POLITECNICO
MILANO 1863

SCUOLA DI INGEGNERIA INDUSTRIALE

E DELLINFORMAZIONE

EXECUTIVE SUMMARY OF THE THESIS

Characterization of Virtualization-Induced Noise in High-Performance
Computing and Real-Time Virtual Machines

LAUREA MAGISTRALE IN COMPUTER SCIENCE AND ENGINEERING

Author: FRANCESCO ARISTEI

Advisor: PROF. VITTORIO ZACCARIA

Co-advisors: PAorLo BoNzINI, DANIEL BRISTOT DE OLIVEIRA

Academic year: 2022-2023

1. Introduction

The scientific community widely accepts virtu-
alization for latency-sensitive applications, es-
pecially in HPC and real-time contexts |1,
12]. HPC has moved from expensive dedicated
infrastructures to cost-effective cloud options.
Virtual machines are increasingly popular in
real-time applications to integrate various soft-
ware components with different criticality levels.
Networking, including SDN and NFV [5, 16, is
another vital use case. A key concern in these
applications is the VM transition delays from
guest to hypervisor, which introduces overhead.
However, extensive research has found these de-
lays acceptable [8, 10]. Indeed, latency-sensitive
workloads on virtualized and bare metal plat-
forms perform comparably. However, studies of-
ten lack detailed performance explanations, re-
quiring users to analyze the execution environ-
ment for insight. In the HPC world, an essential
latency metric is Operating System Noise, de-
fined as the CPU time the system takes from a
workload running on a given processor. Linux
is the preferred choice in both HPC and Real-
Time applications due to its flexibility. Osnoise
[4] is a tool within the Linux kernel’s tracing fa-
cilities that measures OS noise. The tool offers

a quantitative and qualitative view of the met-
ric, linking delays with the triggering events. In
both HPC and real-time systems in virtualized
environments, various applications benefit from
this analysis. For example, Network Function
Virtualization replaces network appliance hard-
ware with virtual machines, running network-
ing processes like routing and load balancing via
a hypervisor. These workloads require precise
timing, and osnoise could help identify virtu-
alization layer interferences for improved real-
time performance. However, currently, when
run on a virtual machine, osnoise cannot offer
insights into virtualization layer noise, includ-
ing time taken from the guest by the hyper-
visor or higher-priority tasks. This knowledge
would improve system debugging by pinpoint-
ing the source of the noise. The tool misinter-
prets this disturbance as generic hardware noise,
providing a misleading explanation for system
delays. This work proposes extending osnoise
to address virtualization noise. New statistics
within the guest measure the noise of the hyper-
visor and the host, providing quantitative infor-
mation. On the host, when osnoise runs while
virtual machines are active, a tracepoint records
vCPUs leaving the physical processor to execute

other tasks. This, along with osnoise’s tracing
data, identifies the events causing the noise mea-
sured on the guest, providing both noise mea-
surement and its root causes. A series of exper-
iments confirmed osnoise’s output consistency
with expectations. Hardware noise, including
unmaskable hardware interrupts (e.g., SMIs), is
the same in both the host and its guest VMs.
Comparing osnoise runs on a VM in its vanilla
and new versions showed a significant reduction
in hardware-induced noise, indicating that much
of the noise in the vanilla version stemmed from
the virtualization layer. In particular, the noise
in the last case matched that of the osnoise di-
rectly on the host, as expected. It demonstrated
osnoise’s practical use for system debugging and
tuning. For low-latency applications in HPC
and real-time scenarios, adjustments like pro-
cessor speed and CPU partitioning into isolated
and housekeeping sets are common. Osnoise was
run on a virtual machine with and without these
adjustments to assess their impact on running
low-latency tasks on virtualized platforms. Al-
though there was improvement compared to the
non-tuned case, the resulting noise after tuning
still exceeded the required values for latency-
sensitive workloads. A deeper analysis revealed
that, based on host extensions’ tracing informa-
tion from osnoise, the cause of excessive noise
is higher-priority tasks preempting the vCPU
running the guest. This results from the hard-
ware limitations of the experiments with only
four available cores, overloading the system, and
prompting the OS to run housekeeping tasks
on isolated CPUs. This showcases osnoise’s de-
bugging utility by pinpointing the noise source.
Experimental results validate osnoise’s output,
aligning with expected behavior, and demon-
strating its effectiveness in accelerating system
debugging and tuning, providing both quantita-
tive and qualitative noise insights.

2. Background

First, the osnoise tool is presented, then the vir-
tualization technology of Linux, KVM, is briefly
described.

2.1. Osnoise

The Operating System Noise is defined as all
the time spent by a CPU executing instructions
not belonging to a given application task as-

signed to that CPU while the task is ready to
run. Osnoise comprises workload and tracing
components, with each CPU hosting a periodic
kernel thread. These threads continuously read
time, collecting a new noise sample when the
gap between consecutive readings exceeds a set
tolerance threshold. The osnoise tracer utilizes
the Linux tracing infrastructure through trace-
points, which are points in the kernel code where
probes can be attached to run functions, typ-
ically used for collecting trace information. It
does this by adding probes to existing trace-
points for data collection and introducing a new
set of tracepoints. This allows for the genera-
tion of an osnoise tracepoint each time noise is
detected, reporting the observed task’s noise de-
scription.

2.2. Kernel Virtual Machine

KVM is the Linux module that allows to use
the hardware assisted virtualization technology
to create and manage virtual machines. For
I/O emulations, KVM uses a userland software,
QEMU |[3], which performs as said, hardware
emulation. Each virtual machine is treated as
a simple process by QEMU. Virtual CPUs (vC-
PUs) on a virtual machine are Linux threads,
scheduled like other tasks. This results in inter-
ruptions from other virtualized tasks and noise
from the host. Additionally, when the guest per-
forms sensitive instructions, the hypervisor takes
control of the processor in a vmexit, introduc-
ing overhead. This, combined with host inter-
ruptions from higher-priority contexts, defines
virtualization-induced noise.

3. Related Work

In HPC, a common method to measure OS noise
is running micro-benchmarks with known dura-
tions and comparing the expected and actual
processing times. The Fixed Work Quantum
(FWQ) benchmark [13] is an example. Hens-
bergen [9] pioneered the analysis of virtualiza-
tion’s impact on HPC applications, using the
FWQ benchmark to assess noise levels in virtual
machine execution. In HPC, the NAS parallel
benchmarks [6] and the HPC Challenge bench-
mark [15] are commonly used to assess the per-
formance of the parallel computing system, in-
cluding memory bandwidth, network communi-
cation, and computation capabilities. To eval-

uate virtualization in HPC, Kudryavtsev et al.
[2] used these benchmarks to compare the Pala-
cios hypervisor and the Kernel Virtual Machine
(KVM). These benchmarks primarily focus on
performance metrics like operations per sec-
ond (e.g., FLOPS), highlighting performance is-
sues without detailed root cause explanations.
In the Real-Time community, tools like oslat
[17] and sysjitter measure OS noise by running
a thread on each CPU and tracking intervals
where the thread is not running due to OS activ-
ities. These tools have demonstrated equivalent
performance for Radio Access Network (RAN)
workloads in VMware vSphere and bare metal
[11]. However, in the real-time context, the re-
sults of the experiment quantify the latency of
the system, and it is up to practitioners to iden-
tify its source.

4. Approach

Osnoise has been extended on both the guest
and host side. From the guest extension, it mea-
sures noise from the hypervisor and the host,
indicating how long the virtual machine was
taken away from the processor to execute the
hypervisor and higher-priority tasks. However,
within the guest, you cannot determine the spe-
cific events that caused the interruptions. To
address this, osnoise was extended for host-side
execution to identify these events, providing a
comprehensive understanding of virtualization-
induced noise, including numerical values and
their root causes. The extensions are presented
in conjunction with the evaluation methodology.

4.1. Guest Side

In the vanilla version of the tool, noise detection
checks for changes in the number of interferences
experienced by the osnoise thread between it-
erations. If this value remains unchanged, it
signifies hardware-induced noise without other
task preemptions. However, in virtual machine
environments, the virtual CPU executing the
osnoise thread could be preempted by the hy-
pervisor or the host for sensitive tasks. The
guest-side extension of the tool distinguishes
this virtualization-induced noise from hardware-
related noise. In virtualization, when the hyper-
visor or host takes control of the physical pro-
cessor, it triggers a vmexit event. KVM distin-
guishes between a lightweight vmexit handled by

KVM itself and a heavyweight vmexit, typically
caused by device accesses and involving QEMU
intervention, introducing more latency. The os-
noise output now includes two counters, one for
each vmexit type. The time a virtual CPU is
unscheduled from the physical processor due to
host preemption is known as steal time. To cal-
culate the time the hypervisor manages sensitive
instructions on behalf of the virtual machine, we
subtract the steal time from the total noise expe-
rienced by the osnoise thread. Any time not cat-
egorized as steal time or hypervisor noise repre-
sents the time spent on hardware-related tasks.

4.2. Host Side

On the host side, the tracepoints provided by
osnoise are extended by adding a new one to
detect vmexit events affecting virtual machines.
This new tracepoint captures crucial informa-
tion about vmexit events, including the time of
occurrence, the exited CPU, the triggering rea-
son, duration, and hypervisor overhead. When
combined with the existing Linux kernel trac-
ing capabilities, it allows the reconstruction of
events during the exit, providing insights into
the causes of noise detected when running os-
noise on the guest.

4.3. Evaluation Methodology

First, each extension of the tool has been verified
in order to guarantee that the output provided
by osnoise is coherent with the expected results.
After that, experiments have been conducted in
order to show the validity of the extension intro-
duced, and how it brings significant results that
can be practically used to speed up the debug-
ging of a system. Measurements were carried out
on the ODROID-H2 board, equipped with an
Intel Celeron J4105 processor with 4 cores. The
system and virtual instances ran Fedora Linux
37 with the Linux kernel version 6.2, patched
with the PREEMPT-RT patchset [7]. Virtual
machines were created using QEMU, allocated
2 GB of RAM, and configured with 3 cores.

4.3.1 Verification

On the guest side, the initial step involved as-
sessing the accuracy of the modified osnoise out-
put. First, it has been verified that the hard-
ware noise measured within the virtual machine,
using the modified tool, matched the hardware

noise obtained when running osnoise directly on
the host, as hardware noise is not related to vir-
tualization. To further assess the coherency of
the output, a second run examined the types
of vmexits that affect the guest. Indeed, in
a CPU-bound workload like osnoise, most of
the exits are expected to be of the lightweight
variety. To verify the host extension of the
tool, osnoise was executed directly on the host.
At the same time, small virtual machines were
launched. These VMs executed two different
instructions: CPUID and I/O ports reading.
The former involved a guest performing multi-
ple CPUID instructions, which could be handled
by KVM, resulting in a lightweight vmexit. The
latter, in contrast, had a guest reading a 32-
bit value from an I/O port, requiring QEMU
emulation and causing a heavyweight vmexit.
While each of the VMs was running, the os-
noise tracer was set to trace both the osnoise
and kvm events. The vmexit duration measured
by the new osnoise tracepoint needs to coincide
with the time passed between the vmentry and
vmexit events traced for the measured vmexit.

4.3.2 Validation

The tool has been used practically to assess the
viability of executing low-latency tasks on a vir-
tualized platform. To do so, following estab-
lished best practices in both the HPC and the
real-time domains, the CPUs were divided into
isolated and housekeeping sets. Housekeeping
CPUs were designated for general system tasks,
while isolated CPUs were exclusively reserved
for low-latency operations. This configuration
was applied to both the host and the guest
operating systems. At this point, osnoise was
run with various tuning configurations. Initially,
CPU isolation was applied solely to the host sys-
tem, followed by isolation only in the guest, and
lastly, the most rigorous isolation scenario was
tested by tuning both the host and guest sys-
tems. In each experiment, osnoise statistics re-
garding virtualization noise were recorded. To
understand the causes of the noise measured on
the guest side, a virtual machine was launched
with CPU isolation applied to both the host and
the virtual instance. Osnoise was run on iso-
lated vCPUs within the guest while osnoise was
running simultaneously on the host. The new
tracepoint was used to collect the events that

caused virtualization noise in the guest, show-
ing how osnoise is able to provide both quantita-
tive insights into hypervisor/host-induced noise
and the underlying causes. Every CPU-intensive
task with tight timing requirements working in
user context can benefit from the extension pro-
vided to the tool. For example, NFV workloads
for packet processing work by polling the net-
work for packets, resembling the osnoise work-
load. Therefore, osnoise could be used to debug
the systems where these kinds of applications
need to run.

5. Evaluation

The experimental results are presented. First
experiments have been performed to verify the
correctness of the output provided by osnoise;
then the tool has been practically used in or-
der to discover the causes of non-negligible noise,
validating its practical utility.

5.1. Verification
5.1.1 Guest Side

The baseline version of osnoise, when run on a
virtual machine, showed a significant contribu-
tion of hardware noise to the overall one. How-
ever, when the extended version of the tool was
used, the hardware noise decreased.The reason
being that in the vanilla version of the tool,
the hardware noise included the noise coming
from the virtualization layer. Therefore, with
the new changes introduced, the tool is able
to distinguish between the noise coming from
the virtualization layer and the hardware noise.
Notably, the hardware noise measured in the
guest with the extended version matched that
obtained when running osnoise directly on the
host. This shows the coherency of the output
provided, the hardware noise being not related
to virtualization. As a second step to verify the
correctness of the output, osnoise was utilized
to examine the types of vmexits encountered
by the guest. Most detected vmexits were of
the lightweight variety, which was anticipated,
as heavyweight exits associated with device ac-
cesses are less common in a CPU-bound work-
load like osnoise.

5.1.2 Host Side

To verify the correctness of the host extension
of the tool, the following steps were performed:
e Osnoise was executed directly on the host
alongside a virtual machine running the
CPUID instruction.

e Osnoise was executed on the host along-
side a virtual machine performing I/O port
reads.

e The osnoise tracer was configured to trace
both osnoise and kvm events.

The output generated by the additional trace-
point aligned with the type of instruction ex-
ecuted in both cases. The CPUID instruction
led to lightweight vmexits handled directly by
the hypervisor, resulting in a duration of a few
microseconds. On the contrary, the I/O instruc-
tions required hardware emulation by QEMU,
causing an increase in the duration of vmexit.

Steal Time Host/Guest Tuning

300 4 —— CPUO
CpPU1

Occurrence Count
=
17
S

0 50 100 150 200 250
Noise Occurrence (us)

Virt Host/Guest Tuning

—— CPUO

200000 - CcpPUL

150000 -

100000 -

Occurrence Count

50000 -

J LA

T T T T T T
0 50 100 150 200 250
Noise Occurrence (us)

Figure 1: Top: the steal time with the maximum
tuning applied. Bottom: Virtualization noise
after host/guest tuning.

5.2. Validation

After verifying the coherency of the output, os-
noise was used to measure the noise of the virtu-

alization layer and assess the feasibility of run-
ning low-latency tasks within a virtual machine.
Experiments were conducted using various tun-
ing configurations as previously described.

e Running osnoise with CPU isolation ap-
plied on the host led to a significant drop in
steal time, indicating minimal descheduling
of the guest. Noise caused by KVM and
QEMU also decreased, because fewer pre-
emptions, requires less job by the hypervi-
sor to save the virtual machine state.

e In the case where CPU isolation was im-
plemented only on the guest side, improve-
ments were modest compared to host tun-
ing. Steal time remained unchanged, while
the KVM/QEMU noise decreased slightly.

e Tuning both host and guest with CPU
isolation achieved the lowest noise levels.
Nevertheless, even in this extreme isola-
tion scenario, osnoise’s statistics indicated
that both steal time and hypervisor noise
exceeded acceptable values for low-latency
tasks as shown in Figure 1.

The analysis of virtualization noise, previously
measured by running osnoise on the guest, was
carried out by replicating the experimental setup
used to test the guest extension of the tool. The
following steps were followed:

e A virtual machine was launched with CPU
isolation applied to both the host and the
guest, with osnoise running on top of it.

e Simultaneously, osnoise was launched on
the host to trace the events on the CPUs
where the virtual machine was executed.

By combining the existing osnoise tracepoint
with the newly added one, the events respon-
sible for causing spikes in the noise observed on
the guest were identified. As seen previously on
the guest, the results revealed that, even after
system tuning, some housekeeping tasks were
still executed on the isolated CPUs, introduc-
ing non-negligible noise to the virtual machine.
This was due to the limitations of the experi-
mental hardware, which featured only four avail-
able cores and could not completely isolate the
CPUs. The experiment demonstrated that with
these new features, osnoise not only quantifies
virtualization-induced noise, but also provides
insights into the events that trigger it, thereby
expediting system debugging.

6. Conclusions and Future

Works

In today’s High Performance Computing and
Real-Time applications, the use of virtualiza-
tion has become an accepted practice. How-
ever, existing tools do not identify the under-
lying causes of performance issues, leaving users
to manually analyze system complexities. To
bridge this gap, osnoise, a tracer that measures
OS noise, has been extended. It now encom-
passes noise arising from virtualization compo-
nents like KVM and QEMU. Yet, a more re-
fined capability to differentiate between these
sources of noise would greatly improve its pre-
cision. Moreover, osnoise comes together with
timerlat [14], a tool that assesses scheduling la-
tency. A desirable future work would be to ex-
pand its functionality to account for hypervisor-
induced scheduling latency as it could signifi-
cantly improve evaluations of real-time applica-
tions within virtualized settings.

References

[1] J. T. Brown G. von Laszewski A. J. Younge,
R. Henschel. Analysis of virtualization tech-
nologies for high performance computing
environments. IEEFE International Confer-
ence, pages 9-16, 7 2011.

[2] A. L. Avetisyan A. O. Kudryavtsev, V.
K. Koshelev. Prospects for virtualization
of high-performance x64 systems. Program-
ming and Computer Software, 72:196-207,
2023.

[3] F. Bellard. Qemu, a fast and portable dy-
namic translator. Proceedings of the annual
conference on USENIX Annual Technical
Conference, page 41, 2005.

[4] T. Cucinotta D. B. De Oliveira, D. Casini.
Operating system noise in the linux kernel.
IEEE Transactions on Computers, 72:196—
207, 2023.

[5] P. E. Verissimo D. Kreutz, F. M. V. Ramos.
Software-defined networking: A compre-
hensive survey. Proceedings of the IEEE,
103:14-76, 2015.

[6] NAS Division. Nas parallel benchmarks.

https://www.nas.nasa.gov/software /npb.html.

17l

18]

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

W. Fornaciari F. Reghenzani, G. Massari.
The real-time linux kernel: A survey on pre-
empt_rt. ACM Computing Surveys, 52:1—
36, 2019.

Kumar S. Raj H. Schwan K. et al.
Gavrilovska, A. High-performance hyper-
visor architectures: Virtualization in hpc

systems. HPCVirt, pages 1-8, 2007.

E. V. Hensbergen. The effect of virtualiza-
tion on os interference. IEEE Transactions
on Computers, 72:196-207, 2023.

D. Faggioli L. Abeni. An experimen-
tal analysis of the xen and kvm laten-
cies. IEEE 22nd International Sympo-
stum on Real-Time Distributed Computing

(ISORC), pages 18-26, 5 2019.

S. Hoenisch L. Mandyam. Ran
workload performance is equiva-
lent on bare metal and vsphere.

https://blogs.vmware.com/telco /ran-
workload-performance-tests-on-vimware-
vsphere/.

L. De Simone S. Rosiello M. Cinque,
D. Cotroneo. Virtualizing mixed-criticality
systems: A survey on industrial trends and
issues. Future Generation Computer Sys-
tems, 129:315-330, 2022.

R. Minnich M. Sottile. Analysis of mi-
crobenchmarks for performance tuning of

clusters. Cluster Computing, 2004 IEEE,
2004.
D. B. De Oliveira. Timerlat tracer.

https://docs.kernel.org/trace/timerlat-
tracer.html.

D. Koester P. Luszczekl, J.
J. Dongarra. Introduction to the
hpc challenge benchmark suite.

https://www.osti.gov/servlets/purl /860347.

SDN and OpenFlow World Congress. Net-
work functions virtualisation — introduc-
tory white paper — an introduction, ben-
efits, enablers, challenges call for ac-
tion. https://portal.etsi.org/NFV /NFV
White Paper.pdf.

Peter Xu. Oslat.

https://github.com /xzpeter/oslat.

	Introduction
	Background
	Osnoise
	Kernel Virtual Machine

	Related Work
	Approach
	Guest Side
	Host Side
	Evaluation Methodology
	Verification
	Validation

	Evaluation
	Verification
	Guest Side
	Host Side

	Validation

	Conclusions and Future Works

