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Abstract
The implementation of resonant gravity assist maneuvers is an essential pre-
requisite for interplanetary missions requiring complex trajectory solutions.
A convenient formalism to design resonant trajectories is the b-plane, as post-
encounter orbits with prescribed semi-major axis can be easily mapped on
this plane and thus targeted a priori. This result was originally derived in
the approximation of pure circular orbits of the flyby bodies. While this may
seem like a good approximation for bodies with a low orbital eccentricity,
it becomes questionable for those with a markedly elliptical orbit, such as
Mars or Mercury. Moreover, if a flyby takes place in the vicinity of the apsi-
dal points, the model precision inevitably worsens. These cases are of interest
for actual interplanetary missions, such as ESA’s BepiColombo. This thesis
presents a generalisation of the classical flyby model in the b-plane allowing
for the flyby body around the primary to be elliptical. The classical and the
extended models are tested and compared on two mission design applica-
tions, showing non-negligible differences when the flyby body has a marked
orbital eccentricity and/or the flyby takes place at one of the apsidal points.

The second part of the thesis focuses on the preliminary design and optimi-
sation of unperturbed resonant trajectories. The resonance condition at each
flyby is a discrete decision variable that can be advantageously leveraged
by techniques of combinatorial optimisation. A dynamic programming ap-
proach to the problem is proposed, using as discrete decision variables a set
of resonance conditions and the total number of flybys. The developed algo-
rithm is tested by reproducing the design of Solar Orbiter’s resonant phase
with Venus, used in the actual mission to gradually raise the ecliptic incli-
nation and decrease the perihelion distance. The computational efficiency
of the approach is evaluated by comparing it with the more standard brute-
force approach.
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Sommario
L’esecuzione di sequenze di flyby risonanti è una tecnica utilizzata in diver-
se missioni interplanetarie che richiedono soluzioni di traiettorie complesse.
Un formalismo conveniente per progettare traiettorie risonanti è il b-plane,
in quanto permette di mappare facilmente orbite post-flyby a semi-asse mag-
giore assegnato. Tale risultato fu derivato originariamente nell’ipotesi di or-
bite planetarie puramente circolari. Sebbene questa possa essere una buona
approssimazione per pianeti con una bassa eccentricità orbitale, diventa di-
scutibile per corpi con un’orbita marcatamente ellittica, come Marte o Mercu-
rio. Inoltre, per flyby in prossimità dei punti apsidali la precisione del model-
lo peggiora inevitabilmente. Questi casi sono di interesse per reali missioni
interplanetarie, come BepiColombo. In questa tesi si propone dunque una
generalizzazione del classico modello di flyby nel b-plane a orbite planetarie
eccentriche. Il modello classico e quello esteso verranno testati e confrontati
su due applicazioni di progetto di missione, rivelando differenze non trascu-
rabili nei casi in cui il pianeta ha una marcata eccentricità orbitale e/o il flyby
avviene in uno dei punti apsidali.

La seconda parte della tesi si concentra sulla progettazione di traiettorie riso-
nanti ottimali. La condizione di risonanza ad ogni flyby è una variabile de-
cisionale discreta che può essere sfruttata vantaggiosamente tramite tecniche
di ottimizzazione combinatoria. Si propone un approccio di programmazio-
ne dinamica al problema, utilizzando come variabili decisionali discrete un
insieme di condizioni di risonanza e il numero totale di flyby. L’algoritmo
sviluppato viene testato nella progettazione della fase risonante di Solar Or-
biter con Venere, la quale viene utilizzata nella missione reale per aumentare
gradualmente l’inclinazione e diminuire la distanza dal Sole al perielio. L’ef-
ficienza computazionale dell’approccio è valutata tramite un confronto con
il metodo più standard di enumerazione esaustiva.
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Chapter 1

Introduction to the thesis
work

Since the 60’s interplanetary spaceflight has provided a means to gather some
scientifically valuable data about the solar system that could not be gained
through observations from Earth’s surface or from orbit around the Earth.
Missions such as Pioneer and Voyager made possible stunning discoveries
that deepened our knowledge about the various planets, moons and small
bodies of the solar system. Nonetheless, the large velocity changes required
to travel between different bodies in the solar system have always posed
tough challenges to space exploration. The current launch vehicles and propul-
sion technologies are still inadequate to reach target orbits with much higher
or much lower energy with respect to the Earth, or even to achieve substan-
tial changes in the heliocentric orbital inclination.

To overcome the technological limitations, Gravity Assist Manoeuvres (GAM)
have been widely exploited over the past 50 years, allowing to accomplish
otherwise unfeasible missions such as Cassini-Huygens, Bepicolombo, and
many others. However, in several cases the implementation of single GAMs
is not sufficient to achieve the mission objectives and it is necessary to synthe-
sise a sequence of “resonant” GAMs (or resonant flybys), such that each time
the orbital period of the spacecraft and that of the small body are commensu-
rate, providing a new encounter at the same position in space [1]. A typical
case is when the mission requires large changes in the heliocentric orbital in-
clination, given that the maximum inclination variation achievable in a sin-
gle GAM features an upper bound. An analytical estimate of such value was
derived by Golubev et al. [2] based on Labunsky’s approximation [3], and is
computed in Table 1.1 for several planets and moons of the solar system. As
it can be seen, when large inclination changes are desired for a spacecraft or-
biting the inner solar system or around a giant planet, a single flyby may not
be enough. Various real-life missions successfully implemented sequences of
resonant flybys, such as Solar Orbiter (SOLO), an European Space Agency’s
(ESA) mission that exploits four resonant encounters at Venus to gradually
increase the solar inclination to 34° and decrease the perihelion distance [4].

The resonance concept is also beneficial for detailed planetary/lunar obser-
vations, since repeated close encounters can provide diverse observation an-
gles and thus a better data collection. In the JUpiter ICy moons Explorer
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(JUICE) mission, resonant flybys at Callisto are used to raise and then bring
back to zero the equatorial inclination of the probe with respect to Jupiter, al-
lowing to investigate the non-equatorial regions of the planet’s environment
[5].

Celestial body Central body Δimax [deg]

Mercury Sun 3.37

Venus ” 10.70

Earth ” 13.82

Mars ” 7.58

Jupiter, Saturn, ” >90
Uranus, Neptune

Pluto ” 13.35

Io, Europa Jupiter 5.15

Ganymede ” 8.78

Callisto Saturn 10.87

Titan ” 17.20

TABLE 1.1: Maximum orbital inclination variation achievable
in a single GAM around some large bodies of the solar system

For missions including resonant flyby sequences, the preliminary design of
the resonant phase is often crucial to the overall trajectory design. Consider,
for example, a mission with a highly inclined orbital phase. The maximum
inclination attainable with any sequence of resonant flybys is proportional to
the magnitude of the planetocentric velocity U of the spacecraft, which is ap-
proximately a constant of motion if no manoeuvres are involved. However,
U is also inversely proportional to the magnitude of the change in inclina-
tion at each flyby in the sequence. Therefore, the choice of U is the outcome
of a compromise between the final inclination to be achieved and the rate of
change in inclination [6]. Clearly, the value chosen for U notably affects the
design of the trajectory prior to the resonant phase. In Solar Orbiter, the re-
quired relative arrival velocity at Venus before the first resonant flyby was
∼ 18 km/s [4], which could not be achieved with a direct injection into a tra-
jectory from Earth to Venus. For this reason, it was necessary to implement
an initial sequence of three flybys (the first at Venus and the others at Earth)
allowing the spacecraft to arrive at Venus with the required velocity, and then
begin the resonant phase.

The design of resonant flyby trajectories involves several challenging aspects.
Firstly, the solution space for this kind of problems is very large and with a
variable dimensionality due to the unknown number of total flybys required.
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Moreover, as the resonance condition at each flyby is a discrete decision vari-
able, the optimisation problem features a mixed-continuous combinatorial
nature. For these reasons, efficient methods based on simplified dynamics
models are required to quickly explore such complex solution spaces in the
early stages of the design, thus allowing to reduce the number of promising
trajectories. A fairly accurate analytic model to design resonant flybys was
first devised by Öpik [7] and later improved by Valsecchi et al. [8] based on
the b-plane, a target plane orthogonal to the incoming hyperbolic velocity
vector of a small body on an encounter with a planet or moon.

In the first part of the thesis, the model is further improved by removing one
of its main simplifying assumptions, namely that the flyby body moves on a
purely circular orbit. In this way, the designed solutions will be more realis-
tic, thus facilitating the transition process from a preliminary trajectory to one
based on a full ephemeris model. In the second part of the thesis, the devel-
oped model is used in conjunction with a dynamic programming approach
to address the design of resonant flyby sequences. Dynamic programming
provides a very efficient optimisation method for problems involving com-
binatorial elements, and allows to find the global optimal solution by inves-
tigating only a reduced portion of the solution space. Overall, the objective
of the thesis is to provide a fast algorithm for computing fairly accurate pre-
liminary solutions to resonant flyby design problems, whose results could
serve as reasonable starting point for numerical methods to faster converge
to more complete trajectory solutions.
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Part I

B-plane resonance theory for
elliptical planetary orbits
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Chapter 2

Introduction

In 1976, Öpik [7] defined a convenient coordinate system based on the b-
plane and laid the foundations for the analytical modeling of close approaches.
Since then, several authors have expanded on its work, removing some sim-
plifying assumptions and obtaining different kinds of results. Farnocchia et
al. [9] proposed a method to map the uncertainties in the estimated trajec-
tory onto the b-plane. Greenberg et al. [10] proved that Öpik’s formulation is
valid over a wide range of conditions, but for very slow encounters it fails to
predict the results of a precise three-body numerical integration. In Valsecchi
et al. [11] the theory was extended to the case in which the Minimum Orbital
Intersection Distance (MOID) between the orbits of the small body and the
flyby body has a finite value. A remarkable result was obtained by the same
authors in another paper, showing that the locus of points leading to a post-
encounter orbit with a prescribed semi-major axis is identified by a unique
circle in the b-plane [8]. As the resonance concept is directly linked to that
of semi-major axis, this allows resonant orbits to be easily mapped on the b-
plane and thus targeted a priori. Several other authors extended the original
Öpik’s theory, such as Carusi et al. [12] and Milani et al. [13].

A common limitation to Öpik’s theory and the b-plane circle equation is that
they were both derived in the approximation of pure circular orbit of the
flyby body. While this may seem like a good approximation for bodies with
a low orbital eccentricity, it becomes questionable for those with a markedly
elliptical orbit, such as Mars or Mercury. Moreover, if a flyby takes place
in the vicinity of the apsidal points, the model precision inevitably worsens.
These cases are of interest for actual interplanetary missions, an example of
which is ESA’s BepiColombo, whose baseline trajectory includes a first flyby
close to Mercury’s perihelion and another one 180° later [14]. Despite Valsec-
chi et al. [11] has already suggested the possibility of extending the theory for
elliptical orbits, to the best of the author’s knowledge this problem has not
yet been addressed and will be the focus of the first part of the thesis, which
is outlined as follows:

– Chapter 3 provides an overview of the b-plane formalism for close en-
counters and the b-plane circle equation.

– Chapter 4 generalises the classical model allowing for the flyby body’s
around the primary to be elliptical. Simulations are carried out to val-
idate the developed model and compare it with the classical one. A
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brief discussion is given on the validity of one hypothesis behind the
extended model, namely that the magnitude of the planetocentric ve-
locity is conserved across a GAM.
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Chapter 3

Close encounters and orbital
resonances in the b-plane

This chapter presents an overview of Öpik’s theory of planetary close en-
counters, together with the classical derivation of the circle equation in the
b-plane. These concepts provide the necessary theoretical basis for under-
standing the model extension developed in Chapter 4. More detailed infor-
mation can be found in the works of Öpik [7], Carusi et al. [12] and Valsecchi
et al. [11].

3.1 Öpik’s theory of planetary close encounters

Öpik’s theory was derived based on a two-body linked-conics approxima-
tion and by including Tisserand’s criterion [15]. In this framework, a mass-
less particle is assumed to move on a Keplerian orbit relative to the Sun, until
it enters the sphere of influence (SOI) of a perturbing planet moving on a cir-
cular orbit. From a heliocentric perspective, the SOI is assumed to have an
infinitesimal radius, implying that the orbits of the two objects are actually
touching, i.e. the MOID is zero. In this approximation, the point in which
the spacecraft enters the SOI is not defined, leaving a degree of freedom in
the flyby dynamics [16]. The encounter is then modeled in the b-plane an in-
stantaneous rotation of the incoming planetocentric velocity vector, without
changing its magnitude. The flyby deflection has the effect of changing the
particle’s heliocentric orbit from before the encounter to immediately after it.
Despite these simplifying assumptions, the true nature of planetary encoun-
ters is approximated quite well by this model and provides accurate initial
estimates of the actual trajectory [17]. On the other hand, the model fails for
very slow encounters or very low velocity of the small body [10]. As a gen-
eral rule of thumb, it is inapplicable for a Tisserand parameter exceeding the
value of 3 [11].

3.1.1 Planetocentric reference frame

Öpik’s theory was formulated by using the Jacobi normalised units, the same
commonly employed in the non-dimensionalisation of the Circular Restricted
Three-Body Problem (CR3BP). The period of the planet is 2π and its distance
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to the Sun is 1. It is also assumed that both the mass of the Sun and the
gravitational constant are equal to 1, such that the planet’s velocity is 1 as
well. Let a, e, i,Ω,ω be the orbital elements of the particle’s heliocentric or-
bit, where i is reckoned with respect to the orbital plane of the planet. It is
introduced a planetocentric reference frame (X, Y, Z) centred in the planet’s
center of mass such that the X-axis is directed from the Sun to the planet’s
position, the Y-axis is aligned with its direction of motion and the and Z-axis
completes the right-handed triad. In this reference frame, the components of
the planetocentric velocity vector of the particle are [12]:

U =

 Ux

Uy

Uz

 =


±
√

2 – 1/a – a
(
1 – e2

)√
a
(
1 – e2

)
cos i – 1

±
√

a
(
1 – e2

)
sin i

 (3.1)

Calling with T the Tisserand parameter of the particle’s orbit, it can be shown
a relation between T and the magnitude of the planetocentric velocity U:

U = 3 – T =

√
3 –

1
a

– 2
√

a
(
1 – e2

)
cos i (3.2)

Since T is an invariant in the CR3BP, Equation (3.2) allows Öpik’s theory to
include a sort of three-body information, stating that the magnitude of the
planetocentric velocity before and after a planetary encounter is approxi-
mately conserved. The encounter geometry can be defined by two angles
θ and φ, as showed in Figure 3.1.

FIGURE 3.1: Planetary encounter geometry

Hence, the planetocentric velocity vector can be alternatively expressed as:
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 Ux

Uy

Uz

 =

 U sinθ sinφ

U cosθ

U sinθ cosφ

 (3.3)

such that: [
cosθ

tanφ

]
=

[
Uy/U

Uχ/Uz

]
(3.4)

Substituting now Equations (3.1) and (3.2) inside Equation (3.4) yields

cosθ =

√
a
(
1 – e2

)
cos i – 1√

3 – 1
a – 2

√
a
(
1 – e2

)
cos i

(3.5)

Taking the square of Equation (3.2), the following relation is obtained

√
a
(
1 – e2

)
cos i =

3 – 1/a – U2

2
(3.6)

which can be used inside Equation (3.5) to finally get

cosθ =
3–1/a–U2

2 – 1√
3 – 1

a –
(

3 – 1/a – U2
)

=
3/2 – 1/2a – U2/2 – 1

U

=
3 – 1/a – U2 – 2

2U

=
1 – 1/a – U2

2U

(3.7)

Equation (3.5) provides an interesting insight into the geometrical meaning
of θ. In a close encounter, the potential energy of the particle is fixed by the
distance of the planet relative to the Sun. Instead, the kinetic energy is linked
to the magnitude of the vectorial sum of the heliocentric velocities of the par-
ticle and the planet. For fixed U, this magnitude does only depends on θ.
Therefore, the total energy (potential plus kinetic), and thus the semi-major
axis, are only function of θ, as evidenced in Equation (3.5).

An expression of φ as function of the particle’s orbital elements can be de-
rived as well. This, however, does not only depend on the semi-major axis



12 Chapter 3. Close encounters and orbital resonances in the b-plane

and moreover suffers from sign ambiguity:

tanφ = ±
√

2a – 1
a2
(
1 – e2

) – 1
1

sin i
(3.8)

If 0 < φ < π/2 the encounter is from inside planet’s orbit, and vice versa if
–π/2 < φ < 0.

3.1.2 B-plane frame

The b-plane is defined as the plane orthogonal to U and containing the centre
of the planet. In this context it is introduced another planetocentric reference
frame (ξ, η, ζ) such that the (ξ, ζ)-axes lie on the b-plane and η̂ is perpendicular
to it. In particular, ζ̂ is parallel to the projection of the planet’s velocity vpl
on the b-plane but with opposite direction and ξ̂ completes a right-handed
reference system:

η̂ =
U
‖U‖ ; ξ̂ =

U× vpl

‖U× vpl‖
; ζ̂ = ξ̂× η̂ (3.9)

This set of axes is particularly convenient to characterise a close approach be-
tween two objects, as it decouples the two key quantities of an encounter. The
ζ coordinate is indeed associated to the shift in the time of arrival of the par-
ticle with respect to the planet, whereas ξ̂ is related to the minimum distance
between the two orbits. When the particle crosses the b-plane, η = 0 and a
quantity called impact parameter identifies the closest distance between the
object and the planet:

b2 = ξ2 + ζ2 (3.10)

A vector in the (X, Y, Z) frame can be expressed in (ξ, η, ζ) coordinates by
means of the direction cosine matrix relating the two systems:

x|b–plane=
[
ξ̂ η̂ ζ̂

]T · x|XYZ (3.11)

3.1.3 B-plane deflection model

As stated before, the magnitude of the velocity vector U remains unchanged
from before to after the encounter. The flyby is modelled as an instantaneous
rotation of such vector by a given amount that depends on its magnitude, on
the impact parameter and on the planet’s mass m in units of the Sun’s mass.
Introducing the characteristic length c = m/U2, the deflection angle γ can be
computed as:

tan
γ

2
=

m
bU2 =

c
b

(3.12)
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FIGURE 3.2: The two planetocentric reference systems (X, Y, Z)
and (ξ, η, ζ)

or, equivalently

cos γ =
b2 – c2

b2 + c2

sin γ =
2bc

b2 + c2

(3.13)

After the encounter, the vector U is rotated by γ in the direction given by the
direction angle ψ, defined as:[

b sinψ

b cosψ

]
=

[
ξ

ζ

]
(3.14)

A simple way to compute the outgoing planetocentric velocity U′ is to view
the rotation as an eigen-axis one. The magnitude of the angle is γ and the
direction of the eigen-axis λ̂ is identified by the cross product U× U′, per-
pendicular to the plane of rotation. Since U by definition is aligned with η̂
and orthogonal to U× U′, the eigen-axis will lie on the b-plane and it can
thus be readily obtained in this frame with the aid of geometrical considera-
tions:

λ̂ =

 – cosψ

0

sinψ

 (3.15)

The eigen-axis can then be expressed in the (X, Y, Z) frame by means of Equa-
tion (3.11) and the rotation matrix from U to U′ can be finally computed
through the Rodrigues’ formula [18].
The direction of U′, aligned with the outgoing asymptote, can be identified
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through two post-encounter angles θ′ and φ′ (Figure 3.3), where the super-
script ′ stands for post-encounter conditions. An expression of θ′ can be ob-
tained in terms of θ, γ and ψ:

cosθ′ = cosθ cos γ + sinθ sin γ cosψ (3.16)

FIGURE 3.3: Deflection of the incoming velocity vector U by
means of the angles γ and ψ

3.2 Resonant returns and b-plane circles

The here reported summary follows what presented in Valsecchi et al. [8]and
later refined by the same authors in [11].

When a close approach alters the particle’s orbit in such a way that the orbital
period of the two objects becomes commensurable, then a further encounter
takes place after h periods of the particle and k of the planet have passed,
with h, k integers. Identifying with T the particle’s orbital period, the reso-
nance condition can be expressed as follows:

hT′obj = kTpl (3.17)

Using Jacobi normalised units, Tpl = 2π and T′obj = 2π(a′)3/2, and the resonant
post-encounter semi-major axis can be directly linked to the resonance ratio
k/h

a′ =
(

k
h

)2/3

(3.18)

Recalling Equation (3.7), a given resonance ratio can be directly linked to a
geometrical condition in terms of the angle θ.
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3.2.1 B-plane circles

Considering Equations (3.13) and (3.14), Equation (3.16) can be rearranged as

cosθ′ =
b2 – c2

b2 + c2
cosθ +

2cζ

b2 + c2
sinθ (3.19)

which can be solved for ζ

ζ =

(
b2 + c2

)
cosθ′

2c sinθ
–

(
b2 – c2

)
cosθ

2c sinθ
(3.20)

The impact parameter can be replaced by means of Equation (3.10) and, rear-
ranging the terms it is obtained

ξ
2 + ζ2 –

2c sinθ
cosθ′ – cosθ

ζ +
c2 (cosθ′ + cosθ

)
cosθ′ – cosθ

= 0 (3.21)

that is the equation of a circle in the b-plane centred on the ζ-axis. Calling
with C and R respectively the centre and the radius of such circle, Equation
(3.21) can be written in a more compact way:

ξ
2 + ζ2 – 2Cζ + C2 = R2 (3.22)

where

C =
c sinθ

cosθ′ – cosθ
R =

∣∣∣∣ c sinθ′

cosθ′ – cosθ

∣∣∣∣ (3.23)

From the last equation one notices that C > 0 when cosθ′ > cosθ, which,
recalling Equation (3.7), occurs when a′ > a. As a consequence, all the cir-
cles centred on the positive ζ-axis lead to a larger post-encounter semi-major
axis than the initial one, and vice versa. A interesting limit condition is
when a′ = a, i.e. the encounter modifies the orbital eccentricity and inclina-
tion while keeping constant the orbital period, a condition known as “orbit
cranking” [19]. In this case, the circle degenerates into a straight horizontal
line in the b-plane of equation:

ζ =
c cosθ
sinθ

. (3.24)

This kind of manoeuvre was implemented for example in the “cranking down”
phase of Cassini’s orbit, where a sequence of pure cranking flybys with Titan
was used to quickly reduce the orbital inclination of the spacecraft, making
the orbit increasingly close to the ring plane of Saturn. Considering Equation
(3.23) and recalling the link between semi-major axis and angle θ, it can be
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noted that the smaller a circle, the larger the variation of semi-major axis be-
tween the pre- and post-encounter orbit.

In Figure 3.4 several b-plane circles are computed for an encounter with Venus
and for different resonance conditions, assuming a planetocentric velocity of
U = 0.5. The color bar reflects the number of revolutions of the planet be-
fore a new close approach, whereas the black circle represents the image of
Venus augmented due to the gravitational focusing, which is approximately
1.2 times the radius of the planet.

FIGURE 3.4: B-plane circles for a resonant encounter with Venus

For deeper insight into the b-plane circles, Figure 3.5 gives an example of
post-encounter orbits computed by choosing different points on a same cir-
cle. Each point and its associated orbit are marked with the same colour.
Since all the points belong to the same circle, what changes between the var-
ious solutions is the eccentricity and inclination, while the semi-major axis is
the same. It can be noted that the closer the point is to the planet, the larger
the variation in inclination with respect to the initial orbit. This provides a
good rule of thumb and follows a rather intuitive logic, given that a stronger
gravitational force has a greater ability to modify the orbital plane of an ob-
ject.

For a visual comparison, Figure 3.6 shows what happens by choosing differ-
ent circles and the same polar coordinate on each circle. This time, the semi-
major axis also changes, as well as the inclination and eccentricity. Having
considered the circles in the positive part of the plane, in any case the post-
encounter orbit features a larger semi-major axis than the initial one. It can
be seen that the largest orbits are associated with the points on the smallest
circles, as further evidence of what stated before.
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FIGURE 3.5: Post-encounter orbits for different points on a
same b-plane circle

FIGURE 3.6: Post-encounter orbits for different b-plane circles
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Chapter 4

Extention of the theory to
elliptical planetary orbits

This chapter presents a generalisation of the formulae described in Chapter 3
for elliptical planetary orbits. The aim is to improve the accuracy of the clas-
sical model through a purely analytical extension, so that its implementation
does not increase the computational costs compared to those required by the
classical theory. This is a key aspect since one of the main advantages of
modelling flybys in the b-plane is the possibility to analyse trajectories with
fair accuracy while requiring very low computational efforts.

4.1 Generalisation of the formulae

The block diagram of Figure 4.1 summarises the main steps required to de-
sign a generic flyby using the the b-plane. The dashed blue boxes highlight

FIGURE 4.1: Sequence of steps required to design a resonant
flyby in the b-plane

the free design variables, i.e. the k/h ratio and the point on the b-plane circle.
Due to the patched-conics approximation, the entry point of a spacecraft into
a planet’s SOI is a degree of freedom of the problem. Theoretically, any point
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on the b-plane could be chosen to analyse the evolution of the spacecraft’s
trajectory. However, if the target is an orbit with a specific post-encounter
semi-major axis, the locus of points available drastically reduces to a simple
circle. To generalise the model to elliptical planetary orbits, it is necessary to
revise all the intermediate steps shown in the figure, leading from an input
k/h ratio to the deflection of the incoming velocity U.

4.1.1 Notation and non-dimensional quantities

The notation used to derive the formulae is introduced, together with the
characteristic units used to formulate the problem in non-dimensional coor-
dinates. The notation is as follows:

– apl, epl, ipl,Ωpl,ωpl, θpl : orbital elements of the planet referred to its
orbital plane. This means that ipl = 0. If the planet’s orbital elements
are available in another reference system, say the ecliptic, they first have
to be converted in cartesian coordinates, which can then be expressed
in the new frame through a rotation matrix;

– a, e, i,Ω,ω, θ : orbital elements of the particle’s heliocentric orbit re-
ferred to the planet’s orbital plane. In such reference frame, the particle
can only cross a planet’s orbit at the ascending or descending node,
whereby a close encounter can take place at one of those points only.
Both e and i can be in general non-zero, as per Öpik’s classical theory;

– v: heliocentric velocity vectors;

– U: particle’s velocity vector relative to the planet;

– ¯(·): non-dimensional variables. For instance, Ū is the non-dimensional
planetocentric velocity vector of the particle;

– (·)′: post-encounter quantities.

Consider a close approach between a massless particle in orbit around the
Sun and a planet with an elliptical orbit. The problem is once again for-
mulated in non-dimensional form by using the same reference quantities as
before, with the exception of the units of length and velocity that are now
defined:

– lref: planet’s distance from the Sun. Referring to Figure 4.2, lref = ‖rpl‖.
Note that this is now generally different from the planet’s semi-major
axis;

– vref: velocity of a fictitious planet moving on a circular orbit at a dis-
tance lref from the Sun. It can then be computed as:

vref =
√
μ@

lref
(4.1)
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where μ@ is the Sun’s gravitational parameter. Clearly, the reference ve-
locity is now different from the magnitude of the true planet’s velocity
‖vpl‖.

FIGURE 4.2: Blue solid line: planet’s orbit. Dashed green line: circular orbit
of a fictitious planet located at a distance lref from the Sun

A parameter χ is introduced:

χ =
lref
apl

(4.2)

In case of circular orbit of the secondary body, χ = 1. For particularly elliptical
planets such as Mercury, χ reaches a minimum of 0.83.

4.1.2 Relationship between a given resonance ratio and the
post-encounter semi-major axis

The relationship between a given k/h ratio and the particle’s post-encounter
semi-major axis can be extended for non-circular planetary orbits starting
from Equation (3.17), which is independent of the planet’s orbital eccentricity.
The orbital periods of planet and particle respectively are:

Tpl = 2π

√√√√a3
pl

μ@

; T′ = 2π

√
a′3

μ@

; (4.3)

Plugging these expressions into Equation (3.17) yields:(
a′

apl

)3/2

=
k
h
−→ a′

apl
=
(

k
h

)2/3

(4.4)



22 Chapter 4. Extention of the theory to elliptical planetary orbits

and dividing both sides of the equation by lref leads to:

1
lref
· a′

apl
=

1
lref
·
(

k
h

)2/3

−→ ā′ =
1
χ

(
k
h

)2/3

(4.5)

The only difference with Equation (3.18) is the presence of χ in the denomi-
nator.

4.1.3 Planetocentric reference frame

If the planet was in circular orbit, Equation (3.7) would provide a geomet-
rical definition associated with the semi-major axis. For elliptical orbits, an
analogue of that relation can be conveniently obtained if the encounter ge-
ometry is characterised with respect to a new planetocentric reference frame
(X̂, Ŷ, Ẑ), where the Ŷ-axis is aligned with the planet’s velocity vector, the
Ẑ-axis coincides with the Z-axis and the X̂-axis completes a right handed ref-
erence system. Note that generally the Ŷ direction is not perpendicular to the
radial direction. As clear from Figure 4.3, the new frame can be obtained by

FIGURE 4.3: Comparison between the reference systems
(X, Y, Z) and (X̂, Ŷ, Ẑ).

performing a clockwise rotation of the X, Y-axes around the Z direction. The
rotation angle is given by the planet’s flight path angle γpl, defined as [20]:

γpl = tan–1

(
epl sin (θpl)

1 + epl cos (θpl)

)
(4.6)
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Then the following coordinate transformations can be used to rotate a vector
quantity from one frame to the other:

x|X̂,Ŷ,Ẑ =


cos(γpl) – sin(γpl) 0

sin(γpl) cos(γpl) 0

0 0 1

 x|X,Y,Z= RZ(–γpl)x|X,Y,Z

x|X,Y,Z= RT
Z(–γpl)x|X̂,Ŷ,Ẑ

(4.7)

Note that the two frames only coincide when the planet is at the apsides, i.e.
where γpl = 0◦, or when the planet is in circular orbit.

4.1.4 Link between a semi-major axis and the angle θ

The encounter geometry is then characterised by introducing again two an-
gles θ and φ, with definitions analogous to those of Equation (3.4) but re-
ferred now with respect to the (X̂, Ŷ, Ẑ) reference frame. Thus, θ identifies
the angle formed by U with the Ŷ-axis, whereas φ is the angle between the
X̂Ŷ plane and the plane containing U and the Ŷ-axis.
Although it is possible to find an expression of φ as a function of the particle’s
orbital elements, the focus here is on the link between the semi-major axis
and θ, as this is what is needed to generalise the classical theory (Figure 4.1).

FIGURE 4.4: Angle θ

Referring to Figure 4.4, the particle’s heliocentric velocity can be obtained by
applying the cosine law to the triangle formed by the three vectors:

v2 = v2
pl + U2 – 2 U vpl cos(π – θ)

= v2
pl + U2 + 2 U vpl cosθ

(4.8)

Equation (4.8) can be expressed in non-dimensional units by dividing both
sides by the square of the characteristic velocity:
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v2

v2
ref

=
v2

pl

v2
ref

+
U2

v2
ref

+ 2
U

vref

vpl

vref
cos(θ);

−→ v̄2 =
v2

pl

v2
ref

+ Ū2 + 2 Ū
vpl

vref
cos(θ)

(4.9)

For a planet in circular orbit, the ratio vpl/vref is equal to 1 and the original
expression is obtained (Equation (3.7)), whereas for the elliptical cases, vpl
can be expressed as function of vref. From the principle of conservation of
energy:

vpl =

√√√√μ@
(

2
rpl

–
1

apl

)
(4.10)

Collecting the term 1/rpl under the square root and recalling the definition of
χ:

vpl =

√√√√μ@
rpl

(
2 –

rpl

apl

)
=
√
μ@

rpl

(
2 – χ

)
(4.11)

Equation (4.1) can be used to obtain:

vpl = vref
√

2 – χ ⇒
vpl

vref
=
√

2 – χ (4.12)

The last identity is used to rewrite Equation (4.9) as function of χ:

v̄2 = 2 – χ + Ū2 + 2Ū
√

2 – χ cos(θ) (4.13)

Exploiting again the principle of conservation of energy, the particle’s helio-
centric velocity is computed as:

v2 = μ@

(
2
r

–
1
a

)
=
μ@

r

(
2 –

r
a

)
= v2

ref

(
2 –

1
ā

)
⇒ v̄2 = 2 –

1
ā

(4.14)

The two expressions of v̄2 of Equations (4.13) and (4.14) can be matched:

2 – χ + Ū2 + 2Ū
√

2 – χ cos(θ) = 2 –
1
ā

(4.15)

and solving for θ yields:
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cos(θ) =
χ – 1/ā – Ū2

2Ū
√

2 – χ
(4.16)

Note that Equation (4.16) is a generalisation of Equation (3.7), since χ = 1 pro-
vides exactly the original expression from Öpik. It is stressed again that this
result could only be achieved by referring θ to the planetocentric reference
system introduced in the previous section.

4.1.5 Components of the planetocentric velocity U

When a particle encounters a planet moving on a circular orbit around the
Sun, its relative velocity can be computed as function of the semi-major axis,
eccentricity and inclination only. This result can be easily extended to ellip-
tical planetary orbits, provided that the orbital position of the planet at the
encounter is known.

Following Öpik [7], as a first step the particle’s heliocentric velocity vector
is derived in the (X, Y, Z) reference system. Figure 4.5 shows why this frame
is convenient in this case. Regardless of the eccentricity of the planet’s or-
bit, the X-axis is always aligned with the radial direction of the particle’s
orbit, whereas the transverse direction forms an angle i with the X, Y plane.
Therefore, the vector U is easily found in X, Y, Z-coordinates. The angular

FIGURE 4.5: Radial and transverse direction of the particle’s
orbit at the encounter position

momentum per unit mass of a Keplerian orbit is given by:

h =
√
μ@ a (1 – e2) (4.17)
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or, alternatively:

h = vt r (4.18)

where vt is the transverse component of the velocity. The two expressions
can be used to obtain vt:

vt =

√
μ@ a (1 – e2)

r
(4.19)

which can be expressed in non-dimensional units as:

vt =

√
μ@ a (1 – e2)

r2 =
√
μ@

r

√
a
r

(1 – e2) = vref

√
ā (1 – e2)

⇒ v̄t =
√

ā (1 – e2)

(4.20)

Since the radial direction is always aligned with the X-axis, it results:

v̄2
r ≡ v̄2

X = v̄2 – v̄2
t (4.21)

and by substituting Equation (4.14) and (4.20) into Equation (4.21) leads to:

v̄2
X = 2 –

1
ā

– ā (1 – e2) ⇒ v̄X = ±
√

2 –
1
ā

– ā (1 – e2) (4.22)

where ± distinguishes encounters from inside and outside planet’s orbit. As
the radial and transverse directions are orthogonal, vt is decomposed in the
Y, Z plane as: v̄Y = v̄t cos i =

√
ā (1 – e2) cos i

v̄Z = ±v̄t sin i = ±
√

ā (1 – e2) cos i
(4.23)

where ± identifies ascending or descending node.
Given the absolute velocity v̄, the relative velocity Ū is obtained as the vector
difference between v̄ and the non-dimensional planet’s velocity v̄pl, always
expressed in the frame (X, Y, Z). Referring to Figure 4.3, vpl can be written as:

vpl = ‖vpl‖


sin γpl

cos γpl

0

 (4.24)

and Equation (4.12) can be used to switch to non-dimensional coordinates:
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v̄pl =


√

2 – χ sin γpl√
2 – χ cos γpl

0

 (4.25)

and Ū is finally given by:

Ū = v̄ – v̄pl =


±
√

2 – 1
ā – ā (1 – e2) –

√
2 – χ sin γpl√

ā (1 – e2) cos i –
√

2 – χ cos γpl

±
√

ā (1 – e2) sin i

 (4.26)

which can be expressed in the (X̂, Ŷ, Ẑ) frame through the rotation matrix of
Equation (4.7). Compared to the case of circular orbit, the elements a, e and i
are no longer sufficient to compute Ū, but the knowledge of χ and γpl is also
required. Note that, once Ū is known, Equation (3.4) can be used to recover
the angle φ.

4.1.6 B-plane circles and deflection model

The remaining blocks of Figure 4.1 to be generalised are those associated with
the b-plane reference system. Since the eccentricity of a planet’s orbit does
not enter the definition of b-plane, Equation (3.9) can be used to compute the
(ξ, η, ζ)-axes also in this case.

The deflection model does not require major modifications either, as it was
not specifically developed to account only for circular planetary orbits. In-
deed, prior to Öpik’s work on close encounters, the concepts of impact pa-
rameter and deflection angle had already been used for some time in astrody-
namics to model flybys in the general case of planets in elliptical orbits [21].
The only necessary changes to the deflection equations are due to the use of
characteristic units different from those used by Öpik. In other words, even
though the deflection equations were derived basing on the general model of
two-body hyperbolic trajectory, where the planet is not necessarily in a circu-
lar orbit, the use of lref and vref in the non-dimensionalisation step might lead
to different expressions. However, starting from the equations written in di-
mensional form and using the characteristic units introduced in this chapter
yields the following identities:

cos γ =
b̄2 – c̄2

b̄2 + c̄2
; sin γ =

2b̄c̄

b̄2 + c̄2
(4.27)

tan
γ

2
=

m̄

b̄Ū2 (4.28)
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[
b̄ sinψ

b̄ cosψ

]
=

[
ξ̄

ζ̄

]
(4.29)

which look the same of Equations (3.13) and (3.14). This was not a foregone
conclusion, but is due to the particular choice made regarding the defini-
tion of lref and vref. This statement can be verified by trying to use differ-
ent characteristic units to reformulate the problem described in this chapter,
such as lref = ‖rpl‖ and vref = ‖vpl‖. Despite the similarity, the above equa-
tions and those of the classical theory do not lead to the same results. In
Equations (4.27), (4.28) and (4.29), the eccentricity of the planet’s orbit is im-
plicitly accounted for in the definitions of Ū and b̄, and this in turn affects the
final value of the deflection angle.

The last equation to be generalised for the deflection model is given by Equa-
tion (3.4), which provides a fundamental link between the deflection angle γ
and the post-encounter angle θ′. As long as θ is referred to the planet’s ve-
locity, Equation (3.4) holds true. Therefore, since θ was defined with respect
to the Ŷ-axis, Equation (3.4) can be used in the elliptical case with no modifi-
cations required.

In summary, because of the way the problem has been formulated, the non-
dimensional equations associated with the deflection model are the same for
both the cases of circular and elliptical orbit of the planet. Moreover, as can
be seen in Section 3.2.1, the derivation of b-plane circles is solely based on
those equations, thus implying that Equation (3.22) also remains unchanged.
However, the classical and extended model do not lead to the same b-plane
circles. Indeed, for the same pre- and post-encounter semi-major axes a, a′,
the two methods yield different values of cosθ, cosθ′ and hence to different
b-plane circles. As evidence of this, Figures 4.6 and 4.7 show several reso-
nance circles computed using the two models. Each pair of close circles is
associated with a same k/h ratio, specified next to each of them. The flyby
planet is Venus and the pre-encounter conditions are the same for all circles.
It can be seen that the effect of the planet’s orbital eccentricity is a slight mod-
ification of the radius and the centre of the circles.

Lastly, Table 4.1 provides a summary of the main differences between the
classical model based on Öpik’s theory and the one presented in this chap-
ter. The deflection equations, the circle equations and some of the reference
quantities are not reported as they are not different in the two cases. Since
for circular orbits χ = 1 and γpl = 0◦, one can easily verify that in this case
the two models yield the same results. This is to emphasise again that the
eccentric extension is a generalisation of the classical model.
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Classical Eccentric extension

Reference
length and apl, vpl rpl,

√
μ@
rpl

velocity

Planetocentric
ref. frame

(X, Y, Z) (X̂, Ŷ, Ẑ)

Link
k/h↔ a′

a′ =
(

k
h

)2/3
ā′ = 1

χ

(
k
h

)2/3

Link
a↔ cosθ

cosθ = 1–1/a–U2

2U cosθ = χ–1/ā–Ū2

2Ū
√

2–χ

Vector Ū
(X, Y, Z-frame)


±
√

2 – 1/a – a
(
1 – e2

)√
a
(
1 – e2

)
cos i – 1

±
√

a
(
1 – e2

)
sin i



±
√

2 – 1
ā – ā (1 – e2) –

√
2 – χ sin γpl√

ā (1 – e2) cos i –
√

2 – χ cos γpl

±
√

ā (1 – e2) sin i



TABLE 4.1: Classical theory and eccentric extension compared

FIGURE 4.6: Resonance circles computed through the two methods
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FIGURE 4.7: Enlargement of Figure 4.6. Different resonances are emphasised

4.2 Validation and comparison

The purpose of this section is twofold: validating the model and compar-
ing it with the classical one on some mission design application. The former
goal can be achieved with a simple test: given a close approach between a
spacecraft and a planet in elliptical orbit, some desired resonance ratio k/h
is chosen for the post-encounter conditions. Then, a generic point on the re-
sulting b-plane circle is selected and the outgoing velocity is computed. The
extended model can be considered correct if the final orbit of the spacecraft
and that of the planet meet the resonance condition specified at the begin-
ning, regardless of the point chosen on the circle. On the other hand, the
comparison test aims at understanding how different the results produced
by the two models are in mission design applications.

The two tasks, validation and comparison, can be carried out all at once
through the following single test. Consider the trajectory design of a space-
craft that is launched from Earth on a date t0 and arrives at Venus after a
time of flight Δt. Once at the planet, it is required to perform a sequence of
five resonant flybys characterised by the post-encounter conditions specified
in Tab 4.2. The two models are asked to find the sequence of b-plane points
leading to the orbits reported in the table. Note that each pair of (k/h, incli-
nation) is enough to define a unique post-encounter orbit. Indeed, each reso-
nance ratio corresponds to a b-plane circle and the inclination values identify
a single point on each circle. The procedure to identify the point correspond-
ing to a given inclination value will be deeply detailed in Chapter 6.
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Flyby k/h Inclination

1st 4/3 1.5◦

2nd 7/5 3◦

3rd 3/2 4.5◦

4th 8/5 6◦

5th 7/4 7.5◦

TABLE 4.2: Post-encounter orbits

The test was performed assuming t0 = 6756 Modified Julian Days (MJD) 2000
and Δt = 150 days. For the elliptical model, the position of Earth at launch
and that of Venus at the encounter are taken from the ephemeris, and then
the initial conditions at the first flyby are obtained by computing the Lam-
bert arc related to the transfer orbit between the two planets. For the classical
model, the only difference is in the position of Venus, which is assumed to be
at the same heliocentric longitude as before but in circular orbit.

For the validation side of the test, the points predicted by the elliptical model
correctly lead to the prescribed resonance conditions, giving proof of the ac-
curacy of the equations described in this chapter. Figure 4.8 shows the points
predicted through the two models. The number next to each couple of close

FIGURE 4.8: B-plane points for the flybys with Venus.

points refers to the flyby number. For the sake of comparison, all the points
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are plotted in the same graph even though the orientation of the b-plane in
space changes at each flyby. As can be seen, the two models yield very simi-
lar results.

To gain a better insight into the differences, consider the blue points in Fig-
ure 4.8, obtained using the classical model. If Venus was actually in circular
orbit, those points would accurately lead to the orbits reported in Table 4.3.
Instead, since Venus actually has a small but non-zero eccentricity, its real
position and velocity will be somehow different from those used to calculate
the blue points. Therefore, if these latter are used to compute the spacecraft
trajectory, the resulting orbits are likely to slightly deviate from the desired
ones. Table 4.3 shows how significant this deviation is. The second and third
columns report the errors in terms of semi-major axis and inclination of the
orbits. The first error inevitably translates into an error on the orbital period
and, consequently, on the resonance ratio of the orbits. Therefore, on each
subsequent return, the spacecraft will not exactly match the position of the
planet, but will be either a little early or a little late, thus introducing another
source of error. Anyway, Table 4.3 again highlights small differences in the
outcomes of the two models. This might have been expected considering
that Venus has the lowest orbital eccentricity among the planets of the so-
lar system. Indeed, for Venus’ orbit the parameter χ is comprised between
0.9932 ≤ χ ≤ 1.0068, which is why the differences between the two models
are limited. However, as mentioned in the introduction, some missions in-
volve series of flybys with planets with non-negligible orbital eccentricities
and located near the apsides, where the orbit most deviates from the circular
one. For this reason, it is interesting to see how the two models perform in
such a scenario.

Flyby Δk/h [%]
error

Δa% [%] Δi [deg]

1st 0.075 0.067 0.021

2nd 0.214 0.122 0.041

3rd 0.266 0.199 0.053

4th 0.438 0.267 0.059

5th 0.629 0.354 0.048

TABLE 4.3: Deviations of the solutions obtained by the classical model
with respect to the specified orbits

In the second test the spacecraft is required to perform three resonant flybys
at Mars near its perihelion and with the following specifications:
The points computed through the elliptical model once again correctly sat-
isfy the resonance conditions given as input. However, as can be noticed
from Figure 4.9, the solutions produced by the two models are considerably
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Flyby k/h Inclination

1st 4/5 1.5◦

2nd 6/7 3◦

3rd 9/10 4.5◦

TABLE 4.4: Post-encounter orbits (Mars test)

different this time.

FIGURE 4.9: B-plane points for the flybys with Mars

When dropping the assumption of circular orbit of the planet, the outcomes
of the classical model lead to significant errors, as reported in Table 4.5. The
magnitude of the errors on the resonance condition is of particular concern,
as it implies large time delays between the arrival of the spacecraft and the
planet at the encounter position.

In summary, the equations derived in this chapter resulted correct, allowing
to overcome the assumption of circular planetary orbits made by the classical
model. When designing flybys at planets with a marked orbital eccentricity,
adopting the classical model results in a poor approximation of the estimated
trajectory, and therefore the use of the extended model is more advisable. In
the other cases, the two models produce similar outcomes, suggesting that
both are suitable in a preliminary design phase. Nevertheless, as the model
extension was simply obtained by generalising the equations of the classical
one, the two models require the same computational time. Therefore, one
would never be wrong in always implementing the extended model.
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Flyby Δk/h [%]
error

Δa% [%] Δi [deg]

1st 2.87 1.923 0.37

2nd 3.73 3.134 0.71

3rd 5.77 4.062 0.99

TABLE 4.5: Deviations of the solutions obtained by the classical model
with respect to the specified orbits (Mars test)

4.3 On the conservation of U

Several authors have investigated the accuracy of Öpik’s model in predict-
ing the outcomes of close approaches (Greenberg et al. [10], Wetherill and
Cox [22]). The general result was that the two-body behavior can approxi-
mate quite well the true nature of planetary encounters. Although the ex-
tended model has been obtained as a generalisation of the classical one, care
must be taken before drawing similar conclusions about such model. In par-
ticular, some concern arises around one assumption on which the extended
model is based, namely that the magnitude of the relative velocity is con-
served across a close encounter. Before giving more details, a brief introduc-
tion to Tisserand’s criterion is necessary.

During planetary close encounters, the orbital parameters of the small body
change drastically. In this context, Tisserand’s criterion is a particularly pow-
erful concept, stating that a function of the semi-major axis, eccentricity and
inclination stays approximately constant before and after the approach, thus
restricting the possible changes in orbital parameters. The conserved quan-
tity is the Tisserand parameter already introduced in Equation (3.2) and was
originally derived from the Jacobi integral of the CR3BP in the particular case
in which the primary body is much more massive than the secondary one,
e.g. the Sun and a planet. For circular planetary orbits and in the approxi-
mation of zero-SOI, the incoming and outgoing velocities of a small body ap-
proaching a planet are a function of the Tisserand parameter only. Since the
latter does not change during a flyby, the relative velocity is also conserved.
In other words, Tisserand’s criterion somehow supports the hypothesis of
constant relative velocity underlying the patched conics model. However,
the Tisserand parameter is not conserved for elliptical orbits [23], suggesting
that U may be more subject to variations as well. Since the extended model
however relies on the hypothesis of constant U, it is interesting to see to what
extent the latter holds true for orbits that are far from circular. To this end,
numerical tests are carried out in the following section to study the variation
of the particle’s velocity for different eccentricities of the planet’s orbit.
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4.3.1 Simulations setup

In each test, a close encounter between a massless particle and a planet mov-
ing in elliptical orbit around the Sun is simulated by using a full three-body
dynamics model. The eccentricity of the planet’s orbit is varied at each simu-
lation, allowing to study the variation of the particle’s velocity under differ-
ent conditions.

Initial conditions for the integration

Firstly, a planet is chosen and, starting from its true orbit, the eccentricity is
changed by selecting a value. Then, a position vector rpl is randomly chosen
on the orbit to identify the planet’s position at the time of the encounter. The
particle’s position r at encounter is defined by choosing a point close to rpl
and that is inside the planet’s SOI. More specifically, referring to Figure 4.10,
r is obtained by taking the vectorial sum of rpl and a planet-centred position
vector Δr that has random orientation and a random magnitude ranging in
between a minimum value rmin and the radius of the SOI. Once r is known,
a Keplerian orbit is generated for the particle such that it joins this position
and has random values of semi-major axis, eccentricity and inclination, but
still within reasonable limits. In practise, the orbits of the two objects feature
a finite but small MOID.

FIGURE 4.10: Particle’s and planet’s position at time of closest approach

rpl and r are then propagated backward in time through a two-body model
until the particle is well outside the planet’s SOI, obtaining two initial posi-
tion vectors rpl,0 and r0, as shown in Figure 4.11 on the left.

Numerical integration

The motion of the objects is propagated forward in time using rpl,0 and r0 as
initial conditions and this time employing a full three-body dynamics model
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for the particle: 
dr(t)

dt
= v(t)

dv(t)
dt

= – μ@
r(t)
‖r(t)‖3 – μpl

r(t) – rpl(t)

‖r(t) – rpl(t)‖3

(4.30)

where v(t) is the particle’s velocity and μpl is the planet’s gravitational pa-

rameter. The integration is performed using Matlab®’s ode113 and setting
respectively 10–13 and 10–14 as relative and absolute tolerances. The stopping
criterion for the integration is given by the SOI exit, as shown in Figure 4.11
on the right.

FIGURE 4.11: Left: vectors r0 and rpl,0 obtained by backward propagation of
r and rpl. Right: forward propagation of r0 and rpl,0 using three-body model

Identifying with tin and tout the time instants at which the particle respec-
tively enters and leaves the SOI, the particle’s velocities v(tin) and v(tout) are
retrieved from the integration of the trajectory. Then, the relative velocities
Uin and Uout are obtained by subtracting the planet’s velocity from v(tin) and
v(tout). Finally, the following parameter of merit is computed to evaluate the
magnitude variation between incoming and outgoing velocity:

ΔU% =
‖Uin‖–‖Uout‖
‖Uin‖

· 100 (4.31)

4.3.2 Simulations and results

The test involved the simulation of 2 · 104 close encounters between a particle
and Jupiter. At each run, the orbital eccentricity of the planet is modified to
a different value starting from 0 and eventually reaching 0.9. Each black
dot in Figure 4.12 represents the result of one simulation, whereas the red
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line is computed with a moving average method. As a first consideration,
note that ΔU% is different than zero also for epl = 0. This is because, as
previously mentioned, although the conservation of U holds true for circular
orbits, it was strictly demonstrated under the hypothesis of zero-SOI, where
the planet’s velocity is considered constant during the relatively short time
interval of the encounter. In reality, the change in planet’s velocity between
tin and tout directly affects the computation of Uin and Uout. However, ΔU%
seems approximately similar in all test cases, except for very large values
of eccentricity, where the red curve shows a slight upward inflection. The
causes of this effect can be understood by considering Fig 4.13, where ΔU%
is plotted as a function of the true anomaly of the planet at the time of closest
approach.

FIGURE 4.12: Variations between relative incoming and outgoing
velocity as function of the orbital eccentricity of Jupiter

As can be seen, the largest velocity variations all occur when Jupiter is at
perihelion, whereas the opposite happens at aphelion. This can be explained
considering that near perihelion:

(i) the planet’s velocity is larger, causing the relative velocity U to be smaller.
Therefore, the encounter is slower and the particle spends more time
inside the planet’s SOI;

(ii) the Sun’s gravitational force is on its greatest, and so also the planet’s
acceleration reaches its maximum value. Consequently, the planet’s ve-
locity will change more during the duration of the flyby.

The combination of these two factors results in larger variations of the parti-
cle’s relative velocity.

Overall, the more elliptical an orbit is, the larger ΔU% will be for encoun-
ters near perihelion. However, as clear from Figure 4.12, this characteristic
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becomes appreciable only for particularly large eccentricities. As none of the
largest bodies in the solar system has a higher eccentricity than 0.25, the as-
sumption of constant U underlying the extended model causes no problem
in any practical application.

FIGURE 4.13: ΔU% vs planet’s true anomaly
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Part II

Dynamic programming
approach to resonant flyby

trajectory design
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Chapter 5

Introduction

In mission design, resonant orbits have been extensively studied for several
purposes and using different frameworks. In Anderson [17], heteroclinic
connections between distinct resonant orbits have been chained together to
obtain nearly ballistic trajectories in the CR3BP. Within this framework, Va-
quero et al. [24] approached the preliminary design of a transfer to a Saturn’s
moon by exploiting the invariant manifolds associated with periodic reso-
nant orbits. A strict relation was shown between the resonance transition
mechanism and the concept of weak capture by Topputo et al. [25], who also
studied the motion of resonant orbits for the Earth-Moon-Sun system within
a four-body dynamics. More restricted to the patched conics model, many
studies are available that developed and compared a variety of optimisation
techniques for the design of multi-GAM trajectories including sequences of
resonant orbits, such as Ceriotti [16] and Vasile and Locatelli [26]. Federici
et al. [27] proposed a method based on the combined use of the Tisserand
graph and differential evolution algorithms to design sequences of resonant
orbits for a transfer between Jupiter and Europa. Vasile et al. [28] also inves-
tigated optimal transfers to Europa involving resonant flybys and including
low-thrust manoeuvres.

The solution space of this kind of problems is very large, and efficient strate-
gies are needed to quickly explore it during the early stages of the design.
Few works can be found in literature that exploit the advantages of the b-
plane for the design of resonant flybys. In this case, a convenient decision
variable of the problem is the resonance condition between the spacecraft
and the planet at each flyby, as it can easily be mapped on the b-plane. In
this framework, Masat [29] implemented a multi-level optimisation scheme
to solve the problem of reaching a target orbit in a fixed number N of res-
onant flybys. At the highest level of its strategy, a direct search algorithm
finds an optimal splitting of the total Δv between the initial and target or-
bit into N contributions. At the lowest level, a brute-force approach is used
at each flyby to select the resonant orbit that gets the closest to each sub-Δv.
The proposed work expands on those results, including the number of flybys
as optimisation variable and attempts to define a systematic procedure that
does not rely on heuristic methods, which not necessarily discover the opti-
mal solution. The choice of the resonance condition at each flyby introduces a
discrete element in the design process that can be advantageously leveraged
by methods of combinatorial optimisation. For this reason, the problem is
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approached with the technique of dynamic programming, which provides
a systematic method to make a sequence of interrelated decisions[30]. The
developed algorithm is tested by reproducing the design of Solar Orbiter’s
resonant phase with Venus, used in the actual mission to gradually raise the
ecliptic inclination and decrease the perihelion distance. The computational
efficiency of the approach is evaluated by comparing it with an exhaustive
enumeration approach.

This second part is outlined as follows:

– Chapter 6 provides an introduction to dynamic programming and dis-
cusses an illustrative example, the shortest path problem.

– Chapter 7 introduces the problem of unperturbed resonant flyby trajec-
tories in the b-plane and proposes a dynamic programming approach.

– Chapter 8 presents the application of the proposed algorithm to the
preliminary design of Solar Orbiter and compares the computational
efficiency of the method with the more standard brute-force approach.
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Chapter 6

Dynamic programming

Dynamic programming provides a computationally efficient method for find-
ing optimal solutions to problems that can be formulated as multi-stage de-
cision processes, where the decisions made at one time influence the later
available choices. It was first introduced by Richard Bellman in the 1950s
and has since found application in a variety of disciplines, from engineering
to economics. Examples of applications include landing aircraft, managing
blood inventories, scheduling fleets of vehicles, and many more. In space
mission design, several works have demonstrated the effectiveness of this
technique for different optimisation problems. In Lin [31], a dynamic pro-
gramming method is used to optimise the total propellant consumption re-
quired to control of the orbital altitude of a space station. The optimisation
of low-thrust trajectories is a typical problem approached with dynamic pro-
gramming, as it allows to reduce the high dimensional problem into a succes-
sion of low dimensional sub-problems. In this direction, Colombo et al. [32]
proposed an efficient algorithm based on differential dynamic programming
that computes an optimal feedback control law by discretising the dynamics
in correspondence of a fixed number of decision times. Alternative strategies
based on this approach can be found in Nugnes and Colombo [33] and Lan-
toine and Russel [34].

Unlike other mathematical programming techniques such as linear or quadrat-
ic programming, dynamic programming is not concerned with a specific
class of problems, but can be approached by a variety of angles depending
on the problem at hand. Indeed, it often takes a lot of creativity as well as ex-
perience to formulate a problem as a dynamic programming one. As there is
no general definition of a “dynamic programming problem”, most textbooks
introduce the method by directly showing its application to some illustra-
tive examples. In the following section, one of the most popular dynamic
programming problems is presented so as to introduce the reader to the gen-
eral notation and terminology, and explain the logic behind the approach.
Despite the renowned performance of dynamic programming for stochastic
problems, this chapter will focus on deterministic decision processes as they
reflect the structure of the problem presented in the following chapter. For
further exposure to stochastic control, refer to Bellman [35], Bertsekas [36],
and Puterman [37].
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6.1 Shortest path problem

Consider a driver who has to travel from an initial point P to a terminal point
Q but can choose numerous alternative routes in between. Each path in the
road network in Figure 6.1 is one possible strategy, and the objective is to
find the shortest path possible. The nodes represent the possible states in
which the system (i.e. the driver) may be at a certain time. In this particu-
lar example, the driver has a total of four decisions to make, called stages of
the problem. The numbers in the graph indicate the distances between the
nodes, and the total cost of a path is equal to the sum of all distances between
the nodes crossed by that path.

FIGURE 6.1: Road network

Tackling the problem with a naïve greedy approach would lead to the solu-
tion P → S → V → Y → Q, with a total distance of 15. However, this is
not the best solution, and a different method is required that considers the
overall cost of a sequence of nodes, rather than blindly making the locally
optimal choice at each stage. A trivial approach would be to calculate the
total distance for each possible path and then select the shortest. Although
effective, this method features a high time complexity and rapidly becomes
inefficient for large problems.

Dynamic programming provides a clever method that avoids calculating ev-
ery possible solution but still ensures that the optimal one is found. The gen-
eral idea behind the approach is to decompose the problem into simpler and
independent sub-problems, which are tackled one by one starting from the
smallest. The optimal solution to the smaller problems is then used to gradu-
ally solve the larger ones, until the original problem is completely solved. For
the shortest path problem (SPP), the procedure starts by considering the last
stage, where the driver is left with only one last decision to make. Whatever
the current state at this stage, the driver has no choice but to go to the termi-
nal node and so the optimal solution to this first sub-problem is trivial. Then,
by moving back one stage at a time (from right to left), each subsequent sub-
problem answers the question: “for each possible state at the current stage,
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what is the shortest path to the final destination?”. The advantage of this
approach is that, given the solution to the first j sub-problems, it takes rel-
atively little effort to find the answer to the (j + 1)-th. The original problem
is automatically solved once the optimal solution to the sub-problem associ-
ated with the first stage has been found.

The same notation as Hillier and Lieberman [30] will be used to formalise the
problem. Let denote with sn the state of the system at stage n and with xn
the policy decision made at that point, namely what state to go next. Being
in state sn and selecting xn at the next stage will add a net contribution csnxn
to the overall path. For example, if sn = R and xn = U, then csnxn = 4. For
a system that is in sn at stage n, let fn(sn, xn) be the total distance resulting
from choosing xn as next destination and then following the best overall pol-
icy from stage n + 1 up to the last one. Of the various choices xn available for
each state sn, let x∗n denote the one that minimises fn(sn, xn), and let f∗n(sn) be
the corresponding value of the function. Thus,

f∗n(sn) = fn
(
sn, x∗n

)
= min

xn
fn (sn, xn) (6.1)

In practise, f∗n(sn) represents the minimum distance required to reach Q from
a node sn. Starting from the last stage (n = 4) and moving backwards, the so-
lution procedure then consists in iteratively finding f∗4(s4), f∗3(s3), . . . for each
possible state, until computing f∗1(s1 = P), which provides the optimal solu-
tion to the original problem. Having solved the sub-problem associated with
stage n + 1, it is easy to solve the one associated with stage n as the objective
function can be computed by definition as:

fn(sn, xn) = csnxn + f∗n+1(xn) (6.2)

for each sn and each xn. Storing the results of one iteration is then necessary
to perform the next one. In the analysed example, the solution to the first
sub-problem is straightforward to compute:

n = 4 s4 = W f4(W, Q) = 3 → f∗4(W) = 3
s4 = Y f4(Y, Q) = 5 → f∗4(Y) = 5

The second iteration involves some calculations, as the driver could be in
either T, U or V and may choose to go either W or Y. Hence:

n = 3 s3 = T f3(T, W) = cT,W + f∗4(W) = 5 + 3 = 8

f3(T, Y) = cT,Y + f∗4(Y) = 4 + 5 = 9
→ f∗3(T) = 8

s3 = U f3(U, W) = cU,W + f∗4(W) = 4 + 3 = 7

f3(U, Y) = cU,Y + f∗4(Y) = 2 + 5 = 7
→ f∗3(U) = 7

s3 = V f3(V, W) = cV,W + f∗4(W) = 7 + 3 = 10

f3(V, Y) = cV,Y + f∗4(Y) = 4 + 5 = 9
→ f∗3(V) = 9
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Note that the optimal policy need not be unique, as is the case for a system
in state s3 = U. By repeating the same steps, the 2nd-stage sub-problem is
solved in a similar fashion:

n = 2 s2 = R f2(R, T) = cR,T + f∗3(T) = 2 + 8 = 10

f2(R, U) = cR,U + f∗3(U) = 4 + 7 = 11 → f∗2(R) = 10

f2(R, V) = cR,V + f∗3(V) = 3 + 9 = 12

s2 = S f2(S, T) = cS,T + f∗3(T) = 5 + 8 = 13

f2(S, U) = cS,U + f∗3(U) = 6 + 7 = 13 → f∗2(S) = 12

f2(S, V) = cS,V + f∗3(V) = 3 + 9 = 12

And, finally

n = 1 s1 = P f1(P, R) = cP,R + f∗2(R) = 4 + 10 = 14

f1(P, S) = cP,S + f∗2(S) = 3 + 12 = 15
→ f∗1(P) = 14

The latter result provides the solution to the original problem, stating that
the shortest path from P to Q features a distance of 14. By keeping track
of the optimal decisions that minimise the objective function at each stage,
the optimal route results in P → R → T → W → Q. This is also illus-
trated in Figure 6.2, where the blue arrows indicate the optimal decisions
at each node. The figure also highlights one important property of the dy-
namic programming approach: besides providing the optimal policy for the
overall problem, an optimal decision policy is also available for any state in
the network, regardless of this state being ever reached. The prescription of
an optimal policy for each state and at each stage is a typical feature of dy-
namic programming that can be useful in several ways, including sensitivity
analysis [30].

FIGURE 6.2: Optimal decision policies
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6.2 Formalisation of the dynamic programming ap-
proach

The SPP presented in the previous section illustrates the working principle
of dynamic programming. Although this method can be applied to a variety
of different classes of problems, there are three essential features that never
lack in any dynamic programming problem: states, stages and a recursive
relation.

As a first step, the procedure requires to structure the problem as a multi-
stage decision process, where the stages identify the points in which a policy
decision is required. The problem is approached starting from the first or last
stage and proceeding one stage at a time, such that the solution to a one-
stage problem is necessary to solve the next one. Any problem lacking this
property cannot be dealt with dynamic programming. In some problems,
the stages corresponds to discrete points in time, whereas in others they do
not have time implications. In the latter case, it often takes more imagina-
tion and intuition to formulate the problem as a dynamic programming one.
At each stage, the system might be in different possible conditions called
states, and a policy decision has the effect to transform the current state into
a different one associated with the next stage. The definition of the states is
usually the most crucial design parameter of the model, as there are often
several available options and the effectiveness of the method may change
drastically depending upon which one is made. The only rule to follow in
making such choice is that each state must retain all the necessary informa-
tion to determine the optimal policy henceforth, which is known as Marko-
vian property [38]. In addition, as a practical guideline, the number of state
variables should be contained, since the computational efficiency of dynamic
programming rapidly decreases as the dimensionality of the state space in-
creases. This property is referred to as “curse of dimensionality” [35] and
significantly limits the applicability of the method in practise.

The decision variables are associated to the degrees of freedom of the prob-
lem. As for the SPP, each policy decision produces some positive or nega-
tive contribution to an overall objective function to be minimised (or max-
imised). Problems formulated with discrete states and the decision variables
falls under the category of “Markov decision processes”. Conversely, prob-
lems where continuous states and decisions are involved are often addressed
under the umbrella of “control theory” [39]. In any case, the process of mak-
ing optimal decisions is based on Bellman’s principle of optimality [35]: what-
ever the current state, the remaining decisions must constitute an optimal
policy for all successive stages, regardless of the history of decisions made to
arrive at that point. The optimisation is carried out in practice by formulating
a recursive relationship that provides the optimal policy to any sub-problem,
given the solution to all the smaller sub-problems. Solving sub-problem as-
sociated to stage n means finding the best policy for all possible states. For
the SPP, the problems are solved starting from the last stage and then moving
backward one stage at a time, until the original problem is solved completely.
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This kind of logic is referred to as backward induction [39]. Vice versa, some
problems are more conveniently approached starting from the last stage, so
that the recursive relation is based on a forward induction process. In this
case, the stages are numbered in terms of the number of stages completed.

All these features define the underlying structure that any problem must
have to be addressed with dynamic programming. As will be shown, this
is the case for the design problem addressed in the following chapter. Fur-
thermore, since no probability distributions are involved in such problem, it
falls into the category of deterministic dynamic programming problems [36],
where the state at stage n + 1 is uniquely determined by the state and the pol-
icy decision at stage n. For this kind of problems, the recursive relationship
can be expressed in mathematical terms as:

f∗n(sn) = min
xn∈Sn

{
csnxn + f∗n–1 (xn)

}
(6.3)

where Sn identifies the set of all admissible decisions, given that the system
is in state sn at stage n.
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Chapter 7

Unperturbed ballistic
resonant flyby design

Resonant flybys are increasingly included in today’s missions, allowing to
achieve unique scientific objectives. However, their design involves several
challenging aspects. The problem can be framed within the broader frame-
work of Multi Gravity Assist (MGA) trajectory design and has several fea-
tures in common with it, such as the intrinsic mixed-continuous combinato-
rial nature. The discrete variables of such hybrid domains result in the non-
smoothness of the solution space, whose dimensionality grows exponentially
with the number of alternative options available. For resonant flyby trajecto-
ries, the discrete degrees of freedom are the resonance condition at each flyby
and the total number of encounters. If the latter is allowed to vary, each ad-
ditional GAM adds another dimension to the solution space, whereby even
small sequences of GAMs can result in combinatorial explosion issues. For
this reason, directly using high-fidelity models to optimise such trajectories
is short-sighted and leads to prohibitive computational times. The standard
approach consists of a first phase in which the solution space of these prob-
lems is explored through low-fidelity techniques to identify a limited number
of promising solutions. Each of these alternatives can serve as a reasonable
starting point for higher-fidelity models to converge to fully-integrated tra-
jectories. Since the convergence of such models and the quality of the opti-
mised solution strongly depend on the initial guess, the preliminary design
phase is of great importance for the final solution.

Over time, mission analysts have proposed a variety of methods to com-
pute preliminary solutions in ballistic tour design problems. An intuitive
approach is to directly use global methods such as differential evolution or
genetic algorithm, as they can be immediately applied to hybrid domains.
However, previous studies evidenced the risk of such techniques to ignore
most of the continuous gradient information within the search space [40]. A
more systematic approach is to divide the problem into its continuous and
discrete parts, and then handle their dynamics on two levels. In practise, a
high-level loop scans possible solutions in terms of categorical variables (e.g.
resonance conditions), while at the low-level a local method optimises the
remaining continuous part of the trajectory. While such approach effectively
exploits the dual nature of the problem, the evaluation of all the possible



50 Chapter 7. Unperturbed ballistic resonant flyby design

combinations of the discrete variables should be avoided in order to limit the
computational effort required. To this end, many analytical tools are avail-
able to reduce the number of potentially optimal solutions. The most simple
of them is the Tisserand graph, a two-dimensional map used to quickly as-
sess the feasibility of sequences of GAMs. In Federici et al. [27], this tool was
used to identify possible sequences of resonant flybys for a transfer between
Jupiter and Europa. A common problem with the Tisserand graph is that it
completely neglects the phasing of the planets, as well as the inclination and
eccentricity of their orbits, making it more complex to find the optimal final
solution. Numerous more advanced methods exist that are typically used
in conjunction with a patched-conics orbital model, such as the branch and
bound algorithm, grid searches or heuristic-based pruning techniques.

In this context, dynamic programming has been hardly incorporated into
typical MGA design problems, whose structure is not particularly suited to
the implementation of the method. Indeed, the need to solve a Lambert’s
problem at each flyby and the huge number of possibilities associated with it
can easily cause curse of dimensionality problems. On the other hand, reso-
nant GAMs always involve encounters at the same position in space, mean-
ing that there is no need to compute Lambert arcs. As will be shown later,
the problem features a similar structure to that of the shortest path problem,
thus allowing for a convenient implementation of dynamic programming.

7.1 Problem statement

The design problem addressed in this work can be stated as follows: given
a spacecraft on an initial orbit, the goal is to find the minimum sequence
of resonant flybys that gradually lead to a target orbit, which would not be
achievable in a single flyby.

7.1.1 Assumptions and considerations

The main assumptions underlying the model are:

• zero-SOI patched-conics model

• planets in elliptical and inclined orbits

• resonant flybys, except for the last one

• unperturbed trajectory

• unpowered flybys

The use of the patched-conics model for a preliminary trajectory design is a
consolidated practise. Despite its simplifying assumptions, the application
of the model to real-world missions such as Voyagers 1 and 2 revealed to
work rather well [17]. Once a patched-conics solution is computed, there are
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several techniques to convert it to a trajectory governed by n-body dynamics
(e.g. differential correction) [41] [42]. As previously mentioned, the zero-SOI
approximation leaves the entry point of the spacecraft into the planet’s SOI
as a degree of freedom to be exploited in the design phase. The model also
implies that each heliocentric orbit of the small body must intersect exactly
that of the planet at the encounter position. This is not a major limitation and
still provides a good approximation for resonant encounters, since relaxing
this assumption only results in a slight distortion of the circles in the b-plane,
as shown in Valsecchi et al. [11]. However, although those hypothesis are rea-
sonable for various interplanetary missions, there are notable cases in which
they result in a bad approximation of the trajectory. A typical example is the
Earth-Moon system, as the Moon is well inside the SOI of the Earth.

The b-plane model extension developed in Part I allows to consider the real
orbits of the planets. Taking their eccentricity and inclination into account in
the preliminary design allows an easier conversion of the trajectory to higher-
fidelity models [27].

Disregarding perturbations can be seen as a main limitation of the model,
since the planetocentric dynamics can be altered in a non-negligible way by
disturbing effects. Although a method to include such effects in the compu-
tation of the b-plane circles has already been developed by Masat [29], the
focus of this work is to demonstrate the effectiveness of a dynamic program-
ming approach to the problem. Future work could address the inclusion of
perturbations in the model in order to refine the dynamics within the SOI.

Since neither perturbations nor manoeuvres are considered, the effect of each
GAM is a pure rotation of the incoming velocity U, without changing its
magnitude. For this reason, the target orbit must be ballistically reachable,
otherwise the design would not be effective. This condition is equivalent to
saying that the initial and final orbits must feature the same Tisserand pa-
rameter[29]. Clearly, the two orbits must also join the same position in space
of an attracting body, otherwise the execution of resonant flybys would not
be possible. Another consequence of those hypothesis is that the trajectory
between two consecutive flybys corresponds to a Keplerian orbit, which can
be characterised through a position vector r and a velocity vector v. How-
ever, as the resonance condition implies that each flyby occurs at the same
position in space, this position provides in practise three constants of mo-
tion. In addition, since the magnitude of the velocity U is also conserved, the
problem features in total four constants that allow to describe the state of the
system using only two independent variables.

The evolution of the state, and therefore of the overall trajectory, depends
entirely on the degree of freedom left by the entry point of the spacecraft
into the SOI. At each flyby, this point is chosen on the b-plane and then the
deflection model is used to rotate the incoming velocity, leading to a fully
defined post-encounter orbit. The natural choice to specify such injection
point would be to directly use the b-plane coordinates (ξ, ζ) as free variables.
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Nevertheless, a more convenient option is to use the post-encounter semi-
major axis ā, which is associated to a circle in the b-plane, and a polar coordi-
nate α identifying a specific point on the circle. Fig 7.1 provides more details
about the definition of α, taken as the counterclockwise angle between the
ξ-axis and the line joining the centre of the circle and a point belonging to
it. Therefore, the b-plane point corresponding to a given couple (ā, α) can be
computed as: {

ξ = R cos α

ζ = C + R sin α
(7.1)

where C and R are the centre and radius of the circle associated to ā.

FIGURE 7.1: Definition of α

The benefits of this description is twofold. First, one of the decision variables
is directly related to an orbital feature of the post-encounter orbit, namely the
semi-major axis, which in turn can be linked to a specific resonance condi-
tion through Equation (4.5). In addition, the discrete nature of the resonance
condition translates into a limited set of admissible semi-major axes. This
introduces a discrete element that can be conveniently exploited through a
dynamic programming approach. A second discrete variable is the number
N of total encounters, which increases the problem complexity due to the
variable dimensionality of the solution space. Furthermore, since α varies
in a continuous domain ([0; 2π]), the optimisation problem features a mixed-
continuous combinatorial nature.

Finding the optimal sequence of resonant GAMs thus translates into the search
for the optimal series of pairs (āi, αi) that leads from the initial to the target
orbit in the least possible number of close encounters:

Initial orbit → (ā1, α1) → (ā2, α2) → . . . → Target orbit
(āN, αN)
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As the intermediate semi-major axes must be in resonance with the planet,
each of them will be associated to a k/h ratio, with k and h integers. How-
ever, although the initial and target orbits do not necessarily have to be res-
onant, they can still be associated to a “dummy” k/h ratio by means of
Equation (4.5). This allows to easily compute the set of admissible resonances
for the intermediate flybys, as will be clear later.

Masat [29] addressed the same design problem as described above, with the
exception that the total number of flybys was given as input. Besides propos-
ing a solution to the unperturbed problem, the author also implemented a
strategy to account for perturbing effects inside the SOI by means of some
corrective coefficients. Although these could have been included in the present
work as well, the original scope of the thesis was to improve the perfor-
mances and generality of their unperturbed solution strategy, with the pos-
sibility of including the perturbations in a second moment. The approach
proposed by the author features a modular structure with three optimisation
layers, as shown in Figure 7.2. At the highest level, a direct-search algorithm
finds an optimal splitting of the total velocity variation between the initial
and target orbits into N contributions. At the lowest level, a nested for loop is
used to analyse all possible combinations of resonance conditions and angle
α to find the one that best matches the desired sub-Δv at each flyby.

FIGURE 7.2: Unperturbed solution strategy by Masat

This thesis extends on their work and attempts to improve on the optimi-
sation strategy by avoiding both the use of heuristic methods, which do not
guarantee finding the optimal solution, as well as brute-force searches, which
are computationally expensive. This is accomplished by proposing a deter-
ministic dynamic programming approach that, on the one hand, always con-
verges to the globally optimal solution of the problem and, on the other hand,
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allows to find such solution without systematically evaluating all the possi-
ble combinations of flyby sequences. Moreover, a further improvement is
given by the inclusion of the total number of flybys as one of the optimisa-
tion parameters. This information is valuable as it could be used to quickly
reduce the solution space to be explored when moving to more advanced
dynamics models.

7.2 Dynamic programming approach

The structure of the considered problem naturally reflects that of a multi-
stage decision-making process, where the stages are the series of consecutive
flybys. The state of the system only requires two variables to be described,
and they are chosen as the non-dimensional semi-major axis ā and the orbital
inclination i. The former is convenient because it can only assume discrete
values and moreover can be immediately associated with a locus of points
in the b-plane, namely a circle. As a second state variable, also the eccen-
tricity would have worked, but the inclination is more convenient since it is
easier to define the range of intermediate values it can assume for a certain
problem. However, given a generic semi-major axis ā, each value of α on
the corresponding circle leads to a different value of post-encounter inclina-
tion. Thus, i varies in continuous intervals and there are an infinite number
of states at each stage.

7.2.1 Reduction of the combinatorial complexity

Since it is clearly impossible to consider all possible states, a trivial way out of
the problem is to discretise the continuous interval and interpolate the func-
tion values not associated with the grid points, as suggested by Bellman [35].
The type of discretisation scheme depends on the classical trade-off between
accuracy and computational runtime. However, besides the suboptimality
introduced by the discretisation, even a coarse grid easily leads to curse of
dimensionality when the problem involves several stages.

The approach adopted here is to select a single optimal value of inclination
for each b-plane circle, rather than considering the whole continuous range.
Denoting with if the target inclination of the overall flybys sequence, the op-
timal inclination on any given circle is taken as the one closest to if. Making
such choice at each flyby allows to reach the final inclination as quickly as
possible. Note that the choice of the points on the circles only affects the evo-
lution of the inclination through the sequence of flybys, and not that of the
semi-major axis. Indeed, the possible values of ā at stage j only depend on
the value of ā at stage j-1, regardless of the inclination. This observation is
based on the following expression of the post-encounter angle θ′:

cosθ′ = cosθ cos γ + sinθ sin γ cosψ (7.2)
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Recalling the relationship between ā and θ (Equation (3.5)), Equation (7.2) im-
plies that the post-encounter semi-major axis is only a function of its pre-
encounter value and the angles γ and φ, which do not depend on the pre-
encounter inclination. This simple argument explains why an optimal policy
for the evolution of inclination can be established regardless of the major
semi-axes.

In this way, the originally hybrid optimisation problem is reduced to fully
combinatorial, thereby facilitating the implementation of dynamic program-
ming. Unfortunately, there is no analytical formula linking a point on a circle
to the corresponding inclination, and so the optimal value must be sought
numerically. Moreover, for realistic GAMs, one must take into account the
minimum admissible flyby altitude above the planet. In the b-plane, this lim-
itation translates into a constraint on the minimum impact parameter bmin,
which is generally taken as the planet’s radius augmented by the gravita-
tional focusing [43]:

bmin = Rpl

√
1 +

2c
Rpl

(7.3)

where c is the speed of light and Rpl is the physical radius of the planet. The
consequence is that all the points on a circle that are below bmin are not feasi-
ble and must be discarded. For this reason, the search for the optimal value of
inclination requires a first step to identify the feasible domain Dα in which the
angle α can vary. Referring to Figure 7.3, bmin imposes two bounds on this
domain, one of which is denoted by α̂. This angle is obtained by applying
the cosine law to the triangle rcbmin and then making some considerations
about the quadrant in which α̂ is located. Since Öpik’s theory is less accurate
for shallow encounters (large b) [10], it is appropriate to set a limit on the
maximum impact parameter as well.

FIGURE 7.3: The green arc identifies the feasible domain of α
due to bmin
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Once Dα is computed, let fα(α) identify the function that, for any α ∈ Dα,
returns the value of the corresponding inclination. fα(α) may be seen as a
black-box function involving all the steps in box diagram of Figure 4.1 plus
a conversion step where the post-encounter velocity and flyby position are
used to compute the post-encounter inclination. The optimal inclination for
any circle is then computed by always minimising this function:

iopt = min
α∈Dα

(fα(α) – if)
2 (7.4)

Although fα(α) is continuous on Dα, this last can be discontinuous due to
the limitations imposed by the impact parameter, as shown in the example
of Figure 7.4. This occurs when the desired jump of the semi-major axis is
relatively small, resulting in a b-plane circle so large that it occupies both the
unfeasible regions due to bmin and bmax. In these cases, the minimisation
is carried out once for each continuous sub-part of the domain and the best
function value is retained.

Figure 7.4 also highlights a typical feature of GAMs already mentioned in
Chapter 3, namely that the closer a small body flies to the planet, the greater
the variation in inclination. Indeed, the plot shows a case in which the post-
encounter semi-major axis is smaller than the initial one, whereby the circle
is located below the ζ-axis in the b-plane and so the point at α = 90◦ is the
closest point to the planet. However, this is only a general rule, but it is not
always the case, so numerical minimisation is also necessary when searching
for the largest inclination change.

FIGURE 7.4: Example of how fα(α) varies on its domain. i0 de-
notes the pre-encounter inclination
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7.2.2 Solution procedure

Let {ā0, e0, i0,Ω0,ω0} be the orbital elements of the initial orbit and {āf, ef, if,
Ωf,ωf} those of the target orbit. Provided that the orbits feature the same
Tisserand parameter and they cross a planet’s orbit in the same position in
space, the initial and target states of the system are s0 = (ā0, i0) and sf = (āf, if),
respectively. Having reduced the problem to fully combinatorial, the set of
possible solutions is finite and so the problem presents a similar structure to
the SPP. However, unlike this latter, the possible states through which the
system can move are not known in advance. For this reason, the solution
strategy consists in practice of two steps, the first of which is aimed at gener-
ating the possible intermediate states.

States generation step. The procedure starts by identifying a set of admis-
sible resonances. First, two “dummy” k/h ratios, k/h0 and k/hf, are com-
puted from the initial and final semi-major axes by means of Equation (4.5).
A set of resonance ratios k/h1, k/h2, . . . , k/hr is then computed such that
k/h0 ≤ k/hi ≤ k/hf and both k and h are not larger than a certain value,
so as not to consider orbits with too large orbital periods. Equation (4.5) is
then used to convert the k/hi ratios and obtain a finite set Sā of admissible
semi-major axes. This, however, does not represent the range of alternative
ā available at each stage. Indeed, depending on the current state, often only a
subset of Sā is feasible for the evolution of the system to the next stage. This
is because the jump in semi-axis major cannot be arbitrarily large due to the
constraint on bmin. For too large Δā, the b-plane circle results all inside the
unfeasible region and the considered semi-major axis cannot be reached. The
maximum Δā for a given pre-encounter condition can be found by writing:

∣∣C + R
∣∣ =
∣∣∣∣ c

sinθ + sinθ′

cosθ′ – cosθ

∣∣∣∣ = bmin (7.5)

Solving for θ′ and then using Equation (4.16) one obtains the maximum and
minimum semi-major axes achievable by single GAM. This information al-
lows to limit the number of possibilities available, given the current state.
Therefore, Equation (7.5) is computed at the beginning once for each element
of Sā, so as to determine the possible state transitions in terms of semi-major
axis. On the other hand, the possible intermediate inclinations are not com-
puted at this stage. This is because, by using dynamic programming, not all
possible sequences of pre- and post-encounter semi-major axes are evaluated.
Therefore, it is unnecessary to compute in advance the optimal inclinations
associated with each possible circle, and so they are only calculated when-
ever needed.

Dynamic programming. The problem is then formulated with dynamic pro-
gramming as follows:

• Number of stages: N = total number of flybys (unknown in advance)

• Stages numbering: n = number of flybys completed
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• States: s = (ā, i)

• Policy decision at stage n: xn = state at stage n – 1

• Objective function being in state sn at stage n and making the decision
xn:

fn (sn, xn) =
3

∑
i=1

∣∣Ūi – Ūf,i
∣∣ (7.6)

where Ūi are the components of the velocity associated with the current
state sn and Ūf is the target velocity, computed from the final state sf.
The function represents the error between the current velocity and the
desired one.

• Recursive formula:

f∗n(sn) = min
xn∈Sn–1

fn (sn, xn) n = 1, 2, . . . (7.7)

where Sn is defined as the set of all possible states in which the sys-
tem could be at stage n. In practice, at each stage and for each state
Equation (7.7) answers the question: “what is the best pre-encounter
state to come from, if the system is currently in state sn?”.

Clearly, S0 only includes s0. Then S1, S2, etc. are computed one by one
as the algorithm progresses from one stage to the next. The generic Sj
is computed starting from all the states in Sj–1 and considering that, at
stage j, the semi-major axis could be any of those in the set Sā, except
those not reachable due to bmin. For instance, the elements of S1 are ob-
tained by starting from state s0 and computing for each feasible semi-
major axis in Sā the optimal value of inclination using Equation (7.4).
Each pair of semi-major axis–inclination obtained is then saved as an el-
ement of S1. Note that, in this way, even when the system has reached a
generic ār ∈ Sā at some stage, the semi-major axes that are further from
āf are still considered as valid options for the next stage. The reasons
for this are shown in the example of Figure 7.5. Given the current semi-
major axis ār and given that the target one is larger, the plot shows the
maximum inclination achievable by choosing different semi-major axes
at the next stage. As it can be seen, in this case by moving backwards
with respect to āf it is possible to obtain a greater gain in inclination.
Therefore, not necessarily each flyby has to get a step closer to āf, since
some solutions could benefit from a trade-off between losing in semi-
axis and gaining in inclination.

Unlike for the SPP, here the sub-problems are solved starting from stage one
and then moving forward one stage at a time, until the original problem is
solved completely. This kind of logic is referred to as forward induction [39].
Recalling that the objective function provides a measure of how close is the
current state to the target one, the final orbit is considered achieved when
the error drops below a certain threshold ε, defined depending on the prob-
lem. By keeping track of the best function value obtained at the end of each
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stage, the algorithm is stopped when such value becomes lower than ε, and
the number of total flybys N is retrieved. If more than one solution has an
error smaller than ε for the same number of flybys, the one with the smallest
error is chosen.

FIGURE 7.5: Example of maximum inclinations achievable by
choosing different semi-major axes at the next stage. The initial

inclination is ir = 3◦

Note that, since the state at stage j + 1 is completely determined by the state
and policy decision at stage j, the problem can be classified under the cate-
gory of deterministic problems.

7.3 Dynamic programming compared to exhaustive
enumeration

In order to highlight the computational efficiency of the dynamic program-
ming approach, a comparison is made with the more standard technique of
exhaustive enumeration, which iterates through all possible solutions to a
given problem and then determines which is the best one. Consider a simple
case in which, starting from an initial state, the set of admissible resonant
semi-major axes is composed of only three elements, denoted with a1, a2, a3.
Obviously this is a quite reductive example, but is helpful to easily under-
stand the advantages of using dynamic programming. Figure 7.6 shows the
logic behind the two approaches. The state of the system is represented only
by the semi-major axes, since for each node a single inclination value is cal-
culated using Equation (7.4). For each n-th stage, “ev.” indicates the number
of evaluations performed by each of the two methods. Each line between
two nodes corresponds to one evaluation, and the bold ones identify the op-
timal paths. Keep in mind that, at each stage and for each stage, dynamic
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programming finds the best state to come from. As the initial state is fixed,
each alternative is considered optimal at stage 1.

FIGURE 7.6: Logic behind the two methods

First of all, note that dynamic programming provides an optimal solution to
get from the initial stage to any of the intermediate stages and in any number
of flybys. Exhaustive enumeration, on the other hand, only identifies the op-
timal solution to the original problem. The first two stages require the same
computational effort from both methods, whereas from stage 3 onwards the
number of evaluations performed by exhaustive enumeration grows expo-
nentially, while that of dynamic programming remains unchanged. This is
because of the way such approach splits the problem in smaller pieces and ex-
ploits the solution to the smaller sub-problems to solve the larger ones, with-
out considering many unnecessary paths. For instance, consider the path
a0 → a2 → a2 → a2. Although it leads to sub-optimal solutions, at stage 4
exhaustive enumeration will still evaluate three continuations of that path,
one for each admissible semi-major axis. This in turn will result in another 9
evaluations at stage 5, 27 at stage 6, and so on. On the other hand, this does
not happen with dynamic programming that, once it has established that the
optimal path to be in a2 at stage 3 is a0 → a1 → a2 → a2, it considers no
other alternative to find the solution at stage 5.
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Note that the computational savings are significantly higher for larger ver-
sions of the considered problem. For a set of k admissible semi-major axes,
the number of evaluation performed after n stages are:

•
n

∑
i=1

ki with exhaustive enumeration,

• k + n · k2 with dynamic programming.

For instance, for k = 10 and n = 4, the former method performs about 10
thousands evaluations more than the other. Consider also that, if in future
works the flyby model was to be improved by including, for example, per-
turbations, the discrepancy between the two approaches would weigh con-
siderably on the overall computational time. The number of evaluations is
the most significant parameter, as it does not depend on the performance of
the machine used.
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Chapter 8

Test cases and results

Several tests have been carried out to assess the performance of the proposed
algorithm. This chapter reports three of them, selected to highlight different
aspects of the method. For all reported performances in terms of computa-
tional time, please note that all tests have been implemented in Matlab® on
a machine with an Intel® CoreTM i7-6700 CPU @2.60 GHz.

8.1 Solar Orbiter

Solar Orbiter is an exemplary case of a mission whose objectives could only
be achieved by implementing resonant flybys. Its orbital requirements were
to (i) achieve a minimum perihelion between [0.28; 0.30] AU and (ii) raise the
solar inclination angle to a minimum of 25◦ and with a goal of 35◦. These
objectives were accomplished by exploiting a series of four resonant flybys
at Venus. In the first test, the dynamic programming algorithm is asked to
reproduce the design of such resonant phase of the mission. The baseline
trajectory is the mission profile with launch in January 2017 proposed in [4],
which is shown in Figure 8.1. The resonant orbits are labelled with the nota-
tion Vi – Vj, with Vi denoting the i-th flyby at Venus. The designed resonances
are, respectively, (3/4, 3/4, 2/3, 3/5), and more details about the orbits are
given in Table 8.1. Note that the gravitational assist obtained from the second
flyby consists of a pure cranking, i.e. the period remains unchanged.

Orbit Aphelion
[AU]

Perihelion
[AU]

Ecliptic
Inclination [◦]

E2-V2 0.998 0.311 1.72

V2-V3 0.910 0.284 9.93

V3-V4 0.870 0.315 18.11

V4-V5 0.789 0.315 23.83

V5-V6 0.740 0.290 27.25

TABLE 8.1: Resonant orbits of SOLO for the mission profile
with launch in January 2017 (source: [4])
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Since the trajectory involves no mid-course manoeuvres other than naviga-
tion ones [44], it offers an ideal test case for the proposed design strategy.

FIGURE 8.1: SOLO baseline trajectory with launch in January
2017 (source: [4])

The algorithm is only given the initial and last orbits of Table 8.1 as inputs,
whereas the total number of necessary resonant flybys is left as a free vari-
able. The planet’s position at encounters is taken from the ephemeris, con-
sidering that for the selected mission profile the first flyby takes place on
22/05/2020. Thus, for each orbit, three orbital elements plus the three com-
ponents of the flyby position are known. Interestingly, these six parameters
do not provide a unique orbital representation, but rather are associated with
four possible orbits. The differences in the orbits are due to whether the flyby
takes place at the ascending or descending node, and from inside or outside
the planet’s orbit. For the sake of conciseness, the proof of this is left in Ap-
pendix A, where a method for identifying the four alternative orbits is pro-
posed. In this test, all the encounters are assumed to occur at the ascending
node and from outside Venus’ orbit, as per the baseline trajectory.

The set of admissible resonance ratios is generated by considering a limit of
5 on both k and h. Since the algorithm is designed to reach the target orbit
in as few encounters as possible, the solution is likely to involve low-altitude
flybys. Therefore, the outcomes are affected by the choice of minimum ad-
missible flyby altitude, here selected to be 300 km, as suggested by Janin [44]
and Jehn et al. [45]. The target orbit is considered achieved when the error
as defined in Equation (7.6) drops below a value of 10–4 km/s. The test has
been repeated twice, once using the classical model and once using the ex-
tended one, thus providing a further opportunity to compare the differences
in their outcomes. However, these are not expected to differ much given the
low eccentricity of Venus.
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8.1.1 Classic model solution

The algorithm converged to the final state in four stages, the same number of
flybys of the real mission. Table 8.2 compares the solution trajectory with the
baseline one in terms of k/h ratios and inclinations. Note that, except for the
first orbit, the predicted resonance conditions are equal. The inclinations also
are comparable, with the differences being mainly due to having disregarded
the perturbations. A visual representation of the obtained solution is given
in Figure 8.2. For the sake of comparison, the colours used in the figure are
the same as those used for the resonant orbits in Figure 8.1.

The simulation required a surprisingly low computational time of about 0.06 s,
highlighting the efficiency of the method.

k/h ratios Inclinations [deg]

SOLO DP SOLO DP

E2-V2 - - 1.72 1.72

V2-V3 3/4 4/5 9.93 9.608

V3-V4 3/4 3/4 18.11 18.546

V4-V5 2/3 2/3 23.83 24.647

V5-V6 3/5 3/5 27.25 27.25

TABLE 8.2: Comparison between SOLO’s baseline trajectory and that obtained
through DP, considering a circular orbit of Venus

FIGURE 8.2: Solution trajectory using the classical model
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8.1.2 Extended model solution

Also using the extended model the algorithm designed four orbits, whose de-
tails are reported in Table 8.3. However, in this case the predicted resonances
are identical to those of the baseline solution, giving proof of the proposed
design strategy. Also from a graphical point of view, there is no appreciable
difference between the obtained trajectory, shown in Figure 8.3, and the base-
line one. On the other hand, no particular improvement is observed in the
predicted inclinations.

k/h ratios Inclinations [deg]

SOLO DP SOLO DP

E2-V2 - - 1.72 1.72

V2-V3 3/4 3/4 9.93 9.152

V3-V4 3/4 3/4 18.11 18.344

V4-V5 2/3 2/3 23.83 24.586

V5-V6 3/5 3/5 27.25 27.25

TABLE 8.3: Comparison between SOLO’s baseline trajectory and that obtained
through DP, considering the real orbit of Venus

FIGURE 8.3: Solution trajectory using the extended model

The algorithm converged in about 0.06 s, as with the classical model, em-
phasising again that the two models require the same computational time.
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For comparison, by performing the same test using the solution strategy pro-
posed by Masat [29], it takes about 1.3 s only to run one nested loop at the
low level. In addition, as pointed out by the same author, the heaviest part
of their optimisation strategy is related the direct-search implemented at the
high level, which results in rather high computational times when the solu-
tion space is meticulously analysed.

8.2 Dynamic programming vs exhaustive enumer-
ation

When evaluating the computational efficiency of a dynamic programming
approach, the standard benchmark used for comparison is the exhaustive
search. In Section 7.3, a simple theoretical example was illustrated to high-
light the differences between the two methods. To compare them on a real
application, a second experiment is performed here by testing both on the
same design problem seen in the previous section. The only difference in this
case is that a limit of 15 is set for both k and h, so as to simulate a scenario
involving a relatively high number of possible trajectories.

As it could be expected, the two algorithms converged to the same final solu-
tion. However, dynamic programming required considerable less effort than
the other approach. Their performances are reported in Table 8.4 in terms
of computational runtime and number of evaluations. The latter is the most
meaningful parameter, as it does not depend on the performance of the ma-
chine used.

Exhaustive
enumeration

Dynamic
programming

Runtime 3.55 min 1.12 s

Number of ~168 k 1220
evaluations

TABLE 8.4: Computational runtime and number of evaluations
required by the two methods

Figure 8.4 provides a graphical representation of the number of solutions
evaluated by both approaches. Each gray or red point identifies the final
state associated to a trajectory computed with either of the two algorithms.
The distinctive feature of the solutions evaluated by dynamic programming
is that they are all relatively close to the target state in terms of eccentricity
and inclination.
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FIGURE 8.4: Solutions evaluated by the two methods

8.3 Resonant flybys at Callisto with target inclina-
tions

The solution strategy proposed in Chapter 7 applies to scenarios in which
large orbital changes are desired, and is designed to reach the target state
in as few stages as possible. This usually results in trajectories with series
of low-altitude flybys, which maximise the gravitational interaction. Several
real-life missions have been designed based on such approach. This was the
case, for example, for the lowering-inclination phase of the Cassini mission,
where a series of resonant flybys with Titan were designed by keeping the
flyby altitudes at minimum in order to quickly reduce the inclination down
to near Saturn’s equator [19].

However, as mentioned in the introduction, resonant orbits are also typically
used for detailed observations of planets and moons, providing different ob-
servation geometries and thus better data collection. The high-inclination
phase of the JUICE mission is a case on point. As shown in Table 8.5, a series
of five resonant flybys at Callisto were specifically designed to provide re-
peated observations of the same latitudes of the inner Jovian system [5]. For
missions of this kind, the proposed algorithm can still provide useful infor-
mation. The way it was described, the inclination value at each flyby is cho-
sen as close as possible to the inclination of the final state. Instead, by speci-
fying a different target inclination for each stage, Equation 7.4 can be used to
target specific latitudes at each flyby. The major axes can then vary as before
within a range of permissible values, allowing different mission options to
be examined, or they too can be specified with target values at each flyby,
perhaps according to requirements on the frequency of the observations. In
the latter case, the algorithm simply computes the b-plane coordinates that
leads to the prescribed orbits.
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A simple test is performed where the solver is asked to compute such coor-
dinates for the orbits reported in Table 8.5. The same test was carried out by
Valsecchi et al. [43] using a different method, thus providing a useful feed-
back for the results.

Perijove
[RC]

Apojove
[RC]

Inclination
[deg]

CN 13.5 39.1 7

CN+1 14.7 37.9 15

CN+2 14.9 33.3 22

CN+3 14.7 37.9 15

CN+4 13.5 39.1 7

TABLE 8.5: Resonant orbits of the high-inclination phase. The
perijove and apojove are expressed in units of the radius of Cal-

listo (RC). Source: Definition Study Report of JUICE [5]

The position of Callisto has been taken from the ephemeris, considering that
the first flyby is scheduled on 13/10/2030 [5]. All encounters are assumed to
take place at the ascending node and in the pre-perijove branch of the orbit
of the spacecraft, as in Valsecchi. Table 8.6 reports the results of the simula-
tion. The b-plane coordinates computed by the algorithm are very similar to
those computed by Valsecchi. Little differences exist, perhaps due to factors
such as the value of Jupiter’s radius or the position of Callisto used in the
calculations.

Valsecchi Developed algorithm

ξ ζ b ξ ζ b

CN+1 -1.25 -0.04 1.25 -1.26 -0.06 1.26

CN+2 -1.11 -0.46 1.20 -1.12 -0.44 1.20

CN+3 1.14 0.37 1.20 1.14 0.35 1.20

CN+4 1.25 -0.04 1.25 1.26 -0.04 1.26

TABLE 8.6: B-plane coordinates computed by Valsecchi et al. [43]
and by the developed algorithm

Although Valsecchi’s method was found to be slightly faster, the algorithm
presented in this thesis is more versatile for applications of resonant flyby
design. In fact, if a given target inclination is too high (or too low), the al-
gorithm computes what is the fastest way to get there using multiple flybys
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and taking into account the limits on the impact parameter. On the other
hand, using Valsecchi’s method one simply obtains the b-plane coordinates
to achieve the target inclination in one flyby, but the point will be within the
infeasible zone due to the impact parameter and so will be unusable.
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Chapter 9

Conclusion and outlook

The classical flyby model in the b-plane and the b-plane circle equation were
analytically extended to the case of non-circular orbit of the flyby body. The
extended model was first validated and then compared with the classical one
against two mission scenarios, highlighting non-negligible differences when
the flyby body has a marked orbital eccentricity and/or the flyby takes place
at one of the apsidal points. In these cases, the classical model results in-
adequate to predict the b-plane point leading to a prescribed post-encounter
semi-major axis and so the use of the extended model is suggested. More-
over, as the extension is purely analytical, the two models are no different
in terms of computational effort, and hence one makes no mistake in always
implementing the extended model. The way the model currently stands, its
main limitation is that it was developed under the approximation of zero
MOID between the orbits of the small body and the flyby body, as per Öpik’s
classical theory. Since Valsecchi et al. [11] already extended the classical the-
ory to finite MOID close encounters, a future work could do the same for the
model developed in this thesis. Another step forward could be to include
perturbations within the planet’s SOI in the model. One way to do so would
be to adjust the b-plane circle equation through some correction coefficients,
as already done by Masat [29] for the classical model.

In the second part of the work, a dynamic programming approach based on
the extended b-plane model was proposed to address the unperturbed de-
sign of multiple resonant flybys trajectories, including the number of flybys
as one of the optimisation variables. The complexity of the problem lies in
the size of the solution space and its mixed continuous-combinatorial nature,
owing to the presence of both discrete and continuous decision variables at
each flyby, respectively the semi-major axis and the inclination. The contin-
uous part of the problem was reduced to purely combinatorial by identyfing
a principle for the choice of the inclination that allows to achieve a target
orbital state in the minimum number of flybys as possible. The developed al-
gorithm was tested against the design of Solar Orbiter’s resonant phase with
Venus. The resulting solution featured the same flybys number and the same
resonance ratios as the baseline mission trajectory, giving strong proof of the
proposed design method. The efficiency of the dynamic programming ap-
proach was assessed by comparing its performances with those of a conven-
tional brute-force method. The computational savings grow exponentially
with the number of consecutive flybys and the size of the set of admissible
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resonance conditions. Several directions could be followed to increase the
exploitability of the algorithm. For instance, although achieving a target or-
bit in the fewest number of flybys reflects a typical goal in various mission
instances, it would be useful to base the choice of inclination also on other
kinds of constraints, perhaps related to coverage requirements or commu-
nication time in safe mode. Another certainly valuable direction for future
work is to include perturbing effects in the model, in order to increase the
accuracy of the solution and facilitate the transition to a fully-integrated tra-
jectory. In conclusion, the proposed algorithm provides a fast and reliable
tool for the preliminary design of multiple resonant flyby trajectories, which
could serve as reasonable starting point for numerical methods to faster con-
verge to more complete trajectory solutions. Indeed, even the information on
the total number of required resonant GAMs alone allows to drastically limit
the dimensionality of the solution space to probe.



73

Appendix A

Orbit determination from a,
e, i and a position vector

Suppose that the semi-major axis a, eccentricity e, inclination i and a position
vector r of a Keplerian orbit are known. The goal is to find the remaining
osculating elements of the orbit, i.e. the right ascension of the ascending
node (RAAN) Ω, the argument of periapsis ω and the true anomaly θ.

The solution starts by determining the angular momentum versor ĥ, where
the hat notation is used for unit vectors. Identifying with k̂ the direction of
the z-axis, the inclination is the angle between ĥ and k̂. Moreover, ĥ is always
perpendicular to the plane of the orbital motion. Hence,

ĥ · k̂ = cos i

ĥ · r = 0

‖ĥ‖= 1

(A.1)

Denoting with h1, h2, h3 the components of ĥ and with r1, r2, r3 those of r,
Equation (A.1) can be written as:

h3 = cos(i)

r1h1 + r2h2 + r3h3 = 0√
h2

1 + h2
2 + h2

3 = 1

(A.2)

Collecting the components of ĥ on the left-hand-sides of the three identities
leads to:

h3 = cos(i)

h2 = – 1
r2

[r3 h3 + r1 h1]

h1 = ±
√

1 – h2
2 – h2

3 = ±
√

1 – 1
r2
2

[r3 cos(i) + r1 h1]2 – cos(i)2
(A.3)

The ± in Equation (A.3) highlights the existence of two versors ĥ1, ĥ2 and
hence two possible orbits associated with a position vector and a value of in-
clination. The third identity in Equation (A.3) can be solved by minimisation
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or a root-finding algorithm. In any case, the interval of possible values for h1
is determined by the argument of the square root, which must be positive.
The endpoints x1 and x2 of such interval are:

x1/2 =
–B±

√
B2 – 4 AC

2A
(A.4)

where 
A = r2

1
B = 2r3r1h3

C = r2
3h2

3 – r2
2(1 – h2

3)

(A.5)

The directions of the two lines of nodes n̂1, n̂2 associated with ĥ1, ĥ2 are:

n̂1 = ĥ1 × k̂

n̂2 = ĥ2 × k̂
(A.6)

Denoting with nij the j-th component of the i-th vector n̂, n̂1, n̂2 are used to
compute the two values of RAAN

Ω1 = atan 2 (n12, n11)
Ω2 = atan 2 (n22, n21)

(A.7)

and those of the argument of latitude

u1 = ∠ (n̂1, r)
u2 = ∠ (n̂2, r)

(A.8)

Note that u1 and u2 are oriented angles, whereby Equation (A.8) must be
computed considering the direction of rotation. The orbit equation in polar
coordinates is:

r =
a
(

1 – e2
)

1 + e · cos(θ)
(A.9)

thus

θ = cos–1
((p

r
– 1
)
· 1

e

)
(A.10)

where p is the semi-latus rectum (p = a(1 – e2)). Because of the ambiguity of
the inverse cosine function, Equation (A.10) leads to two possible values θ1,
θ2 of true anomaly. Both can be associated to each of u1, u2, leading in turn
to four possible orbits, whose arguments of periapsis can be computed as:

ω1 = u1 – θ1
ω2 = u1 – θ2
ω3 = u2 – θ1
ω4 = u2 – θ2

(A.11)
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In conclusion, there are four orbits joining r and featuring the same values of
a, e, i, and their orbital elements are:

kep1 = { a e iΩ1 ω1 θ1 }

kep2 = { a e iΩ1 ω2 θ2 }

kep3 = { a e iΩ2 ω3 θ1 }

kep4 = { a e iΩ2 ω4 θ2 }

(A.12)

The procedure has been applied to the initial orbit of the resonant phase of
Solar Orbiter, which is reported in Table 8.1. The four resulting orbits are
shown in Figure A.1. It can be noted that the differences relate to whether
the encounter occurs at the ascending or descending node, and from inside
or outside the planet’s orbit.

FIGURE A.1: Encounters at A) ascending node, from inside planet’s orbit,
B) ascending node, from outside planet’s orbit, C) descending node, from

inside planet’s orbit, D) descending node, from outside planet’s orbit
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