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1. Introduction
Nowadays there are far more electronic devices
than human beings on Earth. These devices
are usually powered using lithium-ion batter-
ies. Lithium-ion batteries are widely employed
due to their numerous advantages, such as high
output power, extended cycle life, high energy
density, and lower environmental impact. These
batteries find applications in diverse industries,
including electronics, aerospace, and military.
However, each of these batteries can assume
completely different behaviors from their peers
based on usage, charging, and many other fac-
tors, leading to potential harm, unreliableness,
and other major potential issues depending on
the importance and purpose of the given de-
vice being powered. Ensuring batteries operate
safely and effectively relies on the implementa-
tion of a Battery Management System (BMS).
This system is pivotal in precisely assessing bat-
tery conditions, maximizing their efficiency, and
adeptly identifying potential issues, thereby un-
derpinning the core functions of battery man-
agement. Building on the essential role of a
BMS, its ability to extend battery life and en-
sure safety is further enhanced by accurate pre-
dictions of the Remaining Useful Life (RUL).

Nowadays, these predictions are given by ever-
advancing data-driven models [5] that are sur-
passing the previously used physical-based mod-
els. It is not just about being able to predict
the RUL for a specific set of batteries; equally
important is developing a model that maintains
reliable predictive performance even when ap-
plied to different sets of batteries than those it
was initially trained on. This would broaden the
scope of the BMS, enabling quicker deployment
across various applications and contributing to
cost efficiencies.

2. Aim of the Thesis
Our research aims to contribute to expedited de-
ployment and cost reduction in the production
and maintainment phase of electronic devices by
building one model for RUL prediction trained
on one specific dataset of batteries, that is ca-
pable of delivering good performances on a dif-
ferent set of batteries while accounting for an
unavoidable loss due to unpredictability and di-
versity in battery behavior. It is also within
our scope to portray a comparison of different
methodologies that could be adopted to tackle
domain adaptation in this specific context.
We employ a sophisticated neural network
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architecture, specifically utilizing a Convolu-
tional Long Short-Term Memory Neural Net-
work (ConvLSTM) with an attention layer, sup-
ported by a Domain Adversarial Neural Network
(DANN) [1] in the training phase. This the-
sis introduces the DANN to align feature rep-
resentations across different domains, effectively
harmonizing feature distributions. To evaluate
the effectiveness and versatility of our proposed
methodology, we leverage the MIT-Toyota 2019
collaboration dataset, composed of a diverse set
of batches and recognized as the most extensive
lithium-ion batteries dataset publicly available
at the time of our study [5]. In our work, we
were able to assess strong performances using
both transfer learning and DANN, allowing us
to present an interesting comparison of the re-
sults from each method. Our research holds sig-
nificant practical value, offering substantial ad-
vancements in RUL estimation methodologies
for lithium-ion batteries, crucial for their safer
and more efficient use. Notably, our emphasis
on addressing challenges associated with domain
adaptation introduces a pioneering approach in
the field, as domain adversarial learning has not
been explored yet in the context of RUL esti-
mation for lithium-ion batteries [3]. The use of
DANN offers a distinctive advantage, as its un-
supervised learning approach eliminates the de-
pendency on explicit labels from source or target
domains. This is particularly valuable in scenar-
ios where labeled data is limited or costly, fa-
cilitating practical implementation in real-world
applications.

3. Problem Description
The State of Health (SoH) of a battery quanti-
fies its current health and performance in com-
parison to its pristine state when new. It is ex-
pressed as SoHk = Ck

C × 100 for any cycle k,
where Ck is the battery’s capacity at cycle k
and C is the original capacity. The SoH value
ranges from 0 to 100, reflecting the percentage
of the battery’s residual health.
The RUL at a given cycle k is defined as the
number of cycles remaining until the battery
reaches its End of Life (EoL). This is calculated
as RULk = cycleEOL − k. For lithium-ion bat-
teries, the EoL is typically identified when the
SoH falls to 80% or lower.
Our estimation involves predicting the RUL

based on data [5] such as current capacity and
cell temperature, which are omnipresent features
in battery datasets, and BMSs.
In Remaining useful life estimation acquir-
ing sufficient battery aging data is a significant
hurdle. This difficulty arises from the complex
nature of battery operations and the extensive,
labor-intensive nature of battery aging experi-
ments. Consequently, available datasets often
include only a limited number of batteries, ne-
cessitating the development of models based on
sparse data. This scenario leads to the inher-
ent challenges associated with training and test-
ing models on datasets that exhibit varying data
distributions.
Domain adaptation and transfer learning emerge
as crucial strategies in RUL estimation, address-
ing the gap between limited data availability and
the need for accurate predictive models. The ul-
timate goal is: to train a model on a compre-
hensive dataset and ensure its effective perfor-
mance on a smaller target dataset. The choice
between domain adaptation and transfer learn-
ing hinges on the specific attributes of the target
dataset, especially the presence or absence of la-
beled data.
Domain adaptation involves training a model
on a source domain, characterized by a substan-
tial dataset, while integrating elements of the
target domain data into the training. This ap-
proach enables the model to adapt to the unique
characteristics and patterns of the target do-
main. It operates under the assumption that
the source and target domains differ primarily
in their data distributions and that a single hy-
pothesis with minimal error is applicable across
both domains.
Transfer learning, on the other hand, empha-
sizes the use of pre-trained models or their com-
ponents. It involves transferring knowledge from
a source task to a target task, with fine-tuning as
a crucial element. Fine-tuning allows the model
to adjust to the specifics of the target domain
without necessitating complete retraining from
the ground up.
Domain adversarial neural networks have
emerged as an innovative approach in this field.
DANNs aim to design a network’s hidden lay-
ers to learn representations that are predictive
of source labels while remaining neutral regard-
ing the data’s domain origin. It involves train-
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ing a neural network for dual objectives: accu-
rate label prediction in the source domain and,
through adversarial learning, ensuring that the
feature representations do not favor any specific
domain.
Despite these advancements, the literature re-
veals limited exploration of domain adversarial
learning applied to RUL estimation for batter-
ies. Our research seeks to bridge this gap. We
aim to develop a model, informed by the DANN
methodology [1], that maintains high accuracy
across various deployment scenarios, thus ad-
dressing the challenges of limited data diversity
in battery RUL estimation.

4. Features
In our study, we propose a set of features derived
from battery aging tests. These features are
universally applicable and not tied to a specific
dataset, enabling the application of our model
across various datasets and under different con-
ditions. The set includes the following key fea-
tures:

• Discharge Capacity: This is the maxi-
mum discharge capacity of the battery at
the cycle in question. It serves as an indi-
cator of the battery’s capacity degradation
over its lifespan, reflecting how the battery’s
ability to hold charge diminishes with use
and it is measured in milliampere-hour.

• Cycle Number: This represents the num-
ber of charging and discharging cycles the
battery has undergone. It provides insight
into the operational age of the battery, in-
dicating how extensively it has been used.

• Temperature: The average temperature
during the cycle, measured in degrees Cel-
sius. Lithium-ion batteries are particularly
sensitive to temperature fluctuations, mak-
ing this a critical factor in assessing their
health and performance.

These features collectively offer a comprehensive
view of the battery’s condition and are instru-
mental in our model’s ability to evaluate battery
health and predict its RUL under varying oper-
ational circumstances.

5. Model
In this research, we introduce a model character-
ized by a ConvLSTM model, enhanced with an
attention mechanism for effectively predicting

the RUL of batteries. The input to the model is
a sliding window of adjustable size, encompass-
ing features from the most recent cycles. The
model’s architecture is structured in three main
components:
• Convolutional layers: convolutional

layers are crucial for processing high-
dimensional data. They efficiently extract
and learn complex features from inputs like
cycle numbers, temperature, and discharge
capacity, making them vital in our deep-
learning architecture.

• LSTM layers with attention: LSTM
layers are adept at recognizing long-term
patterns in sequential data. The integration
of attention mechanisms allows the model
to focus on specific segments of the se-
quence. This feature is particularly bene-
ficial for understanding sequence-based in-
sights in our model.

• Fully connected layers for regression:
these layers process the features extracted
by previous layers to produce the final out-
put. In our model, they perform regression
tasks, predicting continuous values based
on the processed input, thus determining
the RUL of the battery.

These modules form the backbone of our model,
enabling it to reliably predict the RUL of bat-
teries in varying operational scenarios.

5.1. Hyperparameter Tuning
The selection of appropriate hyperparameters is
fundamental to the performance of deep learn-
ing models. Manual tuning can be cumbersome,
and time-consuming, and may not always lead
to good results. Automated tuning tools not
only save time but also employ sophisticated al-
gorithms to explore a broader range of hyperpa-
rameters more efficiently than manual tuning.
Among these tools, KerasTuner stands out as
an advanced method specifically tailored for the
hyperparameter tuning of deep learning models
implemented in Keras. With its array of features
and its alignment with the Keras ecosystem, it
emerged as the logical choice for ensuring our
model reached its optimal performance. We em-
ployed Keras Tuner for systematic optimization,
utilizing random search, Bayesian optimization,
and hyperband strategies, with hyperband that,
despite its longer search times, proved more
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effective due to its ability to rapidly identify
promising hyperparameter configurations.

6. Domain Adversarial Neural
Network

The core idea of DANNs is to train a network in
such a way that it cannot distinguish between
source and target domain data, thereby ensur-
ing that the features it learns are equally appli-
cable to both. A DANN consists of three pri-
mary components: a feature extractor, a regres-
sor, and a domain classifier. Its strength lies in
ensuring the feature extractor produces features
beneficial for label prediction, while also being
domain-agnostic. We can see the structure in
Figure 1.
• Working mechanism: DANNs operate

by integrating a domain classifier with a
feature extractor and label predictor. The
domain classifier, connected to the feature
extractor via a gradient reversal layer, ac-
tively works against the feature extractor to
ensure that the extracted features do not fa-
vor any particular domain. This is done by
reversing the direction of the gradient dur-
ing backpropagation from the domain clas-
sifier.

• Application in RUL estimation: the
utility of DANN in RUL estimation lies in
its ability to handle variations between dif-
ferent data sources, a common challenge in
battery life prediction.

• Implementation in thesis: in our thesis,
the domain adversarial neural network is di-
rectly connected to our previous model de-
scribed in Section 5. Empirical observations
indicate that connecting it to the output of
the encoder in the feature extractor layer
improves overall performance. The domain
classification was effectively achieved using
the sigmoid activation function.

• The training strategy: it involves an
adversarial approach, balancing the mini-
mization of classification loss while maxi-
mizing domain distinction loss. We fine-
tuned the model’s domain adaptation capa-
bilities, through a λ parameter that affects
the weight of the domain classifiers inverted
gradient, for the efficient learning of the net-
work.

Figure 1: DANN basic implementation.

7. Experiments
7.1. Datasets
The MIT-Toyota dataset was collected for a
joint study between the Massachusetts Insti-
tute of Technology and Toyota Motor Corpora-
tion. The dataset is composed of 124 commercial
lithium-ion batteries that were cycled to failure
through a fast charge policy to obtain the rele-
vant data.
Since the objective was to have enough diverse
data for the study, different charging policies
have been applied. The conjunction of this
factor with the strong nonlinearity of battery
degradation led to a very heterogeneous dataset,
where the life duration of batteries ranges from
150 to 2200 cycles. The dataset is divided
into three batches, representing approximately
48 cells each. Each batch was defined by a
batch date, the date the tests were started. The
dataset has been sliced in three because the same
testing equipment was used for all.
We simply kept the division in batches and used
categorical numbering to identify them.
Each batch ends up having a relevant difference
from the others in the feature’s distribution,
making the unique dataset more similar to 3 di-
verse datasets combined. This poses the chal-
lenge and the opportunity of training a model
on one or two batches and applying the domain
adaptation techniques. The diversity previously
mentioned is reflected in the different distribu-
tions of the adopted features: cycles to failure,
average temperature, discharge capacity. We can
see an example of such diversity in the distribu-
tion of life cycles in Figure 2
In the preprocessing phase, the MIT Toyota Re-
search Group initially removed cells not reaching
80% capacity. We further cleaned the data by
correcting outliers and applied a smoothing algo-
rithm to the charge-discharge curves. Our anal-
ysis focused on the last 800 cycles, prioritizing
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Table 1: Performance on target domain (Batch
1) with a model trained on Batch 2-3.

Metrics MAE RMSE MAE 50
test b2-b3 29.6 52.6 4.5

test b1 175.2 183.7 14.3

Table 2: Performance on target domain (Batch
1) after training on batches 2-3 and fine-tuning
for 10 epochs on batch 1.

Metrics MAE RMSE MAE 50
test b1 108.1 104 5.4

data toward the end of the batteries’ operational
life for accurate RUL estimation. Our research
also underscored the efficacy of traditional data
augmentation techniques, like jittering, in en-
hancing model performance [2].

7.2. Transfer Learning and Fine-
Tuning

Our study employed transfer learning to adapt
our model to the domain-specific characteris-
tics of lithium-ion battery datasets, training ini-
tially on two batches. The fine-tuning process
is conducted in two phases, aimed at refining
the model’s alignment with the third batch’s
data. The initial fine-tuning phase, involving
10 epochs, led to notable performance improve-
ments. However, an extended phase of 20 epochs
did not yield further significant enhancements,
indicating the model’s adaptation capabilities
right from the initial phase. The changes in
metrics across different stages of the study are
illustrated in Table 1 to Table 3.
Transfer learning proved effective in our study

Table 3: Fine-tuning extended results, target
domain (Batch 1) after +20 Epochs of fine-
tuning.

Metrics MAE RMSE MAE 50
(10 epochs) 108.1 104 5.4
(30 epochs) 108.9 104 4.6

due to its ability to leverage pre-trained mod-
els on the source domain, exploiting shared un-
derlying relationships with the target domain.
However, fine-tuning, especially with limited la-
beled data, excelled in adapting to the unique
characteristics of the target domain, resulting in
enhanced predictive accuracy.

7.3. DANN Training
The primary goal in this phase was to minimize
prediction loss while simultaneously maximizing
domain distinction loss, a process managed by
the gradient reversal layer and its λ parameter.
This approach led the feature extractor to pro-
duce domain-invariant features. A similar ap-
proach was pursued in [4] but with a slightly
different model.
While trying to optimize DANN’s performance,
we tested various approaches for tuning the λ
parameter. Starting with a fixed λ proved inef-
fective, as did dynamically modifying it during
training. However, gradually decreasing λ from
a high to a low value over time successfully led
to model convergence.
A critical design decision was the attachment
point of the domain classifier. After extensive
testing, it was connected to the output of the en-
coder, excluding the attention and decoder lay-
ers. This choice was informed by the literature

Figure 2: Distribution of the number of cycles to failure for each batch.
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and empirical-based considerations, as the en-
coder’s output was most suitable for our time
series prediction task.

Table 4: DANN trained on batches 2-3.

Batch RMSE MAE MAE 50
source b2-b3 90.6 64.8 14.6

target b1 166.1 124.4 10.0

7.4. Comparison
Upon training, the DANN’s performance was
juxtaposed against two other strategies, namely
transfer learning and fine-tuning. The results
presented in the above tables reveal that the
performance is quite similar across the differ-
ent methodologies adopted, with the fine-tuning
model emerging as the leader in performance,
closely followed by DANN and then basic trans-
fer learning.

8. Conclusions
In this thesis, we critically examined domain
adaptation in RUL estimation of lithium-ion
batteries, with a focus on employing a DANN.
Our study diverged from traditional transfer
learning by leveraging DANN’s unsupervised
learning capabilities to align feature distribu-
tions across different domains. This method
showed promise in domain adaptation, particu-
larly in its ability to generalize without needing
explicit labels.
However, we observed that in scenarios with
limited data, such as our case study involv-
ing only few battery cells for the target do-
main, fine-tuning outperformed DANN. This
was due to fine-tuning’s capacity to adapt more
closely to specific characteristics of the target
domain, whereas DANN’s emphasis on domain
invariance could potentially overlook important
domain-specific nuances.
Furthermore, we developed a systematic ap-
proach for hyperparameter optimization in our
ConvLSTM model, which significantly improved
prediction accuracy and efficiency.
The findings from our study underline the criti-
cal role of deep domain adaptation in enhancing
the accuracy of RUL estimation, while also cau-
tioning against the indiscriminate application of
transfer learning due to potential performance
losses.

Future directions for this research could in-
clude exploring new data augmentation meth-
ods, possibly using Generative Adversarial Net-
works (GANs) for synthetic data creation [2],
or investigating the applicability of transformer
architectures in battery health management, an
area where they have not been extensively used
but hold significant potential [4].
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