction
illustrates briefly the context of research, and introduces some concepts and key-points which the
further analysis refers to. Therefore, this section does not aim at being exhaustive, but at defining
a backbone knowledge for the following sections. Based on these considerations, some anatomical
and physiological aspects of the Central Nervous System, CNS, are presented, as well as the bases
and mechanisms of some neuroimaging techniques used to study both the neuroanatomy and
neurophysiology.
Before developing this chapter, a small paragraph introduces the research objectives of this thesis,
to contextualize the work.
This section’s references are mainly [9, 10, 11], unless it is specified that another source is cited.

Aims

Cognition is a commonly impaired trait in neurodegenerative diseases, such Multiple Sclerosis,
MS [12, 13]. Late researches aim to identify reliable and objective parameters, biomarkers, that
can overcome the pitfalls of neuropsychological tests, and provide a quantitative measure of the
cognitive impairment [14]. These markers can be extracted by the employment of neuroimaging
techniques and neurocomputational models, studying the performances of the model parameters
in function of the different pato-physiological conditions. This thesis is developed in this research
context, aiming to find a quantitative measure that can be related to the impairment of the specific
cognitive domain, information processing speed, IPS. The analysis is conducted on an extended
MEG dataset containing both healthy and MS subjects, and a novel neurocomputational model,
the time-delayed coupled oscillators is applied. The work consists in three major work parts:

1. Validation of the model: the first important analysis consists in reproducing the important
literature results proposed by Cabral et al. [5]. By applying the modified Kuramoto Model
on the available dataset, the model performances are validated.

2. Population level analysis: the model is employed to simulate the activity of groups of
subjects with different conditions: Healthy, MS, MS-Benzo+. A qualitative evaluation of the
model performances is conducted.

3. Subject level analysis: the model is used to simulate subject brain activity. The final
analysis aims at identifying the potential model parameter that traces the subject pathological
condition.
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1.1 The Brain

The brain, together with the spinal cord, constitutes the central nervous system, CNS. This is one
of the most complex systems in the human body, both considering its functionality, which is not
yet completely understood, and its anatomical structure. The development and arrangement of
the functional and anatomical building block, the neuron, resemble a network. Each network’s
thread is composed of a series of neurons that, communicating with each other, transfer the in-
formation between different network’s nodes. This description focuses on the microscopic level,
but a parallelism is observed between the microscopic and macroscopic organization of the CNS[8].
Consequently, the macroscopic structure of the brain can be investigated as a network as well. In
the following section, how this network is built and its characteristics are described. One of the
most characteristic aspects of the brain, is the intrinsic relationship between structure and function
of each component, and this dissertation aims at highlighting this aspect.

1.1.1 Microscopic Level

Anatomy

At cellular scale, the structural and functional building block of the CNS is found: the neuron.
This has the intrinsic characteristic to be electrically sensible: the information within the cell is
coded as an electrical signal. There are several morphologies of neurons, nevertheless, four main
parts are always identifiable. These four structures vary among neurons’ typologies, depending on
the neuron’s anatomical location and function. Below, each component is described, and displayed
in figure 1.1:

• Dendrites: cell’s hair.
Dendrites are protuberances detecting adjacent neuronal activity. These function as receiving
channels for the incoming information.

• Soma: cell’s body.
In this portion, the information coming from neighboring neuronal activity is processed and
integrated both spatially and temporally.

• Axon: cell’s tail.
This component embodies the channel along which the information is transferred from the
soma to the opposite extremity. The beginning part of the axon is entitled as the Axon
Hillock. This region is characterized by a trigger zone where an Action Potential, AP, can
arise, when specific conditions are fulfilled. This phenomenon is explained in the following
section 1.1.1, here it is referred as a general electrical event. The length of an axon can
vary from a few mm to about a meter, depending on the anatomical location of the cell.
Most of the neurons have their axons partially wrapped into a myelin sheath, and for this
characteristic these are defined myelinated neurons. This is an important aspect affecting
the conduction velocity. This last concerns the speed of information transfer along the axon.

• Synaptic Terminal: cell’s hand.
This part characterizes the neuron’s terminal region, where the AP is transmitted to the
following step of communication, the post-synaptic neuron. The phenomenon concerning the
information transfer is defined synapsis, and it is explained in the following section.
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Figure 1.1: Brain functional and structural building block:
The Neuron. Four main parts of the structure are identified,
with the related features.

Here it is introduced the second group of cells presents in the central nervous system: the non-neural
cells or Glia cells. These compose a big and varied ensemble, whose roles consist in supporting
and sustaining the neurons’ structure and functionality. The following figure 1.2 shows a scheme
of the main typologies of Glia cells, with the related functions.

Figure 1.2: In this table, the main types of non-neuronal cells are presented, with the related functions and roles
in the CNS.

The group of non-neural cells that is worth mentioning concerns the Oligodendrocytes. These cells
are responsible for building the myelin sheaths around the axons. The characteristic Olygodendro-
cytes’ protuberances are flat structures of two membrane layers with a very thin intracellular space
in between, that wrap the neuronal axon in defined regions, creating an extra concentric layer of
plasma membrane, the sheath, figure 1.3. This structure is lipid, therefore, it allows to electrically
isolate the axon from the extracellular space, decreasing the ionic and water leakages towards the
outside, and increasing the conduction velocity along the axon.
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Figure 1.3: This picture presents
a zoom on the structural interaction
between an Oligodendrocyte and an
axon.

A single oligodendrocyte can provide myelin sheaths to different neuronal axons. However, these
coated layers do not cover the whole axon’s length, but only small portions, which are interposed
by unmyelinated regions, the nodes of Ranvier, as shown in figure 1.3.

Physiology: The Action Potential

As mentioned in the previous section, neurons are electrically sensible cells, which code the infor-
mation as an electrical signal identified as an action potential, AP. Following, the functions related
to the anatomy previously described is briefly introduced.

Action Potential

The cellular membrane is a semipermeable structure composed of a lipid double layer. Small and
uncharged substances pass through the membrane, while big and/or charged molecules can cross
the membrane through specific protein-based structures, the ionic channels, shown in figure 1.4.
These channels can either be passive or active. Those demanding energy to move a particle from the
intracellular to the extracellular space or vice versa are defined as active. An example of an active
ionic channel is the Na-K pump. As shown in figure 1.4, this channel transports 2 atoms of K+

inside the cell, and 3 atoms of Na+ outside, moving the particles against gradient of concentration.
Instead, the diffusive movement occurs through passive channels, and it is driven by a difference
in ionic concentration among the extracellular and intracellular space. Considering Na+ and K+,
the velocity of the active transfer does not match the one related to free ionic movement, and a
difference in chemical and ionic composition between intracellular and extracellular spaces occurs.
Consequently, an electric voltage gradient is developed over the cellular membrane, the Membrane
Potential. Generally, a resting membrane potential is set around −70mV , and no specific cellular
activity is associated to it.
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Figure 1.4: This figure pictures an active Na-K Channel,
describing how the Membrane Potential is developed.

Changes in membrane potential are induced by variations in membrane’s permeability to specific
ions, due to inter-cellular interactions defined as synapses; these can be either electrical or chemi-
cal interactions. Electrical synapses are based on direct communication channels between neurons,
allowing fast information transfer. On the other hand, chemical synapses convert the electrical
information into a chemical event, in which a certain type and amount of chemical transmitters,
neurotransmitters, are released by the pre-synaptic neuron. These are detected by neighbour-
ing neurons’ dendrites by specific bounding receptors. This interaction induces changes in the
membrane permeability of the post-synaptic neuron, and an ionic current alters the membrane
potential. The interaction is defined as inhibitory, IPS, when the membrane potential is decreased,
while an excitatory synapses, EPS, increases the membrane potential. One neuron takes part to
several synapsis as a post-synaptic neuron, and all the resulting interactions at the level of its
dendrites, are then integrated both in time and space, to elicit the overall outcome. This last is
coded in the resulting membrane potential. When this reaches a certain threshold, e.g. −55mV , an
action potential is triggered at the Axon Hillock. This is an all-or-nothing event, where a cascade
of events concerning different ionic currents makes the membrane potential fluctuate in a specific
point of the axon. The mechanisms characterizing this process are shown in figure 1.5.

Figure 1.5: The cascade of events characterizing an Action Potential is shown.

When an action potential arises, the ionic currents involved induce relative currents in the adjacent
regions, which make the membrane potential vary in these points, as pictured in figure 1.6. When
the perturbation takes the membrane potential of the adjacent axonal point above the threshold,
a new AP occurs, and the same process is repeated. The recurrence of an AP along an axon
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characterizes the mechanism employed to transfer information along the axon itself, and, depending
on the neuronal structure, the conduction speed can vary. In fact, the AP arises every infinitesimal
portion of axon when this last is unmyelinated. Therefore, the conduction speed results very slow,
about 2 m/s, and due to spontaneous ionic diffusion, the propagating current is partially lost along
the axon. Conversely, the conduction velocity is very high concerning a myelinated axon, from 5
to 120 m/s, depending on the axon’s diameter and length. In this case, the AP arises only in the
nodes of Ranvier, whilst the current runs undisturbed between nodes, where the axon is wrapped
into a myelin sheath. This characteristic conduction mechanism is defined as saltatory conduction.
The lipid sheath increases the resistance of the plasma membrane, and the probability of current
leaking is very low, as shown in figure 1.6. When a neurological disease affects the conduction
velocity, this is the disrupted mechanism.

Figure 1.6: A) The mechanism of saltatory conduction in a myelinated
neuron is displayed. B) The mechanism of Non-saltatory conduction in a
non-myelinated neuron is presented. The figure shows how the action po-
tential affects adjacent regions, generating currents that modify the adjacent
membrane potential. This creates the condition to trigger a second action
potential in the following point.

1.1.2 Macroscopic Level

Anatomy

The following step of discussion concerns the investigation of the brain’s structure above the cellular
level. At this scale, two parts can be identified in the brain, based on two different colors: white
and grey matter, recognizable in figure 1.7. The former consists of an aggregation of neuronal
somas; the latter, instead, is composed of bundles of axons, and the characteristic white color is
given by the presence of myelin sheaths, lipid components.
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Figure 1.7: In this figure an horizon-
tal cross-section of the brain is shown.
Two parts are identifiable, character-
ized by two different colors, Grey and
White matters.

Anatomically, the brain is divided into two hemispheres which have almost the same symmetrical
structure. The division can be identified by the longitudinal fissure, a big groove splitting the brain
into two halves, two hemispheres, characteristics observable in figure 1.8. For each hemisphere, the
cortex, the outer surface of the whole brain, is divided into four lobes: frontal, parietal, temporal
and occipital, figure 1.11. Each lobe contains grey matter involved in the processing of specific
functions. Focusing on white matter, the fibers are classified considering which brain regions they
connect. The commissural fibers run across the corpus callosum connecting the two hemispheres,
the association fibers connect regions within the same hemisphere, and last, the projection fibers
bond cortical with non-cortical regions, figure 1.8.

Figure 1.8: This figure shows bundles
of fibers connecting different parts of
the brain.

The cortex is characterized by a folded-like shape, creating sulci and gyri. This configuration
allows to increase the total brain surface, and therefore, the amount of grey matter in the cortex.
Microscopically, pyramidal neurons are the cortical functional and structural units of this portion.
These have triangular body, spread branches-like dendrites, and their axons run perpendicular to
the cortical surface. Groups of pyramidal neurons develop their axons all in parallel. The cortex’
thickness is about 2 − 4 mm, and 6 different layers are identified along the axonal lengthening
direction by grouping of pyramidal somas, as shown in figure 1.9.
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Figure 1.9: Pyramidal Neurons. Their characteristic dispo-
sition in the cortical region is displayed, showing the different
layers.

Physiology: what is brain activity at the macroscopic level?

A step forward concerns the investigation of macroscopic brain activity, starting from the micro-
scopic activity described in the previous section. Microscopically, an action potential causes a
membrane potential variation of about 80mV , and this provokes an extracellular current, defined
as secondary current. This last evokes a very small voltage potential of about 600µV next to the
neuron’s membrane. However, due to its small amplitude, this potential is dissipated in the range
of sub-mm. These processes are shown in figure 1.10.

Figure 1.10: This figure displays the primary and secondary
currents concerning a pyramidal neuron. When several of
these structures are put in parallel, a summation of secondary
currents occur both in time and space.

However, a particular case concerns pyramidal neurons. Groups of neighbouring pyramidal cells
work close together to accomplish the same function, and this phenomenon is displayed by simul-
taneous firing. The parallel arrangement of pyramidal neurons make the related action potentials
run in parallel, and a summation of all the secondary currents occurs. This can reach the skull,
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developing an electrical voltage of about 100µV , detectable on the scalp surface. This last quantity
is the macroscopic expression of microscopic activity, which cannot be investigated directly, unless
invasively. However, depending on the scale of examination, the number of functional segregated
regions in the brain can vary. An observation follows: when conducting an investigation regarding
brain’s anatomy or physiology, a proper observational scale must be selected, to identify the brain
functional parcellation that better corresponds to the objective of investigation. In figure 1.11, a
very common and general functional subdivision of the cortex is shown.

Figure 1.11: Sagittal section of the brain showing the macroscopic struc-
tures.

To date, a general neuranatomical and neurophysiological description of the brain is presented,
considering a normal condition, a healthy brain; what happens when the brain functionality or
structure is damaged? What is a neurological disease? In this work, the neurological disease in
analysis is Multiple Sclerosis, MS, and the following section presents an overview on the pathology.

1.2 Multiple Sclerosis

Multiple Sclerosis (MS) is one of the most common chronic and non-traumatic diseases that affect
the Central Nervous System, interesting about 2 to 2.5 million people worldwide[2, 12]. It is
diagnosed mostly between young adults, in the age-range of 20− 40 years old, and the lifespan is
reduced of about 5−10 years in average[15]. Multiple Sclerosis is more common among women, with
a lifetime risk of 2.5%, against the 1.4% for men, representing an important health and economic
burden for the community[12, 16]. Although it is increasingly considered a global disease, it is
known to be unevenly distributed worldwide[2, 16].

1.2.1 MS Pathology

Multiple Sclerosis is a heterogeneous and complex disease when its pathophysiology is examined.
The physiological mechanisms underlying this pathology are inflammation, demyelination and
neurodegeneration[17, 18]. At first, MS was considered to affect mainly white matter; however,
recent studies show the importance and burden of grey matter damages, as well[1].

Traditionally, MS is considered an autoimmune disease driven by activated and autoreactive T-
cells. These transmigrate through the blood-brain barrier, and develop lesions characterized by a
particular inflammatory process. This inflammation triggers demyelination and neural or axonal
damage, which might vary in intensity depending on the tissue susceptibility, and the intensity of
the autoimmune reaction. The occurrence of these lesions is scattered all over the CNS, and it
is characterized by a high inter-subject variability[18, 19]. In figure 1.12, two possible pathways
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are shown to explain the possible relationships between different mechanisms producing a lesion.
Pathway A shows the most traditional causal interactions. On the other side, pathway B displays
a new perspective, where atrophy and neurodegeneration trigger the autoimmune reaction that
causes inflammation. To date, there is no more or less plausible pathway, and the discussion is
still open[1].

Figure 1.12: The three patho-physiological mechanisms are displayed, in the blue block the immune
response, in the yellow one the inflammatory process and in the pink block neurodegeneration. Two
workflows, A and B, show how these mechanisms interplay and might be related[1].

Each mechanism is characterized by several possible origins and development pathways. Consider-
ing inflammation, this impairs myelin sheaths, making the wrapped axonal structure damageable.
Furthermore, inflammation can disrupt the metabolism of support-myelin oligodendrocytes, re-
sulting in the same demyelination effect[19]. Despite this general description of demyelination and
inflammation, four patterns are identified in which several factors are involved. These are de-
scribed in figure 1.13. Next to demyelination, remyelination might occur in early stages, however,
the healing process becomes more and more partial along the disease progression. The debate is

Figure 1.13: Four possible patterns for inflammatory processes.

still open on the mechanism underlying the neurodegeneration process affecting grey matter. Due
to a shortage in myelin, these regions are more likely to be affected by inflammation, compared
to white matter regions. Nevertheless, grey matter damages concern also atrophy, which might be
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related to an indirect neuronal degeneration mechanism. Although white and grey matter damag-
ing processes might seem similar, they are found to be independent. Moreover, lesions located in
the brain or in the spinal cord are observed to develop independently as well[20]. The proposed
considerations refer mainly to an early stage of relapsing MS; however, when a progressive case
is evaluated, different characteristics in the neurodegenerative process are highlighted. In fact,
neurodegeneration becomes a relentless process of death and decay of neural structures, and au-
toimmune treatments are less effective. This might be caused by an impossibility to reach the
lesion that is chronically active and slowly expanding, due to the blood-brain barrier[20]. This
brief overview on the mechanisms underlying MS shows the complexity of this pathology. Each
mechanism is associated to the patient’s sensitivity and correlated factors, meaning that this mech-
anisms are extremely individual-dependent[2, 19]. Given these last observations, one can assume
the limited efficacy of therapies.

1.2.2 Origin and Causes

A unique and certain cause underlying Multiple Sclerosis is not found yet. Nevertheless, several
studies show that an interplay of genetic and environmental factors guides the development of this
disease[15, 16]. As far as genetics is concerned, MS is not considered a hereditary disease[2, 21].
Despite this, a genetic contribution is strongly increasing with respect to the rest of the involved
factors. The evidence supporting this statement concerns the growing risk to develop MS, when it
is already exhibited in siblings[1]. Moving to consider the environmental factors, the phenomenon
is multifaceted and heterogeneous, which leads to different ways to approach the topic. Some
population-based studies show an uneven geographic spread of the disease, supporting the finding
for which environmental factors affect MS development. One of the geographic factors is the
Latitude[2]. In fact, countries higher in latitude, such as in northern Europe, are more likely to
present bigger MS population with respect to country such as central America or central Africa.
First, it is observable that the two mentioned regions are very different, both considering the size of
the population and the degree of development. Therefore, it is important to take into consideration
that the number of identified cases is bigger in much populated areas, and in those countries
where there are more resources to detect and monitor this pathology. Nevertheless, intrinsic
environmental factors are considered as well. One worth mentioning is the sunlight exposure,
and related to this, the Vitamin D concentration. Although the real role of vitamin D is still to
be investigated, this is considered an important protective agent against axonal damage[2, 16].
Therefore, in countries where sun exposure is relatively low, the risk of developing MS is higher.
Moreover, migrating in these countries before the age of 15, can also be considered an additional
risk, which highlights the importance of the time of exposure. Childhood and adolescence are
critical time frames, as well as the gestational period[2, 16]. Two more factors are listed: smoking
and Epstein-Barr virus[15, 16]. As far as this brief analysis is concerned, one can notice the
complexity and heterogeneity of MS in terms of causes and thus, possible prevention strategies[2,
21].

1.2.3 Classification

MS can be classified regarding the course observed at disease onset. Two main classes are identified,
the relapsing onset MS and the progressive onset MS[2]. Despite this distinction, in some cases,
features concerning both domains can appear, especially when the disease enters late stages. Before
MS diagnosis, there is a stage defined as clinically isolated syndrome, whereby a single relapse
occurs. A relapse is an event characterized by an “acute inflammation and demyelination of a
specific CNS region, that lasts for at least 24 hours, and in absence of fever and infections”[2, 22].
Afterwards, the probability to develop MS increases with aging and time[15].
The first and most frequent class is Relapsing/Remitting MS, RRMS, which occurs in 85% of the
MS patients. The onset age is set around 25 years old, and women are twice as likely to be affected
as men[1]. A relapse characterizes RRMS onset and its development. This episode occurs with a
rate of once every two years, however, the course of this event is random, and unpredictable[15].
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After a relapse, a recover period follows over days or weeks, leading to a partial or total recovery.
Typical relapses’ effects result in optic neuritis, sensory deficits or cerebellar dysfunctions[2, 16].
Primary progressive MS, PPMS, is the second most frequent MS class. This condition affects
approximately 15% of the MS patients, without gender preference. The age at which the disease
onset is observed around 40 years old[1, 23]. In this case no relapses occur, but the pathophysiology
is characterized by white and grey matter atrophy, and neuro-degenerative processes take place
dominantly. This condition is mainly characterized by spinal symptoms such as gait ataxia, paresis
and spasticity. Although in a pure progressive form no relapses are identified, in 40% of the cases
relapses occur along the disease progression; this condition is pointed as progressive relapsing MS,
PRMS [2]. Another progressive form exists, the secondary progressive MS, SPMS [2]. This condition
is not diagnosed as a primary form of MS. However, it represents the second stage of a RRMS, and
it is identified once the disease enters in a stage characterized by a gradual and continuous disease
progress and worsening[2]. In certain cases, superimposed relapses can be shown in this stage as
well. The following figure 1.14 shows the different MS typologies just described.

Figure 1.14: MS classification[2]

1.2.4 Symptoms, Cognitive Impairment and Assessment

Considering MS symptoms, a broad range involves motor, cognitive and neuropsychiatric aspects[13].
Physical and cognitive impairments are totally independent, and this makes the analysis more
complicated[13]. In general, symptoms depend on where lesions occur, and how much white and
grey matter is involved[15]. Moreover, the stage of the disease must be considered[16].

Multiple Sclerosis entails Cognitive Impairment in 40% − 70% of the MS cases[12, 13]. CI is
detected in early stages of the disease, and its progress follows the disease course, yielding a
possible marker for both MS detection and tracing of disease progression. Among all the cognitive
domains, MS is found to affect only a few of them, and always the same: long-term memory,
attention, information processing speed IPS, executive function, and learning[12]. Information
processing efficiency and speed, are both impaired and the most disrupted cognitive domains in
MS[13]. Information processing efficiency refers to the ability of working and elaborating the
information stored in the working memory; whereas information processing speed refers to the
velocity of elaboration. In order to assess cognitive impairment, the International Conference of
MS Experts proposes a battery of 7 tests. These are referred as BICAMS, allowing to access all the
impaired domains involved in MS[13]. Two tests are worth mentioning: the Expanded Disability
Status Scala EDSS and the Multiple Sclerosis Functional Composite MSFC. EDSS scores motor or
sensory-related performances in a scale with 8 functional systems, each one defined by a different
degree of pathological severity. MSFC rates also cognitive performances[24]. The employment of
tests in clinical practice entails some drawbacks. Patients tent to improve the performance due
to practice-effects[14]. In addition to this, neuropsychological tests are time consuming, and the
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performance is operator-dependent. In order to provide more reliable and objective assessments,
neuroimaging techniques are more and more employed in clinical practise and research[13, 14]. In
agreement with this, McDonald criteria for MS diagnosis have been reviewed in 2017, in order
to insert parameters and findings acquired by Neuroimaging Techniques[15]. This new diagnosis
approach is driven by two lesion-based criteria: dissemination in space and dissemination in time:
lesions must occur in different CNS regions, and new lesions must be displayed with respect to
a baseline scan. Depending on the location and spread of a lesion, different sets of symptoms
can arise. This consideration introduces an additional challenge, and a low correlation between
the radiological measurements and the actual physical or cognitive impairment is inferred. This
phenomenon is addressed as clinico-radiological paradox, and it limits the employment of medical
imaging techniques in clinical practise[24, 14]. Therefore, to extract useful information by the
analysis of neuroimaging results, new biomarkers are required.

Among all the features characterizing this complex pathology, this thesis focuses on a specific
cognitive domain: the Information Processing Speed, IPS. Due to demyelination and neurodegen-
eration, this cognitive domain is impaired, and a delay is introduced in the process of information
transfer. This work aims at finding a biomarker to detect IPS impairment in Multiple Sclerosis.

1.3 Neuro-Imaging Techniques

In neuroscience, imaging techniques are employed to investigate the neurophysiology and the neu-
roanatomy, in healthy and pathological conditions. It is important that both these cases are eval-
uated, to understand the disease’s effects on a healthy brain. In figure 1.15, imaging techniques
are grouped into two classes, structural and functional investigation techniques.

Figure 1.15: Imaging techniques are divided in two classes:
functional and structural investigation techniques.

Another important classification concerns the spatio-temporal resolution, figure 1.16. When de-
signing an experiment, it is very important to choose an investigation technique characterized by
a proper spatio-temporal resolution with respect to the aim of the examination. Furthermore,
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another set of parameters affecting this choice concerns the technique’s sensitivity and specificity
for a certain physiological signal, the technique’s invasiveness, and possible artifacts.

Figure 1.16: In this figure, some of the available imaging
techniques are located in the spatio-temporal resolution plot.

The following sections aim at providing an overview on the techniques that have been employed
to acquire the dataset utilized along this thesis.

1.3.1 Structural Investigation

Investigating brain anatomy is a challenge that researchers are pursuing for several decades already.
They aim at accessing the brain anatomy in a non-invasive way, and with high spatial resolution[25,
26]. The technique described in this section is Magnetic Resonance Imaging, MRI, since it is one of
the most employed techniques in neuroimaging, and part of this thesis relies on MRI data. During
this last decade, MRI has gained a lot in popularity, especially for its high spatial resolution and the
non-ionic physics involved. This technique has lots of potentialities, and enables the investigations
of different aspects of the brain anatomy, such as the identification of white and grey matter
regions, or the distribution of white matter tracts. Furthermore, MRI can be also employed in
functional investigations[25, 27].

MRI: Working Principle

The first important quantity to introduce is the spin angular momentum, which is an intrinsic
property of each atomic particle, proton, neutron, and electron. When it comes to a nucleus,
the total spin momentum depends on its composition. In the human body, the atom that is
present in the largest quantity is the Hydrogen, whose nucleus spin angular momentum is ± 1

2 . As
a proton, Hydrogen is characterized by a magnetic momentum[10], and MRI technique exploits
this last property to image the protons distribution inside the body. The following steps show the
technique’s workflow[27, 28]:

1. In normal condition, the total magnetic momentum is equal to zero, since all the spins’
magnetizations are randomly distributed, balancing one another. When an external static
magnetic field, B0, is introduced, all the spins align to this creating a global longitudinal
magnetization, ML, figure 1.17.
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Figure 1.17: This figure presents two scenarios: the longitudinal magneti-
zation of a region with and without an external static magnetic field, right
and left respectively.

2. The spins and B0 are not completely aligned, and a torque momentum acts on each proton,
which rotates around the external static magnetic field axis. This rotation is characterized
by an angular frequency, the Larmor frequency, characteristic for each atomic species.

3. The following steps aim at disturbing this static condition, and producing a signal that can
be detected. In figure 1.18 a basic MRI sequence, the Spin-Echo MRI, is explained.

Figure 1.18: Steps of a classic MRI sequence.

With a Radio Frequency, RF, pulse (B), the longitudinal magnetization of each proton is
bent of 90◦ with respect to B0; the flip angle depends on the amplitude of the field and
the time of exposure. While trying to recover, the spins dephase, because of the different
Larmor frequencies (C). A RF pulse that flips the spins of 180◦ is applied, and the tangential
magnetization, MT , is recovered by the run of faster spins catching the slowest ones (D).
When MT is completely recovered (F), the dephasing occurs again (G), and the signal dis-
solves, recomposing the initial ML (H). This technique is called Spin ECHO, because the
measured signal is the echo of the real one. The RF pulses affect the spins only in case the
RF’s frequency is the Larmor frequency of the selected species to disturb (Hydrogen). The
process of dissolution of the tangential magnetization and recover of the longitudinal one is
called relaxation, and it is characterized by two independent time constants: T1 and T2. T1

is the recovering time of ML, while T2 is the time of MT relaxation. An additional field is
the Gradient Field. This is a linear varying magnetic field along each axis, used mainly for
space encoding and Diffusion Weighted measurements. In fast scans, strong gradient fields
may also affect the signal, thus resulting in gradient echoes.
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Figure 1.19: T1 and T2 time constants are shown with re-
spect to the related mechanisms of relaxation. Moreover, the
relaxation process is described as exponentially decaying.

4. The Larmor frequency is the frequency of dephasing when a spin is disturbed and therefore
it is defined as:

ωL = γ(B0 +Bspins + ∆B) (1.1)

Where γ is the gyromagnetic constant, specific for each element; B0 is the static magnetic
field, and Bspins is the spin-spin interaction, which depends on the distance and amount
of spins in the region. Moreover, ∆B is the magnetic field distortion caused by the het-
erogeneity of the body composition, the presence in ferromagnetic atoms/molecules, and
microscopic scale changes in permeability of the tissues. The spin-spin interaction causes
spins dephasing, and consequently the tangential magnetization relaxation. The magnetic
field distortion introduces an additional time constant, T ?2 , bigger than T ?2 , when considered.
All the relaxation phenomena are drawn as exponentially decaying.

Depending on the sequence of RF and Gradient fields, different interactions between spins can be
induced, and detected. Each body region contains a different concentration of the excited element,
H, which causes the basic proton density contrast. This is further modified by different relaxation
coefficients, which characterizes the MRI contrast map. The type of the MRI image depends on
which weighting coefficient, the relaxation time constant, is used to weight the signal.

Diffusion Tensor Imaging, DTI

Diffusion tensor imaging is a particular MRI sequence that allows to measure the diffusion coef-
ficient of water molecules in different brain regions. The diffusion mechanism is described by the
following equation:

J = −D∆C (1.2)

where the current of water molecules, J, is driven by a difference in concentration between two areas,
and flows in the opposite direction. The constant of proportionality is the diffusion coefficient, D,
characteristic for each substance. Diffusion can either be free, developed uniformly along every
direction, or it can be constrained by external hindrances. For example, myelin sheaths hinder free
diffusion in the axon’s radial direction. This type of diffusion is defined as anisotropic, figure 1.20.
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Figure 1.20: This figure presents different diffusion condi-
tions which result in either isotropic or anisotropic diffusion.
For each row, the diffusion is analyzed at first in 1D, then in
2D and last in 3D.

The MRI sequence used to measure the water diffusion is shown in figure 1.21.

Figure 1.21: MRI sequence implemented in DTI measurements.

When acquiring DTI, at first, a simple MRI is measured, by applying only the RF pulse; this
image is called b = 0. Afterwards, a strong gradient field is applied, for different scans in different
directions. In this way, all the water molecules are subjected to the first dephasing field, and
the second rephasing field acts to recompose the ECHO signal, after applying the RF 180◦ field.
However, the further a molecule traveled, the less it is rephased, and the weaker the detected signal.
The T ?2 signal related to the molecules’ movement, is detected in different directions. Eventually,
a combination of the b = 0 image and the following scans is computed, and the relationship is
proposed in figure 1.22.
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Figure 1.22: On the left, the measured DWI signal, and how the diffusion coefficient can
be extracted. On the left D, diffusion tensor and its diagonalization are proposed.

D is the apparent diffusion coefficient, and b is a parameter defining the diffusion weighted strength.
First, a few considerations on D follow. This is a 3D tensor, which results to be symmetrical, due
to the limitation in measuring the verse of molecules motion direction. The diagonalization of
this tensor describes the diffusion process in a single voxel. As shown in figure 1.22, each voxel
can be modeled as a 3D ellispoide, and its orientation and eccentricity are related to the diffusion
coefficients. The highest eigenvalue is related to the eigenvector along which the diffusion occurs
most probably.

Figure 1.23: The b-value is expressed in function of the
quantity on which it depends.

Considering the b-value, this is a technical parameter, and its computation is described in figure
1.23. It depends on the amplitude of the gradient field, the time of exposure, and the time gap
between the two gradient fields. The highest it is, the strongest the diffusion effect measured.
Together with the voxel size, the b-value affects the signal to noise ratio, SNR[29]. Therefore, an
optimal combination of these two parameters is required for a good signal quality, for a proper inves-
tigation of the considered anatomy, and to define reasonable hardware requirements and scanning
time[30]. DTI is a technique with several pitfalls. These limitations concern the strong sensitivity
to motion artifacts, and the blurring effect due to T ∗

2 weighting[30, 31]. Another important lim-
itation regards the spatial resolution: the voxel size does not reach the molecular level, and the
diffusion process is observed at the fibers bundles scale. However, this flaw respects the feasibility
of the investigation. In fact, it would result impossible to manage the huge amount of information
acquired by a microscopical investigation of the diffusion coefficient[31, 32].
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Tractography

Tractography is an implemented algorithm that aims at extracting the white matter tracks map
from a diffusion weighted image. White matter tracts are composed of bundles of neuronal axons
that are arranged in parallel to transfer information from one region to the connected one[31].
There are different algorithms to perform a tractography, however the most commonly used are
deterministic and probabilistic tractography. Despite the differences, a tractography algorithms is
generally composed of the following parts[31]:

• Track Propagation. This building block characterizes the difference between deterministic and
probabilistic tractography. Considering the deterministic tractography, the diffusion tensor
is extracted for each voxel composing a tract, and the eigenvector related to the biggest
eigenvalue identifies the main direction of flowing. This information can be extracted along
the tract step by step, and the information between two steps can be inferred by neighbor-
interpolation. Both the interpolation and the step-width definition can vary, considering
different algorithms. As far as the probabilistic tractography is considered, the track prop-
agation is not based on the tensor model, instead, it is identified through a probabilistic
analysis of Monte Carlo simulations.

• Seed Points: definition of the starting point of a tract. Most of the times, this is selected
manually, or a region of interest is defined, within which all the voxels are identified as seed
points. Another technique is called “brute-force”, in which all voxels are pointed as seed
points. Yet, another option consists in extracting the information from a functional image,
and define the regions of interest, ROIs, as those regions which are activated the most.

• Tract termination. There are several approaches to determine the terminal point of a tract.
One of the mostly used considers a fat threshold. The assumption is that grey matter, the
terminal point of a tract, contains less fat than white matter, because of the lower amount
of myelin. White and grey matter can be segmented from a classic MRI scan, in which GM
and WM result in two different colors, depending on the weighting coefficient considered.
Another approach concerns the local angle of curvature. The angle is measured between the
vectors of diffusion direction of two sequential points. Whether the angle is above or below
a defined threshold, the following voxel is considered a terminal point or not.

In this work the tractography is computed by probabilistic approach[33]. This method provides a
probability distribution of the possible directions of diffusion for each voxel; therefore, the result
is a set of most likely directions that can be followed. This approach gives the possibility to grow
different tracts from a single seed[31, 33].

Figure 1.24: Whole Brain Tractogra-
phy.

1.3.2 Functional Investigation

This section concerns those techniques employed to detect brain activity. Specifically, the technique
described in detail is magnetoencephalography, MEG. This is then compared to other functional
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investigation techniques, such as electroencephalography, EEG, and functional magnetic resonance
imaging, fMRI, and the advantages and disadvantages of each are addressed[8].

Brain Activity - The Signal

Brain activity is defined as the simultaneous firing of a defined group of neurons. As a consequence
of brain activity in cortical regions, secondary currents are developed extracellularly; for a more
detailed explanation of this phenomenon, the reader is sent back to section 1.1.2. Two physical
quantities are related to a current: an electrical and a magnetic field. Therefore, neuronal activity
develops secondary currents which can be detected at the level of the scalp, by assessing the
induced magnetic or electrical field. This allows a direct and non-invasive measurement of brain
activity. As far as the magnetic field is concerned, it diffuses through the skull and scalp without
being distorted, despite the discontinuities of the head’s tissues and structures. The magnetic field
detectable on the scalp origins from pyramidal neurons activity. More specifically, the pyramidal
neurons considered are the one located in the sulci, as shown in 1.25. The magnetic field is
developed perpendicularly to the running direction of the related current, therefore the detectable
field arises from tangential currents with respect to the scalp’s surface.

Figure 1.25: The magnetic field detectable from the outside
is the one resulting from tangential currents.

Concerning a magnetic field, particular attention is given to the signal amplitude and the affecting
noise: the signal strength is very small, in the order of magnitude of fT, and it can be distorted
and hidden by different physiological and non-physiological noise sources. The most important
physiological noises are heartbeat, EMG, eye movements, and motion caused by breathing. There-
fore, the subject must lay still during the measurement, and even a small tremor or movement
can become source of strong noise. On the other hand, non-physiological noises arise from all the
electronic devices and metal objects nearby.

MEG - Signal Detection

The challenge consists in detecting the described weak and noisy signal, and for this, two aspects
must be considered. First, the environment needs to be shielded to reduce the intrusion of external
noise, and shielding tactics are implemented throughout hardware and software solutions. Second,
very sensitive sensors are required. These factors characterize the biggest drawback in MEG: it is
a very expensive technique[8].

In figure 1.26, the general set-up for a MEG measurement is presented. The main block concerns
the shielded room, for which magnetically shielding materials are employed, such as Ni-Fe alloys
and Aluminum, isolating the room from external magnetic fields; inside, the Dewar is shown, the
structure containing MEG sensors, and creating the optimal environment for these to work.
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Figure 1.26: This picture shows the general scheme of a MEG equipment,
and the workflow of a general experiment.

MEG employs specific sensors: the superconducting quantum interference devices, SQUIDs. The
technology characterizing these sensors is based on superconducting materials. The superconduc-
tivity characteristics arise when these sensors are cooled down at their critical temperature, specific
for each material, i.e. 9.2K for Nb, exploited for this purpose. This temperature is reached by sur-
rounding SQUIDs with liquid He (4 K) or Ni (77 K), contained in the Dewar. These technological
aspects contribute to increase the costs.

SQUIDs are defined as converters of magnetic field to electrical voltage. Their structure and
working principle are very complex. The steps below try to summarize and display the measurement
mechanisms and workflow applied to detect brain activity using a SQUID[10, 8].

1. In figure 1.27, the structure of a SQUID is presented. A SQUID’s loop has a diameter of
about 0.1 mm, and due to its small dimension, an additional external ring is used to detect
the magnetic field, a pick-up ring. This has a diameter of 20 mm instead, increasing the
field of detection. A pick-up ring can be either a magnetometer or a gradiometer. The first
is very sensitive to both deep and shallow sources; however, gradiometers are exploited to
delete external noises. The latter ones are composed of two coils arranged in two possible
configurations, axial or planar. The detected magnetic field is the gradient between the
field acquired by the two coils along the direction characterizing the configuration of the
component, figure 1.27.

Figure 1.27: On the left, a SQUID is shown, where at first the pick-up rings are identified.
On the right, the configurations of a magnetometer, and an axial and planar gradiometer are
shown.

2. The second step is well pictured in figure 1.28. The magnetic field affects the screening
current in the pick-up coil, and a proportional variation of the magnetic flux in the input coil
is inferred. This last alter the current running in the SQUID’s loop.
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Figure 1.28: This figure proposes the design of the conversion process:
screening current in the pickup loop, magnetic flux developed in the input
coil that is detected by the SQUID’s loop, then measurement of the voltage
across the Josephson Junctions.

3. A SQUID’s loop is characterized by two Josephson’s junctions, composed by two thin layers
of superconducting materials, separated by a very thin gap of about 30A◦, filled with a very
thin non-superconducting material. A bias current, greater than the sum of Josephson’s
critical currents of the two junctions, is constantly running in this ring, leading to a periodic
voltage among the two junctions. This is well displayed in figure 1.29. The magnetic flux
period is φ0 = 2.07 × 1015 Wb. This last quantity varies when changes in the screening
current caused by the detected magnetic field occur. Considering the relationship between
voltage and magnetic flux proposed in figure 1.28, changing in magnetic flux are detected by
a variation of the output voltage. Eventually, this last measure is the resulting MEG signal.

Figure 1.29: On the left a SQUID loop is drawn with the two Joseph-
son’s junctions (a). On the right, the relationship between magnetic flux and
detected voltage is proposed (b).

Pre-Processing and Source Reconstruction

MEG sensors setup is composed of 306 sensors, among which 102 are magnetometers, 102 planar
gradiometers and 102 axial gradiometers[8]. After the signal acquisition, some pre-processing is
performed to obtain the MEG dataset employed throughout this thesis.

First Step: De-Noising

At first, meaningless and noisy components are extracted and discarded from the signals. For
instance, ECG, 50 Hz main and EOG are deleted by temporal independent component analysis,
ICA, or principle component analysis, PCA. Secondly a visual inspection follows to delete channels
or epochs with high variance and artifacts.

Second Step: Source Reconstruction

This step aims at finding the source distribution of the measured brain activity. The acquired signal
is presented in sensor space, and by source reconstruction, the signal is moved to source space.
The relationship between sources and sensors is not one to one for different reasons. First, it is not
physically and technically feasible to employ as many sensors as number of brain activity sources.
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Moreover, due to volume conduction, the activity related to a defined region is detected by different
sensors[8]. Therefore, source reconstruction methods allow to associate the detected activity to a
defined brain region. To clarify, MEG measurements are able to detect brain activity originating
from cortical and sub-cortical regions. However, deeper brain regions activity is not measurable.
Despite the existence of different approaches, all the methods require the implementation of two
models, the forward or generative model, and the inverse model, figure 1.30. The forward model
aims at creating a model of the brain and possible sources distribution from which the acquired
signal could be generated; the inverse model defines the cost function that is optimized to find the
optimal solution for the sources distribution.

Figure 1.30: The general structure of the source reconstruc-
tion problem is displayed.

The forward or generative model comprehends the biophysical source model of the brain, and
the definition of a source space. Two methods are used to describe the brain activity sources.
These are described as current dipoles, or as rigid cubes representing the finite elements of the
whole head[10]. The intrinsic spatial resolution of the reconstruction depends on the dimensions or
numbers of the finest element, the finite cube or the dipole respectively. MEG spatial resolution is
about few mm3. In general, the number of sources modeled is between 103 and 106[10]. To build a
whole head model, the head’s geometrical and electromagnetic properties are required. These are
extracted from an MR image, sometimes combined with a computed tomography image, CT. In
order to register this MRI with the MEG sensors distribution, each subjects’ head shape is tracked
before the measurement. The scalp’s shape is recorded with respect to head position indicator,
HPI, coils. These last are also used to track small movements during the acquisition. Considering
the electromagnetic properties of the head, MEG presents an advantage: magnetic field is not
disturbed by brain structural discontinuity and heterogeneity in electrical permeability. Therefore,
the head model is simplified[10].

Moving to describe the inverse model, we aim at finding the sources distribution eliciting the
measured signal. This is an ill-posed problem, because there are infinite possible sources distri-
butions that can be obtained. However, the problem is confronted by optimizing a cost function
that minimizes the difference between the measured MEG and the simulated data, resulting from
the forward model. Considering this last observation, two possible approaches are proposed : the
equivalent dipole, ECD, and distributed dipoles approach. The former considers a relative small
number of dipoles, defining focal sources; the latter counts all the possible source locations simul-
taneously. The inverse model employed in this work, is a distributed dipoles approach, specifically
the Beamformer method proposed by Woolrich et Al. 2011[34]. In this model, all the sources must
be assumed to be uncorrelated, which means that each source activity is estimated independently.
Spatial filters are designed as beamformers, to extract the origin of the measured signal. Advan-
tages of this model are the high focal power, and the absence of a prior assumption on number of
sources and location. The beamformer filter is affected by the forward model and the MEG data
covariance[34].

Brain Parcellation and Related Data

After this brief overview on pre-processing and source reconstruction, eventually we define the
dataset used to conduct this thesis: this dataset contains as many time series as number of sources,
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in source space. As aforementioned, the number of sources can be very big. To cope with this
aspect, the data is registered onto a brain parcellation, where the brain is divided into a manageable
number of regions. A single time series is assigned to each parcel, and this signal can be inferred
by different methods: averaging all the time series gathered in the same parcel, picking the most
active source in the region, or applying independent component analysis, ICA, and choose the
one with the highest variance. Last step concerns the data orthogonalization. Due to volume
conduction, MEG measurements are characterized by zero-lag signal overlaps. To discard this
effect, orthogonalization is performed to remove the shared signal at zero-lag between parcel’s
time series[35].

MEG vs EEG and fMRI

There are two other imaging techniques used to investigate brain functional activity: functional
magnetic resonance image, fMRI, and electroencephalography, EEG. fMRI measures the BOLD
signal, blood oxygenation level-dependent signal. It is based on the observation that deoxygenated
and oxygenated Hemoglobin are respectively paramagnetic, sensitive to external magnetic field,
and diamagnetic. Increasing quantity of oxyhemoglobin in a specific region decreases the quantity
of deoxyhemoglobin, which in turn changes the local magnetic field. This change is detectable
by a particular MRI sequence, fMRI, measuring very fast magnetic field variation, such as the
one induced by oxyhemoglobin concentration variation. Changes in oxyhemoglobin are assumed
to relate to an increase in neuronal activity, since this requires more ATP consumption, and so,
O2 consumption by mitochondria[10]. This very brief explanation shows the indirect relationship
between the BOLD signal and the real brain activity. Although fMRI has better spatial resolution,
low temporal resolution is a significant flaw related to this technique, in comparison with MEG[8].
The second technique considered is EEG. This last is more similar to MEG, since the brain activity
is directly assessed[8]. In fact, the signal measured is the electrical signal resulting from secondary
currents reaching the scalp. However, electrical signals are distorted by conductivity heterogeneity,
and structural discontinuities within the whole head[10]. For these reasons, the spatial resolutions
is about 1 cm, whilst MEG spatial resolution is around 1 mm. Furthermore, the head model
employed in EEG source reconstruction becomes very complex for the same reason. Another big
difference concerns costs, EEG is much cheaper than MEG[8].
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Chapter 2

Brain Networks

The development of Network Science and the emergent and improved neuroimaging techniques
provide new approaches and methodologies to study the complex system of the Brain[36]. In this
chapter, we aim at describing the complex and varied Brain Network, its building blocks, and
its structural and functional organization. This context of research intends to investigate higher
brain functions, such as cognition and behaviour, since these cannot be explained as sum of local
activities. Integration and segregation of defined short and long-distance brain regions occur, and
the whole brain is found to engage in dynamic systems shaping Brain Networks[4, 8, 36].

2.1 Brain Connectivity

A Network is generally defined as "a large system consisting of many similar parts that are con-
nected together to allow communication between, and along the parts"[37]. This definition can
be employed to examine the brain, both at microscopic and macroscopic scale, where a parallel
in network’s organization is found[8]. Microscopically, neurons represent either the functional and
structural units, among which axons embody their connections. At macroscopic level, grey matter
regions are connected by white matter tracks[3]. As mentioned, higher brain functions involve
segregated regions mapped over the whole cortex. Therefore, these domains are investigated with
a macroscopic perspective, and a Whole Brain Network model is defined. This approach allows
to focus on long-distance brain regions communication, the arising functional networks, and their
role in human behavior and cognition[4, 8, 25].

Network Analysis

In the late 20th century, Network Science became very popular, since it was able to explain and
investigate a broad variety of empirical phenomena. Network science places its roots in the general,
and yet powerful, Graph Theory, a study field modelling any set of nodes and their connections
as a Network[3]. Watts and Strogatz were the first to apply network model to a simple nervous
system, the C. Elegans. This was possible given the reduced dimensions of the system in analysis,
composed of only 302 neurons[3]. In the human brain, instead, there are about 1010 neurons,
with a large variety in morphology, but consistent in structure and related functionality. These
are connected between each other, by 1014 links[26]. The huge dimension and complexity of the
brain network at the neuronal level, and the technical limitations in acquiring data at microscopic
scale, make the analysis computationally very demanding. Therefore, a macroscopic approach is
employed[31]. In figure 2.1, the building blocks of a network are shown.
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Figure 2.1: In this figure, the compo-
nents of a network in graph theory are
shown: a) building units of a network,
edge, link, node, hub and module, b) a
characteristic aggregation of elements
in a network, the rich club[3].

In Graph Theory, specific networks’ architectures are defined, to understand a network’s structure
and its functional implications. Brain Networks is found to embody the following organizations[3,
4, 36]:

• Small-World Architecture: the network is characterized by clusters connected through hub
nodes. Therefore, the local connectedness is high when short paths are considered in a
module, and efficient long-distance connections are exploited by short paths lengths. This
arrangement is shown in figure 2.1.

• Scale-free Network: given a node, the probability that it shows k connections (degree k), is
inversely proportional to k itself.

• Hierarchical Modularity architecture: each network component contains sub-components, and
simultaneously, it is part of a higher level component as well.

• Rich Clubness: this is an architecture where network hubs are highly interconnected. A
hub is a node with high centrality, having an important role in the network connectivity for
adjacent nodes, figure 2.1.

Brain Network organization arises during development, and it is well-known to be genetically
regulated. Although in some studies the topology results to be slightly different between males to
females, this statement is not yet confirmed[38]. Conversely, aging is known to be associated with
network changes[3]. The brain network organization is an optimal strategy to minimize wiring
costs and to ease the information flow by segregation and integration of brain areas[3].

The presented networks’ architectures are found in both structural and functional brain’s or-
ganization. Brain structural network is found to drive functional interactions, however, some
functional patterns do not show underlying direct structural connections[36, 39, 40]. This ob-
servation exemplifies the complexity of brain structural and functional networks, and their rela-
tionship. Therefore, other study fields included in Network Analysis are employed to face this
aspect: Statistical Mechanics and Dynamical Systems Theory, in which information flow processes
within complex systems are studied. These fields provide theoretical and mathematical tools to
study brain networks topology and the arising dynamical states, addressed as functional networks.
Here, the biggest strength of Network Analysis is carried out: the relationship between calculus
and dynamics, whereby any complex physical phenomenon, and its dynamics, can be described
mathematically[3]. This approach is a huge step towards understanding biological and physiolog-
ical systems from the inside, with a bottom-up approach[41]. This is different from the classic
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top-down method employed in classic experiments, allowing also to study phenomena for which
investigation techniques are not yet developed[41].

Concerning functional networks, the mentioned networks’ architectures are found to play a crucial
role in cognitive processes. For instance, rich clubs are very important in long-distance interactions,
which characterize cognition. Moreover, their hubs seem to represent vulnerable spots in neurode-
generative diseases[36, 42]. Network Science is utilized in neurological disease to track network’s
damages. This is a promising approach to develop a new biomarker : a feature that can be related
to diseases’ effects or traits. This must be objective, reliable, and reproducible, in order to earn
clinical validity[14]. A new biomarker for a pathological condition might lead to early diagnosis
or suggest a more efficient approach in treatment plans, by assessing the single subject’s condi-
tion without referring to a more general class[14]. A new biomarker can be inferred from either
functional and structural investigations, therefore assessing neurophysiological or neuroanatomical
aspects respectively. As previously mentioned, structural and functional networks are not totally
dependent, therefore functional biomarkers can add additional or independent information with
respect to the structural ones[40]. Structural and Functional Connectivity, SC and FC, are gaining
popularity as biomarkers in assessing brain networks. Recently, these are found to relate with
diseases progression and disruptions, moreover the computational ease allows the employment of
these features in different fields. To date, an overview on network science is present and the com-
plexity of functional and structural networks is pointed out. Following, functional and structural
networks are explained singularly, and the connectivity measures are proposed. Afterwards, the
relationship between functional and structural networks is investigated.

2.1.1 Structural Network

In this section the Structural Network is described, and the neuroanatomical feature of interest is
the Structural Connectivity, SC. Recently, a big project, the Human Connectome, aims at detecting
all the neural connections in the human brain, composing the map of the human brain network[26].
This last is observed from a structural point of view, therefore it is defined as the network of fixed
anatomical connections between segregated brain regions. This organization is supposed to remain
invariant over a relatively short time scale, for which changes related to aging, learning or neural
growth are not observable[4, 36]. Moreover, inter-subjects variability of brain anatomical structure
is not taken in consideration in this discussion.
In graph theory, network’s connections can either be weighted or unweighted. This last case
concerns networks in which a link can be either present or absent. On the other hand, weighted
networks have a specific weight assigned to each link[3]. The brain network is a weighted model,
in which each link’s weight is related to the number of white matter tracts connecting two regions.
The description of this weighted network is contained into the Structural Connectivity matrix.
This is defined as a squared symmetric matrix in which the dimension is the number of defined
brain regions, and each element reflects the strength of connection between a pair of nodes. This
matrix results by the combination of Brain Parcellation and Tractography.

Brain Parcellation

The brain’s cortex is subdivided into delimited regions, which are thought to be functionally
segregated. Several anatomical templates to parcel the whole brain are presented in the literature:
the Brain Parcellation Atlases. The subdivision can be very detailed, and a very fine scale of parcels
can be inferred, delimiting 241, 483 or even 998 regions, such as the atlas created by Hagmann et
Al. (2007)[26]. On the other hand, less detailed parcellations at the hemisphere or lobe level are
used for a more general functional brain association study. To determine what is the best choice,
the type of acquired data, the goal of the analysis, and the choices made in pivotal studies must
be considered. The most common parcellation atlas is the automated anatomical labelling, AAL,
elicited from a high-resolution MRI of a healthy subject from the Montreal Neurological Institute,
MNI[25, 43]. The cortex and subcortex are parcelled into 90 regions, 45 for each hemisphere.
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From the parcellation, the distance matrix is computed: a 90x90 symmetric matrix whose elements
measure the distance, as a straight line, between each pair of regions.

Tractography

Last step consists in quantifying the amount of white matter connecting two regions, and there-
fore weighting the strength of each link. This information is extracted from the tractography, a
technique explained in section 1.3.1.

Figure 2.2: In figure the structural Network built by Trac-
tography and Parcellation data is presented. Each link is de-
fined by the distance between two regions and weighted by the
amount of white matter between the same[4].

First, the number of fibers passing through two voxels, i and j, is quantified, and this information
is inferred by tractography. Applying the probabilistic tractography algorithm, the probability
distribution of a certain number of fibers passing through each of the selected voxels is computed[31,
33]. Afterwards, the connectivity probability is evaluated by the proportion of the computed
number of fibers passing through voxel i and voxel j. This calculation is then applied at the
region-level, and the number of fibers passing through region p and n is the number of fibers
connecting any voxel in region n with any voxel in region p[44]. The number of fibers depends on
the selected seed point while performing tractography, therefore the computed connectivity between
region n and region p can slightly vary from the connectivity between region p and n. However,
these quantities result to be positively correlated, and the average among the two is defined to be
the Connectivity Coefficient between two regions, Cnp[5, 45]. This is how each element of the SC
matrix is inferred.

2.1.2 Functional Network

In this section, the focus is moved to investigate the functional networks. These describe dynamical
processes involving segregated brain regions. Functional patterns can be reconstructed by estimat-
ing the statistical interdependence between pairs of time series[36]. As mentioned in the previous
section, the network investigation is performed macroscopically, at the system level. Here, the
purpose is to study the mechanisms of coherent functional systems formation, and their effects on
human behaviour and cognition[8].

To examine functional systems, two quantities are inferred: Functional Connectivity, FC, and Ef-
fective Connectivity, EC. The former considers simply the existence of a statistical interdependence
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between brain regions activity, whilst the latter aims at finding a direct causal influence of one
region activity onto another[36, 8]. In this thesis only FC is discussed; however, one is reminded
that FC provides a limited insight in the process, and EC would exploit a better approach. FC
limitations depend on the method employed to compute it, and this is sensitive to small variations
of the experimental workflow that can affect the signal to noise ratio, SNR. In fields such as data
prediction or classification, this can result in increasing of false positives detection, yielding to
misinterpretations. Nevertheless, EC is still in a validation phase, and not yet widely utilized[8].
In the following table 2.1, several possible measurements exploited to extract either functional or
effective connectivity are presented.

Directed Interactions Freq/Time domain Multi/Bivarate Linear Sensitive to
Field Spread

Amplitude Envelope
Correlation No F B Yes Yes

Coherence No F B Yes Yes
Cross-Correlations Function No T B Yes Yes
Cross-Frequency function No F B No Yes
Directed Transfer Function Yes T M Yes Yes
Dynamic Casual Modelling Yes F/T M No Yes
Granger Causality Yes F/T B Yes Yes
Imaginary part of coherency Yes F M No No
Mutual Information No F/T B No Yes
Partial Directed Coherence Yes F M Yes Yes
Phase Lag Index No F B No No
Phase Locking Value Yes F B No Yes
Phase Slope Index Yes F B No No
Synchronization Likelihood Yes T B No No
Transfer Entropy Yes F/T B No No

Table 2.1: Overview on different connectivity measures and their main characteristics[8].

Before introducing the quantity employed throughout this work, some considerations are proposed.
When computing Functional Connectivity, the sought statistical interdependence is defined with
respect to a specific quantity, such as the amplitude, or phase. Depending on the addressed
quantity, there are several measurements that can be employed, focusing on different aspects and
approaching the analysis from different points of view. For example, there are linear and non linear
approaches, in time or frequency domain, etc, as shown in table 2.1[8]. In this work, the Pearson’s
Correlation Coefficient of power envelopes is the quantity employed, and it is computed between
time courses of each pair of brain regions. Despite its computational ease, the methods presents
some drawbacks: Pearson’s correlation coefficient is a sensitive measurement and it decreases with
increasing standard deviation, therefore with increasing SNR[26].

Computation of Functional Connectivity

Given a set of time courses, the below steps present the workflow to extract the Functional Con-
nectivity Matrix.

1. Filtering each time series in the frequency band of interest;

2. Extraction of the amplitude envelope of each signal by the computation of the Hilbert Trans-
formation. This last describes the signal in time domain as a rotating vector with an instan-
taneous phase, φ(t), and an instantaneous amplitude, A(t):

s(t) = A(t)cos(φ(t)) (2.1)

3. The slow amplitude envelope fluctuations, < 0.1Hz, are the components of interest, because
these contain information regarding brain region coupling, as shown in figure 2.3.
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Figure 2.3: This figure exemplify the steps that allow to extract the Am-
plitude Envelopes of two MEG signals related to defined brain regions.

4. The Pearson’s correlation coefficient is computed between pairs of amplitude envelope fluctu-
ations. Therefore, Functional Connectivity matrix has the dimension NxN , where N is the
number of time courses considered, consistently with the number of brain’s parcels. More-
over, this approach yields to a symmetric matrix, because Pearson’s correlation coefficient is
not able to assess the causality of the interactions[8]. In figure 2.4, a FC matrix is present,
for each frequency band in which time courses have been filtered in.

Figure 2.4: This figure presents a set of FC matrices, one
for each filtering frequency band[5].

Functional Connectivity Description

Functional networks address all the possible dynamic states detected in brain activity, and their
roles in both healthy and pathological cases. Functional brain networks arise from brain regions’
synchronization. This last is defined as a mechanism of functional integration between regions,
and a long-distance communication process; in addition to this, oscillations synchronization can
act as a way of mutual modulating activity[8]. In parallel with these observations, the mechanisms
underlying synchronization are considered. This long-distance communication might be driven by
common factors that influence contemporaneously all the synchronized regions, or by direct and
indirect structural connections[36].

Considering functional networks, in addition to the time window of observation, the paradigm used
for the experiment must be defined[4]. At first, the paradigm is considered. Depending on the
goal of the experiment, a different paradigm determines the possible dynamical states that the
brain network can engage. This is important when there is a target brain region to investigate, as
the paradigm concerns a task that allows the activation of the brain region of interest. However,
during the last two decades, resting-state measurements gained popularity, since this condition
shows brain activity features that are not shown elsewhere[26]. The second factor concerns the
time window of analysis. When a task-related paradigm is judged, the time frame of analysis is
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dictated by the timing of the task itself. On the contrary, it is important to define the time scale
of observation when a resting-state measurement is executed. The time window determines the
perspective of the analysis; when a stationary condition is assumed, signals are correlated along the
whole recording time. Eventually a single and temporally invariant functional network is extracted,
describing a general dynamical state of the brain. This approach is useful to compare FC with SC
and to validate computational models.[4] In this dissertation, a stationary approach is employed,
in agreement with this last statement. The second approach considers a very short time window of
analysis; it is shown that during resting-state different functional networks alternatively arise and
dissolve, with a time window of 100−200ms[4]. This is a possible future direction of investigation.

Resting-State Networks

Rest is a condition in which the subject is awake and conscious but is not engaged in any specific
cognitive or motor task. In 1929, Berger performed the first EEG during resting-state condition,
measuring a brain activity that showed slow spatio-temporally organized neural activities[8]. This
observation introduces a challenge in some task-related analyses which might need to be com-
pared to a base-line activity. The problem arises whereby this base-line, resting-state, is unknown
and unpredictable[4]. Therefore, this condition is investigated independently, to understand its
unknown characteristic dynamics.

Different functional networks are detected during resting-states, the Resting-State Networks (RSNs),
shown in figure 2.5. Brain activity during this condition is characterized by alternating activation
and deactivation of functional networks. These mostly involve the activation of brain regions which
are synchronized also when a task is performed, and for the reason, they are addressed as task-
positive RSNs. A particular RSN defined as Default Mode Network, DMN, concerns the activation
of regions which are more functionally connected during resting-state than during tasks, and this
topology is addressed as task-negative. This network characterizes resting-state activity, and it
involves regions usually related to cognitive processes, such as memory, vision, language, etc[24].
From a different perspective, resting-state is described as a condition of indirect wakefulness, in
which our mind is ready to engage any possible task. Therefore, it can show different dynamic
states, being ready to fully engage one, when an external stimulus occurs[8].

Figure 2.5: In this figure the Resting-State Networks ac-
quired by MEG are identified.
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2.1.3 Resting-State Activity

In general, brain activity is detected in a wide rage of frequencies, from < 0.1Hz to 600Hz. Brain
activity during resting-state, is particularly detected at low frequencies, and the characteristics
rhythms are conventionally split in the following frequency bands: δ(1 − 4Hz), θ(4 − 8Hz),
α(8− 13Hz), β(13− 30Hz), γ(30− 48Hz), and high γ(52− 80Hz). Dynamic networks are devel-
oped by synchronization of envelope amplitude fluctuations at low frequencies < 0.1Hz, related to
brain regions whose activity is displayed in the same frequency band[46]. These synchronization
patterns describe spatio-temporal organized functional networks. These last alternately activate
and dissolve, involving short or long-distance brain regions, but never the whole brain network[4].
This characteristic behaviour is defined as Chimera-regime, or Metastability[47]. This dynamics
discloses brain regions’ tendencies to express their specific functionality (segregation tendency),
and contemporaneously, to couple and coordinate global functions (integration and modulatory
tendencies)[47]. This dynamic regime is fundamental to coordinate brain cognitive, behaviour and
social functions[47]. The challenge in investigating Metastability relies on the difficulty to incorpo-
rate both spatial and temporal dimensions in a single experimental or theoretical framework[47].

Another characteristics concerning resting-state frequency content concerns the high activity de-
tected in the α band. More in detail, a power α peak, the 10Hz peak, characterizes resting-state
brain activity. This parameter has an inter-subjects variability and it is correlated with age[48]. In
addition to this rhythm, electrophysiological measurements acquire high resting-state activity also
in the γ band[8]. The mechanisms underlying these rhythms are different, as well as the role that
they cover. Regarding this last aspect, high frequency oscillations seem to coordinate local com-
munication, while long distance communication is yielded by α/β oscillations, consistently with
MEG and BOLD measurements that detect a decreased collective frequency when defined brain
regions synchronize[5, 49]. Oscillations in the α band are shown to correspond to talamo-cortical
communication, and this network dynamics has an important role in cognition and perception[8].
Consistently with this last statement, power α peaks are found to correlated with cognitive perfor-
mance and traits[48, 50]. Therefore, it is of interest to assess this factor when a neurological disease
entailing cognitive impairment is investigated. Resting-state condition has initially been investi-
gated by fMRI, and oscillations in BOLD signals were detected at first. Recently, MEG has been
employed to investigate this condition, and MEG findings on resting-state activity are consistent
with the one gathered by fMRI measurements. The introduction of MEG measurements carries
new opportunities in investigating resting-state in multiple temporal and spatial scale, considering
its high spatio-temporal resolution[8, 46].

Resting-State Network in MS

As introduced in chapter 1, the neurological disease considered along this thesis is Multiple Scle-
rosis. This pathology yields both structural and functional network disruptions, due to the inter-
playing mechanisms of demyelination, neurodegeneration, and inflammation[24]. This section aims
at discussing functional networks disruption in MS. For this purpose, two aspects are proposed:
the α-peaks, and functional connectivity disruption.

Starting to consider the power α-peak, as aforementioned, this trait correlates with cognitive
domains. Consistently, a disruption of this feature is elicited in patients affected by neurological
diseases, in which a common pattern of slowed oscillatory activity is detected[6]. As such, this
phenomenon is observed also in Multiple Sclerosis, where cognitive impairment is found to correlate
with a shift of the α peak towards decreased frequencies[6, 51], as shown in figure 2.6.
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Figure 2.6: This plot shows the α-peaks in healthy condition and in early
MS. It is noticed the shift towards low frequency detected in the pathological
condition[6].

Following, the discussion considers the FC disruption. In the past few years, many studies have
addressed the FC networks disruption in MS, based on either MEG or fMRI acquisitions. Among all
the results, the first important observation concerns the impact of a lesion. This last can affect not
only functions overseen by the damaged region itself, but also those driven by functional networks
which the disrupted region belongs to[24]. The focus is pointed at the DMN network, involving
brain regions related to cognitive domains. Cognitive impairment is diagnosed in a consistent
part of the MS population in early stages, and it follows the disease progression. Therefore,
studying DMN and resting-state functional networks disruption in Multiple Sclerosis is one of the
approaches that are used to assess cognitive impairment. A positive correlation between cognitive
impairment and increasing FC in MS is detected mostly in early stages of the disease, whereas
decreasing FC is observed later along the disease progression[14, 52]. The mechanism underlying
this phenomenon is sought, and different assumptions are proposed. This effect can be either
passive, lesion-induced, or active, a brain plasticity mechanism that tries to balance the damage
caused by the disease. Many researches suggest the occurrence of active processes of compensation,
related to the plastic capability of the brain. Nevertheless, these mechanisms are subject-related,
and depend on the region where the damage occurs[24]. Another observation is the following. FC
variations are observed to be either positive adaptations, or maladaptations. In the former case,
the brain is noticed to dislocate the damaged domains in different areas, in order to preserve the
function. Conversely, maladaptation refers to the increasing activity of certain areas induced by the
incapability of switching to different stages[24, 14]. In this last scenario, higher local connectivity
hides long-distance connections damages[52].

There is no correct or wrong interpretation of the phenomenon, and both the mechanisms explained
are present. Structural and functional networks disruptions are not totally independent, but the
relationship is not straight forward, and several factors interplay. Functional damages depend
on the addressed region, the involved functional networks, and the spread of the damage[52].
In general, functional disruptions better follow disease progression than structural damages[52].
However, this filed is yet to be investigated, and promising features can be elicited to assess the
pathology.

2.1.4 Relationship between SC and FC

One of the most interesting challenges in brain connectivity studies consists in eliciting the relation-
ship between SC and FC; how functional networks arise with respect to the underlying structural
connections. However, there are no investigation techniques that allow to detect the mechanisms
of arising functional networks[36]. Considering different observations proposed in the literature,
structural connections are always found to guide functional interactions. However, functional net-
works, are not always carried by underlying structural connections, and a different approach is
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employed to investigate this context, by using graph theory descriptors. For instance, it is elicited
that the probability of arising of a functional network is directly proportional to the degree product
of the involved regions[39, 40]. Another study proposes the difference between FC and EC with
respect to SC, for which FC would resemble SC in most cases, whereas EC does not; however,
concerning EC, a relationship between the connectivity weight and the structural degree product
is obtained, in both connected and non-connected regions[36].

Despite the findings and observations, an intrinsic limitation concerns the impossibility to inves-
tigate combined functional and structural dimensions, by only considering neuroimaging investi-
gations. Therefore, a different approach is implemented, and the employment of a neurocompu-
tational model is considered. This method is utilized by many studies, since it allows to simulate
brain activity, given in input a defined structural brain network. A model defines a scenario that
describes brain regions dynamics. The elicited simulated FC is correlated with the empirical FC
to verify the model’s performances, and information on the relationship between SC and FC can
be inferred[26, 39]. This topic is discussed in detail in the following chapter.
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Chapter 3

Neurocomputational Models

In the previous chapter, it is presented the idea underneath the Multi-Modal Human Connectome
Project, HCP. This aims at characterizing the pathways underlying human brain functions[7].
However, the presence of different techniques to assess human brain investigation introduces a
challenge in building this collection. By employing neuroimaging techniques such as MRI, only the
anatomical brain network is investigated, as presented in the previous chapter. On the other hand,
MEG and fMRI measurements of resting-state brain activity detect functional brain networks[7],
which not always overlap the underlying anatomical connections. Nevertheless, from a static per-
spective, Functional Connectivity observed in a relatively long timescale resembles the underlying
SC[4, 52]. Therefore, starting from the defined anatomical connectome, the investigation aims
at going beyond this structural architecture to understand the brain functions resting upon it[7].
Neuroimaging techniques are limited in this perspective, since these allow only to assess either the
functional or structural aspect separately; furthermore, the underlying brain activity mechanisms
are yet unknown. Therefore, an intermediary that allows to infer functional maps in function of
the underlying topological structure is proposed: a neurocomputational model[36].

3.1 General Aspects

3.1.1 Bottom-Up Approach

The method utilized to conciliate the structural and functional information concerns the employ-
ment of a Biophysical Model. This approach allows to fuse functional and structural connectivity
data, and express their relationship mathematically. As such, the employment of the biophysical
model provides a Bottom-Up approach[7, 41]: brain activity is simulated by designing a possible
scenario that describes the physiological origin of brain activity itself, instead of extrapolating the
mechanism from the acquired data.

3.1.2 A Biophysical Model: Neurophysiological Realism

The real physiological mechanisms underlying functional networks are yet unknown, as well as their
functional roles; however it is possible to define a possible physiological scenario[4]. When picturing
a plausible contexts, observations on the real biophysical phenomenon must guide the definition
of the model itself. This last must be designed consistently with the context of analysis: the
physiological and anatomical characteristics of the system under investigation, the brain. Another
important aspect is the physics behind the neuroimaging technique employed to acquire empirical
data. Each neuroimaging technique has a specific spatio-temporal resolution, and sensitivity to
certain physiological signals. The computational model must be consistent with these aspects, in
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order to assure the same perspective of analysis[7]. This whole set of considerations stresses on
the neurophysiological realism and complexity that must be respected by the designed scenario[7].

3.2 Components of a Biophysical Model

A Neurocomputational model is built upon two models: the anatomical model of the brain, the
structural network, and the computational model describing the dynamical interactions within
and between brain regions. This approach aims at reproducing the spatio-temporally organized
functional patterns detected by neuroimaging techniques[7]. The model’s performances are inves-
tigated by correlating simulated with acquired data[7]. In figure 3.1, the main characteristics of a
biophysical models are shown: the brain is partitioned in nodes, and these are structurally con-
nected by direct links. Moreover each node is described by a scenario that mimics the mechanism
underlying each node’s activity.

Figure 3.1: In this figure the main aspects presented in a biophysical model are shown:
the brain in subdivided into regions modeled as nodes, which are structurally connected.
Moreover, each node’s dynamics is characterized by a biophysical scenario, that defines the
mechanism underlying node’ activity. In this picture each node is composed of two sub-
populations that determines the regional activity[7]. The dynamics of each node depends
also on the inputs coming from the environment.

There are different approaches utilized to delineate each node’s activity. For instance, realistic
models describe the system’s dynamics with state variables that are deduced by the physiology
of the system, such as the membrane conductance. On the other hand, there are models that
approach the dynamic via a mechanistic perspective, such as the Kuramoto Model. The model
choice depends on the purpose of the analysis and the aspects under investigation[4, 26].

3.2.1 Whole Brain Network Model

As stressed along the whole dissertation, it is very important to define the scale of observation. Al-
though computation of detailed models at the cellular level are becoming feasible, i.e. the neuronal
models, in this work a whole Brain Network model is employed. As far as M/EEG measurements
are concerned, direct neural activity is detected with high temporal resolution, at milliseconds
scale, the timescale of neuronal dynamic interactions[7]. However, these techniques accomplish
high spatial resolution, reaching few mm with MEG. This resolution doesn’t allow to acquire sin-
gle neuron’s activity, and an approximation at the population level is pursued: neurons belonging
to a dense ensemble are reciprocal interconnected, sharing the same physiological behaviour[26].
Each node of the network represents a population of neurons, modeled as mean-field or neural
mass[8]. This ensemble has an intrinsic characteristic dynamics, and its description depends on
the scenario designed by the chosen model. Instead, white matter tracts between two regions char-
acterize the network’s links. The structural network is in general provided to the model as input,
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the SC matrix. In most of the brain network studies, networks’ nodes are described as isolated
points in space point-masses[26]. However, new and more elaborated networks’ models propose
to shape each neural population as neural field, describing its state in function of both time and
position, to include the whole cortical sheet in the analysis[26].

3.2.2 Neuronal Population: Dynamic Model

Once the structural network is defined, the second component of a model is presented: the brain
regions’ dynamics. At this point, we aim at describing neural population’s behaviour, characterized
by the probability distribution of the neuronal state variables[7, 8, 53]. This last quantity depends
on the chosen scenario, and in this dissertation, each mean-field is described as a system of coupled-
oscillators[53].

Coupled-Oscillators

In many natural systems, the interactions between entities require timing, and occur by synchro-
nization of entity activities. In order to attain a global coherent activity, each entity is characterized
by an oscillatory activity, and the quantity introduced to describe each entity’s behaviour is the
phase, a measure of the periodic activity in time[53]. In neuronal populations, each neuron is
referred as an entity, and the synchronization of these entities refers to the simultaneous firing of a
group of neurons, to accomplish a single function. As such, these populations mimic functionally
segregated brain regions.

The oscillatory activity of a population can origin from two biophysical mechanisms. The first one
considers each entity’s activity evolving regularly in time, and when beyond a certain threshold,
a pulse is emitted affecting neighbors’ activity. The interaction depends on the neighbors’ state,
and the synchronization is defined in function of the phase-shift between two entity activities[53].
The second approach refers to a group of entities as an ensemble of nonlinear coupled oscillators,
belonging to a globally attracting limit cycle of constant amplitude; the entities are coupled to
avoid disturbances to disrupt the cycle[53]. This mechanisms can be used to describe the electro-
physiological observations at the level of neuronal population[4, 8, 54]. Within each brain region,
three neural sub-populations can be identified: excitatory pyramidal neurons, excitatory spiny
stellate neurons and inhibitory brain neurons, each with a different firing rate. The global firing
rate results from the balancing between the three just mentioned, describing a periodic trajectory.
This limit cycle characterizes the intrinsic oscillatory activity of neuronal populations[5, 53]. In
figure 3.2, the population dynamics is shown.

Figure 3.2: This figure proposes two time frame of a neuronal population’s activity, when it is described as a
system of coupled-oscillators. Each oscillator works at a different frequency, and the result is the total phase of the
system, the middle point. On the right graphs, the oscillatory activity of the resultant phase is observable.

All the oscillators composing a single neuronal population, are defined as self-sustained oscillators.
This is an assumption proposed by this specific scenario, that cannot be related to a physiological
aspect. Despite this, the described scenario models very well the brain regional activity.
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3.3 Nodes Interactions: Dynamic Causal Model

The dynamical model of interaction between regions in a network should fulfill the following re-
quirements, with respect to the biophysical realism of the context of investigation[4, 7, 8]:

1. The characteristic trend should be cyclic;

2. Each connection should be reciprocal, bi-directional;

3. The interaction between regions cannot be instantaneous, due to conduction delay.

Given these guidelines, a Dynamic Causal Model can be defined. This model is a general expression
for brain regions’ interactions:

ẋ = f(x, θ, u)+x (3.1)

where θ is the state variable defined by the model, the phase in coupled oscillators model; x is PxTx
matrix of P hidden neuronal states and Tx time points. ẋ is the time derivative, u are the unknown
external inputs, and ex the stochastic neuronal noise. In case ex = 0 the equation corresponds to
a deterministic case. Moreover, u = 0 when resting state condition is investigated[7, 8].

3.3.1 Kuramoto Model

In the specific case where each population is described by coupled oscillators, one of the expressions
of the dynamic causal model is the one proposed in 1975 by Kuramoto[53]. This model describes
each brain region as a system of phase oscillators running at arbitrary intrinsic frequency, and
coupled by the sine of their phases difference, with a constant amplitude[53]. This model has been
employed successfully in neurological science to model and study brain networks[5, 53, 55]. Despite
the fact that this scenario implies a high level of abstraction, since the neuronal state variable is not
related to any physiological quantity, this model is mathematically approachable, and dynamically
rich enough to be adaptable to different context and to display most of the systems’ synchronization
patterns[4, 54]. The following equation 3.2 is the expression of the dynamic causal model’s general
equation 3.1 in case of coupled-oscillators systems, and it shows the dynamic regime for a single
entity n of the system:

dθn
dt

= ωn +

N∑
p=1

Knpsin(θp(t)− θn(t)), n = 1, ..., N (3.2)

where ωn is the intrinsic frequency of the entity, Knp is the coupling strength connecting each pair
of units related to the structural connection, and θn and θp are the entity phases. The proposed
Kuramoto formulation is the most general one. However, in different applications some extensions
of the model are introduced, to fulfill requirements related to the context of analysis[53]. In the
following sections, specific model’s features are shown, as well as variations to assess neurophysio-
logical aspects.

3.3.2 Model Characteristics

The following discussion concerns the model parameters that allow the model to respect the neu-
rophysiological and anatomical realism[7]. Three sections are proposed: the first one considers the
structural constraints, secondly the introduction of the noise and time delay is discussed, and the
last part focuses on the metastability.
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SC Constraints

As stressed at the beginning of the chapter: a biophysical model provides an insight to dynam-
ical mechanisms in function of the structural organization. The Kuramoto model embodies this
approach, by strictly constraining the development of functional interactions, to the underlying
structural connections[56]. This is expressed in the Kuramoto equation 3.2 by the coupling strength
coefficient, Knp, extrapolated by the network’s structural connectivity. This elicits an observation:
the development of nodes interactions depends on the resolution and detail level of the considered
SC. The quality of the SC and the chosen parcellation affect the model’s performance, and there-
fore, this limits the fitting with empirical data. The more detailed the scale of investigation is,
the more relevant this issue becomes. This flaw of the approach could be solved by introducing a
generative model for the structural connectome, or by allowing possible variations considering the
underlying structure[4, 7].

Noise and Time Delay

Noise and Time Delay are always considered in a neuro-physical model. Regarding time delay τnp,
this quantity relates to a defined pair of regions, n and p. It embodies the concept of finite infor-
mation conduction velocity, v, belonging to all the study fields regarding information transmission
and information processing. In this specific context, the finite conduction velocity is determined
by the distance between two regions, the myelination level of the considered tract, and the slow
information transmission in the synaptic cleavages. It is computed as:

τnp = Dnp/v (3.3)

where v is the conduction velocity, and Dnp the distance between two regions, n and p. For
simplification, in network model studies the conduction velocity v is considered homogeneous for
all the connections, and time delay is also considered uniform over the whole brain network:
τ̃ = D̃/v, where D̃ is the average of the distance matrix.

Moving to consider the second factor, the noise, ψn, refers to the stochastic neuronal noise resulting
from neighboring activity. Most of the brain network models require this factor to induce transition
among available dynamic patterns. The following equation 3.4 proposes the adjustment of the
general Kuramoto, considering the factors just described:

dθn
dt

= ωn + k

N∑
p=1

Knpsin(θp(t− τnp)− θn(t)) + ψn, n = 1, ..., N (3.4)

The effect of noise and time delay on brain dynamics depends on the model chosen to describe
the local dynamic neural activity. Regarding the Kuramoto model, it is observed that both noise
and time delay prevent global system synchronization by preserving phase heterogeneity. Time
delay results very important when its scale has the same order of magnitude of the oscillatory
timescale[44]. This parameter is also shown to affect global dynamics, playing a role in shaping
spatio-temporal connectivity patterns, and reducing mean firing rate of synchronized regions[44].
Therefore, the frequency suppression with respect to the intrinsic frequency of each brain region
is found to be caused by time delay[4, 44]. Furthermore, specifically in the Kuramoto Model, once
time delay is introduced, noise doesn’t seem to play a major role anymore, and in many cases it is
discarded to simplify the analysis[5, 44]. However, an additional parameter is added: k, the global
coupling strength, whose role aims at assuring phase interactions[5]. In case where the noise is
included, the higher the noise, the stronger k must be, in order to allow phases synchronization[53].

Metastability and Bifurcational Point

This paragraph discusses the core properties of brain network’s dynamical states. As explained in
the previous chapter, resting-state brain activity is characterized by activation and dissolution of
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different dynamic patterns. From a static perspective, resting-state FC is shaped by the underlying
Structural Connectivity. However, it is observed that alternation in dynamical states occur, and
that the whole network never fully synchronizes. This condition is defined Chimera regime[4].
This reflects the integrative and segregating tendencies characterizing brain activity, optimizing
the mechanism of information processing[57]. In order to reproduce this peculiar dynamic regime, a
neurocomputational model must work nearby its Bifurcational Point when simulating resting-state
brain activity[4, 8, 57]. This point represents the critical point of transition between equilibrium
and the repertoire of activation patterns available. For the Kuramoto model, this critical point
refers to the intrinsic frequency of each brain region, which is set at 40Hz, related to the brain γ
rhythms[5, 55].

After all these observations, an overview on the brain rhythms displayed by the Kuramoto Model
is proposed[4]:

• γ oscillations in the intrinsic frequency of brain regions;

• α and β rhythms displayed during sub-networks synchronizations:

• Ultra-slow aperiodic envelope fluctuations induced by alternation of dynamical states: chimera
regime.

These rhythms are identified in fMRI and MEG resting-state brain activity measurements, ex-
plained in section 6.1. Therefore, the Kuramoto model with time delay proves to be a good
biophysical model to study brain dynamic resting-state networks.

3.4 Neurocomputational Model Applications

Neurocomputational models can be employed to pursue different goals. The most straightfor-
ward consists in reproducing empirical data by means of functional network patterns. From this
perspective, once correlating simulated and acquired data, the model’s optimal parameters are
extracted, and these characterize the brain dynamic with the model’s dynamic state. Another in-
teresting employment, concerns simulating brain functional networks in neurological disease where
the anatomical connectivity is damaged. If the model is able to detect variations in functional net-
works given the disrupted structural connectivity, an insight in the relationship between functional
and structural network disruption is elicited[56]. This aspect is very interesting in pathologies
where diagnosis only relies on symptoms and the underlined physiological disruption is unknown.
However, an important consideration is proposed: the mechanisms underlying the functional dis-
ruption depends on the chosen model. Neurocomputational model implementation is a promising
approach also for disease where there is a strong inter-subjects variability. If the model was reliable
at the subject level, a new approach in diagnosis and treatment planning would be introduced[4, 7].
However, the feasibility of implementing a model at the subject level is a complex and long pro-
cess. In this context, the big challenge concerns the model’s validation: the model must be able
to recognize a certain physiological condition starting from a ground truth. Moreover, the validity
must be related to a quantitative measure that can be useful in clinical decision-making.

One last observation on the employment of a neurocomputational model arises from the concept
of model itself. First, by definition a model does not describe a phenomenon in all its character-
istics; however it shows a possible abstraction and simplification of the investigated mechanisms.
Depending on the level of precision required, it can be considered a good approximation or a rough
one. In neuroscience, there are several different model describing neuronal dynamic interactions.
Each one capturing a different aspect of the mechanism. These are not in competition, but in a
collaborative effort to explain the complexity and variety of interplaying mechanisms underlying
Brain Functionality[4].
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Chapter 4

Research Objectives

In Multiple Sclerosis, about 40% to 70% of the patients develop cognitive impairment, CI, and
one of the most impaired cognitive domains is the information processing speed, IPS [12, 13]. The
disruption of this domain is related to a decreased conduction velocity of information transfer, due
to demyelination. This is assessed in clinical practice by neuropsychological tests, which, however,
present several drawbacks [14]. To overcome this aspect, a more reliable and objective measure
is sought, and one approach would concern the extrapolation of a biomarker, by the employment
of neuroimaging techniques and neurocomputational models. This thesis is developed in this
research context; we aim at finding a quantitative measure that can be related to IPS impairment.
Within the literature, there are neurophysiological markers, such as Functional Connectivity or
the power α-peaks, that are found to be altered in MS, and correlated to CI [51, 52]. These
quantities are deduced by neuroimaging techniques, whereas in this work, a neurophysiological
feature is extrapolated by the implementation of a neurocomputational model. The simulated
brain activity is matched with the MEG resting-state data, and the optimal correlation is achieved
when the model is set to specific, optimal, model parameters. These provide a certain description
of the brain’s condition in terms of the characteristics tackled by the chosen model. In figure
4.1, we provide and interesting representation of the pipeline that permits to extract the optimal
descriptors.

Figure 4.1: This figure proposes the workflow followed to extract simulated and empirical
FC[4]. This figures is adapted from the correspondent in the reference paper [5]

An additional innovative aspect introduced by this work concerns the implementation of the model
at the subject level, to verify the model’s capability to capture variation of a physiological process
at this scale. To pursue this final investigation, three steps are conducted, and each part of the
work is guided by a specific hypothesis. Following, the three research objectives are presented.
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4.1 Objective I

The neurocomputational model employed along this thesis is a variant of the original Kuramoto
Model: the time-delayed coupled oscillators. This has already been successfully implemented in
several studies, to simulate resting-state brain activity [5, 55, 57]. For example, Cabral et al.
have correlated empirical static Functional Connectivity, FC, obtained by resting-state MEG data,
with simulated FC. In particular, a strong correlation is inferred in the α and β frequency bands,
where resting-state activity shows characteristic power peaks. Moreover, the model was able to
recreate the brain network’s metastability regime observed in resting-state measurements. Before
employing the model to pursue the ultimate goal of this thesis, its performances must be validated,
and compared with the literature findings. To conduct this analysis, the following research question
is proposed:

Hypothesis I: Reproducing the analysis proposed by Cabral et al. 2014a [5] employing the
available dataset, the model validation is deduced when consistent results are obtained.

4.2 Objective II

After proving the model reliability, the following investigation concerns the analysis of the model
performance, when groups of subjects characterized by different health and pathological conditions
are considered. The model optimal parameters, k and τ , are inferred whereby the Pearson’s
correlation coefficient between simulated and empirical FC is the strongest. This combination of
parameters is expected to adapt when groups of subjects with different neurological conditions are
involved. More specifically, the time delay, τ , is defined in function of the conduction velocity, and
the decreasing conduction velocity detected in MS is expected to reflect an increasing time delay
in the same condition. As such, the second research hypothesis can be formulated as follows:

Hypothesis II: The Kuramoto model performances vary among groups of subjects concerning
different neurological conditions, HC, MS and MSB.

4.3 Objective III

When the model is found to detect variation between groups of subjects concerning healthy controls
and MS patients, the following step of analysis consists in validating the model at the subject level.
Starting from a common SC matrix considered as ground truth, the simulated FC is correlated with
each subject’s empirical FC. Within the literature, different studies examine the alteration of FC
in MS [24]. Therefore, the model’s parameters related to the strongest FC correlation are expected
to vary case by case, depending on the pathological condition presented by the subject. The
parameter of interest, time delay, is determined in function of the conduction velocity. In Multiple
Sclerosis, CI is associated with disruption of conduction velocity. However, this last is not directly
measurable, and an intermediate parameter is required to correlate time delay variations, related
to conduction velocity, with IPS impairment. Other physiological traits are affected in MS, such
as the power α-peak, detected during resting-state measurements. This parameter is found to
correlated with cognitive impairment in MS [52]. Therefore, the last hypothesis of research is
presented:

Hypothesis III: By applying the model at the subject level, the model’s parameter time delay
varies with respect to the subject-specific pathological condition, correlating to IPS impairment.
To detect this adaptation, τ is correlated with another neurophysiological feature, related to CI.

This last is the power α-peak, detected in resting-state measurements.
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Chapter 5

Methods

In this chapter, the analyses conducted throughout this thesis are introduced and explained. Start-
ing from the presentation of the dataset, afterwards, the employed model is described, and its
parameters are defined. Furthermore, the statistical analyses are presented. To pursue the in-
vestigations, the programming languages used in this thesis are MATLAB and Statistics Toolbox
Release 2017b (The MathWorks, Inc., Natick, Massachusetts, United States); and Anaconda envi-
ronment version 3.1, Python Language Reference.

5.1 Dataset Analysis

The original dataset includes 150 subjects, among which there are Healthy Controls and a het-
erogeneous group of Multiple Sclerosis patients, with different MS typologies, at different disease
stages, and treatments plan. The detailed composition of the dataset is presented in the following
paragraph. For each subject, the related data includes subjects’ structural and functional infor-
mation, consisting of structural connectivity, SC, and functional connectivity, FC, respectively. In
the following sections, the methods to extract SC and FC matrices from the empirical data are
explained.

5.1.1 Structural Connectivity

Each subject undergoes MRI and DTI measurements for a structural investigation. MR imaging
was performed on a 3T Achieva scanner (Philips Medical Systems, Best, The Netherlands). The
relevant information, concerns the parameters related to the DTI - sequence: b = 0 volume, TR/TE
= 8500/65 ms, FOV = 128× 128, voxel resolution: 1.78× 1.78× 2.2mm3, 32 different directions,
b-value1 = 800s/mm2 and b-value2 = 1000s/mm2 after upgrade. Afterwards, tractography is
inferred via probabilistic tractography[33], from which the local probability distribution of fibers
per voxel is computed, and then extended to the regional level, proceeding as explained in section
2.1.1 [5]. The subject’s anatomical MRI is coregistered to the MNI space, and parceled using
the automated anatomical labelling atlas, AAL[25, 43]. Brain cortex is parceled in 90 regions, 45
for each hemisphere. Each region is represented by a node, and the distance between each node,
considered as a straight line, is computed to infer the Distance Matrix, D.

The analyses concerning SC matrices, are driven by two motives: findings in the literature concern-
ing differences between groups of SCs, and the employment of the average SC as main quantity.
This last is affected by outliers, which can mislead data interpretation. Therefore, a careful ex-
amination is conducted. At first, subjects’ SCs are examined visually, to recognize and discard
outliers; in figure 5.1, the difference between a normal SC and an outlier is shown.
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Figure 5.1: On the left, a normal SC is displayed; instead, on the right, an outlier SC is present.

Once the dataset is examined, the differences between sub-populations of subjects are investigated.
The first comparison concerns two groups of subjects, BRUMEG1 and BRUMEG2, identified
by the different scanner’s parameter, b-value, that was used during DTIs, as mentioned in the
previous paragraph. This b-value reflects the timing and strength of the gradient field used for
DTI acquisitions, and it affects the measurement itself, as explained in section 1.3.1 [29]. The
compositions of BRUMEG1 and BRUMEG2 datasets are presented in tables 5.1 and 5.2. These
tables consider the dataset already visually examined, therefore the total number of subjects results
118. A characteristic that is worth mentioning follows: BRUMEG1 contains only female subjects,
whereas BRUMEG2 gathers both male and female subjects. In each dataset, three subgroups are
identified, based on the neurological condition: healthy controls, HC, Multiple Sclerosis subjects,
MS, and Multiple Sclerosis patients undergoing Benzodiazepine treatment. This last group is
analyzed separately, because this drug is found to affect FC with respect to the average MS
population, and this might influence the following results.

BRUMEG1 Numer of Subjects
HC 14
MS Benzos Negative-MS 21
MS Benzos Positive-MSB 8
Max Age 69.5
Mean Age 46.7
Min Age 27

Table 5.1: This table shows the composition of dataset
BRUMEG1, characterized by b-value= 800s/mm2.

BRUMEG2 Numer of Subjects

HC Male 14
Female 13

MS Benzos Negative-MS Male 22
Female 26

MS Benzos Positive-MSB Male 1
Female 9

Max Age 68.9
Mean Age 47.9
Min Age 26

Table 5.2: This table shows the composition of dataset
BRUMEG2, characterized by b-value= 1000s/mm2.

Considering the groups of subjects identified in tables 5.1 and 5.2, the following comparisons
between SCs are conduceted:

1. BRUMEG1 vs BRUMEG2;

2. BRUMEG1: MS vs HC;

3. BRUMEG1: MSB Benzdiazepine-Positive vs MS Benzdiazepine-Negative vs HC;

4. BRUMEG2: MS vs HC;

5. BRUMEG2: Males vs Females. This comparison is conducted for the whole dataset, and
then separately for MS and HC subgroups.
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To investigate the presence of a significant difference between two groups of SCs, the following
null-hypothesis is formulated:

H0: There is a significant difference between the two groups’ average SC, ∆µ0 6= 0

The employed statistical test is the Mann–Whitney–Wilcoxon (MWW)[58], a non-parametric test,
since the data distributions are unknown, for upaired groups, considering that each group contains
different subjects. The null-hypothesis is applied region by region, resulting in 90 × 90 tests to
perform for each comparison. Considering the huge amount of trials, the possibility to reject a
false positive increases, therefore, the Bonferroni correction is utilized, to balance this effect. A
significance threshold of α = 0.05 is defined, and the number of significant tests is considered
4050, half of the total size of the SC matrix, due to its symmetry, as explained in section 2.1.1.
Consequently, p-values are considered significant when the order of magnitude is lower than −5,
or − log10(p-values) > 5.

5.1.2 Empirical Functional Connectivity

The neurophysiological information is investigated by the employment of MEG data. This was col-
lected at the ULB Hopital Erasme (Brussels, Belgium) on an Elekta Neuromag Vectorview scanner
for the first 30 multiple sclerosis patients and 15 HCs, and on an Elekta Neuromag Triux scanner
for the remaining cohort, due to the aforementioned upgrade. Both the MEG scanners share the
same sensors layout, composed of 102 triples of sensors, each consisting of one magnetometer and
two orthogonal planar gradiometers. Moreover, they are both placed in a lightweight magnetically
shielded room (Elekta Neuromag & MaxshieldTM, Elekta Oy, Helsinki, Finland). MEG signals
were recorded at 1 kHz sampling rate with a 0.1−330 Hz band-pass filter. Subjects’ head position
inside the MEG helmet was continuously monitored using four head-tracking coils. The location
of these coils and at least 400 head-surface points (on the nose, face, and scalp) were determined
with an electromagnetic tracker (Fastrak, Polhemus, Colchester, Vermont, USA). The paradigm
designed for the experiment is: 10 minutes eyes-closed resting-state. MEG data is preprocessed
and transferred in source space using a beamformer algorithm[34, 59]. Given MEG time courses in
source space, the following steps propose the development of the algorithm implemented to extract
the quantities utilized in the further analyses:

1. The frequency content related to each time course is extracted by calculating the Power
Spectral Density, employing the MATLAB function pwelch(). The frequency content related
to each source is averaged over all the network’s nodes. Moreover, for each subject, find-
peak() function is employed to infer the power α-peak, within the frequency window of
7− 12 Hz.

2. The second step consists in filtering time courses in 4 or 5 frequency bands, including brain
rhythms displayed during resting state: θ 1−4 Hz, δ 4−8 Hz, α 8−12 Hz and β 12−20 Hz.
Depending on the analysis performed, the α band is spit in lower α, 8 − 10 Hz, and upper
α, 10− 12 Hz. The frequency bands of interest regard those that are altered in MS subjects.
Therefore, the investigation focuses on the α and δ power bands.

3. During brain activity, functional networks are detected, by means of synchronization of am-
plitude envelope fluctuations between different regions. One of the methods to extract the
amplitude envelopes consists in computing the Hilbert Transformation. The analytic signal
Rn(t), where n = 1, ..., N and N = 90 brain parcels, can be described as a complex number:

Rn(t) = An(t)eiφ(t) (5.1)

where An(t) is the amplitude of the analytic signal and φn(t) the related phase. In order
to extract the amplitude envelope, MATLAB function hilbert() is utilized and the module is
elicited. The phase of the signal, φn(t), is calculated by extracting the angle() of the Hilbert
Transformation.
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4. The envelope is a low frequency signal compared to the measured data. Therefore, it is
downsampled to a lower frequency, 250 Hz. This step includes an additional band pass filter
in a low frequency band, 0.01− 0.1 Hz, to extrapolate the envelope fluctuations. Moreover,
the averaged signal among all the time series is extracted, and subtracted to each node, to
discard the common line.

5. Functional connectivity, FC computation. The following step consists in computing the Pear-
son’s correlation coefficient between each pair of amplitude envelope fluctuations. Therefore,
a FC matrix is computed in each frequency band independently[34].

The main outcome of the algorithm is the Empirical Functional Connectivity, a matrix with di-
mension N ×N , where N = 90, number of brain’s parcels. This is a symmetric matrix, since the
Pearson’s correlation coefficient does not allow to deduce causal interactions.

5.2 Model Implementation

The work of this thesis focuses on the implementation of a neurocomputational model to simulate
brain activity. The model implemented is the Kuramoto model, which is employed also in several
other studies [5, 55].

5.2.1 Coupled-Oscillators Model with Time Delay

The Kuramoto model employed in this work is a variant of the original Kuramoto Model, and time
delay is the additional parameter. The following equation presents the mathematical description
of the network’s nodes intrinsic dynamic:

dθn
dt

= ω + k

N∑
p=1

Cnpsin(θp(t− τnp)− θn(t)), n = 1, ..., N (5.2)

where N is the number of parcels depending on the implemented brain parcellation atlas[43]. Going
through the model’s characteristics, the first one concerns the nodes’ angular frequency, ωn = ω.
This is the same for each node, and it is characterized by the nodes’ intrinsic natural frequency fn,
ω = 2πfn. This natural frequency is fn = 40Hz, a value consistent with electrophysiological
measurements[8, 26]. Additionally, Cnp is the coefficient weighting the connection between a
determined pair of nodes n and p. Following, two model’s parameters are presented: k, global
coupling strength of the model, and τnp, the time delay introduced in the interaction between two
nodes. This last parameter depends on the actual distance between two regions, and it is computed
as τnp = Dnp/v, where v is the conduction velocity between two regions. A simplification in
modelling this last parameter must occur, defining a homogeneous time delay, τ̃ = D̃/v, where
the ratio is computed between the average distance matrix D̃, and the conduction velocity, v,
considered homogeneous all over the brain network. This model is implemented in the Network-
Kuramoto() function[55], used along this thesis for every simulation. Among the inputs to this
function, three are worth mentioning: SC, structural connectivity matrix from which the Cnp
coefficient is extracted, and the two model’s parameters k and τ . Therefore, the only measurement
that can really affect the model’s performances is the SC. The other two parameters are assumed
to belong within a range of values, k ∈ 1, 2, .., 15 and τ ∈ 1, 2, .., 30. Depending on the analysis to
conduct and its goal, the ranges themselves and the incremental step within these ranges slightly
vary, i.e increment of 1 or 0.5.

After focusing on the model’s dynamics at the node level, the dynamics of the entire system is
considered, and the coefficients used to describe the network’s dynamics are inferred. Two aspects
must be highlighted: the achievable synchronization level, and the possible synchronization pattern
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of the whole network. The quantity used to investigate this aspect is the order parameter, R(t):

R(t)eiΦ(t) =
1

N

N∑
n=1

eiθn(t), N = 90 (5.3)

where R(t) measures the phase uniformity among the whole system. When it is equal to 0 there
is no synchronization, while if it is equal to 1, the whole system is synchronized. Moreover, Φ(t) is
the global phase[4]. To measure the occurrence of slow fluctuations in the synchrony degree, the
standard deviation of R(t) is computed, σR = std(R(t)), measuring the level of metastability of the
system; slow amplitude fluctuations appear when sub-networks synchronize temporarily and then
dissolve, displaying alternating meta-stable activity patterns, and σR 6= 0. These coefficients can
also be inferred by the MEG time courses, since in the previous section, all the necessary inputs
to compute the empirical synchrony degree are presented. However, along this dissertation, the
metastability analysis remains focused on the model’s simulations.

5.2.2 Simulated Functional Connectivity

Once brain signals are simulated, the simulated functional connectivity is computed. The algorithm
to infer simulated functional connectivity follows the one proposed for the empirical FC; however,
one step must be explained. As it can be observed from equation 5.2, the simulations outcome is
a matrix of phases, since this is the model’s state variable. The simulated matrix has dimensions
NxT , where N is the number of parcels considered in the model, and T is the number of simulated
time points. However, the first simulated 20 sec are discarded, representing a transient period
that is not considered. Afterwards, the real simulated data are computed by extracting the sin()
of the phases matrix; a sinusoidal regime with constant amplitude is assumed[5]. Eventually, the
Pearson’s correlation coefficient is computed to deduce the Simulated Functional Connectivity.
Following, the synchrony degree and metastability are also inferred.

Concerning the model’s parameters k and τ , a simulation is run for each combination of param-
eters. Therefore, every simulation includes itself 15x30 simulations. The output related to an
entire simulation are: simulated frequency content, synchrony degree, R(t), metastability, σR, and
simulated functional connectivity, FC. Given the big computational demand required for each sim-
ulation, the algorithm includes a parallel pool that allows to recruit contemporaneously a certain
number of cores, and for each, running a simulation concerning a pair of parameters. Along the
development of the thesis, the algorithms were adapted and slightly modify with respect to the
obtained results. The code related to the algorithm presented in this section is proposed in the
appendix A, and the workflow is schematized in figure 5.2.

Figure 5.2: This figure proposes the workflow followed to extract simulated and empirical
FC[4]. This figures refers to the reference paper, in which the frequency bands of filtering
are 10. In this work, instead, these are only 4 or 5, depending on the analysis[5]
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5.2.3 Model Optimization

Depending on the part of the work considered, this crucial step of the pipeline is conducted exactly
in the same way. Hence, either for the simulations at the population level or at the subject level,
the empirical and the simulated functional connectivity are matched so the extract the optimal
model parameter that permits the achievement of the best model simulation.
To verify the model’s performance, the Pearson’s Correlation Coefficient is computed between
simulated and empirical FC matrices. This is the following step of the workflow shown in figure
5.2. This comparison is performed in each frequency band, and for each pair of model’s parameters
(k, τ). Eventually, the outcome is a 3D matrix, M ∈ R15x30x5, where the first dimension refers to
the range of values assumed by k, the second one to τ , and the last one to the frequency bands in
which the correlation is executed. In figure 5.3, the model’s performance grid is exemplified.

Figure 5.3: This plot shows the model’s performance grid,
where on the y and x-axes the model’s parameters, k and τ
respectively, are displayed. Each element of the grid represents
the Pearson’s correlation coefficient between the empirical FC
and the simulated FC referred to that specific combination of
parameters[5].

The real model optimization step entails the extraction of the pair of parameters for which the
correlation coefficient between simulated and empirical FC is the best. For this step, the center of
mass, com, of the model’s performance matrix M is computed as follows:

com(k, τ) =

∑
c(k, τ)s(k, τ)

P
(5.4)

where, c(k, τ) ∈ M refers to the model’s performance matrix of correlation coefficients, s(k, τ)
is the scale factor referring to the increasing step of each parameter, and P is the total size of
the performance matrix M . A different optimal pair of model’s parameters is extracted in each
frequency band. Again, depending on the part of the work, the pair of optimal parameters is
acquired for each population under investigation, as in the first analysis, or for each subject, as in
the last part of the work.

5.3 Simulations

In this section, it is described how the analysis is conducted in each of the three parts of this thesis.
Although the crucial point remains always the implementation of the neurocomputational model,
there are aspects of the analysis that change, such as the cohort of selected subjects, and the goal
of the investigation itself.
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5.3.1 Model Validation

This investigation aims at reproducing the findings present in Cabral et al. 2014[5]. The analysis
conducted in this work tries to resemble as much as possible the one proposed by the reference
study, in order to delete any possible factor that could affect the results and mislead the outcomes’
interpretation. For instance, the dataset used for this analysis is selected consistently with the
dataset composition of the reference paper in age, gender and pathophysiological condition of the
included subjects. Therefore, among the two groups BRUMEG1 and BRUMEG2, only females,
healthy controls and under 40 years old subjects are extracted, and the composition of the dataset
used in this analysis is shown in table 5.3.

BRUMEG1 BRUMEG2

Female HC 6 4
Average Age 32 31.5

Table 5.3: This table proposes the composition of the two
groups of subjects extracted because fulfilling the require-
ments of being HC, female and < 40yo.

This analysis is conducted at the group level, therefore the SC in input is the average SC matrix,
computed by averaging region by region the SC matrices of the included subjects. Considering the
ranges of model’s parameters, the grid of values that they assume is the following: k = [1, 2, ..., 15],
and τ = [0, 1, ..., 30]. Furthermore, the frequency bands considered are 4: 1−4 Hz, 4−8 Hz, 8−12
Hz, and 12− 20 Hz. Eventually, the quantity that are relevant for the results and further analysis
are:

• The matrix of correspondence, M ∈ R15x30x4, where the dimensions corresponds to k, τ , and
the number of frequency bands;

• The synchrony Degree, R, and the relative standard deviation, σR, measure of Metastability;

• The simulated Frequency Content.

5.3.2 Group Level Simulations

In the second part of the work, the Kuramoto Model is applied to groups of subjects with different
neurological conditions, and 9 groups are identified. Concerning BRUMEG1 only HC, MS and MSB
are observed, and the composition of each group is shown in table 5.1. Focusing on BRUMEG2,
each sub-group (HC, MS and MSB) is split considering the the difference in gender, male and
female, as shown in table 5.2. The analysis at the group level relies on the average SC matrix
in input, and the simulated FC is then correlated with the average empirical FC, extracted by
averaging region by region the FC of each subject. Among the model’s parameters, k, coupling
strength, changes with respect to the previous analysis, therefore k ∈ [0.5, 1, ..., 10]; whilst time
delay, τ remains the same. Another difference with the previous investigation regards the filtering
frequency bands: here 5 bands are proposed, where the α band is split in low α, 8 − 10 Hz and
high α, 10−12 Hz. At this level of analysis, considerations on the results are qualitative and based
on a visual inspection. The reason relies on the employment on the mean, a quantity susceptible
to outliers.

5.3.3 Subject Level Simulations

The last part of the analysis conducted along this thesis, resembles the simulations at group
level. For each dataset BRUMEG1 and BRUMEG2, the model is given in input the average
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structural connectivity of the healthy controls, disregarding the age or gender. Following, the
simulated functional connectivity is correlated with each single subject’s FC matrix. Therefore, 5
pairs of optimal parameters are extracted for each subject, each one related to a single frequency
band. As it can be noticed, the computational demand becomes unsustainable for a common
CPU. To be able to perform the simulations in a reasonable amount of time, these are submitted
to a remote supercomputer, Hydra. This cluster allows to compute simulations with an intense
parallel pooling, decreasing drastically the computational time to few days. To visualize the results,
different methods are utilized. Scatterplots are used to investigate possible correlations, while
kernel density distribution graphs aim at moving the attention on the parameters’ distributions.
Furthermore, boxplots are employed to visually identify variation of parameters’ means regarding
different groups (HC, MS and MSB). This last examination is also deduced quantitatively, and the
following null-hypothesis is proposed:

H0: There is no difference between the averages model parameters referred to the following
groups of subjects: MS, HC and MSB.

To verify this hypothesis, the MWW test is employed.

The last analysis performed on these outcomes aims at finding a correlation between the subject’s
α-peak extracted from the frequency content of the MEG data, and the model’s parameters.
The correlation is always computed by means of Pearson’s correlation coefficient. Following, the
outcomes of the analyses are proposed.
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Chapter 6

Results and Observations

This chapter presents the results obtained conducting the previously described analyses in chapter
4. The work of this thesis starts from the already extracted empirical functional connectivity and
structural connectivity, which are given in input to the pipeline that then develops the Kuramoto
model and the empirical and functional connectivity matching analysis, and the script is reported
in A. This refers to the available scripts provided by Cabral et al. 2014a. Therefore, all the
results and the analyses performed throughout this thesis starts from the performance matrix.
The dissertation is developed in three sections, each one concerning one of the research objectives
proposed.

6.1 Model Validation

The first part of the work aims at validating the performances of the Kuramoto model. To pursue
this goal, the analysis proposed by Cabral et Al. 2014[5] is reproduced on a small part of the
dataset described in table 5.3, which includes only healthy subjects that match by age and gender
the population involved in the reference study. The comparison between the obtained results and
the reference study is conducted by investigating two aspects: the model performance and the
metastability.

6.1.1 Model Performance

After running a simulation for each pair of parameters (k, τ) in the chosen grid 15 × 30, the
model performance matrix, M , is computed by evaluating the Pearson’s correlation coefficient
between empirical and simulated Functional Connectivity matrices. M is extracted in the following
frequency bands 1− 4 Hz, 4− 8 Hz, 8− 12 Hz, 12− 20 Hz, and the outcomes are plotted in figures
6.1 and 6.2, regarding BRUMEG1 and BRUMEG2 datasets respectively.
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Figure 6.1: These graphs show the model’s performance matrix regarding
the simulation in which the employed dataset is composed of BRUMEG1
healthy female subjects, under the age of 40 years old.

Figure 6.2: These graphs show the model’s performance matrix regarding
the simulation in which the employed dataset is composed of BRUMEG2
healthy female subjects, under the age of 40 years old.

In figure 6.3, the model performance proposed by the reference study is shown. An important
observation follows; the reference study has conducted the analysis in 10 different frequency bands(
2 − 6 Hz, 4 − 8 Hz, 6 − 10.5 Hz, 8 − 13 Hz, 10.5 − 21.5 Hz, 13 − 30 Hz, 21.5 − 39 Hz, 30 − 48
Hz, 39− 66 Hz, 52− 80 Hz), whereas the proposed analysis only focuses on 4 bands. Nonetheless,
the comparison is performed only in the frequency band 10.5− 21.5 Hz, as this presents the most
interesting traits.
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Figure 6.3: On the left, the figure shows the model’s performance regarding
the results obtained by the reference paper[5], only in the freq. band 10.5 −
21.5. On the right, the Pearson’s correlation coefficient between simulated and
empirical FC matrices is extracted for the selected optimal pair of parameters
k = 3 and τ = 16ms, in each frequency band[5].

The optimal parameters elicited in our analysis are compared to the combination proposed by the
reference study in the following table 6.1.

BRUMEG1 BRUMEG2 Reference Study
k τ [ms] k τ [ms] k τ [ms]

1-4 Hz 7,94 20,61 8,56 16,02 3 16
4-8 Hz 6,06 20,92 7,54 17,62 3 16
8-12 Hz 8,09 17,85 7,50 19,42 3 16
12-20 Hz 5,71 17,35 5,27 18,26 3 16

Table 6.1: This table presents the optimal pairs of model’s parameters (k,τ) extracted in each frequency band, for
BRUMEG1 and BRUMEG2 datasets, and the combination proposed by Cabral et Al. 2014a.

In the reference study, the model optimal parameters are defined as k = 3 and τ = 16 ms. For this
combination, the model performance in each frequency band is extracted, and gathered in figure
6.3.

Analyzing table 6.1, a mismatch is noticed between the optimal parameters inferred by this analy-
sis, average k = 7 and τ = 19 ms, and those proposed by the reference study, k = 3 and τ = 16 ms.
The factors that might affect these results are the following. First, one can notice the different DTI
b-values characterizing the measurements in the two studies. In the reference paper, this parameter
is set at b-value= 1200s/mm2, whilst in this study the two coefficients are b-value1 = 800s/mm2

and b-value2 = 1000s/mm2, for BRUMEG1 and BRUMEG2 DTI-measurements respectively. Fur-
thermore, there is a slightly different composition in the dataset: the average age of the cohort of
subjects in [5] (mean= 29 years old, 10 subjects) is younger than the group of subjects chosen for
this analysis (mean= 32 years old). In addition to this, in Cabral’s study, three out of ten subjects
are males, whereas only females are selected in this work, where the number of subjects is smaller,
6 and 4 subjects for BRUMEG1 and BRUMEG2 dataset respectively.

Despite the results concerning the model’s parameters, other important outcomes can be inferred.
In figures 6.1 and 6.2, the model’s performance achieves the strongest correlation, about ρ =
0.3 − 0.4, in the carrier frequency bands of 8 − 10 Hz and 12 − 20 Hz. These represent the
filtering frequency bands in which both simulated and empirical FCs are extracted, and then
correlated. These results are consistent with the α and β rhythms detected in resting-state MEG
measurements, as explained in section 2.1.3. Furthermore, this consideration is in agreement with
Cabral’s outcomes, where the strongest correlation is observed in the frequency band 10.5 − 21.5
Hz.
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6.1.2 Metastability

The next analysis concerns the evaluation of the metastability. The results elicited by the simula-
tions performed throughout this thesis are shown in figure 6.4 and figure 6.5, related to BRUMEG1
and BRUMEG2 dataset respectively.

Figure 6.4: This figure shows the metastability regarding the group of subjects selected
from BRUMEG1 dataset. On the left, the synchrony degree/order parameter is plotted, on
the right the standard deviation of the order parameter is present: the metastability.

Figure 6.5: This figure shows the metastability regarding the group of subjects selected
from BRUMEG2 dataset. On the left, the synchrony degree/order parameter is plotted, on
the right the standard deviation of the order parameter is present: the metastability.

In figure 6.6, the results concerning the metastability proposed by the reference paper are shown.

Figure 6.6: This figure shows the Metastability proposed by the refer-
ence study[5]. On the left, the synchrony degree is plotted, on the right
the metastability is present.
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Considering these results, one can notice two aspects. First, we remind that metastability is
computed as the standard deviation of the order parameter, R(t), measuring the system’s degree
of synchronization, as explained in chapter 5. Considering the optimal parameters combination,
k = 7 and τ = 19, the obtained order parameter, R ≈ 0, 3, is consistent with respect to the
reference study outcome of R ≈ 0, 4. The metastability also agrees with the reference outcome,
0, 1 < σR < 0, 2.
A closer inspection on the metastability results discloses a characteristic double-tail trend in the
metastability plot related to BRUMEG2 simulation, 6.5. This effect is characterized by the splitting
of the region of high correlation coefficients in the metastability plot; therefore, a larger range of
model parameters seem to permit simulations that accomplish high metastability. To investigate
this aspect more in detail, simulations are run for the 4 subjects included in the BRUMEG2
subgroup, and the results are proposed in the following paragraph.

Single Subject Investigation

Before presenting the results concerning this analysis, an important consideration must be intro-
duced. The metastability is inferred by the analysis of simulated data, therefore only the model
and its inputs are involved in this analysis. The only input required by the Kuramoto model,
except for its parameters, is the SC matrix. It is reminded that the SC matrix is extracted from
DTI-based tractography, and the only difference between BRUMEG1 and BRUMEG2 SC matrices
is based on the different DTI scanner’s parameter set during the measurements. Consequently, the
double-tail effect might be related either to the model intrinsic mechanisms, or to the SC matrix.
Following, the metastability results obtained by the 4 subjects simulations are plotted in figures
6.7 - 6.10. The correspondent subject’s SC is shown next to each simulation’s result, to verify
whether the double-tail trend is related to a particular trait in the subject’s SC matrix.

Figure 6.7: In this figure, the metastability results concerning subject 2172 are shown on the left.
On the right, the subject’s SC matrix is proposed.

Figure 6.8: In this figure, the metastability results concerning subject 2262 are shown on
the left. On the right, the subject’s SC matrix is proposed.
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Figure 6.9: In this figure, the metastability results concerning subject 2298 are shown on
the left. On the right, the subject’s SC matrix is proposed.

Figure 6.10: In this figure, the metastability results concerning subject 2306 are shown on
the left. On the right, the subject’s SC matrix is proposed.

The double-tail trend is obtained in three out of four simulations. However, a global observation
of the subjects’ SCs do not disclose any particular feature in these matrices. Therefore, this trend
cannot be related to a SC trait, and a different perspective of investigation is proposed.

Another characteristic that marks the selected subjects is the age range. Only subjects under the
age of 40 years old are considered. Therefore, a new analysis examines the possible relationship
between age and SC matrix within the BRUMEG2 dataset, by means of the Pearson’s correlation
coefficient.
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Figure 6.11: This figure shows the results of the correlation between SC and age in
BRUMEG2 dataset. On the left, the p-values are plotted, whereas on the right, the
−log10(p− value) is displayed for a better visualization of the outcomes

As displayed in figure 6.11, no correlation is obtained between age and structural connectivity,
since the p-value presents values > 10−2 over the whole SC matrix.

Finer Simulations

A simulation on a finer grid of model’s parameters is proposed, where the model parameters ranges
are k = 1, 1.5, ..., 10 and τ = 5, 5.5, ..., 30. Two simulations are run, to verify that this characteristic
double-tail trend appears constantly in different simulations, and the results are shown in figure
6.12.

Figure 6.12: These plots show the metastability results of two high resolution simula-
tions. Two identical simulations are run with a smaller incremental step for both the model’s
parameters k and τ .

The metastability results of the two high resolution simulations, do not show the double-tail trend
displayed in figure 6.12. To conclude the investigation of the metastability behaviour, the results at
first have shown a peculiar double-tail effect which must be related to the model itself or its inputs,
which are basically the structural connectivity matrix and the pair of simulation parameters k and
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τ . When thinning the grid of the model parameters, the trend disappears, and thus, the grid of
values employed for the model parameters is considered to cause the observed double-tail trend.

6.2 Group Level Simulations

As presented in the previous section, the first analysis succeeds in reproducing Cabral’s results[5],
therefore, the model is validated on the available dataset. Following, the core analyses of this thesis
are exposed, with the related results.

At first, the model is run considering groups of subjects that present different conditions: healthy
controls, HC, Multiple Sclerosis subjects, MS, and Multiple Sclerosis-Benzodiazepine positive pa-
tients, MSB. Several studies have shown a disruption of the FC matrix in MS patients [24, 52].
Therefore, to achieve the strongest correlation between simulated and empirical FCs, we expect
the model optimal parameters to adapt to different cases, and this is .

Before running the model, an additional analysis is conducted, to investigate possible differences
between the average structural connectivity of different groups of subjects identified by gender,
pathological condition, and belonging dataset, BRUMEG1 or BRUMEG2. One is reminded that
the average of the SC matrix of the subjects belonging to the group identified is provided to the
model as input, and this constrains the possible functional interactions between distinct brain
regions. Therefore, changes in model performances could be led by structural connectivity features
which differ between different groups (HC and MS subjects), and this could alter the results and
mislead their interpretation. The following paragraph provides the results of the investigation
that aims to identify significant differences between the average SC matrices referred to different
groups. This is important not only to identify possible structural connectivity variations among
populations, but also to conduct the discussion of the model simulations results.

6.2.1 Structural Connectivity Analysis

To investigate SC differences among groups of subjects, 7 comparisons are performed, herein Mann-
Whitney U test is employed[58]. The results concerning the comparisons are shown in the following
figures 6.13 - 6.19, where both the p-values and −log10(p − value) are displayed, for a better
visualization of the results. The significance threshold is set at p-values < 10−5.

• BRUMEG1 vs BRUMEG2.

Figure 6.13: In this figure, the comparison between BRUMEG1 and
BRUMEG2 subjects’ SC matrices is shown. On the left, the p-values are
plotted, whereas on the right, the −log10(p− value) is displayed for a better
visualization of the outcomes.

• BRUMEG1: MS vs HC.
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Figure 6.14: In this figure, the comparison between BRUMEG1 HC and MS
subjects’ SC matrices is shown. On the left, the p-values are plotted, whereas
on the right, the −log10(p − value) is displayed for a better visualization of
the outcomes.

• BRUMEG1: MS vs HC vs MSB

Figure 6.15: In this figure, the comparison between HC, MS and MSB subjects’ SC matrices is shown,
concerning BRUMEG1 dataset. The first row shows the plots considering the p-values results, whereas the
−log10(p− value) results are displayed on the bottom row, for a better visualization of the outcomes.

• BRUMEG2: Male vs Female

Figure 6.16: In this figure, the plots show the comparison that is performed
within BRUMEG2 dataset, between Male and Female subjects’ SC matrices.
On the left, the p-values are plotted, whereas on the right, the −log10(p −
value) is displayed for a better visualization of the outcomes.
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• BRUMEG2: MS vs HC

Figure 6.17: In this figure, the comparison between BRUMEG2 MS and HC
subjects’ SC matrices is shown. On the left, the p-values are plotted, whereas
on the right, the −log10(p − value) is displayed for a better visualization of
the outcomes.

• BRUMEG2 HC: Male vs Female

Figure 6.18: In this figure, the comparison between BRUMEG2 HC Male
and Female subjects’ SC matrices is shown. On the left, the p-values are
plotted, whereas on the right, the −log10(p− value) is displayed for a better
visualization of the outcomes.

• BRUMEG2 MS: Male vs Female

Figure 6.19: In this figure, the comparison between BRUMEG2 MS Male
and Female subjects’ SC matrices is shown. On the left, the p-values are
plotted, whereas on the right, the −log10(p− value) is displayed for a better
visualization of the outcomes.

Among all these comparisons, only the one regarding BRUMEG1 versus BRUMEG2 shows signif-
icant results. As aforementioned, the SCs of these two groups are acquired with two different DTI
b-values. As a result, the SC matrices extracted from DTI-based tractography show significant
differences, and figure 6.13 displays that the MWW-test yields p-values < 10−5 almost all over the
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SC matrix. Conversely, comparisons between HC and MS subjects, with or without MSB cases
included, do not exhibit interesting differences. This statement can be referred to both BRUMEG1
and BRUMEG2 datasets’ analyses. The MWW-tests between MS and HC SCs obtain p-values
> 10−2 over the whole SC matrix, as shown in figures 6.14 - 6.17. Within BRUMEG2 dataset,
there are both female and male subjects, and a comparison between SCs related to the two pop-
ulations is pursued. However, figures 6.16, 6.18 and 6.19, show p-values > 10−3 considering the
whole SC matrix. Despite the proposed results, the literature presents findings that highlight some
differences between SC matrices between genders, and pathological conditions. Nevertheless, this
is a research field yet under investigation[38]. The model simulations are run for each one of the
identified group in this section.

6.2.2 Model’s Performance

After the analysis concerning SC differences, the model is applied to different groups of subjects,
following the different populations identified in the previous section 6.2.1. Therefore, 9 simulations
are run; the identified BRUMEG1 groups are: HC, MSB-MS Benzodiazepine positive and MS- MS
Benzodiazepine negative; whereas BRUMEG2 subdivision consists first in male and female cohorts
of subjects, afterwards in each of these, HC, MS and MSB groups are split.

For each simulation, the average SC matrix of the group is provided as input for the model, and
the simulated FC is then correlated to the average empirical FC. The quantity which the analysis
relies on, is the average, and due to its susceptibility to outliers, only a qualitative examination of
the results is entailed.

Figure 6.20: The model’s performance for the BRUMEG1 HC simulation
is plotted, for each frequency band independently. The optimal pair of pa-
rameters is pointed by the white dot, and the combination is printed in the
title.
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Figure 6.21: The model’s performance for the BRUMEG1 MS simulation
is plotted, for each frequency band independently. The optimal pair of pa-
rameters is pointed by the white dot and the combination is printed in the
title.

Figure 6.22: The model’s performance for the BRUMEG1 MSB simulation
is plotted, for each frequency band independently. The optimal pair of pa-
rameters is pointed by the white dot and the combination is printed in the
title.

62



Figure 6.23: The model’s performance for the BRUMEG2 female HC sim-
ulation is plotted, for each frequency band independently. The optimal pair
of parameters is pointed by the white dot and the combination is printed in
the title.

Figure 6.24: The model’s performance for the BRUMEG2 female MS sim-
ulation is plotted, for each frequency band independently. The optimal pair
of parameters is pointed by the white dot and the combination is printed in
the title.
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Figure 6.25: The model’s performance for the BRUMEG2 female MSB
simulation is plotted, for each frequency band independently. The optimal
pair of parameters is pointed by the white dot and the combination is printed
in the title.

Figure 6.26: The model’s performance for the BRUMEG2 male HC simu-
lation is plotted, for each frequency band independently. The optimal pair of
parameters is pointed by the white dot and the combination is printed in the
title.
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Figure 6.27: The model’s performance for the BRUMEG1 male MS simu-
lation is plotted, for each frequency band independently. The optimal pair of
parameters is pointed by the white dot and the combination is printed in the
title.

Figure 6.28: The model’s performance for the BRUMEG2 male MSB sim-
ulation is plotted, for each frequency band independently. The optimal pair
of parameters is pointed by the white dot and the combination is printed in
the title.

Despite the qualitative observations, several interesting considerations can be inferred by these
results. First, the implementation of the Kuramoto model in groups of MS patients display the
same characteristics exhibited in HC simulations, consistently with the reference study[5]. In fact,
in both groups, the correlation coefficients, rho, achieves the highest value in the α frequency band,
and in this specific analysis in the 8 − 10 Hz and 10 − 12 Hz bands. In tables 5.1 and 5.2, the
sizes of the different populations are displayed, and an interesting observation regards the slightly
weaker correlation coefficients, ρ ≈ 0.2, in simulations considering smaller populations, as can
be inferred by the results considering BRUMEG2 male MSB simulation, which is performed only
considering a single subject, figure 6.25. Another important aspect regards the distribution of the
strong correlation coefficients in the model’s performance matrix. Focusing on the frequency band
10 − 12 Hz, we observe the results of the simulations regarding MS and HC groups, disregarding
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of the belonging dataset. The area where the correlation coefficients attain the highest values, is
centrally located and homogeneously distributed in the model’s performance grid, concerning the
HC simulations, figure 6.26; whereas it is shifted in the bottom right corner of the matrix when
observing the simulations regarding MS groups, figure 6.27.

As last observation, one can recognize the slightly different behaviour between male and female
groups, visible in particular in the 10− 12Hz. The strong correlation region in the model’s perfor-
mance matrix is shifted between HC and MS groups, considering both male and female simulations’
results. However, the effect is more pronounced in males, and this is consistent with literature re-
sults that report stronger FC alteration effects in male than in female patients [24]. In this part
of the work, the model is proved to reflect variation in the FC matrix between groups of subjects
with different pathological conditions. Given these observations, the course of the analysis moves
to implement the model to simulate single subject resting-state activity, and investigate the model
capability to tune its parameters to detect FC differences between subjects, which would allow to
identify a possible biomarker. Before stepping into this critical analysis, the metastability of the
model simulations at the group level is investigated.

6.2.3 Metastability

The second part of the analysis at the population level concerns the examination of the metasta-
bility results. In figures 6.29 and 6.30, we exhibit the results for BRUMEG2 Male groups, HC and
MS respectively.

Figure 6.29: The metastability results are shown, regarding BRUMEG2
male HC dataset.
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Figure 6.30: The metastability results are shown, regarding BRUMEG2
male MS dataset.

The metastability is extracted in each frequency band separately, to highlight its different trend con-
cerning different frequency bands. Considering the α band, the metastability results 0.1<σR<0.2
when the optimal model parameters are k = 5 and τ = 18. However, the expected trend of this
quantity is different from the analysis proposed in section 6.1 where the validation of the model
was pursued. Although detailed examination of the metastability deviates from the ultimate goal
of this thesis, the metastability pattern among the different frequency bands is an important aspect
to take into consideration, and a further investigation of the phenomenon should be pursued.

6.3 Subject Level Simulations

The implementation of the Kuramoto model at the group level reveals the model’s capability to
detect differences in FC matrices when groups of subjects with different health or pathological
conditions are considered. The following step aims at investigating the model’s performance in
detecting FC variations at a lower scale, the subject level.

6.3.1 Model’s Performance

For each subject’s simulation, the healthy controls average SC is given in input to the Kuramoto
Model. As the whole analysis proposed so far, the average SC of the HC subjects is computed for
BRUMEG1 and BRUMEG2, independently. Eventually, the simulated FC is correlated with the
subject-specific FC. In figure 6.31, the results concerning the model’s performance for the specific
subject 2164 is presented, for each frequency band separately.
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Figure 6.31: This figure displays the model’s performance obtained for
subject 2164 simulation, in each frequency band.

Consistently with the observation proposed in the previous section, the obtained Pearson’s correla-
tion coefficients are slightly weaker compared to the results at the group level proposed in section
6.2.2.

6.3.2 Subject-Specific Simulations Analysis

Although the analyses are performed in all the frequency bands defined in the methods, the most
meaningful data are obtained in the α, 8−10 Hz and 10−12 Hz, and β, 12−20 Hz, frequency bands;
therefore, we propose the results regarding these specific frequency bands. The first outcomes are
displayed in the scatterplots in figures 6.32 and 6.33, for BRUMEG1 and BRUMEG2 datasets
respectively. Each point represents the optimal pair of model’s parameters extracted for each
subject in each frequency band. Next to each scatterplot, a kernel distribution graph shows the
density distribution of the optimal parameters. Each graph concerns a specific frequency band and
the three conditions (HC, MS and MSB) are highlighted in three different colors.
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Figure 6.32: This graphs show results concerning BRUMEG1. On the right the scatter plot of the optimal pairs
of model’s parameters extracted for each subject, therefore the plot shows coupling strength k versus mean delay,
τ . The three groups of HC, MS and MSB are highlighted in different colors. On the left, the same results are
proposed, however a kernel density plot is shown to focus the attention on the distribution of the parameters related
to different groups (HC, MS, MSB). Each row presents the results related to a specific frequency band, following
8− 10 Hz, 10− 12 Hz, 12− 20 Hz.
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Figure 6.33: This graphs show the results concerning BRUMEG2. On the right the scatterplots display the
optimal pairs of model’s parameters extracted for each subject, therefore the plot considers coupling strength k
versus mean delay, τ . On the left the same results are proposed, however a kernel density plot is shown to focus the
attention on the distribution of the parameters related to different groups(HC, MS, MSB). Each row presents the
results related to a specific frequency band, following 8− 10 Hz, 10− 12 Hz, 12− 20 Hz.

A visual examination of these sets of graphs elicits two observations. First, the density distributions
plot does not reveal a significant difference in the mean parameters between different groups (HC,
MS and MSB). This is also visible in the boxplots proposed in figures 6.34 and 6.35, concerning
BRUMEG1 and BRUMEG2 respectively. To confirm the proposed assumption, the results of the
MWW test are shown in table 6.2. The comparison is performed only between the two groups of
interest HC and MS. Setting a significance level of α = 0.05, all the comparisons yield p-values
above the significance threshold. This analysis is performed to investigate whether the model’s
adaptation capability that is observed qualitatively in section 6.2.2 is elicited also at the subject
level.

BRUMEG1 k τ BRUMEG2 k τ
HC-MS HC-MS HC-MS HC-MS

8-10 Hz 0.99 0.85 8-10 Hz 0.27 0.16
10-12 Hz 0.35 0.29 10-12 Hz 0.93 0.71
12-20 Hz 0.17 0.51 12-20 Hz 0.33 0.36

Table 6.2: This table presents the results of the MWW tests performed to compare model’s parameters averages
between different groups of subjects, HC, MS and MSB, for BRUMEG1 and BRUMEG2.
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Figure 6.34: These boxplots show the results concerning BRUMEG1. The comparison focuses on the three groups
of subjects, HC, MS and MSB. The graphs on the left present the results regarding k, whilst on the right the results
regard τ . Each row presents the results related to a specific frequency band, following 8−10 Hz, 10−12 Hz, 12−20
Hz.
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Figure 6.35: These boxplots show the results concerning BRUMEG2. The comparison focuses on the three groups
of subjects, HC, MS and MSB. The graphs on the left present the results regarding k, whilst on the right the results
concern τ . Each row presents the results related to a specific frequency band, following 8 − 10 Hz, 10 − 12 Hz,
12− 20 Hz.

The second observation inferred from figures 6.32 and 6.33, concerns a possible correlation between
the two model’s parameters k and τ . This consideration is further investigated in the following
section.

Correlation k and τ

To explore a possible correlation between the two model’s parameters, the Pearson’s Correlation
coefficient is computed between k and τ , and this analysis is performed in each frequency band,
considering each condition (HC, MS, MSB) separately. The results are shown in table 6.3, for
BRUMEG1 and BRUMEG2 independently.

BRUMEG1 HC MS MSB BRUMEG2 HC MS MSB
8-10 Hz 0.66 0.26 0.22 8-10 Hz -0.54 -0.81 -0.64
10-12 Hz -0.42 -0.35 0.06 10-12 Hz -0.89 -0.88 -0.85
12-20 Hz 0.63 -0.44 -0.62 12-20 Hz -0.35 -0.03 0.14

Table 6.3: Pearson’s correlation coefficients extracted from the correla-
tion between the model’s parameters k and τ . On the right results concern
BRUMEG1, and on the left BRUMEG2.

The focus is set on the frequency bands 8 − 10 Hz and 10 − 12 Hz. In table 6.3, BRUMEG2 pa-
rameters show a moderate to strong negative correlation consistently in all the proposed frequency
bands. This trend involves a decrease in global coupling strength, when the time delay is increased.
Conversely, BRUMEG1 shows only a moderate positive correlation in HC in the 8 − 10Hz band,
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and for the rest, mild positive and negative correlations are displayed without a consistent pattern
among different groups and frequency bands.

6.3.3 Model Performances and Cognitive Impairment

As mentioned along the dissertation, the ultimate goal consists in detecting a possible model pa-
rameter that can be tuned to the patient specific cognitive condition, and thus, become a biomarker
to assess the patient’s condition. However, there is no possibility to directly observe the model per-
formances in function of the cognitive impairment level of a subject, and an intermediate parameter
is required. The power α-peak has shown a correlation with cognitive impairment, and thus, with
FC disruption, in early MS[52]. More specifically, a α-peak shift towards lower frequency is de-
tected in early MS[51]. Therefore, this quantity can be utilized to investigate a possible correlation
between the model parameters, k and τ , and cognitive impairment.

α-peaks test

Before correlating the α-peak with the model parameters, a comparison between averages α-peaks
concerning different groups is conducted. Consistently with all the dissertation, the analysis is
developed for BRUMEG1 and BRUMEG2 independently, by employing the MWW test. Three
comparisons are performed, as shown in table 6.4.

BRUMEG1 p-values
∆α-peak BRUMEG2 p-values

∆α-peak
HC-MS 0.05 HC-MS 0.48
HC-MSB 0.52 HC-MSB 0.21
MS-MSB 0.05 MS-MSB 0.23

Table 6.4: This table shows the result of the MWW test to determine
a significant different in average α-peak between different groups, HC,
MS, and MSB.

Setting a significance threshold of α = 0.05, none of the results obtained can be considered signifi-
cant, since all the inferred p-values are ≥ 0.05, as shown in table 6.4. Following, the correlation of
the α-peaks with the model parameters is investigated.

α-Peaks vs Model Parameters

The last step of the analysis concerns the investigation of a possible relationship between model
parameters and the α-peaks extracted from the empirical MEG data. The power α-peak has been
proven to correlate with cognitive impairment, and therefore with FC disruption, in early MS[52].
Consequently, it is utilized to investigate a possible correlation between the model’s parameters, k
and τ , and cognitive impairment. First, the scatterplots showing α-peaks versus optimal model’s
parameters are presented in 6.36 and 6.37, for BRUMEG1 and BRUMEG2 respectively. In agree-
ment with the previous analyses, only three frequency bands are considered, 8 − 10 Hz, 10 − 12
Hz, and 12− 20 Hz.
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Figure 6.36: These plots show the results concerning BRUMEG1. The set of graphs present the α-peak extracted
from the empirical frequency content for each subject, versus the model’s optimal parameters, k in the first row and
τ in the second one. The three columns relate to the three frequency bands that are considered, 8− 10 Hz, 10− 12
Hz, 12− 20 Hz.

Figure 6.37: These plots show the results concerning BRUMEG1. The set of graphs present the α-peak extracted
from the empirical frequency content for each subject, versus the model’s optimal parameters, k in the first row and
τ in the second one. The three columns relate to the three frequency bands that are considered, 8− 10 Hz, 10− 12
Hz, 12− 20 Hz.

A shallow observation of these plots does not allow to elicit the presence of a relationship between
these variables, because data appears to spread uniformly. Therefore, a more detailed investigation
is performed, computing the Pearson’s correlation coefficient between subject specific α-peaks,
extracted from MEG measurements, and model’s parameters, k and τ , in each frequency band and
for each group in analysis, separately.

BRUMEG1 k vs α-peak τ vs α-peak BRUMEG2 k vs α-peak τ vs α-peak
HC MS MSB HC MS MSB HC MS MSB HC MS MSB

8-10 Hz -0.53 0.10 0.38 -0.65 -0.09 -0.42 8-10 Hz 0.25 0.08 0.15 -0.18 -0.07 -0.11
10-12 Hz -0.35 0.21 0.45 -0.19 -0.04 -0.46 10-12 Hz 0.11 -0.01 -0.07 -0.06 -0.002 0.23
12-20 Hz -0.74 0.29 0.45 -0.23 -0.10 -0.33 12-20 Hz -0.23 0.29 0.71 -0.08 -0.21 -0.16

Table 6.5: Pearson’s correlation coefficients between α-peaks and model’s parameters, concerning BRUMEG1 and
BRUMEG2 datasets, on the left and on the right respectively.

The obtained correlation coefficients are shown in table 6.5. Observing BRUMEG1 results, as
far as MS subjects are concerned, no correlation is noticed, whereas a mild to moderate negative
correlation is obtained for healthy controls. This parallel trend between k and τ is inconsistent
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with the correlation between the two parameters found in the previous paragraph. On the other
hand, considering BRUMEG2, almost no correlation is observed in any population, for the most
interesting frequency bands 8− 10 Hz and 10− 12 Hz.
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Chapter 7

Discussion

In this chapter, we aim at providing an overview and an interpretation of the obtained results,
considering similar studies and related findings present in the literature. We accentuate the step
forward of the conducted analyses, but also the flaws and possible improvements. The development
of this chapter follows the same structure proposed in the previous two, Methods and Results.
Therefore, three main sections are discussed, presenting the conclusions on the research questions
proposed in chapter 4.

7.1 Implementation of Kuramoto Model

The Kuramoto model is a neurocomputational model already successfully implemented in many
studies to simulate resting-state brain activity[5, 55, 57]. This model is used to simulate whole-
brain network activity, in which each node is described as a system of coupled-oscillators. The
state variable describing each node dynamics is the phase, and a sinusoidal regime is inferred[4, 53].
An important parameter must be introduced in the original model, to assure that the model per-
formances resemble resting-state brain activity: the time delay, τ . This factor brings in a delay in
the interaction between phases. Physiologically, this delay between brain regions communication
is caused by a finite conduction velocity, which depends on the myelination level of the commu-
nication pathway, and the delay introduced by the information transfer occurring in the synaptic
cleavages[45]. Eventually, the model parameters are two: k, global coupling strength, and τ , time
delay.

Model Performance

In MEG studies, resting-state brain activity is observed to display power peaks in the α frequency
band, 8− 12 Hz: the 10 Hz peak[48, 50]. Furthermore, in α and β frequency bands, brain regions
interactions occur by synchronization of slow amplitude envelope fluctuations, < 0.1 Hz. The long
distance brain regions interactions occur at low frequencies, α and β bands, and hence, the analy-
ses are focused in these ranges. The amplitude envelopes are computed by employing the Hilbert
Transformation, and extracting the related amplitude. The Pearson’s correlation coefficients is
computed to correlate the amplitude envelope fluctuations between each pair of brain network
nodes, and therefore, the empirical Functional Connectivity matrix is carried out[5]. The last,
but not least, observation considers the intrinsic characteristic of the brain network to develop
temporally functional patterns. This particular dynamic regime is defined as metastability[5, 47].
Specifically, in resting-state activity different networks, RSNs, are detected. These never involve
the whole brain network but subsystems, that are temporally activated, and then dissolve[26].
This paragraph summarizes the main features that characterize the acquired MEG resting-state
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measurements, from which this thesis starts. The goal of this work is to investigate the model
performances in comparison with the empirical MEG data by means of functional connectivity
matching in different cases, rather than having a deep understanding of the model intrinsic mech-
anisms. For this reason, the results proposed start always from the evaluation of the performance
matrix, which permits to extract the model optimal parameters.
To verify that the Kuramoto model can reproduce the experimental measurements, empirical and
simulated FCs are correlated, by means of Pearson’s correlation coefficient. In this work, the
strongest correlation coefficients are inferred in the 8−12 Hz and 12−20 Hz frequency bands, con-
sistently with experimental MEG acquisitions and parallel studies[5, 55]. However, it is worth re-
calling that the intrinsic frequency of oscillation, common to all network nodes, is set at fn = 40Hz,
the factor that yields to a recessing oscillation frequency is the time delay. This allows the oscillator
subsystems to synchronize in a more stable state, characterized by a reduced collective frequency,
in the α and β rhythms[5, 45]. In this statement, we extract the crucial role of time delay, which is
shown by the presented results. Moreover, the results point at another aspect: the whole network
never fully synchronize, but subsystems, which are structurally interconnected, do. This result
is evidenced by the order parameter R(t), which is never bigger than 0.4. In addition to this,
the standard deviation of the synchrony degree, 0.1 < σR < 0.2, infers the existence of different
subsystems within the network, that temporally synchronize and then dissolve, resembling the
metastability regime characterizing resting-state brain networks.

7.1.1 Considerations on the Model Parameters

As proposed in section 6.1, there is a mismatch between the optimal model parameters obtained in
our analysis, and the optimal combination inferred by Cabral et Al. 2014a. To explain this result,
a few considerations are proposed. Concerning k, the observation focuses on the different b-values
characterizing DTI measurements. This coefficient affects the strength of the applied gradient field:
the higher the b-value, the stronger the measured diffusion effect, and the lower the signal to noise
ratio. Therefore, the detectable strength of connection between pairs of brain regions decreases
with low b-values. This observation might refer to the detected alteration of the parameter k that
is observed in this analysis, with respect to [5]. However, the relationship between k and b-value
has never been investigated, and further analyses are required to understand what is the effect of
one parameter on the other.

Second, a consideration on the model parameter τ is proposed. This parameter is defined in
function of the conduction velocity, τ̃ = D̃/v, from which we can extract the average conduc-
tion velocity simulated by the model. The average Distance Matrix, D, is an underestimation of
the actual distance between brain regions, since real anatomical communication pathways never
resemble a straight line as they are modeled when designing the structural connectivity matrix.
For example, axonal tracts connecting regions in different hemispheres pass through the corpus
callosum, drawing a curve that is longer than the straight line between the two regions, assumed
by the distance matrix. Therefore, the conduction velocity, v, is expected to be higher than the
one simulated by the model. The average velocity extrapolated by the optimal average time delay
resulted from this analysis is about 4 m/s, that, with respect to the considerations proposed, can
be included in the average range of physiological plausibility for conduction velocity in myelinated
neurons, 5− 20 m/s[57]. To conclude, the mismatch with the reference paper could be related to
a difference in the employed distance matrix, D.

7.2 Objective II: Group level Simulations

After proving that the Kuramoto model successfully reproduces experimental observations and
the literature findings, the model is applied to simulate brain network activity, considering groups
of subjects with different pathological conditions. In this thesis, the condition in examination is
Multiple Sclerosis, MS, and the results concerning this condition are compared to those related
to the healthy control population. In Multiple Sclerosis, cognitive impairment, CI, is assessed in
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more than 50% of the MS population[13]. In MS research, it is of main interest to find a reliable
and objective parameter to assess CI[14]. The cognitive domain which this thesis focuses on is the
information processing speed, IPS, whose impairment is related to a decreased conduction velocity.
The Kuramoto model parameter τ , time delay, is defined in function of the conduction velocity,
as shown in the previous section. Therefore, we want to observe the capability of the model to
adapt its parameters depending on the group in analysis. Eventually, this property could further
be exploited to assess IPS impairment.

The first step of the analysis is performed at the population level. The average SC of the considered
group is given in input to the model, and the simulated FC is correlated with the average empirical
FC. The pair of model parameters that yields the strongest correlation coefficients is expected to
vary case by case, by relating the model dynamics to the brain network dynamics. This part of
the work is an intermediate analysis, that provides the observations required for the further step.
However, interesting conclusions can be inferred.
The strongest correlation coefficients are obtained in the 8−10 Hz and 10−12 Hz frequency bands,
consistently with the previous results. Furthermore, considering HC and MS simulations, the region
of strong correlation coefficients is observed to vary its distribution in the model performance grid
between the two cases. More specifically, this area is shifted toward an increased time delay in the
MS population, and this is displayed in figure 7.1. Physiologically, this trend is consistent with the
decreasing conduction velocity and information processing speed, detected in MS.

Figure 7.1: The figure proposes the comparison of the model performances
between HC and MS, in the 8− 10Hz frequency band. The aim is to observe
the distribution of high correlation coefficients region.

A last observation concerns the difference between the simulation results regarding male and female
populations. As shown in section 6.2.2, the shifting effect mentioned above, is more pronounced
in male than in female groups. These results are consistent with a recent study that observes a
stronger FC disruption in male than in female patients[24]. These results accentuate the good
performance of the Kuramoto model in detecting pathological conditions at the population level.
Given this promising observations at the group level, the next step regards the implementation of
the model at a finer scale, the subject level.

7.3 Objective III: Subject Level Simulations

The results concerning the model implementation at the subject level elicit conclusions on two
different aspects. Therefore, two separate sections are proposed to analyze the results obtained in
this part of the work.
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7.3.1 Model Parameters Correlation

The first conclusions are inferred from the plots global coupling strength, k, versus mean time
delay, τ , shown in figures 6.32 and 6.33. As shown in table 6.3, moderate to strong negative corre-
lation is observed between the model parameters in the simulations regarding BRUMEG2 dataset,
mainly in the α frequency band. This trend infers an increasing τ , time delay, when the global
coupling strength, k, decreases. Considering the physiological implications of this observation, an
increment in time delay corresponds to a decreased conduction velocity, for the relationship ex-
pressed in equation 3.3, which might be related to damages of the communication network tracts,
or a disruption of the FC matrix. The correlated behaviour of the two model parameters can be
related to the scenario described by the Kuramoto model. The time delay affects the interactions
between two nodes, whereas the coupling strength, k, weights the global interactions. This last
parameter is inserted to maintain the whole system coupled. Therefore, a possible conclusion refers
to the decreasing coupling strength required to maintain the whole system coupled, when the time
delay between phases increases. However, the relationship between these two model parameters is
not investigated in detail within the literature, and further analysis might be interesting to pursue.

It is very important to link the results elicited by the simulations to the physiological context of
analysis. This is because the model is implemented to simulate a neurophysiological system, and
outcome variations can be related to changes in a neuroanatomical or neurophysiological aspect.
The simulation results concerning BRUMEG1 do not find the same correlation pattern between
the model parameters, and one is reminded of the difference in the DTI b-value concerning the
two distinct datasets, BRUMEG1 and BRUMEG2. Different DTI b-values show a relevant effect
in these results.

7.3.2 Correlation α-peak and Model Parameters

A further step in the assessment of IPS impairment, consists in observing the conservation of
the model capability to adapt to different conditions, when the simulations are performed at the
subject level. Therefore, the last part of this thesis aims at finding a possible correlation between
τ , time delay, and IPS. Since it is impossible to directly measure IPS and conduction velocity, a
third measure that is found to correlate with CI is employed: the power α-peak, a parameter that
is detected in resting-state brain activity measurements. In this study, we extract the frequency
content of the MEG signal, a frequency window is selected, i.e. 7−12 Hz, and the peak within this
band is elicited, which is assumed to be the power α-peak. This parameter is found to correlate
with CI in early MS[51]. More precisely, slowing down of α-peak frequency is detected in MS
population. Therefore, a correlation between τ and α-peak is investigated.

A shallow observation of the scatterplots, where the empirical α-peaks are plotted in function of
the model parameters, does not allow to infer a correlation between these variables, as shown
in figure 6.36 and 6.37. The Pearson’s correlation coefficients obtained in table 6.5 support this
statement. This thesis’ results do not prove the assumption of a correlation between an increasing
conduction delay due to demyelination, and the shifting α-peaks detected in MS. There are several
aspects that could affect these outcomes, and here only the most relevant ones are pointed out.

First, an observation on the α-peak: this parameter shows an inter-subjects variability in HC
subjects, and the actual peak can be slightly moved nearby the assumed 10 Hz. This is affected by
different aspects, such as education, IQ, etc[14, 35]. In addition to this, the α-peak shift detected
in MS is relatively subtle and the model parameters adaptation might not be able to follow the
fine α-peak variation. Possibly for this reason, the analysis on the correlation of the time delay
τ parameter with the α-peak was not found significant. Consistently with these observations,
the complexity and heterogeneity characteristics of Multiple Sclerosis must be taken into account.
The MS population included in our analysis comprehends patients in different stages of the disease,
and with different disease onset. In the literature, α-peak shifts correlated with CI are detected in
early MS[6], and further researches are required to assess the possible development of the α-peak
variation along the disease course, and among different disease typologies.
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Another observation concerns the computation of the FC. The employed Pearson’s correlation
coefficient does not allow to detect direct functional interactions, whereby a causal relationship
occurs. There are other methods to compute FC, other approaches mentioned in section 2.1.2,
which might be employed to assess FC from different perspective, leading to a better performance
of the model. Moreover, a stationary perspective is utilized throughout this thesis, which captures
the connectivity over the whole recording time, as an overview of all the brain activity. From these
observations, it is noticeable how several aspects can be improved in the investigation workflow.

The last step of this work concerns the investigation of a significant difference between α-peak
averages related to the following groups: HC, MS, and MSB. The results shown in table 6.4 do not
confirm what is present in the literature, and differences between groups are not elicited. Concern-
ing BRUMEG1, the p-value related to the most interesting comparison, MS vs HC, results exactly
on the significance threshold. On the other hand, BRUMEG2 results do not infer a significant dif-
ference for any comparison. A possible explanation of these results concern the wide variety of MS
subjects considered. The available dataset includes patients affected by PRMS, PPMS, and other
typologies. Furthermore, the pathology is assessed in different stages. As explained in section 1.2
and 2.1.2, the pathology presents different phato-physiological characteristics and effects, depend-
ing on the onset and the stage of the disease. This complexity, characterizing Multiple Sclerosis, in
addition to the inter-subjects variability of the α-peak parameter, display a context of investigation
that contains several factors that can alter and affect the results. This last consideration entails
the necessity to narrow the analysis to a more homogeneous and consistent dataset. For example,
the reference paper where the α-peak shift is detected, considers only early MS patients[6].
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Chapter 8

Conclusions and Future
Developments

The background knowledge of this thesis is very broad and varied, including many concepts gath-
ered from different study fields, such as neuroimaging techniques, neurocomputational model and
network science. In some parts of the analyses, it may prove difficult to maintain the focus on
the ultimate goal. Nevertheless, this complexity characterizes also the strength of this promising
research field. Throughout this thesis, we aim at introducing a new neurophysiological feature to
assess cognitive impairment in Multiple Sclerosis, by employing a neurocomputational model. This
last statement presents the two main aspects concerning this thesis: a neurophysiological feature,
and a neurocomputational model.

8.1 Conclusions

In Multiple Sclerosis, Cognitive Impairment is detected in more than 50% of the MS population. In
clinical practise, CI is assessed by neuropsychological tests that, however, present some drawbacks,
such as operator-dependency, and results’ alteration due to training-effect[3, 14]. In this context,
neuroimaging techniques are more and more employed, in order to infer reliable and objective
parameters that can assess CI in MS. The brain anatomy is investigated by neuroimaging tech-
niques such as MRI, already introduced in clinical practice to assess structural damages’ location
and lesion load[14, 60]. Despite the important role and improvements in diagnosis and prognosis,
neuroanatomical features entail a clinico-radiological paradox[3, 61]. This points at the discrep-
ancy between structural damages assessed by MRI, and the clinical assessment of psycho-physical
decline. It is thought that including neurophysiological features might reduce this paradox, and
bring in additional information[14, 61]. This last observation relates to the relationship between
structural and functional brain networks, which can be described by Structural and Functional
Connectivity, respectively. Although structural connections are always found to guide functional
interactions, FC does not always show direct structural pathways underlying interacting regions.
Therefore, this relationship between FC and SC is still under investigation[26, 39]. Despite the fact
that functional aspects are more difficult to interpret and assess, recent studies show the capability
of neurophysiological quantities, such as Functional Connectivity, to define reliable and objective
biomarker in Multiple Sclerosis[24, 51, 61].

As far as this thesis is concerned, the innovative neurophysiological feature that we want to in-
troduce is not extrapolated by a neuroimaging technique, but it is a parameter of a neurocompu-
tational model, employed to simulate brain activity. The implementation of a biophysical model
carries a new perspective in brain activity investigation: a bottom-up approach[41]. This allows to
observe the mechanisms from which brain activity arises, and different scenarios can be designed[4].
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Nevertheless, two aspects guide the model design[7]. First, the neurophysiological realism: model’s
parameters should reflect a characteristic of the physiological mechanisms that the model aims at
reproducing. Moreover, to validate the model performances, the simulated brain activity is then
compared to neuroimaging measurements. In this specific work, the empirical functional connectiv-
ity is extracted from resting-state MEG data, by computing the Pearson’s correlation coefficients
between amplitude envelope fluctuations related to each pair of brain regions. This empirical FC
is correlated, by means of Pearson’s correlation coefficient, with the simulated FC. In addition to
this, some structural information is required by model inputs or design features. Consequently, the
neuroimaging techniques properties dictate the spatio-temporal resolution of the model, to assure
that the model assess the physiological aspect with the same perspective [8, 7].

Along this thesis, the implemented model is the time-delayed coupled oscillators, a variant of the
Kuramoto model, which has successfully been employed to simulate resting-state brain activity
in the literature[5, 55]. Several aspects make this model suitable for this work. First, an impor-
tant assumption of the model is proposed: simulated functional networks are developed on a fixed
structural network, that is provided to the model as input. Therefore, the underlying structural
connections guide the functional interactions. Another important characteristic of the Kuramoto
model concerns its parameter τ , time delay. This factor is defined in function of the conduction
velocity, a physiological quantity that is related to a cognitive domain, the information processing
speed. This last results impaired in MS, and the IPS disruption is related to a decreasing conduc-
tion velocity[13]. However, there is no direct measurement that allows to assess the conduction
velocity. By employing the Kuramoto model, the time delay that allows to find the strongest
correlation coefficients between empirical and simulated activity, can infer the conduction velocity
characterizing the brain dynamics. Therefore, in this context, time delay could be claimed as a
biomarker to assess IPS.

Along this work, the model performance reproduces the results present within the literature, and
simulated brain activity is found to optimally correlate with empirical data. Afterwards, the
model is applied to simulate brain activity when groups of subjects with different conditions are
considered, specifically, healthy controls, HC, and MS patients. The pair of model parameters
that yields the strongest correlation coefficients is expected to vary case by case, by relating the
model dynamics to the brain network dynamics. This assumption is verified when the model
is implemented at the group level, and a qualitative observation infers an increasing time delay
in those simulations concerning the MS population. When the analysis is narrowed down at the
subject level, the model parameter, time delay, is correlated with the power α-peak. The frequency
at which this peak is detected is known to correlate with CI in early MS[6]. Therefore, it is used as
an intermediate parameter to verify the adaptation of the time delay in MS patients. Despite the
promising results when the model is employed at the group level, at a finer scale, the correlation
between the model parameter and the intermediate neurophysiological feature, α-peak, is not
inferred, and neither is a significant difference between mean time delay related to different groups
of subjects, MS and HC. Eventually, the model parameter τ , is not proved to detect decreasing
conduction velocity in MS. However, this is a subtle effect, and this investigation might be limited
by the computation of FC, and the static perspective of analysis.

Another result obtained throughout this analysis concerns the comparison between α-peak averages
related to different groups of subjects, HC and MS. The shift towards low frequencies shown in the
literature for MS patients is not detected, furthermore, no significant difference is elicited by the
comparison of the α-peak averages considering MS and HC groups[6]. The discrepancy between
our results and the ones proposed in the literature can be caused by the different groups of MS
patients in analysis. In fact, a heterogeneous group of patients is included in the available dataset,
in which different types of MS and at different disease’s stages are considered. MS is a very complex
pathology, where both neuroanatomy and neurophysiology are affected differently depending on
the disease onset and stage. Therefore, a more narrowed and consistent dataset in composition
might lead to more significant results. Considering all the observations presented so far, possible
new methods and approaches are proposed in the next section.
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8.2 Future Developments

Throughout this thesis, several aspects are presented, and in each one a possible different imple-
mentation or advanced approach can be introduced. However, in this section two main aspects
are addressed, the neurocomputational model, and the perspective of analysis; some alternatives
to those employed are proposed.

As far as the Kuramoto model is concerned, its performance can be improved by fine tuning
the model parameters, since the collective frequency of oscillations is affected by connectivity
coefficients, time delays, and oscillator intrinsic frequency[5]. For instance, by defining a local
transmission speed within the structural brain network, therefore a local time delay parameter.
However, this would increase substantially the computational demand. Again, another aspect
regards the introduction of a local natural oscillatory frequency. These last observations concern the
improvement of the already employed Kuramoto model. Nevertheless, the possibility to implement
a new neurocomputational model must be considered. As explained in chapter 3, there are several
scenarios designed to depict the mechanisms underlying brain activity, and each proposes a different
insight of the experimental context. The Kuramoto model gives a mechanistic perspective, while
different other scenarios, such as neural mass models, could provide a more realistic description,
and lead to new findings.

A second possible approach focuses on a different method to compute and investigate the Func-
tional Connectivity. A different technique to assess FC can be introduced, considering the ones
proposed in table 2.1, such as Phase Lag Index, PLI, or Synchrony Likelyhood, SL. These meth-
ods have been successfully employed in different analyses to investigate functional networks from
a different perspective[62]. Furthermore, with the introduction of M/EEG in neurophysiological
investigations, the time resolution for assessing brain activity has greatly improved with respect to
classic fMRI acquisitions. Some studies have already detected the existence of meta-stable states
that last only for 100 − 200 ms[4, 51]. These observations yield the investigation of a dynamic
functional connectivity, studying the fast alternation of brain activation patterns. This approach
would allow a finer examination of the brain functional networks disruption.

So far, new approaches are proposed. However, a possible future analysis might consider to re-
produce the work conducted throughout this thesis, selecting, from the available dataset, a set
of MS patients that is consistent in MS typology and disease stage. This might help to reduce
the inter-subjects variability characterizing MS, and some of the parameters employed along the
analysis, such as the power α-peak.
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Appendix A

MATLAB Code:
Simulation Function

This appendix contains the main function used to performed all the analyses conducted along this
thesis. These have been performed both on a local computer cluster, cray-Z, and on a remote
supercomputer, Hydra, which have a huge computational power, allowing to significantly reduce
the running time of each simulation to few days. This function is coded in such a way, so that can
be used in both the environments without massive changes, the saving directory is the only item
to be redefined.

The algorithm develops the workflow explained in chapter 5. The inputs are the Functional and
Structural connectivity matrices of the group of subjects considered in the simulation, the settings’
parameters, among which the filtering frequency bands are included, and the Distance matrix.
This function recalls another important function, the Network-Kuramoto(), which can be found
in literature [55]. This last codes for the actual Kuramoto Model, and the simulated phases are
returned as outputs. After the model’s simulation, the frequency content is extracted as well as
the simulated Functional Connectivity, and the Pearson’s correlation coefficient between simulated
and empirical FC matrices is computed. These mentioned steps characterize the core of this
function, which is enclosed in two for loops, over the two model’s parameters k/τ . To decrease the
computational time, the second loop is coded as a parfor loop.

func t i on [ ] = run_Kuramoto ( f i l ename ,Dname , s e t t i n g s f i l e )
%% load input :

%f i l emane = f i l e in which both f un c t i o n a l and s t r u c t u r a l
%conne c t i v i t y are saved ( char )
%Dname = f i l e in which Distance matrix i s saved ( char )
%s e t t i n g s f i l e = f i l e in which a l l the s e t t i n g s are saved , such as
%f r e q bands , sampling , e t c . Later on the employed
s e t t i n g s are i d e n t i f i e d . ( char )

load ( s e t t i n g s f i l e ) %load ( ’ s e t t i n g s .mat ’ )
load ( f i l ename )
d=load (Dname ) ;

%De f i n i t i o n o f FC and SC with r e sp e c t to the f i l e uploaded by f i l ename
FC=FC;
SC=SC;

%d e f i n i t i o n o f the output f i l e name :
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[ a , b , c ] = f i l e p a r t s ( f i l ename ) ;

%when working on Hydra
output f o ld e r =’/u/ c h r o s s i / s imu la t i on s /output / ’
%when working on cray−Z
output f o ld e r =’/home/ c r o s s i /Kuramoto_Chiara2/ s imu la t i on s /output ’ ;
i f not ( e x i s t ( output fo lde r , ’ d i r ’ ) )

mkdir ( ou tput f o ld e r ) ;
end
ou t pu t f i l e = [ ou tput f o ld e r b ’_output ’ c ] ;

%% The MaGiC:
% in t h i s s e c t i o n the r e a l s imu la t i on occurs

% SC = Matrix o f coup l ing s t r eng th s (NxN) between pa i r s o f
% r eg i on s . I t can be d i r e c t ed ( i to j ) and/ or weighted .
% D = Matrix o f d i s t an c e s ( in mm) (NxN)
% frequency_mean = Neural popu la t i ons average i n t r i n s i c f requency (Hz)
% f_std = Standard dev i a t i on o f i n t r i n s i c f r e qu en c i e s a c r o s s reg .
% Can be 0 i f a l l o s c i l l a t o r s are equal .
% f_d i s t = D i s t r i bu t i on o f i n t r i n s i c f r e qu en c i e s (Nx1 ) .

%I f a l l equal , than f_d i s t=ones (N, 1 )
% t_max = Total time o f s imulated a c t i v i t y ( seconds )
% dt = In t e g r a t i on step ( sma l l e r than de lays ) ( seconds )
% ( ex . 1e−4)
% sampling = sampling f o r sav ing s imulated a c t i v i t y ( ex . 10)
% => 10∗dt = 1e−3 s = 1ms
% sig_n = Standard dev i a t i on o f no i s e ( can be zero )

% addpath ( ’/home/ c r o s s i /Downloads/ f i e l d t r i p −20180930/ ’) ;

%ex t r a c t i on o f a l l the important parameters from the s e t t i n g s f i l e .
frequency_mean = s e t t i n g s . frequency_mean ; %40
f_std = s e t t i n g s . f_st ; %0
f_d i s t = ones ( 9 0 , 1 ) ;
t_max = s e t t i n g s . t_max ; %140
dt = s e t t i n g s . dt ; %1e−4
sampling = s e t t i n g s . sampling ; %10
sig_n = s e t t i n g s . sig_n ; %0
grid_k = s e t t i n g s . grid_k ; % [ ( 1 : 1 : 2 0 ) / 2 ]
grid_tau = s e t t i n g s . grid_tau ; % [ 1 : 1 : 3 0 ]
Nfreq = s i z e ( s e t t i n g s . freq_bands , 1 ) ; %5−>number o f f requency bands
Np = s i z e (SC , 1 ) ; %90 −> number o f r e g i on s p a r c e l l a t i o n
N =s e t t i n g s . freq_bands ; %[1−4Hz,4−8Hz,8−10Hz,10−12H,12−20Hz ]
% Calcu la te sampling f requency at which Network_Kuramoto w i l l r e turn :
dt_output = dt∗ sampling ;
Fs = 1/dt_output ; %Fs=1000

ds_n1 = 2∗Fs %2 seconds o f data

nk = numel ( grid_k ) ;
nt = numel ( grid_tau ) ;

%to ex t r a c t nf :
sim_data = ze ro s ( 1 , ( t_max−20)∗Fs ) ; %de l e t e the f i r s t 20 sec

%to avoid t r a n s i t i o n per iod to be cons ide red
[ s imulated_freqs , f ] = pwelch ( sim_data ’ , [ ] , [ ] , [ ] , Fs ) ;
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nf = numel ( f ) ;

%I n i t i a l i s a t i o n
s imulated_freqcontent = ze ro s (nk , nt , nf ) ;
mean_R = ze ro s (nk , nt ) ;
std_R = ze ro s (nk , nt ) ;

%f o r loop on parameter k
f o r i =1:nk
%I n i z i a l i z a t i o n o f v a r i a b l e s
j_s imulated_freqcontent = ze ro s ( nt , nf ) ;
j_mean_R = ze ro s (1 , nt ) ;
j_std_R = ze ro s (1 , nt ) ;
j_correspondance = ze ro s ( Nfreq , nt ) ;
newj_mean_R = ze ro s ( Nfreq , nt ) ;
newj_std_R = ze ro s ( Nfreq , nt ) ;

%par f o r loop on parameter tau
par f o r j =1: nt
%d e f i n i t i o n o f k−tau pa i r f o r the s imu la t i on
k = grid_k ( i ) ;
tau = grid_tau ( j ) ;

% the Joana magic : r e a l model ’ s s imu la t i on
[ ths ] = Network_Kuramoto (SC, d .D, frequency_mean , f_std , f_dist , k , . . .

tau , t_max , dt , sampling , sig_n ) ;

% Ca lcu la te s imulated data : s i n u s o i d a l regime with constant amplitude
sim_data = s i n ( ths ) ;

% Ca lcu la te the f requency content :
[ s imulated_freqs , f ] = pwelch ( sim_data ’ , [ ] , [ ] , [ ] , Fs ) ;

%the s imulated content saved i s the average over a l l 90nodes ’ a c t i v i t i e s
j_s imulated_freqcontent ( j , : ) = mean( s imulated_freqs , 2 ) ;

% Ca lcu la te R( t ) order parameter
OrderParameter = sum( exp (1 i .∗ ths ) , 1 )/Np;
R = abs ( OrderParameter ) ;
j_mean_R( j ) = mean(R) ;
%Meta s t ab i l i t y
j_std_R( j ) = std (R) ;

% Calcu la te correspondence emp i r i c a l and s imulated FC in each f r e q band
f o r l =1:Nfreq
f i l t e r e d d a t a = f t_preproc_bandpas s f i l t e r ( sim_data , 250 , [N( l , 1 ) N( l , 2 ) ] , . . .

4 , ’ but ’ , ’ twopass ’ , ’ reduce ’ ) ;
%ex t r a c t amplitude enve lope
HA = abs ( h i l b e r t ( f i l t e r e d d a t a ) ) ;
%f i l t e r i n g to ex t r a c t amplitude enve lope f l u c t u a t i o n
HA_lowpass = f t_preproc_bandpas s f i l t e r (HA, 2 5 0 , [ 0 . 0 1 0 . 1 ] , 5 , . . .

’ but ’ , ’ twopass ’ , ’ reduce ’ ) ; % used to be 0.1−0.5
HA_lowpass_mean = mean(HA_lowpass , 2 ) ;
%de l e t e common l i n e
HA_lowpass = HA_lowpass − repmat (HA_lowpass_mean , 1 , s i z e , ( HA_lowpass , 2 ) ) ;

%Downsample :
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%number o f s imulated seconds f o r downsampled data −−> ha l f o f
%the r e a l number o f s imulated s e c s . the t r an s i e n t i s d i s ca rded
n_downsampled = f l o o r ( ( t_max−20)/2) ;
%i n i t i a l i z e downsampled data
HA_ds = ze ro s ( n_downsampled , s i z e (HA, 1 ) ) ; %s i z e o f HA_ds

f o r p=1:n_downsampled
mini = (p−1)∗ds_n1+1; %time∗ f r e q
maxi = p∗ds_n1 ;
HA_ds(p , : ) = mean(HA( : , mini : maxi ) , 2 ) ; %the averaged i s made
%between the time po in t s s e l e c t ed−>row dimension
end

simu_FC = cor r (HA_ds ) ;
% Correspondance with r e a l FC:
%we only compare upper d iagona l o f FC because i t i s symmetric
%(Pearson ’ s c o r r e l a t i o n Co e f f i c i e n t )
idx_of_inte re s t = f i nd ( t r i u ( ones ( 9 0 ) , 1 ) ) ;
% Extract r e a l f requency content :
real_FC = FC( idx_of_inte re s t );% only the upper t r i a n gu l a r matrix
%i s i n t e r e s t i n g s i n c e the c onne c t i v i t y matrix i s symmetric
% Extract s imulated f requency content :
simu_FC = simu_FC( idx_of_inte re s t ) ;
% Make the comparison :
j_correspondance ( l , j ) = cor r ( real_FC , simu_FC ) ;

% Calcu la te the phase o f the h i l b e r t trans form
HA_phase = angle ( h i l b e r t (HA_lowpass ) ) ;

% Ca lcu la te the order parameter and me t a s t a b i l i l i t y f o r each f r e q band :
OrderParameter = sum( exp (1 i .∗HA_phase ) , 1 ) / 9 0 ;
R = abs ( OrderParameter ) ;
newj_meanR( j , l )= mean(R) ;
newj_metastab i l i ty ( j , l )= std (R) ;
end

f p r i n t f ( ’Done : %2.0 f / %2.0 f − %2.0 f / %2.0 f \n ’ , i , numel ( grid_k ) . . .
, j , numel ( grid_tau ) ) ;

end
%gather a l l r e s u l t s f o r the tau parameter used .
s imulated_freqcontent ( i , : , : ) = j_s imulated_freqcontent ;
mean_R( i , : ) = j_mean_R ;
std_R( i , : ) = j_std_R ;
correspondance ( i , : , : ) = j_correspondance ;
newmean_R( i , : , : ) = newj_mean_R ;
newstd_R( i , : , : ) = newj_metastab i l i ty ;

end
save ( ou tpu t f i l e , ’ correspondance ’ , ’mean_R’ , ’ std_R ’ , ’ s e t t i n g s ’ , . . .

’ s imulated_freqcontent ’ , ’newmean_R’ , ’ newstd_R ’ ) ;
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