
Semantic representation of a scene
for robotic applications

Tesi di Laurea Magistrale in
Automation and Control Engineering - Ingegneria
dell’Automazione

Author: Alessandro Petazzi

Student ID: 953628
Advisor: Prof. Paolo Rocco
Co-advisors: Prof. Andrea Maria Zanchettin, Ing. Isacco Zappa
Academic Year: 2021-22

i

Abstract

The past decade has seen a growing drive for the simplification of cobot programming,
aimed at making it within the reach of unskilled operators. Due to a higher demand
for customized products, small and medium-sized enterprises require quicker and easier
reconfiguration of the robots. Robot manufacturers need to look for more successful
solutions, and academic research already offers some concepts, like Semantic Programming
by Demonstration, that could be reformulated into new strategies for robot teaching.

Abstracting the meaning of actions, interpreted as the effect that they have on the scene
and their purpose, is fundamental in semantic machines. The challenge is to make a
machine capable of analyzing a scene to distinguish its salient features, such as the mutual
relationships between the objects and the attributes of those objects. Such characteristics,
specific to the operational context, are essential to subsequently being able to plan an
action regardless of the circumstances of the case. The robot will interpret if the pre-
conditions of an action are met, move accordingly, and finally verify the post-conditions
that arise from the observation of the environment.

This thesis aims to develop an algorithm capable of extracting the relevant data of ob-
jects in a scene, checking for any relationships between instances, and constructing a
Scene Graph whose structure is ordered and standardized according to past literature.
The generation of the graph is complete, efficient, and real-time.

Keywords: robotics, semantics, scene, graph, recognition.

Abstract in lingua italiana

Negli ultimi dieci anni si è assistito ad una crescente spinta alla semplificazione della
programmazione dei cobot, con l’obiettivo di renderla accessibile anche a operatori non
qualificati. A causa della maggiore domanda di prodotti personalizzati, le piccole e medie
imprese richiedono una riconfigurazione più rapida e semplice dei robot. I produttori di
robot devono cercare soluzioni più efficaci, e la ricerca accademica offre già alcuni concetti,
come la Programmazione Semantica per Dimostrazione, che potrebbero essere riformulati
in nuove strategie per l’insegnamento dei robot.

L’astrazione del significato delle azioni, interpretate come l’effetto che hanno sulla scena
e il loro scopo, è fondamentale nelle macchine che impiegano strumenti semantici. La
sfida consiste nel rendere una macchina capace di analizzare una scena per distinguere le
sue caratteristiche salienti, come le relazioni reciproche tra gli oggetti e gli attributi degli
stessi. Tali caratteristiche, specifiche del contesto operativo, sono essenziali per poter suc-
cessivamente pianificare un’azione indipendentemente dalle circostanze del caso. Il robot
interpreterà se le pre-condizioni dell’azione sono soddisfatte, si muoverà di conseguenza e
infine verificherà le post-condizioni che derivano dall’osservazione dell’ambiente.

Questa tesi mira a sviluppare un algoritmo in grado di estrarre i dati rilevanti degli oggetti
in una scena, verificare eventuali relazioni tra le istanze e costruire uno Scene Graph la cui
struttura è ordinata e standardizzata in base alla letteratura precedente. La generazione
del grafo è completa, efficiente e in tempo reale.

Parole chiave: robotica, semantica, scena, grafo, riconoscimento.

v

Contents

Abstract i

Abstract in lingua italiana iii

Contents v

1 Introduction 1
1.1 Industrial automation trends . 1
1.2 Semantics in robotics . 2
1.3 Problem formalization . 3
1.4 State of the art — Scene graphs . 5
1.5 Thesis purpose and statement . 7
1.6 Thesis achievements . 8

2 Methodology 9
2.1 Simulation of the 3D environment . 9
2.2 Scene graph generation algorithm . 10

2.2.1 Basic programming concept . 10
2.2.2 Prior knowledge and data tables . 11
2.2.3 Algorithm overview . 12
2.2.4 Updating the scene graph . 15
2.2.5 Displaying the scene graph and other configurations 18

3 Experimental validation 21
3.1 Test #1 — Stacking . 22
3.2 Test #2 — Unstacking and tilting . 32

4 Conclusions 41

Bibliography 43

A Semantic vocabulary of the program 45
A.1 List of predicates . 45
A.2 List of attributes . 46
A.3 List of objects . 46

List of Figures 49

List of Tables 51

Acknowledgements 53

1

1| Introduction

1.1. Industrial automation trends

Industry 4.0 has led to rapid progress in automation, in particular artificial intelligence,
action planning, and control. The nature of these technologies — revolving around the
concept of intercommunicability between machines (Internet of Things), self-diagnostics,
simplification of the deployment process, and intelligent data manipulation — determined
a large success among both large-capital firms and SMEs (small and medium enterprises).

This thesis project was conducted in the context of the implementation of collaborative
robots (also known as cobots) in industrial scenarios, therefore the focus will not be
on anything directly concerning service automation. Specifically, we are interested in
an increasingly popular approach that aims to simplify cobot programming in order to
make it more within the reach of a non-specialized end user, or operator. One of the
end goals of this strategy is to ease the commissioning of robotic arms in the context of
highly customized products, so as to increase flexibility while reducing non-operative time.
Among the most famous paradigms, we cannot but mention the so-called Programming by
Demonstration (PbD), which today constitutes the basis of various industrial solutions.

PbD is a way of programming that allows the end user to instruct the machine directly,
without resorting to “classical” coding methods — which often coincide with the writing of
a series of instructions — but rather by demonstrating in a series of physical movements
the task to be performed. The procedure will therefore be learnt through the recognition of
the robot’s movements instructed by the operator through a kinesthetic or “teleoperated”
approach.

However, one of the major shortcomings of traditional PbD techniques lies in the fact
that the teaching phase is often limited to instructing the machine to follow a series of
waypoints; thus, the machine is unable to generalize the meaning, in human terms, of the
action, nor is it able to abstract it and apply it to even slightly different scenarios. Skill
reusability is therefore not permitted.

2 1| Introduction

In order to overcome this limitation, more suitable models are used to represent the
“meaning” of actions and entities, i.e. models that take into account the semantics of the
elements in question.

1.2. Semantics in robotics

If, on the one hand, in linguistics semantics is used to indicate the discipline that studies
the meaning of the utterances of a language as the relationship between the signifier and
the meaning of each element, as well as the meaning of relationships between the various
meanings of a given sentence; on the other hand, the same term is used in philosophy
to indicate a similar concept, namely the complex of theories of meaning [10]. In math-
ematics, the term takes on a further dimension, complementary to syntax, as a system
of analytical tools for the interpretation — hence still an acknowledgment of meaning
— of formulae expressed through conventional symbols; interpretations that are in turn
evaluated as true or false depending on how the logical conditions apply.

Similarly, in robotics, the term semantics refers to «the meaning of places, objects, other
entities that occupy the environment, or even the language used in communication be-
tween robots and humans or between robots themselves» [3], but also to the actions, which
are to be interpreted by the machine as abstractions of a series of coordinated movements
with the aim of changing the state of the working environment. As with semantics in the
mathematical sense, the fundamental tool for semantic systems in robotics is logic. It is
therefore evident that a better understanding of the meaning of what surrounds the robot
and the actions to be performed allows a certain level of generalization of the problems
faced by the machine, thus enhancing learning capabilities through manual demonstration.
For these reasons, a more groundbreaking development of the research on Programming
by Demonstration methods focuses on the so-called Semantic PbD.

To better understand the bigger framework in which the thesis lies, it is interesting to con-
sider the kinds of applications that involve the concept of semantics in robotics. According
to [3], the main areas of employment can be categorized as follows:

• SLAM (Simultaneous Localization And Mapping) algorithms;

• segmentation;

• object recognition.

1| Introduction 3

For what concerns the taxonomy of the methods usually implemented for semantic robotics,
the same survey subdivides it into two areas:

• Learnt semantics – the robot acquires the information on its own, which is further
split into:

– supervised;

– unsupervised;

– semi-supervised methods.

• Provided semantics – the robot is given knowledge beforehand.

1.3. Problem formalization

In order to enable the techniques inherent to Semantic Programming by Demonstration
(or S. PbD), it is necessary to represent the environment in an adequate and, once again,
semantic manner. That is to say, to offer to the teaching and action planning programs,
data concerning the state of the scene, interpreted according to the useful meanings
which depend on the specific work objectives, i.e. the hypotheses made concerning the
kind of objects, events, actions and relations between entities that may occur. To this
end, appropriate methods are needed to capture this information via sensors, extract the
meanings and translate them into a semantic model, functional to the S. PbD.

Since we are focused on robotic arms in industrial environments, we must only deal with
a certain range of scenarios, but its generalization is not straightforward. There might be
many different entities of interest, in particular:

1. manipulable and non-manipulable objects;

2. the current state of the robot — e.g. the degree to which the gripper is open;

3. the environment surrounding the scene, such as walls, ceilings, and surfaces;

4. or even “groups of objects”, like a deck of cards or “clutter” — i.e. sets of elements
that can be understood as a single individual to simplify their description [7].

Furthermore, not only it is useful to recognize the identity of the objects (the class to
which each instance belongs) in the scene, but it is also beneficial, for the purposes of an
adequate semantic representation, to acknowledge the properties specific to each instance
and the relationships between them. Objects can be identified by their class, as well as
by their current pose (position and orientation) in the scene, which directly affects the

4 1| Introduction

portion of space they occupy depending on the specific geometry. Other attributes may
be the dimensions, the affordances (features functional to a specific set of actions — e.g.
the handle of a cup is used to grasp, the bowl part is to hold liquids), the color, the
material, other physical properties (e.g. weight, opacity, elasticity, etc.), or even other
states regarding the configuration (hovering, standing, etc.).

Yet, above all, the power of semantics in the representation of a scene mostly lies in the
ability to identify and represent the relationships between instances of objects, e.g. prox-
imity to, relative positions (x on top of y), comparisons (x bigger than y), or descriptions
(x is holding y).

Once the “meaning” of the scene is understood, analysis strategies can be applied, such as
the verification of the preconditions required for the robot to perform a given action and
the verification of the post-conditions achieved as an effect of the same action. Conse-
quently, the machine will be equipped with tools that will allow it to learn the transition
model and reapply the same kind of action in different scenarios, enabling skill reusability.

It is indeed insightful to illustrate the classical object representation hierarchy quoted by
[6], [1] and [8]. This model is composed of three main layers: from the most detailed to
the most abstract object description.

• Point level (point cloud/pixel/voxel):

– each point has material properties, color, etc.;

– each point can be labeled to the object they belong to;

– contact points can be recognized.

• Part level (set of features, e.g. shape, pose, material, surface, etc.):

– to represent relations and interactions between parts;

– to recognize the class of the object;

– often, to define the affordances of the object.

• Object level (“separate” entities):

– set of features is associated with each object;

– object-specific properties (mass, pose, other uniform properties);

– simplified representation in single entities.

1| Introduction 5

A fundamental step that researchers must also take into consideration is the method
applied to perceive the objects and collect data, as stated by [7] and [2].

There are two broad categories of sensors: passive and interactive. Passive sensors —
like cameras — can perceive the state of the environment avoiding physical interactions;
while in interactive perception — e.g. estimations of weight from the power required to
drive a robotic arm, LiDARs, and RGB-D cameras — the machine has to interact with
its surroundings in order to obtain information. Both technologies have advantages and
disadvantages, regarding energy efficiency, speed, accuracy, and practicality. This means
that depending on the context, it will be appropriate to use the most suitable perception
method.

Regarding the extraction of position data, the available computer vision algorithms are
countless, as well as beyond the scope of this thesis. It is rather interesting to note
the existence of local features-based methods (like RoPS [5][4]) for object recognition,
meaning that there are indeed solutions to make reasonable assumptions about the pose
of the objects in cluttered scenes, where entities may be partially hidden by other objects.

Chapter 1.4 will answer two questions: what kind of semantic data representation models
were defined by past literature? how, given a scene, do we generate a representation that
is effective, efficient, and standardized?

1.4. State of the art — Scene graphs

According to [9], there are multiple methods for organizing the semantic data of a given
scene: scene graphs, affordance-, syntactic-, and knowledge-based methods. Syntactic-
based strategies offer a rich structure of syntax and semantics that represents domain-free
rules and contexts.

While the last three have their advantages — respectively, the recognition of complemen-
tary features between the environment and the agents, the syntactical interpretation of
subsequential activities, and the inference of relationships with partially observable infor-
mation —, scene graphs (SGs) are definitely more organized, compact, and potentially
less redundant.

Scene graphs are used for several activities [11]:

• SG generation — the process of extracting semantic data from a scene to compose
a corresponding SG;

• image captioning — automatic assignment of a title to an image;

6 1| Introduction

• image generation — creation of an image given the semantic description in the form
of an SG;

• referring expression — highlighting of the region of an image corresponding to the
given expression, which in turn corresponds to a certain SG segment;

• image retrieval — research of an image within a database corresponding to the
semantic description;

• Visual Question Answering (VQA) — a tool that can answer questions that require
complex reasoning about the scene, which works in parallel with automatic analysis
of the SG.

To better understand what scene graphs are, it is worthwhile to introduce their mathe-
matical definition [11].

Given any scene S, a scene graph is a set of visual triplets TS ⊆ OS × PS × (OS

⋃
AS);

where:

• OS is the set of objects in the scene, each of which is defined as a two-element tuple
oS,k = (lS,k, bS,k), where lS,k is the label, or name, of the object, and bS,k is the area
it occupies in the scene (bounding box, or BB);

• AS is the set of attributes, i.e., the properties that can be achieved by objects in
the scene;

• PS is the set of relations or predicates, including the relation “is” (to be).

Additionally, there is an ulterior condition that binds each visual triplet tS to assume one
of the two following configurations:

• Relational triplet: tS,i = (sS,i, pS,i→joS,j) ⇐ (Subject, predicate, object)

• Descriptive triplet: tS,i = (sS,i, pS,is, aS,k) ⇐ (Subject, “is”, attribute)

From this definition, it is clear that this method allows the complexity of a wide variety
of scenes to be adequately recorded by a visual triplet list in an efficient and convenient,
and — above all — in a standardized and generalized manner. Indeed, it not only lends
itself well to the representation of objects, attributes, and relationships, but it is also
sufficiently ordered to allow the implementation of complete graph search and analysis
systems. This is especially useful because it allows the creation of query mechanisms
in which the machine itself automatically investigates the scene and verifies whether a
certain action is enabled by the existence of the relevant precondition. This potentiality
of SGs becomes quite obvious once we visualize the scene graph mathematically defined

1| Introduction 7

above as being graphically represented by nodes (objects) connected by oriented edges,
each of which is labeled according to the type of predicate involved. It thus implies that
it will lend itself well to the application of traditional graph analysis tools.

In anticipation of the upcoming explanation of the work that was done for this thesis
project, it must be noted that the definition of scene graphs given by Guagming Zhu
et al. [11] reported above was not applied in this work, even though it is still a good
explanation of the concept. Further details about the mathematical definition of the
version of SG that was developed for the project will follow in subsection 2.2.1.

1.5. Thesis purpose and statement

Once the techniques for multi-modal scene data collection have been defined and imple-
mented, this thesis aims to generate a complete and dynamic SG.

• Complete in the sense that the data represented in this way must be sufficient and
appropriate to the working conditions and objectives selected as the hypothesis; for
example, the force measured by the load cell at the end effector is generally not of
interest for grasping operations involving constant-weight objects.

• Dynamic because the system must be able to update the set of visual triplets that
make up the SG in real-time, to analyze or verify the effects of an action.

A further traditional target of these kinds of algorithms is non-redundancy, which aims
to obtain a minimal representation, to reduce the dimensionality of the problem: for
example, it is obvious that if A is above B, and B is above C, it will be superfluous to
specify that A is above C. While avoiding redundancy could be considered an interesting
objective in the development of a scene graph generation algorithm, it was not taken into
account in this thesis. This means that, for example, an object A which is positioned
on top of another object B will be featured in two triplets: the first one representing the
relationship between object A and object B; and the second (extra) one describing the
top object A as “stacked”. This will make further computations of queries like “which
objects are stacked in the scene?” faster and more trivial since it is a straightforward
search problem (match with pattern “x - is - stacked”) within the SG.

Our approach falls in the category of the provided semantics methods discussed in Chapter
1.2, as we will see during the explanation of the algorithm, in particular in Chapter 2.2.2.

8 1| Introduction

1.6. Thesis achievements

In this thesis the following objectives have been achieved:

• Translation of the data collected from the scene into a semantic entity-properties
structure format.

• Modelization of an SG architecture arranged according to a hierarchical class frame-
work.

• Development of an original generation algorithm that takes into account prior knowl-
edge (in particular, limitations to the range of scenarios or interactions that can
occur in that kind of environment) and produces the SG in an intuitive, efficient,
reliable, complete way.

The algorithm was implemented in a C++ script that updates the SG with a configurable
cycle time. Subsequent analysis revealed that the algorithm is extremely resource-efficient,
taking up only a small amount of time to finish the required computations. Tests were
conducted for pick-and-place operations such as stacking, unstacking, and tilting of an
object. The program is easily scalable to account for more instances, object types, robots,
predicates, and attributes.

The thesis is structured in the following way:

• Chapter 2 — Methodology.

– Section 2.1 — Simulation of the 3D environment: where we explain how the
3D simulation was set up and how the communication to the SG generation
program happens.

– Section 2.2 — Scene graph generation algorithm: the design of the program
is illustrated in detailed sections about the class model, the prior knowledge
structures, the algorithm itself, and the output image generation.

• Chapter 3 — Experimental validation: here we show the data gathered from two
pick-and-place test cases and we confront them to the expected outcome. A brief
analysis of the computational times is included.

• Chapter 4 — Conclusions: where we summarize the results of our work and the
achievements.

9

2| Methodology

2.1. Simulation of the 3D environment

As previously mentioned, to replicate a physical scene featuring a robotic arm and several
objects, we relied on a simulation of a virtual 3-dimensional environment. This accom-
plishment was achieved through the use of a simulation environment, CoppeliaSim, which
is interfaced with a Python script that implements the functions provided by the library
PyRep. The script is used to control the simulated robot movement and retrieve data on
the state of the entities in the scene.

The first phase consists of the instantiation of the objects in the scene. During this
stage, we specify some immutable characteristics, e.g. geometry, size, color, and variable
features, like position and orientation. The second step requires us to specify the actions
or events taking place during the simulation. Here we instruct the robot to follow a series
of move and gripper commands to perform a pick-and-place operation.

Figure 2.1: A screenshot from the CoppeliaSim environment

While the simulation of a virtual 3D environment is running, we need to send the infor-
mation about the pose of the involved objects as a stream of data that feeds into the SG

10 2| Methodology

generation algorithm. To do so, the Python script also had to manage a socket commu-
nication, which allows the creation of inter-process communication (IPC). The process
running the Python script will act as a server in the TCP communication. It will accept
the connection to a client — i.e. the process of the SG generation algorithm written in
C++ —, then, while the simulation is still running, the server process will collect the
data from the instances in the scene, pack them into a list of numeric values and send
them to the client through the socket.

At the other end of the communication, the client C++ script applies a class object,
WorldObserver, and a method, UpdateObjects(), to translate the values received through
the socket and store them into the corresponding ObjectNode instances. Further compu-
tations to dynamically construct a scene graph based on these data are explained in the
next section.

2.2. Scene graph generation algorithm

2.2.1. Basic programming concept

Taking now into consideration the SG generation program, it is necessary to first discuss
the structure of the scene graph model itself. The definition of SG given by Zhu et al. [11]
and reported in Chapter 1.4 was adapted to an equivalent representation that alters the
descriptive triplet from a structure of type (object, is, attribute) to a structure of type
(object, attribute, object). The advantage of this solution is the fact that we discarded
the predicate of type “is” and that only object instances, not attributes, are the actual
nodes of the graph. This allows a cleaner, more intuitive representation in which we
avoid attribute nodes from being at the end point of multiple “is” relationships. In both
cases, a descriptive triplet necessarily contains redundant information: either we have an
attribute as the third element subsequent to an “is” predicate; or we must make sure that
whenever the second element is an attribute, the third one is the same instance featured
as the subject.

The mathematical definition would therefore become the following: a scene graph is a set
of visual triplets TS ⊆ OS × (PS

⋃
AS)×OS; where OS is the set of objects in the scene,

AS is the set of attributes, PS is the set of predicates. A visual triplet can only be of
either type relational or descriptive:

• Relational triplet: tS,i = (sS,i, pS,i→j,oS,j) ⇐ (Subject, predicate, object)

• Descriptive triplet: tS,i = (sS,i, aS,k, sS,i) ⇐ (Subject, attribute, subject)

2| Methodology 11

From a coding perspective, this definition was implemented through a class object SceneGraph
composed by a vector of VisualTriplet’s. Each VisualTriplet, in turn, features three
elements: an ObjectNode called subject, an Edge, and a second ObjectNode referred to
as object of the relationship.

The class Edge represents the connection between the two nodes and is graphically repre-
sented as a directed arrow. Two further classes, Attribute and Predicate, are extensions
of Edge. They both feature a label string, demarcating the name of the relation, and a
type identifier.

For what concerns ObjectNode, the class is once again characterized by a label string and
a type that affects the geometry of the represented object, though it also features further
data relative to the pose — represented by a 4x4 matrix —, and the top and bottom
surfaces. This information is critical to enable subsequent computations regarding the
verification of the conditions required for spacial relations such as “Object A is on top of
object B” or “Object C is upright”. While the algorithm runs, the SG generation process
will make sure that the data regarding the pose and surfaces are updated at an adequate
rate.

2.2.2. Prior knowledge and data tables

In order to achieve better computational performances, the SG generation algorithm was
developed as a provided semantics method, meaning that the robot is given knowledge
beforehand. This means that during the search for new potential visual triplets belonging
to the SG, the program will only be considering plausible scenarios, i.e. certain acceptable
combinations of relations. Therefore, the search is only conducted within a limited range
of possibilities, mostly related to the type of objects involved with certain predicates or
certain attributes.

During the initialization phase of the program, the runtime will read the data from selected
.csv files and store them into the appropriate InitializationTables object, which is
constituted by three elements:

• AdmissibleAttributes — a list of plausible (subject type, attribute type, subject
type) descriptive triplets, e.g. (cube, on_a_side, cube) is possible, while (cone,
upside_down, cone) is not;

• AdmissiblePredicates — a list of plausible (subject type, predicate type, object
type) relational triplets, e.g. (cube, on_top_of, cube) is possible, while (cube,

on_top_of, cone) is not;

12 2| Methodology

• CompatibleAttributes — a list of compatible descriptors for the same object in-
stance, e.g. (cube, on_a_side, cube) cannot be true while (cube, upright,

cube) is true.

Further prior knowledge available to the program is the range of types and sizes regard-
ing the objects, and the types of predicates and attributes, all represented through an
enumerator value (see Appendix A).

2.2.3. Algorithm overview

Once the initialization phase is over and the connection to the 3D simulation data stream
through the socket is established, the SG generation algorithm can begin its operations.
The number of instances to track and their geometry class is already specified by the
incoming data, so a vector of objects can be allocated.

Algorithm 2.1 Scene Graph generation
1: while SimulationOngoing do
2: StartT ime← GetStartTime()
3: SceneGraph.WasChanged← false
4: RawData← ReceiveData()
5: Objects← UpdateObjects(RawData,Objects)
6: SceneGraph← UpdateSceneGraph(SceneGraph,Objects)
7: if SceneGraph.WasChanged then
8: DisplaySceneGraph()
9: end if

10: EndCycle(Objects, SceneGraph)
11: SynchronizeCycle(StartT ime)
12: end while

As we can see from the Algorithm 2.1, the SG update process is repeated cyclically for as
long as the simulation lasts. On lines 2 and 11 of the pseudocode, the program ensures that
the cycle time is maintained throughout the whole execution, setting the thread to sleep
for the remaining time. This guarantees that the operations are conducted regularly at a
predictable rate, which is an optimal condition for testing. The line 4 was implemented
through the methods of the WorldObserver class mentioned in Chapter 2.1. It allows the
algorithm to gain access to raw data read from the socket to the virtual environment. This
same data is then translated to the corresponding ObjectNode variables on line 5 using
the method UpdateObjects(). Finally, the function UpdateSceneGraph() proceeds with

2| Methodology 13

the update of the scene graph itself using the new object information and the previous
state of the graph to prune old triplets that are no longer valid and create new ones if the
conditions apply. Since this step (line 6) also keeps track of any changes that were made
to the SG, the operation of displaying a graphical representation of the updated scene
graph is run only when requested, so to avoid resource-intensive procedures.

Algorithm 2.2 Update objects method
1: function UpdateObjects(RawData,Objects)
2: for i := 1 to |Objects| do
3: Objects[i].WasUpdated← false
4: NewPoseMatrix← TranslateToPoseMatrix(RawData, i)

5: if IsDifferentEnough(NewPoseMatrix,Objects[i].Pose) then;
6: Objects[i].PoseMatrix← NewPoseMatrix

7: Objects[i].T opSurface← ComputeTopSurface(Objects[i].Pose)

8: Objects[i].BottomSurface← ComputeBottomSurface(Objects[i].Pose)

9: Objects[i].WasUpdated← true
10: end if
11: if Objects[i].T ype = Gripper then
12: NewState← GetGripperState(RawData, i)

13: if NewState ̸= Objects[i].State then
14: Objects[i].State← NewState

15: Objects[i].WasUpdated← true
16: end if
17: end if

Given the fact that efficiency is critical to have a scalable SG generation algorithm, the
method UpdateObjects() had to be implemented in an appropriate way. In other words,
the update should be performed only when strictly necessary for tracking the scene cor-
rectly. During the first execution of the method, the machine creates and allocates the
corresponding memory for the ObjectNode elements featured in the scene, assigning to
each one a label and the geometry type (in our tests, either a cube, a cone, or a gripper)
according to the information gathered from the scene. Both at the first and any subse-
quent execution (see pseudocode 2.2), the algorithm cycles through every object instance
and performs the following operations: it translates the socket data in x, y, z positions
and x, y, z rotations; it constructs the corresponding 4x4 homogeneous transformation
matrix; it updates the pose, and top/bottom surfaces data whenever the new matrix is
detected to be different enough from the previously stored one; and it stores any addi-

14 2| Methodology

tional information, e.g. in the case of a gripper, it saves the end-effector’s state as open

or closed. On top of the computations discussed, we also ensure that we keep track of
whether or not the data relative to each object was modified during the cycle.

Consider two 4x4 matrices representing the position of the same object at two subsequent
cycles, A, the old one, and B, the new one. A is constituted by the 3x3 rotation matrix
RA and the vertical position vector p⃗A, while B is described by RB and p⃗B, therefore:

A =

 RA p⃗A

0 0 0 1

 , B =

 RB p⃗B

0 0 0 1

Because of the fact that the pose signal could have been affected by random noise, and
having new poses means that we will have further computations for the surfaces and the
upcoming graph generation, it is a good thing to check the degree of variation in the pose
before deciding if it is worth updating it. To determine it, the program implemented
a condition check that is set to true in two scenarios. Either the distance |p⃗A − p⃗B| is
greater than a chosen threshold ρ, which corresponds to a relevant shift in the position; or
the angle between the two orientations is higher than a second threshold θ, which means
that the rotation RA

TRB between the two orientations was translated into an axis-angle
representation — implemented through methods specific to the C++ Eigen library —
whose angle must be sufficiently high in order to be considered relevant.

The next step in the update of the object’s pose is the computation of the top and bottom
surfaces. They will be significant during the validation of conditions like “Object A is on
top of object B” to determine if the two objects are, indeed, in contact across a certain
surface area. The process considers the spatial collocation of the features of each entity
taking into account the specific geometry type and the current pose. It then refers to
an array of surfaces, each represented by the orthogonal vector and by the set of ordered
vertices that delimit it. To determine which surface is to be considered the top or the
bottom one, the algorithm simply compares all surface directions to the up- and down-
pointing vectors to check whether they are parallel enough. The surfaces are therefore
recognized with a straightforward computation and labeled as top or bottom for future
use.

2| Methodology 15

2.2.4. Updating the scene graph

The method UpdateSceneGraph() is the core of the algorithm. It consists of two phases:
graph pruning, where old triplets that are no longer valid are removed from the SG; and
graph building, where new valid triplets are added.

Algorithm 2.3 Scene Graph update
1: function UpdateSceneGraph(SceneGraph,Objects)
2: SceneGraph← DestroyOldTriplets(SceneGraph.Triplets, Objects)

3: SceneGraph← CreateNewTriplets(SceneGraph,Objects)

During the pruning phase (Algorithm 2.4), the program cycles through every triplet be-
longing to the SG and checks if it is of type relational or descriptive. In the first case
(lines 3 to 11), if any of the two instances involved as subject or object of the relational
triplet was not affected by the update of the object data, no other operation is performed.
In the opposite case, the machine will prune the triplet from the graph as long as the
objects are either too far apart to have any kind of relation, or if the predicate acting
as the edge between the two nodes is no longer valid. A similar computation is done for
descriptive triplets (lines 12 to 19), where we will only check whether it is true that the
subject node was changed in the previous phase and if the attribute is still valid for the
instance taken into consideration.

16 2| Methodology

Algorithm 2.4 Graph pruning
1: function DestroyOldTriplets(Triplets, Objects)
2: for i := 1 to |Triplets| do
3: if Triplets[i].T ype = Relational then
4: (Subject, Predicate, Object)← Triplets[i]

5: if Subject.WasChanged or Object.WasChanged then
6: if not AreObjectsCloseEnough(Subject, Object) or
7: not IsRelationalTripletValid(Triplets[i], Destroying) then
8: Prune(Triplets[i])
9: SceneGraph.WasChanged← true

10: end if
11: end if
12: else if SceneGraph.Triplets[i].T ype = Descriptive then
13: (Subject, Attribute)← Triplets[i]

14: if Subject.WasChanged then
15: if not IsDescriptiveTripletValid(Triplets[i], Destroying) then
16: Prune(Triplets[i])
17: SceneGraph.WasChanged← true
18: end if
19: end if
20: end if

Notice how the methods for validity checks at lines 7 and 15 require a second enumerator
input which specifies that we are actually verifying if we can destroy the triplet, rather
than create it. This detail will be explained later.

Finally, a similar sequence of operations is done during the generation phase. We first
look for any new potential descriptive triplet (Algorithm 2.5) by cycling through every
object that was changed and for each of them we consider every attribute compatible
with it according to the prior data extracted from AdmissibleAttributes. For each
combination, as long as the corresponding triplet is not already present in the SG, the
program will verify whether or not the conditions for the validity of the descriptive triplet
apply. If they do, the triplet will be created and added to the graph.

2| Methodology 17

Algorithm 2.5 Graph building — descriptive triplets
1: function CreateNewDecriptiveTriplets(SceneGraph,Objects)
2: for i := 1 to |Objects| do
3: if not Objects[i].WasChanged then
4: break
5: end if
6: PotentialAttributes← AdmissibleAttributes(Objects[i])

7: for k := 1 to |PotentialAttributes| do
8: NewTriplet← (Objects[i], PotentialAttributes[k], Objects[i])

9: if not IsTripletAlreadyPresent(SceneGraph,NewTriplet) and
10: IsDescriptiveTripletValid(NewTriplet, creating) then
11: AddTriplet(SceneGraph,NewTriplet)
12: SceneGraph.WasChanged← true
13: end if

Looking now for new potential relational triplets (Algorithm 2.6), we must consider every
ordered object combination (oi, oj) where i ̸= j and at least one of the two objects
was updated. For each ordered combination, there is an associated array of admissible
predicates (prior knowledge, explained in 2.2.2) that could act as the edge of a potentially
valid triplet. The algorithm then tests each potential triplet, verifying first if the objects
are close enough to have any kind of interaction, if the triplet is already featured in the
SG, and finally if the validity conditions apply.

Since we are not trying to generate a minimal representation of the scene, we introduce
an additional method, CreateRedundantDescriptiveTriplets(), which makes sure that
on top of the relational triplet, we also introduce redundant descriptive triplets which will
make the pre- or post-condition check straightforward. For example, when dealing with a
triplet of type (cube_1, on_top_of, cube_2), we will also create (cube_1, stacked,

cube_1) — because the object on top can be part of an unstacking action —, (cube_2,
blocked, cube_2) — since the second objects can no longer be moved —, and (cube_1,

graspable, cube_1) — because it can be manipulated. The same goes for (gripper,

holding, cube_3) and (cube_3, held, cube_3).

18 2| Methodology

Algorithm 2.6 Graph building — relational triplets
1: function CreateNewRelationalTriplets(SceneGraph,Objects)
2: for i := 1 to |Objects| do
3: for j := 1 to |Objects| do
4: if i ̸= j and not Objects[i].WasChanged and
5: not Objects[j].WasChanged then
6: break
7: end if
8: PotentialPredicates← AdmissiblePredicates(Objects[i], Objects[j])

9: for k := 1 to |PotentialPredicates| do
10: NewTriplet← (Objects[i], PotentialPredicates[k], Objects[j])

11: if AreObjectsCloseEnough(Objects[i], Objects[j]) and
12: not IsTripletAlreadyPresent(SceneGraph,NewTriplet) and
13: IsRelationalTripletValid(NewTriplet, creating) then
14: AddTriplet(SceneGraph,NewTriplet)
15: CreateRedundandDescriptiveTriplets(SceneGraph,NewTriplet)
16: SceneGraph.WasChanged← true
17: end if

While checking the validity of a triplet is particularly dependent on the specific imple-
mentation and the kind of predicates or attributes involved for the single application
environment, it is quite important to consider different ranges when creating or destroy-
ing a triplet. If on one hand there might be different interpretations of which are the
thresholds to be considered when checking, for example, when two objects are on top
of each other; on the other hand, it is clear that the range of possibilities for which the
relationship is corroborated when creating should be narrower than the cases in which we
decide to destroy the relation. In other words, we must be absolutely sure that a triplet
is true when we want to create it, while we must be more possibilistic when we want
to destroy it. This is done to avoid constant retriggering of the condition due to small
fluctuations in the measurements, either due to noise or real-world temporary instabilities.

2.2.5. Displaying the scene graph and other configurations

Since we were dealing with graphs, it was evident that a graphical representation could
only improve the perception of the final results. The code features a set of functions used to
generate a DOT — a standard graph description language — representation of the Scene
Graph. The .dot file is then fed into a function from a library called GraphViz, which

2| Methodology 19

is capable of producing a corresponding PNG image. It features the object instances as
nodes of a directed graph, whose edges are represented by arrows and labeled accordingly.

Figure 2.2: An example of graphical output

The image is then displayed in a separate window while the generation program and the
simulation are running so that the graphical representation is always in sight and updated
to the latest version of the SG. This was achieved through other methods of the OpenCV
library.

Additionally, the code was developed taking into consideration the possibility of parameter
tuning, particularly the ones used as thresholds in the validation check of triplets. The
config header also contains print settings, file paths for input prior data tables and output
drawings, socket definition, object dimensions, and rounding options.

21

3| Experimental validation

The algorithm explained in Chapter 2.2 was implemented in C++ language, while the
script to control the simulation from Chapter 2.1 was coded in Python. To prove our
achievements, this section of the thesis will focus on the experimental validation of the
system. In order to verify that the algorithm is working as intended, we must first remind
ourselves about the objectives.

The machine should be able to gather from the scene simulated in the CoppeliaSim
environment data about the objects’ states and extract the meanings in terms of relations
between objects — through predicates —, and in terms of descriptions of single instances
— through attributes. The output representation should be configured according to the
definition of Scene Graph reported in Chapter 2.2.1, which will then be translated into
the corresponding image output (see Chapter 2.2.5).

First of all, we will have to verify that at each stage of the simulation, the resulting SG
will be the one expected. Therefore, the output of the program must be backed up by
the human interpretation of the scene within the same conceptual frame. In other words,
the human interpretation must rely on the same semantic model, i.e. the SG, and the
same set of available descriptors, i.e. list of predicates and attributes. This test ensures
the completeness of the representation.

Secondly, the process must run efficiently and track the simulation in real-time. No lag
beyond the duration of the cycle should be allowed, as that would mean that the algorithm
is not efficient enough to follow the actual development of the scene. The efficiency of the
system can be affected in multiple ways. Either we can have a lot of actions happening at
the same time, or the machine has to keep track of a relatively large number of objects.

22 3| Experimental validation

3.1. Test #1 — Stacking

In our first test, we consider a stacking operation involving two cubes and a cone. In
order to do it, we instruct the simulation with the corresponding steps that the robot arm
should follow, and then we check the results.

Initially, the three objects are standing on the table surface too far apart to have any kind
of interaction, therefore we won’t expect any predicate edge between the corresponding
nodes. The gripper is open and empty. The procedure begins, and the end-effector is
moved above the first cube. The gripper closes and clutches the cube, then moves toward
the second cube while holding the other. The robot brings the cubes into contact and
finally releases the grip so that it can now leave cube 1 in the stacked position. The
operation is then repeated for the cone, which will be positioned on top of the first cube.

Considering that we share the same conceptual framework (see Appendix A) of the robot,
the expected outcome is the following:

Operation description Human interpretation

1. Two cubes and a cone are standing
on a table surface far from each other,
the gripper is open.

Only descriptive triplets. Gripper 1 is
open. Cube 1, Cube 2, and Cone 1 are
upright and graspable.

3| Experimental validation 23

2. The gripper reaches the first cube
and holds it.

Gripper 1 is closed and is holding Cube
1. Cube 1 is no longer graspable, but
instead held and upright. Cube 2 and
Cone 1 are still upright and graspable.

3. The robot brings the first cube on
top of the second one, while the gripper
still holds it.

Gripper 1 is still closed and holding
Cube 1, while Cube 1 is held, upright,
and stacked. Cube 1 is also on top of
Cube 2, which is no longer graspable,
but blocked and upright. Cone 1 is gras-
pable and upright as before.

24 3| Experimental validation

4. The gripper releases the first cube. Gripper 1 is now open and without
any other relationship. Cube 1 is no
longer held, but graspable, upright, and
stacked. Cube 1 is also on top of Cube
2, which is upright and blocked. Cone 1
is graspable and upright.

5. The gripper reaches the cone and
grasps it.

Gripper 1 is closed and holding Cone
1. Cone 1 is upright and held. The
two other cubes are unchanged: Cube
1 is upright, stacked, graspable, and on
top of Cube 2. Cube 2 is upright and
blocked.

3| Experimental validation 25

6. The robot brings the cone on top
of the first cube, while the gripper still
holds it.

Gripper 1 is closed and is holding Cone
1, while Cone 1 is held, upright, and
stacked. Cone 1 is also on top of Cube
1, which is no longer graspable nor
stacked, but blocked and upright. Cube 1
is on top of Cube 2, which is still blocked
and upright.

7. The gripper releases the cone. The tower is now complete. Gripper 1
is now open and without any other rela-
tionship. Cone 1 is no longer held, but
graspable, upright, and stacked. Cone
1 is on top of Cube 1, which is upright
and blocked. Once again, Cube 1 is also
on top of Cube 2, which is upright and
blocked.

Table 3.1: Sequence of operations and corresponding semantics interpreted by a human
observer (test 1).

26 3| Experimental validation

The output from the program was the following:

Operation Generated Scene Graph

1 Time = 1 s:

1. (gripper_1, open, gripper_1),

2. (cube_1, upright, cube_1),

3. (cube_1, graspable, cube_1),

4. (cube_2, upright, cube_2),

5. (cube_2, graspable, cube_2),

6. (cone_1, upright, cone_1),

7. (cone_1, graspable, cone_1).

2 Time = 11 s:

1. (gripper_1, closed, gripper_1),

2. (gripper_1, holding, cube_1),

3. (cube_1, upright, cube_1),

4. (cube_1, held, cube_1),

5. (cube_2, upright, cube_2),

6. (cube_2, graspable, cube_2),

7. (cone_1, upright, cone_1),

8. (cone_1, graspable, cone_1).

3| Experimental validation 27

3 Time = 22 s:

1. (gripper_1, closed, gripper_1),

2. (gripper_1, holding, cube_1),

3. (cube_1, upright, cube_1),

4. (cube_1, held, cube_1),

5. (cube_1, stacked, cube_1),

6. (cube_1, on_top_of, cube_2),

7. (cube_2, upright, cube_2),

8. (cube_2, blocked, cube_2),

9. (cone_1, upright, cone_1),

10. (cone_1, graspable, cone_1).

28 3| Experimental validation

4 Time = 23 s:

1. (gripper_1, open, gripper_1),

2. (cube_1, upright, cube_1),

3. (cube_1, graspable, cube_1),

4. (cube_1, stacked, cube_1),

5. (cube_1, on_top_of, cube_2),

6. (cube_2, upright, cube_2),

7. (cube_2, blocked, cube_2),

8. (cone_1, upright, cone_1),

9. (cone_1, graspable, cone_1).

5 Time = 33 s:

1. (gripper_1, closed, gripper_1),

2. (gripper_1, holding, cone_1),

3. (cube_1, upright, cube_1),

4. (cube_1, graspable, cube_1),

5. (cube_1, stacked, cube_1),

6. (cube_1, on_top_of, cube_2),

7. (cube_2, upright, cube_2),

8. (cube_2, blocked, cube_2),

9. (cone_1, upright, cone_1),

10. (cone_1, held, cone_1).

3| Experimental validation 29

6 Time = 43 s:

1. (gripper_1, closed, gripper_1),

2. (gripper_1, holding, cone_1),

3. (cube_1, upright, cube_1),

4. (cube_1, blocked, cube_1),

5. (cube_1, on_top_of, cube_2),

6. (cube_2, upright, cube_2),

7. (cube_2, blocked, cube_2),

8. (cone_1, upright, cone_1),

9. (cone_1, held, cone_1),

10. (cone_1, stacked, cone_1),

11. (cone_1, on_top_of, cube_1).

30 3| Experimental validation

7 Time = 44 s:

1. (gripper_1, open, gripper_1),

2. (cube_1, upright, cube_1),

3. (cube_1, blocked, cube_1),

4. (cube_1, on_top_of, cube_2),

5. (cube_2, upright, cube_2),

6. (cube_2, blocked, cube_2),

7. (cone_1, upright, cone_1),

8. (cone_1, graspable, cone_1),

9. (cone_1, stacked, cone_1),

10. (cone_1, on_top_of, cube_1).

Table 3.2: Operations and visual triplets generated by the program (test 1).

By comparing the two tables, we notice that the outcome is the same as the one predicted,
therefore the requirement of completeness was fulfilled. Taking now into consideration the
efficiency of the algorithm, we can do a simple analysis focusing on the time that it takes
for the computations. At some points during the execution, the machine could spare some
time in an idle state.

3| Experimental validation 31

The computation time is incredibly affected by the displaying and printing operations,
which take up most of the resources:

Output image enabled Output image disabled
Operating t. Idle t. Cycle t. Operating t. Idle t. Cycle t.

≈ 20 ms ≈ 80 ms 100 ms ≈ 13 ms ≈ 47 ms 60 ms

Table 3.3: Average operating and idle times, cycle times, in the cases of full print options
and no print option (test 1).

In the first execution, the program was run with a cycle time of 100 ms, but this limit was
overshot in some cycles due to the computations done by the GraphViz image generation
tools. However, the algorithm was extremely efficient overall and it may even be tuned
to have a lower cycle time. This would help decrease the average idle time and improve
the tracking of the scene, making it even more up-to-date. It must be noted that these
results mostly depend on the computational power of the machine running the algorithm.

In the second scenario, we disabled the print options and we obtained better results. As
we can see, the cycle time was reduced to 60 ms and is never overshot.

32 3| Experimental validation

3.2. Test #2 — Unstacking and tilting

Finally, we consider a second, shorter, test case which involves three cubes. The robot
performs an unstacking operation of the top cube, called Cube 3, but before laying it on
the table it rotates the cube along the vertical axis and then along a horizontal axis. The
outcome of the operation is a pile of two upright cubes and a single cube laying on one
of its sides.

From a human point of view, the expected outcome is the following:

Operation description Human interpretation

1. Three cubes are stacked on each
other, and the gripper is open.

Cube 1 is upright, graspable, and
stacked. Cube 2 and 3 are upright and
blocked. Cube 3 is on top of Cube 2,
which is on top of Cube 1

3| Experimental validation 33

2. The gripper reaches the third cube
on the top and holds it.

Gripper 1 is closed and is holding Cube
3. Cube 3 is no longer graspable, but
instead held, upright, and stacked. Cube
2 and 3 are still upright and blocked.
Cube 3 is on top of Cube 2, which is on
top of Cube 1.

3. The robot lifts the third cube while
moving away and rotating the third
cube around the vertical axis.

Gripper 1 is still closed and holding
Cube 3, while Cube 3 is held and up-
right. Yaw rotation does not affect its
“upright” descriptor. Cube 2 is now
upright, graspable, stacked, and on top
of Cube 1, which is still upright and
blocked.

34 3| Experimental validation

4. The gripper starts rotating the third
cube on a side.

Gripper 1 is still closed and holding
Cube 3, while Cube 3 is held. At one
point it has lost the requirements for be-
ing considered upright, but it is not on
a side yet. Cube 2 and 3 are on top
of each other as before: Cube 2 is up-
right, graspable, and stacked; Cube 1 is
upright and blocked.

5. The gripper finishes rotating the
third cube on a side.

Gripper 1 is still closed and holding
Cube 3, while Cube 3 is held and on
a side. Cube 2 is upright, graspable,
stacked, and on top of Cube 1, which
is upright and blocked.

3| Experimental validation 35

6. The gripper releases the cube. Gripper 1 is open. Cube 3 is graspable
and on a side. Cube 2 and 1 as before:
on top of each other. Cube 2 is stacked,
graspable, and upright; while Cube 1 is
upright and blocked.

Table 3.4: Sequence of operations and corresponding semantics interpreted by a human
observer (test 2).

36 3| Experimental validation

The output from the program was the following:

Operation Generated Scene Graph

1 Time = 1 s:

1. (gripper_1, open, gripper_1),

2. (cube_3, upright, cube_3),

3. (cube_3, graspable, cube_3),

4. (cube_3, stacked, cube_3),

5. (cube_3, on_top_of, cube_2),

6. (cube_2, upright, cube_2),

7. (cube_2, blocked, cube_2),

8. (cube_2, on_top_of, cube_1),

9. (cube_1, upright, cube_1),

10. (cube_1, blocked, cube_1).

3| Experimental validation 37

2 Time = 7 s:

1. (gripper_1, closed, gripper_1),

2. (gripper_1, holding, cube_3),

3. (cube_3, upright, cube_3),

4. (cube_3, held, cube_3),

5. (cube_3, stacked, cube_3),

6. (cube_3, on_top_of, cube_2),

7. (cube_2, upright, cube_2),

8. (cube_2, blocked, cube_2),

9. (cube_2, on_top_of, cube_1),

10. (cube_1, upright, cube_1),

11. (cube_1, blocked, cube_1).

38 3| Experimental validation

3 Time = 8 s:

1. (gripper_1, closed, gripper_1),

2. (gripper_1, holding, cube_3),

3. (cube_3, upright, cube_3),

4. (cube_3, held, cube_3),

5. (cube_2, upright, cube_2),

6. (cube_2, graspable, cube_2),

7. (cube_2, stacked, cube_2),

8. (cube_2, on_top_of, cube_1),

9. (cube_1, upright, cube_1),

10. (cube_1, blocked, cube_1).

4 Time = 18 s:

1. (gripper_1, closed, gripper_1),

2. (gripper_1, holding, cube_3),

3. (cube_3, held, cube_3),

4. (cube_2, upright, cube_2),

5. (cube_2, graspable, cube_2),

6. (cube_2, stacked, cube_2),

7. (cube_2, on_top_of, cube_1),

8. (cube_1, upright, cube_1),

9. (cube_1, blocked, cube_1).

3| Experimental validation 39

5 Time = 22 s:

1. (gripper_1, closed, gripper_1),

2. (gripper_1, holding, cube_3),

3. (cube_3, held, cube_3),

4. (cube_3, on_a_side, cube_3),

5. (cube_2, upright, cube_2),

6. (cube_2, graspable, cube_2),

7. (cube_2, stacked, cube_2),

8. (cube_2, on_top_of, cube_1),

9. (cube_1, upright, cube_1),

10. (cube_1, blocked, cube_1).

6 Time = 23 s:

1. (gripper_1, open, gripper_1),

2. (cube_3, graspable, cube_3),

3. (cube_3, on_a_side, cube_3),

4. (cube_2, upright, cube_2),

5. (cube_2, graspable, cube_2),

6. (cube_2, stacked, cube_2),

7. (cube_2, on_top_of, cube_1),

8. (cube_1, upright, cube_1),

9. (cube_1, blocked, cube_1).

Table 3.5: Operations and visual triplets generated by the program (test 2).

40 3| Experimental validation

Once again, the outcome is the same as the one predicted. The generation algorithm
produced a complete Scene Graph.

We now consider the same analysis on the efficiency of the computations:

Output image enabled Output image disabled
Operating t. Idle t. Cycle t. Operating t. Idle t. Cycle t.

≈ 19 ms ≈ 81 ms 100 ms ≈ 10 ms ≈ 40 ms 50 ms

Table 3.6: Average operating and idle times, cycle times, in the cases of full print options
and no print option (test 2).

We find a positive result in terms of efficiency. In the first case, with image generation
enabled, the cycle time is sometimes overshot by the graphical computations required by
GraphViz. Nonetheless, on average the operating time is still lower than the limit. When
the print options are not enabled, the algorithm never exceeds the limit cycle time and
can definitely run in real-time. It would be possible to tweak the program so that it runs
the update cycle with a higher frequency.

41

4| Conclusions

The objectives of this thesis were manifold. First, we considered the problem of cobot
programming simplification through semantic techniques, which concerns the extraction
of meaning from the scene. By meaning, we intend the set of relations and attributes
involving the instances featured in the scene. The past literature offers a standard ver-
satile tool for the representation of such data structure: the scene graph. Taking into
consideration the classification of semantic systems, we focused on provided semantics
methods, which require the machine to be given some knowledge about the environment
rules beforehand.

After researching the topic, the methodology we followed was split into two steps: on one
hand, we had to define the strategies for scene data collection, which was implemented
through a 3-dimensional simulation and socket connection; on the other, we developed a
SG generation algorithm that translates the socket data into the corresponding SG.

The algorithm was developed with two main objectives in mind, which were achieved
successfully as demonstrated in Chapter 3. The SG generated had to be complete and
the process had to be efficient enough to happen in real-time while the simulation was
running. The first objective implies the fact that the SG created by the program had to
be sufficient and appropriate to the conditions selected as the hypothesis of the working
scenario. The second one indicates that the process had to run dynamically, avoiding
useless or resource-intensive computations.

Redundancy was taken into account and incorporated as an intentional feature of the
system. In practice, after the creation of non-redundant descriptive triplets, the algorithm
considers relational triplets. Here we included an additional step for the creation of
redundant descriptive triplets which will benefit SG analysis tools for the recognition of
the pre- and post-conditions for actions. This means that, for example, it will be more
straightforward to check if an object is available for an unstacking operation because the
action planner will only need to know if the object is described as stacked. Computation
is therefore faster since the search problem has become much simpler.

Our program also relies on prior knowledge data in the form of InitializationTables.

42 4| Conclusions

These tables contain all the relevant data regarding the triplet combinations that are
allowed in the environment. They simplify the generation of the SG as they reduce the
range of possibilities in a finite space that excludes impossible scenarios. Object update
strategies are also relevant in order to minimize the time of computation for computing
the top/bottom surfaces, as well as for reducing the number of objects considered for
potential graph pruning or expansion.

The C++ script was developed with scalability in mind, so that it would be possible to eas-
ily expand the code with new methods to check the validity of different kinds of predicates
and attributes, or alternatively new types of objects with other geometries. The validity
check mostly relies on straightforward geometrical computations that involve hysteresis
to evaluate the threshold differently depending on the kind of action: either building or
destroying a triplet. Nonetheless, the system is not the smartest implementation and re-
quires manual coding as it does not rely on fancier automatic techniques such as machine
learning. This means that this algorithm, even if we proved it to be efficient and reliable,
has a lot of potential for further improvements.

43

Bibliography

[1] H. Dang and P. K. Allen. Semantic grasping: Planning robotic grasps functionally
suitable for an object manipulation task. In 2012 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, pages 1311–1317. IEEE, 2012.

[2] G. Du, K. Wang, S. Lian, and K. Zhao. Vision-based robotic grasping from object
localization, object pose estimation to grasp estimation for parallel grippers: a review.
Artificial Intelligence Review, 54(3):1677–1734, 2021.

[3] S. Garg, N. Sünderhauf, F. Dayoub, D. Morrison, A. Cosgun, G. Carneiro, Q. Wu,
T.-J. Chin, I. Reid, S. Gould, et al. Semantics for robotic mapping, perception and
interaction: A survey. Foundations and Trends® in Robotics, 8(1–2):1–224, 2020.

[4] Y. Guo, F. A. Sohel, M. Bennamoun, J. Wan, and M. Lu. Rops: A local feature
descriptor for 3d rigid objects based on rotational projection statistics. In 2013 1st
International Conference on Communications, Signal Processing, and their Applica-
tions (ICCSPA), pages 1–6. IEEE, 2013.

[5] Y. Guo, M. Bennamoun, F. Sohel, M. Lu, and J. Wan. 3d object recognition in
cluttered scenes with local surface features: A survey. IEEE Transactions on pattern
analysis and machine intelligence, 36(11):2270–2287, 2014.

[6] E. Jang, S. Vijayanarasimhan, P. Pastor, J. Ibarz, and S. Levine. End-to-end learning
of semantic grasping. arXiv preprint arXiv:1707.01932, 2017.

[7] O. Kroemer, S. Niekum, and G. Konidaris. A review of robot learning for manipula-
tion: Challenges, representations, and algorithms. The Journal of Machine Learning
Research, 22(1):1395–1476, 2021.

[8] A. Myers, C. L. Teo, C. Fermüller, and Y. Aloimonos. Affordance detection of tool
parts from geometric features. In 2015 IEEE International Conference on Robotics
and Automation (ICRA), pages 1374–1381. IEEE, 2015.

[9] K. Ramirez-Amaro, Y. Yang, and G. Cheng. A survey on semantic-based methods

44 4| BIBLIOGRAPHY

for the understanding of human movements. Robotics and Autonomous Systems, 119:
31–50, 2019.

[10] Treccani.it. Definizione di ’semantica’. https://www.treccani.it/vocabolario/

semantica/.

[11] G. Zhu, L. Zhang, Y. Jiang, Y. Dang, H. Hou, P. Shen, M. Feng, X. Zhao, Q. Miao,
S. A. A. Shah, et al. Scene graph generation: A comprehensive survey. arXiv preprint
arXiv:2201.00443, 2022.

https://www.treccani.it/vocabolario/semantica/
https://www.treccani.it/vocabolario/semantica/

45

A| Semantic vocabulary of the

program

A.1. List of predicates

Predicate type Explanation

on_top_of Used when the subject stands on top of the object.
The following three conditions must be met:

• Height difference of the centers of the two
objects are in contact range, which varies de-
pending on the geometrical solids involved.

• Both objects have a defined top and a bot-
tom surface respectively, therefore both are
sufficiently horizontal to the ground.

• The vertical projections of the two surfaces
are intersecting.

holding Only an object of type gripper can be the subject
of this predicate. When the gripper is closed and
the center of the gripper is sufficiently near to that
of an object, then the gripper is holding it.

close_to Simply checks when two objects are close enough.
For the purposes of the experimental validation in
Chapter 3, the closeness threshold was set to zero
to avoid this relation, as it always builds two edges,
one per direction.

Table A.1: List of the predicate types of the program

46 A| Semantic vocabulary of the program

A.2. List of attributes

Attribute type Explanation

open Only an object of type gripper can be the subject
of this attribute. It is true when the gripper state
of the ObjectNode corresponding to the gripper is
true.

closed Opposite of open.
held It is true whenever the subject is the object of a

holding relational triplet.
upright It is true whenever the local reference frame of the

subject has its z+ direction sufficiently parallel to
the z+ direction of the environment.

on_a_side It is true whenever the local reference frame of the
subject has its x+ or its y+ direction sufficiently
parallel to the z+ or z− direction of the environ-
ment.

upside_down It is true whenever the local reference frame of the
subject has its z+ direction sufficiently parallel to
the z− direction of the environment.

graspable It is true whenever the subject is neither blocked
nor held.

stacked It is true whenever the subject is on_top_of an-
other object and it is not the subject.

blocked It is true whenever the subject is the object of an
on_top_of relational triplet.

Table A.2: List of the attribute types of the program

A.3. List of objects

Object type Explanation

gripper It is the end effector of the robotic arm. It can
perform movements and manipulate the pose of the
other objects in the scene.

A| Semantic vocabulary of the program 47

cube A basic cube solid.
cone A cone solid with a height equal to the base diam-

eter.

Table A.3: List of the object types of the program

49

List of Figures

2.1 A screenshot from the CoppeliaSim environment 9
2.2 An example of graphical output . 19

51

List of Tables

3.1 Sequence of operations and corresponding semantics interpreted by a hu-
man observer (test 1). 25

3.2 Operations and visual triplets generated by the program (test 1). 30
3.3 Average operating and idle times, cycle times, in the cases of full print

options and no print option (test 1). 31
3.4 Sequence of operations and corresponding semantics interpreted by a hu-

man observer (test 2). 35
3.5 Operations and visual triplets generated by the program (test 2). 39
3.6 Average operating and idle times, cycle times, in the cases of full print

options and no print option (test 2). 40

A.1 List of the predicate types of the program 45
A.2 List of the attribute types of the program 46
A.3 List of the object types of the program . 47

53

Acknowledgements

I would like to take a moment to thank those who have played a part in completing this
work and have been by my side during these years.

I express my appreciation to Isacco Zappa, my supervisor, for his prompt support, as
well as for his valuable suggestions that greatly assisted me in writing and organizing my
thesis. His contribution was crucial in achieving the success of this work. I thank Prof.
Paolo Rocco and Andrea Maria Zanchettin for providing me with invaluable guidance on
how to advance with my work and for giving me the opportunity to work on such an
interesting topic.

My family deserves my sincere gratitude for their unwavering support throughout my
education. To my mother, to my father, and to my sister Sara — thank you for your
constant encouragement and love. Your belief in me has been invaluable, and I could not
have accomplished this without you.

Finally, I am thankful for the inspiration of my friends and colleagues throughout my
life. To my dear friends from my hometown of Novara, your presence has been a constant
source of motivation. To my colleagues and friends at the Polytechnic University of Milan,
I will always cherish the wonderful moments and experiences we shared. Your company
and guidance have been invaluable in shaping my academic journey.

Alessandro Petazzi

	Abstract
	Abstract in lingua italiana
	Contents
	Introduction
	Industrial automation trends
	Semantics in robotics
	Problem formalization
	State of the art — Scene graphs
	Thesis purpose and statement
	Thesis achievements

	Methodology
	Simulation of the 3D environment
	Scene graph generation algorithm
	Basic programming concept
	Prior knowledge and data tables
	Algorithm overview
	Updating the scene graph
	Displaying the scene graph and other configurations

	Experimental validation
	Test #1 — Stacking
	Test #2 — Unstacking and tilting

	Conclusions
	Bibliography
	Semantic vocabulary of the program
	List of predicates
	List of attributes
	List of objects

	List of Figures
	List of Tables
	Acknowledgements

