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A B S T R A C T

Agricultural Simultaneous Localization And Mapping (SLAM) is the process
of robot self-localization and field mapping in agriculture. Robot localization
is the prerequisite for any autonomous robot task. It can exploit a prior
environment map if available, in order to extract reference points. Reference
points are observable characteristics of the environment that are distinguish-
able from each other, thus allowing to determine a unique robot position. If
a prior map is not available, the robot needs to build a map concurrently
with localization, which is the case addressed in this thesis. Besides being
a support for robot localization, agricultural mapping can be exploited for
several tasks such as crops phenotyping and targeted herbicides spraying.

Localization in the agricultural field is a complex task for systems us-
ing both absolute and relative sensor measurements. Absolute localization
methods can fail because of signal lack, while relative localization systems
have to deal with drift accumulation due to the uneven ground and uniform
visual appearance of the surroundings. Uniform visual appearance makes the
identification of reference points extremely difficult, especially if we consider
that landscape is highly time-varying due to the plants growth and therefore
reference points are difficult to track over time. This is the reason why prior
maps are seldom available.

In this thesis, we addressed the localization problem by fusing absolute and
relative sensor measurements. In particular, GPS messages were used to get
absolute position measurements, while wheel odometry and an RGB camera
were used for relative trajectory estimation. The RGB camera images were
used to detect crop plants Stem Emerging Point (SEP) as reference points for
the relative estimation system. We aimed at partially replacing the need for a
precise GPS sensor, by providing a reliable trajectory estimation with visual
sensor fusion.

Mapping was handled by storing the estimated coordinates of crops SEP
in the GPS absolute frame. In addition to single crop plants position, the crop
row direction was estimated in the robot local frame. Crop rows constraints
were created by interpolating individual crop plants lying along a line,
because of the specific domain assumption of crop plants sowed in a row.
The mentioned constraints can be used to correct the estimate of the robot
trajectory, which must lie at a given distance from the crop row that the robot
is following. In particular, for each RGB image we can build a constraint on
the distance between the robot pose and the plant centroid obtained by the
3D reconstruction of the SEP identified in the image. For identifying the SEPs
in images, we developed a specific image processing component.
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Finally, we implemented an error computation function to assess the lo-
calization results without absolute information. The method computes the
best transformation to align the robot trajectory to the ground truth, before
the error computation. This was done in order to evaluate the trajectory
optimization results which did not fuse GPS measurements in the estimation
and therefore are not absolutely referenced.
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S O M M A R I O

La localizzazione e la mappatura simultanea (in inglese è abbreviata con
l’acronimo SLAM) per i robot agricoli è il processo di auto-localizzazione del
robot nel campo agricolo senza una mappa a priori dell’ambiente. I robot
autonomi affrontano il problema dell’auto-localizzazione mentre svolgono
la maggior parte dei loro compiti. I robot possono utilizzare una mappa a
priori o l’identificazione di punti di riferimento mentre si muovono. I punti
di riferimento sono caratteristiche dell’ambiente osservabili e distinguibili
tra loro, che consentono di determinare una posizione univoca del robot.
L’ambiente agricolo pone il problema dell’indisponibilità di punti di riferi-
mento da sottoporre direttamente al sistema di localizzazione e mappatura.
Il campo è spesso visivamente ripetitivo e omogeneo, ed è anche mutevole
nel tempo, quindi è difficile estrarre punti di riferimento da identificare in
modo univoco nel tempo.

In questa tesi, affrontiamo il problema della localizzazione di un robot
autonomo in campo agricolo senza una mappa a priori, nel contesto di
SLAM, dal momento che l’ambiente è sconosciuto. Valutiamo la possibilità
di utilizzare colture e filari di piante come punti di riferimento nel sistema di
localizzazione e mappatura. Proponiamo un metodo per identificare le singole
piante coltivare, che possono essere utilizzate come riferimento invariante
nel tempo se adeguatamente elaborate. Il metodo consiste nell’estrazione
del punto emergente del fusto (abbreviato con l’acronimo SEP in inglese)
della pianta, caratteristica invariante nel tempo anche quando essa cresce. Le
immagini del campo vengono inviate a un sistema che esegue i tre seguenti
passaggi: segmentazione delle immagini, clustering e calcolo del centro di
massa per ottenere i SEP delle piante coltivate.

Abbiamo progettato un algoritmo di SLAM che prende come input i punti
di riferimento costituiti dalle piante coltivate per migliorare la stima della
localizzazione e produrre una mappa delle caratteristiche dell’ambiente. Il
sistema fonde le misurazioni del GPS, i punti di riferimento delle piante e
la stima iniziale della traiettoria data dalla wheel odometry. Come risultato
produce una traiettoria ottimizzata, sia online che offline. L’ottimizzazione
della traiettoria può funzionare anche senza informazioni GPS, tuttavia il
risultato non può essere considerato orientato in modo assoluto. Per valuta-
re le prestazioni del sistema in assenza di informazioni assolute, abbiamo
implementato una funzione ad hoc per calcolare l’errore, che gestisce l’alli-
neamento della traiettoria calcolata con il ground truth prima dell’effettivo
calcolo dell’errore.

La struttura della tesi è la seguente:
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• Il Capitolo 2 presenta la revisione della letteratura dei sistemi che
eseguono la localizzazione e la mappatura per i robot autonomi e dei
metodi di identificazione dei punti di riferimento che possono essere
applicati al campo agricolo. Affronta anche la motivazione di questo
lavoro e i passi da compiere per progredire nel campo dello SLAM
agricolo;

• Il Capitolo 3 fornisce il contesto sia teorico che tecnico per l’implemen-
tazione della metodologia proposta da questa tesi;

• Il Capitolo 4 descrive l’insieme di dati che abbiamo usato nei nostri
esperimenti, sia per l’addestramento della rete neurale che per la simu-
lazione di dati reali nell’algoritmo di SLAM. Include anche la descri-
zione degli strumenti software che abbiamo utilizzato per sviluppare
l’algoritmo;

• Il Capitolo 5 fornisce una panoramica dell’architettura del sistema e
spiega in dettaglio tutti i componenti;

• Il Capitolo 6 riporta i risultati ottenuti dal componente di identificazione
dei centroidi e dal componente di SLAM;

• Il Capitolo 7 conclude la tesi riassumendo i risultati ottenuti e propo-
nendo dei possibili miglioramenti.
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1
I N T R O D U C T I O N

Simultaneous Localization And Mapping (SLAM) for agricultural robots
is the process of robot self localization in the agricultural field without a
prior map of the environment. Autonomous robots face the self-localization
problem while performing most of their tasks. Robots can employ a prior
map or the identification of reference points while they move. Reference
points are observable features of the environment that are distinguishable
from each other, thus they allow to determine a unique robot position. The
agricultural environment raises the issue of the unavailability of reference
points to be directly fed to the localization and mapping system. The field is
often visually repetitive and homogeneous, and it is also mutable in time, so
it is difficult to extract landmarks to be uniquely identified over time.

In this thesis, we address the issue of localizing an autonomous robot in
the agricultural field without a prior map. The context is the SLAM problem,
since the environment is unknown. We explore the possibility of using crop
plants and crop rows as landmarks in the localization and mapping system.
We propose an identification method for single crops, which can be used as
time-invariant landmarks if adequately processed. It consists in extracting
the Stem Emerging Point (SEP) of the plant, which is a time-invariant feature
even when the crop grows. Field images are fed to a system performing a
pipeline of image segmentation, clustering and center of mass computation
to obtain the crops SEP.

We designed a SLAM algorithm taking as input the crops landmarks to
improve the localization estimation and produce a landmark map of the
environment. The system fuses GPS measurements, crops landmarks and the
raw trajectory estimation from wheel odometry. As a result, it produces an
optimized trajectory, both online and offline. The trajectory optimization can
also work without GPS information, however, the result cannot be considered
absolutely referenced. To assess the performance of the system in absence of
absolute information, we implemented an error function, which handles the
prior alignment of the computed trajectory with the ground truth and finally
computes the error.

The thesis structure is the following:

• Chapter 2 provides the literature review of systems performing local-
ization and mapping for autonomous robots and of landmarks identifi-
cation methods which can be applied to the agricultural field. It also
addresses the motivation of this work and the steps which are to be
made to progress in the agricultural SLAM field;

1



2 introduction

• Chapter 3 provides both theoretical and technical background for the
implementation of the methodology proposed by this thesis;

• Chapter 4 describes the dataset we used in our experiments, both for
the neural network training and for simulating real data in the SLAM
algorithm. It also includes the description of the software tools we used
to develop the algorithm;

• Chapter 5 gives an overview of the architecture of the system and
explains in detail all components;

• Chapter 6 reports the results obtained by the centroids identification
and the SLAM components;

• Chapter 7 concludes the thesis by summarizing the obtained results
and proposing some future works.



2
S TAT E O F T H E A RT

In this chapter, we describe the state of the art of Agricultural SLAM. We
start by considering the context of the thesis and then analyze some existing
projects in localization, mapping and SLAM. Most of them cannot be directly
applied to the agricultural framework due to the extremely different envi-
ronment characteristics, but they represent the starting point for the method
proposed in the next chapters.

2.1 motivation

Robotics is currently being object of great interest. An example of the world-
wide attention to this area is the METRICS [5] project. METRICS was designed
to organize robotics competitions in four domains: Healthcare, Inspection
and Maintenance, Agri-Food, Agile Production, with the goal of competitions
being reproducible and having an objective evaluation. The aim of this project
is to structure the European robotics research around the four areas and to
draw the attention of economics on robotics. It introduces a methodology to
evaluate results in the four fields. Reliability is assessed through an evaluation
framework based on measurable quantitative metrics. Competitions have
both a physical field evaluation and a virtual assessment on datasets.

In particular, the current work finds its place in the context of the ACRE
(Agri-Food Competition for Robot Evaluation) [6] competition, where au-
tonomous robots perform various agricultural jobs, such as removing weeds.
The purpose is to enhance precision agriculture and bring it to Agriculture
4.0, by improving efficiency and sustainability. In addition to performing
repetitive and laborious tasks 24/7, robots allow farmers to reduce waste in
resources, such as water and fertilizers. ACRE is a benchmarking competition
for both researchers and companies, testing the evaluation in the real-world
and documenting the processes to obtain repeatable results.

3



4 state of the art

Figure 2.1: Subjects investigated in the study of the state of the art. On the left:
Localization and Mapping can be performed independently or concurrently, thus
building a SLAM system. On the right: In order to create a representation of the
unknown agricultural environment, we exploit natural landmarks. These can be
either crop rows or single crops, which are well represented by their stem emerging
point.

2.2 literature review

In this section, we analyze the state of the art in localization, mapping, and
SLAM (Simultaneous Localization and Mapping) for mobile robots in the
outdoor environment (see Figure 2.1-left). We focus on agriculture oriented
works, but also include some papers that explore features that may be consid-
ered of interest for the agricultural domain. The related works considered are
classified in three categories that may possibly overlap (Localization, Map-
ping, SLAM), hence our classification takes into account what we consider to
be the main focus of the paper and how it could be applied to our use case,
even if more features are implemented.

Moreover, we analyze the state of the art for landmarks detection in the agri-
cultural field. The almost complete lack of reference points in the agricultural
scenario makes the localization and mapping tasks extremely challenging.
Reference points are important because they act as landmarks in the pose
optimization problem, raising the accuracy of the estimation. To satisfy the
need for reference points, natural landmarks, which can be either the entire
crop rows or the individual crops (see Figure 2.1-right), can be identified in
the field. The decision on whether considering the entire row or the single
plant depends on the application. On the one hand, crop rows are used when
guidance lines for navigation systems are necessary. On the other hand, sin-
gle crop plants are useful in field mapping, plant phenotyping, or herbicide
spraying tasks, where crops must be separated from weeds. A key aspect of
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landmarks detection is the visual variance over time. Since both crop plants
and crop rows are usually tracked by vision sensors, their visual aspect is
the main feature to recognize them. In principle, both methods are extremely
time-varying due to the nature of the features, as crops grow over time.
However, we note that with some derivations, one method can be considered
much more reliable. Crop rows can indeed be easily tracked when the growth
stage is advanced, but it becomes difficult to distinguish the line from bare
soil when crops have just been sown, although prior knowledge about spa-
tial distribution of crop rows can be exploited. On the contrary, the second
approach relies on deriving the stem emerging points (SEP) of the crops in
order to identify every single plant, yelding remarkably time-invariant results.
The choice of landmarks and application type influence where the camera
is placed: if it looks downwards, individual crops are more easily identified,
while if it is in front of the robot, it naturally captures the geometric pattern
of the rows.

2.2.1 Localization

We distinguish two types of approaches for the localization of mobile robots,
based on the type of sensors used. The first relies on absolute information,
such as GPS readings. The second is the vision based localization method,
which takes advantage of relative information with respect to some reference
points. Two different problems arise in these approaches: absolute information
provided by GPS measurements is accurate enough only with the more
expensive RTK-GPS system, while calculations for relative methods always
depend on the previous measurement and the first reference accuracy, and
thus are subject to possible drift accumulation. Therefore, a trade-off is
necessary to balance the advantages and disadvantages of both methods. On
the one hand, global position measurements alone do not allow obstacles to be
taken into account, whereas visual information naturally includes knowledge
for obstacle avoidance. On the other hand, when visual similarities would
lead vision based methods to incorrectly close the loop (roughly, matching
a new position with a previously identified one), only absolute information
can disambiguate it, even if provided by a consumer-grade GPS, which might
be slightly inaccurate but still unambiguous. In this section, we only mention
the works relevant to this thesis and provide information on what kind of
sensors they use and how they perform trajectory optimization.

The method proposed in [16] described the 3D global pose estimation of a
mobile robot in an agricultural field as a pose graph optimization. In particu-
lar, the following measurements and estimations were used: GPS and Inertial
Measurement Units (IMU) measurements, wheel odometry, visual odometry,
point clouds registration. Some domain assumptions were also considered
as additional constraints: Ackermann motion model, elevation constraints
between adjacent nodes, digital elevation model. They were rearranged in the
form of a graph which was fed to the g2o [15] graph optimization framework,
which is examined in detail in the next chapter. This approach deserves
particular attention because it is one of the few to apply a sensor fusion of
both absolute and relative information in a localization algorithm.
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(a) Lane detection by local planner. (b) Trajectory estimation results.

Figure 2.2: Results from paper [32] which shows how the fusion between global
(GPS) and local (vision) information obtains a better result with respect to only
global information.

As described earlier, GPS localization methods are widely used, as they
provide a globally referenced and fairly accurate position estimation. An
example is the one in [26] which described the development of a localization
method used in order to elaborate a guidance system for an agricultural robot
based on GPS to follow curved paths. It used a Kalman gain for correcting
the current trajectory with respect to the guidance path. The authors of [27]
also used an RTK-GPS in order to precisely locate an agricultural robot and
correct the current path. The two just described methods provide interesting
examples of localization in the agricultural field, however, the goal of this
thesis is to investigate new positioning estimations methods to integrate or
substitute the GPS readings, especially focusing on the role of images to
correct the relative transformations among robot poses, but few cases are
available in the agricultural environment. Therefore, we include an analysis
of GPS localization systems used in different outdoor environments which
fuse GPS localization with visual measurements. The lack of examples in
the agricultural field is due to the particularly challenging environment for
visual odometry.

The method used in [31] is an example of using images to correct absolute
GPS readings, while using GPS to disambiguate wrong image frames associ-
ation in case of visual similarities. Visual odometry was implemented as a
bag-of-words image feature retrieval problem, searching for correspondences
among frames that lied within a given radius from the query image. Namely,
each image was GPS tagged in order to restrict the search to only meaningful
associations. Also the authors of [37] used stereo camera images to assist GPS
localization, by estimating the relative displacement between two 3D frames,
especially when the reliability of GPS was considered to be insufficient. Go-
ing back to applications in the agricultural domain, we consider the work
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Figure 2.3: Spectral segmentation of reconstructed crop model, side and top views
respectively, from [38].

presented in [32] as an important contribution. It implemented a navigation
system working on two levels, first developing a global plan based on a static
map which used GPS positioning to reach the goal. Then, while navigating,
it used a local planner based on vision in order to modify the global plan
if obstacles were encountered. The local planner used images in order to
detect crop lanes (Figure 2.2a) and fuse direction estimation in the motion
commands computation. Results are shown in Figure 2.2b.

Finally, it is interesting to mention the work proposed in [44], where the
authors presented a localization method based on both point and line features.
They only used a wheel odometry prediction step for EKF (Estended Kalman
Filter) and a laser range finder update step. The update step exploited both
point and line features. In particular, line features were the tree rows detected
in the environment, which acted as natural landmarks. However, the method
requires an a priori map of the features position, which reduces the generality
of the application.

2.2.2 Mapping

In the literature, we can find two representative examples that are specific
for the agricultural sector and therefore relevant to this thesis. As we said,
methods cannot be sharply classified in one category, but we consider the
main purpose of the next presented papers to be the mapping of individual
crops, while performing GPS localization mainly to position the plants in the
map. The purposes of mapping individual crops in agriculture are multiple:
developing a navigation plan without harming plants, using natural land-
marks for robot localization, or developing phenotyping applications. The
method described in [34] used a 3D LIDAR sensor to reconstruct point clouds
of the environment. The method consisted first in detecting the ground to
segment the point cloud into soil and other objects, which were then clustered
into plants using a prior model of the crop row. Thanks to the fusion of an
RTK-GPS, an odometer and an inertial measurement unit, an accuracy of
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2 cm was achieved in locating plants. Plants were stored in a global map,
after being transformed from robot coordinate frame. The second example of
agricultural mapping is described in [38], where the authors used a stereo
camera to reconstruct point clouds, instead of a LIDAR sensor. By using
a fixed-plant-moving-camera approach, multiple-view stereo images of the
plants were collected. Visual local features on plants surface were detected
and matched across frames, then they were used to predict the camera pose
and the plant’s 3D position using projective geometry. Figure 2.3 shows the
reconstructed and segmented crop that was later used for phenotyping.

2.2.3 SLAM

There is an extended literature on Simultaneous Localization And Mapping
(SLAM), however, application to agriculture is difficult because of the lack
of reference points and the uneven ground highly affecting the odometry
estimation. Most of them rely on GPS measurements to have accurate position
estimates. Here, we analyze both agricultural and non-agricultural SLAM
systems, as some methods suggest features that could be applied to our work.
SLAM consists in estimating the robot poses while concurrently building
a representation of the unknown environment around. In the following
paragraphs, we start with outdoor SLAM systems, mention some indoor
methods, and conclude with agricultural-specific ones.

The method in [39] proposed a SLAM system for estimating robot poses
as a set of position and attitude, while building a 3D map of the outdoor
environment. For mapping, 3D laser range scans, aligned with the ICP
(Iterative Closest Point) algorithm and optimized by loop closures were
used, whereas odometry estimations were used for robot poses estimation.
The system in [36] localized the mobile robot outdoor by sensors fusion
between GPS and stereo vision, while creating a sparse map of landmarks.
The authors proposed a hierarchical SLAM method, where local submaps
(called fingerprints) were created for each reference point. A fingerprint was
associated to a mobile robot pose, which defined the local reference frame,
and stored visual information for loop closure detection. Local submaps
were based on vehicle dead reckoning estimations and were optimized by an
Extended Kalman Filter SLAM module. Constraints among fingerprints were
eventually considered in the higher level SLAM.

In [41] the authors proposed a multi-robot 3D SLAM, where each robot
created its local map that eventually contributed to build the global map.
Single robots performed ORB-SLAM [65] with RGB-D images from a Kinect
sensor. A local pose graph was built and co-visible portions were optimized
by the g2o framework, constraining relative transformation among different
robots. At the end, the local maps were fused into a single one. In [48] local
and global information fusion was performed, which again used a stereo
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vision sensor to compute a visual odometry estimation in outdoor terrain,
later integrated with an inertial measurement unit and a GPS for global
consistency.

In [40] authors proposed the employment of PCA (Principal Component
Analysis) to speed up the feature extraction from RGB-D images. Even if the
method is not directly applicable to agriculture because it was proposed for
indoor environment, it represents a good inspiration to take from. Extracted
features were employed in a bag-of-words algorithm and loop closure was
eventually much faster. The SLAM problem was constructed following the
RGB-D graph based RTAB-Map (Real-Time Appearance-Based Mapping [69])
approach and optimized using the g2o framework. Visualization data were
stored inside the graph nodes. The method in [45] used a Kinect sensor with
the ICP algorithm for point cloud alignment and scene reconstruction in
indoor environments. Camera poses were predicted by a dense 3D mapping
system and compared to those of the ICP method. A g2o framework was used
to optimize position and attitude of the robot. Finally, we mention one last
indoor SLAM system, [46], which performed graph optimization employing
the g2o framework. It collected RGB-D data to create point clouds to be fed to
a FOVIS visual odometry [47] to estimate robot poses. Loop closure, through
comparison of ORB features, was eventually needed in order to eliminate the
accumulated drift from the estimation.

As for agricultural SLAM, a valuable contribution is [49], which described
a method for localization and mapping using a 3D LIDAR and an inertial
measurement unit. Points in the reconstructed point cloud were preprocessed
to separate ground and non-ground points. Non-ground points were clus-
tered, with each cluster representing an object. Pose estimation and loop
closure were applied by matching features extracted from LIDAR scans. As
an alternative to LIDAR scans, [52] used visual information, by linking a
monocular visual SLAM system and a real-time Multi View Stereo (MVS)
reconstruction algorithm [67] to build a dense point cloud. Multi-view stereo
reconstruction is a process obtaining a 3D representation of objects and scenes
models from multiple photographs, in the form of a point cloud or a polygo-
nal mesh, starting from a set of uncalibrated images. For images, depth was
predicted in order to simulate an RGB-D sensor. Feature-based visual SLAM
was carried out by OpenVSLAM [66]. Additionally, GPS was used for global
estimation alignment.

Another example of agricultural SLAM is [56], describing an autonomous
navigation system in an agricultural field which simultaneously builds a map
of the environment. The localization process used the odometry estimation
and the fusion of the measurements from an inertial measurement unit
(IMU), a stero camera, a laser scanner and a GPS. Laser scans were converted
into odometry estimation by Hector-SLAM [68], while a visual odometry
extracted information from a stereo camera images. An Extended Kalman
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(a) Data association results between the
same rows at 10 days time difference, in
Dong et al.

(b) Initialization of line feature by
matching two frames, in Zhang et al.

Figure 2.4: Results from different SLAM approaches.

Filter fused all odometry estimations with the IMU, then RTAB-Map used the
global odometry information to build a representation of the environment.
Optimization of the odometry was carried out only when loop closures
occurred.

Finally, [58] is a SLAM system which took care of reconstructing the agri-
cultural field in 4 dimensions. The fourth considered dimension was time,
since crop different growth stages implied extremely different visual ap-
pearance. The method used visual landmarks for the environment mapping,
represented as SIFT [70] features extracted from images. It performed SLAM
along each single crop row to estimate robot poses and reconstruct the field
structure, by fusing visual information, GPS and IMU. A robust data associa-
tion was implemented for frame matching at different view points and time
instants, as in Figure 2.4a.

Now, we present two works using line features in SLAM system, even if
they are not directly applied to agricultural fields, since we are investigating
a possible way to use crop lines in agricultural environments as reference
points and hence parametrize them as line features. [51] used ORB-SLAM
for performing loop closures, local mapping and global bundle adjustment
on camera poses and visual landmarks. The method proposed a unified cost
function integrating the reprojection errors of both points and lines. It is
interesting to notice that lines had two different parametrization: in front-end
they were represented by Plücker coordinates, while in back-end the minimal
orthonormal representation was preferable. Also, the analytic derivation of
the Jacobian of the reprojection error was provided, in order to speed up the
computation.

Another method performing SLAM using line features is the one proposed
in [60]. Lines were favored over points since they were more informative
about the structure of the environment. Again, we notice that lines had
a double parametrization for front-end and back-end. An example of line
feature detection is shown in Figure 2.4b. It is worth to underline that since



14 state of the art

(a) Image divided in strips is then
used to cluster the boundary points
to detect the lines [54].

(b) Crop rows are detected as quadrangles be-
cause of perspective distortion [53].

Figure 2.5: Examples of crop rows detection.

lines were used as features in a visual SLAM and bundle adjustment system,
they need to be directly detected in the environment, thus in agricultural
environments the interpolation of single crop rows cannot account for a line
feature. However, we can process the re-constructed row and feed it to the
SLAM optimization in a different way that is more deeply examined in next
chapters.

2.2.4 Crop Rows as Landmarks

In the following, we present some methods handling the identification of crop
rows to help the mobile robot in the localization task, which are summarized
in Table 2.2. Crop rows can be tracked in two ways: by using the 3D structure
of the environment or with image based techniques. Crop rows detection
methods can be used only when the plants have grown enough to be visible.
The first step for most of the systems is image preprocessing or segmentation.
Image preprocessing is important in order to highlight the parts of the image
which most likely belong to a plant. By analyzing properties such as the
green index of each pixel, it is possible to produce a roughly segmented
binary image highlighting areas belonging to soil or vegetation.

The system proposed in [30] is a vision based guidance approach for
assisting navigation in agriculture by tracking the dominant parallel texture.
Assuming crops were planted in roughly straight lines on flat ground, images
were segmented into soil and vegetation, then lines were fitted to the binary
images. Finally, both camera pose and row pattern were estimated. Camera
poses were estimated by means of a Kalman Filter that processed IMU
measurements and the visual horizon tracking. While the row heading angle
and offset were estimated using a crop template. The authors of [54] described
a multi-crop-rows detection method based on strip analysis, which worked
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without prior information on world coordinate conversion nor intra-row
spacing. The following steps were applied. First, the image was binarized,
by setting a threshold on the 2G-R-B color space. Then, it was divided into
horizontal strips (Figure 2.5a), the boundary points were clustered and the
middle points were chosen to represent the row by least square regression.
The same binarization method was also used by the vision based navigation
system proposed by the authors of [53]. Based on crop rows detection, it
included the image binarization and the usage of boundary boxes to identify
the rows. Boundary boxes appeared as quadrangles because of the perspective
distortion, Figure 2.5b.

Compared to most crop rows detection methods which rely on the prior
knowledge of the field parameters such as the row spacing and heading,
the Pattern Hough Transform, presented by the authors of [61], is even
more valuable, since it did not need prior information to estimate crop rows
pattern. It worked either with laser or RGB data and estimated all parameters,
including angle, lateral offset and crop rows spacing, at the same time. The
system applied Hough Transform on top of the semantic segmentation of the
images of the field, in order to identify the lines corresponding to crop rows.
It adapted the Hough Transform for line detection to recognize the entire
pattern of parallel equidistant lines. The resulting crop rows pattern was a
feature map representing the vegetation probability, defined in 3D local robot
coordinates, to be used for robot localization.

The last crop rows detection method here presented is based on a genetic
algorithm to identify the guidance line for an agricultural robot [57]. By using
monocular vision system, it used images to randomly select possible solutions
(chromosomes) as two points belonging to image top and image bottom,
respectively, which would form a line when connected. The chromosome
with the highest fitting was selected as crop center line and hence used as
guidance line.

2.2.5 Single Crops as Landmarks

An alternative way to identify landmarks is to extract each single crop plant
and use it as a reference point for robot localization. In this section we focus
on crops and weed segmentation and features extrapolation to recognize
landmarks, as summarized in Table 2.2. The most efficient way to represent
and locate a single crop as a time-invariant feature is its Stem Emerging Point
(SEP). Indeed, crops are subject to comparatively fast growing and since
agricultural robots must be able to perform their tasks during all growing
stages, they cannot rely on time-varying reference points. Solution is to
employ crops SEP as time-invariant points into the localization process. The
authors of [62] described a SEPs identification method in the agricultural
field to be used as landmarks for localization. The goal is to avoid the usage
of GPS while dealing with visual variance of vegetation for achieving high
accuracy. SEPs were learned by a fully convolutional network taking as input
RGB+NIR images (Figure 2.6a). The network performed pose regression
generating a plant location likelihood map (Figure 2.6b), where the plants
centroid could be computed as the center of mass.
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(a) System architecture: RGB and NIR images are fed to a fully
convolutional neural network to produce a SEP pose likelihood
map, from which SEP positions are extracted.

(b) Examples of SEP
likelihood map for two
input images.

Figure 2.6: Plants to landmarks approach described in [62].

A similar approach was depicted by the authors of [29]. Plant Stem Emerg-
ing Points (PSEPs) in a sugar beets field were estimated to develop an
intra-row mechanical weed control. Precise location of crops was identified
by first detecting the leaves, then building the relative PSEP model and finally
predicting the true PSEP based on detected leaves. The image was segmented
by using the NDVI (Normal Difference Vegetation Index) computed from red
and near infrared channels. From the thresholded result, a binary image was
produced. Convex regions were identified as candidate leaves and connected
components were used to represent plants. Leaves intersection coincided
with local maxima (concave regions) in plant boundary, which therefore were
assumed to be the PSEP locations.

The authors of [33] developed an Extended Information Filter (EIF) SLAM
method for precision agriculture mapping. The main goal was to create
a map of the environment through olive stems detection by a range laser
sensor for distance information and a monocular vision system. On top of
the vision system, a support vector machine for image classification was
applied to identify stems. The distance and the angle measurements from
the olive stems were fed to the SLAM algorithm to estimate the position of
the mobile robot and build a map of the environment. The authors of [35]
used a sliding window classifier to predict whether each region in the image
contained a plant stem. Only multi-spectral images were used, with no prior
segmentation. First, data were acquired and background was removed by
NDVI thresholding, then sliding window feature were extracted. The image
classification was performed through a random forest classifier to produce a
plant stem probability map. Finally, the stem position was estimated, after
filtering the probability map with a Gaussian filter.

In order to complete the discussion on landmarks identification, we men-
tion some existing approaches on recognizing crops and weeds. Although
they do not include the complete identification of the stem emerging point,
we consider them to be a starting point for the SEP identification, which is
only a further computation on top of segmentation results. The authors of
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Figure 2.7: On the left: Crops images segmented by [42]: (a) RGB image, (b) NIR
image, (c) segmentation into vegetation and soil, (d) segmentation into crops, weeds
and soil . On the right: Vegetation indexes used as background knowledge fed as
additional channels to the convolutional neural network [64].

[42] proposed an accurate crop and weed identification, feeding RGB and
NIR images to two convolutional neural network (CNN) in cascade. The first
CNN produced a binary image which distinguished soil and vegetation (see
Figure 2.7-left). The second CNN produced a 3-classes image segmentation in
crops, weeds and soil (to prune the remaining soil pixels). Blob-wise voting
was then applied to the classified pixels in order to smooth the result. Classifi-
cation occurred in real-time. The authors of [43] proposed a crop recognition
system under weedy conditions through a 3D time-of-flight camera. From
the produced point cloud, 2D and 3D features were extracted and used to
identify the crop with almost complete shape in real time. The method in [64]
consisted in a real time semantic segmentation of crops and weed leveraging
background knowledge such as vegetation indexes computed on RGB im-
ages (see Figure 2.7-right). A convolutional network performed the semantic
segmentation using shared indexes for upooling layers in order to lower the
number of parameters, thus re-training could be performed with relatively
few data and in a short time.

Approaches not based on convolutional neural networks also exist. [59]
described a random forest classification system for separating weeds and
sugar beets based of features computed from RGB and NIR images. Later,
the output was smoothed through Markov random field to improve the
individual pixel classification. [55] developed a smart herbicide targeting
weeds after having separated them from crops. First, vegetation was identified
by setting a threshold on the image pixel values, and then, the identification
of weeds against crops was possible thanks to the assumption that weeds had
broader leaves compared to crops (specific domain assumption), so pattern
recognition could be applied. Last, we cite the method in [63] which presented
a fuzzy system evaluating landmarks based on measurement error, amount
of dynamic nature and the need of a landmark. The result was the extraction
of the landmark degree of uncertainty, which was used for identifying the
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best landmarks to be fed to a Kalman Filter in a localization and mapping
system.

2.3 gap analysis

Several systems on localization and mapping have already been studied and
implemented. The goal of this thesis is to focus on the particular solution
that the agricultural environment needs in order to address the specific
domain problems. Typical issues that mobile robots need to solve in order to
perform outdoor localization are: the identification of recognizable features
in the environment, and the potential loss of GPS signal. Indeed, in the most
successful systems, data from RTK (Real Time Kinematic) GPS is usually
treated as the most reliable and accurate position estimation. Nevertheless,
it is an expensive localization method, thus other GPS positioning methods,
such as PPP (Precise Point Positioning), tend to be more commonly used.

As regards the identification of reference points, the localization in agri-
cultural fields faces a challenging task. The visually uniform and almost
homogeneous environment, and the remarkably tiny dimension of crops in
early growing stages make the identification of landmarks very difficult. At
the same time, crop landmarks are time-varying even in a small period of
time, which makes the chance to re-use the identified landmarks difficult
without further processing. Another issue is that odometry estimation of
mobile robots is highly affected by noise due to the uneven ground. If the
measurement is not corrected by a more accurate estimation, the cumulative
drift grows and makes the estimated position unreliable.

For these reasons, there is need to find a new way to improve the mobile
robots position estimation. An alternative way to correct the odometry esti-
mation is needed, in order to substitute the expensive RTK GPS sensors. PPP
GPS can be used in its place, if used in conjunction with other localization
information. Domain assumptions can be inserted in the system in order to
enhance the estimation. For example, in our work we exploited the fact that
crops are sowed along approximately parallel lines, thus the trajectory of the
robot should be rectified by taking the crop rows as reference points.

Furthermore, plants as landmarks deserve a more in-depth investigation.
As the analysis of literature review has shown, the most successful method
consists in using the stem emerging point of each plant in order to uniquely
identify the landmark. However, the optimization of the localization and
mapping estimation requires the possibility of recognizing the same landmark
when observing it a second time. For this purpose, a visual object recognition
component would be needed in the system, that can recognize the same plant
when going back at it.



3
B A C K G R O U N D

3.1 theoretical background

In this section, we give same theoretical background for the thesis. First, we
describe the graph-based Simultaneous Localization and Mapping (SLAM)
as it is the general optimization framework used for the state of the art of
robot SLAM. Then we briefly describe the bundle adjustment technique,
which can be used to estimate the camera pose when vision sensors are used.
Therefore, when the camera is mounted on a robot the technique can be
employed to refine the localization estimated by the robot SLAM approach.
We also include theoretical background on the pinhole camera model in
order to explain how images were transformed into 3D measurements to be
integrated in the robot localization estimation. Finally, theory on projective
geometry is discussed, since we used it to describe points and lines in the 3D
space.

3.1.1 Graph-Based SLAM

Simultaneous Localization and Mapping (SLAM) [2] is a typical issue that
mobile robots face in order to operate in unknown environments. In the
SLAM framework, robots explore the surroundings without a known map,
while building a representation of the map and their relative position and
orientation (pose). Prior maps are seldom available, since the environment
might change over time, both indoor and outdoor. This is the reason why we
need to estimate the map concurrently with localization. One first solution to
the localization problem might be the employment of a GPS sensor. However,
consumer-grade GPS are rather imprecise. Therefore when centimeter accu-
racy is needed we have either to employ a sophisticated RTK GPS or to fuse
different sensors measurements in the SLAM framework.

There exist two SLAM approaches: filtering and smoothing. Filtering refers
to the online state estimation, where the state consists of the current robot
pose and the map, while smoothing includes the robot’s full trajectory and
relies on least square error optimization. Nowadays, graph-based formulation
of the SLAM problem is considered the state of the art. It was first formulated
by Lu and Milos [1] in the form of building a map by globally optimizing the
system to reduce the error given by constraints. It is now feasible and efficient
thanks to the advancements in sparse linear algebra which fit the structure
of the problem. Sensor measurements insert noise in the system, therefore

21
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SLAM problem formulations needs a probabilistic description. Hereafter, we
describe the typical SLAM problem formulation and its assumptions.

Solving the SLAM problem means estimating the robot trajectory and the
map of the environment as the robot moves, also said as learning a map under
pose uncertainty. We assume that the environment is unknown and that the
trajectory can be described by a series of random variables x1:T = {x1, ..., xT }.
The robot collects a series of odometry measurements u1:T = {u1, ...,uT } and
perceptions of the environment z1:T = {z1, ..., zT }. The full SLAM solution
is the posterior probability of the map m and the trajectory x1:T , given all
measurements and the initial position x0:

p (x1:T ,m|z1:T ,u1:T , x0) (3.1)

Poses and odometry are usually represented as transformations in the
SE(2) or SE(3) groups, the latter for 3D SLAM. Among the several ways
to represent a map, we used the landmark map, which is a collection of
landmarks position in the environment, measured with respect to the robot
poses.

In order to keep the formulation simple and accurate, we adopted the static
world assumption and the Markov assumption. The Markov assumption
states that if the robot location is known, future measurements are indepen-
dent of past ones (and vice versa). In other words, the robot location is the
only state in the environment, and knowing it is all what we need to know
about the past to predict future data. The static world assumption is needed
since the Markov assumption is valid only if the environment just contains
static objects beyond the robot.

In the graph-based formulation, nodes are robot poses and landmarks,
while edges are spatial constraints derived from observations and odometry
measurements. A constraint is a probability distribution over the relative
transformations between two poses. Transformations can be the odometry
measurements between consecutive poses or the alignment between the
observations at those poses.

Once the graph is built, we seek for the configuration that maximizes the
compliance to the constraints. Thus we can see the problem as divided in
two phases: graph construction and graph optimization. These tasks are
usually solved by front-end and back-end, respectively, but they need to be
interleaved in order to improve the intermediate results of one another. We
describe the back-end in the following paragraphs.

The graph building phase consists in assigning the measurements to the
edges and setting poses as the nodes. Edges are labeled with virtual measure-
ments which represent the probability distribution over the relative locations
of the two connected poses, built from the raw sensor measurement. To avoid
combinatorial explosion, only the most likely constraint from an observation
is selected. This task is known as data association.
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Figure 3.1: Example of measurement among robot poses represented by xi and xj.
The expected measurement is ẑij, while zij is the actual measurement and eij

(
xi, xj

)
is the error among them. Ωij is the information matrix of the constraint.

In the following analysis, we assume that observations are locally affected
by Gaussian noise and data association is known. The goal is to find the
configuration of the nodes that maximizes the likelihood of the observations,
hence to compute the Gaussian approximation mean of the posterior over
the robot trajectory.

Now, we describe the graph in more detail. It is composed by a set of
nodes: each node i representing the pose xi, as shown in Figure 3.1. For each
measurement we have the mean zij, the information matrix Ωij between
node i and node j, and the corresponding predicted measurement ẑij. Hence
the error is computed as the difference between actual measurement and
expected measurement:

eij
(
xi, xj

)
= zij − ẑij

(
xi, xj

)
, (3.2)

and the log-likelihood as:

lij ∝ eTij
(
xi, xj

)
Ωijeij

(
xi, xj

)
(3.3)

which is maximized when we minimize the negative log-likelihood of all
observations:

F (x) =
∑
〈i,j〉∈C

eTij
(
xi, xj

)
Ωijeij

(
xi, xj

)
(3.4)

and solve the following equation:

x∗ = arg min
x

F (x) . (3.5)

As it is described in [2] the solution to the SLAM problem is found with an
iterative error minimization approach via local linearization. Starting from an
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initial solution x̌ of the robot poses, we apply Gauss-Newton algorithm, or
its Levenberg-Marquardat variation. The error is linearized by its first order
Taylor expansion around x̌

eij
(
x̌i +∆xi, x̌j +∆xj

)
= eij (x̌ +∆x) ' eij (x̌) + Jij∆x, (3.6)

where Jij is the Jacobian of eij (x̌). Thus the error terms of F (x) in (3.4)
have a quadratic form, and we can rewrite the function as

F (x̌ +∆x) ' c+ 2bT∆x +∆xTH∆x, (3.7)

which can be solved as

H∆x∗ = −b. (3.8)

The matrix H is the information matrix of the system and it is sparse
by construction. The only non-zero blocks are the ones relative to the vari-
ables connected by some constraints. Therefore we can solve the system by
Cholesky factorization.

The linearized solution is

x∗ = x̌ +∆x∗. (3.9)

The Gauss-Newton algorithm iterates this linearization procedure and
uses the previous solution as initial guess for the next iteration. Levenberg-
Marquardat instead includes a damping factor to control the convergence of
the solution.

An additional consideration is that not only the matrix H is sparse, but
even the blocks Hij corresponding to the constraints are sparse. In fact, they
are computed starting from the Jacobian matrix Jij of each edge, which is
sparse itself, as the error only depends on the two involved nodes and its
derivative goes to zero for all other nodes.

3.1.2 Bundle Adjustment

Bundle Adjustment (BA) is defined as refining a visual reconstruction to
produce jointly optimal 3D structure and viewing parameters (camera pose
and/or calibration) estimates. Camera calibration is already given, so we refer
to BA only to reconstruct the position of the landmarks while optimizing the
robot poses at the same time. Bundle Adjustment is a nonlinear least squares
method and can be solved by means of the same tools that solve the SLAM
problem (g2o) and applying the same Gauss-Newton algorithm. Thus, we do
not enter in details.

To have a visual example, we provide the explanation of a bundle adjust-
ment example joined with a SLAM problem in Figure 3.2.
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Figure 3.2: Example of bundle adjustment represented as a graph. The camera poses
are the nodes in violet (xi, xj, xk), while landmarks are represented as green nodes
(xl, xm). The measurement zil, zjl, zjm, zkm are the projection to image plane of
the 3D lanmark points. The expected measurement is the corresponding pixel in
the image. The error is the difference between them. In classical bundle adjustment
the camera poses are not constrained among them, but since we are doing SLAM at
the same time, those edges correspond to the odometry constraints once the camera
pose is transformed to robot pose.

3.1.3 Camera Model

In this section, we describe the camera model of a pinhole camera, which
is the one we used in our work. The pinhole camera [4] projects 3D point
onto a 2D image plane trough a point n, which we call camera center. This
model is called central projection. The transformation from a 3D point to
pixel coordinates is described by the projection model which is encoded into
a 3x4 matrix. By multiplying the matrix by the homogeneous coordinates of
the 3D point we have the corresponding homogeneous coordinates of the 2D
point on the image plane. This transformation is called forward projection,
while the reverse is called backward projection.

The projection is applied in the camera centered coordinate frame, (see
Figure 3.3). It is described by three axes that intersect at the camera center,
the first two lying on the principal plane which is parallel to the image plane
and contains the camera center. The third one, which is called the principal
axis, is normal to the principal plane and goes through the camera center and
the principal point which is the projection of the camera center on the image
plane. The distance between the image plane and the principal plane is the
focal length, and the projection of the camera center on the image plane is
the principal point.

The projection matrix (3.10) stores the intrinsic parameters, which are
determined by the calibration procedure. These are the focal length f, the 2D
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Figure 3.3: The camera centered coordinate system from [4].

coordinates of the principal point ox, oy, the scale factors sx, sy, and some
pixel noise γ.

K =

f/sx γ ox 0

0 f/sy oy 0

0 0 1 0

 (3.10)

While the forward projection is a simple matrix multiplication, the back-
ward projection is a more elaborated process. Indeed, if we invert the pro-
jection matrix and we multiply it by the homogeneous coordinates of the
2D pixel point, we obtain a 3D point at infinity (we see more in next sec-
tion). The point at infinity represents the direction, along which the 3D point
corresponding to the pixel is located. The line represented by this direction
and going through the camera center is called viewing ray (Figure 3.4) and
its Plücker matrix (3.16) can be obtained easily in projective geometry. To
obtain the precise coordinates of the 3D point, the viewing ray needs to be
intersected with the ground plane. The procedure is needed because the
model has only one observation point, so triangulation cannot be used as in
stereo cameras.
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Figure 3.4: The viewing ray has direction d. N is the normal vector representing
the ground plane. We are looking for the point of intersection between r(t) and p ′,
where r(t) is the viewing ray starting from the camera center o and going through
the pixel point and p ′ is the ground plane where the 3D object lies. (Image from
[22])

The 3D point obtained by backward projection is in camera centered coor-
dinates system. The extrinsic matrix (3.11) encodes the change of coordinate
frames for points in world coordinates to camera coordinates. The vector t
can be interpreted as the position of the world origin in camera coordinates,
and the columns of R represent the directions of the world-axes in camera
coordinates. [

RT −RT t

0T 1

]
(3.11)

3.1.4 Projective Geometry

Homogeneous Coordinates in 3D

The homogeneous coordinates are a system of coordinates used in projective
geometry, as the Cartesian coordinates are used in Euclidean space. A point
(x, y) in Euclidean coordinates can be represented by a set of homogeneous
coordinates in the form (wx,wy,w), w ∈ R, w 6= 0. For example, given a
point ȳ in the Euclidean space, the homogeneous coordinates in canonical
form are

y ∼

(
ȳ

1

)
. (3.12)

This is actually an equivalence class. In fact, the homogeneous coordinates
can be multiplied by any non zero scalar, still representing the same point
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in Euclidean space. Points in projective geometry can be classified as finite
points or points at infinity. The advantage of using this kind of representation
is that even points at infinity can be represented by finite coordinates. A point
at infinity has its last element equal to ’0’. It is the representation of a tangent
vector, or equivalently of a direction, and thus a line.

To obtain the canonical form of an homogeneous point, we apply P-
Normalization. It consists in dividing all elements of the homogeneous
vector by the last element, in order to obtain a ’1’ in the last position. From
the P-normalized homogeneous coordinates, it is sufficient to cut the last
element in order to get the original Cartesian coordinates of the point.

The canonical dual homogeneous coordinates of a plane in projective
geometry are defined based on the plane characterization in E3, which is
defined by a point lying on the plane and the normal vector to that point. If
we call the normal vector p̂ and assume the distance of the point from the
origin is ∆, the dueal homogeneous coordinates of the planes are:

p ∼

(
p̂

−∆

)
(3.13)

If a point x belongs to a plane p, we can write x · p = xTp = 0.
To obtain the canonical form of the dual homogeneous coordinates of

a plane, we apply D-Normalization. Given a vector p ∈ R4, it consists in
making explicit the parameters representing the normal vector p̂ and the
distance ∆ from the origin. It is computed as:

normD


p1

p2

p3

p4

 =
−sign (p4)√
p21 + p

2
2 + p

2
3


p1

p2

p3

p4

 (3.14)

Plücker coordinates

A line in E3 is defined uniquely by two points in the space. In projective
geometry, we can allow one of the two points to be at infinity and in fact
represent the direction of the line. Therefore, we can write the parametric
representation of the 3D line as

x (s) ∼ x0 + st =

(
x̄0
1

)
+ s

(
t̂

0

)
=

(
x̄0 + st̂

1

)
. (3.15)

An alternative representation of a 3D line is given by the Plücker coor-
dinates. They represent the 2-dimensional subspace of R4 spanned by the
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homogeneous coordinates of all points that lie on the line [4]. First, we need
to obtain the Plücker matrix L, a 4x4 anti-symmetric matrix:

L ∼ x1xT2 − x2xT1 (3.16)

where x1 and x2 are the homogeneous coordinates of two points on the line.
The L-Normalization is:

normL (L) =
L

‖L1:3,4‖
=

[
A −t̂

t̂T 0

]
(3.17)

where ‖L1:3,4‖ is the norm of the first three elements in the fourth column
of L.

Another convenient representation of the line is the Dual Plücker Matrix L̃
which is obtained as:

L̃ ∼ p1pT
2 − p2pT

1 (3.18)

where p1 and p2 are two perpendicular planes.
In order to extract L̃ from L, or vice versa, we can exploit the relation given

by the following definition. Since L · L̃ = 0 and

L ∼


0 a b c

−a 0 d e

−b −d 0 f

−c −e −f 0

 (3.19)

we obtain:

L̃ ∼


0 f −e d

−f 0 c −b

e −c 0 a

−d b −a 0

 . (3.20)

The DL-Normalization is:

normDL

(
L̃
)
=

√
2

‖L̃1:3,1:3‖F

L̃ =

[
A −b

bT 0

]
(3.21)

where ‖L̃1:3,1:3‖ is the Frobenius norm of the upper left 3x3 block of L̃.
From the Plücker matrix we can finally obtain the Plücker line. By rewriting

L as

L ∼

[
[n]× v

−vT 0

]
(3.22)
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Figure 3.5: The Plücker line (n, v)T , from [23]. The line lies on the plane π with
normal vector n starting from point q on the line with distance d from the origin O. a
and b are two points on the line, from which we can define n = a× b and v = b − a.

with

[n]× =

 0 −nz ny

nz 0 −nx

−ny nx 0

 , (3.23)

the line can be represented as a 6-dimensional vector. Setting n = a× b
and v = b − a, with a and b two homogeneous points, the Plücker line is

L ∼

(
n

v

)
= (nx, ny, nz, vx, vy, vz)

T (3.24)

The Plücker line is a very useful representation because its geometric
definition can be immediately derived. n is a normal vector to the plane
containing the line and the origin, v is a direction vector of line, oriented
from a to b. Therefore, the property n ⊥ v.

Transformations in 3D

In the context of SLAM, we continuously deal with transformations between
the poses of the robot. A pose represents both the position in the space and
the orientation of the robot. Since the goal of this thesis is 3D localization and
mapping, we consider poses in 3D space. The pose is defined with respect
to the origin of a specific coordinates frame, with the position being the
translation from the origin and the orientation being the rotation with respect
to the three axes. The robot pose is usually defined with respect to the world
origin, which coincides with the first point of the trajectory. To represent the
pose in a compact way, we use a 4x4 matrix T containing both the rotation
and the translation components, which looks like this:
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T =

[
R t

0T 1

]
(3.25)

where R is a 3x3 matrix, t is a 3-dimensional column vector, and 0T is a
3-dimensional row vector.

Matrix T can be applied to change coordinates frame. Suppose that we
have a landmark x with position given by the 3D homogeneous point xrobot
in robot frame, observed by the robot pose T in world frame. In order to
transform xrobot to world frame (xworld), we just need to multiply the
point x by the pose of the robot. This means applying to the point the
rotation and translation of the robot. If the same point x is described by the
Cartesian coordinates x̄robot, with xrobot = (x̄Trobot, 1)

T , we can describe the
equivalent transformation in the Cartesian world as first rotating x̄robot by
R and then translate it by t. In Cartesian coordinates it would be:

x̄world = Rx̄robot + t, (3.26)

and in homogeneous coordinates it is:

xworld = Txrobot (3.27)

where xworld =
(
x̄Tworld 1

)T and xrobot =
(
x̄Trobot 1

)T .
Another very useful application is the computation of the difference be-

tween two robot poses. If we want to compute rotation and translation from
pose with transformation matrix T1 to pose with transformation matrix T2, it
is sufficient to compute T−1

1 T2 to obtain the odometry measurement between
the two poses.

Intersection of a Line with a Plane

Given the Plücker matrix of a line L and the dual homogeneous coordinates
of a plane p, in order to find the incidence point x0 (Figure 3.6) of the line on
the plane, we can write: L ∼ x0xT1 − x1xT0 by equation (3.16) and assuming x1
to be another point on the line L. Since x0 also lies on the plane, we have that
x0 · p = 0 by duality property of planes and points in 3D projective geometry.
Therefore we can write:

Lp ∼
(
x0xT1 − x1xT0

)
p = x0 (x1 · p) − x1 (x0 · p)︸ ︷︷ ︸

=0

= x0 (x1 · p) ∼ x0. (3.28)

In the case that also x1 lies on the plane, we have that the line lies on the
plane too, leading to the result:

The line L lies on the plane p⇔ Lp = 0. (3.29)
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Figure 3.6: x0 is the incidence point of the line L on plane p. (Image from [4])

Figure 3.7: dPL (x,L) is the distance between the line L and the point x. (Image from
[4])

Distance between a Point and a Line

Given a proper line L and a proper point x in E3, we want to compute the
distance from the point to the line (Figure 3.7). L̃ ∼ p1pT

2 − p2pT
1 is the dual

Plücker matrix of L by equation (3.18). Since we can select p1 as we like, we
choose it to be the plane where point x also lies. So we get:

L̃x =
(
p1pT

2 − p2pT
1

)
x = p1 (p2 · x) − p2 (p1 · x)︸ ︷︷ ︸

=0

= p1 (p2 · x) (3.30)
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Then we apply DL-Normalization on L̃ and P-normalize x and we have:

normDL

(
L̃
)

normP (x) = normD (p1) (normD (p2) · normP (x))︸ ︷︷ ︸
= d

= d ·normD (p1)

(3.31)
where d is the signed distance between point x and plane p2 which is
perpendicular to plane p1. Since p1 is D-normalized, the first three elements
have unit norm and the point-to-line distance is

|d| = ‖
(

normDL

(
L̃
)

normP (x)
)
1:3
‖ (3.32)

Parallel Lines

In order to force two 3D lines to be parallel we can exploit their Plücker
line representation. By (3.24) we have L1 =

(
nx1, ny1, nz1, vx1, vy1, vz1

)T
and L2 =

(
nx2, ny2, nz2, vx2, vy2, vz2

)T . Since vectors v1 and v2 represent
respectively the direction vectors of lines L1 and L2, we can use the the
property of parallel vectors to have cross product equal to zero and impose
the cross product of the two direction vectors to be zero. Therefore, we can
write the property:

L1 and L2 are parallel lines ⇔


vy1vz2 − vz1vy2 = 0

vz1vx2 − vx1vz2 = 0

vx1vy2 − vy1vx2 = 0

(3.33)

.

3.2 g2o

g2o [15], which stands for General Graph Optimization, is a general frame-
work for performing optimization of nonlinear least squares problems in the
form of a graph. It can be used for graph SLAM optimization back-end and
for Bundle Adjustment problems. It is particularly efficient for two reasons: it
leverages the sparse structure of the graph, and it uses advanced methods to
solve sparse linear systems. It is also general and extensible, as it stands out
for the easiness of building a graph or implementing custom nodes and edges
within the framework. Moreover, the number of already implemented nodes
and edges is substantial. In the case they suit the application, it is sufficient
to compute the initial estimate for nodes, and the measurement error for
edges. As it turns out, even defining new nodes and edges is very easy, but
we explain it after presenting the framework logic and implementation for
graph optimization.
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Graph optimization is a nonlinear least squares problem, which is usually
solved by linearizing the system around the current state, solving, and finally
iterating. Several problems in robotics and computer vision aim at finding
the minimum of an objective function which can be formulated as this:

F (x) =
∑
〈i,j〉∈C

eTij
(
xi, xj, zij

)
Ωijeij

(
xi, xj, zij

)︸ ︷︷ ︸
Fij

, (3.34)

with the following solution:

x∗ = arg min
x

F (x) . (3.35)

It can be noted that (3.34) is the same as (3.4) and that (3.35) equals (3.5).
This is because the g2o framework exactly addresses the solution of the
graph SLAM formulation. Here, x =

(
xT1 , ..., x

T
n

)
is a vector of parameters

representing the state of the system, zij and Ωij are the mean and the
information matrix of the constraint between xi and xj, and e

(
xi, xj, zij

)
is

the error vector of the constraint.
From now on, e

(
xi, xj, zij

)
is just called eij (x). As it was described for

graph SLAM in general, the error function can be approximated by its first
order Taylor expansion around the current solution x̌:

eij
(
x̌i +∆xi, x̌j +∆xj

)
' eij (x̌) + Jij∆x (3.36)

with Jij Jacobian of eij (x̂). Substituting (3.36) into (3.34), we have for each
error term Fij:

Fij ' eTijΩijeij︸ ︷︷ ︸
cij

+2 eTijΩijJij︸ ︷︷ ︸
bij

∆x+∆xT JTijΩijJij︸ ︷︷ ︸
Hij

∆x = cij+ 2bij∆x+∆xTHij∆x

(3.37)
and the quadratic objective function equal to

F (x̌ +∆x) =
∑
〈i,j〉∈C

Fij (x̌ +∆x) ' c+ 2bT∆x +∆xTH∆x. (3.38)

By computing
H∆x∗ = −b (3.39)

we obtain the closed form solution:

x∗ = x̌ +∆x∗. (3.40)

The Gauss-Newton algorithm iterates these three steps: linearization (3.37),
solution of quadratic system (3.39), and update step (3.40). At each iter-
ation, the previous solution x∗ is used as initial guess and linearization
point. The procedure iterates until a termination criterion is satisfied. The
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Levenberg-Marquardat algorithm [24] introduces a damping factor to control
convergence and the solution of the quadratic system assumes the form of:

(H + λI)∆x∗ = −b, (3.41)

where λ is a damping factor that reduces the step size, and it changes over
time.

Now, the structure of the linearized system is analyzed. Since the error
function of each constraint only depends on at most two variables (two
nodes for binary constraints, otherwise just one node for unary edges),
the Jacobian matrix is zero everywhere, except for two blocks, which we
call Aij and Bij. These two blocks are the derivatives of the error function
with respect to the increment of the two variables (∆xi, ∆xj). Therefore, the
matrix Hij = JTijΩijJij is zero everywhere except for four blocks, given by
the combination of Aij and Bij with the information matrix Ωij. Similar
considerations can be made for the vector bij = JTijΩijeij. The result is:

Hij =



0 0 0 · · · · · · · · · · · · 0

0
. . .

...

AT
ijΩijAij · · · AT

ijΩijBij

...
...

...
...

...
... BT

ijΩijAij · · · BT
ijΩijBij

...
...

. . . 0

0 · · · · · · · · · · · · 0 0 0


(3.42)

bij =



0
...

AT
ijΩijeij

...

BT
ijΩijeij

...

0


(3.43)

where all non-specified elements are zero.
It is interesting to note that for BA problems we can exploit an even more

particular structure. Since there are two types of poses, those of the camera
p and the landmarks l, the matrix H can be re-arranged, together with the
solution of the quadratic system, as:Hpp Hpl

HT
pl Hll


∆x∗p

∆x∗l

 =

−bp

−bl

 , (3.44)
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which is exactly the same as (3.39). This is equivalent to taking the Schur
complement of H to solve for the camera increment ∆x∗p:(

Hpp − HplH−1
ll HT

pl

)
∆x∗p = −bp + HplH−1

ll bl, (3.45)

and landmarks increment is computed by:

Hll∆x∗l = −bl − HT
pl∆x∗p. (3.46)

The Schur complement is a tool used for matrix decomposition in numerical

analysis, statistics and matrix analysis. Having a matrix M =

[
A B

C D

]
the

Schur complement of block D of the matrix M is M/D = A − BD−1C if
D is invertible, and the Schur complement of block A of the matrix M is
M/A = D−BA−1C if A is invertible.

This alternative method constitutes an important speed-up if the number
of landmarks is much higher than the number of poses and the assumption
of landmarks only connected to camera poses is satisfied. Otherwise, it is
more convenient to use the first method.

In order to better fit the problem at hand, g2o provides three different linear
solvers: two based on Cholesky decomposition (CHOLMOD and CSparse)
and an iterative method based on block-Jacobi preconditioner (PCG).

3.2.1 Robust Least Squares

Least squares optimization can be optionally robustified, in order to lower
the influence of outliers. The error function of each constraint has quadratic
influence on the objective function, thus outliers may have a very large
weight on the optimization. The solution is to substitute the quadratic error
function with a more robust error function which decreases the weight of
large errors. An example of robust cost function is the Huber kernel [25],
which is quadratic for small errors and linear for potential outliers, with a
customizable threshold. If we describe the standard quadratic cost function
single term as:

Fk = eTkΩkek = ρ2

(√
eTkΩkek

)
with ρ2 (x) := x2, (3.47)

then, the Huber kernel has the following form:

ρH (x) :=

x2 if|x| < b

2b|x|− b2 otherwise,
(3.48)

with the advantage to remain convex anyway. During the implementation,
each constraint can be optionally robustified by enabling robust least squares
and selecting the kernel for the corresponding edge.
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3.2.2 Implementing Custom Nodes and Edges

g2o has a large set of already implemented vertices and edges, but if the
problem to solve has specific demands, custom nodes and edges can be
implemented. Nodes are called vertices, and in order to implement a new
vertex type, one should extend the basic template of BaseVertex and specify
the size and type of the estimate. For example, the 3D SLAM VertexSE3
declaration is

class G2O_TYPES_SLAM3D_API VertexSE3 : public BaseVertex <6,
Isometry3>,

which means that it inherits the basic properties and functions of BaseVertex
and its estimate has 6 dimensions corresponding to the 3D translation vector
and the rotation in the form of the first three elements of a normalized
quaternion. The dimension parameter actually refers to the dimension of the
vertex in the manifold, but it could be parametrized in a more convenient way
while dealing with front-end. Then, the custom edge class must overwrite
the following basic functions:

• virtual bool read(std::istream& is);

• virtual bool write(std::ostream& os) const;

• virtual void oplusImpl(const number_t* update);

• virtual void setToOriginImpl();

read/write functions are needed in order to store and read the vertex id and
estimate to an output file, in case that intermediate results want to be saved.
The oplusImpl function is to apply the increment to the current estimate at
each optimization iteration. The setToOriginImpl resets the estimate to its
initialization value.

As for what concerns new edges, they must extend one of the following
templates: BaseUnaryEdge, BaseBinaryEdge, BaseMultiEdge, depending
on how many vertices they connect. For example, the basic type EdgeSE3
which connects two VertexSE3 is declared as:

class G2O_TYPES_SLAM3D_API EdgeSE3 : public BaseBinaryEdge <6,
Isometry3, VertexSE3, VertexSE3>

and it means that the measurement variable is stored as an isometry value,
that is a 6-dimensional transformation, to be decomposed in a 3D translation
vector and a 3x3 rotation matrix. The functions to be implemented are:

• virtual bool read(std::istream& is);

• virtual bool write(std::ostream& os) const;
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• virtual void computeError();

• virtual void linearizeOplus();

read/write store and retrieve edge data from a file. Edge data include the
parameters (for example, camera calibration parameters), the identification
numbers of the connected vertices, the measurement, and the triangular
upper part of the information matrix. computeError is needed in order to
define the computation of the error with respect to the measurement and the
updated vertices at each iteration of the optimization. linearizeOplus defines
the Jacobian matrices for the linearization of the error with respect to the
connected vertices, and it is not a mandatory function. If it is not implemented,
the Jacobians are numerically computed, however it is strongly advised to
analytically compute them in order to speed up the optimization.

Once a new edge or vertex has been created, the name must be registered
to g2o with the G2O_REGISTER_TYPE macro. This additional step provides
an identification tag for the type of element when writing or reading the
graph elements from the g2o file. Finally, also custom parameters can be
defined, in order to provide additional information to the edges to whom
they are attached. Parameters must be registered to g2o as well.

3.3 image segmentation with neural networks

As we faced the problem of identifying natural landmarks such as crops from
pictures, it is essential to introduce the image segmentation problem. Image
Segmentation is a deep learning problem that can be solved with neural
networks. It essentially consists in classifying each single pixel of the input
image with a label, so the output is the image itself with a label per pixel.
Hereafter we consider the words ’label’ and ’class’ as synonyms. Most of the
methods actually assign a probability to the pixel to belong to each class, then
a decision is made based on frequency of each class and other influencing
factors depending on the application.

Many neural network models exist already implemented and can be used
as they are or adjusted to the specific context. For example, a popular model
for image segmentation is the U-Net [82] architecture. It was first developed
for biomedical applications, but can be easily modified to apply to different
fields. It is divided into two main components: an encoder and a decoder.
The encoder is also said the contracting path and the decoder the expansive
path. The contracting path is composed by basic blocks of two convolution
layers, an activation function and a max pooling layer. Convolution layers
consist in the application of a 3x3 filter (in this case, but it can also have
different size) on the input volume performing some operation that applies
a local perturbation depending on the value of surrounding pixels. We use
the word volume to refer to any intermediate result between any couple
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Figure 3.8: U-Net architecture, from [82]. It is composed by an encoder and a
decoder part, and performs concatenation of layers on contracting path with layers
on expanding path for higher resolution maps.

of layers. It is actually defined by three dimensions which depend on the
parameters of the layer that produced it. Going on with the analysis, we
have activation functions, being mathematical equations that determine if
the neuron is activated. U-Net uses ReLu which is considered one of the
most efficient activation functions when the vanishing problem would arise,
otherwise making training ineffective. Max pooling is actually the one causing
the contraction since 2x2 max pooling with stride 2 layers halve the height
and width of the input volumes. The increasing depth, instead, is due to the
increasing number of convolution filters at each layer and is also referenced
as the number of features or channels in the network.

The expansive path is composed by basic blocks of an upsamplig layer,
a concatenation with the feature maps from the decoder part, a couple of
convolutional layers and an activation function. Convolutional layers and
activation function are the same as described above. However, the upsam-
pling layer is an ’up-convolution’, that is a transposed convolution that halves
the number of feature channels and increments the size of the feature vol-
ume. Concatenation of the output volume with layers from contracting path
produces higher resolution feature maps. Layer by layer we get back to the
original size and finally apply a 1x1 convolution producing the classification
result for each pixel. The final layer and especially the choice of the activation
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function are strongly correlated to the application requirements, such as the
number of output classes.

Being a neural network, U-Net needs to be trained to learn the specific
problem it faces. Once it has been trained, the weights, which represent the
parameters to be learnt by the network, can be stored and re-used. When a
trained model is loaded, it can be directly applied to the problem by feeding
the images to the network.

3.4 dbscan

DBSCAN [76] is a clustering algorithm based on the identification of high
density areas, separated by low density areas. It is particularly effective
because, unlike other clustering algorithms, it does not assume a convex
shape for clusters. This is essential for our application, where clusters to be
identified correspond to crops which have leaves spreading from the center
of mass and are not convex at all.

The algorithm works by computing core samples which are the ones lying
in the areas with higher density. The core samples are connected to other
core samples and to edge samples which lie at the border of clusters. The
difference between core and edge samples is the number of connected samples.
The parameter ε customizing the algorithm is a measure of the desired
density minimum limit for two samples to be in the same cluster, thus the
maximum distance allowed. All samples not connected to other samples
are noise points. The possibility to identify noise points is the second key
feature that made us choose this algorithm, since it is applied on the result of
segmentation and can identify some misclassified points. This idea is clarified
during the software architecture explanation.

As we said, in order for a sample to be a core sample, it must have at
least min_samples neighbours, which are the connected samples within ε
distance. min_samples defines tolerance with respect to noise. The algorithm
is implemented in the scikit-learn [77] module for python, being an essential
tool to work with machine learning models.
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D ATA S E T A N D T O O L S

This chapter deals about the description of the robot and the sensors used
to collect the dataset we used in out work. The dataset [21] was collected
by the robot Bonirob, by Bosch, in a sugar beet field near Bonn in Germany
over a period of three months in spring 2016. It was recorded in the form
of ROS bags, with all sensors readings registered as ROS messages. Its
purpose is to collect a large quantity of data in order to enhance the study
of agricultural SLAM and validate it over available data. It also provides an
image segmentation ground truth classifying different plants and identifying
the centroids, or stem emerging points, of the crops observed in the field.
After the dataset description, we include the explanation of the Software tools
we used in the thesis.

4.1 bonirob

Bonirob is an agricultural robot which can be set up in order to complete
several tasks. Its chassis is 1.8 m x 1.3 m x 0.8 m, and it is mounted over four
wheels. The clear height of the chassis is 85 cm. The robot coordinate frame
is located at the base of the chassis, as it is shown in Figure 4.1.

4.1.1 Sensors

The robot can be equipped with different sensors. In particular, in the con-
sidered setup the sensors used are depicted in Figure 4.2. In the following
paragraphs, we describe the sensors which were used to collect the data we
used in our work:

JAI AD-130GE camera: A prism-based camera with four channels image:
RGB and near-infrared (NIR) channels, which can be appended together
as the optical path is the same. Image resolution is 1296 pixel x 966 pixel.
The camera is mounted at the bottom of the robot chassis, resulting to be
at the height of 85 cm, looking directly downwards. The field of view is
thus 24 cm x 31 cm. The main purpose of images collection is to exploit
visual information for the implementation of crop perception systems and
for phenotyping information extraction. In this study however, the images
are used to identify the 3D points to be used as landmarks in the SLAM
algorithm.

41
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Figure 4.1: Bonirob coordinate frame, called base link : x -axis in red, the y -axis in
green, and the z -axis in blue. (Image from [21])

Leica RTK GPS: A Real Time Kinematic GPS by Leica. It provides really
precise estimation of the robot position, also thanks to the base station with
known location it needs close to the operating area of the robot. The final
estimate, corrected by the base station, has an accuracy of few centimeters.
The signal is recorded at a frequency of 10 Hz, with respect to World Geodetic
System 1984 (WGS84). WGS84 is a Cartesian coordinate system where the
origin is the center of the Earth, z-axis goes through North Pole, x-axis is
choosen in order to have the Greenwich meridian on the xz plane, and
the y-axis is such that the right-hand rule is respected. This sensor has the
disadvantages to be extremely expensive and requiring a base station to be
installed in the field.

Ublox GPS: A consumer-grade Ublox EVK7-P GPS to estimate the robot
position. The estimation principle is Precise Point Positioning. It is recorded
at 4 Hz with respect to World Geodetic System 1984. Precise Point Positioning
(PPP) relies on a network of reference stations to compute precise estimates of
Global Navigation Satellite System satellites orbits and clock errors. However,
it requires a smaller number of reference stations globally distributed as
compared with differential approaches (for example, Real Time Kinematics,
RTK), and one set of precise orbit and clock data (computed by a processing
center) is valid everywhere. Thus, it is rather reliable, but much cheaper than
RTK sensors.
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Figure 4.2: Bonirob sensors, from [21].

4.1.2 Sensors Calibration

In order to make use of the sensors measurements, we must know the
relative transformations between the sensor position and the robot center:
the base_link. Indeed, while dealing with SLAM, the robot pose estimation
always refers to the center of the robot coordinate frame, the base_link, in
fact. Therefore, if we have the GPS measurement for example, from the
position of the GPS antenna, we must obtain the robot position. To extract
this information, we need to know the sensors calibration. Eventually, after
transforming all sensors measurements to the robot coordinate frame, we
will be able to fuse all of them in the pose estimation.

Sensors calibration parameters are of two types: extrinsic and intrinsic
parameters. Intrinsic parameters, in this context, are only characteristic of the
camera sensor. They refer to the projection between the image plane pixel
coordinates and the corresponding 3D point. Extrinsic parameters, instead,
describe the relative transformation between the position of the sensor and
the base_link. In particular, the transformation is from the robot coordinate
frame to the frame of each sensor, from which we can compute also the
inverse transformation.

4.2 dataset description

The dataset is divided into sequential ROS bags recorded during different
days and at different growing stages. Not all bags contain all sensor measure-
ments. In particular, in the first group of bags GPS is not included.
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(a) RGB image. (b) Segmentation ground
truth.

(c) Centroids ground truth.

Figure 4.3: Image segmentation ground truth provided in the Bonirob dataset.
(Image from [21])

In addition to ROS bags, the dataset contains manually labeled images
which can be used for image segmentation. They provide a ground truth for
segmenting the image in crops and weed against the background. Manual
labels provide the classification into sugar beets, which is the crops class, and
nine different species of weeds. Also, the same images were post-processed to
extract the center of mass of each identified plant. Results are stored in a black
and white image, where only the pixel corresponding to the SEP position
is coloured. As manual labeling is an extremely expensive task, it was done
only for some chunks of data, corresponding to few ROS bags. Figure 4.3
shows an example of the ground truth provided for an image in the dataset.
On the left (Figure 4.3a) we have the RGB image, in the center (Figure 4.3b)
we have the segmented image ground truth and on the right (Figure 4.3c)
we have the ground truth with identified centroids for the two crops in the
image. As a first implementation of the application, we directly employed
the centroids ground truth images, to have a measure of the effectiveness of
the algorithm when integrating natural landmarks in the optimization.

In the bag files, beyond the sensors measurements, odometry measurement
is recorded. It includes the estimation, according to the motion model, of
the position, orientation and linear and angular velocities of the robot. All
measurements messages are associated to a timestamp. In this way, we can
correctly order the measurements in the same bags. Bags are globally ordered
by the date and time they were recorded.

Since we are interested in fusing the GPS measurements and the plants
position into the SLAM estimation, we started from the bags that include
both GPS and JAI sensors measurements, together with SEP ground truth.
However, as soon as we implemented the centroids extraction component,
we were able to apply the developed algorithm to bags that did not provide
the segmentation ground truth.
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4.2.1 Images for Centroids Identification

Even if the main purpose of the application is to develop a SLAM algorithm,
we also implemented a component to identify SEPs from input images in
the dataset. This goal was achieved by applying a neural network for image
segmentation on the images and later process the results with a clustering
algorithm and a the computation of the center of mass for each identified
cluster. To train the neural network we have used the Kaggle [75] platform,
which provides the possibility to use a gpu to train neural networks. As
training dataset we have used the segmented images in the Bonirob dataset,
while we estimated the error on centroids computation by comparing the
obtained results with the labeled binary images with SEP positions.

4.3 ros

ROS (Robot Operating System) [7] is a middleware for robotics. Robotics
applications, indeed, often rely on a middleware layer to manage the com-
plexity of connecting software and hardware. On the one hand, they have to
interact both with high level libraries and other software packages. On the
other hand, they collect sensors data and connect with low level hardware.
The use of a middleware also enhances the portability and the reliability of
applications. ROS is distributed and potentially scaling, it reuses code and
works both with Python and C++. The main components of ROS architecture
will be be described hereafter.

The executable units of ROS are the nodes. They communicate with each
other and perform computations on resources they exchange. For each net-
work of nodes, a master must be created (roscore) which is in charge of
naming and registering other nodes. It manages the communication and
allows nodes to locate each others.

Communication occurs through a paradigm called publish/subscribe,
which is characteristic in middlewares. It implies a group of nodes pub-
lishing some data, while a group of subscribers receives those data. In this
way, sending and receiving the message is completely decoupled, and both
senders and subscribers do not need to know the identity of other entities.
The only information needed is the name of the channel on which data
are published. In ROS, messages are published on a channel which is called
’topic’. Each topic has a name and a message type. Multiple nodes can publish
on a topic and each topic can be read by multiple nodes.

Messages are the information exchanged on topics, which in turn must be
formatted according to the message type. Standard messages such as strings,
integers and headers are already implemented, and there exist the possibility
to define custom messages by composing standard types.



46 dataset and tools

Services can be developed that implement client/server paradigm, where
the client connects to the server in order to make use of a specific service,
such as the sharing of a resource or a given computation. They have a
service type, as with topics, however the call is synchronous, so the execution
waits for the response to be computed and sent back. Thus, service requests
are guaranteed to be attended, whereas messages are not guaranteed to
be received. A parameter server is a tool that stores parameters for node
execution. Nodes can access those parameters at runtime from a dictionary.

ROS bags are the containers to store data, such as ROS messages, services
and parameters. After being stored, they can be accessed by different nodes
at any time. The bag can read inside the code, or played by the command line.
In the second case, a ’publisher’ node is created to publish all messages in
the bag. Recording a sequence of messages in a bag can be useful for multiple
reasons. An example is to test algorithms with data, simulating messages to
be exchanged at the time of execution of the algorithm.

Software code is organized in ROS packages. They contain the source code
for nodes and services and eventually custom implemented messages. As
we said, the execution of ROS requires a master node. It can be manually
switched on by the command roscore, while manually executing all other
nodes, or a launch file managing the execution of all nodes together can be
created. A launch file includes all nodes to be created and registered, and
when executed it automatically creates the master node. It also allows nodes
to use parameters and specify options for the execution.

4.3.1 ROS Messages

In the following, we present the messages we used in this thesis.
The odometry measurement is represented by a nav_msgs/Odometry.msg

[10] message. It is composed by the following elements, some of which are
already existing messages per se, which are merged while keeping their
internal structure:

• std_msgs/Header header: a set of meta information about the time at
which the message was published and the frame (frame_id) in which
the pose message is computed.

• string child_frame_id: the name of the coordinates frame in which the
twist must be published.

• geometry_msgs/PoseWithCovariance pose: the set containing position,
orientation and covariance of the odometry measurement. Position is
in 3D vector form, orientation is in quaternion form, and covariance is a
36-dimensional vector of floating-point precision.
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• geometry_msgs/TwistWithCovariance twist: it includes the velocity and
the covariance of the robot. In particular, the velocity has two com-
ponents: angular and linear velocity, in the form of two 3-dimensional
vectors.

The GPS measurement in the ROS bag file is stored as a sensor_msgs/NavSatFix.msg
[9] message. It is composed by the following elements:

• uint8 COVARIANCE_TYPE_UNKNOWN=0

• uint8 COVARIANCE_TYPE_APPROXIMATED=1

• uint8 COVARIANCE_TYPE_DIAGONAL_KNOWN=2

• uint8 COVARIANCE_TYPE_KNOWN=3



Information
about the type
of covariance
measurement
provided with the
GPS estimation.

• std_msgs/Header header: the same as for the odometry message.

• sensor_msgs/NavSatStatus status: the information about the fix status
for the Global Navigation Satellite System, defining the type of signal
being used by the receiver to calculate its location. It indicates the
quality or reliability of the resulting location.

• float64 latitude

• float64 longitude

• float64 altitude

 The GPS coordinates in floating-point preci-
sion.

• float64[9] position_covariance: the array of covariance of the estimation,
to be reseized as a 3x3 matrix.

• uint8 position_covariance_type: the type of covariance of the estimation.

Image data is stored as a sensor_msgs/Image.msg [8] message. It is com-
posed by the following messages:

• std_msgs/Header header: the same as for the odometry message.

• uint32 height: the height of the image.

• uint32 width: the width of the image.

• string encoding: the channel meaning, ordering, size.

• uint8 is_bigendian: if the data is bigendian.

• uint32 step: the row length in bytes.

• uint8[ ] data: the data matrix of size step×rows.
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A GPS measurement can also be stored as a geographic_msgs/GeoPoint.msg
[11] message. It is more compact than the NavSatFix message and can be used
for transforming the measurement into UTM frame.

• float64 latitude

• float64 longitude

• float64 altitude

 The GPS coordinates in floating-point preci-
sion.

For the purpose of broadcasting plants centroids in online optimization
a custom message is used: localization_jai_gps/ImageMap.msg. It stores
computed centroids for each image.

• std_msgs/Header header: the same as for the odometry message.

• int64 image_number: the number of the image.

• sensor_msgs/Image image: the image message.

• float64 h0: first component of the homogeneous coordinates of the
centroid.

• float64 h1: second component of the homogeneous coordinates of the
centroid.

• float64 h2: third component of the homogeneous coordinates of the
centroid.

• float64 h3: fourth component of the homogeneous coordinates of the
centroid.

• int64 u: row pixel coordinate of centroid in the image.

• int64 v: column pixel coordinate of centroid in the image.

4.3.2 ApproximateTime Policy Filter

Simple implementations of the publish/subscribe ROS paradigm involve
a subscriber node using a callback which is activated for each incoming
message and allows to receive one message at once. However, one might
be interested in receiving more than one message at once. ROS provides
some synchronization policies for incoming messages which aggregate dif-
ferent message types based on the timestamp, up to 9 different messages.
The synchronization is implemented by a Synchronizer filter component
[13], which can apply two different synchronization policies: ExactTime and
ApproximateTime.

ApproximateTime policy matches messages by applying an adaptive algo-
rithm [14] where each message is used at most once. The algorithm works by
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minimizing the maximum difference in time in the same set, while matched
messages can have different timestamps. A callback using the Approximate-
Time policy filter is activated when all expected topics arrive.

4.3.3 Mapviz

Mapviz [79] is a ROS package which allows to visualize 2D navigation
data. A background image with relative high resolution can be set to be the
underlying map, taken from a local o remote repository. Data are accepted
by subscribing to topics with usual publish/subscribe mechanism. Topics
are defined by the user and can be of different types. In particular we
are interested in sensor_msgs/NavSatFix topics, which contain GPS and
odometry estimation messages from our application.

4.4 eigen umeyama function

In order to compare two trajectories independently of the roto-translation
error, we use the algorithm developed by Shinji Umeyama, described in [71].
The function ready-to-use is available in the Eigen library [72] for c++, taking
as input two sets of points and a parameter defining the scaling between
the two sets. As a result, it returns the homogeneous transformation matrix
between the two sets of points:

T =

[
cR t

0T 1

]
(4.1)

where c is the scaling factor.
The algorithm applies Singular Value Decomposition (SVD) to find the best

correspondence between a source set of points {si} and a destination set of
points {di} for i=1..N, by assuming that

di = Rsi + T + Vi (4.2)

where R is the 3x3 orthonormal rotation matrix of the transformation, T is
the 3D translation vector and Vi is a noise vector. We solve for the optimal
transformation [R̂, T̂] by minimizing the least squares error

Σ2 =

N∑
i=1

||di − R̂si − T̂||2 (4.3)

Therefore, if we imagine to have already found the optimal translation T̂,
the two point sets should eventually have the same centroid. If we write
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d̄ =
1

N

N∑
i=1

di dCi
= di − d̄

s̄ =
1

N

N∑
i=1

si sCi
= di − s̄

(4.4)

then we can rewrite eq. (4.3) as

Σ2 =

N∑
i=1

||dCi
− R̂sCi

||2

=

N∑
i=1

(
dTCi

dCi
+ sTCi

sCi
− 2dTCi

R̂sCi

) (4.5)

which we minimize by maximizing last term and hence maximizing
Trace(R̂H) where

H =

N∑
i=1

sCi
dTCi

(4.6)

Now we compute the SVD of H as H = UΛVT and get R̂ as

R̂ = VUT . (4.7)

In order to compute the optimal translation to align the two point sets, it is
sufficient to solve the following equation:

T̂ = d̄ − R̂s̄ (4.8)

if det(R̂) = +1 . Though, if we have planar point sets or large amount of
noise and therefore det(R̂) = −1, the transformation might be a reflection
rather then a rotation and a different formula applies. In this special case,
rotation is found by

R̂ = U

1 1

det
(
UVT

)
VT . (4.9)

4.5 tensorflow

Tensorflow [81] is an open source library for machine learning development.
In particular, we used the python library for the image segmentation compo-
nent of this work. It provides all the needed tools to represent input data, as



4.5 tensorflow 51

tensors, and to create and train the neural network architecture. Tensors are a
generalization of matrices and are represented as n-dimensional arrays.

Tensorflow also wraps the Keras library, a deep learning library. It is
Keras, indeed, that allows to handle most of the steps for generating and
training a neural network. The first object we are interested into is the
ImageDataGenerator. It allows to load an image dataset and to perform
pre-pocessing steps, such as separation into training and validation sets, and
some rescaling of the image for example. Tensorflow later transform this
object into an iterable Dataset object which can be directly fed to the neural
network.

The network architecture is defined as a Sequential Model, by adding
Keras layers on top of each others. Layers include convolutional, max-pooling,
up-sampling, concatenation and softmax layers, for example. Only few pa-
rameters must be defined, such as the number of filters or the activation
functions. The model is then fit with dataset and various options can be
defined such as early stopping, loss function, and checkpoint creation at each
epoch.

Model and trained weights can be saved and reloaded when needed. It is
particularly useful to avoid wasting training time. A trained model can also
be retrained starting from saved weights.

Training a neural network requires a lot of memory resources. However,
it can be parallelized, thanks to the intrinsic nature of input data, by using
a GPU. In this way, a lot of time can be saved. Trained models are saved
and used as they are, since we do not want to waste more resources for
re-training.
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S O F T WA R E A R C H I T E C T U R E

In this chapter we describe the algorithm we developed for addressing the
SLAM problem. First, we briefly mention the project from which we started,
then we provide a detailed description of each component of our system.

5.1 an effective multi-cue positioning system for agricul-
tural robotics

The current work started from an existing project developed by Università La
Sapienza performing Simultaneous Localization And Mapping, described in
[16]. We briefly describe their work as it is essential to understand how we
developed new features on top of it.

They addressed the problem of self-localization in an agricultural envi-
ronment by designing a 3D global pose estimation system for Unmanned
Ground Vehicles (UGV), whose specific target was to face the complexity
of a visually repetitive and homogeneous agricultural scene. They stated
that conventional landmark based systems are prone to failure, since no
globally distinguishable feature can be recognized. In order to gain accuracy
in estimation, the authors proposed a method integrating a large number
of sensor cues and introduced two domain constraints to better handle the
estimation along the z-axis: an altitude prior (Digital Elevation Model - DEM)
and a smoothness constraint among adjacent nodes. Domain constraints were
valid since the ground plane could be approximated by piece-wise smooth
surfaces and the robot traversed the field along the crop rows.

The 3D global pose estimation problem was solved by finding the con-
figuration of the nodes for which the likelihood of the actual measurement
was maximized. Since the noise was assumed to be Gaussian, the problem
was translated into an iterative least square approach. The pose optimization
problem was represented by a graph where nodes were random variables and
edges were constraints among them. First of all, the nodes were robot poses
estimated at discrete time. They were collected in a vector X = {x0, ..., xN},
where each pose xi = (Ti, Ri) is respectively composed by a 3-dimensional
translation vector and a 3-dimensional orientation vector. The pose x0 rep-
resented the global reference, and all other poses are defined relative to it.
Edges were associated to sensor measurements, which could be of two types:
relative motion measure zij between node xi and node xj, and global pose
measurement zi associated to node xi. The motion model was the Ackermann
motion model, extended to non-planar motion case. Each measurement had

53
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its information matrix, acting as confidence weight. In order to compute
the error in the estimation, the predicted measurement ẑij, or the predicted
global measurement ẑi, was computed and then compared with the actual
one. Leading to:

eij = zij − ẑij, ei = zi − ẑi. (5.1)

So, each edge was characterized by the error and the information matrix
of the corresponding constraint. Those constraints representing global pose
information were unary constraints, and the edge was a prior edge with
absolute information. Hereafter, the list of sensor measurements is proposed
without going into details:

1. Relative pose constraints: wheel odometry (wo), visual odometry (vo),
elevation constraints among adjacent nodes (Markov Random Field),
Ackermann motion model (AMM), LIDAR point-clouds local registra-
tion (LID);

2. Global pose constraints: GPS readings (GPS), Digital Elevation Model
(DEM), IMU readings (IMU).

It is worth to notice that there is a major difference between relative motion
constraints and global measurements. The former are affected by cumulative
drift, while the latter are noisy but drift-free, so they could be merged in the
estimation as prior information. This is the case of GPS and IMU readings,
and of DEM, which is a regularly spaced grid, and can be used as an altitude
prior.

The pose graph optimization worked by minimizing the sum of the single
objective function terms, which depended on the error of the constraints,
computed as in (5.1), with respect to the expected measurement ẑij. However,
it must be highlighted that not all constraints belonged to SE(3), as the poses
did, and thus they could not compute the expected measurement for the
whole state. In fact, most of the sensors could only observe a portion of the
state, such as either the translation or the rotation exclusively. In particular,
VO and LID could observe the full 6D motion, WO computed the planar
motion as a roto-translation, and MRF and DEM only concerned the z-axis
estimation. GPS measurements were converted into translation vectors, IMU
provided roll and pith angles, and AMM provided the roto-translation around
the instantaneous center of rotation and the rotation along the x and y-axes.
Each error was dynamically weighted in the optimization algorithm by the
information matrix. Specifically, the weight was computed as the inverse
of the covariance matrix, scaled by the travelled distance or an empirical
parameter.

An online sliding window approach was also implemented. It is a technique
consisting in optimizing at each step only a sub-graph including the most
recent nodes. Older nodes were maintained fixed, unless they were connected
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to the most recent ones and hence re-optimized. Even if it is defined an
online optimization, data were actually preprocessed all together prior to
the graph creation. This makes the approach unfeasible for robot real-time
optimization in the field, where data are available only as they are collected
and no global view is achievable, thus it is only suitable for simulation. The
global optimization was then performed offline. The algorithm used the
Levenberg-Marquardt version of Gauss-Newton least squares implemented
in g2o framework [15].

5.2 general view

In this chapter we deal about the software architecture. From an high level
point of view, the structure of the program can be divided into two main
components, as it is shown in Figure 5.1. The Landmarks Identification
component is the development of a model for crops SEP identification, to be
used as landmarks in the Localization and Mapping component. It includes
a neural network training step to set the convolutional neural net weights,
and the implementation of a ROS node performing image segmentation and
clustering on images, using the previously trained model.

The Localization and Mapping component has two use cases, depending
on the nature of the task we are facing. In general, robot localization and
mapping can be applied offline, after collecting all data in order to refine
the robot trajectory estimate and the environment map, or online for real-
time localization. The difference lies in the available quantity of data and
in the required processing time to have real-time results. Indeed, online
optimization has some peculiar characteristics. First, it uses data at the same
time they are collected, thus having a limited vision to the current instant of
time. Second, it requires a higher computational effort sinxe the optimization
time is limited by the real-time constraint.

In this thesis, offline and online optimization are treated as two use cases
of the same component. They have similar structure, although the modules
(Figure 5.2) perform slightly different tasks. As reported in the figure, mod-
ules include: a data extraction module simulating the real collection of data
from the field, a centroid extraction module identifying landmarks in input
images, a graph creation module creating the g2o graph, a graph optimization
module performing the optimization and finally an error computation and a
visualization module. Graph creation and graph optimization modules are
interleaved for both use cases, however this happens in a very different way
that is explained below. Moreover, the offline optimization can preprocess all
data before starting the algorithm.
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Figure 5.1: The architecture is divided into two main components: in yellow the
Landmarks Identification component and in green the 3D Localization and Mapping
component with two use cases.

Figure 5.2: Main modules of the Localization and Mapping component. Blue features
belong only to the offline optimization use case, while red features belong only to
the online optimization use case. Black features are common to both components.

5.3 landmarks identification

In the following section we describe the landmarks identification process,
which is implemented as the first independent component in Figure 5.1. It is a
machine learning process which requires a training phase and the actual clas-
sification and post-processing phase of centroids identification. The purpose
of this component is to extract the location of the center of mass of the crops
included in each input picture, which corresponds to the crops SEP location.
Crops SEP are later used as landmarks in the Localization and Mapping
component to improve the robot localization accuracy and produce a sparse
landmark map, which is the collection of individual feature points position
relative to the robot poses. As we can see from Figure 5.3, the component
is composed by a convolutional neural network, a clustering algorithm and
the actual centroid computation modules. Hereafter we describe the single
modules which compose the algorithm.
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Figure 5.3: Software architecture of Landmarks Identification component. It is
divided into three modules: a convolutional neural network, a clustering algorithm
and the centroid computation algorithm.

5.3.1 Convolutional Neural Network

The convolutional neural network is the core part of the Landmarks Identifi-
cation component. It was developed in Python using the Tensorflow package
and it started from the U-Net [82] basic structure, but we ended up with
an adjusted number of convolution filters per layer. This adjustment was
performed by leveraging the validation error with the number of epochs
needed for training. The results are explained in the next chapter. The final
architecture is the one depicted in Figure 5.4. In order to use the identified
pixel coordinates on the corresponding input image, it was essential to have
the output image of the same size of the starting one. To achieve higher reso-
lution in the output image, we developed an upsampling path concatenated
to higher resolution feature maps from the downsampling layers. In this way,
some lost information is recovered.

In order to leverage the background information of the specific domain
of the application, we enriched the input volume with additional channels.
The idea was to include the features described in [64] as background knowl-
edge for real-time semantic segmentation of crops and weed in precision
agriculture. In the mentioned paper, a table of useful features is reported,
corresponding to the first column of Table 5.1, while the second column
shows which of these features we included in our work.

We ended up with 9 input features, including the RGB channels. The
excluded features were left out based on the evaluation of their effectiveness
on the result of the image segmentation. Each input layer, indeed, adds a
complexity to the neural network, thus slowing the computation, so a trade-
off must be reached in order to include only useful features which may help
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Input feature List

IR yes

IG yes

IB yes

IExG yes

IExR yes

ICIVE yes

INDVI yes

IHUE (from HSV colorspace) no

ISAT (from HSV colorspace) no

IVAL (from HSV colorspace) no

∇xIExG (Sobel in x direction on IExG) yes

∇yIExG (Sobel in y direction on IExG) yes

∇2IExG (Laplacian on IExG) no

IEDGES (Canny Edge Detector on IExG) yes

Table 5.1: List of semantic features extracting background knowledge to improve
semantic segmentation of crops and weed in precision agriculture contexts. The first
column is from [64], and the second column specifies which of these features we
have included.
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the pixel classification. To give a general intuition, the first seven features give
information on the color of the pixel and in particular on the greenness level
with respect to the other colors, since these features are considered as an hint
of where vegetation might be found. The Sobel [84] indexes, instead, point
out the margins of the objects in the image, highlighting contours by means
of a 3x3 kernel convolution which approximates derivatives and computes
the horizontal and vertical changes respectively.

Assuming r, g, b are the RGB channels: r for red, g for green and b for blue,
we provide the formulas for the IExG, IExR, ICIVE and INDVI indices:

IExG = 2g− r− b

IExR = 1.4r− g

ICIVE = 0.881g− 0.441r− 0.385b− 18.78745

INDVI =
g− r

g+ r

(5.2)

Before submitting the input volume to the network, we resized the image
to 256x256 and aggregated multiple images with a batch size of 4.

We used a weighted crossentropy (Equation 5.5) loss function with much
higher weight given to crops and weed classes than to background class, in
order to partially solve the class imbalance problem. We chose weights by
trial and error, observing the results obtained by the neural network. The
assigned weights are:

w = [0.1, 5, 10] (5.3)

where classes are:

classes = [background,weed, crop] (5.4)

The resulting weighted crossentropy is 5.5, where yc is the true class label
and pc is the predicted class label for each sample. wc is the weight, used
as scaling factor to weight more the samples belonging to vegetation classes
with respect to the background.

L = −

M∑
c=1

yc ·wclog(pc) (5.5)

The output of the convolutional neural network is a three-layers volume
containing the probability for each pixel to belong to one of the three classes:
crops, weed, background. Without the class imbalance problem we would
have assigned to each pixel the class with the highest probability. However,
in this case we apply a method to give priority to the two vegetation classes.
In particular, all pixels with a crop probability higher than a given threshold
are assigned to the crop class with the highest priority, then, all those with
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Thresholds on class probabilities

background weed crop

threshold - 0.3 0.4

Table 5.2: Thresholds used to assign classes to each pixel. Results for each class are
probabilities, so they scale in [0, 1]. Classification is applied in order: weed identified
is first, crop can overwrite weed result, background is everything left.

weed probability higher than a second threshold are assigned to weed class.
All remaining pixels belong to the background class. Again, because of the
class imbalance issue, we chose thresholds (see Table 5.2) lower than 0.5. In
this way, we lowered the misclassification error.

Note that in the current application we only care of crops identification,
thus pixels assigned to weed class only have the meaning to partially lower
the noise of background imbalance. However, since many pixels with a high
probability to belong to the crop class, also have an high probability to belong
to the weed class, a priority must be defined in order to correctly assign the
classification to the crop class. It is crucial to highlight that our main goal
is not to perform image segmentation, but to identify crop centroids. So, if
the single crop is not perfectly segmented is not a problem, as long as the
centroid location still lies in the correct region.

In order to eliminate some noise before the next step of the algorithm, we
applied some smoothing on the resulting segmented images. After analyzing
the methods in [78], we found that the most appropriate method in this
case is the 2D Convolution (Image Filtering) which applies to the image a
smoothing filter of ’ones’ divided by the size of the filter, basically averaging
the result. The size of the filter decides how many neighbour pixels have
influence on each pixel. For our application, we found a size of 10x10 to be
good enough. After smoothing we thresholded the obtained values to refine
classes. In this way, we found class labels to be slightly more robust to noise.

5.3.2 Clustering

As we introduced in Chapter 3, we have used DBSCAN [76] as clustering
method to group pixels belonging to the same crop. The simple connected
component approach, which is commonly used in similar situations, could
not be enough because pixels belonging to the same crop plant were not
actually connected in most cases, since we applied only a rough segmentation
model on images. We considered that DBSCAN was best model to apply
because of the outliers rejection feature and the possibility to identify clusters
even if they have non-convex shape. Parameters were tuned by trial and error:

ε = 1, min_samples = 10 (5.6)
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where ε is the maximum distance for two samples to be in the same cluster
and min_samples is the minimum number of samples to form a cluster.

The training dataset we worked on includes crop plants from different
growth stages, as we wanted to make the algorithm as general as possible.
However, with different growth stages, some complexities arise. Indeed,
results show that with medium grown plants the algorithm works pretty
well, since clusters are big enough to be identified and they are not so big
to overlap. However, in early growth stages, the crop plants are so small
that clusters would be composed of an extremely low number of pixels and
the clustering algorithm would be able to identify the crop only by setting
a very small min_samples value. On the other hand, in late growth stages
crop plants overlap and leaves belonging to one plant might be clustered
with another one, or even worse two adjacent crop plants could be clustered
together.

In order to solve the clustering problem for all growth stages, we had to
make the following considerations. For the early growth stage, we tried to
lower min_samples (minimum cluster size), in order to let the algorithm
identify tiny crops. However, for later stages, this solution would not work
because, as plants grow, pictures include more weeds as well, and pixels
belonging to weed that were incorrectly classified in the crop class ended
up in independent clusters. In fact, weeds usually have a narrow shape, like
simple grass, and after segmentation and smoothing, only few points would
survive, and the clustering algorithm would ignore them if the min_samples
parameters was set high enough. However, with a smaller min_samples
value, points representing noise would be classified in some clusters. There-
fore, a trade-off was performed to allow the identification of tiny crop plants
without including weed.

For the late growth stage, we modified the algorithm by introducing a
max_samples empirical parameter, to separate multiple plants clustered
together. If, after performing a first iteration of DBSCAN, one of the resulting
clusters was larger than max_samples, a new iteration on that cluster alone
was performed, by lowering the minimum distance parameter ε to 0.5. This
max_samples threshold was set to 3000. The results, as it is shown in the
next chapter, did not perfectly cover all growth stages, but are particularly
suitable for the medium growth stage, which is the case for the dataset we
used for localization and mapping. However, by tuning the parameters, the
method could be generalized to different growth stages.

5.3.3 Centroids Computation

At this point, only one more step is needed: the crop centroid computation.
Having the cluster corresponding to the single crop, we computed its center
of mass and we translated it to the original image size by means of a simple
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proportion. Since we considered all pixels to have the same weight, the crop
SEP location was computed as:

cx =
1

M

M∑
i=0

xi

cy =
1

M

M∑
i=0

yi

, (5.7)

where (cx, cy) are the centroid pixel coordinates, M is the size of the cluster
and (xi, yi) are the coordinates of each pixel in the cluster.

Results are shown in the next chapter.

5.4 data preparation

We include in the data preparation section a couple of tasks that must be
handled before data can be used by the Localization and Mapping component.
They are needed in order to prepare the dataset to be used in the next
component.

5.4.1 Topics Filtering

As we have seen in Chapter 4, data are stored in ROS bags, characterized
by a long list of topics related to different sensors measurements. We are
not interested in the whole list of topics as we focused on the information
provided by the wheel odometry estimation, the two GPS estimations, and the
RGB images taken by the JAI camera. These data are respectively provided
by the following topics:

• /odometry/odometry: wheel odometry measurement used as initial
guess for trajectory estimation,

• /gps/leica/fix: used as ground truth for trajectory,

• /gps/ublox/fix: consumer-grade GPS used in the estimation process,

• /camera/jai/rgb/image: camera images from where plant centroids
are extracted.

Therefore, the first step of data preparation is to filter out the not interesting
topics.

5.4.2 Bags Merging

Data are subdivided into several ROS bags for a matter of portability. The
algorithm can be applied to any dataset size, therefore we merged sequential
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bags to increase the number of measurements at hand. This step is easily
done thanks to the pose graph library provided in [73] which is able to fuse
two ROS bags ordering the ROS messages based on their timestamp.

5.5 centroids extraction

The centroids extraction module is a python ROS node applying the seg-
mentation model and clustering algorithm to extract centroids location from
images. Thanks to the ROS publish/subscribe pattern, it subscribes to images
topic and publishes computed centroids. A 3D point is obtained by multiply-
ing the predicted pixel coordinates in homgeneous coordinates by the inverse
of the projection matrix. The result is a point at infinity representing the
direction along which the point lies. To identify the precise point in camera
frame, we need to use prior knowledge of the ground height with respect to
the camera center, which is given by the dataset description.

Before being included in the localization and mapping estimation, the 3D
point needs to be transformed to the robot frame. However we take care
of this transformation in next modules. Each published centroid consists
of a 3D homogeneous point in the form of a 4D column vector and the
corresponding pixel coordinates in the image, as a 2D vector. The returned
object also contains the sequence number of the associated image.

5.5.1 Offline SEPs Extraction

The module is used in two different ways for the two optimization use
cases. Offline optimization requires the availability of the whole dataset
when creating the graph. Indeed, all data are considered at once. For this
reason, we decided to compute centroids as a preprocessing step, prior to the
localization and mapping application launch. The node /rosbagPlayRawData
reads images from the ROS bag and publishes them to the /jai_rgb topic.
/segmentImages subscribes to the topic and after applying the segmentation
and clustering model, publishes the extracted centroids on the /jai_centroids
topic. Results are collected by the node /readImages in a file in order to be
directly employed in the graph creation. The ROS graph representing the
communication among nodes as produced by rqt_graph is shown in Figure
5.5.

5.5.2 Online SEPs Extraction

Online optimization, on the other hand, works with data as they are collected.
The node processes images and generates useful data for the optimization.
The resulting architecture is shown in Figure 5.6, where the /segmentIm-



5.6 data extraction 65

Figure 5.5: ROS nodes handling the centroids extraction. Nodes are represented as
circles, while topics are inserted inside rectangles connecting a pair of nodes.

Figure 5.6: ROS nodes involved in the online optimization. Topics are the two GPS
sensors measurements, the robot wheel odometry estimation and the RGB images
from JAI camera transformed in centroids.

ages node applies the segmentation and clustering model and publishes the
extracted centroids. The /dataExtraction node streams data from the ROS
bag in real-time mode, and the /onlineLocalization node is responsible for
collecting data in specific data structures to create and optimize the trajectory
and the map.

5.6 data extraction

The data extraction module is in charge of extracting data from the ROS
bags and applying some preprocessing information before they can be used
in the g2o framework. The difference between the two optimization use
cases lies in the number of measurements analyzed simultaneously. As we
mentioned earlier, offline optimization takes the entire dataset, so it reads
the entire ROS bags at once and applies the steps described below. Online
optimization instead works on one measurement at a time, thus being slightly
more imprecise.

In order to create the g2o graph, we need correspondence between pair
of sensor measurements. The correspondence is given by the timestamp at
which the measurement was collected. In the offline optimization case, we
employ a data structure called TSS graph, created in the data extraction
module. For online optimization we use synchronous ApproximateTime
policy filters to achieve a direct synchronization for data aggregation.
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5.6.1 TSS graph

Offline optimization uses an existing library [74] which creates a data struc-
ture where all sensor measurements are associated to a node identified by
the sequence number of a wheel odometry estimation. Each measurement
indeed is matched to the closest odometry estimation in time and is assumed
to be taken at the odometry timestamp. The produced structure is defined
temporal graph because of the focusing on measurement timestamps.

5.6.2 Transformation of GPS to Odometry

Before using data to estimate robot trajectory, a common reference must be
established. The raw localization estimation data are available in two different
formats. GPS signals are recorded in the form of a sensor_msgs/NavSatFix
message, and wheel odometry is in the form of a nav_msgs/Odometry mes-
sage. The first one is an absolute measurement with latitude and longitude
components, while the second one is relative to the first robot pose in the
dataset. We chose the absolute frame, since we wanted to visualize the results
in the real world at the end of the trajectory estimation.

In order to be used in the localization and mapping framework, GPS
measurements must be transformed to the odometry format. This is done by
transforming latitude and longitude coordinates into UTM frame, which is
compatible with the odometry measurement. Then we can transform all data
to the absolute frame. The first GPS position was set as a global reference
point to compute the frame transformation for all data. However, in order to
make computations easier, after computing change of frame and saving the
reference point, we go back to a relative coordinates frame with respect to
the first GPS position.

The work flow is as follows:

1. the GPS is transformed into UTM frame, so coordinates can be used on
the x, y and z axes,

2. the wheel odometry is transformed to UTM frame,

3. the UTM frame wheel odometry and GPS are transformed to GPS
relative frame

The transformation to GPS relative frame was carried out to have lower
scale coordinates, which are more comfortable for numerical stability in
trajectory estimation. Resulting data are in odometry format, in a relative
frame and ready to be digested by the graph creation module.
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Figure 5.7: Data structure collecting sensor measurements in different arrays. Cen-
troid array contains lists of centroids (ci,j) aggregated for the same image number
i which is also the wheel odometry sequence number. woi corresponds to actual
wheel odometry measurement with sequence number i = seqN which is represented
as an element in the array with sequence number bigger than zero. All sensor mea-
surements are paired to a wheel odometry measurement based on the timestamp.
If we want to retrieve all measurements corresponding to a given wheel odometry
measurement, it is sufficient to get elements from measurements arrays with index
i = seqN if they have a strictly positive sequence number, otherwise measurement
does not exist. For example, in the image above, the wheel odometry estimate wo0
with sequence number 0 can be associated with two crops centroids c0,0, c0,1, with
a gps measurment gps0 and the corresponding ground truth estimate gt0.

5.6.3 3D Landmark Points Computation

The third step in the data extaction module is to extract centroids from data.
In the offline optimization, 3D landmark points are read from a file and
stored in a multi-dimensional array, where the list of centroids found in each
image is stored at the index corresponding to the image sequence number.
For the online optimization, images are streamed to the segmentation node,
which, after extracting the corresponding list of centroids, returns the result
to the optimizer module.

5.6.4 Data Structures

The extracted data are stored into arrays. For each sensor we have a different
array, but they are all indexed the same way to have an easy correspondence
for measurements belonging to the same node. The employed index is the
ROS sequence number from the odometry message header, which comes from
the TSS graph in offline case, and from message filters in online case. Figure
5.7 shows an example of sensor measurements collected in corresponding
arrays.
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5.7 graph creation

In this section, we describe the general method we used to solve the robot
localization and mapping problem. It is solved via a graph-based SLAM
approach using the g2o framework. Therefore, the goal is to find the config-
uration of the nodes which maximizes the actual measurements likelihood.
The graph creation module handles the development of the g2o graph. Of-
fline and online optimization handle this process in a slight different way,
so we describe the key points of the algorithm separately. However, in this
section we want to give some common background useful for both tasks.
As we described before, a g2o graph is composed by nodes corresponding
to optimizable variables and edges representing constraints between pair
of nodes or for single node measurements. In our algorithm, we used both
binary and unary constraints.

5.7.1 Adopted g2o Edges and Vertices

The following is the list of g2o vertices used in the context of this thesis.

1. VertexSE3: public BaseVertex<6, Isometry3>→ 3D translation and 3D
rotation of a robot pose,

2. VertexLine3D: public BaseVertex<4, Line3D>→ 4-dimensional vector
representing the minimal parametrization increment in orthonormal
form, while a 6-dimensional vector is used for representing the same
3D line in Plücker coordinates.

And hereafter a list of g2o edges.

1. EdgeSE3: public BaseBinaryEdge<6, Isometry3, VertexSE3, VertexSE3>
→ translation and rotation between two odometry poses,

2. EdgeSE3Prior: public BaseUnaryEdge<6, Isometry3, VertexSE3> →
translation and rotation from odometry pose to GPS measure (prior
estimate, not corresponding to any vertex).

In addition to these edges, custom ones have been implemented. In this
section, all adopted vertices and edges are described. The ones that do not
belong to the previous list were implemented from scratch.

5.7.2 Nodes

Robot poses and crop rows are the nodes of the graph and they are collected
in a vector X = {xrobot,0, ..., xrobot,N, xline,0, ..., xline,M}. Robot poses are
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implemented as g2o::VertexSE3, their estimate, which is composed by a trans-
lation and an orientation component, is initialized with the wheel odometry
estimation. Crop rows are implemented as g2o::VertexLine3D, initialized with
the 3D Plücker line estimation and internally represented with the orthonor-
mal representation. Equation (5.8) shows the mathematical representation of
the robot pose xrobot,t at time t and of the mth line xline,m.

xrobot,t = (tx, ty, tz, qx, qy, qz)

xline,m = (nx, ny, nz, vx, vy, vz)
(5.8)

where t = (tx, ty, tz) is the translation vector and (qx, qy, qz) are the first

three components of a unit quaternion, which imply qw =
√
1−

(
q2x + q2y + q2z

)
.

The line estimate is composed by a normal vector n = (nx, ny, nz) and a
direction vector v = (vx, vy, vz). The robot pose is often represented as a trans-
formation matrix Xrobot,t derived from xrobot,t, and the Plücker line xline,m

as a Plücker matrix Xline,m, where the respective relation is explained in
Chapter 3.

5.7.3 Landmarks Parametrization

Landmarks are described by custom g2o parameters, which represent fixed
constraints in the graph. Indeed, we wanted to model fixed constraints relative
to robot poses, since we did not provide an identification method for the same
landmark, if observed twice. So landmarks estimation relative to the pose
remains fixed and no loop closure optimization is performed. Landmarks are
represented by CropPositionParameters in the g2o graph.

The mathematical representation of CropPositionParameters is:

paramcrop = (tx, ty, tz) (5.9)

where the vector t = (tx, ty, tz) is the position in the camera coordinates
frame. This is particularly useful to compute the crop position in world frame
by Xrobot,t ·

(
(extrinsic_matrix)−1 · paramcrop

)
. Where the extrinsic ma-

trix is shown in Equation (3.11).

5.7.4 Edges

g2o edges model constraints between robot poses, assumptions on single
poses, and constraints on observed landmarks. In the description below,
zedge, ẑedge, Ωedge, eedge represent the actual and the predicted measure-
ment, the information matrix and the error of the edge, respectively. When
ẑedge is not specified, it means it is computed as the actual measurement
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zedge. The difference is that zedge is always computed during the edge
initialization phase, with the actual nodes value, while the predicted measure-
ment is computed during optimization, therefore the actual node values are
optimized. All vectors are column vectors, even if not specified for brevity.

EdgeSE3Prior

We inserted Ublox GPS measurements in the graph as prior position esti-
mations for robot poses. Indeed, we considered GPS to be globally more
reliable than wheel odometry estimation. We created a unary constraint to
only optimize the robot pose, while the GPS measurement is kept fixed.
Measurement is composed by the GPS position and a unitary rotation, since
GPS does not provide attitude information. Information matrix was built to
give zero weight to the rotation component. The constraint on xrobot,t can
be represented as:

zGPS = (tGPS, I3) , ẑGPS = xrobot,t

ΩGPS =



λx 0 0 0 0 0

0 λy 0 0 0 0

0 0 λz 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


eGPS = (TzGPS

)−1 · TẑGPS

(5.10)

where λx, λy, λz scale the information based on the reliability we want to
give to the GPS measurement and can be set from the graphical interface. In
our experiments, we kept λz lower because GPS information on z-axis in not
as accurate as on xy-plane. TzGPS

is the transformation matrix built from edge
measurement, and TẑGPS

= Xrobot,t.
In addition to the GPS constraint, we introduced a new domain assumption,

represented by the just described edge. In the application, we had the robot
travelling along crop rows. Therefore, we were able to use the estimate of
the crop row direction and the total distance travelled from the beginning of
the crop row to infer the supposed robot position, as if it travelled along a
straight line. Basically, we projected the total distance along the line to have a
better estimate of the current position. The distance travelled was given by
the wheel odometry estimation and the line direction by the current crop row
estimate. The information matrix ΩalongLine is the same as in GPS prior
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edge, but can use a different scaling factor. The same holds for error, while
measurement is computed as follows:

drectified = ||trobot,t − tfirst_vertex|| · vline

talongLine = tfirst_vertex + drectified

ẑalongLine =
(
talongLine, I3

) (5.11)

where drectified is the distance projected along the line, and trobot,t and
tfirst_vertex are the translation estimation from wheel odometry of the cur-
rent robot pose xrobot,t and of the first pose along the current line, respec-
tively. Thus, the measurement includes the rectified translation talongLine

along the line relative to the first pose on the same line, and an identity
rotation matrix I3 which is not weighted in the information matrix since we
do not want to bias the optimization.

Because of its incremental nature, the constraint only worked in online
optimization, as the line estimate needed to be refined while more crop
plants were observed. In the offline optimization, we created a different
edge, which we discuss later, where the line estimate is optimizable as well:
EdgeTranslationAlongLine.

EdgeSE3

Robot poses can be constrained by relative wheel odometry estimations.
Transformation matrix between xrobot,t and xrobot,t−1 was computed and
set as measurement for the binary edge.

zWO = (Xrobot,t−1)
−1 ·Xrobot,t

ΩWO =



λx 0 0 0 0 0

0 λy 0 0 0 0

0 0 λz 0 0 0

0 0 0 λrx 0 0

0 0 0 0 λry 0

0 0 0 0 0 λrz


eWO = (TzWO

)−1 · TẑWO

(5.12)

EdgeSE3 has a complete information matrix, where rotation part is scaled by
non-zero parameters λrx, λry, λrz.

We used an EdgeSE3 constraint also for modeling the relative robot move-
ment with the Ackermann motion model. As actual measurement we used
zAckermann = TAckermann which is the transformation computed by Acker-
mann model and hence neglecting noise due to the uneven ground. Error is
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computed as for wheel odometry constraint, while information matrix gives
reliability only to the xy-plane:

ΩAckermann =



λx 0 0 0 0 0

0 λy 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 λrz


(5.13)

Indeed, non-zero rows correspond to translation on x and y axes and to the
yaw rotation.

EdgePoseSE3Line3D and EdgePoseSE3PriorLine3D

Crops are constrained to lie on a line, because of the domain assumption that
they were sown in a row. We created two types of line edges. For one edge we
have both crop plants position and line estimate optimizable. For the other
edge we can keep the line estimate fixed and optimize crops position to lie
on the line. In both cases the error to minimize is the distance from the line,
which should tend to zero.

In EdgePoseSE3Line3D, both line and crops are optimizable. The edge
must be connected to the line estimate xline,m and the current robot pose
xrobot,t. It takes two parameters: the first parameter is the landmark position
in the camera frame paramcrop and the second is the extrinsic matrix, used
in order to transform the landmark from camera frame to robot frame. Robot
pose is needed to transform the landmark into world frame, in order to be
used for line interpolation.

zcropLine = 0, ẑcropLine = dcrop−line

ΩcropLine =

λ 0 0

0 λ 0

0 0 λ


ecropLine = ẑcropLine

(5.14)

Distance dcrop−line was computed by transforming the crop position to
world frame and computing the distance by using projective geometry. In the
g2o framework, the error vector must have the same size as the measurement,
while projective geometry only provides a formula to compute the norm
of the distance. To compute a vector distance, we projected the landmark
point on to the line (foot of the perpendicular) and computed the 3D distance.
To project the landmark position on the line, we computed the line passing
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through the crop position and perpendicular to the crop row, thus obtaining
the foot of the perpendicular, and took the vector difference between the foot
and the crop plant 3D points as the desired distance. Algorithm 1 sums up
required computations.

Algorithm 1 Error computation for crop line distance in edge
EdgePoseSE3Line3D.

extrinsic_matrix, paramcrop ⇐ edgeParameters

croprobot = (extrinsic_matrix)−1 · paramcrop

cropworld = Xrobot,t · croprobot . Crop position in world frame

plucker_matrix = toPluckerMatrix(xline,m) . Equation (3.22)
plucker_dual = pluckerDualMatrix(plucker_matrix) . Equation
(3.20).

d = ||(plucker_dual · cropworld)1:3|| . Equation (3.32).

plane1 = planeThroughPointAndLine(plucker_matrix, cropworld)

. Plücker dual is the intersection of two planes: plane1 and plane2.
plane2 = perpendicularPlaneThroughLine(plucker_matrix, plane1)

. Equation (3.20).

dcrop−line = d · plane21:3
. Plane in projective geometry are represented as a 4D vector where

the first 3 components represent the normal vector to the plane, Equation
(3.13). We scale it by the norm of the distance to have the vector distance.

EdgePoseSE3PriorLine3D uses the same computation but keeps line fixed
when optimizing. To do so, the line estimate is passed as actual measurement:
zcropLinePrior = xline,m.

EdgePosePlanePrior

Robot poses can be constrained to lie on the same plane through the unary
constraint EdgePosePlanePrior, because of the domain assumption that an
agricultural field is roughly flat. It takes the estimate of the so called robot
plane as measurement and minimizes the distance of the pose by projective
geometry. We call it robot plane because the center of the robot, which is used
as reference point, is at an height of about 70 cm above the ground plane.
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We use it as reference plane, indeed z = 0 on the robot plane. We have the
following parameters:

zrobotPlane = (0, 0, 1, 0), ẑrobotPlane = (trobot,t, 1)

ΩrobotPlane =


λ 0 0 0

0 λ 0 0

0 0 λ 0

0 0 0 λ


erobotPlane = ẑrobotPlane · zTrobotPlane

(5.15)

where error corresponds to the distance between robot position and robot
plane in projective geometry.

EdgePriorLine3D

If we have an initial guess on crop row position and orientation, we can
use the unary edge EdgePriorLine3D on xline,m. Edge parameters are the
following:

zpriorLine3D = (nprior, vprior),

ẑpriorLine3D = (n, v)

ΩpriorLine3D =



λ 0 0 0 0 0

0 λ 0 0 0 0

0 0 λ 0 0 0

0 0 0 λ 0 0

0 0 0 0 λ 0

0 0 0 0 0 λ


epriorLine3D = zpriorLine3D − ẑpriorLine3D

(5.16)

where (nprior, vprior) is the prior line used to correct the estimate of xline,m =

(n, v).

EdgePointPlanePrior

Also the landmark position can be constrained to lie on a plane. EdgePoint-
PlanePrior minimizes the distance of the crop SEP from the ground plane,



5.7 graph creation 75

which in our world frame was about 70 cm (ground_height) below the
reference z = 0 plane. The edge is characterized as follows:

zpointPlane = (0, 0, 1,−ground_height),

ẑpointPlane = cropworld

ΩpointPlane =


λ 0 0 0

0 λ 0 0

0 0 λ 0

0 0 0 λ


epointPlane = ẑpointPlane · zTpointPlane

(5.17)

where cropworld represents the crop SEP in world frame and is computed as
described before starting from paramcrop in camera frame.

EdgeLinePlanePrior

Since crops are assumed to lie on the ground, we can add a new constraint
on the crop row itself. Again, by using projective geometry (Equation (3.29))
we minimize the distance of the line from the ground plane.

zlinePlane = (0, 0, 1,−ground_height),

ẑlinePlane = toPluckerMatrix(xline,m)

ΩlinePlane =


λ 0 0 0

0 λ 0 0

0 0 λ 0

0 0 0 λ


elinePlane = ẑlinePlane · zlinePlane

(5.18)

where toPluckerMatrix is a function implemented to transform the line
from vector to matrix form, in Plücker coordinates.

EdgePriorLineDirection

If we have a prior guess on the line direction vprior and we want to make
the crop row direction v parallel to the desired direction vector, we can use
EdgePriorLineDirection:

zpriorLineDir = vprior, ẑpriorLineDir = v

ΩpriorLineDir =

λ 0 0

0 λ 0

0 0 λ


epriorLineDir = ẑpriorLineDir × zpriorLineDir

(5.19)
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where we are enforcing the property that parallel vectors have a zero cross
product, Equation (3.33).

EdgeLineLine3D

In order to constraint two free crop rows xline,i and xline,j to be parallel we
can use EdgeLineLine3D. The difference with respect to EdgePriorLineDi-
rection is that both line directions are optimizable. It is characterized by the
following parameters:

zlineDir = 0, ẑlineDir = vi × vj

ΩlineDir =

λ 0 0

0 λ 0

0 0 λ


elineDir = ẑlineDir

(5.20)

EdgeTranslationAlongLine

Similarly to the prior edge projecting the wheel odometry translation distance
along a line, we can have a prior guess on the robot position by means of
the line estimation. In online optimization, it works because at each sliding
window, we have a more precise estimation of the current line, and we can use
the direction vector to rectify the travelled distance. However, in the offline
optimization case we have to concurrently optimize the line estimate and the
robot position, without relying on previous optimizations. We pass as offset
parameter the translation of the first robot pose along the line tfirst_vertex

and use it as a reference point to compute the distance travelled along the
crop row.

zalongLine = 0, ẑalongLine = talongLine

ΩalongLine =

λ 0 0

0 λ 0

0 0 λ


drectified = ||trobot,t − tfirst_vertex|| · vline

talongLine = tfirst_vertex + drectified

ealongLine = ẑalongLine − trobot,t

(5.21)

where we use as measurement the supposed translation component talongLine

computed by projecting along the line the distance travelled from the first
robot pose tfirst_vertex on the line. drectified is the rectified distance between
the two vertices and vline is the direction vector of the line along which
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the robot is travelling. The measurement, differently from the corresponding
prior edge for the online case, only includes the translation component, so
both measurement and error are 3D vectors.

Jacobians

In the g2o framework, custom implemented edges need the Jacobian of the
error function with respect to the linked node variables to be estimated.
One can either provide the analytic computations for the matrix or use the
numerical matrix which is automatically computed if no analytic Jacobian
exists. For all custom edges, we computed the Jacobian, however, we left to
the user the possibility to enable its use in the optimization. While it speeds
up the computations, it also affects the growth of the damping factor in the
Levenberg-Marquardt optimization algorithm and needs further studying.

5.8 optimization

In this section, we describe the two main use cases which perform offline and
online optimization, respectively.

5.8.1 Offline optimization

Offline optimization takes as input the whole dataset, it creates the entire g2o
graph and optimizes it.

Data extracted are passed to the graph creator module which iterates over
the arrays to create vertices and edges for the g2o graph. The configuration
file and the graphical interface allow the user to enable constraints to be
inserted in the graph. In the following description we consider all constraints
enabled.

First, we iterate over the wheel odometry and GPS estimations. Measure-
ments corresponding to the same robot pose have the same index, which is
related to the timestamp, thus the two data arrays can be iterated together.
Vertices representing robot poses are created using the header sequence num-
ber as id number. For each new vertex with id = t, a set of constraints relative
to the previous one (previous vertex has id = t− 1) are created:

• Wheel odometry (WO): Transformation T = (Xrobot,t−1)
−1 ·Xrobot,t

is computed and set as measurement of an EdgeSE3 between the two
vertices.

• Ackermann (Ack): Motion model is used to compute the theoretical
transformation neglecting any influencing external variable such as
drift. TAck is set as measurement for an EdgeSE3 between the two
vertices.
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Figure 5.8: Prior crop row built from GPS estimation.

Then, some prior edges on the robot pose are created.

• GPS: If GPS is enabled, an EdgeSE3Prior is added to the graph with
the GPS measurement, otherwise, for the first n poses we fix the initial
estimation by using an EdgeSE3Prior. This is needed because, if no
absolute constraints are enabled, the SLAM algorithm has no reference
point for the trajectory estimation.

• Planarity (PlanePose): A prior edge with the robot plane estimation is
set to constraint the pose to lie on the desired plane.

While iterating on the two arrays, the yaw variation between successive
robot poses is observed. When it overcomes a threshold, we consider the
robot to have inverted the path and started following a different crop row.
The identifier of each vertex on the new line is stored to build the lines in
next step.

The last step in this loop is to interpolate the GPS measurements along the
same line to store an initial guess on the possible crop row direction. Two
measurements at a fixed distance are collected and used to create a Plücker
line. The Plücker line is transposed to the ground, using the knowledge about
the camera mounting point with respect to the robot center and the distance
to the ground. This knowledge is encoded in the extrinsic matrix between
robot and camera frame. The resulting line is that observed if crops were
exactly placed at the center of the camera frame, which is a good guess, as
the robot actually follows the crop row below itself, as in Figure 5.8.

Once the first loop ends, a new loop starts to create all edges relative to the
observed landmarks. For each vertex already inserted in the graph, we use
the observed crops SEP to add new constraints. When a new crop row starts,
first we initialize the Plücker line and then add all connected landmarks to
the graph. The line is initialized by taking two SEPs at a fixed distance and
computing the line between them by projective geometry, as in Equation
(3.16). A line vertex is created with this estimate.

The collected landmarks are in camera frame. Even if they are in the correct
frame to be inserted in the g2o graph, they need to be transformed to world
frame for visualization purposes. The visualization module is explained in
details in next section, however, the computation steps are made during
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the graph creation task. Namely, camera frame landmark is transformed to
robot frame by means of extrinsic matrix in Equation (3.11), and then it is
multiplied by the robot transformation matrix to obtain the position in world
frame.

Landmark points on a line are used to create constraints of two kinds, which
are mutually exclusive. If we have a prior estimate of the line and we do not
want to optimize it, we use an EdgePoseSE3PriorLine3D constraint, where
the line is fixed, using the prior estimate initialization. On the other hand, if
we need to optimize the line as well, we use the edge EdgePoseSE3Line3D.
Both edges are connected to the landmarks in camera frame (g2o parameter),
the robot vertex and the line estimate. The last one can be represented either
as the edge measurement in the first case, or as a vertex in the second case.
The error minimizes the distance between the landmark position and the line.

Landmarks can be constrained to lie on the ground plane with the prior
edge EdgePointPlanePrior, as the line by means of the EdgeLinePlanePrior.
Lines can also be constrained to be parallel by means of EdgePriorLineDi-
rection. Finally, the edge EdgeTranslationAlongLine projecting the travelled
distance along the line can be added.

Once the graph structure is complete, it is written into a file, which is read
from the optimizer module. The g2o optimizer uses Levenberg Marquardt
algorithm to minimize the cumulative error of all constraints and find the
best configuration for robot poses and lines, which in our application are the
variables to optimize. Edges are robustified by Huber kernel, as in Equation
(3.48).

Even if in the offline case we had the whole dataset available at once, we
found more convenient to optimize the robot poses along one line at a time.
Indeed, if we start by optimizing the first line, then we can use the optimized
value to correct some of the drift accumulation error in the poses initialization
of next line. We can also employ the optimized line in the next optimization
to have a better estimate of both of them. Results show a little improvement
in the second robot trajectory estimate along the second line.

When the optimization is complete, optimized nodes are read from the
file where output is stored and they are passed to the visualization module.
Error is computed as described in the Error Computation section.

5.8.2 Online optimization

In the online optimization we used multiple threads to manage the concurrent
data collection, graph creation, optimization and visualization tasks. Thanks
to a set of callbacks, the application stores data arriving in the form of ROS
messages into arrays indexed by the WO sequence number, which provides
an easy correspondence between different sensor measurements. Callbacks
are activated by a ROS message filter applying the ApproximateTime policy,
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Figure 5.9: A series of ROS message filters synchronize data published from the
data extraction module by timestamp. Data are stored into a list of arrays where
correspondence among different sensors is given by the WO sequence number, that
is used as index. The sliding window size is computed on the WO array.

as described in Chapter 4. Once the data arrays reach the size of the sliding
window at first, or a new number of data measurements equal to the step size
is collected, the sliding window optimization is triggered, as it is shown in
Figure 5.9. The graph is created and optimized and the results are visualized,
while still collecting new data. In this way the data are optimized multiple
times as they enter in several sliding windows and the trajectory estimation
is gradually refined.

The graph creation task is similar to the offline one, however we needed
to store the previously created vertices, edges and parameters in global data
structures to be reused in next iterations. Thus, before creating the graph,
already existing nodes and edges are retrieved with their optimized value if
they enter the current window. Then, new nodes and edges are created. Also,
we needed some global structures to store the information about the current
line, which have to be updated in all windows, since the line could have the
first endpoint in one window and the second endpoint in several windows
later. In the meanwhile, all landmarks connected to the line are stored, but
the edges are only added to the graph when the line is finally initialized.

Another difference relative to the offline case is that all computations are
made inside the same unique loop. Nodes are the same, while edges are
slightly different. The edge that is computing the translation along the line
can now confidently use the previous optimized line estimate (which is
continuously refined), thus it is only a prior estimate on the robot vertex, as
in Equation (5.11), without the need to optimize the line estimate as well.
Also the constraints between line and landmarks change. Indeed, for each
optimization only the crops observed in the current windows would be
included, but this would make the estimate vary too much. Therefore, every
time the line is optimized after initialization, we include the first connected
landmarks edges, with a prior on their already optimized estimate. In this
way, they can bias the new optimization to avoid excessive fluctuations.
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In addition to this, the previous optimized line estimate can be used to
instance an EdgePriorLine3D, to add a further bias on new optimization. It
is necessary to say that all prior estimations are eventually updated after
each optimization, as they are only considered as guesses and cannot be
too different from the current values. The only estimates which are never
updated are the GPS measurements.

After the graph is created and saved into a file, optimization is performed
on the current window and global data structures are updated, while visu-
alization module takes care of the visualization. In addition to the sliding
window optimization, we have the concurrent re-optimization of the previous
trajectory estimation. The sliding window indeed must be kept small to
work online, but a larger window works better, and if we start from already
optimized values, only few iterations are needed. Therefore, we apply three
different re-optimizations:

• Re-initialization of the line: Crop row needs quite a few samples to
be effectively estimated, but since the online algorithm cannot wait
too long before starting the optimization, we first initialize the line
with a small number of centroids. Then, when we have more available
observations, we re-compute the Plücker line, set the current optimized
value as a prior constraint on the new line (EdgePriorLine3D), and
re-optimized the graph corresponding to the portion of the line up to
this point.

• Periodic re-optimization: Every k sliding window optimizations we
consider a larger window and re-optimize the g2o graph. This gives us
a better estimate of the robot trajectory and of the landmarks map.

• Complete line re-optimization: When a new line is started, the previous
one is completely re-optimized to have a final estimation. Since data are
no more optimized after this optimization, error can now be computed
and final trajectory and mapping can be stored in a ROS bag.

The key idea behind these re-optimizations is that more available data mean
greater accuracy of the result. The reason to keep the sliding window as small
as possible, however, is to have an algorithm working in real time.

5.9 graphical interface and visualization

The application provides a graphical interface that allows the user to both in-
teract with the graph configurations and visualize data. Graph configurations
are set in a yaml configuration file, however it is actually much more easy
for the user to do it from the graphical interface. Almost every setting can be
modified by the interface, such as the enabling and disabling of constraints,



82 software architecture

the scaling factor of the information matrix, the number of optimization
iterations, the robust least square optimization, and so on.

Regarding the data visualization, there are two different visualization
methods. We think that picturing results is essential in order to have a first
qualitative measure of their accuracy. The reason to have two methods is
that one is implemented in the graphical interface, by means of Qt OpenGL
[83], and the other is using ROS Mapviz to show mapping results in the real
world.

5.9.1 Integrated Visualization

The integrated visualization can be quite customized. It represents data in
a 3D space from a given viewpoint, which can be rotated and translated.
Three classes of data can be pictured: original, offline optimized and online
optimized data, as shown in Figure 5.10. The coordinates frame axes are
centered on the first GPS measurement, which is taken as reference point in
the algorithm as well. Visualization options can be enabled to show:

• Wheel Odometry data (WO),

• GPS measurements (Ublox),

• Ground truth trajectory (Leica),

• Landmarks position,

• Crop rows as lines (also the normal vector is shown for easier debug-
ging),

• GPS constraints between robot poses and GPS measurements,

• Line constraints between landmarks and crop row,

• Robot-Landmarks constraints (this is a fixed link with respect to the
robot pose).

5.10 mapping

To have a complete Localization and Mapping algorithm, not only the robot
localization, but also the environment mapping must be computed. As we
have already highlighted, agriculture does not provide any other reference
point rather than individual crop plants or crop rows because of the uniform
visual appearance of the environment. In this case, we chose a landmark map,
made of crops SEP, because from them we can infer time-invariant landmarks
which can be reused over time. Crops positions are stored in a ROS bag, and
can be visualized in the real world by using the Mapviz ROS package.
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If we play the ROS bag publishing optimized trajectory on the /wheel_odo−
metry topic and landmarks map on the /crops topic, Mapviz subscribes to
each topic and allows the user to visualize data at the exact streamed coordi-
nates. Both topics must be recorded in the sensor_msgs/NavSatFix format
in order to have a precise location on Earth. Mapviz allows also to set a
very detailed background picture tile. We chose a detailed satellite image
including the agricultural field where the dataset was recorded. Of course, the
image cannot be zoomed up to see every single crop plant, but it is possible
to see the crop rows and have a qualitative measure of the achieved accuracy.

5.11 error computation

In order to quantitatively asses the achieved results, we have developed an
error computation module. It compares the optimized robot trajectory with
the ground truth provided by the Leica GPS measurement. Basically, we have
three different computation methods, evaluating the root mean squared error
(RMSE).

5.11.1 Basic Error Computation

The basic error computation method was inherited by the initial project [16].
Since we have one data array per sensor type, and they can be matched based
on the sequence number, which is conceptually related to the time when the
measurement was produced, we can match each robot pose in the optimized
trajectory to a ground truth position. Theoretically, it is not entirely correct
if the two measurements have not the same exact timestamp, but can be
considered a good approximation. Therefore, this method consists in iterating
over the optimized robot poses, and for each one of them taking the square
distance from the ground truth position. Square distances are summed and
averaged by the number of robot poses, leading to the RMSE.

RMSE =

√√√√ 1

N

N∑
seq=1

||xgt,seq − xrobot,seq||2, (5.22)

where xgt,seq is the ground truth position and xrobot,seq is the robot position
at sequence number seq.

5.11.2 Error Computation from Interpolation

In order to achieve a more accurate result, it is possible to use the error
computed between the robot pose on the optimized trajectory at the exact
timestamp of the corresponding ground truth position. To do so, we first
find the two closest robot poses to the reference timestamp, then linearly
interpolate the pose between the two. RMSE can now be computed matching
poses at the exact timestamps.

RMSE =

√√√√ 1

N

N∑
t=1

||xgt,t − xrobot,t||2. (5.23)
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Figure 5.11: How to interpolate robot trajectory to compute a more accurate error.

Interpolation can be visualized in Figure 5.11.

5.11.3 Error Computation from Roto-Translation

Finally, we have developed another error computation method, which is
applied when no GPS is used in the trajectory estimation. In this case, no
absolute information is used and cannot be compared to the accuracy of
the system based on the absolute comparison with ground truth only. In-
deed, the goal of this thesis was to investigate a SLAM algorithm which
could be applied without necessarily having GPS measurements. This is
done by neglecting the error due to the roto-translation needed to align
the optimized robot trajectory to the ground truth. We use the Umeyama
function [71] which finds the best roto-translation transformation to align
two sets of points. We use it to compute the transformation between the sets
{xrobot,1, xrobot,N2

, xrobot,N} and {xgt,1, xgt,N2
, xgt,N} and apply it to every

robot pose in the optimized trajectory. Resulting trajectory can be compared
to ground truth with one of the previously described methods: basic error
computation or error computation from interpolation.





6
E X P E R I M E N TA L R E S U LT S A N D E VA L UAT I O N

In this chapter, we present the results obtained by our application both for
the Centroids Identification and for the SLAM components.

6.1 centroids identification

The Centroids Identification component was trained in two phases. First
we trained the neural network for image segmentation in order to have a
system able to identify sugar beets (crop plants) in the images. The network
output consisted of three classes: crops, weed and background. We trained
the network on a training set of 903 images, and a validation set of 226 images.
The final validation loss, computed with the weighted cross entropy function
proposed in Chapter 5, was:

weighted_crossentropy = 0.0340 (6.1)

After the neural network was considered successfully trained, we applied
some filtering on the output to remove noise and get a better classification of
the pixels belonging to the crops class. We fed the ouptut to the clustering
algorithm, however, we could not directly validate the clustering algorithm
because we did not have a ground truth for the object detection of individual
crop plants. Therefore, we evaluated the results in terms of the number of
missed centroids and the average distance from the ground truth centroid.
The clustering algorithm was able to identify most of the clusters representing
crops in the image.

At this point, it is worth to stress that the centroids ground truth did not
distinguish between centroids of crop plants and weeds, while the specific
purpose of our component was to identify only crops SEP to be used as
landmarks in the field. We propose an evaluation against the ground truth,
however we must keep in mind that the results cannot be evaluated this way
only. Indeed, we used both the objective evaluation and the experimental
observation of the results. We observed that our algorithm was quite good at
identifying crops, and not at identifying weeds that were often classified as
noise and discarded. This behaviour was due to the narrower shape of the
weeds relative to the crop plants, which makes the segmented components
much smaller and affected by background noise in segmentation results,
and resulted in the clustering algorithm processing weeds pixels as noise.
Therefore it can be stated with reasonable confidence that detected centroids
belonged to crop plants, while most of the missed centroids belonged to the

87
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Error in centroids detection

Max distance [pixels] Detected Precision Recall Avg error [pixels]

50 316 0.486 0.181 28.131

100 461 0.690 0.264 42.422

200 734 0.889 0.420 83.002

Table 6.1: Results from centroids detection algorithm. Average error is the average of
the euclidean distance for all detected centroids from the ground truth ones. It takes
into account the detected centroids, which are the ones whose distance from ground
truth is smaller than the maximum distance. Detected centroids are an absolute
number, while precision and recall are in the range between 0 and 1.

weed plants, therefore representing a negligible error. However, the previous
consideration is not valid in general, as it depends on the relative shapes of
crop plants and weeds. We also note that the high number of missed centroids
is due to the prevalence of weeds in some of the analyzed images. With these
premises, the experimental evaluation was performed using a visualization
algorithm pointing out detected centroids and ground truth ones, while
summarizing quantitative results in terms of the number of missed centroids.
In the following, the quantitative and qualitative evaluation is presented.

Table 6.1 summarizes the quantitative evaluation of the centroids detection
component. We tested the algorithm on 275 images in three different settings
of maximum distance. The maximum distance is the limit of the distance
between the hypothesis centroid and its ground truth point to be considered
a correct detection. The difference between the three settings was that a
maximum distance of 50pixels was allowed in the first case, 100pixels in the
second case and 200pixels in the third case. Considering that the average
number of crop plants per image is between one and two, the number of
detected centroids in the three settings confirms the hypothesis on the nature
of the detected centroids belonging mostly to crop plants. We reported the
average error for the detected centroids as the Euclidean distance measured in
pixels from the ground truth point. By knowing that one pixel corresponds to
about 0.6mm resolution, we can compute the corresponding error in meters,
which is below 5cm in the worst considered case. Precision and recall are
computed as:

Precision =
TP

TP+ FP
Recall =

TP

TP+ FN
(6.2)

where TP = TruePositive, FP = FalsePositive, FN = FalseNegatives. Pre-
cision is to measure exactness and recall is to measure completeness. They
both get lower as the maximum distance is lower. We note that precision can
be easily achieved by relaxing the distance threshold, while recall remains
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lower because of the number of not identified centroids which we suppose to
belong to weeds.

In the following, we discuss some qualitative results of the clustering and
centroids computation algorithm. From Figures 6.1 to 6.7, we propose some
examples to show how the algorithm works. For each example, from left
to right, we have the original RGB image (brightness has been adjusted
for allowing the reader an easier decoding), the smoothed segmentation
result (where only crops are visible in blue/violet), the clustered crop plants
(different colors identify clusters) and the identified centroids (white dots).
We provide some details for each result under each image. Again we note
that the algorithm is able to correctly cluster the pixels belonging to the crop
plants even if they are not connected because the segmentation result is not
completely precise.

Figure 6.1: The image contains two crops which are correctly identified by both the
segmentation and the clustering algorithms. We note that the clustering algorithm
is able to identify even the lower crop which is extremely small and to output the
correct centroid.

Figure 6.2: An example of correctly identified centroids even in the presence of
weeds which are correctly discarded as noise by the clustering algorithm, while the
small crop is identified.
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Figure 6.3: This image contains two big crops where leaves are almost touching. To
correctly identify the two individual crops the algorithm was run twice as described
in Chapter 5 and the two crops were eventually separated leading to the result
shown in the last picture.

Figure 6.4: This is an example of multiple plants identified in a single image. It is
not actually a good result because the algorithm does not manage to discard the
pixels belonging to crops and includes weed centroids in the results. However, we
note that the error is caused by the segmentation algorithm which did not correctly
segment the image.

Figure 6.5: This image shows an error in the clustering algorithms, due to parameters
setting. The second crop is incorrectly clustered as two independent crops since
distance between leaves is too large with respect to the size of the plant.
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Figure 6.6: This example shows a clustering miss. The crops do not have at least
min_samples to be identified as an independent cluster and get discarded as noise.
Therefore we do not have the corresponding centroids in the result.

Figure 6.7: This is an example of two fully grown crops where leaves are touching
and almost overlapping. The algorithm does not manage to cluster the crops inde-
pendently, however we can note that the computed centroid is in line with the true
ones (which can be inferred by looking at the image) so for the sake of the SLAM
algorithm the error is not too heavy.
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6.2 symultaneous localization and mapping

In this section, we provide some evaluation results for the SLAM component
of the system, both online and offline. We start by including some statistics
to describe the dataset we used. The tests were performed on four ROS bags
from the dataset in Chapter 4, plus a fifth bag that is obtained by merging
the first two considered bags. Below, we report the complete list of the bags
that we used in the experiments, and that can be used for reproducing the
same results:

• bag1: bonirob_2016-05-23-10-52-28_3.bag,

• bag2: bonirob_2016-05-23-10-57-33_4.bag,

• bag3: bonirob_2016-05-23-11-02-39_5.bag,

• bag4: bonirob_2016-05-23-11-07-45_6.bag,

• merged_bags: bag1 + bag2 (sequentially merged).

In order to assess the obtained results, we computed the RMSE error for
each bag with the basic approach described in Chapter 5, considering as a
first guess of the robot trajectory the sequence of robot poses computed by
the wheel odometry. The errors are reported in Table 6.2.

6.2.1 Offline optimization

Since the application developed in this thesis allows to enable various con-
straints for the trajectory optimization, we performed a series of tests in which
we alternately enabled or disabled the constraints to make a comparative
analysis. Table 6.3 illustrates the testing cases with the enabled constraints
for the offline optimization of the robot trajectory. The results are shown in
Table 6.4.

First of all, we have to clarify the way of evaluating different test cases. The
cases from a to d were assessed by computing the error from interpolation,
while the cases from e to h were assessed by computing the error from roto-
translation to align the optimized trajectory to the ground truth trajectory,
as described in Chapter 5. The difference in error calculation is due to the
lack of any absolute information in the last four test cases, which would
make the direct comparison with ground truth extremely unfair and the

bag1 bag2 bag3 bag4 merged_bags

RMSE 16.0176m 13.0196m 18.0933m 17.9625m 16.4874m

Table 6.2: Initial RMSE for bags used for testing, in meters.
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bag1 bag2 bag3 bag4 merged_bags

original 81.122 87.535 90.393 90.952 168.672

optimized 80.276 87.364 114.462 109.035 195.579

Table 6.5: Trajectory statistics from ROS evo_traj package [85]. For each bag, we
provide the trajectory length in meters.

(a) Mapviz visualization of
original merged_bags (bag1

and bag2).

(b) Mapviz visualization of
original bag3.

(c) Mapviz visualization of
original bag4.

Figure 6.8: For each bag, we have in red the trajectory given by the ground truth
(Leica sensor measurement), and in yellow the initial trajectory made of the concate-
nation of successive robot poses as measured by the wheel odometry.

relative advancements impossible to evaluate. Obviously, we cannot compare
all the obtained results, but we can still perform a comparative analysis for
the first group and for the second group independently. Also, we note that
in the second group of test cases bag1 and merged_bags have two rows
because the bag data correspond to the trajectory along two lines and the
error computation algorithm computes the roto-translation for the trajectory
along single lines and then compares the obtained trajectory with the ground
truth.

Now we give a brief overview of the possible constraints, which also
applies to the online optimization test settings. prior_lines is a constraint
on crop rows built starting from the GPS measurements, while gps_odom
is the direct constraint on the pose translation given by the GPS measure-
ment. direction is a constraint on the direction of crop rows, which are
assumed to be parallel, line_planarity is a constraint on the plane on
which lines lie, and pose_planarity is a constraint on the plane on which
robot poses lie. ackermann constraint computes the roto-translation be-
tween successive poses by applying the Ackermann motion model, and
along_line_translation is a constraint, only valid offline, which computes
the rectified trajectory from the first pose after a turn as if the robot travelled
straight along the line.

From the results, we note that the developed algorithm performs very
well in the first group of test cases, with RMSE always being less than 2

meters and almost in all cases less than 1 meter. We report the length of the
trajectory for each bag in Table 6.5, from which we can estimate that the error
is about 1% or 2% of the total trajectory length. As a general trend we can say
that test case a and c perform better than b and d, so we can safely discard
the ackermann constraint. However, it should be noted that the weights
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(a) (b) (c)

Figure 6.9: Mapviz visualization of optimized merged_bags (bag1 + bag2) in test
case a. a shows the ground truth in red, the optimized robot trajectory in yellow and
the landmarks (crops) in green. b shows only the ground truth and the optimized
trajectories and c shows the trajectory with landmarks.

(a) (b) (c)

Figure 6.10: Mapviz visualization of optimized bag3 in test case a. a shows the
ground truth in red, the optimized robot trajectory in yellow and the landmarks
(crops) in green. b shows only the ground truth and the optimized trajectories and c
shows the trajectory with landmarks.

(a) (b) (c)

Figure 6.11: Mapviz visualization of optimized bag4 in test case c. a shows the
ground truth in red, the optimized robot trajectory in yellow and the landmarks
(crops) in green. b shows only the ground truth and the optimized trajectories and c
shows the trajectory with landmarks.

of the information matrices were tuned on the first bag and suitable fine
tuning might reduce the error in some test cases. line_planarity was never
enabled because the prior_lines already intrinsically include the planarity
constraint. pose_planarity did not improve the result (enabled in case a
and disabled in case c) for most of the dataset, since the ground truth is
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Figure 6.12: Zoomed mapviz visualization of the optimized trajectory in
merged_bags on the robot turn, where it also changes the tracked crop row. We
observe the optimized trajectory in yellow, the ground truth trajectory in red, the
GPS measurement in blue and the landmarks as green dots.

not entirely planar and we did not have any reliable information on the
z-axis, since the GPS measurement on altitude has an error up to 2 meters.
The pose_planarity constraint should be explored in a setting where the
altitude is fixed or known with a prior map. As an example, in Figures 6.9,
6.10, 6.11 we show the optimized robot trajectories for bags merged_bags,
bag3 and bag4, respectively. All optimization examples are taken from the
absolute test cases, since the to trajectory is absolutely oriented and can be
directly compared with ground truth. The visualization precision is slightly
rough, especially for the landmarks position, due to a numerical issue when
transforming relative data to the absolute frame for latitude and longitude
representation. Figure 6.8 shows the original trajectory as initialized by the
wheel odometry estimates and transformed to absolute frame. The images
give us a qualitative measure of the results achieved by the application and
represent a coarse mapping of the environment. We also show a zoomed
picture (Figure 6.12) of the robot turn in bag1 and merged_bags which
illustrates how the algorithm controls the change of direction. In the proposed
example, the algorithm identifies the turning point once the yaw change of
the robot attitude is greater than a given threshold, and initializes a new crop
row to be tracked.

As for the non-absolute test cases, the direction constraint did not have
much success. The first observation is that the along_line_translation con-
straint negatively affects the estimation in the case of single crop row datasets
(bag1 contains the trajectory along one crop row and a very small portion of
trajectory on next crop row) and highly improve the results in the case of the
merged cases (two crop rows). On average, when along_line_translation
is disabled, the algorithm performs better on test cases with planarity
constraints disabled as well. When it is enabled, it performs better with
pose_planarity constraint enabled.
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(a) (b) (c)

Figure 6.13: Statistics on the error on test bags obtained by evo_rpe [85].

We include some statistics on the error computed on merged_bags in
Figure 6.13a, on bag3 in Figure 6.13b, and on bag4 in Figure 6.13c for test
case a. Statistics include RPE, which is the relative pose error, mean and
standard deviation, and RMSE. RMSE is the same error we computed with
the developed application, however the statistics over time show how the
error varies on the computed trajectory.

6.2.2 Online optimization

In this subsection, we discuss the results obtained by the online optimization
of the robot trajectory. Even if the component is designed to perform the
optimization online, we could not optimize the code to actually run real-time.
Therefore, we halved the rate of the data stream with respect to the rate at
which measurements were registered. As for the offline optimization, we
performed experiments on a set of test cases enabling or disabling the various
constraints of the application, that can be divided into absolute, a to d, and
non-absolute, e to h, test cases. The constraints are the same that we explained
for the offline optimization settings, the test cases are summarized in Table
6.6 and the results are shown in Table 6.7. The same observations on error
computation methodology hold as well.

Online optimization achieves slightly worse results than offline optimiza-
tion, as data included in each optimization are a smaller amount. For the
group of absolute test cases, error is included between 1% and 3.5% of the
total path length of the corresponding bag. We note that on average case
a is the one performing the best or still relatively good, which means that
line_planarity and pose_planarity constraints positively influence the opti-
mization. On the contrary, ackermann constraint in general affects negatively
the optimization. The gps_odom constraint has a different impact on the
results based on the co-enabled constraints in each test case. In particular, we
note that on the first two bags, it works quite well, while on the last two bags
it does affect negatively the results. The reason of the described behaviour
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lines prior_lines gps_odom pose_planarity point_planarity

case 1 1 1 1 1 1

case 2 1 1 1 1 0

Table 6.8: Test cases performed for each GPS sensor on the dataset provided by
Sapienza University.

is the high error in the GPS measurements on the z-axis with respect to the
ground truth in bag3 and bag4.

The non-absolute test cases group shows some very bad results for bag3, be-
cause the trajectory starts oscillating on z-axis, when no altitude information
is provided. Excluding this bag, which might be considered as an outlier and
needs fine-tuning for weighting better the constraints, the best performing
average results are on the test case g. This means that the pose_planarity con-
straint negatively affects the results overall. The line_planarity constraint,
instead, slightly improves the optimization precision as case g (enabled) is
on average performing better than f and h, where it is disabled.

6.2.3 Comparison with the state of the art

The project in [16] was applied to a different dataset [86] from the one
we used for training. To make our discussion complete, in the following
we discuss the results on the same dataset. In particular, we selected the
DatasetA_100_200.bag and run a series of tests with the two provided GPS
sensors. Table 6.8 shows the test cases where the enabled constraints are the
same as for previous test cases, plus the point_planarity which constraints
the SEP to lie on the desired plane. The test cases were repeated for the two
GPS sensors: an RTK GPS and a PPP GPS. We report both the error statistics
and the 3D map with ground truth and optimized robot trajectory.

The obtained results were fairly good for the trajectory optimization, while
the mapping did not work as expected. The developed algorithm, indeed,
monitors the yaw delta in wheel odometry attitude estimation to detect a
turn in the robot trajectory. In the new tested dataset the wheel odometry
estimation is extremely inaccurate, so the threshold for identifying a curve is
never passed. The best way to sense for a robot turn in this case would be to
fuse the IMU readings in the estimation, which are included in this dataset.

Figure 6.14a and 6.14b show optimized trajectory for test case 1 using the
RTK and PPP GPS sensor, respectively. Errors are reported in Table 6.9 and
can be directly compared with the errors reported in [16], even if our results
are relative to one bag only. We note, that for the PPP test cases, error is lower
than the corresponding one in the state of the art. This means that the crop
row constraints positively affect the results.
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(a) (b)

Figure 6.14: Optimized trajectories of Sapienza dataset, visualized by [85], on first
test case for RTK GPS (a) and for PPP GPS (b).

Current application State of the art

RTK PPP RTK PPP

test 1 test 2 test 1 test 2 best best

RMSE 0.138506 0.138437 0.296376 0.296737s 0.075 0.401

Table 6.9: Errors of test cases on dataset provided by Sapienza University, in meters,
compared with the best results achieved by the state of the art. However, the state of
the art results are computed on all merged bags of the dataset, while we only tested
one.



7
C O N C L U S I O N S A N D F U T U R E W O R K

7.1 conclusions

This thesis was developed with the goal of reducing the dependence of
robot localization systems on the expensive RTK-GPS sensor. Agricultural
localization algorithms mostly rely on this sensor as it is highly precise,
however it requires the availability of a second base station close to the
field of operation and is quite expensive. Therefore, we explored possible
localization methods that did not entirely rely on GPS. Another motivation is
the lack of prior maps in the agricultural environment, therefore agricultural
robots need to produce a map of the environment simultaneously while they
are localizing themselves.

By investigating the literature, we discovered that methods performing
Simultaneous Localization And Mapping (SLAM) in agricultural fields com-
monly exploit two kinds of landmark recognition methods: they can either
track the entire crop row or detect single plants on the ground. Both methods
usually exploit a vision or a laser range sensor. We also found proof that
landmarks in the agricultural environment are difficult to detect because it is
visually homogeneous and repetitive. Since vegetation changes appearance
due to plants growth, it is difficult to track reference points in the agricultural
environment. Therefore, we investigated the method suggested by one of the
analysed papers to identify time-invariant landmarks in the agricultural field
by extracting the Stem Emerging Point (SEP) from each crop plant.

We developed an application to identify landmarks in the agricultural
field and to use them in a SLAM algorithm. The first component includes
a convolutional neural network for image segmentation and a clustering
module to identify individual crop plants in images taken by the robot. Then,
landmarks consist in the crop plants SEP, computed as the clusters center of
mass. Landmarks can be used by the SLAM algorithm as reference points
for the localization system and to produce a map of the observed crop plants
along the trajectory.

The core component of the application performs 3D localization and map-
ping for an autonomous robot in an agricultural field. It fuses wheel odometry
estimate, GPS readings and landmarks observations into a graph-based op-
timization framework. Localization and mapping can be performed both
online and offline. A graphical interface was adapted to enable and disable
different constraints in the optimization. The main contribution given by our
application is the study of crop rows constraints in the trajectory optimiza-
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tion. Crop rows are represented by 3D Plücker lines interpolating plant SEPs
observed by the robot.

The performance of the developed system was assessed by computing the
RMSE relative to the ground truth trajectory. The results showed that the
algorithm achieves a performance aligned with the state of the art, and it is
even better when using a consumer grade GPS sensor. However, we tested the
algorithm on a limited set of data and the robot turn detection method proved
not to be robust when the yaw estimate provided by the wheel odometry is
not reliable. This also affects the performance of the environment mapping,
which is completely dependent on the identification of crop rows, which in
turn are detected only when a robot turn is successfully identified.

7.2 future works

In this section we propose some future works that may be performed in order
to improve the results obtained in this thesis. The analysis we carried out
in this work is aimed at improving SLAM estimation. However to make the
SLAM algorithm complete, one more step should be performed: loop closure.
Loop closure consists in recognizing the same landmark when already present
in the map and optimizing the robot trajectory and the environment map
considering that the robot already observed the same reference point. Thus,
the trajectory ’closes’ and another optimization is performed.

Moreover, we propose the development of some features that may improve
the results.

• Improving and testing the analytic formulation of the Jacobians of the
error for edges in g2o which should speed up the computations.

• Exploring alternative clustering methods to speed up the computations.

• Improving the SEP detection method, which currently relies on the
domain assumption that weeds have narrower shape relative to crop
plants and so they are discarded by the clustering algorithm. However,
if the relative shapes are different from what we expect, the clustering
algorithm is not guaranteed to identify the correct clusters.

• Integrating different sensor measurements in the SLAM optimization
algorithm. An example could be the integration of IMU readings to
better detect the curves in the trajectory and the change of crop rows.

In conclusion, we think that precision agriculture is gathering attention, but
the full transition to Agriculture 4.0 is still far away to reach. Several studies
on agricultural 3D localization and mapping exist, however, the complete
solution will rely also on the future scientific and technological advancements.
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We foresee that sensors will become more accurate and affordable and hard-
ware will support faster computations, therefore the optimization algorithm
will be able to take into consideration a larger number of constraints while
still being real-time. The advancements will allow to address the issues which
arise due to the specific environment and gradually solve many of those.

Agriculture will face critical challenges in the future, because of the pop-
ulation growth. It will be able to correspond the demands only when the
problem will be addressed systematically. Farmers which will adopt techno-
logical innovation will be the ones able to satisfy the request, but way more
investment is needed. To widespread the use of sophisticated technological
tools it is necessary to make them more affordable. This can be achieved
only by a great effort in the study of the technological systems supporting
agriculture, whose results are entirely based on a precise localization and
mapping component.
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