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Abstract

The fusion of sensors must guarantee accuracy and precision, fundamental characteristics
for a system equipped with multiple and heterogeneous measuring devices. To obtain
them, the sensors must be calibrated, i.e. their poses must be expressed through relative
6D transformations in a common reference system. This manuscript describes a calibra-
tion method, suitable for mobile systems, that estimates the extrinsic 6 DoFs of multiple
sensors with respect to a reference one. This procedure is divided into two steps: the first
one exploits the incremental motions of the sensors to estimate their parameters x, y and
yaw, while the second one requires them to observe the ground for a limited period of
time, in order for it to compute the remaining z, roll and pitch. This proposed approach
is characterized by the estimation of calibration parameters that are initialized in closed
form. Moreover, the scaling ambiguity, which results from the estimation of a motion
by a monocular camera, is handled explicitly in order to allow the combination of these
sensors with different others, such as Lidar and stereo cameras. Finally, an experimen-
tal calibration is performed through the exploitation of a collection of outdoor measured
datasets and the results confirm the accuracy of this method, especially in the estimation
of planar parameters.

Keywords: sensors calibration, extrinsic parameters, mobile system, incremental mo-
tions, ground observations.





Abstract in lingua italiana

La fusione di sensori deve garantire accuratezza e precisione, caratteristiche fondamentali
per un sistema dotato molteplici dispositivi di misurazione eterogenei. Per ottenerle i
sensori devono essere calibrati, cioè le loro pose devono essere espresse attraverso trasfor-
mazioni relative 6D in un sistema di riferimento comune . Questo manoscritto descrive un
metodo di calibrazione adatto a sistemi mobili, che stima i parametri estrinsechi 6 DoFs
di più sensori rispetto a uno di riferimento. Questa procedura è divisa in due parti: la
prima sfrutta i moti incrementali dei sensori per stimarne i parametri x, y e yaw, mentre la
seconda richiede le loro osservazioni del suolo per un periodo limitato di tempo, affinchè
possa calcolare i rimanenti z, roll e pitch. Questo approccio proposto è caratterizzato
dalla stima dei parametri di calibrazione che vengono inizializzati in forma chiusa. Inoltre,
l’ambiguità di scala, che deriva dalla stima di un movimento da parte di una telecamera
monoculare, è gestita esplicitamente al fine di consentire la combinazione di questi sensori
con gli altri, come Lidar e telecamere stereo. Infine, viene eseguita una calibrazione speri-
mentale sfruttando una collezione di set di dati misurati all’aperto e i risultati confermano
l’accuratezza di questo metodo, specialmente nella stima dei parametri planari.

Parole chiave: calibrazione dei sensori, parametri estrinseci, sistema mobile, movimenti
incrementali, osservazioni del suolo.
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1| Introduction

1.1. Overview

Environment perception is a fundamental task required by any automatic mobile system
for mapping and localization of its surrounding. For a vehicle or mobile robot equipped
with multiple heterogeneous sensors, the perception capability is directly dependent on
the technology for their fusion that allows combining different kinds of measurements.
For this reason, sensor calibration is a fundamental step since it enables a variety of
different measures, taken from devices of different nature, to be combined for an excellent
perception of the static and dynamic environment.

As well defined by Peršić [20], the calibration of a sensor is a process that aims to compute
its intrinsic and/or extrinsic parameters.
The firsts are the internal ones that are related to the specific working principle for each
sensor, like the focal length for the camera or the bias for Lidar range measurements. On
the other side, the extrinsic parameters represent the 6 DoF transformations between the
pose of the sensors inside the system. My work will focus on the automatic calibration
of these latter parameters, i.e. the computation of the position and rotation of a set of
multiple sensors inside a vehicle. The extrinsic parameters of each sensor can be modified
during the life of the vehicle by possible vibrations, bumps, or other external events, thus
their calibration is fundamental to avoid drifts and mistakes in the measured data.

There are different ways to compute the intrinsic or extrinsic parameters calibrations and
they are classified into three main categories :

• Target-based calibration;

• Targetless calibration;

• Motion-based calibration.

The first one includes the calibration techniques that exploit human-designed targets to
estimate the parameters. Each target is designed for a specific sensor or group of them
to be the most effective, so each calibration is particular and different from the others
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depending on the analyzed device. For this reason, the target-based calibrations are
usually more accurate and precise than the targetless ones and able to find better results.
However, there are limitations, such as the necessity of human intervention to design the
specific target or the offline execution of these processes, that restricts their usability.

On the other hand, the targetless calibration techniques work on the environment features
to match correspondences in the data of the sensor. They were developed to compensate
for the drawback of the previous category since the exploitation of the surrounding char-
acteristics improves the usability of the procedure and makes it more automatic.
The sensors must guarantee enough information to extract the structure of the environ-
ment in order to find and recognize the specific feature on which the calibration is based.
Therefore, these calibrations are mainly developed for cameras and lidars, which is the
main limitation of this category.

The last class includes the motion-based calibration systems, which, as the name suggests,
use the sensors’ ego motions to estimate the parameters. These approaches could be
considered targetless since they do not need any targets, but, on the other side, they are
not limited by specific features in the environment as the previous category. Moreover,
these techniques can calibrate a wider range of sensors since their only prerequisite is
the capability of the single sensor to estimate its own motion. Therefore, motion-based
calibration is the only viable option for sensors like IMU and odometry encoders since
they are proprioceptive and can not measure the external state of the environment.
Generally, these calibrations are usually less accurate and precise than the target-based
ones since they can only exploit the sensors’ measurements of their incremental motions
and not specifically designed targets.

1.2. Approach

In this manuscript, we describe a motion-based calibration approach that estimates the
6 DoFs extrinsic parameters for a mobile system equipped with multiple sensors. Their
incremental motions are exploited to calibrate the planar extrinsic parameters and, ad-
ditionally, this process uses the sensors’ observations of the ground plane to compute the
remaining three ones. All of this work is mainly influenced and inspired by Zuñiga-Noël
et al. though [29].

The manuscript of this thesis is organized into three chapters, where one is purely theo-
retical, two refer to an experimental test and the last one concludes the work.
More specifically, Chapter 3 revolves around the mathematical theory to formulate this
calibration problem. Here, we introduce the steps of the approach, their least-squares
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formulations and the close form solutions. Moreover, we add a description of the observ-
ability analysis of the planar extrinsic parameters and its demonstration.
Chapter 4 describes our performed experimental test where we calibrate four sensors ex-
ploiting a collection of datasets. It displays the pipeline that starts from the sensors’
measurements of the dataset and leads to the estimation of the parameters, reporting the
exploited programs and files.
Chapter 5 shows the results of the experimental calibration through tables and plots.
Here, we comment and explain the numerical values that we computed, comparing them
with each other.
Last but not least, the conclusion exposes a final summary of the work presented in this
manuscript and of the obtained results. Moreover, it introduces possible future develop-
ments on this subject.
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2| State of Art

Due to its increasing importance in the automation of mobile systems, several papers can
be found in the literature concerning sensor calibration.
Most of them are focused on target-based calibration processes, where several targets were
identified and developed for different groups of sensors. For example, An et al. [2] used
a planar board with a chessboard pattern to calibrate a monocular camera and a Lidar,
exploiting point correspondence between 3D-2D and 3D-3D.
Other than that, Velas et al. [27] designed a planar marker with four circular holes for an
RGB camera and a Velodyne Lidar.
For the same sensors ( a camera and a 3D Lidar), Mishra et al. [17] exploited Planar
Surface Point to Plane and Planar Edge Point, using a markerless planar board as a target
to estimate the extrinsic parameters.
Differently, Peršić et al. [21] calibrated the extrinsic parameters for a set of Velodyne
Lidar, radars and cameras, constructing a triangular trihedral corner retroreflector.

In a different category, there are targetless calibration techniques since they are based on
environment features. For example, Jeong et al. [15] calibrated a stereo camera and a
Lidar using features like road marks that are constantly present in an urban environment.
The same environment is also full of building walls, which can compose, with the floor,
an orthogonal trihedron. Therefore this geometrical structure became the basis on which
Gong, Lin and Liu [8] developed their calibration process.
Similarly, Gomez-Ojeda et al. [7] used the same urban environment structure to find the
extrinsic parameters of a 2D laser rangefinder and a camera. In this case, however, they
used the line-to-plane and point-to-plane constraints.
Other usable features are linear segments, extracted in the environment by intersections
between planes and boundary lines. They were exploited by Moghadam et al. [18] to
develop a calibration technique for a camera-Lidar couple.

All the previous techniques required an a-priori knowledge of the surrounding, both for
the designed target or the specific environment feature. To avoid this, the sensors’ ego
motions can be exploited to calibrate the extrinsic parameters.
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In the last decade, many motion-based calibration techniques were developed starting
with Brookshire and Teller [4] who are the first ones to use this kind of sensors’ mea-
surements. They estimated the 2D extrinsic parameters by solving the calibration with
iterative minimization of a least-squares cost function and, additionally, they developed
an observability analysis of this problem.
Subsequently, they extend their research [5] improving the calibration since they esti-
mated the 6 DoF parameters. For this, they exploited the Dual Quaternions to represent
the transformation between the sensors. This extension works only for a couple of sensors
that must travel together along a non-degenerate path, but it does not require synchro-
nized sensors, overlapping fields of view or common features observation.
Censi et al. [6] presented a calibration for an odometry sensor plus an exteroceptive sec-
ond one like a Lidar. The idea was to estimate the intrinsic parameters of the odometer
(radii and distance between the wheels) plus the extrinsic ones of the Lidar. They solved,
with a close form solution, the simultaneous calibration formulated as a maximum likeli-
hood problem.
Differently, the Unscented Kalman Filter was firstly used by Schneider et al. [23] to de-
velop an online extrinsic calibration, which is robust against the degeneracy of the vehicle
motion. This process can compute the 3 DoFs parameters or the 6 DoFs ones depending
on the DoFs of the sensors’ motions measurements.
An important step in sensors calibration was given by Guo et al.[9] and by Zienkiewicz et
al.[28], since they dealt with the ambiguity problem of the scale in monocular cameras.
The first ones developed a least-squares solution in closed form for automatic motion-
based calibration of an odometer and a camera.
On the other hand, Zienkiewicz et al. proposed a solution based on the minimization of
the photometric errors. These letters are induced by the homography which results from
the planar motions by observing the ground plane.
Differently from the previous works, Heng et al.[11] calibrated a set of multiple sensors,
i.e. cameras in their case, plus an odometer. Their strategy works only for imaging sen-
sors but still, they can calibrate both the parameters types of the cameras with respect
to the odometer, whose extrinsic ones are computed a-priori.
On the complete opposite side, there are Huang and Stachniss [13] since their calibra-
tion is for multiple sensors except for only the cameras. It is so because all the motion
measurements must be expressed on the same scale since the formulation is based on the
Gauss-Helmert model.
Finally an automatic multi sensor calibration of extrinsic parameters was developed by
David Zuñiga-Noël, Jose-Raul Ruiz-Sarmiento, Ruben Gomez-Ojeda and Javier Gonzalez-
Jimenez [29]. Their approach estimates the 6 DoFs of a set of multiple and heterogeneous
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sensors’ poses with respect to a reference one. They exploit the ego-motions for the planar
parameters (x, y, yaw) and short observation of the ground plane for the remaining three
ones (z, pitch and roll). Moreover, during the motion-based calibration, this technique
can also estimate the scale ambiguity of monocular cameras, allowing to estimate their
extrinsic parameters too.
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3| 6DoF Multi Sensor Calibration

This chapter revolves around the mathematical formulations at the basis of a calibration
that estimates the 6 DoF extrinsic parameters for a set of multiple heterogeneous sensors
in a mobile system. This estimation process is mainly divided into two steps: the motion-
based one and the ground observations-based one, where each of them focuses on a triplex
of parameters.

This theory is inspired by the amazing work of David Zuñiga-Noël, Jose-Raul Ruiz-
Sarmiento, Ruben Gomez-Ojeda and Javier Gonzalez-Jimenez described in "Automatic
Multi-Sensor Extrinsic Calibration For Mobile Robots" [29] and by Andrea Censi, Antonio
Franchi, Luca Marchionni and Giuseppe Oriolo in "Simultaneous Calibration of Odometry
and Sensor Parameters for Mobile Robots" [6].

3.1. Motion-based Calibration

In this section, we focus on the calibration between two coplanar sensors, i.e. the estima-
tion of the 2D transformation between the pose of a first one compared to the reference
one. This calibration step is based on the sensors’ ego-motions, thus it can be used only
on devices that can measure their trajectory. These letters must be composed at least by
2D incremental poses that need to be synchronized.
Normally, measurements from heterogeneous sensors can be asynchronous, so they can
have different sampling rates. To solve it, we can set the time of the reference sensor as
the baseline and exploit linear interpolation to resample the planar incremental poses of
the second sensor.
Moreover, the different natures of the devices can lead to different scales in which the
translation components are expressed, i.e. x and y. This problem is faced in this cali-
bration step since not only the planar extrinsic parameters are estimated, but also the
scaling one.
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3.1.1. Problem Formulation

The goal of this calibration step is the estimation of the parameters of a 2D similarity
transformation between an i-th sensor and a j-th one, which are respectively the reference
sensor and the one whose pose need to be computed. The similarity transformation
represents a rigid transformation followed by a scaling one.
Let’s express the parameters of this transformation as itj =

(
tx ty tθ ts

)
∈ Sim(2)

where:

• tx, ty ∈ R indicate the translation components;

• tθ ∈ R the yaw rotational component;

• ts ∈ R+ is the scaling factor;

• Sim(2) represents the group of orientation that preserves the similarity transforma-
tions.

The transformation parameters can be used to express the measurements taken from the
j-th sensors jm into the i-th reference frame applying this formula:

im = ts (R(tθ)
jm +

[
tx

ty

]
) (3.1)

where R(tθ) is the 2D rotation matrix:

R(tθ) ≜

[
cos(tθ) − sin(tθ)

sin(tθ) cos(tθ)

]
(3.2)

Before going deeper in the motion-based estimation of itj, let’s define the group operator
of Sim(2) and its inverse (respectively ⊕ and ⊖), that are exploited in this chapter.

⊕ : Sim(2)× Sim(2) → Sim(2)

a ⊕ b =


b−1
s ax + bx cos(aθ)− by sin(aθ)

b−1
s ay + bx sin(aθ) + by cos(aθ)

aθ + bθ

asbs





3| 6DoF Multi Sensor Calibration 11

⊖ : Sim(2) → Sim(2)

⊖ a =


−asax cos(aθ)− asay sin(aθ)

asax sin(aθ)− asay cos(aθ)

−aθ
a−1
s


Moreover, let’s call q ∈ SE(2) the pose of a sensor and p ∈ SE(2) the incremental motion
between two of them. For example, pki represents the incremental rigid body motion of
the reference sensor between the poses at time k and k+1, as we can see in Figure 3.1.
It should be noted that SE(2) transformation is a particular case of Sim(2), i.e. the case
where the scaling factor is set to the identity value. Therefore the operators previously
defined for Sim(2) can be applied also to the SE(2) transformations.

For the motion-based step of the calibration process, the inputs are the sensors’ incremen-
tal motions pki and pkj . Each of them can be derived from the poses of the specific sensor
at time k and k+1 (respectively qk, qk+1 ∈ SE(2)), hence, for example, we can compute
the i-th sensor incremental motions as:

pki ≜ ⊖ qki ⊕ qk+1
i (3.3)

Figure 3.1: Representation of the i-th and j-th coplanar sensors on a vehicle. The incre-
mental motions pki and pkj , between the poses at time step k and k+1 for each sensor, are
related by the fixed similarity transformation expressed by itj.
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The poses of the j-th sensor qkj can be expressed using the one of the i-th sensor plus the
parameters of the transformation between them, though this equation:

qkj = qki ⊕ itj (3.4)

Applying the (3.3) for the j-th sensor instead of the i-th one and inserting (3.4) in it, the
incremental motions for the j-th sensors can be computed as:

pkj = ⊖ (qki ⊕ itj) ⊕ (qk+1
i ⊕ itj) (3.5)

Starting from the (3.5), it is possible to rearrange its terms in order to apply (3.3) and
find:

pkj = ⊖ itj ⊕ pki ⊕ itj (3.6)

This formula put in relation the relative incremental motions pki ,pkj ∈ SE(2) of i-th and
j-th sensors at time step k with the extrinsic calibration parameters itj ∈ Sim(2).

The Equation (3.6) is exploited to derive an error function that represents the difference
between the j-th incremental motions and the i-th incremental motions, where the letter
is transformed with the calibration parameters :

εkij(t) ≜ p
k
j −⊖ itj ⊕ pki ⊕ itj (3.7)

This error function can be finally used to define the cost function Cij, that it is subsequently
exploited to express a least-squares formulation of the two-sensor extrinsic calibration
problem:

ζij(t) ≜
1

2

∑
k

∥∥∥∥εkij(t)∥∥∥∥2
2

(3.8)

it∗j = argmin
t

ζij(t) (3.9)

In conclusion, the idea is to solve the least-squares problem in (3.9) by finding the extrinsic
parameters it∗j that reduces to the minimum the cost function Cij(t) defined by (3.8)
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3.1.2. Close Form Solution

The problem in (3.9) can be solved following an approach similar to the one used in [6], i.e.
reducing the least-squares formulation to a quadratic system with a quadratic constraint.
This derived constrained optimization problem is then uniquely solved in close form with
the method of Lagrange multipliers.
The first step to reduce the calibration problem to a quadratic system is to rearrange the
terms of the error function in (3.7) in this way:

εkij(t) =
i tj ⊕ pkj − pki ⊕ itj (3.10)

Then the calibration parameter tθ ∈i tj must be parameterized into cos(tθ) and sin(tθ),
that are considered as two independent variables. At this point all unknown parameters,
that compose itj, can be grouped into the vector φ ∈ R5:

φ =
[
t−1
s tx ty cos(tθ) sin(tθ)

]T
(3.11)

Now, with (3.11), the error term in (3.10) can be rewritten in matrix form as:

εkij = Qk φ (3.12)

where:

Qk ≜

[
−pki x 1− cos(pki θ) sin(pki θ) pkj x −pkj y
−pki y − sin(pki θ) 1− cos(pki θ) pkj y pkj x

]
(3.13)

is a matrix composed of the know coefficients, i.e. the terms that compose incremental
motions pki and pkj for, respectively, the reference sensor and the one to calibrate.

Subsequently, we express the cost function (3.8) in a more compact form:

ζij(t) =
1

2
φT M φ + C (3.14)

where:

• C ∈ R is a constant term;
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• M ≜
∑
k

QT
k Qk is a symmetric matrix.

With the compact definition of the cost function (3.14), we can finally reduce the least
squares formulation (3.9) into a quadratic system with a quadratic constraint:

φ∗ = argmin
φ

φT M φ

subjected to φ2
4 + φ2

5 = 1

(3.15)

(3.16)

The constraint in (3.16) represents the fundamental identity of Trigonometry, i.e. cos(tθ)2+
sin(tθ)

2 = 1 and can be expressed in matrix form as:

φT W φ = 1, where W ≜

[
03×3 02×3

03×2 I2×2

]
(3.17)

The reduction of the calibration problem (3.9) into a quadratic system with a quadratic
constraint (3.15), (3.16) is finally completed.

Now we find the solution in close form for this system using the Lagrangian method:

L(φ, λ) = φT M φ+ λ (φT W φ − 1) (3.18)

and the necessary condition for optimality is:

∂L
∂φ

= 2φT (M + λW ) = 0T (3.19)

Since the scalar factor φ1 ∈ R+ has to be a real positive number, the M + λW , that is
a 5 x 5 matrix must be singular to satisfy the Equation (3.19). Therefore let’s compute
λ ∈ R that assures:

det(M + λW ) = 0 (3.20)

and the solution φ∗ can be found in the kernel of M + λW .

The expression (3.20) represents a second-order polynomial in λ, due to the composition
of the matrix W , so it is possible to solve it in close form. The two real roots of this
polynomial can be considered as candidate solutions λ∗, from which it is possible to derive
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the final candidate solutions φ∗ of the calibration problem.
The rank of the matrix M + λ∗W (5 x 5) is at most 4 by construction, but, additionally,
we can say that this rank is exactly 4 if the two sensors perform non-degenerated trajecto-
ries while at least two independent incremental motions are observed. The observability
analysis, to demonstrate the relation between the rank of M + λ∗W and the observed
incremental motions, is described in the Subsection 3.3.1.

If this rank is 4, then the kernel is one-dimensional and the solution φ∗ is unique, given
the constraints (3.16) and the one regarding the strict positivity of φ∗

1. To find it, let’s
define γ∗ as any non-zero vector inside the kernel of M + λ∗W . The two candidate
solutions φ∗, each one associated with one of the two λ∗, are computed with:

φ∗ =
sign(γ∗1)∣∣∣∣∣∣∣∣ [γ∗4 γ∗5

]T ∣∣∣∣∣∣∣∣
2

γ∗ (3.21)

where we have imposed:

• the constraint (3.16) in
∣∣∣∣∣∣∣∣ [γ∗4 γ∗5

]T ∣∣∣∣∣∣∣∣
2

;

• the positivity of φ∗
1 in sign(γ∗1), such that φ∗ is uniquely identified from the null

space.

Finally, the final solution φ∗ is chosen between the two candidate solution φ∗ computed
with (3.21), as the one that solves the quadratic system (3.15) generating the minimum
cost according to (3.14).

At last, the optimal planar extrinsic calibration parameters it∗j ∈ Sim(2) between the two
sensors can be recovered from φ∗ as:

it∗j =
[
φ∗
2 φ∗

3 atan2 ( φ∗
4 , φ

∗
5 ) φ∗ −1

1

]T
(3.22)
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Figure 3.2: The image comes from [29]. It is a representation of two generic sensors,
related by a rigid body transformation, moving on a planar surface. The top sensor (e.g
a camera) can observe the ground plane during the motion.

3.2. Ground Observation-based Calibration

The second main step in this calibration process is the estimation of the z, pitch and roll
extrinsic parameters of a sensor. The necessary condition for the sensor, to estimate its
3D parameters, is to have a view of the plane in which it moves. In fact, this step is based
on the observations of the ground.
The idea is to set a common reference system, such that we can find the extrinsic param-
eters of the relative pose of the sensor with respect to the plane. With these estimated
parameters we can project into the plane the incremental motions enforcing the copla-
narity constraint.

3.2.1. Problem Formulation

Formally, the goal is to estimate the parameters of the relative rigid body motion (Ri,Ti) ∈
SE(3) between an i-th sensor and the ground plane.

Let’s start setting the plane’s local reference system at the projection of the origin of the
sensor on the plane, with the z-axis pointing upwards, as it is shown in Figure3.2. The
rotation in-plane, i.e. the one around the z-axis expressed by the yaw parameter, can be
arbitrarily set since that parameter is calibrated as tθ through the motion-based step.
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Because three extrinsic parameters
(
tx ty tθ

)
of the rigid transformation are estimated

with the planar calibration described in the previous section, the objective of this step
are the remaining three it =

(
tz tψ tϕ

)
∈ R3 for each sensor. Specifically:

• tz ∈ R+ represents the perpendicular distance of the sensor with respect to the
plane;

• tψ ∈ R represents angular roll rotation, i.e. the one around the x-axis;

• tϕ ∈ R represents angular pitch rotation, i.e. the one around the y-axis.

Firstly, the relative transformation SE(3) can be defined as:

Ri ≜ Ry(tϕ)Rx(tψ) (3.23)

Ti ≜
[
0 0 tz

]T
(3.24)

where Ry(·) and Rx(·) represents the parameterized rotation matrix along the y and x
axis respectively.

The input of this calibration step is the pose of the j-th point on the ground plane observed
by the i-th sensor, that we denominate imj ∈ R3. The vector imj refers to the coordinates
of the j-th ground point defined with respect to the sensor local reference frame.
This point’s pose can be expressed, then, with respect to the local reference frame of the
ground by applying:

gpmj = Ri
imj + Ti (3.25)

where gpm indicates that the vector is expressed through the ground frame whereas im

with respect to the sensor frame.

From (3.25) it is possible to define error function that represents the perpendicular
distance ηij of the j-th point to the ground as :

ηij(t) ≜ n · gpmj − D (3.26)

where the ground plane is defined by the parameters:

• n ∈ R3, that is the unit normal vector and it is set, for convenience, to n ≜ (0, 0, 1);
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• D, that is the distance to the origin and it is set to D ≜ 0.

Subsequently, the (3.26) is used to finally define the cost function for the weighted least-
squares formulation of the coplanarity relaxation problem:

ξi(t) ≜
1

2

∑
j

wj

∥∥∥∥ ηij(t) ∥∥∥∥2
2

(3.27)

it∗ = argmin
t

ξi(t) (3.28)

where wj ∈ R+, present in (3.27), represents the weight.
This coplanarity relaxation problem is solved in close form in the next Subsection 3.2.2.

Now, the incremental motions of the i-th sensor are usually measured in 3D and the one
at time step k can be expressed as (Rk

i , T
k
i ) ∈ SE(3).

In order to become the input for the motion-based calibration step, these ego-motions
need to respect the coplanarity relaxation constraint in the previous section. Therefore it
is possible to project these motions to the ground plane using the rotational matrix Ri

defined in (3.23) and composed by the extrinsic parameters t∗ψ and t∗ϕ, that are estimated
solving the (3.28).
The projection can be performed applying:

Rk
i ≜ RiR

k
i R

T
i (3.29)

T k
i ≜ RiT

k
i (3.30)

Finally, the planar incremental motions pki =
(
pki x pki y pki θ

)
∈ SE(2) , input of the

motion-based process, can be derived in this way:

• pki x and pki y are the x-y translation component of the vector T k
i ;

• pki θ is extracted from Rk
i as the rotation angle around the z-axis.

3.2.2. Close Form Solution

In order to solve the (3.28), we can adopt the same strategy exploited in Subsection 3.1.2,
hence we reduce the least-squares formulation to a quadratic system with a quadratic
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constraint. Then, the system is solved in close form with the method of Lagrangian
multipliers.

Firstly, we reduce the error function, previously defined in (3.26), that represents the
perpendicular distance ηij to the ground plane of the j-th point, expressed in gpmj.
Since the the hessian form of the ground plane parameters are:

n ≜
[
0 0 1

]T
and D ≜ 0 (3.31)

the perpendicular distance ηij can be reduced to its third component:

ηij =
gpmj z (3.32)

Now, we parameterized the unknown angles tψ and tϕ with three independent variables:

• − sin(tϕ);

• cos(tϕ) sin(tψ);

• cos(tϕ) cos(tψ)

that can be grouped into the vector:

rz =
[
− sin(tϕ) cos(tϕ) sin(tψ) cos(tϕ) cos(tψ)

]
(3.33)

This vector (3.33) represents the third row of the rotation matrix Ri of the i-th sensor as
expressed in (3.23) and it can be exploited to continue the reduction begun with (3.32)
into:

ηij =
gpmj z = rz

imj + tz (3.34)

All the unknown parameters can now be reunited into the vector:

φ =
[
tz − sin(tϕ) cos(tϕ) sin(tψ) cos(tϕ) cos(tψ)

]T
(3.35)

that allows to rewrite the error term from (3.34) in matrix form:

ηij = Qj φ (3.36)
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where:

Qj ≜
[
1 imj x

imj y
imj z

]
(3.37)

The cost function, previously expressed in (3.27), becomes:

ξi(t) =
1

2
φT M φ (3.38)

where M ≜
∑
j

wj QT
j Qj is a symmetric matrix.

At this point, (3.38) is exploited to transform the least squares formulation in (3.28) into
a quadratic system with a quadratic constraint:

φ∗ = argmin
φ

φT M φ

subjected to φ2
2 + φ2

3 + φ2
4 = 1

(3.39)

(3.40)

This constraint (3.40) corresponds to the orthogonality property of the matrices belonging
to SO(3) and can be matrixed in this way:

φT W φ = 1, where W ≜

[
0 01×3

03×1 I3×3

]
(3.41)

After this, the quadratic system (3.39) with the quadratic constraint (3.40) are solved
introducing the Lagrangian exactly as we did in Subsection 3.1.2.
The only difference is that for the matrix W in (3.41) the optimality necessary condition
( (3.19) in the previous section) is characterized by a third-order polynomial in λ, therefore
there are at most three candidate solutions λ∗ that solved it in close form.

At this point we define γ∗ as any non-zero vector inside the kernel of M + λ∗W and
from them we can uniquely recover the three candidate solution φ∗, each of one associ-
ated with a λ∗. To derive this computation of the candidates solutions we can impose
the orthogonality constraint, expressed by (3.40), and the mandatory positivity of the
perpendicular distance φ∗

1 as:
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φ∗ =
sign(γ∗1)∣∣∣∣∣∣∣∣ [γ∗2 γ∗3 γ∗4

]T ∣∣∣∣∣∣∣∣
2

γ∗ (3.42)

Among the three candidates φ∗, let’s choose the optimal one φ∗ as the solution who
generate the minimum cost according to the function (3.27).

Finally, the sensor’s extrinsic parameters it∗ can be recovered from the vector φ∗ that we
have just computed.

3.3. Additional Notes

3.3.1. Observability Analysis

Let’s make an introduction to the observability analysis we have recalled in 3.1.2 and
exploited to solve the parameters estimation problems.

In general, the autonomous mobile system behaves according to a continuous dynamic
whereas their sensors generate discretized observation. Therefore there are at least two
kinds of observability analysis, that differ according to the considered aspect of the model.
Indeed they can require a continuous-time or a discrete-time model of the same system
and each formalization has different properties.
These two classes are:

1. The first kind of analysis demonstrates a weakly local observability from the point
of view of the control theory [12]. For this, the system must be in continuous-time
form, i.e. :

{
ẋ = f(x,u)

y = g(x)
(3.43)

where x includes the time-varying state and the parameters whereas y represents
the continuous-time observations. Usually, successive Lie derivatives are computed
to prove the observability, but this is often not constructive. These techniques are
generally nonlinear.

2. The second kind is a "static" analysis where the system must be in the form:

y = h(x,u) (3.44)
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where, this time, y is a vector of discretized observation. To fulfill the analysis, the
idea is to show constructively that the constraints are enough to determine a unique
x, for specific commands u.

In our case, the observations of the exteroceptive sensors are naturally discretized so the
second formalization is a better choice. The following analysis expresses static observabil-
ity for our system.
It is possible to demonstrate that sensors’ calibration parameters are observable if we
can exploit at least the measurements of two incremental motions, providing that they
are independent. Let’s consider Log the logarithmic map on SE(2) where Log: SE(2) →
use(2).

Proposition 3.1. The parameters of the sensor are observable if and only if there are at
least two incremental motions that respect these conditions:

• the motions of the reference sensor pki and pk+1
i are independent, which means that

there is no κ ∈ R such that:

log (pki ) = κ log (pk+1
i ) (3.45)

• the two motions pki , p
k+1
i are not pure translations.

The first condition is generic since, for a fixed first incremental motion pki , almost every
pk+1
i guarantee the observability of the parameters. Moreover, it is possible to notice that

an exact trajectory for the mobile system is not required.

At this point, we give a proof to the preposition 3.1, demonstrating the conditions under
which the extrinsic parameters itj of the j-th sensor with respect to the i-th one are
observable.
With the measurements of two motions intervals by two sensors, the following lemma
declares the necessary and sufficient conditions for the observability of itj.

Lemma 3.1. Given two intervals (time steps k=1 and k=2), where the incremental mo-
tions of two sensors (i-th and j-th) are:

p1i =
(
p1i x p1i y p1i θ

)
p1j =

(
p1j x p1j y p1j θ

)
p2i =

(
p2i x p2i y p2i θ

)
p2j =

(
p2j x p2j y p2j θ

) (3.46)

the extrinsic planar parameters itj =
(
tx ty tθ ts

)
are observable if and only if the
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matrix M (4x5) has rank equal to 4:

M =


−p1i x 1− cos(p1j θ) sin(p1j θ) p1j x −p1j y
−p1i y − sin(p1j θ) 1− cos(p1j θ) p1j y p1j x

−p2i x 1− cos(p2j θ) sin(p2j θ) p2j x −p2j y
−p2i y − sin(p2j θ) 1− cos(p2j θ) p2j y p2j x

 (3.47)

Proof. If we start from the (3.10), that can be rewritten as:

itj ⊕ pkj = pki ⊕ itj (3.48)

we can derive:

ts

(
R(tθ)

[
pkj x

pkj y

]
+

[
tx

ty

])
=

(
R(pki θ)

[
tx

ty

]
+

[
pki x

pki y

])
(3.49)

If we let pki θ = pkj θ and we exploit the vector φ. defined in Equation (3.11), we can express
this linear constraint as:

[
−pki x 1− cos(pkj θ) sin(pkj θ) pkj x −pkj y
−pki y − sin(pkj θ) 1− cos(pkj θ) pkj y pkj x

]
φ = 0 (3.50)

Remember that inside φ, cos(tθ) and sin(tθ) are considered as independent variables but
still constrained to cos2(tθ) + sin2(tθ) = 1.
Moreover the constraint derived by the two separate incremental motions, at time step
k=1 and k=2, can be considered by overlapping twice the (3.50) in this way:


−p1i x 1− cos(p1j θ) sin(p1j θ) p1j x −p1j y
−p1i y − sin(p1j θ) 1− cos(p1j θ) p1j y p1j x

−p2i x 1− cos(p2j θ) sin(p2j θ) p2j x −p2j y
−p2i y − sin(p2j θ) 1− cos(p2j θ) p2j y p2j x

 φ = 0 (3.51)

This is an homogeneous linear constraint, like M φ = 0 where M is the one in (3.47).
Now, inside φ ∈ R5 there are the five unknowns of the system and inside M ∈ R4 x 5 the
four constraints. Therefore, considering only M φ = 0, the unknown vector φ can be
observed only up to a 1-dimensional subspace, which is the kernel of M , i.e. if φ∗ is a
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solution then, ∀α ∈ R also αφ∗ is a solution.
In order to get a unique solution, we can exploit the constraint (3.16), that binds the
absolute value of φ and impose φ1 > 0 to guarantee the right sign to the unknown vector.
In conclusion, φ is observable if and only if the rank of M is 4.

The next step is the check on which motions makes M a 4-rank matrix.
Indeed it is possible to notice that this matrix depends on two incremental motions for
each sensor, expressed in (3.46), but these vectors indicates the relative pose of the sensors
at the end of each of the two intervals (interval with time step k=1 and k=2). Therefore
the observability of the planar extrinsic parameters does not depend on how the sensors
achieve their final poses, but only on those specific poses. Particularly, it does not matter
if the sensors velocities are constant or time-varying. Moreover, if the parameters itj are
fixed, the displacements p1j , p2j are directly function of p1i , p2i .

Proposition 3.2. If Log: SE(2) → se(2) is the logarithm map on SE(2), the matrix M
has rank less than 4 if and only if one of these conditions occurs:

• both p1j and p2j are pure translations;

• there exists a κ ∈ R such that:

Log (p1j) = κ Log (p2j) (3.52)

Proof. Let’s start considering one of the two incremental motions for a sensor as pure
translation, so we can choose the j-th sensor first displacement and impose p1j θ = 0 without
loss of generality. It is important that p1j x or p1j y are non zero, otherwise p1j became a
zero motions and the parameters are unobservable, simply using κ = 0 in (3.52). Anyway,
with p1j θ = 0, for the transnational components:

{
p1i x = p1j x

p1i y = p1j y
(3.53)

since the two sensors see the same exact motion and M becomes:

M =


−p1j x 0 0 p1j x −p1j y
−p1j y 0 0 p1j y p1j x

−p2i x 1− cos(p2j θ) sin(p2j θ) p2j x −p2j y
−p2i y − sin(p2j θ) 1− cos(p2j θ) p2j y p2j x

 (3.54)
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If also the second incremental motion for the j-th sensor is a translation (p2j θ = 0) then
the rank of M becomes at most 2, since the second and third column of the matrix are
zero and the first and fourth are linearly dependent.
Hence, for two pure translation motions of a sensor, the parameters are unobservable.

On the other side, if the second motion has p2j θ ̸= 0, the minor of M is:

M̃ =


0 0 p1j x −p1j y
0 0 p1j y p1j x

1− cos(p2j θ) sin(p2j θ) p2j x −p2j y
− sin(p2j θ) 1− cos(p2j θ) p2j y p2j x

 (3.55)

with a determinant equal to:

2 cos(p2j θ − 1)

∥∥∥∥(p1j x p1j y

)T ∥∥∥∥2 ̸= 0 (3.56)

and M has the rank exactly equal to 4.

In case of no transnational motions, so where p1j θ, p2j θ ̸= 0, the motions p1j and p2j can be
written, using the exponential coordinates (a1 b1 ω1) and (a2 b2 ω2), in this way:

Log (pkj ) = T

 0 ωk ak

−ωk 0 bk

0 0 0

 ∈ se(2) (3.57)

for (ak, bk, ωk) such that |ωi| < π/T , and ak, bk ∈ R. The condition |ωiT | < π assures
that this data reparametrization is one-to-one.
These exponential coordinates vectors can be interpreted as constant velocities that would
make the sensor achieve the two final poses in time T . However, these vectors are only
parametrizations of the motions p1j , p2j , where there are no assumptions on constant
velocities during the time step.
Now, we demonstrate that M has rank less than 4 if and only if there exists a κ ∈ R such
that:

(a1 b1 ω1)
T = κ (a2 b2 ω2)

T (3.58)

The next Lemma is useful for the rest of the demonstration since it defines an exponential
map useful to rewrite the incremental motions and consequently the minor of M .
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Lemma 3.2. The exponential map Exp: se(2)→SE(2) can be written as:

Exp

(
t

 0 ω a

−ω 0 b

0 0 0

) =

R(ωt) Υ(ωt)

[
at

b t

]
0 1

 (3.59)

where :

Υ(ωt) =


sin(ωt)

ωt

cos(ωt)− 1

ωt
1− cos(ωt)

ωt

sin(ωt)

ωt

 (3.60)

With the Lemma 3.2 we can write the incremental motion (pkj x pkj y p
k
j θ) in a close form

expression dependent on the exponential coordinates (ak bk ωk) :

pkj θ = ωkT (3.61)

[
pkj x

pkj y

]
=


sin(ωkT )

ωkT

cos(ωkT )− 1

ωkT
1− cos(ωkT )

ωkt

sin(ωkt)

ωkT


[
ak T

bk T

]

=
1

ωk

[
sin(ωkT ) cos(ωkT )− 1

1− cos(ωkT ) sin(ωkt)

][
ak

bk

] (3.62)

Let’s consider again the 4x4 minor of M , previously expressed in (3.55), but adapted to
the actual features (no transnational motions) :

M̃ =


1− cos(p1j θ) sin(p1j θ) p1j x −p1j y
− sin(p1j θ) 1− cos(p1j θ) p1j y p1j x

1− cos(p2j θ) sin(p2j θ) p2j x −p2j y
− sin(p2j θ) 1− cos(p2j θ) p2j y p2j x

 (3.63)

If we substitute (3.61) and (3.62) inside (3.63), it is possible to derive a minor M̃ that is
function of only (ak bk ωk) and its determinant is:
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detM̃ =

= T 3 sinc2
(
ω1T

2

)
sinc2

(
ω2T

2

) (
(a22 + b22)ω

2
1 − 2(a1a2 + b1b2)ω1ω2 + (a21 + b21)ω

2
2

)

(3.64)

Remember that, the zeros of sinc(x) are the same of sin(x), except for x=0 for which
sinc(0)=1 and sin(0)=0, thus, regarding the sinc(x), the determinant can be zero only
for ωiT/2 = kπ for |k|>0. However, these zeros are ignored since they corresponds to
ωiT = 2kπ that are the singularities of the representation, so we have assumed |ωiT |
< π in the constraint of (3.57).
In conclusion the only zeros for the determinant (3.64) are generated by the second factor:

d = (a22 + b22) ω
2
1 − 2(a1a2 + b1b2) ω1 ω2 + (a21 + b21) ω

2
2 (3.65)

This expression is a fourth-order polynomial with variables (a1 b1 ω1) and (a2 b2 ω2).
Let’s consider four cases:

1. The first motion is a rotation, so a1 = 0 and b1 = 0. In this case d = (a22 + b22) ω
2
1

and it is a non-zero unless the second motion too becomes a pure rotation.

2. Both the coordinates are non-zero a1 ̸= 0 and b1 ̸= 0, so we can reparametrize the
second motion triplex (a2 b2 ω2) with (α β γ) ∈ R3 in this way:

a2 = (αγ)a1

b2 = (βγ)b1

ω2 = (γ)ω1

(3.66)

Since ω1, ω2 ̸= 0, then γ must be different from 0.
If we substitute the parametrization (3.66) in Equation (3.65):

d = (α2γ2a21 + β2γ2b21) ω
2
1 − 2(αγa21 + βγb21) γω

2
1 + (a21 + b21) γ

2ω2
1 =

= (γ2ω2
1)(α

2a21 + β2b21 − 2(αa21 + βb21) + a21 + b21) =

= (γ2ω2
1)(α

2 − 2α + 1)a21 + (β2 − 2β + 1)b21) =

= (γ2ω2
1)((α− 1)2a21 + (β − 1)2b21)

(3.67)
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that become 0 if α = 1 and β = 1, but these value for α and β means that (a2 b2 ω2)

is proportional to (a1 b1 ω1) by a constant γ and this implies a proportionality
between the two incremental motions p1j , p2j too.

3. if a1 = 0 and b1 ̸= 0 then the case is a simpler variant of the previous one. This
time the parametrization is done through (x β γ), such that :

a2 = γx

b2 = (βγ)b1

ω2 = (γ)ω1

(3.68)

and the determinant is proportional to the factor:

d = (x2 + b22)ω
2
1 − 2(b1b2)ω1ω2 + (b21)ω

2
2 =

= (γ2x2 + β2γ2b21)ω
2
1 − 2(βγb21)γω

2
1 + (b21)γ

2ω2
1 =

= (γ2ω2
1)(x

2 + β2b21 − 2(βb21) + b21) =

= (γ2ω2
1)(x

2 + (β − 1)2b21)

(3.69)

Therefore, necessarily, x = 0 and β = 1 and, moreover, in this case a linearly
dependence like (3.58) must be present.

4. Finally, for a1 ̸= 0 and b1 = 0, the situation is equivalent to the previous one but
with a1 and b1 inverted, so the conclusion is the same one.

At last, we need to demonstrate the equivalence between (3.45) and (3.52), since it is the
first one that is present in the thesis of Preposition 3.1.
Recalling that:

• pkj can be obtained by pki with (3.6);

• the matrix logarithm satisfies the property: Log(AXA−1) = A Log(X) A−1;

it naturally follows that Log(pkj ) = Log(pki ), so these two (3.45) and (3.52) are demon-
strated to be equivalent.
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3.3.2. Practical Considerations

Firstly, we analyze the input of the motion-based calibration step, i.e. the sensors’ ego-
motions, that are usually measured with external strategies like, for example, the one
developed by Jaimez et al. [14] for Lidars or ORB-SLAM for cameras [19]. The algo-
rithms of these strategies can be subjected to drifts or tracking failures that generate
influent errors in the observed motions and, therefore, in the calibration parameters too.
In order to avoid this, it can be useful to couple the close form solution with a Random
Sample Consensus framework (RANSAC [22]), that discards the outliers among the ob-
served ego-motions. In order to make this selection, the framework requires a threshold
defined a-priori applicable to an error function. Therefore, regarding the error, we can
choose a function similar to (3.7), since the original has some problems like:

• it mixes the translation and rotation errors even if they have different magnitudes;

• it defines the translation error in the space of the second sensor (j-th);

• it has an arbitrarily scale in case a monocular camera is present.

The selected one for a RANSAC framework is:

τ kij(t) ≜ trans (pki − itj ⊕ pkj ⊖ itj) (3.70)

that represents the translation error expressed in the space of the i-th sensor and its terms
depend on both the translation and rotation parameters.
Anyway, the (3.7) is still exploited to solve the close form solution of the motion-based
calibration whereas the new one (3.70) is only used to detect the motions outliers in a
RANSAC framework.

A second consideration regards the calibration of multiple sensors. Indeed the motion-
based calibration step described in Section 3.1 estimates only the transformation param-
eters between a couple of sensors, the reference one and the one to calibrate, since it
considers the constraints only between them. The idea is to extend this calibration step
from two to multiple sensors where we consider additional constraints between them in a
joint optimization framework.
Let’s give index 0 to the reference sensor and try to calibrate n sensor, thus the goal is
to estimate the parameters 0t1, 0t2, ..., 0tn ∈ Sim(2).
The joint calibration problem can be defined as:
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0t∗1,
0t∗2, ... ,

0 t∗n = argmin
0t1, 0t2, ... ,0tn

n∑
i=1

∑
k

∥∥∥∥ρ ( τ k0i ( 0ti )

)∥∥∥∥2
2

+
∑

( i, j)∈S

∑
k

∥∥∥∥ρ ( τ kij ( ⊖ 0ti ⊕ 0tj)

)∥∥∥∥2
2

(3.71)

where S is a set that contains all the pairs of sensors whose additional constraints are
considered. These pairs need the first sensor to measures the motions in a metrically
accurate way.
In the upwards formula the error function is the modified one τ defined in (3.70) instead
of ε defined in (3.7) since we want all sensors’ terms of error expressed in the same
metric space. The term ⊖ 0ti ⊕ 0tj is equivalent to the extrinsic parameters of the
relative transformation itj between i-th and j-th sensors, where we highlighted the single
calibration parameters 0ti, 0tj between each sensor and the reference one. The symbol
ρ represents the Cauchy loss function used to face the unmodeled mistakes not detected
during the step of the RANSAC framework.
The joint calibration problem expressed in (3.71) can be solved iteratively from the
close form solution described in Subsection 3.1.2, using the g2o framework depicted by
Kümmerle et al. in [16].

Finally, at last, the whole proposed calibration process for the 6 DoF extrinsic parameters
can be summarized in two main separate steps. Firstly, there is the 3D parameters (z, pitch
and roll) estimation, based on the ground plane observations and, secondly, the planar
calibration of x, y and yaw parameters based on sensors’ ego-motions. More specifically,
the precise calibration pipeline is:

1. acquisition of the data from the sensors;

2. estimation of the motions for each sensor with methods like the ones described in
[14] and [19];

3. estimation of the z, pitch and roll parameters through plane observations as de-
scribed in Section 3.2 for each sensor that needs to be calibrated;

4. projection of the estimated trajectories into the ground plane through the (3.29)
and (3.30), plus their re-sample into synchronous incremental motions;

5. calibration of the remaining parameters x, y, yaw through the motion-based step
described in Section 3.1;

6. refinement of these parameters in a joint optimization framework through (3.71).
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After the explanation of the theory in the previous chapter, we can now focus on an
experimental estimation of the sensors’ parameters. The idea is to use the measurements
from a collection of datasets to estimate the extrinsic parameters of the sensors, following
the pipeline described in the previous chapter. The choice of the exploited datasets and
programs is inspired by the section "Outdoor Evaluation" (Section V-B) of Zuñiga-Noël
et al. [29].

4.1. Datasets

First of all, the collection of datasets exploited in this experimental evaluation is the one
created by Jose-Luis Blanco, Francisco-Angel Moreno and Javier Gonzalez and described
in [3]. The contained measurements are generated with a mobile platform equipped with
multiple sensors, like RTK-GPS, lidars and cameras. The vehicle was driven along six
different paths in Málaga, three of which are placed in the parking of the Computer
Science School building while the others are at the Campus boulevard of the University
of Málaga. For each of them, a dataset of measurements is generated and stored inside
the collection.
However, a great feature of the Blanco et al. collection is the presence of ground truth
for the vehicle paths, which is essential for the motion-based calibration techniques and
SLAM processes.

Now, among the six paths followed by the vehicle, we are interested only in the three
related to the parking environment, since they are more useful for our calibration goals.
Indeed, these are mainly planar, with more loops than the campus ones. Additionally,
their environment is full of trees and parked cars, whereas it lacks planar surfaces like
buildings. These paths and their related datasets are called 0L, 2L, 6L depending on the
number of loops they included.
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(a) Top view of 0L path.

(b) Top view of 2L path. (c) Top view of 6L path.

Figure 4.1: These images come from [3] and represent the paths 0L(a), 2L(b) and 6L(c)
where the datasets’ measurements are collected.

In Figure 4.1 it is possible to see the three different routes followed by the mobile platform
and a top view of their common environment. The three datasets are exploited, during
the calibration, to estimate a set of extrinsic parameters for each trajectory and check
how the choice of the path can influence the results.
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(a) Lateral view.

(b) Top view.

Figure 4.2: The image comes from [3] and it represents the position of the sensors in the
mobile platform. This image shows an error since the model of two lateral rear lidars is,
in reality, the SICK-LMS 221.

The platform, exploited to measure the parking environment, is equipped with twelve
heterogeneous sensors, including five lidars, two cameras, four GPS and one IMU. In
Figure 4.2 there is a representation where the sensors are highlighted. Each type of
sensor has been calibrated with a specific technique in order to achieve both accurate
measurements and ground truth for their extrinsic parameters. For detailed information
about the calibration of each specific type of sensor executed by Blanco et al., we refer
the reader to the reference document [3].
Table 4.1 displays the ground truth 6 DoFs extrinsic parameters of the sensors in the
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platform, that are calibrated with respect to the local reference frame represented in
Figure 4.2.
Four sensors are highlighted since they are the only ones whose poses are completely
optimized or completely calibrated. The selected ones are the two AVT cameras and the
two SICK-LMS 221 Lidars, therefore these are the chosen sensors we are going to calibrate
with the strategy described in Chapter 3.
This table is very important since we can confront our results with the ground truth of
the calibration parameters contained in it.

Additionally, a very useful aspect of the Blanco et al. collection is the presence of the
ground truth of the sensors’ trajectories which can be exploited for our motion-based
calibration step. In fact, in each dataset’s folder there exist some text files filled with the
trajectories of the four chosen sensors sampled at 1 Hz (GT_path_<sensor>_name.txt)
and the vehicle trajectory, sampled at 1 Hz and 100 Hz (respectively GT_path_vehicle.txt
and GT_path_vehicle_interp.txt). The vehicle trajectory is measured by combining the
data from the RKT GPS devices whereas the sensors’ ego-motions are generated by ap-
plying the appropriate and specific 6D pose to the vehicle trajectory.

x (m) y (m) z (m) θ (deg.) ψ (deg.) ϕ (deg.)

Rear GPS-RTK 0.000 0.000 0.132 × × ×
Front Left GPS-RTK 1.729 0.5725 0.115 × × ×

Front Right GPS-RTK 1.733 -0.5725 0.1280 × × ×
DGPS∗ -0.250 0.000 0.100 × × ×

Left AVT Camera 2.216 0.430 0.022 -88.43 -87.23 -2.99

Right AVT Camera 2.200 -0.427 0.025 -90.31 -86.19 -3.53

Front Hokuyo∗ 2.420 0.000 -1.740 0.00 0.00 0.00

Rear Hokuyo∗ -0.299 0.084 -1.725 178.81 0.00 0.00

Front SICK LMS-220∗ 2.278 0.000 -1.565 0.00 0.00 -6.84

Left SICK LMS-221 -0.3642 0.7899 0.0441 90.58 -89.66 6.82

Right SICK LMS-221 -0.3225 -0.8045 -0.0201 -90.33 89.85 -2.87

IMU∗ × × × 0.000 0.000 0.000

∗Sensor pose is not optimized. × (irrelevant or not applicable).

Table 4.1: This table comes from [3] and represents the ground truth of the extrinsic
parameters for the sensors in the platform.
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Moreover, the folder is full of the sensor measurements, obviously saved in different for-
mats. For example, in the folder "Images_rect" there are the frames of the right and left
cameras, where the images are rectified to compensate for the camera distortion. They
are exploited in the step based on the ground observations to estimate the two cameras’
parameters. Another useful file is pointcloud.txt, which is composed of the cloud of the
environment points measured by the Lidars. However, all the data grabbed by the sensors
are included in the binary log file parking_<name of dataset>L.rawlog, which is based
on the open-source MRPT.

4.2. Ground Observation-based Calibration

At this point, we can focus on the ground observation-based calibration where we exploit
the observations of the ground plane performed by the sensors to estimate their (z, ψ, ϕ)
extrinsic parameters. As mentioned in Section 4.1 we calibrate the left and right SICK
LMS-221 Lidars and AVT cameras. The results can be compared with their ground truth
contained in Table 4.2.

The pipeline to follow for this experimental calibration step is:

1. elaborate the data from the dataset to reconstruct the environment;

2. exploit the reconstruction to estimate the ground plane and hence, the ground
points;

3. estimate the extrinsic parameters from the list of ground points with the method
described in Section 3.2.

z (m) ψ (deg.) ϕ (deg.)

Left AVT Camera 2.250 -87.23 -2.99

Right AVT Camera 2.253 -86.19 -3.53

Left SICK LMS-221 2.2721 -89.66 6.82

Right SICK LMS-221 2.2079 89.85 -2.87

Table 4.2: This table represents the ground truth 3D parameters of the sensors we cali-
brate. It is obtained from the Table 4.1, even if the z parameter is increased by an offset
of 2.228 m. The reason for that is that our ground observations-based calibration step
estimates z with respect to the ground and not to the reference frame, represented in
Figure 4.2, as in the previous table.
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4.2.1. Environment Reconstruction

The reconstruction of the environment can be performed using different programs de-
pending on the sensor type.
In order to calibrate the cameras, we can follow the suggestions of Zuñiga-Noël et al.[29]
and exploit the Structure-from-Motion approach [25] through its implementation called
COLMAP [24], [26]. We select 50 consecutive frames with high texture on the ground
from the folder "Images_rect" and we use them as input to the program in addition to
the intrinsic parameters of the camera we want to calibrate. These intrinsic parameters
are findable inside the dataset file malaga_datasets_grabber.ini and their imposition to
COLMAP during the reconstruction allows for an increase in the precision of the recon-
structed environment points.
At the end of the reconstruction process, we find in the outcome folder the file points3D.txt
with the list of 3D environmental features. This list has a row for each reconstructed point,
where its (x, y, z ) coordinates are expressed.
Additionally, Colmap generates another file, called images.txt, where there are 50 sets of
parameters that can be used to compute the reconstructed poses of the camera. Each one
of them is related to one of the input frames. This set of parameters is composed of three
transnational ones and another four that represent a quaternion. In order to obtain the
coordinates of reconstructed camera centres, it is necessary to apply the formula −RT ∗ t
whereR is the rotational matrix composed of the quaternion and t is the vector composed
by the transnational parameters.
It is essential to notice that both the reconstructed environmental features and camera
poses are expressed in a reference frame centred on a random point, which doesn’t corre-
spond to any camera poses. Therefore, after the Colmap reconstruction, we choose one
of the camera poses and we apply a roto-translation off all the points to match the centre
of the reconstruction reference frame with the chosen point.
For example, in Figure 4.3, we can see a reconstruction performed by Colmap on 50 con-
secutive left camera frames during the 0L path. The reference frame is placed in the 25-th
reconstructed pose.
It is possible to notice that Colmap generates a piece of camera trajectory since it re-
constructs 50 of its poses, but this one is not equal to the ground truth one placed in
the Blanco et al. dataset. Indeed between these two sampled paths, there is a similarity
transformation that defines their differences.
Therefore, when we estimate the z parameter of the camera exploiting the Colmap’s
reconstruction, it will be scaled by a factor with respect to the ground truth one.
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Figure 4.3: Dataset 0L. A plot of the reconstructed environment after matching the local
reference frame centre with the 25-the camera pose.

In order to correct this error, we can use a program based on least-squares minimization
that compute the parameters set (Rs, ts, cs) of the similarity transformation. Before that,
we extrapolate from the total ground truth trajectory only the 50 poses that correspond
to the reconstructed ones and we use them in the minimization program. We can see
in Figure 4.4 the difference between the reconstructed trajectory (green) and the ground
truth one (red) from the 0L dataset, both belonging to the left camera. The blue points
represent the reconstructed ones after the application of the estimated transformation and
in order to check its correctness. Actually, the only parameter that we are interested in
is the scaling factor cs, which must be multiplied by the estimated z extrinsic parameter
of the camera to find its correct value.

Regarding the reconstruction of the environment through the lidars measurements, we
can use another program. Indeed, we can read and manipulate the file parking_<name
of dataset>L.rawlog, which includes all the measurements of the selected dataset, with
the program RawLogViewer inside the open-source MRPT.
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Figure 4.4: Representation of the ground truth camera trajectory and reconstructed ones
before and after the application of the transformation parameters. The trajectories belong
to the left camera and are generated by the 0L dataset.

Let’s select only the measurements from the lidar we want to focus on (left or right),
plus the data from the RKT-GPS devices and generate the so-called "map from RKT
GPS". As we can see in Figure 4.5, this map is composed of all the 3D points of the
environments reconstructed with the scans from the selected lidar. Moreover, there are
plotted also ground-truth poses of the sensor.
With the RawLogViewer program, it is possible to save all the 3D points of the environ-
ment in a text file, generating a list of 3D coordinates. Also for this kind of sensor is
essential to centre the reference frame into a chosen pose of the sensor as we did in the
camera’s environment reconstruction.

Finally, for both lidars and cameras, the reconstructed environment can be generated like
a list of points in a text format. In the next passage, the reconstruction is exploited to
estimate the ground plane and the ground points to calibrate the sensor.
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Figure 4.5: Reconstruction of the environment through the scans of the left lidar, which
are collected inside the 0L dataset. In this example, the local reference frame is centred
in the first lidar pose.

4.2.2. Ground Points Estimation

At this point, with the environment reconstruction, we can estimate the ground points
useful to complete the sensor’s calibration. These points are the ones that belong to
the ground plane so its coefficients are the first we need to compute. The idea is to
estimate the coefficients of the plane that includes the set with the highest number of
3D points in the environment reconstruction. This estimated plane corresponds to the
ground one and the inlier points are the ground ones. Obviously, this strategy works
better for reconstruction with a high number of reconstructed 3D points on the ground.
Now, to implement this strategy, it is possible to exploit the "plane model segmentation"
tutorial of the Point Cloud Library (PCL). The whole points in the reconstruction are
grouped in a principal point cloud. Then, the program generates and fills a second one
with all the points whose distance from a plane is lower than a pre-set near-zero threshold.
In this way, the coefficients of the plane with the highest number of inliers, are finally
estimated.
In Figure 4.6 it is possible to see an example of the ground points estimation for the left
camera moving along a piece of the 0L trajectory. Anyway, this strategy works for both
the lidars and the cameras since it only needs the list of environment points expressed
with respect to a selected sensor’s pose.
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Figure 4.6: This image represents the same reconstruction of Figure 4.3 but with the
ground points highlighted in red.

At the end of the estimation, a .csv file must be generated with the list of the ground
points, since this is the input for the effective and final step of the ground observations-
based calibration.

4.2.3. 3D Parameters Calibration

The conclusive passage of this calibration is the effective estimation of the (z, ψ, ϕ)
extrinsic calibration parameters. As mentioned before, we need the list of ground points
derived in the previous subsection, since they are the input for the ground_calib.cpp file.
This letter is part of the C++ implementation of Zuñiga-Noël et al.[29] and it solves
the least-squares formulation of the parameters’ estimation in close form, following the
procedure described in Subsection 3.2.2.
Additionally, the close form solution is refined in an iterative way using the Ceres solver
[1] in order to improve the results.

4.3. Motion-based Calibration

In this section, let’s perform the estimation of the remaining extrinsic parameters, i.e.
the planar ones (x, y, θ) for the four selected sensors of the Blanco et al. datasets.
Table 4.3shows the ground truth extrinsic parameters that we can use to confront the
ones we estimated in this calibration step.
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x (m) y (m) θ (deg.)

Left AVT Camera 2.216 0.430 -88.43

Right AVT Camera 2.200 -0.427 -90.31

Left SICK LMS-221 -0.3642 0.7899 90.58

Right SICK LMS-221 -0.3225 -0.8045 -90.33

Table 4.3: Table with the ground truth of the planar extrinsic parameters, obtained from
Table 4.1.

We use the sensors’ ground truth trajectories placed in the Blanco et al. datasets as in-
puts of this process. Since the motion-based calibration estimates the planar parameters
of the sensors with respect to a reference one, we can use the so-called vehicle trajectory
(GT_path_vehicle.txt), measured with the RKT-GPS devices, as the reference one.
However, a necessary condition for this step is the coplanarity between the input tra-
jectories, thus we can use the previously estimated (ψ, ϕ) extrinsic parameters of each
sensor to project its trajectory into the ground plane. This procedure can be performed
by planar.cpp file in the C++ implementation of [29], where (3.29), (3.30) are recalled.
Additionally, if we want to calibrate simultaneously multiple sensors, all their ego motions
must be synchronous. Therefore, we can use the sync.cpp file, from the same repository
linked to [29], to complete this job. Indeed, the program can manipulate the input trajec-
tories and synchronize them with the strategy described at the beginning of Section 3.1.
It works with at least two trajectories, where the first one is the reference one, but also
with five of them like it is in our case.
Finally, with the coplanar and synchronized sensors ego-motions, the last step is the effec-
tive calibration of the planar parameters and the scaling factor, in the case of monocular
cameras. The solutions for this calibration are computed firstly in close form, as explained
in Subsection 3.1.2 and then refined iteratively with Ceres Solver[1]. To implement this
procedure, we use the calibrate.cpp file, that can be found in the previously cited reposi-
tory.
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In the previous chapters, we described the procedure to calibrate two lidars and two
cameras, using the Blanco et al. datasets collection.
Therefore, in this chapter, we expose the results of this experimental calibration and we
compare the estimated extrinsic parameters with their ground truth values from Tables
4.2 and 4.3.

5.1. 3D Parameters Results

This section shows the results computed during the ground observation-based calibration
step, described in Section 4.2. As explained in Subsection 4.2.1, during the reconstruc-
tion of the environment, we apply a transformation in order to match the centre of the
local reference frame with the pose of the sensor. Therefore, in this way, the extrinsic
parameters (z, ψ, ϕ) are estimated with respect to that specific pose.
For example, if we calibrate one of the cameras, we reconstruct 50 sensor poses for each
path, so we can estimate 50 times the extrinsic parameters, each one with respect to one
of the different poses. On the other side, the Lidars do not require the reconstruction of
the poses, hence we select 50 of them, equally spaced, from the ground truth trajectories
and we use them to match the environment’s local reference frame.

Figure 5.1 shows three box plots for each parameter (z, ψ, ϕ) of the Left AVT Camera with
a blue horizontal line that indicates the ground-truth value for that parameter. Every
single plot represents the values of one parameter expressed with respect to each of the
50 different reconstructed poses. Moreover, Table 5.1 reports the mean values between
the 50 estimations for each parameter and for each dataset. Additionally, it also shows
the average values between the three datasets, the standard deviations and the numerical
values of the ground truth.
Figures 5.2, 5.3, 5.4 and Tables 5.2, 5.3, 5.4 show the results of the calibration step based
on ground-observation for the other three sensors of the Blanco et al. datasets collection.
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(a) z parameter calibration. (b) ψ parameter calibration.

(c) ϕ parameter calibration.

Figure 5.1: Left AVT Camera. The box plots show the 3D calibration parameters esti-
mated with respect to each different reconstructed sensor’s pose and with respect to each
different path.

Left AVT Camera

z (m) ψ (deg.) ϕ (deg.)

Ground-Truth 2.250 -87.23 -2.99

0L mean value 1.926 -88.56 -2.67

2L mean value 1.950 -88.67 -1.46

6L mean value 1.943 -88.59 -1.19

Average value 1.93959 -88.60467 -1.77255

stdv. 0.010082 0.0485550 0.6425903

Table 5.1: Left AVT Camera. This table shows the mean values computed for each 3D
extrinsic parameter and each dataset, plus the average values between the datasets and
the standard deviations.
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(a) z parameter calibration. (b) ψ parameter calibration.

(c) ϕ parameter calibration.

Figure 5.2: Right AVT Camera. The box plots show the 3D calibration parameters
estimated with respect to each different reconstructed sensor’s pose and with respect to
each different path.

Right AVT Camera

z (m) ψ (deg.) ϕ (deg.)

Ground-Truth 2.253 -86.19 -3.53

0L mean value 1.974 -87.67 -1.51

2L mean value 1.990 -87.19 -0.19

6L mean value 1.973 -87.48 -0.46

Average Value 1.97921 -87.45 -0.72007

stdv. 0.0074682 0.1950362 0.5717682

Table 5.2: Right AVT Camera. This table shows the mean values computed for each 3D
extrinsic parameter and each dataset, plus the average values between the datasets and
the standard deviations.
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(a) z parameter calibration. (b) ψ parameter calibration.

(c) ϕ parameter calibration.

Figure 5.3: Left SICK LMS-221 Lidar. The box plots show the 3D calibration parameters
estimated with respect to each different sensor’s pose and with respect to each different
path.

Left SICK LMS-221 Lidar

z (m) ψ (deg.) ϕ (deg.)

Ground-Truth 2.2721 -89.66 6.82

0L mean value 2.0199 -91.13 4.48

2L mean value 2.0572 -91.37 4.06

6L mean value 1.9675 -91.45 4.38

Average Value 2.01488 -91.31467 4.30410

stdv. 0.0368001 0.1360299 0.1787142

Table 5.3: Left SICK LMS-221 Lidar. This table shows the mean values computed for each
3D extrinsic parameter and each dataset, plus the average values between the datasets
and the standard deviations.
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(a) z parameter calibration. (b) ψ parameter calibration.

(c) ϕ parameter calibration.

Figure 5.4: Right SICK LMS-221 Lidar. The box plots show the 3D calibration parameters
estimated with respect to each different reconstructed sensor’s pose and with respect to
each different path.

Right SICK LMS-221 Lidar

z (m) ψ (deg.) ϕ (deg.)

Ground-Truth 2.2079 89.85 -2.87

0L mean value 1.8981 91.27 -0.55

2L mean value 1.8881 91.80 -0.43

6L mean value 1.8290 91.58 -0.43

Average Value 1.87174 91.55151 -0.47118

stdv. 0.0304782 0.2198135 0.0572101

Table 5.4: Right SICK LMS-221 Lidar. This table shows the mean values computed
for each 3D extrinsic parameter and each dataset, plus the average values between the
datasets and the standard deviations.
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It is easy to notice from the tables that the ϕ parameters derived from the 0L dataset are
closer to the ground truth value. This, most probably, depends on the greater amount of
texture on the ground that is present in the 0L path measurements with respect to the
other ones.
Additionally, the estimation of this parameter for the cameras has higher variability than
the z and ψ, since it has a greater standard deviation. This is probably caused by the
intervention of the Colmap program that reconstructs the environment only during the
cameras calibration. On the other side, the z parameter is the one with lower standard
deviations for all the sensors, even if the differences with respect to its ground truth value
lie in a range of 20-35 cm.

5.2. Planar Parameters Results

At this point, we show the results of the motion-based calibration step described in
Section 4.3.
Tables 5.5, 5.6, 5.7 and 5.8 express the numerical solution of the (x, y, θ) parameters
calibration for the four selected sensors in each of the three datasets. In order to compare
in an easier way these values with the ground truth ones, the letters are reported here from
Table 4.1. Additionally, as in the previous subsection, we compute the average values for
each parameter and the standard deviations.
As stated in Section 4.3, the input ego-motions of the sensors must be coplanar, therefore
we need to exploit their pitch and roll extrinsic parameters to project the trajectories in
a common plane. However, in this experimental calibration, we decide to use the ground
truth values for these angular parameters since we want to check the correctness of this
estimation step without the influence of the one that estimates the ψ and ϕ parameters.

Left AVT Camera

x (m) y (m) θ (deg.)

Ground-Truth 2.216 0.430 -88.43

0L 2.218 0.429 -88.43

2L 2.217 0.433 -88.43

6L 2.215 0.425 -88.43

Average Value 2.21665 0.42889 -88.42992

stdv. 0.0012497 0.00333 0.0031149

Table 5.5: Our estimations of the (x, y, θ) parameters for the Left AVT Camera.
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Right AVT Camera

x (m) y (m) θ (deg.)

Ground-Truth 2.200 -0.427 -90.31

0L 2.183 -0.436 -90.37

2L 2.330 -0.441 -90.34

6L 2.234 -0.439 -90.30

Average Value 2.24896 -0.43857 -90.33690

stdv. 0.0607178 0.0022070 0.0296625

Table 5.6: Our estimations of the (x, y, θ) parameters for the Right AVT Camera.

Left SICK LMS-221 Lidar

x (m) y (m) θ (deg.)

Ground-Truth -0.3642 0.7899 90.58

0L -0.3843 0.7777 90.49

2L -0.3841 0.8061 90.59

6L -0.3425 0.7890 90.79

Average Value -0.37032 0.79091 90.62244

stdv. 0.0196684 0.0116646 0.1258744

Table 5.7: Our estimations of the (x, y, θ) parameters for the Left SICK LMS-221 Lidar.

Right SICK LMS-221 Lidar

x (m) y (m) θ (deg.)

Ground-Truth -0.3225 -0.8045 -90.33

0L -0.3299 -0.8080 -90.37

2L -0.3045 -0.8034 -90.33

6L -0.2900 -0.8011 -90.18

Average Value -0.30813 -0.80413 -90.29337

stdv. 0.0164806 0.0028606 0.0800261

Table 5.8: Our estimations of the (x, y, θ) parameters for the Right SICK LMS-221 Lidar.
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Comparing the Tables 5.5, 5.6, 5.7, 5.8 with the 5.1, 5.2, 5.3, 5.4 in the previous subsection,
we can notice that the estimations of the x, y and θ parameters have much lower standard
deviations and the average values much closer to the ground truths. This behaviour is
caused by the strategy we adopted, indeed the planar parameters are estimated using the
motion-based approach who exploits the ego-motions that in our experiment are ground
truth sensors trajectories.
On the other side, the z, ψ and ϕ parameters are computed with the ground observation-
based calibration who requires ground points that are estimated for each sensor. There-
fore, the inputs of the first procedure are more accurate and precise than the ones of the
second, which implies better results in the estimation of the planar parameters.



51

6| Conclusions

This thesis has presented a calibration process to estimate the 6 DoF extrinsic parameters
for multiple sensors placed in a mobile system.
Specifically, we first described the calibration step to estimate the planar parameters for
two coplanar sensors, exploiting their ego motions. A peculiarity of this approach is that
inside this step, we estimate also the scale ambiguity, characteristic of the monocular
cameras, so that these sensors can be handled with the others in the same optimization
framework. Then, we explained a procedure to compute the remaining three parameters,
with the ground points estimations from each sensor as input, in order to find its 3D trans-
formation relative to that plane. This transformation is required to project the sensors’
motions into a common plane and make the sensors coplanar. Both the calibrations steps
are formulated as a least-squares problem and solved in close form, using the Lagrangian
multipliers. This kind of solution allows us to avoid initial guesses to find the parameters.
Subsequently, we considered all pairs of sensors in a joint least-squares framework, ex-
tending the case of only two sensors. At last, we have tested the proposed approach
to calibrate two lidars and two cameras, whose measurements come from a collection of
datasets generated in an outdoor environment.
The generated results confirm the validity of the proposed approach, especially in the
calibration step that estimates the planar extrinsic parameters. In fact, the numerical
solutions lie very close to their ground truth values with a variability, between datasets,
very narrow. On the other side, the 3D parameters calibration step, based on ground
observations, exhibits some inaccuracies and imperfections. The estimation of the envi-
ronment points could be the main source of this aspect.
Indeed, future works on this subject could focus exactly on the improvement of the en-
vironment reconstruction, since this is a fundamental prerequisite for the estimation of
the ground plane. An increase in the precision for this reconstruction can surely lead to
better results for the 3D extrinsic parameters.
Additionally, since this calibration approach is limited by the requirement of the sensors’
incremental motions, some devices such as the radars are not comprehended. Another
possible development could be the addition of a new step to this process where the li-
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dars’ scans are exploited to calibrate the radars’ extrinsic parameters too, as described
by Heng[10].
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