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Abstract

Space exploration and the design of complex interplanetary missions towards distant ce-
lestial objects often require very high orbital velocities which the state of the art of the
propulsive systems cannot provide yet. Therefore, alternative solutions must be explored
to make interplanetary missions feasible endeavours. For this reason, it is essential to in-
clude gravity assist maneuvers and planetary flybys in the trajectory design. This strategy
is widely applied, such as in the Voyager and Cassini missions.
This thesis presents an innovative procedure to design the interplanetary legs connect-
ing close encounters, by means of a generalization of the syzygy functions for planetary
alignment, together with the B-plane characterization of flybys, developed by Öpik.
In the second part of the thesis, the preliminary design and optimization of the multiple
gravity assist trajectories is tackled by means of techniques of combinatorial optimization.
A dynamic programming approach to the problem is proposed, that enables the selection
of the most precise and feasible solution with great computational efficiency. The pro-
posed algorithm is tested by reproducing Voyager-like trajectories.
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Sommario

L’esplorazione spaziale e il disegno di missioni interplanetarie complesse spesso richiede
altissimi livelli energetici. Il livello tecnologico propulsivo è ancora inadeguato per ambire
a traiettorie complesse, per cui è necessario ricercare delle strategie alternative che portino
a delle missioni effettivamente realizzabili. Per questo motivo è diventato essenziale inte-
grare nel profilo della missione manovre di fionda gravitazionale e flyby planetario, come
ad esempio nelle missioni Voyager e Cassini.
In questa tesi si propone una procedura alternativa per il disegno delle traiettorie inter-
planetarie che collegano le diverse manovre di fionda, che consiste in una generalizzazione
delle funzioni di syzygy per l’allineamento planetario, insieme alla descrizione del flyby
planetario tramite il formalismo del B-plane di Öpik.
La seconda parte della tesi affronta il problema della progettazione e dell’ottimizzazione
delle fionde gravitazionali multiple. Si propone un approccio di dynamic programming al
problema, che permette di selezionare le soluzioni più precise e realizzabili, mantenendo
contenuto il costo computazionale. L’algoritmo proposto è successivamente testato ripro-
ducendo traiettorie nello stile delle missioni Voyager.
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1| Introduction

In the past 60 years interplanetary spaceflight has shown the great scientific value of data
gathered from the observation of the Solar System. Certain observations can be performed
efficiently from Earth’s surface or from orbits around the Earth, but most of the times it is
required to leave the Earth and travel deep inside of the solar system to gather adequate
information. It is the case of missions like Cassini, Voyager and Pioneer, that deepened
human knowledge about various planets, moons and celestial bodies of the Solar System.
A great issue arose from the need of interplanetary exploration: in order to travel deep
in the solar system, very large velocity changes are required. Currently, launch systems
and propulsion technologies are still inadequate to reach targets whose orbits have much
higher or lower energy levels with respect to the Earth; an alternative strategy has been
found by exploiting Gravity Assist Maneuvers (GAMs). A gravity assist manoeuvre (also
called swing-by or gravitational slingshot), is the use of the relative movement and gravity
field of a planet or other massive celestial body to change the velocity of a spacecraft.
This is achieved with a close proximity swing-by of the celestial body so that its gravity
produces a change in the velocity vector of the spacecraft. [26]. This idea has been ex-
ploited widely in the last decades, in missions such as Bepicolombo [38], Cassini-Huygens
[29], Juice [19] and many others.
However, in many cases, a single GAM is not sufficient to achieve the mission target. This
is due to the fact that a close encounter can generate a limited variation of the orbital
parameters of the spacecraft, depending on it’s velocity magnitude and orientation and
on the mass of the close encounter body. To overcome this limitation, it is necessary to
perform a definite number of GAMs to reach the objective. The idea behind this strategy
is to obtain the prescribed energy variation by diluting it into an arbitrary number of
GAMs, each of which causes feasible variations of the orbital parameters. These kind of
missions are identified as Multiple Gravity Assist missions (MGA).
The problem at hand has increased greatly in complexity and the design of the trajec-
tory involves several challenging aspects. Firstly it is necessary to identify a planetary
sequence, which has a great impact on the optimality of the solution. This is due to
the fact that different planetary sequences can lead to extremely different trajectories, in
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terms of initial ∆v, overall time of flight and departure time window. Once the sequence
is defined, a favorable spatial positioning of the selected planets must be sought, in order
to actually reach the target planet.
For these reasons, efficient methods based on simplified dynamics models are required to
quickly explore such complex solution spaces in the early stages of the design.
Over the years, several methods were proposed to simplify the design of the flyby, with
the Keplerian Map [34], the Tisserand-Poincarè map [10] and the flyby [35] and kick map
for low energy flyby [5]. The Keplerian Map (KM) is a common method to study the
flyby effects in the Ciruclar Restricted 3 Body Problem (CR3BP). Based on perturbation
theory, this method was initially developed to investigate the dynamics of comets around
Jupiter, whereas Tisserand-Poincarè graphs provide an efficient way to tackle the com-
binatorial part of the MGA problem, by allowing a simple computation of the effect of
different sequences of gravity assists, based only on energy considerations [25]. The Flyby
Map is also a typical approach to study the CR3BP, which is fully numerical and valid
for a wide range of energy levels. It extended the functionality of the Tisserand-Poincarè
graph over the applicability of the patched-conics model.
Nevertheless, the above methods offer a solution which depends on the parameter state
vector (e.g. initial epoch, position, velocity) and therefore require to be repeated for each
initial condition to give a representation of the solution in "global" map. [14]. Instead, it
is possible to efficiently simplify the case, following D. Menzio et al. [14] idea: the trajec-
tory design issue is treated simply as the study and search for the zero of a function that
describes the problem, the syzygy function, that will be presented in detail in Chapter 3.

1.1. Contribution of the thesis work

In the first part of the thesis, the procedure presented by Menzio et al. [14] is further
improved by removing one of its main simplifying assumptions, namely that the transfer
leg must either start or end at one of it’s absidal points. In this way, the designed solutions
will be more realistic, and the solution search more generalised than the ones proposed
by Menzio et al.. Furthermore, the model presented by Menzio et al. is extended to
hyperbolic orbits, in order to include open trajectories to the possible design strategies.
The initial model is then combined with the B-plane formalism introduced by Öpik [15],
in order to implement efficiently the close encounter effect on the spacecraft’s orbital
parameters. This innovation to the initial model allows the design process to identify
only the flybys that are feasible from an orbital mechanics point of view.
In the second part of the thesis, once an optimality policy is chosen, the developed model
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is combined with a dynamic programming approach to address the search of the optimal
trajectory between the solutions computed by means of the syzygy algorithm. Dynamic
programming in fact, provides a very efficient optimisation method for problems involving
combinatorial elements, and allows to find the global optimal solution by investigating
only a reduced portion of the solution space. Overall, the objective of the thesis is to
provide a fast and reliable algorithm for computing preliminary solutions to MGA design
problems, whose results could serve as reasonable starting point for numerical methods
to faster converge to more complete trajectory solutions.
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problem

Especially in the early times, the preliminary design of MGA missions was approached
mainly relying on the intuition of mission designers in unison with analysis tools, based
on a number of simplifying assumptions, like the CR3BP and patched conics frameworks,
such as in the Tisserand’s graph [4] [30]. These techniques were mainly used to scan a large
range of options in order to identify a restricted number of potentially good solutions (or
first guesses). A more accurate design of these solutions was performed only as a second
step, by using higher fidelity models with more complex dynamics, optimal control theory,
and optimisation techniques [2].
Regarding the latter, a great number of possible approaches can be selected to tackle this
issue. In this Chapter a brief outline of the typical solution strategies for this problem is
presented.

2.1. Interplanetary trajectory design strategies

The MGA problem can be roughly represented by a series of two tasks: establishing an
effective planetary sequence and evaluate the possible trajectories that arise from the
particular sequence considered. Then, the trajectories can be obtained with different
strategies: ballistic arcs, low-thrust or low-energy transfers and impulsive maneuvers.
In the last decades global optimization techniques were extensively used towards the so-
lution of complex interplanetary trajectory transfers, together with methods including
neurocontrollers [13], shooting [12], and collocation [22], showing variable effectiveness.

2.1.1. Optimisation algorithms

Commonly used optimization algorithms can be classified into three main classes: stochas-
tic algorithms, which involve a suitably chosen random sample of points and subsequent
manipulation of the sample to find good local minima; guaranteed algorithms, which are
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deterministic algorithms that guarantee the identification of a global optimum with a re-
quired accuracy; metamodel algorithms that exploit the construction of metamodels, and
do not perform the global search on the real objective function, but on a metamodel of it,
that is, a model of the model, or also a simplified model of an actual model of a circuit,
system, or software like entity.
Among these, stochastic algorithms have shown to be the generally suitable for the prob-
lem at hand, and they comprehend a great variety of methods, but the most exploited ones
in the trajectory design framework are Simulated Annealing, which performs the global
search based on successive update steps, and Evolutionary Algorithms, which globally
search the solution space by simulating the self-optimising natural process of evolution.
Evolutionary Algorithms can be further divided in three main branches: Genetic Algo-
rithms, Evolutionary Programming and Evolutionary Strategies [32].
In the last decades, different forms of stochastic search methods have been applied to
orbit design, such as, Vasile in 2003 [39] proposed a stochastic global optimiser (EPIC)
that was tested on interplanetary transfer, and later used by Vasile and De Pascale as a
component of the interplanetary design tool IMAGO [28].
In 2008, Vasile et al. [27] proposed a generalisation of Differential Evolution (DE) and
Particle Swarm Optimization [21] in the form of discrete-time dynamical system.
In order to select more easily a solution strategy, Di Lizia et al. tested different stochastic
algorithms, and identified a limited number of global optimization methods to be applied,
depending on the type of trajectory design chosen [32], since the efficiency, both com-
putational and performance-wise, of these approaches are strongly linked to the type of
problem considered. The tested algorithm set embraces classical genetic algorithms includ-
ing different Genetic Operators for performing the global search (GAOT and GATBX),
Genetic Algorithms with sharing and migration operators (GAOT-shared and GATBX-
migr respectively), Evolutionary Programming (Fast Evolutionary Programming, FEP),
Differential Evolution (DE), an improved Simulated Annealing (Adaptive Simulated An-
nealing, ASA), branching methods (glbSolve and MCS), response surface based optimisa-
tion algorithms (rbfSolve) and, an innovative hybrid systematic-heuristic method combing
branching techniques and evolutionary programming (EPIC).
It emerged from the tests that, for example, in the simple case of 2-impulse direct planet to
planet transfer problem, the Monte Carlo Search algorithm (MCS), a branching method,
has shown to be the best performing one in terms of computational effort (number of
objective function evaluations to reach the solution). For low thrust transfers instead DE
and GATBX-migr showed good performances.
Ballistic trajectories are characterized by a lower number of design variables, since instan-
taneous maneuvers and control laws for thrust profile determination are not considered,
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and show a highly combinatorial nature. Dynamic programming is especially suitable for
problems involving combinatorial elements, such as ballistic trajectories, and therefore
has been chosen for this thesis work [18].
All the strategies presented so far only deal with the trajectory design issue, leaving the
selection of the planetary sequence as an unresolved task. This problem has been ad-
dressed with different strategies: from intuition and heuristics, to, in the more recent
years, what is named automatic MGA design.
Regarding the automatic design of MGA trajectories (that is, both the planetary sequence
and trajectory has to be determined), the literature shows that the problem has been ap-
proached with several different techniques: from deterministic approaches, to graphical
tools like the Tisserand-Poincarè Map or the Flyby Map [4] [30], from stochastic ap-
proaches to hybrid methods, like the procedure presented by Hennes and Izzo [20], based
on a heuristic free approach to automated trajectory planning (including the encounter
sequence planning) based on Monte Carlo Tree Search (MCTS). MCTS is a technique
widely applicable in domains that require sequential decision making, including game-
tree search and planning problems. The MCTS paradigm combines informed tree search
with the generality of Monte Carlo simulations
Nevertheless, all of them can be classified in two main categories: two level approaches
and integrated approaches. Two-level approaches define the planetary sequence indepen-
dently of the trajectory itself and split the problem into two sub-problems which lay at
two different levels: one sub-problem is to find a suitable set of sequences of planetary
encounters; the other is to find at least one optimal trajectory for each sequence. The
STOUR software, for example, is based on a two-level approach [32]. As opposed to the
two-level approaches, integrated approaches define a mixed integer-continuous optimisa-
tion problem, which tackles both the search of the sequence and the optimisation of the
trajectory, using a single model, at the same time [28].
The planetary sequence determination in this thesis is completely arbitrary, since the
main objective of this work deals strictly with the preliminary design of MGA ballistic
trajectories. A possible future direction for this work could be indeed the implementation
of a fully automatic MGA design strategy.
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3| Generalized Syzygy functions

theory

3.1. Multiple gravity assist trajectory design strat-

egy

This Chapter presents an overview of the work developed by Menzio et al. [14] regarding
the adapted syzygy functions for the preliminary design of MGA ballistic trajectories.
These concepts provide the necessary theoretical basis for understanding the innovative
model extension developed in Chapter 5.

3.1.1. Syzygy functions for sighting

The term syzygy comes from suzugos, "conjunction" in the Ancient Greek, and indicates
the alignment of three or more planets, that is, when the three planets form a straight
line while revolving around the Sun.
The idea consists in using the syzygy function to find the planetary alignment considering
the dynamics of the bodies, in order to model the interplanetary trajectory. First of all
the sighting problem is considered, under the assumptions of co-planar, circular planetary
orbits. The line condition can be imposed by expressing the planar position (in terms of
x and y) of the three planets in terms of orbital radius.x1 = r1cos(n1t+ ϕ1(t, t0))

y1 = r1sin(n1t+ ϕ1(t, t0))
(3.1)

x2 = r2cos(n2t+ ϕ2(t, t0))

y2 = r2sin(n2t+ ϕ2(t, t0))
(3.2)
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x3 = r3cos(n3t+ ϕ3(t, t0))

y3 = r3sin(n3t+ ϕ3(t, t0))
(3.3)

Where ri is the i-th planet’s orbital radius, ni is the i-th planet’s angular velocity and
ϕi(t, t0) is the initial angular position of the planet.
Imposing the passage of the line by 3 points, that is:

x1 − x2
y1 − y2

=
x3 − x2
y3 − y2

(3.4)

rearranging and exploiting the trigonometric identity, the syzygy function can be written
as the summation of sine of the angular difference of the planets [14]:

f123 =
sin[(n3 − n2)t+ ϕ32]

r1
+
sin[(n1 − n3)t+ ϕ31]

r2
+
sin[(n2 − n1)t+ ϕ21]

r3
(3.5)

The goal now is to find the zeros of the function, that represents the planetary alignment.
The solution will be given in terms of departure time. The syzygy doesn’t account for
orbital eccentricities and inclinations, but nevertheless gives a general idea of the patterns
of alignment expected for planets with roughly circular and co-planar orbits [14].
"Perfect" solutions will make the syzygy function tend to zero, meaning a precise align-
ment is taking place, but for the sake of sighting alone, also solutions close to zero can be
considered good enough ones.

3.1.2. Time augmentation: the Hohmann-syzygy functions

The line condition hypothesis is preserved, however, because of the required time of flight
to reach all the planets, an updated definition of syzygy function must be introduced.
This constraint forces the transfer to follow an Hohmann trajectory. The syzygy function
can be written this time as [14]:

F (t) =

Npl−1∑
j=1

(rjrj−1sin(nj+1tofj + ϕj,j+1(tj)))
2 (3.6)

This strategy has a crucial drawback: satisfying the line condition doesn’t ensure that the
planets are in a feasible Hohmann configuration, which requires to ride on an unfeasible
high-eccentricity orbit, that leads to clearly unfeasible close encounters, see figure 3.1.
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Figure 3.1: The solutions identified from the Hohmann-syzygy function: on the left the
correct disposition of the planets allows to perform two Hohmann to reach Mars, on the
right having Venus and Mars from the same side results the bouncy trajectory. The image
presented is taken from Menzio et al. work [14].

Since Hohmann transfers are characterized by tangential and parallel velocities at arrival
and departure, the flybys would give no contribution. Indeed, a ballistic (unpowered)
close encounter’s effect is limited to a pure rotation of the incoming planetocentric ve-
locity, but in the case described, both pre and post encounter velocities share the same
direction, meaning that the effect of the flyby is overall null.
To obtain the wanted Hohmann GA the planetocentric velocity vector would need a vari-
ation in magnitude, making it necessary to perform powered manoeuvres, making the
trajectories not optimal design-wise for the problem at hand, since only ballistic trajec-
tories are being considered.
For not perfect solutions (imprecise alignment and therefore not perfectly tangential ter-
minal points), the flyby does give a contribution by rotating the incoming planetocentric
velocity, but it changes the overall geometry not respecting the line condition constraint.

3.1.3. Conic-syzygy functions

In order to solve the problems highlighted in the section above, the line condition must
be abandoned, in favour of a conic one. The idea behind the "new" syzygy developed by
Menzio et al. is going to be to find where the time of flight meets the time of interception,
to shape the trajectory [14].
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Considering now the case of 2 interplanetary legs and a flyby, the number of variables has
increased: three parameters for each leg, two times of flight, the departure date and one for
the flyby, either the pericenter radius, the turn angle δ, or the impact parameter b. Since
the number of variables is greater than the number of unknowns, the problem formulated
this way admits infinite solutions. Therefore an additional constraint should be taken
into account to balance the two and an orbital parameter must be chosen parametric to
shape the orbit: only tangential arcs are considered at the terminal points (departure and
arrival, this imposes the true anomaly at departure and at arrival that will be apsidal
points) and the eccentricity is chosen as a parameter.
Under these assumptions, by defining the eccentricity and the departure date, the whole
interplanetary leg is fully defined:

θ(t1) = 0 (3.7)

a1(e1) =
r1

1− e1
(3.8)

ω(t1) = L1(t1) (3.9)

Where θ(t1) is the true anomaly on the transfer orbit (perigee), a1 is the semi-major axis,
e1 is the eccentricity, ω1 is the argument of perigee and L1 is the true longitude of the
departure planet.
It is then possible to define the aperture of the space triangle, identified by the difference
in true anomaly [14]:

cos(∆L21(e1)) =
1

e1
(
r1
r2
(1 + e1)− 1) (3.10)

Considering the equation above, it is possible to derive the minimum and maximum values
that e1 can assume (the right term of the equation has boundary values of +/- 1):emin = r2−r1

r2+r1

emax = 1
(3.11)

Now, by means of Kepler equation, it is possible to compute the time of flight associated
to the space triangle of aperture ∆L21 and therefore, the arrival time:

L1 = n1t1 + ϕ01 (3.12)
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Where n1 is the angular velocity of the departure planet and ϕ01 is the initial (t0 = 0)
angular position of the departure planet.

t2 = t1 + tofshort (3.13)

This above represents the short transfer arc. It is possible to compute also the long
transfer arc by considering the complementary tof with respect to the transfer leg orbital
period.

toflong = Torbit − tofshort (3.14)

The time of flight computation can lead to negative values for the former. These cases
represent retrograde orbits.
Finally, the syzygy function, also called Feasible Transfer Condition FTC is defined as
[14]:

FTC12 = cos(n2tofshort + ϕ21(t1))− cos(L2(t2)− L1(t1)) (3.15)

The above function is subject to:

sin(n2tofshort + ϕ21(t1)) > 0 (3.16)

Where, n2 is the angular velocity of the arrival planet, ϕ21(t1) is the phasing between the
two planets at departure and Li(ti) is the true longitude of the spacecraft on the transfer
orbit.
When the above constraint is violated, the tofshort must be replaced with it’s complemen-
tary, becoming:

FTC12 = cos(n2toflong + ϕ21(t1))− cos(L2(t2)− L1(t1)) (3.17)

As the FTC tends to zero, it will provide the feasible solution trajectory, in terms of a1,
e1, t1, t2 and L1.
For all the consequent interplanetary legs, the procedure followed is the same.
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4| Close encounters in the B-plane

and flyby characterization

This chapter presents an overview of Öpik’s theory of planetary close encounters, and an
overview of the Orbital Mechanics relations for the flyby characterization. These concepts
provide the necessary theoretical basis to understand the solution strategy presented in
Chapter 7. A more thorough view on these subjects is presented in the works of Öpik
[15], Carusi et al. [1] and Curtis [11].

4.1. Close encounters in the B-plane

Öpik’s theory was derived based on a two-body linked-conics approximation and by in-
cluding Tisserand’s criterion [37]. In this framework, a massless particle is assumed to
move on a Keplerian orbit relative to the Sun, until it enters the Sphere Of Influence (SOI)
of a perturbing planet moving on a circular orbit. From a heliocentric perspective, the
SOI is assumed to have an infinitesimal radius, implying that the orbits of the two objects
are actually intercepting [26]. Once the particle reaches the SOI, the close encounter is
modeled as an instantaneous rotation of the planetocentric velocity, without any change
in its magnitude. The effect of the flyby is, therefore, a sudden variation of the keplerian
parameters of the particle due to momentum exchange between the celestial body and
the object.
Despite these simplifying assumptions, the true nature of planetary encounters is ap-
proximated quite well by this model and provides accurate initial estimates of the actual
trajectory [6].

4.1.1. Encounter geometry

In this framework, the reference frame is planetocentric and all the orbital parameters
are computed by using Jacobi normalized units. The period of the planet is 2π and its
distance to the Sun is 1. It is also assumed that both the mass of the Sun and the
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gravitational constant are equal to 1, such that the planet’s velocity is 1 as well [18]. Let
a, e, i, Ω, ω be the orbital elements of the particle’s heliocentric orbit.
A planetocentric reference frame (X, Y, Z) is introduced, centred in the planet’s center
of mass such that the X-axis is directed from the Sun to the planet’s position, the Y-axis
is aligned with its direction of motion and the and Z-axis completes the right-handed
triad. In this reference frame, the components of the planetocentric velocity vector of the
particle are [1]: 

Ux = ±
√

2− 1
a
− a(1− e2)

Uy =
√
a(1− e2)cos(i)− 1

Uz = ±
√
a(1− e2)sin(i)

(4.1)

U =
√
U2
x + U2

y + U2
z (4.2)

Identifying with T the Tisserand parameter of the particle’s orbit, it can be shown a
relation between T and the magnitude of the planetocentric velocity U:

U = 3− T =

√
3− 1

a
− 2

√
a(1− e2)cos(i) (4.3)

T is an invariant for the CR3BP, therefore, both U and T are conserved during a close
encounter.
It must be noticed that, since normalized units are being used, the Tisserand parameter
will depend on the particular planet on which the flyby is being performed. The encounter
can be further represented geometrically by means of two angles, θ and ϕ, as in figure 4.1
where θ is the angle between U and the y-axis, and ϕ, the angle between the y-z plane
and that containing U and the x-axis [17].
The velocity vector can be therefore expressed as:Ux

Uy

Uz

 =

Usin(θ)sin(ϕ)Ucos(θ)

Usin(θ)cos(ϕ)

 (4.4)

So that: [
cos(θ)

tan(ϕ)

]
=

[
Uy

U
Ux

Uz

]
(4.5)
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By substituting equations 4.1 and 4.3 into 4.5, it is possible to obtain the following
expression [18]:

cos(θ) =

√
a(1− e2)cos(i)− 1√

3− 1
a
− 2

√
a(1− e2)cos(i)

(4.6)

Which can be reduced to:

cos(θ) =
1− 1

a
− U2

2U
(4.7)

Equation 4.6 shows that in a close encounter, the potential energy of the particle is fixed
by the distance of the planet relative to the Sun. Instead, the kinetic energy is linked to
the magnitude of the vectorial sum of the heliocentric velocities of the particle and the
planet. For fixed U, this magnitude does only depends on θ. Therefore, the total energy
(potential plus kinetic), and thus the semi-major axis, are only function of θ, as evidenced
from equation 4.6 [18].
It is possible to derive also an expression for ϕ as a function of the particle’s orbital
elements. However this expression suffers from sign ambiguity and doesn’t depend only
on the particles semi-major axis:

tan(ϕ) = ±

√
2a− 1

a2(1− e2)
− 1

1

sin(i)
(4.8)

If 0 < ϕ < π
2

the encounter is from inside the planet’s orbit, and vice versa if −π
2

< ϕ <
0.
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Figure 4.1: The frame of reference of the vector U. The origin is at the planet’s centre,
the y-axis is oriented in the direction of motion of the planet, the x-axis is in the opposite
direction with respect to the sun, the z-axis is parallel to the planet’s angular momentum
vector. The direction of U is provided by the two angles θ and ϕ. This figure is taken
from Carusi et al. work [1].

4.1.2. B-plane frame

The B-plane is defined as the plane orthogonal to U and containing the centre of the
planet. In this context it is introduced the B-plane reference frame (ξ, η, ζ) such that the
(ξ, ζ)-axes lie on the B-plane and η is perpendicular to it. In particular, ζ is parallel to
the projection of the planet’s velocity Vpl on the B-plane but with opposite direction and
ξ completes a right-handed reference system, as shown in figure 4.2:

η̂ =
U

|U |
(4.9)

ξ̂ =
U × vpl
|U × vpl|

(4.10)

ζ̂ = ξ̂ × η̂ (4.11)
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Figure 4.2: The figure shows the two reference frames presented: B-plane and planeto-
centric frame. This figure is taken from Campiti et al. work [18]

The ζ coordinate is associated to the shift in the time of arrival of the particle with respect
to the planet, whereas ξ is related to the minimum distance between the two orbits [18].
When the particle crosses the B-plane, η = 0, and the quantity called impact parameter
identifies the closest distance between the object and the planet:

b2 = ξ2 + ζ2 (4.12)

4.1.3. B-plane deflection model

As already highlighted in the previous chapter, the flyby effect on the particle’s velocity
U is a pure, instantaneous rotation which doesn’t alter it’s magnitude.
The magnitude of such rotation depends on the value of |U|, on the impact parameter
and on the planet’s mass m in units of the Sun’s mass.
Introducing the characteristic length c = m

U2 , the deflection angle γ can be computed as:

tan(
γ

2
) =

c

b
(4.13)
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The encounter generates a rotation of U of γ in the direction given by the direction angle
ψ: [

bsin(ψ)

bcos(ψ)

]
=

[
ξ

ζ

]
(4.14)

Following the procedure proposed by Valsecchi et al. [17], it is possible to compute the
post encounter angle ϕ′, by means of the angle χ.:

tan(χ) =
sin(ψ)sin(γ)

cos(γ)sin(θ)− sin(γ)cos(θ)cos(ψ)
(4.15)

χ = ϕ− ϕ′ (4.16)

Finally, the post encounter angle θ′ is computed as:

cos(θ′) = cos(θ)cos(γ) + sin(θ)sin(γ)cos(ψ) (4.17)

At this point, the flyby can be fully characterized. Starting from the geometry considera-
tions made so far, it is possible to identify the point on the B-plane corresponding to the
close encounter considered:

ζ =
(b2 + c2) ∗ cos(θ′)

2csin(θ)
− (b2 − c2) ∗ cos(θ)

2csin(θ)
(4.18)

ξ =
√
b2 − ζ2 (4.19)

Furthermore, it is possible to exploit the computations made so far to evaluate the post
encounter U′ components, which is represented in figure 4.3, together with the post en-
counter orbital parameters a′, e′ and i′:

U
′
x

U ′
y

U ′
z

 =

Usin(θ
′)sin(ϕ′)

Ucos(θ′)

Usin(θ′)cos(ϕ′)

 (4.20)

a′ =
1

1− U2 − 2U ′
y

(4.21)

e′ =
√
U4 + 4U2

y
′ + U2

x
′(1− U2 − 2U2

y
′) + 4U2U ′

y (4.22)
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i′ = atan(
U ′
z

1 + U ′
y

) (4.23)

Figure 4.3: After the encounter the vector U is rotated by an angle γ in the direction
given by ψ. This last is the angle (counterclockwise) from the meridian RP, containing
the velocity vector. After rotation, the direction of U is given by the angles θ′ and ϕ′.
This figure is taken from Carusi et al. work [1].

For the problem at hand, which considers all the planets on co-planar, circular orbits,
the close encounter characterization assumes a simplified description, since the rotation
of the incoming velocity vector U is such that also the outgoing velocity vector U′ lies on
the ecliptic plane. This means that the direction angle ψ is fixed and is equal to π. This
way:

χ = 0 (4.24)

ϕ′ = ϕ (4.25)

cos(θ′) = cos(θ)cos(γ)− sin(θ)sin(γ) (4.26)
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U
′
x

U ′
y

U ′
z

 =

Usin(θ
′)sin(ϕ′)

Ucos(θ′)

0

 (4.27)

i′ = i = 0 (4.28)

Indeed, equation 4.26 represents a planar rotation of the angle θ by an angle γ. A similar
result could have been obtained by applying the rotation of γ to vector U by means
of a rotation matrix. The obtained result is also in accordance with the corresponding
trigonometric expression of cos(θ + θ′).

4.2. Flyby characterisation

The B-plane and Öpik’s formalism characterised the flyby in terms of variation of a, e
(planar case). The values of a′ and e′ (post-encounter values) computed by these means
automatically respect the conservation of the Tisserand parameter.
The argument of perigee uniquely identifies the orientation of the transfer orbit, and the
true anomaly uniquely identifies the spacecraft’s flight path angle at encounter, limiting
the feasible variation of orbital parameters obtainable by means of the flyby.
The idea behind this section is to employ the classical Orbital Mechanics relations for the
characterisation of the flyby, in order to verify if the deflection studied by means of the
B-plane is actually feasible for the unique incoming interplanetary leg designed with the
syzygy algorithm.
In order to do so, the angular momentum of the planet encountered and of the spacecraft
pre and post flyby must be evaluated:

hs/c =
√
µa(1− e2); (4.29)

h′s/c =
√
µa′(1− e2′); (4.30)

hpl =
√
µr; (4.31)

From these quantities it is possible to evaluate the radial and orthogonal components of
the spacecraft and planet’s velocities. Note that in the assumption of planetary circular
orbits, the radial component of the planet velocity is always null:

vr =
µ

h
esin(θ) (4.32)
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vo =
µ

h
(1 + ecos(θ)) (4.33)

At this point, it is possible to compute the planetocentric relative velocity (velocity at
infinity) of the spacecraft, first evaluating it’s radial and orthogonal components:

vr∞ = vrpl − vrsc (4.34)

vo∞ = vopl − vosc (4.35)

v∞ =

[
vr∞

vo∞

]
(4.36)

By fixing the impact parameter, it is possible to completely define the close encounter
hyperbolic trajectory in terms of pericenter radius rp:

rp =
−µpl

v2∞
±

√
µ2
pl

v4∞
+ b2 (4.37)

Where µpl is the gravitational parameter of the flyby planet, v∞ is the magnitude of v∞

and b is the impact parameter. The sign ambiguity can be ruled out by remembering
that the perigee radius rp must be a positive value, so:

rp =
−µpl

v2∞
+

√
µ2
pl

v4∞
+ b2 (4.38)

The flyby hyperbola will feature an eccentricity given by:

e = 1 +
rpv

2
∞

µpl

(4.39)

and turn angle δ computed as:

δ = 2asin(
1

e
) (4.40)

The data gathered by means of these computations can be exploited in order to evalu-
ate the feasibility of the close encounter prescribed by the B-plane deflection model, by
checking if the perigee radius rp is actually greater than the planetary radius of the flyby
planet. The feasibility condition therefore reads:

rp > rplanet (4.41)
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Any flyby that respects this condition is considered feasible.
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5| Conic Syzygy generalisation

This Chapter presents an innovative generalisation of the approach described in Chapter
3 for hyperbolic orbits and for not-tangential terminal points. The aim is to obtain a
more flexible algorithm, able to find a higher number of feasible solutions and adapt it to
use it jointly with the B-plane formalism described in Chapter 4.

5.1. Generalized syzygy

5.1.1. Elliptic case

The conic syzygy algorithm developed by Menzio et al. [14] and proposed so far is based
on a strong assumption: the transfer trajectory has one of it’s terminal points in the
absidal points. The aim at this point is to remove this hypothesis, in order to broaden
the solution space and perform a more thorough search for the optimal trajectory.
Removing the constraint leaves the problem with an additional degree of freedom, there-
fore, a new parameter must be chosen to fully determine the transfer leg. The departure
true anomaly on the transfer orbit θ1 is chosen, enabling departure and arrival not in the
absidal points. The proposed procedure is the same as the one presented in section 3.1.3,
but some adjustments must be taken in order to successfully implement it.
Two consideration must be made regarding the computation of the aperture of the space
triangle ∆θ12, that was defined in equation 3.9:

∆θ21(e1) = acos(
1

e1
(
r1
r2
(1 + e1)− 1)) (5.1)

This expression is valid only if r1 is actually the pericenter radius of the transfer orbit.
In this generalized approach therefore, r1 must be replaced by:

rp = a1(1− e1) (5.2)
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Leading to:

∆θ21(e1) = acos(
1

e1
(
a1
r2
(1− e21)− 1)) (5.3)

θ2 = ∆θ21(e1) (5.4)

The inverse cosine function in equation 5.3 returns values in the interval [0, π]. The real
values of ∆θ12 that satisfy equation 5.3 are instead two, the "lost" value being in the
interval [−π, 0] and it’s value is:

∆θ2lost = −∆θ21 (5.5)

Not considering this second value halves the possible solutions produced by the algorithm
and therefore must be taken in consideration. This value is labeled as "lost" because
the inverse cosine function, by the way it is defined, is not able to identify it. Once the
aperture ∆θ21 has been determined (therefore also ∆θlost), as shown in Chapter 3, it is
possible to evaluate the correspondent time of flights by means of Kepler equation. In this
work, only prograde orbits will be considered, and the retrograde orbits will be considered
as unfeasible solutions.
If θ1(t1) < π: 

ifθ1(t1) > θ2(t2)

tofshort = tofarrlost − tofdep

toflong = tofarr + Torbit − tofdep

(5.6)


ifθ1(t1) < θ2(t2)

tofshort = tofarr − tofdep

toflong = tofarrlost − tofdep

(5.7)

And, if θ1(t1) > π: 
ifθ1(t1) < θ2lost(t2)

tofshort = tofarrlost − tofdep

toflong = tofarr + Torbit − tofdeparture

(5.8)


ifθ1(t1) > θ2lost(t2)

tofshort = tofarr + Torbit − tofdeparture

toflong = tofarrlost + Torbit − tofdeparture

(5.9)
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Where tofdep is the time of flight from pericenter to the departure true anomaly, tofarr
to arrival true anomaly, tofarrlost to the "lost" arrival true anomaly θ2lost and Torbit the
transfer orbit period, that depends only on the already computed semi-major axis.
Lastly, an improvement is performed on the shape of the FTC. Due to the harmonic
nature of the cosine functions, the presented syzygy function tends to zero either when
the arguments of the two cosines are equivalent, or when one it’s the opposite of the other.
This second scenario represents transfer orbits which satisfies the FTC but leads to the
target planet only if travelled in retrograde motion, and must be therefore discarded for
the model presented, since only prograde orbits are considered.
In order to avoid such issue, the cosines are removed from the FTC, leading to:

FTC12 = n2tofshort + ϕ21(t1)− θ2(t2) + θ1(t1) (5.10)

FTC12 = n2toflong + ϕ21(t1)− θ2(t2) + θ1(t1) (5.11)

The first representing the short transfer arc (aperture < π) and the latter the long transfer
arc. Both solutions might lead to a feasible transfer (such that the FTC tends to zero),
so both are considered as solutions of the presented algorithm.
By removing the cosines from the FTC expression, the FTC will tend to zero only if the
spacecraft and the target planet share the same angular position, or in other words, the
apertures of the space triangles spanned by both the planet and the spacecraft are equal.
Indeed, n2tof + ϕ21(t1) represents the angle spanned by the target planet with respect to
the position of the departure planet. ϕ21(t1) is the initial phasing (initial angle) between
target and departure planet; n2tof instead represents the angle travelled by the target
planet during the duration of the transfer leg. The summation of the two identifies the
overall aperture of the space triangle, that must be matched by the angle travelled by
the spacecraft, namely ∆θ21. To conclude, the improved FTC represents the difference,
in terms of angular position, between the spacecraft and the target planet. As the FTC
tends to zero, so does the difference of angular position between the spacecraft and the
target planet, meaning that the two objects share the same spatial position.

5.1.2. Hyperbolic case

Among the conic sections often exploited during interplanetary missions, a very important
role is played by hyperbolic orbits. Apart from being fundamental in the study of close
approaches to planets within the SOI, they are the only solution, being open orbits, for
missions whose objective is reaching as far as possible from the Sun. For this reason they
have been included in the generalization of the algorithm proposed in Chapter 3.
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The algorithm in the hyperbolic case is essentially equivalent to the elliptic case, with the
only differences being in the selection of departure and arrival true anomalies and time of
flight computations. This is a consequence of the fact that hyperbolic orbits are open.
Regarding the first issue, θ1(t1) must be chosen so that it respects the asymptotes con-
straint, being:

θ∞ = acos(− 1

e1
) (5.12)

The true anomalies of the asymptotes are therefore (−θ∞, θ∞) and both θ1 and θ2 must
be inside this bounds.
As for the time of flight, since the orbit is open and only prograde solutions are considered,
only certain configurations will lead to feasible transfers. More in particular, if θ1 > 0:

ifθ1(t1) < θ2(t2)

tofshort = tofarr − tofdep

toflong = retrograde

(5.13)


ifθ1(t1) > θ2(t2)

tofshort = retrograde

toflong = retrograde

(5.14)

Instead, if θ1 < 0: 
ifθ1(t1) > θ2lost(t2)

tofshort = tofarr − tofdep

toflong = retrograde

(5.15)


ifθ1(t1) < θ2lost(t2)

tofshort = tofarrlost − tofdep

toflong = tofarr − tofdep

(5.16)

Again, tofshort representing the short transfer arc (aperture < π) and toflong the long
transfer arc. Both solutions might lead to a feasible transfer (such that the FTC tends to
zero), so both are considered as solutions of the presented algorithm.

5.2. Solution space pruning

Having outlined the procedure used to evaluate the FTC, it is possible now to exploit it
to search for the solution.
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Starting from the first interplanetary leg, the aim is to parameterize the problem by means
of the departure time, eccentricity and true anomaly measured on the transfer orbit. By
generating a discretization for the chosen parameters it is possible, for any given depar-
ture time, to consider all the possible combinations of eccentricity and true anomaly. The
conic syzygy algorithm then returns the orbital parameters, FTC and tof of the com-
puted transfer orbit.
At this point, the number of computed solutions can be very large, especially when a
thorough search is performed. In order to reduce the computational weight of the algo-
rithm, a tolerance on the maximum acceptable value of the FTC is added, to discard all
the solutions that violate it. Care must be taken when choosing the tolerance value, to
avoid discarding acceptable solutions.
Some simple considerations can be made in order to select reasonable values for the FTC
tolerance values. The length of a circular arc associated to an angle at center α of a circle
of radius r can be evaluated as:

l = αr (5.17)

By the way the FTC is defined, the function is dimensional, and shows a value in radians.
As already shown in section 5.1.1, the FTC represents the difference in angular position
between the spacecraft and the target planet. It is therefore possible to evaluate the error
in terms of distance along the planet’s circular orbit, associated to a particular value of
the FTC by:

err = aFTC (5.18)

Where a is the semi-major axis of the target planet.
For the sake of this thesis work, whose objective is only a preliminary design of the
trajectory, to be used later with higher fidelity and more complex models, also small
distance errors can be viewed as valuable solutions. In order to define a threshold value
for the FTC that leads to acceptable distance errors, some simple considerations can be
made.
In order for the close encounter to take place, the spacecraft must enter the SOI of a
planet. It is therefore reasonable to select as a threshold for the FTC only values that
lead to distance errors smaller than the SOI radius of the planet considered for the close
encounter. The SOI radius of a given planet can be evaluated as:

rSOI = a(
mpl

msun

)0.4 (5.19)

Where msun is the Sun’s mass, mpl is the planet’s mass and a is the planetary semi-major
axis. It is then possible to evaluate the correspondent FTC value that leads to a distance
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error equal to the SOI radius:

FTCthr =
rSOI

a
(5.20)

In table 5.1 the values of the the planetary SOI radius and the correspondent FTC thresh-
old that guarantees the distance error to be smaller than the SOI radius are reported:

Planet SOI radius FTC threshold
Mercury 1.17 · 105 km 2.02 · 10−3

Venus 6.16 · 105 km 5.7 · 10−3

Earth 9.29 · 105 km 6.2 · 10−3

Mars 5.78 · 105 km 2.54 · 10−3

Jupiter 4.82 · 107 km 6.19 · 10−2

Saturn 5.45 · 107 km 3.8 · 10−2

Uranus 5.19 · 107 km 1.8 · 10−2

Neptune 8.62 · 107 km 1.91 · 10−2

Table 5.1: SOI radius and correspondent FTC threshold values for the main celestial
bodies in the Solar System.

Once the planetary sequence to be followed is defined, it is possible to select any value
reported in table 5.1 to guarantee that the associated solution will lead the spacecraft
within the SOI of the target planet.
As already outlined at the beginning of this section, the number of computed solutions
can be very large. Any value smaller than the threshold values computed can be used to
trim the solution space, by not considering solutions that violate this new limit value. For
the single leg case presented in the section 5.3 the solution space can be considered as a
hyper-rectangle of dimension 3. This is because the chosen parameters are three and each
parameter is discretized on a arbitrarily selected interval. Without applying any space
pruning and just using the threshold value of the FTC for selecting acceptable solutions,
the number of computed solutions is 1633, compared to the pruned space (with threshold
value for the FTC of 10−4) that counts only 75 solutions, showing a reduction factor of
21.77.
Care must be taken in the selection of the pruning threshold for the FTC, since an
aggressive pruning can lead to discarding feasible solutions. This process can be applied
to any subsequent interplanetary leg, in order to keep the computational load reduced.
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5.3. Algorithm validation: single transfer case

The proposed algorithm is validated against the solution of the Lambert problem.
As a first step, the generalized syzygy is used to solve the following problem: consider a
mission from Earth to Mercury, with departure window during year 2023 and departure
time counting 360 discrete values; the transfer orbit must be chosen with a specific ec-
centricity value, counting 200 discrete values spanning between (0, 1), and must start at
a selected true anomaly on the transfer trajectory, that can vary between [0, 2π], count-
ing 360 discrete values. A space pruning on the FTC value is performed, with FTC

threshold selected at 10−4. The solution must be computed in terms of tof and keplerian
parameters of the transfer orbit.
Using the generalized syzygy algorithm and then Lambert solver, the solutions to the
problem are computed. Among the computed solutions, the optimal one in terms of FTC
minimization is reported in table 5.2, whose trajectory is shown in figure 5.1:

a e i Ω ω θ tof
8.6137 ∗ 108 km 0.99 0 0 -0.2071 3.6054 7.5475 ∗ 106s

Table 5.2: Keplerian parameters and tof of the optimal solution transfer orbit, computed
by means of generalized syzygy algorithm.
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Figure 5.1: The trajectories computed by means of Lambert solver and generalised syzygy
algorithm. In blue Earth’s orbit, in red Mars’ orbit, in black the transfer leg computed by
means of the generalized syzygy algorithm and the red dots represent the Lambert arc.

The algorithm took 64.799 seconds to generate the presented solution, and the optimiza-
tion process lasted only 0.0058 seconds.
It is then possible to evaluate the relative error of every syzygy solution with respect to
the correspondent Lambert solution. For the semi-major axis for example, the relative
error is evaluated as:

errrel =
aLambert − asyzygy

aLambert

(5.21)

The relative error is evaluated for the semi-major axis, eccentricity and argument of
perigee values and is presented in figures 5.2, 5.3 and 5.4:
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Figure 5.2: Relative error of the syzygy algorithm in the computation of the orbit’s semi-
major axis with respect to the Lambert solution’s semi-major axis.
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Figure 5.3: Relative error of the syzygy algorithm in the computation of the orbit’s
eccentricity with respect to the Lambert solution’s eccentricity.
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Figure 5.4: Relative error of the syzygy algorithm in the computation of the orbit’s
argument of perigee with respect to the Lambert solution’s argument of perigee.

It is clear from the data presented that the relative error committed by the syzygy al-
gorithm in the computation of the keplerian parameters of a single interplanetary leg is
indeed negligible from a trajectory design point of view.

5.3.1. Syzygy algorithm computational efficiency

In the framework of the test problem presented in the previous section it of interest to
evaluate the computational quickness of the syzygy algorithm compared to the speed of
the Lambert solver in the solution of a single interplanetary arc.
Despite the parametrization of the problem must be defined differently for the two meth-
ods proposed, it is possible to choose a discretization for the Lambert parameters that
spans a solution space of equivalent dimension with respect to the syzygy solution space.
For the syzygy implementation the departure window is set in 2023 and counts 50 discrete
values. The eccentricity is set to have 50 discrete values, varying between (0, 1) (only el-
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liptical orbits are considered). As for the true anomaly, 50 discrete values between [0, 2π]

are chosen. A space pruning on the FTC is performed, with threshold value of 10−3. The
resulting discretization enables the syzygy algorithm to evaluate 125000 combinations of
parameters, each one representing a unique interplanetary arc.
The Lambert solver implementation requires to set as parametric only 2 quantities. In
this case the departure time and the tof are chosen. The same discretization presented
for the syzygy solution is used for the departure date, whereas 2500 discrete values are
defined for the tof, spanning from half to ten times the Earth’s orbital period.
The syzygy algorithm took 0.47 s to evaluate all possible combinations, compared to
313.81 s of the Lambert solver. From this data it would appear that the syzygy al-
gorithm has the edge on the Lambert solver computationally, but a consideration must
be made: the syzygy algorithm, out of 125000 trajectories, was able to identify only 5
solutions that comply with the minimum FTC threshold, and that therefore represent
feasible solutions. All the orbits generated by the Lambert solver are instead feasible in
terms of encounter precision.
It is possible to conclude that the syzygy algorithm is able to span wide solution spaces in
a very reduced amount of time compared to the Lambert solver, but it doesn’t guarantee
a high number of solutions compliant with the minimum FTC threshold, whereas the
Lambert solver is more efficient in this task. The great quickness of the syzygy algorithm
must be therefore exploited by performing searches of very wide solution spaces, in order
to match the efficiency of the Lambert solver in finding feasible solutions.
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approach

This Chapter is based on the work developed by Campiti et al. [18].
Dynamic programming is a useful mathematical technique for making a sequence of in-
terrelated decisions. It provides a computationally efficient method for finding optimal
solutions to problems that can be formulated as multi-stage decision processes, where
the decisions made at one time influence the later available choices. In contrast to linear
programming, there does not exist a standard mathematical formulation of “the” dynamic
programming problem. Rather, dynamic programming is a general type of approach to
problem solving, and the particular equations used must be developed to fit each situation
[16].
It was first introduced by Richard Bellman in the 1950s and has since found applica-
tion in a variety of disciplines, from engineering to economics. In space mission design,
several works have demonstrated the effectiveness of this technique for different optimi-
sation problems. In Lin [23], a dynamic programming method is used to optimise the
total propellant consumption required to control of the orbital altitude of a space station.
The optimisation of low-thrust trajectories is a typical problem approached with dynamic
programming, as it allows to reduce the high dimensional problem into a succession of
low dimensional sub-problems. In this direction, Colombo et al. [9] proposed an efficient
algorithm based on differential dynamic programming that computes an optimal feedback
control law by discretizing the dynamics in correspondence of a fixed number of decision
times. Alternative strategies based on this approach can be found in Nugnes and Colombo
[31] and Lantoine and Russel [24]. In Appendix A, one of the most popular dynamic pro-
gramming problems is presented in order to introduce the reader to the general notation
and terminology, and explain the logic behind the approach. Despite the renowned per-
formance of dynamic programming for stochastic problems, this Chapter will focus on
deterministic decision processes as they reflect the structure of the problem presented in
the thesis.
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6.1. General dynamic programming approach

Dynamic programming can be used to solve efficiently a variety of problems, that must
all share three essential features in order to be tackled effectively by means of a dynamic
programming approach: states, stages and a recursive relation.
Firstly, the procedure requires to structure the problem as a multistage decision process,
where the stages identify the points in which a policy decision is required. The problem
is tackled starting from either the first or last stage and proceeding one stage at a time,
such that the solution to a stage is necessary to solve the next one. Any problem lacking
this property cannot be dealt with dynamic programming. At each stage, the system
might be in different possible conditions called states, and a policy decision has the effect
to transform the current state into a different one associated with the next stage. The
definition of the states is a crucial design parameter of the model, as the choice is not
unique and the effectiveness of the method may change drastically depending upon which
one is made. The problem must comply with the so called Markovian property [36], which
prescribes that the chosen state must retain all the necessary information to determine
the optimal policy henceforth. In addition, the number of state variables should be kept
low, since the computational efficiency of dynamic programming rapidly decreases as the
dimensionality of the state space increases. This property is referred to as “curse of
dimensionality” [7] and significantly limits the applicability of the method in practise.
The process of making optimal decisions is based on Bellman’s principle of optimality
[7]: whatever the current state, the remaining decisions must constitute an optimal policy
for all successive stages, regardless of the history of decisions made to arrive at that
point. In practise, the optimisation is carried out by defining a recursive relationship
that provides the optimal policy to any sub-problem, given the solution to all the smaller
sub-problems. For the stagecoach problem, presented in Appendix A, the sub-problems
are considered starting from the last stage and then moving backward one stage at a
time, until the original problem is solved completely. This kind of logic is referred to
as backward induction [33]. Some problems are instead approached more conveniently
starting from the first stage basing the recursive relation on a forward induction process.
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flyby trajectory design

7.1. Problem statement

The preliminary design problem addressed in this work can be expressed as: given a
spacecraft departing from a given position at an initial time, evaluate the optimal trajec-
tory that leads the spacecraft to a target celestial object, performing ballistic flybys on
a sequence of selected planets. By exploiting the GAMs, it is possible to reach locations
for which a direct transfer would lead to unfeasible high energy levels.

7.1.1. Assumptions and considerations

The problem formerly presented is tackled under the following assumptions:

• patched-conics model

• planets move on circular, co-planar orbits

• no resonant flybys

• unpowered flybys

• no orbital perturbations

The patched conics model, despite the simplifications introduced, has been proven to
work efficiently also for real-life missions, such as the Voyagers 1 and 2. It is therefore
widely used in the preliminary design phase and once the solution is computed, it can be
converted into a n-body trajectory by means of techniques such as differential corrections
[8].
Regarding the strong assumption of circular and co-planar orbits, the choice was made
in order to reduce the number of state variables to fully define each stage, therefore, to
mitigate the "curse of dimensionality" effect that would lead to an extremely high com-
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putational cost together with a long computational time. The main driver that led to
the choice of dynamic programming as optimization tool was, in fact, to obtain a robust
algorithm that produces solutions in a restricted amount of time. Nevertheless, this as-
sumption can still be applied effectively to produce a preliminary solution to the problem.
Since neither perturbations nor manoeuvres are considered, the effect of each GAM is a
pure rotation of the incoming velocity U, without changing its magnitude. For this rea-
son, the target orbit must be ballistically reachable, otherwise the design would not be
effective. This condition is equivalent to saying that the initial and final orbits must fea-
ture the same Tisserand parameter [3]. Discarding all kinds of perturbations inevitably
leads to moderately approximated solutions, since the planetocentric dynamics can be
altered in a non-negligible way by disturbing effects. Still, the main objective of the work
presented is to prove the effectiveness of the syzygy/dynamic programming couple for
solving the preliminary design problem, that deals mostly with heliocentric trajectories,
on which the perturbations have a more limited effect. A method to include such effects
in the computation of the B-plane quantities has already been developed by Masat et al.
[3], so, future works could address the inclusion of perturbations in the model in order to
refine the dynamics within the SOI.
In the problem at hand, each interplanetary transfer leg represents a stage of the problem.
In order to fully describe each stage, a choice of state variables must be operated. Being
each stage a keplerian trajectory, a straightforward idea would be to use keplerian orbital
parameters as variables, or a restricted set of them at least. Following Menzio et al. the
eccentricity together with the departure date represent the best option [14] as shaping
parameter.
This thesis extends the model developed by Menzio et al. [14], relaxing the main con-
strain introduced in the previous work, namely that only tangential arcs are considered,
introducing a new degree of freedom for the problem. Therefore, in order to fully deter-
mine the state at each stage, an additional parameter is chosen. More in particular, the
departure true anomaly on the transfer orbit θ1 for the first interplanetary leg. For all the
subsequent arcs, the number of variables decreases: by selecting the new departure time
and either the impact parameter b or deflection angle γ as parametric, the flyby problem
is fully determined using the B-plane formalism. In other words, fixing either the impact
parameter or deflection angle fixes the post encounter semi-major axis, eccentricity and
therefore true anomaly.
A choice must be taken between using γ or b as a parameter, following some considera-
tions. The deflection angle is defined in the interval [−π, π], and if taken as a parameter
it’s value determines uniquely the post encounter angle θ′, without relying on any inverse
harmonic function, avoiding any quadrant ambiguity. Furthermore, being γ the deflection
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angle, there is no need for a normalization process, which is instead required for the b,
if chosen as a parameter. The associated value for the impact parameter can be directly
evaluated by means of equation 4.12. In this work therefore, the parametrization of all
the subsequent interplanetary arcs will consider the deflection angle γ.
Being all the orbits considered co-planar, inclination is null, and argument of perigee can
be determined by geometric considerations, thus, the orbit is fully determined.
Finding the optimal sequence of GAMs therefore translates into the search of the optimal
triplet (e1, θ1, t1) for the first arc and the optimal series of couplets (ti, γi) that lead from
the initial planet to the target one by performing an arbitrary number of flybys:

Initial planet −→ (e1, θ1, t1) −→ (t2, γ2) −→ ... −→ Target planet

The approach proposed in the thesis features a structure with a variable number (de-
pending on the number of wanted GAMs) of nested for loops, used to analyse all possi-
ble combinations of departure date, eccentricity and departure true anomaly on the first
transfer orbit, and combinations of departure date and deflection angle for the following
arcs, that satisfy an arbitrary optimality policy.
This thesis extends on Menzio et al.’s work [14] and attempts to introduce an optimisation
strategy by avoiding both the use of heuristic methods, which do not guarantee finding
the optimal solution, as well as brute-force searches, which are computationally expensive.
This is accomplished by proposing a deterministic dynamic programming approach that,
on the one hand, always converges to the globally optimal solution of the problem and,
on the other hand, allows to find such solution without systematically evaluating all the
possible combinations of flyby sequences.

7.2. Dynamic programming approach

An optimal policy must be selected, such as minimum tof , flyby feasibility or encounter
precision. The policy selected for the problem at hand consists in the search for precise
transfers.
The transfer precision is described by the closeness of the FTC to zero.
Once the interplanetary arcs are computed by means of the syzygy and the flyby effect
is modeled with the B-plane formalism, the optimization algorithm evaluates, for each
flyby, the precision of the transfer and selects the best one for each sub-problem.
In order to do so, the objective function is defined as:

fn(sn, xn) =
N∑
i=1

|FTC| (7.1)
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As already stated, the function FTC represents the precision of the interplanetary trans-
fer: the closer it is to zero, the more precisely the transfer arc leads the spacecraft to
the target planet. As already mentioned, each stage is completely described by means of
either two or three state variables, namely either the departure time and deflection an-
gle or the eccentricity, departure time and departure true anomaly on the transfer orbit.
Instead of the eccentricity, the transfer semi-major axis could have been used as a state
variable, but the former is more convenient since its easier to define the boundary values
between which it can vary.
By the way it is defined, the state of the problem is completely discrete, and the nature of
the optimization is fully combinatorial. Therefore, the problem can be tackled by means
of a deterministic dynamic programming approach. Thanks to the nature of dynamic
programming itself, the optimal solution is not only computed for the whole problem, but
also for all the sub-problems into which the model can be divided.

7.3. Solution procedure

First of all, it is necessary to define the layout of the problem, that is, the planetary
sequence to be followed by the spacecraft. This task must be approached with care:
transfers between planets whose orbits are characterized by very different energy levels
(both high and low) would very likely lead to unfeasible flybys.
Once the outer layout is defined, the initial condition at departure is fully determined by
propagation of the planetary ephemerides and then translated into a vector of keplerian
elements (a, e, i,Ω, ω, θ).
Since the problem is fully combinatorial, the set of possible solutions is finite and so the
problem presents a similar structure to the stagecoach problem presented in Appendix
A. However, unlike this latter, the possible states through which the system can move
are not known in advance. For this reason, the solution strategy consists in practise of
two steps, the first of which is aimed at generating the possible intermediate states, the
second focuses on searching the optimal solution to the problem.
State generation step: The procedure starts, in order to discretize the domain, by
defining a set of departure times, a set on feasible eccentricity values for the transfer
trajectory and a set of departure true anomalies on the transfer orbit.
The definition of the departure window is arbitrary, and the choice can be made in order
to respect any design constraint selected, if any. As for the eccentricity and true anomaly
sets, the former can vary between 0 and an upper limit arbitrarily chosen, and the latter
varies between [0, 2π]. Indeed, depending on the particular stage, often only a subset
of eccentricity values are feasible for the evolution of the system to the next stage. This
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is because the aperture of the space triangle that characterizes the transfer cannot be
arbitrarily big, but depends on the initial and consequent orbit chosen, as shown in
Chapter 3. Nevertheless, the algorithm automatically discards all solutions with unfeasible
values of eccentricity.
This procedure is iterated for every stage of the problem, with the only differences in that
the departure times for stage n, with n > 1, are not arbitrarily generated but are computed
by summing each departure time with it’s correspondent computed time of flight, and in
that the only other parameter needed for stage n, with n > 1, is the deflection angle
γ. Thanks to the B-plane deflection model in fact, it is possible to evaluate the post-
encounter semi-major axis a′, and the eccentricity e′ by fixing γ.
Dynamic programming:
The problem is then formulated with dynamic programming as follows:

• Number of stages N : total number of transfer legs (number of planets diminished
by one).

• Staged numbering n: number of transfers completed.

• States s: (ti, ei, θi) for the first leg and (ti, γi) for any subsequent arc.

• Policy decision at state n, xn: state at stage n− 1

• Objective function being in state sn at stage n and making the decision xn:

fn(sn, xn) =
N∑
i=1

|FTC| (7.2)

• Recursive formula:

f ∗
n(sn) = min

xn∈Sn−1

fn(sn, xn) (7.3)

where Sn is defined as the set of all possible states in which the system could
be at stage n. In practise, at each stage and for each state equation 7.3 answers
the question: “what is the best pre-encounter state to come from, if the system is
currently in state sn?”.
Starting from the departure, initially S0 includes only s0. As the algorithm proceeds,
it computes the states s1, s2 and so on, and S0 evolves progressively in S1, S2, etc.
So, the generic j-th set of stages (Sj), is computed starting from all the stages in
Sj−1. For each j-th stage, each triplet (t1, e1, θ1) or couplet (ti, γi) computed is saved
as an element of Sj. This way, for any stage the problem is at, also the sub-optimal
triplets and couplets are still considered as valid options for the next stage since,
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similarly to the stagecoach problem, a sub-optimal decision at a previous stage could
lead to an overall better (optimal) solution for the consequent stages.

Differently from the stagecoach problem presented in Appendix A, here the sub-problems
are solved starting from the first stage and then moving forward one stage at a time,
until the original problem is solved completely. This kind of logic is referred to as forward
induction [33]. A block scheme representation of the algorithm structure is presented in
figure 7.1.

Figure 7.1: Block scheme representation of the algorithm main structure.
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Several tests have been performed to assess the goodness of the procedure proposed so
far. This Chapter focuses on three of them, accurately selected to show how the algo-
rithm performs in the case of a single gravity assist and in a MGA scenario. For all
reported performances in terms of computational time, please note that all tests have
been implemented in Matlab® on a machine with an Intel® CoreTM i7-4750HQ CPU
@2.00 GHz.

8.1. Voyager-1

Voyager-1 mission’s primary objective was the exploration of Jupiter and Saturn. It was
later extended to explore the outermost edge of the Sun’s domain and beyond.
In order to reach far into interplanetary space without heavily relying on artificial means
to vary the spacecraft energy level, gravity assist maneuvers were included in the mission
profile. More in particular, the trajectory design is characterized by a close encounter
with the giant Jupiter, in order to efficiently alter the orbital parameters of the spacecraft
so to reach Saturn.
In this first test, the dynamic programming algorithm is asked to reproduce the design of
the interplanetary phase of the mission. The baseline trajectory is the mission profile with
launch on September 5 1977, close encounter with Jupiter on March 5 1979 and finally
reaching Saturn on August 25 1981.
Since the trajectory involves no powered maneuvers, it offers an ideal test case for the
proposed design strategy.
The algorithm is given only the wanted planetary sequence and an arbitrary launch win-
dow grid as an input, whereas the departure time and planets’ positions at encounter are
left as a free variables.
Different optimality policies could have been applied in the problem solution: to start,
the optimal transfer in terms of transfer precision (optimality of the FTC) is computed.
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8.1.1. Departure date grid choice

Since the assumptions adopted to model the problem introduce non-negligible differences
with respect to the real dynamics of the problem, a more accurate study on the departure
dates to use to initialize the algorithm must be taken.
In order to do so, the algorithm is run preliminary to identify the "best" departure times
interval to be used for searching the most efficient solutions. Starting the departure time
grid in 1975, a broad launch window of 15 years subdivided into 3000 equi-spaced time
steps has been selected. As for the parametrization of the eccentricity, only elliptical
orbits are considered for the first interplanetary leg, and 200 discrete values are generated
spanning between 0 and 1 (excluded). Finally for the true anomaly, the discretization
spans between 0 and 2π with 360 discrete values.
For the second interplanetary leg, both elliptic and hyperbolic orbits are considered, and
the chosen parametrization for the deflection angle γ are 720 discrete value, spanning
from [−π, π]. For both transfer arcs a space pruning technique has been applied to the
FTC value, with a maximum violation value of 10−3 .
With the specified above values, the algorithm computed the associated feasible solutions,
whose time of departure distribution and associated overall FTC value is shown in figure
8.1:
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Figure 8.1: Distribution of the departure dates and their relative FTC value for feasible
solution for the Voyager-1 mission.

Where the FTC, as already outlined, represents the difference, in terms of angular posi-
tion, between the spacecraft and the target planet. The overall FTC value reported in
figure 8.1 is the summation of each interplanetary leg’s FTC, and represents the overall
precision error of the computed solution. From figure 8.1 it is clear that a very big cluster
of solutions that are composed by a feasible close encounter is located between years 7 to
10 from the initial date considered (1975). This data narrows the efficient launch window,
which will be selected accordingly for the optimal solution computation presented in the
next section.

8.1.2. Problem setup and results

In order to start the algorithm procedure, the parametrization of the design variables
must be specified.
From the data gathered in the prevous section, the departure time grid is started in 1982,
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with a launch window of 3 years subdivided into 1100 equispaced time steps (a departure
every terrestrial day roughly). Despite the real mission departure date is in 1977, due
to the strong simplifying assumptions applied to the model, which completely disregard
out of plane motion, it is expected a moderate discrepancy of the optimal solution from
the baseline data. For the first interplanetary arc (Earth-Jupiter leg), only elliptic orbits
are considered, so the eccentricity can span between 0 and 1 excluded, and the chosen
discretization counts 200 discrete values. Finally for the true anomaly θ, the range of
variation is between [0, 2π], counting 360 discrete values. It is clear from the reported
data that the possible combinations that can arise from the discretization is very high.
For the second interplanetary leg, both elliptic and hyperbolic orbits are considered,
and the chosen discretization for the deflection angle γ are 720 discrete values, spanning
[−π, π]. For both transfer arcs a space pruning technique has been applied to the FTC
value, with a maximum violation value of 10−3 .
The obtained solution is represented in figure 8.2:

Figure 8.2: Optimal trajectory in terms of transfer precision (FTC). In blue Earth’s
orbit, in light blue Jupiter’s orbit and in red Saturn’s orbit. The small circles represent
the planetary position at encounter.
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The orbital elements of the transfer legs are reported in table 8.1:

a e i Ω ω θ

6.5426 · 108 km 0.7832 0 0 -2.4518 rad 5.7931 rad
−5.29592 · 108 km 2.3062 0 0 0.1986 rad -0.0204 rad

Table 8.1: Keplerian parameters of the computed optimal solution’s transfer legs.

These results can be compared to the baseline mission orbital prameters, reported in table
8.2:

a e i Ω ω

7.4576 · 108 km 0.7977 0.018 rad -0.306 rad -0.013 rad
−5.9324 · 108 km 2.3027 0.043 rad 1.972 rad -0.027 rad

Table 8.2: Keplerian parameters of the baseline Voyager-1 mission.

Since the presented solution completely disregards out of plane motion, the two trajec-
tories show not negligible differences, despite showing similar values for the semi-major
axis and eccentricity.
The presented trajectory shows the minimum value for the FTC function, corresponding
to the most precise transfer, that leads to a distance error with respect of the target
planets shown in table 8.3:

Planet FTC value Distance Error
Jupiter 2.28 · 10−4 1.7749 · 105 km
Saturn −7.7369 · 10−4 1.108 · 106 km

Table 8.3: FTC value and associated distance error of each interplanetary leg.

The departure and arrival time for each leg, corresponding to the shown planetary con-
figuration are reported in table 8.4:

Departure date 02-01-82
First encounter date 05-08-83

Arrival date 04-08-85

Table 8.4: Departure, first encounter and arrival date for the computed solution.
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Finally, the flyby is characterized more in detail. In order to obtain the prescribed varia-
tion of keplerian parameters, the close encounter must take place at a specific location in
the B-plane, namely (table 8.5):

ξ η ζ

0 0 8.2426 ·10−4

Table 8.5: B-plane coordinates of the close encounter. Note that all the values are adimen-
sional, due to the fact that all quantities used in the B-plane computations are normalized.

It is also interesting to evaluate the characteristic quantities that define the close en-
counter, shown in table 8.6:

b rp e δ

−6.4167 · 105 km 1.7225 · 105 km 1.1553 2.0926 rad

Table 8.6: Values of the impact parameter b, perigee radius of the flyby hyperbola rp,
eccentricity and turn angle δ.

Both the values for perigee radius and impact parameter show a value compatible with
the minimum flyby altitude (the planetary radius), making the presented close encounter
indeed feasible.
The algorithm took 246.69 s for the first arc generation, 9.582 s for the second arc and
only 0.085 s for the dynamic programming optimization.
An interesting insight on the computed solutions, not only the optimal one, can be deduced
from figure 8.3:
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Figure 8.3: Distribution of the feasible solutions’ departure dates with their correspondent
FTC value.

It appears clear from figure 8.3 that the feasible solutions’ departure dates are always
concentrated throughout the first half year, that corresponds to a specific position of the
Earth in space. Evidently this particular angular position of the Earth is very favorable
for reaching easily the gas giants Jupiter and Saturn by following the chosen planetary
sequence.

8.2. Voyager-2

Voyager-2 mission objective was even more ambitious than it’s close neighbour: following
a longer route towards the gas giants Jupiter and Saturn would enable the spacecraft to
visit both the icy giants Uranus and Neptune, then leaving behind the Solar System.
The baseline trajectory is the mission profile with launch on August 23 1977, close en-
counters with Jupiter on July 9 1979, with Saturn on August 26 1981, with Uranus on
January 24 1986 and finally reaching Neptune on August 25 1989. Again, since the whole
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trajectory involves no powered maneuvers, the mission is ideal for testing the performance
of the algorithm, this time in a MGA scenario.
The complexity of the mission profile has increased greatly due to the high number of
planetary flybys, so it is expected for the algorithm to decrease performance-wise.
To show how the performance varies with the number on close encounters, only the
Jupiter-Saturn-Uranus part of the mission is simulated.

8.2.1. Partial mission problem setup and results

Again, before starting the search for the optimal solution, the algorithm is run preliminary
to gain some insight on the most efficient launch window to be used for the final simulation.
The framework of the problem is the same as before, but this time using 3600 discrete
time values for a broad launch grid of 15 years, starting from 1975.
The result of this simulation is shown in figure 8.4:

Figure 8.4: Distribution of the feasible solutions’ departure dates with their correspondent
FTC value for the partial Voyager-2 mission.
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It is possible to note that the number of feasible solutions has greatly decreased, which
was to be expected, since the complexity of the mission has increased greatly, due to the
additional close encounter with Saturn. It is interesting to highlight that despite the new
objective of reaching Uranus, the efficient launch time window didn’t change drastically,
since the highest concentration of feasible solutions is still located between 1982 and 1985.
Thanks to this insight, it is now possible to tackle efficiently the problem at hand.
Again, in order to start the algorithm procedure, the discretization of the design variables
must be specified.
From the data gathered previously, the departure time grid is started 1982, with a launch
window of 3 years subdivided into 1100 equispaced time steps (a departure every terrestrial
day roughly). Despite the real mission departure date is in 1977, due to the strong
simplifying assumptions applied to the model, which completely disregard out of plane
motion, it is expected a moderate discrepancy of the optimal solution from the baseline
data. Even more so now that the heliocentric distances have grown considerably.
For the first interplanetary arc (Earth-Jupiter leg), only elliptic orbits are considered, so
the eccentricity can span between (0, 1), and the chosen discretization counts 200 discrete
values. Finally for the true anomaly θ, the range of variation is between [0, 2π], counting
360 discrete values. It is clear from the data reported that the possible combinations that
can arise from the discretization is very high.
For the subsequent interplanetary legs, both elliptic and hyperbolic orbits are considered,
and the chosen discretization for the deflection angle γ are 720 discrete value, spanning
[−π, π]. For all transfer arcs a space pruning technique has been applied to the FTC
value, with a maximum violation value of 10−3 . The obtained solution is represented in
figure 8.5:
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Figure 8.5: Optimal trajectory in terms of transfer precision (FTC). In blue Earth’s orbit,
in light blue Jupiter’s orbit and in purple Saturn’s orbit and in green Uranus orbit. The
small circles represent the planetary position at encounter.

The reported trajectory shows sharp cusps at the close encounters locations. Such intense
variations of the orbital elements are obtainable due to the huge planetary masses of the
gas giants Jupiter and Saturn. The flyby deflection intensity in fact, is proportional to the
mass of the close encounter planet. Nevertheless, the proposed solution is indeed feasible,
as shown in table 8.12
The orbital elements of the transfer legs are reported in table 8.7:

a e i Ω ω θ

5.6449 · 108 km 0.8373 0 0 3.7075 rad 1.4177 rad
−5.7637 · 108 km 2.3506 0 0 0.1906 rad 0.0132 rad
−2.835 · 108 km 6.0013 0 0 1.555 rad -0.152

Table 8.7: Keplerian parameters of the computed optimal solution’s transfer legs.
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These results can be compared to the baseline mission orbital prameters, reported in table
8.8:

a e i Ω ω

5.4447 · 108 km 0.724429 0.084 rad -0.5749 rad 3.7075 rad
−2.220 · 109 km 1.338264 0.045 rad 2.08 -0.16 rad
−5.7905 · 108 km 3.4802 0.046 rad 1.34 rad 1.959 rad

Table 8.8: Keplerian parameters of the baseline Voyager-2 mission.

Since the presented solution completely disregards out of plane motion, the two trajecto-
ries show not negligible differences, even more so in the presented mission scenario, which
presents only the partial mission profile, not reaching Neptune.
The presented trajectory shows the minimum value for the FTC function, corresponding
to the most precise transfer, that leads to a distance error with respect of the target
planets shown in table 8.9:

Planet FTC value Distance Error
Jupiter −8.5909 · 10−4 6.6878 · 105 km
Saturn −9.7358 · 10−4 1.394 · 106 km
Uranus −9.9902 · 10−4 2.8642 · 106 km

Table 8.9: Departure, first encounter and arrival date for the computed solution.

The departure and arrival time for each leg, corresponding to the shown planetary con-
figuration are reported in table 8.10:

Departure date 14-04-82
First encounter date 05-09-83

Second encounter date 15-08-85
Arrival date 07-04-89

Table 8.10: Departure, first and second encounter and arrival date for the computed
solution.

In order to obtain the prescribed variation of keplerian parameters, the close encounter
must take place at a specific location in the B-plane, namely (table 8.11):
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ξ η ζ

0 0 6.6144 · 10−4

0 0 1.0303 · 10−4

Table 8.11: B-plane coordinates of the close encounters. Note that all the values are
adimensional, due to the fact that all quantities used in the B-plane computations are
normalized.

It is interesting to evaluate the characteristic quantities that define the close encounter,
shown in table 8.12:

b rp e δ

−5.1492 · 105 km 1.1674 · 105 km 1.1084 2.2498 rad
−1.4755 · 105 km 6.1293 · 104 km 1.4171 1.5667 rad

Table 8.12: Values of the impact parameter b, perigee radius of the flyby hyperbola rp,
eccentricity and turn angle δ.

Both the values for perigee radius and impact parameter show a value compatible with
the minimum flyby altitude (the planetary radius), making the presented close encounter
indeed feasible.
The algorithm took 249.3 s for the first leg generation, 143.52 s for the subsequent legs
generation and only 13.11 s for the dynamic programming optimization.

8.3. Algorithm validation

To further prove the goodness of the implemented procedure, the computed transfers for
Voyager-1 and Voyager-2 missions are simulated using a fool-proof procedure, in this case,
a Lambert solver. The objective of this section is showing that the relative error of the
syzygy solutions is negligible from a trajectory point of view.
From the obtained orbital parameters for the Voyager-1 mission, using the same value for
the FTC pruning (10−3), the relative errors are shown in figures 8.6, 8.7 and 8.8:



8| Test cases and results 57

Figure 8.6: Relative error on the semi-major axis computation committed by the syzygy
algorithm implemented, with respect to a Lambert solver. The black circles represent the
first interplanetary leg, the red ones the second arc.
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Figure 8.7: Relative error on the eccentricity computation committed by the syzygy
algorithm implemented, with respect to a Lambert solver. The black circles represent the
first interplanetary leg, the red ones the second arc.
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Figure 8.8: Relative error on the argument of periapsis computation committed by the
syzygy algorithm implemented, with respect to a Lambert solver. The black circles rep-
resent the first interplanetary leg, the red ones the second arc.

Using instead a more aggressive pruning policy (5 · 10−4), figures 8.9, 8.10 and 8.11:
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Figure 8.9: Relative error on the semi-major axis computation committed by the syzygy
algorithm implemented, with respect to a Lambert solver. The black circles represent the
first interplanetary leg, the red ones the second arc.
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Figure 8.10: Relative error on the eccentricity computation committed by the syzygy
algorithm implemented, with respect to a Lambert solver. The black circles represent the
first interplanetary leg, the red ones the second arc.
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Figure 8.11: Relative error on the argument of periapsis computation committed by
the syzygy algorithm implemented, with respect to a Lambert solver. The black circles
represent the first interplanetary leg, the red ones the second arc.

The results show that in general, as the FTC value associated to a particular solution
decreases, so does the relative error. A compromise must be therefore sought in the choice
for the adapt FTC pruning tolerance: a very aggressive pruning will lead to very precise
solutions (very low relative error) but will limit greatly the number of acceptable solutions
computed by the algorithm; a lax pruning instead will broaden greatly the solution space,
at the expense of the goodness of the computed solutions.
More in detail, it is possible to note that the error associated to the first interplanetary
leg is very low. This is due to the fact that the parametrization used for the first state
generation is much finer and combinatorially complex, since it originates from triplets.
For the subsequent legs the generation of the orbital parameters is from couplets instead,
which span a much smaller solution space.
Overall, it is safe to conclude that for the single GAM scenario, the relative error ob-
tained using the syzygy algorithm is low, and can be certainly neglected in a preliminary
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trajectory design task.
It is interesting to evaluate how the relative error varies as the complexity of the mis-
sion increases, that is, adding a close encounter. Following the same procedure as for
the Voyager-1 mission, the partial Voyager-2 mission is simulated by means of a Lambert
solver, using a pruning tolerance on the FTC value of 5 · 10−3.
The results are shown in figures 8.12, 8.13 and 8.14:

Figure 8.12: Relative error on the semi-major axis computation committed by the syzygy
algorithm implemented, with respect to a Lambert solver. The black circles represent the
first interplanetary leg, the red ones the second arc and the blue ones the third.



64 8| Test cases and results

Figure 8.13: Relative error on the eccentricity computation committed by the syzygy
algorithm implemented, with respect to a Lambert solver. The black circles represent the
first interplanetary leg, the red ones the second arc and the blue ones the third.
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Figure 8.14: Relative error on the argument of periapsis computation committed by
the syzygy algorithm implemented, with respect to a Lambert solver. The black circles
represent the first interplanetary leg, the red ones the second arc and the blue ones the
third.

From the figures presented it can be deduced that the relative error doesn’t increase as
the mission complexity increases, making the proposed algorithm adapt also for the MGA
case.

8.4. Inner planets mission

As a final test for the presented solution strategy, an arbitrary mission to the inner planets
is simulated.
The selected planetary sequence is completely arbitrary and is not based on any insight
or real mission, and it features: departure from Earth, close encounters with Venus,
Earth, Venus to finally reach Mars. Since the sequence is essentially randomic, a decrease
in the algorithm performance, that is, the ability of finding solutions fully compliant
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with the problem constraints, is to be expected. The mission proposed features three
close encounters, increasing the complexity with respect to the partial Voyager-2 mission
analyzed in the previous section.
The chosen discretization is: 730 discrete departure dates, spanning between 2023 and
2028, only elliptic orbits are considered for the first leg, and the chosen discretization
counts 300 discrete values. Finally for the true anomaly θ, the range of variation is
between [0, 2π], counting 360 discrete values.
For the subsequent interplanetary arcs, both elliptic and hyperbolic orbits are considered,
and the chosen discretization for the deflection angle γ are 720 discrete values, spanning
[−π, π]. For all transfer legs a space pruning technique has been applied to the FTC
value, with a maximum violation value of 5 · 10−3 . The obtained solution is represented
in figure 8.15:

Figure 8.15: Optimal trajectory in terms of transfer precision (FTC). In red Venus’ orbit,
in purple Earth’s orbit and in yellow Mars orbit. The small circles represent the planetary
position at encounter.

The orbital parameters of the optimal transfer arcs are presented in table 8.13:
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a e i Ω ω θ

1.4185 · 108km 0.305 0 0 1.7472 rad 2.0477 rad
2.0509 · 108km 0.4797 0 0 1.1363 rad 5.9906 rad
2.0624 · 108km 0.481 0 0 -2.2442 rad 4.8369 rad
2.023 · 108km 0.4722 0 0 -1.6959rad 5.9948 rad

Table 8.13: Keplerian parameters of the computed optimal solution’s transfer legs.

The presented trajectory shows the minimum value for the FTC function, corresponding
to the most precise transfer, that leads to a distance error with respect of the target
planets shown in table 8.14:

Planet FTC value Distance Error
Venus −7.3078 · 10−4 7.9078 · 104 km
Earth −2.7062 · 10−4 4.0484 · 104 km
Venus 1.9 · 10−3 2.056 · 10 km
Mars 5.0663 · 10−4 1.1549 · 105 km

Table 8.14: Departure, first encounter and arrival date for the computed solution.

The departure and arrival time for each leg, corresponding to the shown planetary con-
figuration are reported in table 8.15:

Departure date 26-01-25
First encounter date 17-09-25

Second encounter date 17-11-25
Third encounter date 18-01-26

Arrival date 02-06-26

Table 8.15: Departure, first, second and third encounter and arrival date for the computed
solution.

The orbital elements reported, show a several orders of magnitude smaller variation in-
duced by the flyby effect compared to the values computed for the close encounters with
the giant planets in missions Voyager-1 and Voyager-2. This is due to the fact that the in-
ner celestial bodies are characterized by planetary masses several hundreds times smaller
than the gaseous outer planets. The magnitude of the obtainable variation of orbital
parameters is in fact proportional to the mass of the flyby planet.
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Therefore, for missions towards the inner parts of the Solar System, the weight of the
planetary sequence on the ability of the algorithm of finding feasible solutions is even
greater. Due to the small attainable variations in the orbital parameters, the celestial
bodies must have particularly favorable relative positions to be efficiently reached.
In order to obtain the prescribed variation of keplerian parameters, the close encounter
must take place at a specific location in the b-plane, associated to it’s correspondent
impact parameter, namely (table 8.16):

ξ η ζ

0 0 1.2327 · 10−4

0 0 6.4 · 10−3

0 0 −1.9 · 10−3

Table 8.16: B-plane coordinates of the close encounters. Note that all the values are
non-dimensional, due to the fact that all quantities used in the B-plane computations are
normalized.

It is interesting to evaluate the characteristic quantities that define the close encounter,
shown in table 8.17:

b rp e δ

−1.3339 · 104 km 9.4443 · 103 km 3.0103 0.6773 rad
−9.5307 · 105 km 9.5099 · 105 km 457.727 0.0044 rad
2.0202 · 105 km 1.9722 · 105 km 41.614 0.0481 rad

Table 8.17: Values of the impact parameter b, perigee radius of the flyby hyperbola rp,
eccentricity and turn angle δ.

Both the values for perigee radius and impact parameter show a value compatible with
the minimum flyby altitude (the planetary radius), making the presented close encounter
indeed feasible.
The algorithm took 370.07 s for the first leg generation, 224.362 s for the subsequent legs
generation and only 0.171 s for the dynamic programming optimization.
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The conic syzygy algorithm was extended removing the limiting constraint of tangential
departures and arrivals and integrating also hyperbolic orbits, to gain a more generalized
trajectory design tool. The combination of the syzygy algorithm with B-plane deflec-
tion model and flyby characterization enabled to solve efficiently the problem of patching
consecutive solutions, generating interplanetary arcs connected by close encounters that
automatically respect the conservation of the Tisserand parameter and with trajectories
that respect the minimum flyby height, namely the planetary radius. The original syzygy
algorithm used as starting point for the presented extension in fact failed at producing
consecutive transfer legs that lead to feasible close encounters. The combination of the
syzygy algorithm with the B-plane deflection model, which is solely used for the gener-
ation of the post-encounter orbital parameters doesn’t alter the computational quickness
of the original syzygy formulation, hence using the extended version of the algorithm is
always recommended.
The algorithm was finally validated by comparing the goodness of the computed solutions
with the typical and fool-proof Lambert solver, showing very small discrepancies between
the two solutions. The performance might be comparable in terms of solution goodness,
but the syzygy algorithm real merit is the great quickness in the solution space search.
The same problem, analysed by means of a Lambert solver takes an extremely higher
amount of time to be solved, as shown in Chapter 5.
Regarding instead the implementation of an optimization strategy for the solution of the
problems considered, a dynamic programming approach was proposed. The complexity
of the problems presented lies in the size of the solution space and on the highly combina-
torial nature of the latter. The already proven efficiency and computational quickness of
the dynamic programming approach, together with the speed of the syzygy formulation
of the problem, represent a very useful tool for the preliminary trajectory design for MGA
mission scenarios.
The developed algorithm was then used to simulate two real-life missions, Voyager-1 and
Voyager-2. The computed solutions present differences with the baseline mission profiles,
mainly due to the bi-dimensionality of the model, but nevertheless can be considered good
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initial guesses for more complex solution strategies.
The main limitation of the proposed procedure is the bi-dimensionality of the model:
the out of plane motion leads to non-negligible differences in the trajectory computed
with respect to the baseline Voyager missions. The B-plane procedure to evaluate post
encounter parameters, explained in detail in Chapter 4, is already defined in the three
dimensional case, so future works could focus on the extension of the syzygy algorithm
to the 3-D case, exploiting considerations on spherical geometry. Another limitation of
the model is the total absence of orbital perturbations in the trajectory design process.
A step forward could be to include perturbations within the planet’s SOI in the model,
similarly to what has already been introduced in the resonant close encounter scenario.
A possible direction that could be followed in the future works to fully exploit the pre-
sented strategy is looking for more complex and efficient optimality policies for the se-
lection of the optimal trajectory. By keeping the precision of the solution acceptable by
means of a space pruning strategy on the FTC value, optimality might be sought in
meeting constraints of other nature. Another certainly valuable direction for future work
could be the integration of a strategy for the planetary sequence identification, to obtain
an automatic MGA mission design tool.
In conclusion, the proposed algorithm provides a fast and reliable tool for the preliminary
design of MGA trajectories, which could serve as reasonable starting point for numerical
methods to faster converge to more complete trajectory solutions.
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A.1. Stagecoach problem

The stagecoach problem concerns a fortune seeker in Missouri who decided to go west
to join the gold rush in California during the mid-19th century. The journey would
require traveling by stagecoach through unsettled country where there was serious danger
of attack by marauders. Although his starting point and destination were fixed, he had a
considerable number of choices as to which states (or territories that subsequently became
states) to travel through en route. The possible routes are shown in Fig.A.1, where each
state is represented by a circled letter and the direction of travel is always from left to right
in the diagram. Thus, four stages were required to travel from his point of embarkation in
state A to his destination in state J. After some thought, he came up with a rather clever
way of determining the safest route. Life insurance policies were offered to stagecoach
passengers. Because the cost of the policy for taking any given stagecoach run was based
on a careful evaluation of the safety of that run, the safest route should be the one with the
cheapest total life insurance policy. Which route minimizes the total cost of the policy?

Figure A.1: Stagecoach problem visualization. The figure is taken from Frederick and
Hillier work [16].
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First, note that the shortsighted approach of selecting the cheapest run offered by each
successive stage need not yield an overall optimal decision. Following this strategy would
give the route A, B, F, I, J, at a total cost of 13. However, sacrificing a little on one stage
may permit greater savings thereafter. For example, A, D, F is cheaper overall than A,
B, F.
One possible approach to solving this problem is to use trial and error. In this particular
case it might be computationally cheap, but this is not the case for larger problems,
that lead inevitably to a huge computational effort. Fortunately, dynamic programming
provides a solution with much less effort than exhaustive enumeration, guaranteeing that
the solution found is optimal.
The idea behind dynamic programming is to decompose the problem into smaller sub-
problems and finding the optimal solution for these smaller problem. The optimal solution
to the smaller problems is then used to gradually solve the larger ones, until the original
problem is completely solved.
For the stagecoach problem, we start with the smaller problem where the fortune seeker
has nearly completed his journey and has only one more stage to go. The obvious optimal
solution for this smaller problem is to go from his current state (whatever it is) to his
ultimate destination (state J). Then, by moving back one stage at a time (from right to
left), each subsequent sub-problem answers the question: “for each possible state at the
current stage what is the shortest path to the final destination?”. The advantage of this
approach is that, given the solution to the first j sub-problems, it takes relatively little
effort to find the answer to the (j + 1)-th. The original problem is automatically solved
once the optimal solution to the sub-problem associated with the first stage has been
found.
The stagecoach problem will be now tackled using the same formalism and approach
proposed by Hillier and Lieberman [16].
Let denote with sn the state of the system at stage n and with xn the policy decision
made at that point, namely what state to go next. Being in state sn and selecting xn at
the next stage will add a net contribution csn ∗ xn, where csn is the cost associated to the
immediate stage of stage n. Let fn(s, xn) be the total cost of the best overall policy for
the remaining stages, given that the fortune seeker is in state s, ready to start stage n,
and selects xn as the immediate destination. Given s and n, let x∗n denote any value of
xn (not necessarily unique) that minimizes fn(s, xn), and let f ∗

n(s) be the corresponding
minimum value of fn(s, xn). Thus:

f ∗
n(s) = minfn(s, xn) = fn(s, x

∗
n), (A.1)
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Where, fn(s, xn) is the immediate cost (stage n) plus the minimum future cost (stages n
+ 1 onward). In practice, f ∗

n(sn) represents the minimum distance required to reach J
from a node sn. Starting from the last stage (n = 4) and moving backwards, the solution
procedure then consists in iteratively finding f ∗

4 (s4), f ∗
3 (s3), . . . for each possible state,

until computing f ∗
1 (s1 = A), which provides the optimal solution to the original problem.

A.1.1. Solution procedure

When the fortune seeker has only one more stage to go (n = 4), his route thereafter is
determined entirely by his current state s (either H or I ) and his final destination x4 = J ,
so the route for this final stagecoach run is s −→ J . Therefore, since f ∗

4 (s) = f4(s, J) = cs,J ,
the immediate solution to the n = 4 problem is:

s f∗4(s) x∗
4

H 3 J

I 4 J

(A.2)

When the fortune seeker has two more stages to go (n = 3), the solution procedure requires
a few calculations. For example, suppose that the fortune seeker is in state F. Then, as
depicted below, he must next go to either state H or I at an immediate cost of cF,H =
6 or cF,I = 3, respectively. If he chooses state H, the minimum additional cost after he
reaches there is given in the preceding graph as f ∗

4 (H) = 3, as shown above the H node in
the diagram. Therefore, the total cost for this decision is 6 + 3 = 9. If he chooses state
I instead, the total cost is 3 + 4 = 7, which is smaller. Therefore, the optimal choice is
this latter one, x∗3 = I, because it gives the minimum cost f ∗

3 (F ) = 7.
Similar calculations need to be made when you start from the other two possible states s
= E and s = G with two stages to go. For n = 3, starting from state E:

f3(E,H) = cE,H + f ∗
4 (H) = 1 + 3 = 4 (A.3)

f3(E,H) = cE,I + f ∗
4 (I) = 4 + 4 = 8 (A.4)

Making evident that the optimal choice from state E is H, so f ∗
3 (E) = 4.

Starting from state F:

f3(F,H) = cF,H + f ∗
4 (H) = 6 + 3 = 9 (A.5)
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f3(F,H) = cF,I + f ∗
4 (I) = 3 + 4 = 7 (A.6)

The optimal choice from state F would be going to state I, so f ∗
3 (F ) = 7.

Starting lastly from state G:

f3(G,H) = cG,H + f ∗
4 (H) = 3 + 3 = 6 (A.7)

f3(G,H) = cG,I + f ∗
4 (I) = 3 + 4 = 7 (A.8)

The optimal choice from state G would be going to state H, so f ∗
3 (G) = 6.

By repeating the same steps, the 2nd-stage sub-problem is solved in a similar fashion. For
n = 2, starting from state B:

f2(B,E) = cB,E + f ∗
3 (E) = 7 + 4 = 11 (A.9)

f2(B,F ) = cB,F + f ∗
3 (F ) = 4 + 7 = 11 (A.10)

f2(B,G) = cB,G + f ∗
3 (G) = 6 + 6 = 12 (A.11)

Note that the optimal policy need not be unique, as is the case for a system in state s2 =
B. The optimal choice is either to go state F or E, in this case f ∗

2 (B) = 11.
Starting from state C:

f2(C,E) = cC,E + f ∗
3 (E) = 3 + 4 = 7 (A.12)

f2(C,F ) = cC,F + f ∗
3 (F ) = 2 + 7 = 9 (A.13)

f2(C,G) = cC,G + f ∗
3 (G) = 4 + 6 = 10 (A.14)

The optimal choice is to go state E, in this case f ∗
2 (C) = 7.

Starting from state D:

f2(D,E) = cD,E + f ∗
3 (E) = 4 + 4 = 8 (A.15)

f2(D,F ) = cD,F + f ∗
3 (F ) = 1 + 7 = 8 (A.16)

f2(D,G) = cD,G + f ∗
3 (G) = 5 + 6 = 11 (A.17)
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The optimal choice is going to either state E or F, so f ∗
2 (D) = 8.

Lastly, for n = 1, the journey can start only from state A:

f1(A,B) = cA,B + f ∗
2 (B) = 2 + 11 = 13 (A.18)

f1(A,C) = cA,C + f ∗
2 (C) = 4 + 7 = 11 (A.19)

f1(A,D) = cA,D + f ∗
2 (D) = 3 + 8 = 11 (A.20)

An optimal solution for the entire problem can now be identified from the four graphs.
Results for the n = 1 problem indicate that the fortune seeker should go initially to either
state C or state D. Suppose that he chooses x∗1 = C. For n = 2, the optimal result for s =
C is x∗2 = E. This result leads to the n = 3 problem, which gives x∗3 = H for s = E, and
the n = 4 problem yields x∗4 = J for s = H. Hence, one optimal route is A −→ C −→ E −→
H −→ J.
Choosing instead x∗1 = D leads to the other two optimal routes A −→ D −→ E −→ H −→ J
and A −→ D −→ F −→ I −→ J. They all yield a total cost of f ∗

1 (A) = 11. These results of the
dynamic programming analysis also are summarized in Fig.A.2:

Figure A.2: Stagecoach problem solution visualization. The figure is taken from Frederick
and Hillier work [16].

Figure A.2 also highlights one important property of the dynamic programming approach:
besides providing the optimal policy for the overall problem, an optimal decision policy
is also available for any state in the network, regardless of this state being ever reached.
The prescription of an optimal policy for each state and at each stage is a typical feature
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of dynamic programming that can be useful in several ways, including sensitivity analysis
[16].
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