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Abstract: Smart Grids are the evolution of the traditional electric grid and allow
a two-way flow of electricity and information between different actors. At the edge
of this network, consumers can produce energy with photovoltaic panels and satisfy
their energy consumption needs autonomously. Due to the intermittent nature of
solar energy production, these units are characterized by periods of energy surplus
and others of energy deficit. To solve this problem, Lithium-Ion battery packs are
used to store energy in excess for later use and reduce expensive energy requests to
the electric network. However, these accumulation systems are characterized by a
degradation process that reduces their capacity and performance. In this work, we
develop a Reinforcement Learning controller optimizing energy management policy
by balancing the use of the battery packs and the energy network to reduce eco-
nomic losses. More specifically, we design a system to learn a storage/consumption
strategy able to balance between the degradation of the battery and the economic
value of trading energy. The work resulted in a policy allowing to reduce the eco-
nomic loss of 15% w.r.t. state-of-the-art controllers.
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1. Introduction

A Smart Grid [1] is an electric grid integrated with Information Technologies that allows to monitor, manage
and repair the electric network, resulting in more efficient energy distribution and overall greater reliability
and availability of the electric systems. Historically, the electric grid has had a simple structure, and it can be
divided into four parts:

• Energy Producers: a low number of energy producers generate electric power with chemical or nuclear
plants and make it available in the transmission grid. The plants are characterized by monumental
dimensions due to the high costs linked to the gathering of raw materials and the exploitation of economies
of scale. A single plant is responsible for a vast number of users.

• Trasmission Grid : efficiently transfers energy over long distances. This is done by converting and stepping
the voltage up to high values.

• Distribution Grid : distributes and delivers electricity to the final users. It should keep up with the energy
demand and monitor energy uses.

• End Users: consume passively electric energy.
A Smart Grid enhances the functionalities of a traditional grid by leveraging information technologies. The
main change of paradigm is given by the support of a two-way flow of electricity and information. Indeed, it
can detect and react to events occurring in the grid, such as power generation, transmission, distribution, and
consumption. In order to achieve this, the Smart Grid is composed of loosely coupled control subsystems that
exchange information and interact with each other.
In this setting, end users can produce and sell energy for monetary compensation and even form independent
communities called micro-grids that can disconnect momentarily from the grid and sustain their consumption
autonomously. In the case of a failure at the edge of the network, end-users and energy communities can help
the Smart Grid to solve the energy problem by intervening promptly and removing the burden from the energy
producers. In this way, the grid infrastructure can be designed for lower peaks and is, therefore, less expensive.
In this context, solar energy production becomes a valid and cheap alternative to traditional sources such as
fossil fuels [2]. The lower entrance barriers w.r.t. the thermal and petrol-chemical sectors open the possibility
of producing energy at different scales, from domestic to industrial use cases. This kind of energy production
has the advantage of being a source of inexhaustible free energy, but its availability is not controlled by market
conditions or third party actors. However, solar energy comes with its own limitations. Its availability varies
highly due to weather changes, and, therefore, it is challenging to predict its future availability, even relying on
weather forecasting services.
Notice that, in the Smart Grid, end users can install photovoltaic panels for a variety of reasons. For example,
one could reduce energy consumption from the grid or generate revenue by exploiting fluctuations in energy
prices. Energy production and peak user demand are not aligned, and therefore, accumulation systems are
used to store energy surpluses to meet future demand. The use of accumulation systems greatly enhances the
possibility of lowering energy costs and reaching more stable energy independence.
In a domestic environment, controllers are designed to decide how to store in the accumulation system the
energy generated by the PV. These controllers generate a profit by meeting the domestic system energy demand
with the previously generated energy, and by selling energy in excess to the Smart Grid. These behaviours
need to take into account three main challenges. The first one is Energy Arbitration. An arbitration is the
purchase and sale on a particular asset aimed at generating a profit from variations in the listed price of the
asset. In order to perform arbitration, the controller needs to make predictions on future market prices, and
understand which are the most profitable moments for selling energy. Weather Forecasting is fundamental when
dealing with solar energy production. Indeed, a controller should be able to predict energy availability: this
allows the house to never depend on expensive energy purchased from the electric grid. The last challenge is
the Degradation that accumulation systems are subject to. Indeed, they are mainly composed of Lithium-Ions
battery packs, a very efficient and high-energy-density battery technology, and are affected by a degradation
process that lowers their capacity and efficiency over time, caused by the natural aging that each battery incurs,
environmental impacts (such as storing conditions), and the dynamic loading. Battery degradation is a highly
non-linear process, which progresses at different rates in different moments of the life of the battery.
Therefore, the profit of energy production depends on conflicting factors: a controller should be able to store
energy for future uses, while avoiding too intensive battery cycling. A battery purchase is very burdensome,
and it is crucial to find the best way to control the battery and generate as much profit as possible.

Original Contribution The novelty of this work is the design of a controller to solve simultaneously
the three challenges above mentioned, with a focus on battery degradation management. Long-term profit
maximization is achieved by taking into account the revenue generated with energy arbitrage and the cost
caused by battery degradation. The proposed method is able to amortize the battery cost on an unknown time
horizon, since battery life is heavily influenced by cycling conditions. The controller also performs weather
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forecasting by taking into account the daily and annual periodicity. Finally an interpretation of the behaviour
of the controller is also discussed, allowing to understand better which are the relevant physical quantities that
contribute in the generation of a higher profit. These considerations allow the controller to generate up to 15%
more in profit with respect to state of the art techniques.

Thesis Structure The thesis is organized in the following way. Section 2 contains the theoretical back-
ground required to understand the remainder of the thesis and discuss the existing literature on the topic. The
problem formulation and the solution are presented in Section 3 and 4 respectively. Finally, Section 6 concludes
the thesis.
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2. Background and Related Works

In this section we present the theoretical background on the lithium-ion batteries, focusing specifically on models
for the degradation of the battery, and an algorithm to evaluate the battery consumption. Finally, we provide
the basis of Reinforcement Learning, which will be employed in the following sections to learn optimal battery
management policies.

2.1. Lithium-Ion Batteries

Chemistry Lithium-Ion batteries are used to convert electricity into chemical energy and vice versa. This
technology allows great flexibility, since energy surplus can be stored in the battery and it allows to create
compact and portable electronic devices. A battery cell is a stacking of three main components: the anode,
the electrolyte, and the cathode [3]. The anode is usually composed of a metallic element that can be easily
oxidized and can produce ions and electrons. Once electrons are freed with a chemical reaction, they are
conducted through the metal body and the anode becomes negatively charged. The metallic element is infused
with Lithium ions. Lithium has the most negative reduction potential and it is also able to generate great
electro-chemical capacities, due to its low atomic weight. This two factors allow to design light-weight, energy
dense batteries with very high anode oxidation. A battery electrolyte is used to separate the anode from the
cathode, so that they don’t interact directly. However, it is made of a porous material that allows Lithium ions
to pass through it. The cathode is where a reduction reaction consumes electrons and positive ions, releasing
energy. It is made of a material that allows high energy reactions and consequently high voltages.
During a battery discharge, electrons leave the battery from the anode, and are discharged on an external loaded
circuit. The Lithium ions then migrate through the electrolyte to the cathode, generating a current inside the
battery. These reactions are generally catalyzed with the help of a solvent that is able to dissolve the Lithium
salts and produce a solution with a high ionic conductivity.

Characterization The main physical quantities that characterize a battery are State of Charge (SoC),
Voltage (V), Current (I) and State of Health (SoH), formally defined as follows:

Definition 1 (SoC). State of Charge (SoC) σt ∈ [0, 1] is the amount of battery capacity currently available
defined as [4]:

σt =
Ct

Ct,max
, (1)

where Ct is the remaining charge in the battery, and Ct,max is the fully charged battery capacity at time t.
Ct,max depends from time since batteries are subject to a degradation process that lowers its maximum capacity
over time. SoC is a pure number.

The SoC evolves through time following the equations:

σt = σ0 −
1

Ct,max

∫ t

0

Itdτ,

σt+1 = σt −
It∆t

Ct,max
,

(2a)

(2b)

where It is the current applied on the battery at time step t. Notice that Equation (2a) is the integral form and
needs the starting condition σ0, while Equation (2b) expresses the SoC with a discrete differential time form.

Definition 2 (Voltage). Voltage (V) is the difference in electric potential between two points, which is defined
as the work needed per unit of charge to move a test charge between the two points. The unit of measurement
is Volt.

Voltage is a fundamental characteristic of a battery and is determined by the chemical characteristics of the bat-
tery. A battery is rated at a given nominal voltage Vmax. Multiple models can be used to have an approximation
of the voltage exposed by the battery. VOCV , the OpenCircuit Voltage, is the difference of electric potential
between the two terminals of the battery when no load is present, and therefore the battery is disconnected
from any circuit. VOCV has a polynomial and exponential dependency with SoC:

VOCV = a0 + a1σ + a2 ∗ σ2 + a3σ
3 + b0e

b1σ. (3)

Definition 3 (Current). Current (I) is defined as the number of charges passing through a point in a unit of
time. The unit of measurement is Ampere.
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Figure 1: Relationship between cycle number and SoH [12].

Current directly influences SoC values, as already showed in Eq. (2), and is linked to voltage with the following
relationship:

Pb = V I, (4)

where Pb is the power generated or absorbed by the battery.

Definition 4 (SoH). State of Health (SoH) measures the remaining capacity of a battery and is defined as:

SoHt =
Ct,max

C0,max
, (5)

where Ct,max is the capacity at time t and C0,max is the rated capacity of the battery. SoH is a pure number.

Batteries are subject to a degradation process that lowers their overall capacity overtime, and the real capacity
quickly moves away from the nominal value. SoH evolution is a highly non-linear process that is caused
by a variety of factors. Most of the degradation is concentrated at the beginning and end of the battery
life, with a heavy slow down in the battery degradation rate during its mid-life. Degradation is caused by
irreversible reactions between the anode and the electrolyte. Capacity fade is a consequence of the irreversible
consumption of lithium ions that cause the creation of the Solid Electrolyte Interphase (SEI), a layer of non-
reactive compounds that limits the amount of Lithium ions that can be exchanged between anode and cathode.
Degradation Dt can be also used to describe the battery health:

Dt = 1− SoHt. (6)

Modelization Parameters estimation such as SoC and SoH are still an open problem [5]. Multiple works
have been proposed, and they can be divided into 3 main groups:

• Physics Based electro-chemical models: the characteristics of the battery are expressed with the use of
static and dynamic equations. The main drawback of this techniques is that they are not suitable for real-
time application due to their large number of unknown variables. Moreover, they run into over-fitting or
local optimization problems. They also need a very detailed model, otherwise the simulation results may
not be truthful. Examples are the pseudo-two-dimensional models (P2D) such the work in [6], that laid
the foundations for this type of modelling, and the single-particle model (SP) [7], that is more rigorous
and accurate but has no analytical solutions.

• Electrical equivalent circuit models: Battery behaviour is described through electrical components. The
main advantage of this approach is that it simplifies the structure of the battery and allow fast and
efficient computations , allowing real-time simulation. The simplest circuit model is the Rint model [8],
which is composed of an ideal generator in series with a resistor, while a more complex modelling can be
achieved by considering a first-order resistor-capacitor (RC) model [9, 10].

• Data-driven models: This models [11] use a regressor trained on real-life or synthetic data to estimate
the parameters. However, the dataset can at the same time give great flexibility but easily influence the
results due to over-fitting.

Degradation Model A degradation model allows to simulate the dynamics that causes a battery to loose
its capacity over time. This work uses the model proposed by Xu et al. [13], a data driven model that combines
the theoretical considerations about Lithium-Ion battery chemistry with experimental observations. It has the
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main advantage of being applicable to different operating conditions. Battery degradation is a non-linear process
that depends both on time and stress cycles. Indeed, it is linked to factors such as charging, discharging, time
and temperature, but also its current state of life.
These qualitative considerations can be formalized in two stress functions: calendar and cycling ageing. More
specifically, calendar ageing is the degradation stress that a battery suffers independently from its use. It
depends on the operational life of the battery, the mean SoC and the mean temperature at which it is preserved.
Instead, cycling ageing is caused by the direct use of the battery. Every cycle is modeled as a single stress event
independent from the others, and the accumulated degradation is the sum of the capacity reduction caused
by each cycle. The overall stress fd is a linear combination of calendar and cycling ageing. Formally:

fcal = ft(t, σ̄, T̄ ),

fcyc =

N∑
i

nifc(δi, σi, Ti),

fd = fcal + fcyc,

(7a)

(7b)

(7c)

where σ̄ and T̄ are respectively the mean SoC and temperature at which the battery as been stored, t is the
age of the battery. In Equation (7b), N is the number of equivalent cycles, δi , σi and Ti are the Depth of
Discharge, mean State of Charge and Temperature of the i-th cycle, and ni indicates whether cycle i is a full
of half cycle. These values are computed through the a cycle counting algorithm that converts irregular SoC
profiles into a sequence of standardized cycles.
Battery degradation can be then expressed as:

D = 1− αseie
−fsei − (1− αsei)e

fd ,

fsei = βfd.

(8a)
(8b)

Equation (8) suggests that the degradation is non-linear with respect to the overall stress factor fd. Indeed,
a battery suffers from high degradation rates at the beginning of its life, then it meets a plateau and then the
degradation increases rapidly when it reaches its end of life. It also considers the fast degradation cause by
the SEI, whose formation rate decreases when a stable film has been formed. Therefore, the equation can be
divided into two component: one that takes into account the capacity loss caused by the SEI formation, and
one that considers capacity fading at a rate proportional to the battery life. Equation (8b) indicates that the
SEI formation is proportional to the battery used. These formulas only apply to fresh batteries.

2.2. Rainflow Cycle Counting

A cycle counting algorithm is used to extract from a loading history a series of cycles. This algorithm is used
in physical systems subject to hysteresis and degradation and it associates to each extracted cycle a closed
stress-strain hysteresis loop. The rainflow algorithm [15, 16] name is derived from a analogy between how this
method works and the rain falling on a pagoda roof. The cycles are computed in the following way:

1. The loading profile is rotated 90 degrees such that the time axis is vertical pointing downward.
2. From each inner extremity, a flow of rain is generated.
3. The rains keeps pouring down the profile until:

(a) it falls on a previous wider cycle;
(b) it meets a previous flow falling from above;
(c) it falls down the roof.

4. Each cycle is identified by pairing up the fall with same characteristics.
In this work, the rainflow algorithm is applied to the SoC profile of a Lithium-Ion battery. The output are N
cycles, each characterized by its mean SoC, its Depth of Discharge, the starting time and the cycle duration. An
example of the output provided by the rainflow algorithm is presented in Figure 2. The plot has been rotated,
with the y axis oriented left to right. On this axis the variable associated to the stress variable is represented.
If only ascending cycles are considered, cycle 0− 1 stops at the second roof, since point 2 has a lower value of
point 1. The same holds for cycles 2-3 and 4-5. Cycle 8-9 is interrupted by the falling stream of rain since the
previous cycle 6-7 start before point 8. Cycle 6-7 is the deepest and therefor is never truncated by another flow.
The same consideration can be applied to descending cycles.

2.3. Reinforcement Learning

Machine Learning (ML) [17] is the discipline that studies the algorithms and techniques that allow a program to
learn from experience and become proficient in a specific task using that experience. This field can be divided in
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Figure 2: Visualization [14] of the rainflow cycle counting algorithm.

Figure 3: The agent-environment interaction in reinforcement learning.

three main groups called Supervised Learning, Unsupervised Learning and Reinforcement Learning (RL). While
Supervised learning is based on inductive inference and operates with labelled data, and Unsupervised Learning
analyzes and clusters unlabeled data, Reinforcement Learning (RL) [18] is the discipline that studies sequential
decision making. A RL agent is trained through interaction with the world, so that it finds the best sequence of
actions that maximizes the cumulative value of a signal called reward. In what follows, the background needed
to formalize the problem of controlling an unknown energy management system is formalized.

Agent-Environment Interface The Agent-Environment Interface is an abstraction used to formulate
RL problems. The decision maker is called agent. Everything external to the agent is called environment, and
the agent interacts with it. Agent and environment communicate in a closed loop: every decision step, the agent
measures the environment and performs an action based on that measure. After an action, the environment
emits a reward and the system evolves to the next state. The agent has the goal of maximizing the reward
coming from the environment by creating a mapping between states and actions. This framework allows to
describe multiple settings thanks to its high level view: the state can be composed by a combination of physical
variable or categorical concept, and actions can coordinate an actuator or they can be a high level concept.
States can also be discrete or continuous, and can encode characteristics of the world and model memory of
past events. The mathematical model that best suits this abstraction is the Markov Decision Process (MDP).

Markov Decision Process Formally, an MDP M is defined as a tuple:

M := ⟨S,A,P(s′|s, a), R(s, a), γ, µ0⟩, (9)

where:

7



• S ⊆ Rn: set of states, which contains all the possible states characterizing the system under analysis.
• A: set of actions that the agent can perform. The set of possible actions may depend on the current

state.
• P : S×A×S −→ [0, 1]: state transition function, specifing the probability to go to state s′ for each generic

state/action (s, a) pair. Depending on the characteristics of this function, it can represent deterministic
or stochastic environments.

• R : S×A −→ R: reward function, defining for each state/action pair (s, a) the expected immediate reward
obtained.

• γ ∈ [0, 1]: the discount factor, which describes how much the controller weights future rewards.
• µ0 ∈ [0, 1]|S|: Distribution of initial states. It describes for each state s the probability to start an episode

in that state.
This abstraction is used to model the interaction of the agent with the environment. This interaction may have
a fixed or maximum length, and, therefore, the agent is performing an episodic task. On the contrary, if the
interaction goes on for an undefined amount of time, the task has an indefinite time horizon. In this last case,
the cumulative reward is not bounded and will diverge for environments without absorbing states that stop
the agent-environment interaction. The discount factor γ is used to avoid this problem and also to model the
importance of future reward for the agent. A low γ will result in an myopic agent that will learn to maximize
immediate rewards and, while a high value of γ will emphasize the weight of future reward, and the agent will
be farsighted.1
Given this framework, the goal of the agent is to maximize the cumulative discounted reward Gt:

Gt =

∞∑
k=0

γkrt+k+1. (10)

A very important characteristic of an MDP is the Markov property, expressed as follows:

Pr(st+1|s0:t, a0:t) = Pr(st+1|st, at). (11)

The Markov property states that the probability of falling in the next state does not depend on the history of
the states visited by the agent and the actions performed, but is only affected by the last state and the last
action.
All reinforcement learning algorithms try to estimate value functions, which quantify how good is for an agent
to be in a certain state s and perform a certain action a. The values of the value function are strictly linked
to how the agent is choosing its action. This behaviour is called policy. Formally, a policy is a mapping
π(a|s) : S × A → [0, 1] from states to probability of playing every action. The state-value function of a state s
under the policy π is defined as:

vπ(s) = E
[ ∞∑
k=0

γkrt+k+1|st = s
]
. (12)

Similarly, the action-value function, defined as the cumulative discounted reward gained after playing action a
in state s and then keeping following policy π, is defined as:

qπ(s, a) = E
[ ∞∑
k=0

γkrt+k+1|st = s, at = a
]
. (13)

The objective of an algorithm is to encode this functions in some fashion, possibly using a much lower number
of parameters with respect to the number of states, and find the best policy on this encoding.
A fundamental property of these value functions is that they satisfy a recursive relationship called Bellman
equation:

vπ(s) = Eπ[Gt|st = s] =
∑
a

π(a|s)
∑
s′

P (s′|s, a)
[
rt+1 + γvπ(s

′)]. (14)

This equation links the value function of a state to the values of its successor states. It states the the value of
a state is equal to the reward obtained plus the discounted value of the subsequent states. In order to solve
the MDP, we need to find the optimal policy such that the value function is maximized for every s ∈ S. The
optimal state-value function v∗ is defined as:

v∗(s) = max
π

vπ(s) ∀s ∈ S. (15)

1From now on, the value of a generic variable x at time t will be denoted as xt. The history values from time step t1
to t2 will be denoted as xt1:t2
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Optimal policies also achieve optimal action-value function q∗:

q∗(s, a) = max
π

qπ(s, a) ∀s ∈ S, a ∈ A. (16)

This last equation (16) can also be written incorporating v∗:

q∗(s, a) = E
[
rt+1 + γv∗(st+1|st = s, at = a)

]
∀s ∈ S, a ∈ A. (17)

Since v∗ and q∗ are value functions for a policy, they must satisfy the consistency property expressed in (14),
and therefore we can write for both of them the Bellman optimality equations:

v∗ = max
a

Eπ∗

[∑
s′

P (s′|s, a)
[
r + γv∗(s′)

]
, (18)

q∗ =
∑
s′

P (s′|s, a)
[
r + γmax

a′
q∗(s′, a′)

]
. (19)

For finite MDP, the Bellman optimality equations for v∗ (18) has a unique solution. It is actually a system of
equation, one for each state with |S| unknowns. If the dynamic P of the environment is known, than the MDP
optimal policy can be inferred. Once v∗ is known, the optimal policy could be easily determined by selecting
the action that will lead to the next state with the higher value. If instead q∗ is know, one could just find the
action At that maximizes the q-value in the current state s. RL techniques are used when the dynamic of the
system is not known or is too complex to be represented or simulated.

RL Taxonomy There is a variety of characteristics that a method for solving MDP can have. An algorithm
can be online or offline. In the online case, the value-functions updates or the policy updates are performed
after gathering a handful of samples from the environment. This procedure needs a constant interaction be-
tween the agent and the environment, since the update samples are not stored but are requested at will. An
important advantage of these methods is that the learnt policies are very robust, since the agent is continuously
communicating with the agent and can therefore correct its behaviour on the fly in case of drastic changes in
the environment dynamics. In addition, the agent can finely control the amount of exploration and exploitation
needed for a high quality learning. On the other hand, an offline algorithm separates the sampling task from
the policy optimization task. A dataset of state transitions is sampled with a given policy and stored for later
use. Then, the policy optimization is performed on the whole dataset. The main advantage of this technique
is that the algorithm does not need constant access to the environment during the training phase, and the
environment sampling can be formed just once for multiple run of the same algorithm. Since the optimization is
not performed in real time, there is no time constraint on the policy search task, and therefore complex models
can be built.
Another important distinction present in RL literature is the single-objective / multi-objective dichotomy [19].
A single-objective algorithm tries to maximize a single reward function. On the other hand, a multi-objective
algorithm extends the reward function R such that it outputs a multidimensional value r ∈ Rn. Multi-objective
learning is useful when multiple conflicting metrics must be optimized. However, it’s possible perform a scalar-
ization of the multi-objective problem and have all the different metrics expressed as a single weighted sum.
The last important characterization of RL algorithms is based on which part of the learning problem is
parametrized. Value based algorithms try to build a representation of the value functions. In this case, there
is no explicit representation of the policy, but the main advantage is that is possible to link every state to the
value that it has. The policy is than derived by finding the action that maximized the change of state. Policy
based algorithms instead optimize directly the policy, without representing explicitly the value functions. The
policy π(a|s, θ) is optimized and its parameters θ are update by gradient ascent on E

[
Rt

]
. The main advantage

of this approach is that this algorithms model directly the behaviour of the agent rather than retrieve it from
a implicit representation encoded by the value function. This is optimal in the case of states encoding with
a massive number of dimensions: rather that waste parameters in state representation, only the behaviour is
modeled, having a higher sample efficiency. An Actor-Critic algorithm learns both the policy and the state
value function. The term actor refers to the learnt policy that performs action selection, while the critic refers
to the learnt value function. After picking each action, the evaluation of the new state is done by the critic,
that will decide if the action proposed by the actor will have positive effects.

Fitted Q-Iteration Fitted Q-Iteration (FQI) [20] is an off-policy, value based algorithm. It is used to
estimate the action-value function and derive a control policy from a batch of transitions sampled from the
environment. The transitions are sampled with a given policy, whose exploration capabilities will have an effect
on the quality of the estimates of the Q-function.
A transition is a four-tuples ⟨st, at, rt, st+1⟩ such that:
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Algorithm 1 Fitted Q-Iteration (FQI)
1: Inputs: a set of four-tuples F and a regression algorithm
2: Initialization:
3: Set i to 0
4: Let Q̂i be the function equal to zero everywhere on X × U
5: for i < N do
6: i = i+ 1
7: Build the training set TS = {(il, ol), l = 1, ...,#F} based on the function Q̂i−1 and on the full

set of the four-tuples F:
il = (slt, a

l
t)

ol = rlt + γmax
u∈U

Q̂i−1(s
l
t+1, a)

(21)

(22)

8: Use the regression algorithm to induce from TS the function Q̂i(s, a)
9: end for

10: return the trained regressor

• st: starting state of the transition.
• at: action drawn from the exploratory policy.
• rt: reward obtained by the agent after performing the action at in the state st.
• st+1: ending state reached after performing the action at in the state st.

Also, let Qi be the action-value function computed on a time of horizon of i steps.
The idea behind FQI is to build at every training step i an approximation of Qi from the transition dataset
with a supervised learning method. Then, the same regressor is trained on this newly generated dataset, and
this operation is repeated till a termination condition is met. The input of the regressor is the current state
st and the action at, while the target is built plugging the previous approximation of the Q-function in the
Bellman optimality equation. The control policy can be retrieved my maximizing the approximated Q function
with respect to a.
The original work studies the convergence properties of the algorithm while using different classes of tree-base
regression models. In this work the XGBoost regressor is used, due to its high scalability and efficiency.
XGBoost [21] is a tree-boosting algorithm that uses an ensemble of decision trees to perform regression on a
dataset D = {(xi, yi)} using K additive decision trees to predict the output:

ŷi =
∑
k=1

fk(xi) for fk ∈ F , (20)

where F is the space of regression trees. In this type of trees, each leaf corresponds to a continuous score. One
tree at a time, XGBoost trains the K decision trees in order to minimize a loss and greedily adding it to the
ensemble. This process of using previously computed solutions is called boosting. A pseudo-code corresponding
to the FQI algorithm is presented in Algorithm 1.

2.4. Related Works

PV power generation, battery degradation, and energy arbitrage are complex problems often studied individu-
ally. Sui et al. [22] study the problem of scheduling charge, discharge, and resting periods while using multiple
batteries. The proposed scheduler has to keep the SoC of every battery over a given level, and at the same
time, it has to minimize the degradation caused by high temperatures. It models two different characteristics
of a Lithium-Ion battery: rate capacity effect and recovery effect. Due to the former, a battery shows a smaller
overall capacity when discharged at high currents, while the latter influences the battery voltage recovery after
a continuous discharge process. The scheduler takes advantage of these two effects and extends the battery life.
This work considers fixed charge/discharge currents. While this approach simplifies the control problem, it does
not allow the scheduler to choose between different charging or discharging profiles that could achieve the same
performances with lower effects on the degradation. Another shortcoming of this work is that SoH modeling
is influenced only by temperature, and other important factors such as DoD, SoC, and current rate are not
considered. Moreover, no economic considerations are done w.r.t. SoH, and the objective of the scheduler is
just to use for as long as possible a battery while avoiding cycles that generate short-term high degradation.
Huang et al. [23] consider a Energy Storage System (ESS) that manages energy produced from renewable
sources. Solar and wind energy are characterized by periodic patterns that can be predicted by taking into
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account meteorological data. This work ties the decision process by predicting the implants’ energy availability
produced. The system should follow the energy production profile to store the most energy possible and then
sell it when the market conditions are profitable. The controller is designed with an economic perspective: the
objective is to maximize the profit by selling energy while keeping into account the operational constraints of
the ESS. This work, however, does not make considerations about the SoH of the battery packs that compose
the ESS, and therefore does not consider the effect of the degradation on the profit. The ESS is assumed to
have a maximum capacity fixed over time, and it is not taken into account the economic effects of purchases of
new accumulation systems.
We remark that RL has been used in multiple real-world settings such as finance [], autonomous driving [24],
environmental control of dams [25], social networks intention discovery [26]. Regarding its application in the
smart grid setting only a few work are worth mentioning. Cao et al. [27] design a noisy network deep rein-
forcement learning controller that performs energy arbitrage. The objective is to generate profit by storing
or releasing energy from an accumulation system, which is bought only to perform arbitration. There is no
component in the considered system that produces energy, and therefore only exchanges with the electric grid
are allowed. This technique considers past electric market prices history and can make a prediction for the
next 24 hours. Then, based on the prediction, the controller decides which interaction with the grid is most
profitable. The peculiarity of this work is that it considers the effects that battery degradation has only in the
profit estimates. The main drawback of this approach is that profit is computed on short-term (i.e., one-week)
periods and, therefore, does not consider profit for the long time horizon.
Kell et al. [28] use a deep reinforcement learning controller to regulate energy usage in homes with photovoltaic
panels and an accumulation system installed. This technique allows fine-grained control of the current to which
a battery is subject, allowing efficient and precise driving. The main objective of the work is to find the correct
battery size for a given household. However, the technique is based on the weak assumption that no relevant
battery degradation happens in one year, and the controller needs to be re-trained every time a new battery is
considered.
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Figure 4: The domestic environment is composed by the residence of an user and a photo-voltaic panel.
The controller can read the net power consumption Ph,t and decide how much power will be routed to
the battery and to the electric grid.

3. Problem Formulation

Consider the context described in Figure 4. It considers a domestic environment where a photo-voltaic panel
(PV) and and a consumer (i.e., the house) are interacting. The PV produces energy in a periodic way, following
the cycle of the sun, while the habitation will consume energy following the routine of its owners. The domestic
system as a whole will alternate periods in which it has an energy surplus with others with energy shortage.
A controller links the domestic environment with an accumulation system and the public electric grid. The
accumulation system is made of a Lithium-ion batteries pack used to store energy produced in excess. This
energy can be retrieved at a later time in order to meet the domestic environment demand. The battery is freshly
installed and it has been bought at the price cb. The electric grid can supply or receive at energy respectively
at the market prices cg and pg. The controller monitors these subsystems with a fixed control period ∆t for a
predetermined number of control steps T . It reacts to events happening in the domestic system by interacting
with the accumulation system and the electric grid.
In order to achieve this, the controller is able measure the state of each system at every time step t. In fact, it is
able to measure the power generated by the PV PPV,t and the net power Ph,t outputted by the whole domestic
system, defined as:

Ph,t = Pl,t − PPV,t ∀t = 0, . . . , T . (23)

For what concerns the accumulation system, the controller can measure how much power Pb,t is stored or
retrieved. It can also monitor several physical properties of the battery pack, such as its SoC σt, the battery
temperature Tb,t, the environment temperature Tenv,t, the DoD of the current cycle δt, and the degradation of
the battery Dt. The controller can send or request power Pg,t from the electric grid generating an economic
transaction.

Controlled Variables The task of the controller is to measure every time step t the incoming power Ph,t

and decide which percentage αt ∈ [0, 1] store (retrieve) in (from) the battery. The rest of the power is directed
to the electric grid. In formulas:

Pb,t = αtPh,t ∀t = 0, . . . , T ,

Pg,t = (1− αt)Ph,t ∀t = 0, . . . , T ,

Eg,t = Pg,t∆t ∀t = 0, . . . , T .

(24a)
(24b)
(24c)

Note that, following the notation in Fig. 4, if Pb,t is positive, than the battery is discharging. At the same
time Pg,t is positive if the power is requested from the grid. Eq. (24c) computes the actual energy exchanged
with the grid, and this quantity will be used to compute the economic gain or loss occurred while interacting
with the electric grid.

Constraints While operating, the controller should comply with some battery capacity and degradation
constraints. The SoC follows the dynamics expressed in Equation (2), and at every time step must hold:

0 ≤ σt ≤ 1 ∀t = 0, . . . , T , (25)
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In this setting, a low level controller is assumed to be present behind the high level controller. It protects the
battery from overcharging or excessive draining, by actuating the high level action such that Equation (25)
holds. The controller has also to keep track of the degradation that the battery is subject to:

Dt = f(t,Dt−1, θ̄SoH) ∀t = 0, . . . , T ,

0 ≤ Dt ≤ Dmax ∀t = 0, . . . , T ,

∆D = DT −D0 ≤ Dmax,

(26a)
(26b)
(26c)

The control episode is run for T steps, or when the degradation reaches a threshold Dmax. The degradation
is computed through Equation (26a), where f is the degradation dynamics. It is a monotonous function
that depends on the current time step, the last measured degradation Dt−1 and some parameters θ̄SoH that
characterize the battery. At the end of the episode, the battery has incurred in a degradation of ∆D.

Objective The objective of this work is to find the sequence of actions that reduce as much as possible the
amount on money needed to maintain the system, and to generate a profit while exchanging electric energy with
the grid. The objective can be divided in two parts: battery cost and energy trading. The former takes into
account how much money is lost due to degradation, and it grows linearly with said degradation. The latter
refers to the profit made by interacting with the electric grid. This two objective are conflicting by nature, since
a more aggressive use of the battery could generate favourable trades with the electric network, but it will also
consume the battery faster. This can be expressed as:

max
α0,...,αT

− ∆D

Dmax
cb +

T∑
t=0

[
pgEg,t1R−(Pg,t)− cgEg,t1R+(Pg,t)

]
, (27)

where 1·(·) is the indicator functions, defined as:

1A(x) =

{
1 if x ∈ A
0 otherwise

. (28)
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4. Algorithm

The problem above mentioned in Section 3 is directly influenced by the degradation model expressed in Equa-
tion (26). In this work, the model already discussed in Section 2 is used, since it allows to take into account
the degradation effects of SoC, DoD and temperature. Unfortunely, it has the shortcoming of not considering
the degradation caused by charges or discharges performed at high C-rates. This effect is however partially
captured by taking into account the effects of high temperature cycling.
In what follows, we report a version of Equation (7) and (8) are reported, depending on the current time step
t:

fcal,t = f(t, σ̄t, δ̄t, T̄t) ∀t = 0, . . . , T ,

fcyc,t =

Nt∑
i=0

ni,tfc(δi,t, σi,t, Ti,t) ∀t = 0, . . . , T ,

fd,t = fcal,t + fcyc,t ∀t = 0, . . . , T ,

Dt = 1− αseie
−βseifd,t − (1− αsei)e

−fd,t ∀t = 0, . . . , T .

(29a)

(29b)

(29c)

(29d)

This degradation model uses the rainflow algorithm to quantify cycles in the battery SoC profile σ0:t. Its output
is then fed to Equation (29). The rainflow algorithm is called at every time step, together with the update
of the system dynamics equation. These repeated calls causes a massive computation overhead, since rainflow
has no memory of past runs, and therefore multiple computation are repeated. This problem is caused by the
offline nature of the algorithm.
To have a more scalable algorithm, a new technique called streamflow has been developed. It performs cycle
counting in an online manner by considering one sample at a time and following the rainflow rules in Section 2.
When a new sample is added to the profile:

1. If the charging direction of the battery has changed, a new cycle is opened;
2. If the charging direction is the same as before:

(a) if there is a cycle falling from above between the actual sample and the expected end of the current
charge, assign the sample to that cycles;

(b) otherwise, the sample is assigned to the cycle with highest or lowest end, depending if the current
cycle is charging or discharging;

3. The mean, range, start and end of the current cycle are updated.
Rainflow uses the whole history in order to decide when a cycle opens and closes, but this information is not
available to streamflow. Therefore, for each sample, the following approximation of the closing profile value is
performed:

σend =

{
σt +

1−σt

2 if (σt − σt−1) > 0

σt − σt

2 otherwise
∀t = 0, . . . , T . (30)

We remark that Equation (30) tells that the expected end of the current charge is at half the distance from
the SoC extreme point towards with the cycle is going. The main advantage of this approach is that cycling
information is updated one sample at a time, and it can be done with a more amenable time complexity.
Since this degradation model depends on variables such as DoD and temperature, the formulation is extended
with equations that model their dynamics. The DoD dynamics can be expressed as follows:

δt =

{
δt−1 + |σt − σt−1| if (σt − σt−1)(σt−1 − σt−2) > 0

|σt − σt−1| otherwise
∀t = 0, . . . , T . (31)

The DoD is defined as the absolute value of the SoC excursion of the current charge. Equation (31) conveys
this concept with a differential formula: if the SoC is changing in the same direction of the last time step, than
the DoD is growing, otherwise it is set to its initial value.
The thermal model defines how the battery temperature Tb,t changes over time. In this context, the temperature
behaviour is controlled by the heat dissipated due to the Joule effect during charges or discharges:

Qb,t = I2b,tRint, (32)

where Rint is the internal electric resistance of the battery. This effect is a consequence of modeling the battery
like a real generator that exhibits resistive behaviours when a current passes through it. The temperature
dynamics is modeled with the thermal circuit in Figure 5a:

L(s) =
Rterm

RtermCterms+ 1
,

Tb,t =
Qb,tRterm∆t+ Tb,t−1RtermCterm + Tenv,t∆t

RtermCterm +∆t
∀t = 0, . . . , T .

(33a)

(33b)
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(a) (b)

Figure 5: Thermal (a) and electric (b) model of the battery.

Intuitively, Equation (33a) is the Laplacian transfer function, and it described how the heat exchanges happen
between the battery and the surrounding environment. It is worth mentioning that the battery is stored at a
temperature Tenv,t. Moreover, Equation (33b) is the corresponding anti-Laplacian, and it describes how the
temperature of the battery changes through time.

4.1. RL algorithm

The problem at hand is a sequential decision problem: the controller has to find the best sequence of actions
that will maximize the objective in Equation (27). It is worth noting that Pl,0:T and PPV,0:T are signals not
known in advance: their values are in fact measured every control period ∆t. It is not possible to perform action
scheduling, since future events are not predetermined but depends on highly stochastic events such as the cycle
of the sun or the consumption events in the house. This setting can be formalized as a Markov Decision Process
M. In what follows, the elements defining the MDP for the analysed problem are described.

State The state vector s ∈ S is defined as follows:

s = (σt, Tb,t, δt, I
req
t , PPV,t, cos(φd,t), sin(φd,t), cos(φy,t), sin(φy,t)), (34)

where t is the current time step, σt, Tb,t, and δt are the SoC, the battery temperature and the DoD, respectively,
and are used to keep track of the state of the battery. These variables are also relevant since they have a direct
impact on the computation of the degradation. Moreover, Ireqt is the maximum C-rate that the battery would
be subjected to if all the net power Ph,t would be directed to the battery. The use of C-rate is motivated by
the fact that the C-rate values have the same meaning for different sized batteries, and, therefore, this state
encoding can be used in multiple situations. PPV,t is the power generated by the PV, and is used to have a
rough prediction on the future sun availability: in fact, if during the day this value is very low, one can assume
that the day is cloudy or rainy and no future power production is expected. The last four components are used
to map the current time into an encoding that is able to express a similarity measure between difference periods
of the day/year [29]. This problem is characterized by two types of periodicity: the day-night periodicity and
the seasonal periodicity. This is done by mapping the current time to a position on the unit circumference. φd

is the angular position for the time of the day, formally:

φd =
2πτd
Td

, (35)

where Td are the seconds in a day and τd ∈ [0, Td] is the current second of the day, and φy is the angular position
for the time of the year, formally:

φy =
2πτy
Ty

, (36)

where Ty are the seconds in a year and τy ∈ [0, Ty] is the current second of the year.
SoH and the number of equivalent cycles were included in the state definition in the first iterations of this work.
In fact, the SoH value allows the agent to understand at which point of the degradation curve the battery
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is at. This can give an important insight on the amount of future degradation expected, since the majority
of the loss of capacity is placed at the beginning or end of the battery life. The number of equivalent cycles
is the cumulative value of the DoD of each charge and discharge, and expresses how much the battery was
actually used by the agent. However, this state variables are highly correlated with time, and the algorithm
was over-fitting their values ignoring all the other features.

Action The actions formulation is the same explained in Section 3. The agent can select eleven discrete
actions αt ∈ {0.0, 0.1, . . . , 1.0}. At every time step, the controller has to decide the percentage αt of the net
power Ph,t that will be directed to the battery. The remaining power is sent to the electric grid. The effects of
the actions are reflected instantly in the next state st+1. The low level controller checks the feasibility of the
action proposed of the agent: if the SoC constraint would be violated, it actuates the biggest admissible action.
It may occur that multiple actions may have the same identical effect because they have been corrected into
the same actuated action. It’s important to note that the agent is not punished for selecting unfeasible actions.

Reward The reward function is defined as follows:

rt = −fd,t − fd,t−1

fmax
d

cb + pgEg,t1R−(Pg,t)− cgEg,t1R+(Pg,t). (37)

Intuitively, Equation (37) takes into account the profit made by the agent by exchanging energy with the electric
grid and the amortization of the battery value during the operational period. The energy exchange with the
grid generates a profit of pg per kWh sold, otherwise the agents incurs in a loss of cg. At the same time, the
battery degradation has increased due to passive factors such as time passing, or due to active factors such as
active cycling.
The battery value is amortized by considering the variation in linear degradation fd, rather then SoH. The
difference in SoH was not used because it generated agents that avoided as much as possible battery cycling.
This conservative behaviour can be explained by the massive loss in degradation (and therefore in value) that
a battery experience at the beginning of its life, since its degradation curve is very steep while it is still fresh.
On the other hand, by using the linear degradation, the reward is distributed more fairly on the whole time
period, but the agents is still able to understand how much of an impact an action had on the degradation.
This allowed the training of agents that truly maximized the long term profit and that were able to make a
trade-off in profit at the beginning of the battery life.
The whole battery value is amortized with respect to the fmax

d , the maximum linear degradation value that
corresponds to the maximum degradation Dmax. Formally:

D(fmax
d ) = 1− αseie

−βseif
max
d − (1− αsei)e

−fmax
d = Dmax. (38)

Notice that Equation (38) is not invertible in closed form, due to the presence of two exponential with different
exponents. The value fmax

d therefore has be estimated with the bisection algorithm [30]. The γ factor used in
this problem as been set to 1, since it is a problem with a finite number of steps T . This has also the advantage
to create a very farsighted agent that will be able to optimally use the battery on the whole time horizon, and
will avoid to maximize the current profit at the expanse of future gains.
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Figure 6: Power profiles used in the Gym environment.

5. Experimental Results

5.1. Experimental setting

In order to test the solution proposed in Section 4, an online simulator which implements the OpenAI Gym
standard framework [31] is implemented. The simulator implements all the system dynamics and degradation
formulas discussed in Sections 3 and 4. A core part of the simulation is the power signal generated by the PV
PPV,0:T and the auto-consumption profile Pl,0:T , both generated from real data. The PV profile is generated
starting from a pool of sixteen year-long profiles, gathered from different power plants. These profiles are
normalized with respect to the maximum power that the solar plant generated during its operational life.
This opens the possibility of scaling the power generation profile by any multiplicative factor, so that it can
be coupled with any auto-consumption profile. The multiplication factor controls the energy balance of the
domestic system, allowing to control how much the domestic system is energy restricted.
The load profile is generated from a pool of 398 annual profiles, with peak consumption of 2− 3 kWh.
Figure 6 shows 10 spring days of both a PV and auto-consumption profile. In the PV profile, three different
energy production patterns are present: clear days, characterized by a bell-shaped curve, cloudy days, with an
irregular shape, or dark days where no power was produced. The load profile is characterised by a low constant
consumption of 200 W with peaks during mornings and evenings. The flat lines in the profiles can be attributed
to momentary malfunctions in the monitoring system. Energy production and consumption periods are not
aligned, but show up in complementary parts of the day. The control task will have to understand which is the
best policy that is able to adapt to the asynchronicity of these processes.
Every time an episode starts a new net profile Ph,0:T is created, combining a PV and load profile. The PV
profile is scaled by the peak consumption of the load profile and is subject to data augmentation: each day is
drawn from a pool of 7 days from a sliding window centered in the current day. The original data is sampled
every hour, and therefore the control period is ∆t = 3600 s. It is important to note that even though the Gym
environment has access to the whole power profile, this information is given to the agent one sample at a time
at the appropriate moment.
The parameters of the simulation are reported in Table 1. Every episode is run for 8 years or when the
maximum degradation threshold Dmax is met. For what concerns the thermal model in Equation (33b), the
ambient temperature Tenv, t is considered fixed at 25°C. The same holds for the energy prices exposed by the
electric grid: pg and cg are stationary and are respectively fixed at 15 cents/kWh and 5 cents/kWh. The original
parameters of the degradation model proposed in [13] where used.
Every episode considers a different battery, whose capacity is dimensioned for a mean up-time of 1000 hours in
a whole year:

Cb =
1000Pmax

365Vmax
, (39)

where Cb is the battery capacity expressed in Ah, Pmax the maximum power generated from the PV and Vmax

is the nominal voltage of the battery. The battery cost is fixed for any episode and is proportional to the battery
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Table 1: Parameters of the Simulator.

Thermal Model
Rterm 0.37 °C/W Cterm 1.7e3 J/K
Rint 5e-3 Ω Tenv 25 °C

Economic Parameters
cb,unit 375 e/kWh pg 0.15 e/kWh
cg 0.05 e/kWh

Battery Parameters
Vmax 48 V Dmax 0.2

VOCV Parameters
a0 38.83 a1 7.7
a2 -7.7 a3 9.17
b0 -3.51 b1 -46

capacity. Every battery is bought at a unitary cost of cb,unit = 375 e/ kWh, and it is computed such that the
expected 8-years profit of a policy that uses always the battery is the same same of one that never uses it. The
expectation was computed on the same 10 profiles by using the bisection method. The reason for this operation
is that, by leveling off this two policies, the agent has to learn to truly optimize the use of the battery and the
energy exchanges, avoiding these two simple cases.
Training and testing were performed on a virtualized Ubuntu 20.04 LTS server, on a 64x Single Core Intel Xeon
(Skylake IBRS) and 32 GB of dual channel RAM.

5.2. Training

The agent was trained with Fitted Q-Iteration (FQI). Since it is an offline algorithm, a dataset of transitions
needs to be generated. A standard approach in the dataset generation would consists on sampling uniformly
the state space and than apply a random action. This would allow maximum exploration and the agent would
learn the reward signal on the whole state space. However, the degradation model depends on the whole battery
history, and therefore is not possible to compute a transition from a random state.
On the contrary, 100 episodes were created and explored with a uniformly random policy. A total of 7 million
state transitions where sampled in one hour.
Fitted Q-Iteration (FQI) was then run for 200 iterations by using an XGBoost regressor. The regressor was
trained to minimize the mean squared error with the following hyperparameters:

• number of trees: 1100;
• maximum depth: 8;
• colsample_bytree: 0.8;
• subsample: 0.8;
• alpha: 0.1;
• lambda: 0;
• tree_method : "hist";

5.3. Testing

Agent Performance The agent was tested against 4 different Key Performance Indicators (KPI):
• Profit : the value of the objective function.
• Battery Cost : the first component of the objective function, expresses how much value of the battery was

lost while cycling.
• Energy Profit : the second component of the objective function, it is the profit made by exchanging energy

with the electric grid.
• Degradation: degradation Dt that the battery was subject to.

The KPIs where sampled every 30 days from 10 different episodes and then averaged.
The performance of the agent is compared with 3 different baselines:

• OnlyGrid : The actions of this baseline are always set to 0. No power falls on the battery, and therefore
only the calendar ageing impacts on the degradation. It has the main advantage of preserving the battery,
but the energy exchanges with the electric grid are always disadvantageous, since cg << pg.
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Table 2: Average KPI values after 8 years.

Profit Battery Cost Energy Profit Degradation
Agent -2295.32 -1680.54 -614.78 0.1245

SoC20-80 -2454.99 -2144.69 -310.30 0.1589
OnlyBattery -2365.93 -2141.18 -224.74 0.1586

OnlyGrid -2354.15 -1531.66 -822.49 0.1135
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Figure 7: Mean absolute performance on 10 episodes of the policies in 8 years. The best agent for each
category is the higher in the graph, with the exception of Degradation.

• OnlyBattery : This baseline always uses the battery. Energy exchanges with the grid happen only when
the battery is completely empty or full. This policy has a dramatic effect on SoH, but is able to store
energy for later use and avoids buying power from the grid.

• Soc20-80 : This baseline keeps the SoC between 0.2 and 0.8. This is the state of the art control policy
[32], since very low or very high SoC values are correlated to high degradation. It can be considered a
mix of the two previous strategies.

Since the cost of the battery was balanced, OnlyGrid and OnlyBattery perform in a similar way on an 8
year span and the main difference in their tests results is due to the inherent variance present in the system
dynamics. However, they reach the same profit by operating one on the battery degradation, the other on the
energy exchange, and therefore it is still useful to consider them since they both can give an insight on the agent
results.
Figure 7 presents the performance of the agents and the three baselines are considered. All the policies are
not able to generate a positive profit. This may be caused by the stationary energy prices hypothesis, that
gives very little room for optimization since it is not possible to take advantage of price fluctuations. In fact,
the energy loss incurred when selling and then buying back the energy is always fixed at −10 cents/kWh. In
Figure 8, the same data is shown but with a different perspective. The baseline SoC20-80 is considered as a
base and the difference in KPI value for the other policies are plotted. Unexpectedly, this baseline performs
way worse then the other policies, since it degrades heavily the battery like the OnlyBattery baseline without
being able to have advantageous energy exchanges. These low performances may be explained by the use of
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Figure 8: Mean performance on 10 episodes in 8 years, evaluated with respect to the baseline Soc20-80.
The best agent for each category is the higher on the graph.

fixed energy costs or disadvantageous parameters in the degradation model. On the other hand, the trained
agent performs greatly, achieving almost 150e in profit with respect to the reference point and almost 100e
more than OnlyGrid, as shown in Table 2. It is important to note that the agent was able to reach this result
without excelling in both battery cost or energy profit. This means that its possible to find a policy that is able
to exploit the degradation dynamic without fixing its action to a specific value. Even though the agent had
excellent performances on the overall period, the agent start to perform better than all the other baselines after
3 years: of early high profits is not alarming, since the investment has to pay-off on the whole 8 years period.
Fig. 9 shows which are the states most visited by the agent and the baseline Soc20-80. The baseline tries to
limit its SoC level, but sometimes the threshold are exceed since the whole power generated or requested by the
domestic environment is actuated. Most of the states are concentrated in the principal diagonal and around the
20% and 80% SoC level. The agent, on the other hand, spends most of the time at low SoC. At the same time,
when the agent is cycling at high SoC, it is done while performing low DoD cycles. In this way the degradation
caused by high SoCs is mitigated by performing small cycles, reducing the degradation apported by the DoD.

Agent Behaviour The agent has learned a complex policy, and the use of XGBoost has allowed the repre-
sentation of a highly non-linear behaviour. Since the FQI algorithm is a value-based technique, the regressors
have learned the action-value function, and therefore is possible to extract its value and understand the agent
behaviour. Q-value can be used to study which are the most convenient states and why a particular action has
been actuated. Due to the use of a unitary discount factor γ, it has not a precise economic meaning, but a high
value can be linked to future profits while a negative value corresponds to an expected monetary loss.
Fig. 10 shows the trend of the Q-value during April and on a whole profile. The Q-value is characterized by
two main 24 hours and 365 days periodic components. The high frequency component peaks every day during
maximal energy production, since the presence of the sun will lead to a profit in energy exchange. Sunny
days are characterized by higher peaks than rainy days. On the other hand, the annual periodicity follows the
seasonal cycle, since the agent is able to generate more revenue during longer days.
The agent is able to achieve the best profit by avoiding high stress conditions such as high values of SoC and
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Figure 9: SoC-DoD log-distribution.
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Figure 10: Trend of the Q-value over the whole 8 years period.

DoD, by actuating intermittent low power charges. Figure 11 shows the relative frequency of picking an action
at a given SoC value. The heatmaps were created by counting how many times an action is picked at a given
SoC level in the test set and then normalized with respect to the total number of actions done at said SoC. If the
battery is charging, the agent avoids battery cycling most of the time (up to 50%), and power is accepted only
in small quantities. On the other hand, while discharging the agent picks high actions, in order to discharge as
fast as possible and lessen the degradation caused by high SoC cycling.
Figure 12 represents Q-value and Action functions trend. C-rate is crucial to determine the best action, since
the action distribution is heavily influenced by its sign. In fact, it reinforces the consideration done before that
states that the agent avoid as much as possible charging and as soon as it is possible to discharge the battery,
it will to it actuating the biggest action. SoC has more effect on the Q-value, with larger peaks at lower values,
since less degradation can happen in that range.
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0.
00

0.
10

0.
20

0.
30

0.
40

0.
50

0.
60

0.
70

0.
80

0.
90

1.
00

-0.50
-0.40
-0.30
-0.20
-0.10
0.00
0.10
0.20
0.30
0.40
0.50

SoC (1)

C
-r

at
e

(1
)

Q-value Distribution

−0.5

0

0.5

1

0.000.100.200.300.400.500.600.700.800.901.00

-0.50
-0.40
-0.30
-0.20
-0.10
0.00
0.10
0.20
0.30
0.40
0.50

SoC (1)

C
-r

at
e

(1
)

Action Distribution

0

2

4

6

8

10

Figure 12: Q-value and actions distribution with respect to SoC and C-rate. A white cell represents
states never visited by the agent.

22



6. Conclusions

Photovoltaic panels are used in residential environments to produce cheap and clean energy, lowering electricity
costs and increasing energy independence. Profit is generated by meeting the domestic demand, thus avoiding
expansive energy purchases, and by performing energy arbitration. The main difficulties in managing such
systems are caused by the unpredictable nature of solar energy production and by the asynchronicity between
energy production and consumption. To alleviate these limitations, an accumulation system is used, where
energy in excess can be stored for later use.
However, Lithium-ion batteries, which are the most used type of storage systems for such a task, are characterised
by a process degradation influenced both by environmental factors and dynamic loading. Indeed, different cycling
conditions will result in a longer or smaller life, having drastic effect on the sustainability of the investment.
Previous work considered domestic energy production by disregarding the battery degradation, or taking into
account the battery degradation but having with no independent energy production.
This work design a RL controller trained with Fitted Q-Iteration (FQI) and the ensemble tree regressor XGBoost,
by considering a degradation model that allows to compute instantaneous SoH loss. The objective is to maximize
the long term profit while exchanging energy with the electric grid and by amortizing the battery cost on the
whole period accordingly to its use. The algorithm proposed outperforms the state-of-the-art techniques by up
to 15%, with a control policy that keeps SoC values as low as possibles with slow low-powered charges and fast
discharges. The controller achieves great generalization, since it is able to operate different battery capacities
without a dedicated training and it has been designed on multiple energy consumption routines.

Future works The problem at hand is a combination of multiple complex sub-problems, such as solar energy
prediction, electricity prices prediction, energy arbitration and degradation modeling. A series of simplifying
hypothesis were performed. Future works will have to:

• consider non-stationary energy prices. Efficient energy arbitration is possible to achieve when there are
prices fluctuation that can be exploited to perform a profit. With fixed prices, the agent is only able to
limit its net loss, since every energy exchange with the grid does not generated a profit. In this case, the
agent is only able to store energy in order to meet future demand and avoid energy purchases.

• perform a more complex solar energy forecasting. This work considers only the power signal generated
from the PV and seasonal and day-night periodicity. More complex techniques can be used, bases on
weather forecasting and past production history, allowing to have a more complex agent behaviour. The
simulator should also be able to operate batteries placed in environments with changing temperatures.

• consider larger battery prices. The current technique only considers discounted batteries, since larger
costs causes instabilities in the training process.

• consider unbalanced households, since PV and batteries capacities are selected according to the auto-
consumption profile.
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Acronyms

DoD Depth of Discharge. 6, 10, 12, 14–16, 20, 21

ESS Energy Storage System. 10, 11

FQI Fitted Q-Iteration. 9, 10, 18, 20, 23

KPI Key Performance Indicator. 18

MDP Markov Decision Process. 7–9
ML Machine Learning. 6

PV Photovoltaic Panel. 2, 12, 15, 17, 23

RL Reinforcement Learning. 7, 9, 11, 23

SEI Solid Electrolyte Interphase. 5, 6
SoC State of Charge. 4–6, 10, 12, 14–16, 19–23
SoH State of Health. 4, 5, 10, 11, 15, 16, 19, 23
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Abstract in lingua italiana

Le Smart Grid sono l’evoluzione delle reti elettriche tradizionali e permettono un flusso bidirezionale di elet-
tricità e informazioni tra diversi attori. Ai nodi più periferici di questa rete, i consumatori sono in grado di
produrre energia con pannelli fotovoltaici e soddisfare i propri bisogni energetici. Tuttavia, a causa della natura
intermittente della produzione di energia solare, queste unità sono caratterizzate da periodi di surplus o deficit
di energia. Per risolvere questo problema, è ormai sempre più comune che vengano installati dei set di batterie
al Litio che sono usate per conservare l’energia in eccesso per un uso futuro e ridurre scambi energetici costosi
con la rete elettrica. Nonostante ciò, questi sistemi di accumulazione sono caratterizzati da un processo di
degradazione che ne riduce la capacità massima col passare del tempo.
In questo lavoro di tesi, è stato sviluppato un controllore, basato su tecniche di Reinforcement Learning,
per trovare una politica di consumo che massimizzi il profitto economico, tenendo conto sia del processo di
degradazione della batteria, sia dei ricavi ottenuti con la compravendita dell’energia stessa. Tale approccio ha
portato a un aumento del 15% dei profitti rispetto alle techniche presenti nello stato dell’arte.

Parole chiave: Reinforcement Learning, Smart-Grids, Batterie Al Litio, Fitted Q-Iteration, Controllo,
Stato di Salute
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